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Abstract

Current spacecraft mission analysis has highlighted a requirement for the assembly of
large structures in BEarth Orbit. This thesis investigates an autonomouns method of assembly
for such large structures. The schemc cnvisaged is based on Lyapunov’s method which is
extended to potential function theory, The method forms an analytical solution to the
assembly problem by geunerating high Ievel control commands which are then devolved to
individual actuator commands for the assembly vehicles. The application of the method to
general assembly problems has allowed the development of a generic global potential
function. The application of the global potential function has required the use of a
connectivity matrix which contains the information required to assemble the goal structure.
Thus, a structure may be modificd by altering only the characteristics of the connectivity
matrix. The generic assembly method is then applicd using a subswmptive type architecture
which allows the assembly controller to delegate sub-components of the total structure to
secondary controllers. Therefore, the method may then be utilised to construct complex
structures, which, when linked to the usc of smart components and jeints allows the assembly
of adaptive structures. These adaptive and variable topology structures which may change
their functionalily with time may prove useful for future mission applications.
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Chapter One: Introduction to On-Orbit Assembly

For I dipt into the future, far as human eye could see,
Saw the vision of the world, and all the wonder thar would be;
“Locksley Hall” Alfred, Lord Tennyson

1.1 Introduction

Currently, a continuous human presence in space is maintained solely by the
continued operation of space station Mir. However, the next few years will see this capability
expanded with the construction of International Space Station Alpha (ISSA). Although a
large structure, International Space Station Alpha consists mostly of pre-fabricated units that
will be asscmbled on-orbit. The proposed Extra-Vehicular Activity (EVA) required of the
astronaut team for both assembly and maintenance is far beyond cusrrent experience.
However, the use of telercbotics will simplify the assembly of Infernational Space Station
Alpha. The shutte will make use of its own robot arm, while a station based manipulator will
assist further in the assembly process. Currently, the development of free-flying manipulators
is led by the Ranger! project at the University of Maryland Space Systems Laboratory. The
Ranger vehicle, shown in Figure 1.1, is scheduled to fly as a shuttle experiment in 1998 and
will provide the first step in developing free-flying assembly vehicles.

This thesis will propose an autonomous assembly method applicable to general on-
orbit assembly problems. The particular assembly problem considered here consists of
assembling a series of uniform slender beams into regular, periodic structures. Free-flying
Ranger-lype vehicles arc assumed to be used in the assembly process. The beams are
envisaged as being fastened using a standardised rigid joint which is easily assembled but
provides a rigid connection. The study is presented firstly with an examination of background
control methods, consisting of Chaplers 2 to 4. The cxtension of these methods to a control
algorithm capablc of assembling truss structures is discussed in Chapters 5 to 7. The general
application of the control algorithm is examined in Chapter 8 with a discussion of the control
architecture. Finally, conclusions and recommendations are drawn in Chapter 9.




Figure 1.1: Ranger Test Flight Vehicle (Source: Ref. 1).

1.2 A Brief History of On-Orbit Assembly

The simplest form of on-orbit assembly which is carried out on a routine basis is that
of rendezvous and docking. The recent Shuttle missions to rendezvous and dock with the
Russian Space Station Mir are a precursor to the more complex task of rendezvous and
docking with International Space Station Alpha. If the International Space Station Alpha is
successful, it is clear that the volume and complexity of operations being carried out in low
Earth orbit will greatly increase. The following sections describe the history of on-orbit

assembly and attempt to highlight the critical development paths.

1.2.1 On-Orbit Assembly: 1957-1968

In the late 1950s, the Soviet Union focused world attention on space. The launch of
Sputnik2-3 in October 1957 would start the short space race which culminated with US Apollo
astronaut Dr. Neil Armstrong stepping onto the surface of the moon in July 1969. However,
the technologies which were demonstrated and applied in placing Dr. Armstrong onto the
lunar surface also have applications in on-orbit assembly. The assembly of the Command and
Service Module (CSM) and the Lunar Excursion Module (LEM) into a single vehicle during
transit to lunar orbit and the subsequent ascent to rendezvous and dock from the Lunar
surface were manually piloted manoeuvres which corresponded to two of the most critical

single point failures of the whole mission.

The expertise required of the Apollo missions, and the failed Soviet lunar attempts
had been in development from as early as 1962. Colonel Yuri Gagarin's launch into low Earth
orbit on April 12th 1961 aboard Vostok I was the first human flight in Earth orbit. However,
as early as August 11th 1962 the Russian space programme attempted a rendezvous between
the spacecraft Vostok 3 and Vostok 4. Ultimately, these missions were not successful with a

closest approach between the craft of 6.5 km. A second attempt was made with the Vostok 5

()




and 6 missions. Again, these missions were not successful, with a closest approach of 5 km
being made. Another noteworthy point of the Vostok 6 mission is that the cosmonaut was
Valentina V. Tereskhova, the first woman in space. Political infighting and a lack of direction
within the Soviet Union resulted in a failure to capitalise on this early lead. Although the
Voshkod 1 mission of October 1964 and the Voshkod 2 missions would be successful in
demonstrating the first space-walk and multi-crew missions, the next manned mission would
not be until the unsuccessful Soyuz I mission of 1967 in which Vladimir Komarov lost his
life.

The American preparations for the proposed Apollo lunar missions would proceed
with the successful Mercury program. Following on, the larger and more complex Gemini
program began to examine on-orbit operations. The Gemini I1I mission of March 1965 would
be the first orbit correction conducted by a crew. The Gemini VI mission in December of that
year would go a step further and successfully manoeuvre to within one foot of the Gemini VII
spacecraft. However, the first on-orbit assembly was to be carried out by the Gemini VIII4>
crew in March 1966 when the spacecraft rendezvoused and docked with a passive Agena
target vehicle, shown in Figure 1.2. Coincidentally, the mission commander of Gemini VIII
was Dr. Neil Armstrong. The remainder of the Gemini flights consolidated this technique
with four additional dockings over the six months before the first manned Apollo missions
commenced in October 1968. These missions were all manually piloted by the crew.
However, the process of automated docking was later pioneered by the Soviet Union using

the Soyuz and Progress spacecraft.

Figure 1.2: Agena Vehicle, viewed from Gemini VIII (Source: NASA).




1.2,2 On-Orbit Assembly: [968-1986

The completion of the Apolio lunar program in December 1972 marked a change of
cmphasis in both the American and Soviet programs. The launch of the Soviet Salyus I space
station in Agpril 1971 and the American Skylah station in May 1973 marked the
commencement of a continuing human space presence which would last until the present day.
Although the American Skylab program would be short lived, lasting untii catly in 1974, the
Soviet program would continwe (o gain momentum with a series of five Salyut stations
throughout the 1970s. In addition, the Soyuz program and its derivative Progress ferry
pioneered the use of automated rendezvous and docking. Although little is known of the
technical specifications of these docking methods, the Igla rendezvous and docking system
fiew on the unmanned Progress vehicle to later Salyut stations as early as 1978. This docking
system was initially developed for use onboard the Salyut 6 and 7 stations. These two
stations, launched in September 1977 and April 1982 respectively, represented the second
generation of Soviet space station. However, although Salyut 7 was in operation until early in
1986, these designs were eventually superseded by the third generation Mir space station.

Although the American space program moved away from the space station coacept in
the early 1970s, the flight of the shuttle Columbia in April 1981 heralded the possibility of an
expansion of space-based operations. Following the Challenger disaster of January 1986, that
expansion has not yet been lulfilled. However, prior to the disaster, experiments such as the
ACCESS / EASE mission provided large amounts of data on the possibility of using as{ronaut
construction teams to assemble large structures on orbit. 'These experiments, flown on the
second flight of the shuttle A#lantis on mission 61B in November 1985, consisted of
assembling two truss structures using a variety of different assembly techniques.

The 'Assembly Concept for Construction of Space Structures' (ACCESS)® mission,
Figure 1.3, was principally initiated as a structural mechanics experiment. The objective was
to manufacture a 10-bay, 30 m long truss consisting of 96 individual beams and 30 joint
clusters, The construction team of two astronauts were held in foot restraints while the truss
was rofated and translated to present proper work positions. The MIT lead Expcrimental
Assembly of Structures in EVA' (EASF)? mission, Figure 1.4, was intended as an
examination of astronaut performance during assembly8. The experiment grew from the
'Structural Assembly Demonstration Experiment' (SADE)*1? and involved two astronauts in
the shuttle payload bay constructing a single tetrahedral structure. The astronauts worked with
a 'low man', who used foot restraints on the floor of the payload bay, and a 'high man' who
worked without restraints at the opposite cnd of the beam,




Figure 1.4: EASE Structure (Source: NASA).




Although both of these experiments were successful, and the structures were fully
assembled by the astronaut team, the infrastructure required to perform even a simple
asscmbly task prompted further research into the field of automated assembly. The MIT team,
led by Prof. David Akin, began to examine the general field of robotics and more specifically,
telerobotics for assembling FASE type structures. Following a switch to the Nentral Buoyancy
Facility at the University of Maryland, Prof. Akin and his team began work on a series of
robotic vehicles and structures which would eventually lead to the Ranger telerobotic vehicle.
Ranger is due to fly on the Shuitle late in 1999 and will be discussed in more detail later.

1.2.3 On-Orbit Assembly: 1986-1997

The Mir station was launched in February 1986, and represented the first large space
structure which would require assembly on-orbit. The main core of the Mir station was an
upgraded Salyut design, however, the following year saw the addition of the Kvani module to
the station. The Kvan: module was launched on March 1987 and provided an additional 40
m? of working spacc to the station. The station continued to grow with the addition of the
Kvant-2, Kristall, Spektr and Priroda modules, In addition, in 1995 a docking adapter was
added to allow the American space shuttle to use the Mir facilities. The final internal vsable
volume of the station is now approaching 400 m3.

The Mir station is the first spacc station which has been continually manned since its
laanch. The station has been assemmbled using a combination of antomatic docking techniques
and cosmonaut assistance, A significant lesson learned from these additions {o the station was
that the asscmbly of cables and plumbing, both internally and cxtcrnally formed a significant
proportion of the assembly procedure. With the launch of the space staton in 1986, an
upgraded Soyuz TM manned spacecraft was introduced. Also, in 1989, the Progress M ferry
began to service Mir, The significance of these spacecraft is that they arc bolh cupablc of
automatic rendezvous and docking using the Kurs system. Again, little is known of the
technical specification of this system. However, it is clear that the system will be installed on
the Russian components of International Space Station Alpha. The collision beiween a
Progress TM ferry and the Spektr madule arising from a failed docking procedure in July
1997 has cast doubt on the tuture of Mir. However, the long duration stays of the cosmonauts
and the resulting Extra Vehicular Activity (EVA) has provided experience of on-orhit
operations which wifl be vital for the assembly of International Space Stution Alpha, Figure
1.5.

NASA's commitment to the ACCESS / EASE missions highlighted their desire to
develop the capability to manufacture structures in space. As a consequence, the Automated
Structures Assembly Laboratory (ASEL) was initiated at the NASA Langley Rescarch Centre
in the late 1980s. Jnitially, their work focused on two main arcas of rescarch. Firstly,
telerobotic assembly methods and vehicles, and secondly, the development of a Space Crune
concept, which is designed to provide a custom construction facility for on-orbit agsembly.




Figure 1.5: International Space Station Alpha (Source: NASA).

One of the structures that was identified as being required in the near term was that of large

scale precision reflectors!!,

ASEL began its studies in telerobotics and automation by examining the supporting
structures required to assemble a large reflector on-orbit. Initially traditional 'pick and place'
techniques were applied. This is a technique very similar to that used in terrestrial production
lines where robot manipulators pick an object from a predetermined location and place it in
another location. This is a fairly rudimentary approach, however, the objectives of the study
were principally to develop a proof of concept system, and not to develop new technology.
Thus the development needs were formalised as;

» Practical experience of automated systems.
» Software capability for robust systems.

 Proven telerobotic interfaces.

To gain experience, ASEL began experiments using a robot manipulator to construct a
honeycomb truss structure consisting of 102 beams of 2 m length. Incorporated within the
experiment were error terms in positioning and velocity which were overseen by a human
operator capable of telerobotically recovering the manipulator from any errors. Results from
the experiment indicated that the system was indeed feasible. In addition, the assembly time
per beam was approximately five minutes, including the time spent overcoming errors. This
has prompted further research into the assembly of truss structures where experiments have
incorporated elements such as machine vision!2, structure validation!3, advanced software

hierarchies!4 including expert systems!S and Artificial Intelligence planning architectures!6,




The second area of research was aimed at the development of on-orbit hardware
capable of providing the infrastructure to apply automated construction techniques. The
concept that has been developed to fulfill this mission is the Space Crane. The crane is
assembled from truss elements very similar to that of the ACCESS mission which themselves
are manufactured from uniform beams. Various joints have been examined including
articulated joints, rotary joints and high stiffness joints to provide a vibration damping
capabilityt?, Much of the analysis has been focused out on the structural propertiest®1? of the
Space Crane. The process of assembling the Space Crane has been largely assumed to be
automated with the experience being provided by the reflector assembly studies.

1.2.4 On-Ovbit Assemnbly: 1997-

Following the collapse of the Soviet Union, NASA and the Russian Space Agency
(RSA) began a series of experiments which will lead to the construction of International
Space Station Alpha. Following a formal agreement in 199320 a cash-strapped RSA has
allowed NASA use of the Mir station leading to a series of shuttle missions by the Atlantis
and Discovery orbiters docking with Mir, The use of Mir has allowed NASA and RSA
astronaut / cosmonaut teams to gain experience of joint on-orbit operations with the specific
aim of proving technologies for the launch and assembly of Infernational Space Station Alpha
componcnts, the first of which is due to be launched in 1998.

The International Space Station Alpha programme grew from a series of proposals for
the American space station Freedom?l and is itself the proof of concept for Large Scale
Structures {LSS) being assembled on-orbit. As the cost of Freedom grew, NASA looked to
international partners to assist in financing the station. Currently, the space station will
provide working and living quarters for scientists from Japan, Europe, Canada, the USA and
Russia. The size and scope of the station is far beyond any previous platform, With a total
length of 108 m and a breadth of 74 m, the overall station size is 2.5 times larger than Mir22,
Thus, the station must be assembled on orbit from forty separate faunches, which remains the
largest engincering challenge of the programme?3, The main modules of the station have been
manufactured in both the USA and Russia. These components will be assembled for the first
time on-orbit using a combination of automatic docking procedures (the Russians will
assemble the initial components using the Kurs docking system), shuttle borne rebotic arms
and teams of Astronants / Cosmonauts. The EVA requirement for the station is for 1,000
hours over a period of five years. This requirement is larger than the currenl (otal EVA
experience of all previcus space programrmes.

The sections of the station may be categorised as the pressurised modules, solar panels
and radiators, the main station fruss and external scientific payload. The pressurised modules
will all be assembled as discusscd previously, in addition, the solar panels and reflectors will
all be deployed automatically with assistance from robotic arms, as will the external scientific
pavload?4, However, the main truss of the station, onto which the remainder of the station
will he attached comsists of a framework of beam elements25. As a consequence of the
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ACCESS / EASE experiments, the Hubble refurbishing missions and experience of operations
on Mir, the task of assembling the truss on-orbit and instaliing wiring looms and plumbing
connectors was thought to be a task beyond the on-orhit assembly experience currently
available. Therefore, the decision has been taken by NASA and the international partners to
assemble the framework and install the necessary equipment on the ground to ease the
workload of the astronauts.

1.2.5 Future Studies

If current population growth continues, conservative estimates place the total world
population in excess of 7 billion people by the year 2020. As a consequence, many studies
have examined the need for clean power to supply such a large global population. One of the
options examined has been the Solar Power Satellite (SPS) concept?6, Originally examined in
the late 1960s, a patent for an orbiting solar farm was filed in 1968 by Peter Glaser??. The
original concepts examined by NASA and other organisations involved massive projects.
Some studies have estimated an overall cost of a Geostationary SPS approaching $300 billion
in 1997 dollars?8, This relates to a 5-10 gigawatt output from a 5x10 km satellitc. This
translates into an installed cost of 5 $.kW™'. Some cstimates in manpower have identified a
suppott requirement of over 600 people for a 30 day tour,

Studies carried out in 1995 have presented a much more modest structure??, The more
recent studies have been based on a modular design called the Sun Tower system. The cost of
Sur Tower is much lower at $10-$15 billion in 1997 dollars delivering a power output of 250
megawatts in Medium Earth Orbit (MEQO), Examining the baseline costs of solar panels,
typical costs of photo-voltaic arrays are in the region 1-2 $.kW™ 30, This results in an installed
cost approaching 5 $.kW™', This can be compared with 1.25 $.kW' for a conventional power
plant. However, in Earth orbit, the energy output from the Sun results in a potential maximum
output of 1,365 kW.m2 31 from a solar power satellite. Therefore, in the long term, the SPS
concept may prove conmunercially attractive, Other applications for advanced modular solar
power concepts are in areas such as low thrust electric propulsion. This type of propulsion
would allow faster Mars missions and missions to the outer planets. However, the cost of
developing the technology is dwarfed when compared to the cost of launch to Low Earth
Orbit (ILEO).

‘The cost to LEO is critical to wmany proposed missions. Early studies of the
International Space Station in the form of the American Freedom station involved provision
for the assembly of large telescopes and orbital construction facilities for the asscmbly of
large mass vehicles such as Lunar and Mars transfer vehicles. As the cost of the station grew,
the cost of marginal missions such as these hbecame untenable. Thus, most of these facilitics
did not make the transition to Internutional Space Station Alpha. However, as the launch cost
to LEO is reduced, these missions may become more attractive and large scale construction
tacilities will be required for on-orbit assembly.




1.3 State of the Art; Structares

Many large spacecraft are limited by the volume of the launch vehicle nose fairing.
Therefore, if there is a requirement for a large volume spacecraft, a method of construction is
required which will allow a transition to the operational configuration on-orbit, Currently, the
structures which allow such transitions may be divided into three distinct classes: erectables,
deployables, and inflatables. EBach of these structures has associated advantages and
disadvantages. The following sections shall explore these in detail.

1.3.1 Erectables

An erectable structure is simply that. This class of structure requires assembly,
whether by astronaut [EVA or robotic manipulators in-situ, Experience using neulral buoyancy
tank simulations has shown that unaided construction techniques are achievable by
astronauts. However, thesc techniques prove to be both demanding and fatiguing for the
astronauts32. Therefore, various (echniques have been developed which will assist astronatits
in the assembly of structures on-orbit. Principally, the type of stiuctures envisaged here are
that of large load bearing truss structures which themselves are assembled from individual
beam elements ranging from 2 m to 6 m in length. To assemble this type of structure, studies
and tests have been carried out using a Mobile Work Station (MWS) and Swing Arm Beam
Erector (SABER)33,34,

The MWS is a mechanical device consisting of mobile {oot restraints and a rail which
translates the whole mechanism along the partly assembled truss, The astronauts are held in
place by the foot restraints which may themselves be adjusted. However, the prescribed
envelope of movement is rather limited. Thus, the astronaut is relieved of some of the
fatiguing translation and, in addition, is provided with a mechanism to react against the forces
and moments incurred during assembly. Working co-operatively, two astronauts were found
to be very efficient in building truss elements consisting of 6 m struts. Average assembly
times of approximately 40 second / beam were achieved in neutral buoyancy simulation®.

The SABER device operates in a similar fashion to that of the MWS. However, a
fundamental difference is that the astronaut is held in position while the truss element is
rotated and translated to present the astronaunt with the next work site. Again, this was found
to be very efficient with average assembly times of 30 second / heam for a beam length of
2m. Both of these studies culminated in the ACCESS mission. The ACCESS mission made
use of a SARFR type assembly mechanism where the astronauts were restrained in the shuttle
payload bay while a 96 heam, 30 m long element was assembfed. The mission was highly
successful with an average assembly time of 16 second / beam for a beam length of 1 m®.

An exponent of erectable structures is Anthony Coppa3s. In a series of papers and
patenits, Coppa has designed a system of interlocking beams which assemble to form a
Cappatruss. A Coppatruss 1S a linear iruss consisting of close packed tetrahedrons. The truss
structure and joint mechanisms are very similar to other proposals, however the assembly
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method uses a robotic assembler which is self-contained. The assembler utilises a jig structure
which will assemble triangles which are then connected to form the truss. The beams which
formn the triangles are supplied from a cartridge module, Thus, the robot assembler would be
supplied with raw materials which are loaded from a cartridge and a Copparruss would
automatically rcsult. The need for EVA or free-flying assemblers would therefore be
eliminated.

Studies carried out in the late 1980s® have highlighted a number of technology needs
which arc required to allow feasible structures (o be assembled on-orbit at a reasonable cost.
These are;

¢ Demonstration of rapid EVA asseinbly techniques.
+ Development and demonstration of antomated assembly techniques.
« Development and demonstration of a large stiff space crane.

« Validated hardware and assembly design costing algorithms.

In addition, the following areas have been identified as critical issues for large spacecraft
operations36;

= Validated dynamic analysis.

o Validated accuracy prediction methods.

e Space qualified passive damping concepts.

» Demonstrated active control concepts.

» Demonstrated adaptive structures.

« Demonstrated structural integrity monitoring concepts.

« Validated design costing algorithms.

The erectable structure is recognised as a principal technology for the assembly and servicing
of large spacecraft in the (uture. However, at this moment in time, the cmphasis has altcred
from astronaut focused operations to remote teleoperated vehicles.

1.3.2 Deployables

Deployable structures are considered to be the only practical method of constructing
some of the very light structures in use today3” 6. A deployable structure is one which,
following insertion into orbit, will begin to deploy itself on cue from a ground signal. Onc
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example of this would be a solar panel unfolding itself, Their reliability has lead to their

inclusion on most spacecraft in the form of furlable booms, lattice columns and solar array
wings. However, these different tasks may be reduced to the following structural types;

» Long Slender Beams.

» Deployable Reflectors.

Long slender beams are used in many different applications. For example, the solar
wings of the Hubble Space Telescope (HST) are deployed using a long slender beam which,
as it deploys, drags the remainder of the solar pancl with it. ‘The Voyager spacecraft also made
use of a long slender beam to deploy science packages, as have many other missions. Of all
the applications, the four main types of long slender beams may be categorised as;

« Storable Tubular Expendable Member (STEM).
» Continuous Longeron Coilable Booms (CLCRB).
« Articulated Linear Trusses and Fold-Out Beams.

« Deployable Refleclors.

STEM structures, or more commonly, bi-stem structures are deployable in a fashion
similar to that of a carpenters measuring tape. The stem itself is stored in a flat roll which may
be deployed using the potential energy of the flattened material or a small motor for more
precise deployment rates. A bi-stem uses two stems interlinked to form a complete tube as
shown in Tigare 1.6. The bi-stem is the more common structure which allows greater
bending stiffness and mechanical damping behaviour. Many hundreds of these structures have
flown in spacecraft with a tube diameter in the region of 1-5 cm. The longest structure ever
deployed was a stem unil flown on Lthe Radio Astronomy Explorer (RAE) in the late 1960s.
Four units were flown, each being over 250 m in length. The slem and bi-stem structures are
not useful for very precise structures, however, their low cost and high packing effliciency

make them very attractive.

CLCBs are widely used on spacecrafl and are considered to be a mature technology
with very predictable characteristics. Invented in 1972 by the Astro Aerospace Corporation,
and more commonly known as the Astromast, the CLCB is a linear truss structure with a
triangular cross section. The structure may be deployed from a very compact configuration
with a typical stowed length less than 2 - 3% of the total deployed Jength. Figure 1.7 shows a
typical CL.CB. The struclure is made up of triangular elements joined by linear elements with
a pretensioned diagonal which stores enough internal potential energy to allow a self
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deployment once in orbit. A controlled deployment is possible by using a lanyard cable
attached to the end-most unit which may be played out to the desired length. Typical widths
of the structure are between 15 cm and 75 cm. The maximum practical width is estimated at 1

m due to the internal energy of the diagonals growing dangerously large.

Figure 1.6: Bi-Stem Structure (Source: Ref. 6).

Figure 1.7: CLCB Structure (Source: Ref. 6).




Articulated trusscs are essentially similar to the trusses considered in the ACCESS /
EASE missions. However, instead of mianual construction, these structures make use of
scissors and pantograph mechanisms to deploy. Thus, from a relatively close packed
configuration, it is possible to deploy a large strong linear truss. However, the only practical
precision example of this type of structure to have flown is on the Seasqs and ERS 2 synthetic
aperture radar (SAR) payloads. This cxample was manufactured by the Astro Aerospace
Corporation, the principal developers of CLCBs. The advantages of using this type of
structure is their high strength and their ease of deployment. Tn addition, if a surface is added
to one of the faces of the deployed structure, a stable platform is provided with good support
properties. ITowever, the disadvantages are their mechanical complexity and their relatively
poor packing efficiency. Careful consideration must be given to the application of this type of
structure,

Deployable reflectors are used on-board spacecraft for a number of tasks. Applications
include remote sensing and communications. Since a wide range of power and frequencies
must be supported by these structures, a variety of different types have emerged, which may
be divided into two classcs;

« Single piece reflectors.

» Moderate precision deployable mesh reflectors.

Single picce reflectors are very similar in size to that of a typical TV satellite dish.
Their small size allow them to be launched fully formed. Therefore, it is possible to
manufacture these out of relatively common composite or metallic materials. In addition, due
to their manulacture occurring at a single point in {ime, the accuracy of the reflector may be
very precisely defined. In orbit, these dishes are deployed in a single action. Simply, they will
be manoveuvred from a stowed to an operational configuration. Also, since the receptor or feed
of the dish may be pre-installed, the housing for the reflector need only point the instrument
in the necessary direction.

If a mission demands a larger dish, then a deployable mesh reflector will be used.
These reflectors are quite common, having {lown on several missions, However, the most
well know case is the Galileo high gain antenna which failed to deploy during transit to
Jupiter. These large reflectors must be deployed, or unfurled in orbit. This is usually carried
out using an umbrella type assembly where the reflecting mesh material is attached at various
points. On deployment of the mechanism, the mesh will also unfurl, thus forming the
necessary parabola. However, due to the limited attachiment points of the material to the
supporting structure, the surface accuracy of the reftector remains at best moderate. The mesh
material itself requires carcful design in that it must appear solid to the impinging radiation.
Therefore, the mesh must be woven to a very high specification so that each mesh cell is




smaller than that of the wavelength of the incoming radiation. Typical materials are synthetic

or metallic fibres and typical reflector diameters range from 5 m to 15 m.

1.3.3 Inflatables

Inflatable structures have been the subject of much attention since the beginning of the
space programme®. Principally, their advantage is their high packing efficiency and ease of
deployment. They have been flown extensively on spacecraft such as Echo I, Echo 11, Pageos,
Explorer IX, and Explorer XIX. Recent experiments such as the Inflatable Antenna
Experiment (/AE), Figure 1.8, have highlighted this area as a promising technique for the
deployment of large space structures38: 3% Generally inflatables are considered for
applications which do not require highly precise shapes. This is due to the difficulties
associated with manufacturing the thin polymers and fabrics used. In addition, due to the
inherent high coefficient of thermal expansion of polymers, the contours of the structure will

change with temperature. Currently, there are two classes of inflatable structures in use;

o Pressure Stabilised Inflatables.

« Rigidised Inflatables.

Pressure stabilised inflatables are commonly used as antennas or concentrators. Due to
their low mass and packaged volume, their launch costs are distinctly lower than other classes
of structure. Typically, an inflatable structure will be an order of magnitude lower mass and
packaged volume than deployed structures. A typical example of this type of structure is the
antenna used on the Echo II passive communications satellite. In general, these structures

have demonstrated excellent performance. Their large continuous surfaces

Figure 1.8: Inflatable Antenna Experiment (Source: NASA).




mean good thermal properties, typically being isothermal to within 10 Kelvin, Tn addition,
having heen used extensively on military systems in space, they appear to be very reliable
with few failure modes.

Dynamically, structural deformations cannot occur without the internal volume of the
inflatable changing. The volume change is opposed by the internal pressure and so results in a
stable structure where resonance problems are unlikely, In addition, the fabrics used have
exhibited a large damping coefficient, thus resulting in a rapid damping of disturbances with a
lypical surface accuracy of a 0.1-1 mm and an operational pressure in the range of 10-3-10-5
atmospheres. At such low pressures, it is possible to use a gas reservoir which can maintain
internal pressure for an operational lifetime of order 10 years.

Rigidised inflatables are similar to pressure slabilised inflatables with one major
difference. These inflatables are treated such that they will become rigid in space, thus
allowing them to function as load bearing structures. This type of structure was used in the
Echo II and Explorer missions. The type of material used here was a laminate of aluminium
and polyester which sets following inflation. Currently, two materials are used. The first uses
a space curing resin which is enclosed by two impermeable films. On exposure to space, the
resin will hurden. A second material used is a Gelatin / Fabric Composite. These fabrics work
by impregnating a carrier material with gelatin. On exposure to space a solvent, usually water
is released from the material thus hardening the film. It has been shown that this type of
structure has a good performance coupled with minimal degradation over time.

1.3.4 Conclusion

Due to their unique nature, design and development dominates the cost of current
spacecraflt production®?, In contrast, a civil engineering project has a design and development
cost of less than 10% of the total project cost®, To make large structures affordable, two arcas
have been highlighted as critical technologics. Firstly, the development of off-the-shelf
building block components. And secondly, a method of construction and validation which
will minimisc the cost of system integrationdl. However, for large space structures,
acceptance by the space community will firstly rcquire the demonstration of a validated
method of assembly#2, In addition, the costs of such large structures mean that two guestions
must be addressed; whether the structure will be deployed, or asscmbled, as expected and as a
conscquence, whether the structure will operate as expected. Therefore, with the ihmited
experience of large space structures available today, the risks are seen by many to be too high
at present.

1.4 State of the Art: Robotics & Sensors

Currently, there is a wealth of research material concerning the development of
robotics and sensors. There is, however, limited rescarch in robotics specifically designed for
operations in spacc??, Howcver, NASA is actively promoting robotics and telerobotics with &
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number of projects including Mars Pathfinder and demonstration robots such as Danted: 43,
At the forefront of this research is the Ranger project and the Inspektor class of robot.
However, the development of robotic vehicles in other fields will have a beneficial influcnce
on space robotics in that the terrestrial technology is reaching maturity.

1.4.1 Ranger

The Ranger vehicle is currently being designed and constructed in the Space Systems
Laboratory at the University of Maryland. The project originated as a consequence of the
earlier EASE mission. The EASE mission highlighted the ditficulties faced by astronauls on a
construction EVA. Therefore, the Space Systems Laboratory began development of the first
dextrous space telerobot. A precursor of the Ranger vehicle was the Beam Assembly
Telerobot (BA'1)46 which was a vehicle developed for testing in a neutral buoyancy tank to
demonstrate the core techmologies required of the Ranger vehicle. Principally the BAT
vehicle made use of two dextrous robotic arms to bring together and connect two beams.

Following the successful demonstration of BAT, the Ranger vehicle was proposed for
development with a total budget of $10 million in 1997 dollarsl. The prototype Ranger NBV
(Neutral Buoyancy Vehicle) neared completion in 199547, Tests and development continued
in the neutral buoyancy tank at the University of Maryland until 1997 when an agreement was
reached with NASA to fly the vehicle on the shuttle late in 199848, 49, 50, 51, The vehicle
which will fly on the shuttle, the Ranger SFX (Space Flight Expertment) will have a final
mass of 800 Kg and is approximately the size of an original Mercury capsule.

The principal objective of the Ranger experiment is to calibrate and validate ground
neutral buoyancy tests with the on-orbit performance, thus allowing future development to
occur on the ground. Other objectives include determining the capabilities and limitations of
space telerobotic systems. 'This will be carried out using a series of servicing tasks ranging
from the straightforward to the complex. The technologies which will be demonstrated are the
robotic manipulator control algorithms, a full immersion virtual environment interface? for
the operator, obstacle detection™?, obstacle avoidance4 and adaptive flight control methods.
Thus, this vehicle will represent a proof of concept demonstration for the construction
problem which will be discussed later in this thesis. If this experiment is successful, then real
on-otbit assembly experiments could be carried out sooner rather than later,

1.4.2 Remote Inspection Robots

Another class of robots which has attracted much attention is that of remote inspection
vehicles. These vehicles have been designed to fly free from International Space Station
Alpha and the Space Shuitle to inspect the surface of the vehicles in inaccessible sites.
Currently, there are several studics cxamining these types of vehicles. The first is the NASA
developed Autonomous EVA Robotic Camera (AERCuam), Sprint®5, Sprins is a teleoperated
vehicle which is due to fly at Mir in 199856, The vehicle consists of a stable platform capable
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of both translation and rotation. The sensor suite onboard the vehicle will consist of a camera
and lighting system in addition to a communication module for control purposcs. Although
the initial vehicle will be tightly controlied by an astronaut, later generations are planned
which will elaborate on the original vehicle by including various degrees of autonomyS7; 38,

European studies are also proceeding, principally with the Inspector vehicle currently
being developed by Daimler-Benz. Essentially this vehicie is identical to the Sprini vehicle in
concept, the only differences being in the engineering design. However, the final Inspector
vehicle is designed to be fully autonomous, moving between predetermined way-points with
minimal intervention from the astronaut controller. A third vehicle, called Scamp. is cuirently
being uscd as a test-bed for a second generation vehicle at the University of Maryland. The
principal objective of the Scamp vehicle is to demonstrate telerobotic interfaces, Currently, a
contputer vision obstacle avoidance algorithm has been developed which will run from a
desktop PC, thus proving the control architecture of these vehicies is not prohibitive.

One of the major design specifications of these vehicles is that they will not translate
quickly enough to damage another vehicle if there is a collision. Therefore, the translation
capability of the vehicle is provided by a modest propulsion system. Any translation between
two way-points may consist of relatively long periods of acceleration and deceleration. In
addition, since any control system will be based on visual cues, conventional optimal control
methods will not be applicable. New, control algorithms such as the potential field techniques
developed at the University of Glasgow will also require exlensive testing before being

certified for operations near any manned habitat in orbit.

1.4.3 Sensors

Any free-[lying robotic vehicle which is designed to work on-orbit either alone or with
a group of similar vehicles will require a wide range of capabilities. With regard to sensors,
although the robot may carry many different types of sensors, these may be reduced to just
two classes. The ficst class of sensor, hercin referred to as Formation sensors, would be used
to determine the robot's place within the environment. An example of this would be the robot
determining its relationship to the other working robots. The second class of sensor, herein
referred to as Proximity sensors, is designed for the detection and manipulation of any objects
within the immediate proximity of the robot vehicle. An example of this would be a gripper
arm reaching cut and grasping a componcnt.

Formation sensors are typically bascd on utilising the Global Positioning System
(GPS) or GPS-like systems. This method has been proposed for use with the Spacecrafl
Interferometer Concept at the Jet Propulsion Laboratory™® which makes use of a GPS-like
technique. The interferometer concept requires (hat each spacecraft is positioned very
accurately relative to one another over large distances. The method envisaged here is the
Autonomous Formation Flying (AFF) system which allows the calculation of the relative
distance and angles between spacecraft. The method requires each spacecraft to transmit a
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phase and pseudo-range signal which is received by multiple antennas on the other spacecraft.
The multiple antennae on each spacecraft allows complete solid angle coverage. Thus each
spacecraft can calculate its position relative to the others with high precision. The accuracy
possible with this method is estimated to be 1 cm in range and 1 arcmin in refative angle.

Currently, there are a large variety of proximity sensors available commercially. There
are also many applications, typically where robots are utilised. Although many of the sensors
available are designed to perform the same task, the method by which they do so is varied.
However, it is possible o classify the range of sensors into four main groups. These are;

» Laser and photo-clectric triangulation.
« Optical reflection intensity.
» Optical and microwave time of flight.

» Inductive and capacitive.

Laser and photo-clectric triangulation sensors work in a manner where Llhey emit a
narrow beam of light at an offset angle from the spacecraft. This beam of light is then
reflected back from the target object with the location of the returned becam allowing the
calculation of the range-to-target. Experimentally, this type of sensor promises extended
range and lower scnsitivity to the surface properties of the target. However, they are rather
complex, so much so that data handling is processed by a neural network. In addition, certain
types of laser emiiters can cause problems with eye safety and so their use may be limited to
envitonmenls where humans are not present. Due to scnsor geometry, a typical range for this
class of scnsor is 3-50 cm.

Optical reflection intensity sensors operate as their name would suggest, A beam of
light is emitted from the spacecrait to the target object and the intensity of the refiection is
measurcd, Currently, this ts the most widely used sensor, however, it is very susceptible to
environmental and target surface conditions. Ranges vary from as little as 10 cm to 350 cm. A
similar class of sensor is that of oplical and microwave time of flight sensors. These sensors
work in a similar fashion to that of reflection intensity sensors, however they measure the
time between emission and rcturn of the carrier beam. The principal advantage of using this
scusor is that it can perform over a wide range of distances, typically from 15 em to 15 m.

However, the sensor is expensive and the resolution is limited to only 15 crm.

Inductive and capacitive scnsors are commonly used in two areas; production lines
and metal detectors. They have a very limited range, and the resolution is limited to detecting
object presence rather than range. These sensors utilise two plates or coils. A curvent is passed

across the coils, and the presence of & metallic object will distort the signal. They have a very
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limited range, typically less than 1 cm. Research is currently attempting to extend the range of

this type of sensor for use in the end effectors of robot arms.

A study carried out at the Jet Propulsion Laboratory for NASASC concluded that the
sensors which were best suited to space operations were the;

s Idec/Izumi SA1D triangulation sensor.
« Sick DME2000 laser time of flight sensor.

» Capacitec 410SCBNC capaciiance sensor.

Of these three sensors, the DME2000 laser time of flight sensor gave the best overall
performance, However, a more cost effective choice would be the SA1D trianguiation sensor
which is better for measuring point-to-point distances. For application to area coverage, such
as a sleeve for a robot manipulator, the capacitance sensors give better performance. The best
of these is the 410SCBNC sensor, An ideal application of this sensor would be on working
surfaces such as grippers.

1.5 State of the Art: Assembly Philosophies

Currently, there are numerous control methodologies available to the engineer,
However, for the scope of this study, Lyapunov's method and the associated potential function
method shall be considered the method of choice. Although Lyapunov's method was
originally formulated at the turn of the century, it is only recently that it has received
widespread attention. A number of studies exist applying Lyapunov's method, which will be
discussed turther in Chapter 3, However, a briel introduction shall be provided here and the
application to spacecraft systems discussed.

1.5.1 Conirol via Lyapunov's Second Method

Lyapunov's second method may be described more as a philosophy than a strictly

defined method. The methed is applied by firstly specifying some goal condition or state.
From any initial condition or state, if the system moves towards the goal, then the system is *
converging and, in principie, no control action is are required. Alternatively, if the system is
moving away from the goal, then the system is divergent and a control action is required to :
ensure that the system is again moving towards the goal and is convergent, There are many
differing methods of formulating and applying these control actions.

The potential function, or energy, method is onc such imcthod of deriving control

inputs. Bach condition or state within the system domain is assigned a positive 'poiential’
value. The potential is assigned so that if the system diverges from the goal, the potential will

increase with time, and if convergent, then the potential will decrease until the potential
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vanishes at the solution. A common analogy is that if the potential magnitudes were plotted
throughout the domain, a 'salad bowl' paraboloid geometry would result with the goal at the
boitom of the bowl. Thus, if a marble were to be dropped into the bowl, every possible
outcome would result in the marble reaching the bottom of the bowl.

Obstacles may be included in the domain by adding areas of high potential in the
region of the obstacle. However, the addition of the high potential may cause the formation of
a local minimum. A local minimum 1s a region within the domain where, if that condition is
reached, the potential function would be uniformly increasing in every dirvection. Returning to
the 'salad bowl' analogy, this would be the equivalent of fixing an obstacle to the side of the
bowl such that it was possible for the marble to be trapped behind it, thus preventing the
marble falling to the goal condition. The formation of local minima has proved (o be a
stumbling block in many applications of the potential function method. Therefore, the
application of obstacle potentials and the resuiting local minima shall be exatnined in greater
depth in Chapter 4.

Although the application of potential functions to spacecraft control is well
documented, much of the work has concentrated on robot manipulatorsS!. The expansion of
the technique to include areas such as spacccraft orbit and attitude control has been carried
out by the research tcam lead by Mclnnes at the University of Glasgow%%, Much of this work
has concentrated on areas such as proximity manoeuviing®s, large angle slew manoeuvres®4,
terminal descent guidance for remote landers$5, constellation and formation kceping®® and
rendezvous and docking®7.

1.5.2 Automated Docking Methods

Many automated docking schemes are currently in use or in development. Of the
methods available, they include radar, laser and visual based systems. However, of intcrest to
this study is the application of automated control algorithms. Lyapunov's theorem provides a
method which demonstrates the flexibility required for such complex problems. The two
principal proponents of Lyapunov's method and its application to spacecraft rendezvous and
docking are Wang at the Jet Propulsion Laboratory and St. John-Olcayte and Melnnes at the
University of Glasgow. Wang6® has examined a generic docking case where an aclive body is
closing to dock with a static body. For this case, both are assumed to be 6 degree of freedom
bodies which are controlled in both attitede and position, The method, when applied, relies on
shaping the closure rate between docking adapters situated on each body. A control input is
then derived which will ensure this closure rate is always negative definite in both attitude
and position. Strictly speaking this method represents a pure application of Lyapnnov's
second method, however, the approach does not utilise a potential function. The method has
been expanded to include a simple collision avoidance scheme and has been applied to many
different problems, including the interaction®® 70 and formation keeping: 72 of groups of
micro-spacecrafl.
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An extensive study?3 carried out at the University of Glasgow on behalf of the
Burcpean Space Agency has examined the application of potential functions to the
rendezvous and docking problem. The study was aimed at deriving an advanced control
algorithm for the Automated Transfer Vehicle (ATV) which ESA is developing to re-supply
the ISSA. The dynamic model provides a very accurate simulation ol the ATV incorporating
elements such as sensor noise, thruster execution errors and collision avoidance. Based on
this model, several control algorithms have been developed using potential functions and
Laplace Navigation. In addition, two classes of obstacle potentials have been examined, the
Gaussian potential, and the power-law potential. Both of these potentials are examined in
greater detail in Chapter 4.

Laplace Navigation utilises fluid potential flow theory so that goal conditions may be
defined using sinks, and obstacles formed wvsing sources. A distinct advantage over
conventional potential {unction methods is that the addition of an obstacle source will not
form a local minima. This may be verified using Laplace's equation, I a potential function is
chosen such that it satislies Laplace's equation

V2y =0 (.

where V is the potential function, the potential function will not contain any local minima as
the second derivative shall always be zero. Therefore no maxima or minima may form other
than at the solution or boundaries of the problem. In addition, the use of irrotational vortices
may be used to specify the direction in which an obstacle is necgotiated. The disadvantage of
Laplace Navigation is the computational demands posed by the grid solution to the Laplace
equation. Thus the method may prove difficult to apply to rapidly changing environments.

1.5.3 Controlling Groups of Small Robotic Vehicles

The automated rendezvous and docking methods which have been described have
been expanded to include both [ormation-keeping and path planning., However, there are
many other control methods which have been applied to the problem of controlling groups of
vehicles in different environments. The few which shall be discussed here are relevant (o Lhe
problem of on-orbit assembly not because of their robot navigation strategies, but more so
their application (o the preblem and the control architecture which has been derived.

The group of robotic vehicles envisaged here is typified by the work of Bay’* and the
Army-Ant group of robots. The Army-Ant group study was designed to examine the properties
of a group of homogenous robotic vehicles. The robots were designed to be capable of
working as a group to perform tasks such as lifting, transporting and placing pallets and
outsized objects within a warehouse environment, The criteria for the experiment is that each
robot should cost less than $2,000 and as a group demonstrate;
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» Robusiness.
+ Flexibility.
» Small Size.
» Simplicity.

» Emergent Group Behaviour.

The last efement is critical, the army-ant concept is very dependent upon the group
capability being greater than the sum of the individnal capabilities. Thus, the design of the
individual control mechanism must incorporate emergeni group behaviour. Currently, the
robot control scheme is based on each robol following a self-elected leader. Any given robot
may elect itself leader by detecting the objective before its compatriots. The remainder of the
robots will follow the cxacts movemenis of the leader. Although Bay has proposed this
concept and begun development of the robotic vehicles in question, the study has not reached
fruition as yet. However, it is interesting to note the comparisons which may be drawn
between this study and the field of animal behaviour.

Niwa73 has exarnined the behaviour of fish schooling and developed a mathematical
model of the school behaviour, Within this study, it is assumed that no individual leader
exists within the school of fish. Rather, the behaviour of any individual fish within the group
1s based on the behaviour of its nearest neighbour in terms of separation and velocity, both of
which have strong corrclations to the average size of the individual fish within the school.
Thus, based on a very simple set of rules, it may be assumed that no individual will lead the
school, but rather the school itself is the leader, and that the school is behaving as a single
organism. It is this type of emergent behaviour which is critical to the development of
behavioural models for groups of robotic vehicles.

Noreils and Chatila’ proposed a very detailed examination of task execution for a
single mobile robot. The study addressed issues such as planning, control, reactivily and
robustness where the robot control architecture was splil into three very distinct control
fevels, these are;

e Planning.
« Conirol.

¢ [Function.

The planning level consists of a task plan. Although complex strategies are envisaged,
the task plan consisted of a simple list of goals divided into very explicit tasks, The control
level consists of a more complex management scheme. This scheme has four components, a
supervisor, executive, crror recovery management and surveillance manager. The objective of
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this control level is to translate global strategies formulated by the planning level into specific
operations. The functional leve] consists of series of modules performing specific tasks such
as sensors and (ranslation. Each module within the functional level provides a capability for
the robot. The modules will exchange information with the other modules and also the control
level. This type of architecture incorporates the advantage that tasks and events, errors and
problems are dealt with at the lowest fevel of the architecture. In fact, this is a common
approach to robot control, with the layered conirol method originally proposed by Brooks?7.
The interaciion belween the layers ensures the architecture's ability to react ta external
stimuli. As an event occurs which cannot be processed by a control layer, that stimuli is
passed Lo a higher control layer which subsumes the task. This control melhod is commonly
called a subsumption architecture and is discusscd further in Chapter 8.

Driven by a need for higher precision asscmbly of electronic components, Hollis78 at
Camegie Mellon University has developed an alterpative control mcthod for a group of
construction robots. The robots operate in groups of up to forty on a conventional air table.
The robots float on a steady cushion of air to provide the very high degree of accuracy that
wheels could not. Steering is provided by on-board magnetic thrusters. Power is supplied via
a cable which also provides a communication capability between the robots. Two types of
robots cxist in the domain. A courier robot and a manipulator. The manipulator is generally
stationary, but will rotate between the task and a parts bin. The cowrier robots restock the
parts bins. This is a complex system with courier robots travelling throughout the domain.
However, to simplify the comnmunication and software management problem, an overseer is
not used, but rather levels of protocols are pre-programmed into the individual robots to deal
with specific events.

‘the Hollis system corresponds to a decentralised scheme where the management
structure is very shallow. The subsumption architecture of Brooks however, represents a very
deep management structure, These two methods corespond to the two extremes of robot
control. For this study, a compromise shall be made where central task planning shall be
required. However, the individual elements of thc group will retain a large degree of
autonomy. Considering the task of path planning, strategies to consider external events have
been formalised. One such study? proposes a taxonomy to formulate strategies. However,
much of the work on on-orbit assembly strategies have focused on structural characteristics.
Hamernik ef a8 have devised a strategy bascd on vibration damping in structures by the
optimal placing of damping beams. However, it may said that the strategy must be formulated
tor specific tasks. Current research may yet provide a generic strategy for the autonomous

assembly of space structures.

1.6 Mission Statement

The objective of this study is to provide a method which will allow the autonomacus
assembly of components in space. The problem has been approached in three broad areas
consisting of;
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« The development of a control algorithm,
« 'The development of a model to test the control algorithm.

» The derivation of an architecture to simplify information handling.

The autonomous assembly problem is assumed to be carried out using autonomous free-flying
vehicles such as a production model of the Ranger vehicle.

The control of the assembly vchicles and the development of control algorithms will
firstly focus on the control of a single vehicle in both position and attitude. This will then be
expanded to the control of a group of vehicles in both position and attitude. Finally, the
control algorithim will be expanded to allow a series of components to be assembled by a
group of vehicles to produce a predetermined structure.

The model which will be used to evalnate the control algorithims will be based on a
model of a single assembly vehicle as a point mass. For each point mass a state vector shall
be defined for pesition, velocity, attitude and attitude rates. Their shall be no cxternal forces
acting on the vehicle other thai control forces and those derived from the orbital mechanics
of the problem. The model of the single vehicle is then expanded to include a number of
identical vehicles. The components within the model shall be assumed to be active only when
manceuvred by a controlling vehicle. However, when inactive, their dynamics shall again be
propagated by the orbital mechanics of the problem.

The control architecture shall be developed in such a manner that the assembly
process may be reduced to a series of connections carried out in a specific order. This will
require a method of information handling such that each assembly vehicle shall have access to
a database of the connections required to asscmble the desired structure. In pracrice, this will
take the form of a connectivity matrix in which connections between specific components are
represented by a binary flag. In addition, management of the assembly process shall be
developed to simplify the assembly of complex structures. This will entail the reduction of a
large group of vehicles into smaller teams with limited tasks. This will reduce the demands on
each individual vehicle in terms of communication bandwidth and sensor range.

Therefore, concisely, the objective of this study is;

To provide an on-orbit assembly method whick will incorporate a practical
and robust algorithm for individual vehicle control within a larger co-
operative group. The emphasis shall be on providing a practical application of
the control method which will allow further development to a prototype

article.
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Chapter Two: Orbital Mechanics

Orbital Mechanics is just Newton's Law of Gravitation. However, one has to
know this law very well.
A E.Roy

2.1 Introduction

The development of a method to control an engineering system demands an analysis
of the system and its environment. This will involve the development of a model to simulate
that system. This chapter will aim to provide an analysis, model and optimised solution to the
problem of on-orbit manoeuvring, Thus, in future chapters, the model developed here may
provide a datum against which any orbital manoeuvring algorithms may be compared. The

chapter will aim to solve this problem in three broad areas;

¢ To develop a dynamic model of an Earth orbiting spacecraft.

e To develop a model of an orbiting spacecraft relative to a rotating co-ordinale

frame.

+ Solve the above problem to provide an optimised two impulse transler between
points relative {o the rotating co-ordinate frame.

The model of the Earth orbiting spacecraft is based on the well known two-body problem.
The use of a rotating co-ordinate frame will allow an analysis of the motion of a second
spacecratt orbiting relative to the datum spacecratt. This is an essential part of any model
devised for the analysis of the rendezvous and docking problem which is dealt with in
Chapfer 3. Using the rotating co-ordinate frame, an analysis is provided which allows
optimal two-impulsc transfers between two points relative to the datum spacecraft. This will
allow any proposed rendezvous and docking control method to be compared to the optimal
solution.
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2.2 The Two-Body Problem

Currently engineering simulations are avaifable which describe orbit propagation with
a high degyee of fidelity. However, the two-body problem is the basis of many simplc orbil
simulations. The two-body problem requires certain assumptions to he made which allows a
closed form solution Lo the equations of motion for the orbiting spacecraft, These assumptions

are;

¢ The Earth and orbiting spacecraft may be modelled as point masses.
« The analysis will not include the effects of aerodynamic forces.

+ The only external force is gravily and may be expressed to first order as an inverse
square force field.

Using these assumptions, the two bodies, the Earth and the spacecraft may be located in a co-
ordinate frame as shown in Figure 2.1.

2.2.1 Equations of Motion

Examining Figore 2.1, a mass is defincd to represent the Earth with mass m; at
position vector r;. A second mass is defined to represent the spacecraft with mass m, at
position vector 1. The force which attracts the two hodies may be expressed using Newton's
second law as

Figure 2.1: Two-Body Problem,
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mly =G 13 2y 2.1
¥

for mass #2) and

myity =~ G (2.2)
¥

for mass my Dividing Equation 2.1 by m; and Equation 2.2 by m, and subtracting
Equation 2.2 from IEquation 2.1 the relative acceleration of the two masses is given by

. Ay t+m

r=-o( 1 ' Z)r (2.3)
-

where r = r, - ¥ is the position of m, relative to my.

The gravitational parameter is defined as
H= G}nEath (24)

where G is the Universal Gravitational Constant (6.673 x 10-11 m3 kg2s) and my,,,, is the
mass of the Earth (5.976 x 1024 kg). In addition, making the assumption that sz, is very much
larger than rn, then the two-body relative equation of motion may be written as

F4 =0 (2.5)
-

To propagate the orbit described by Equation 2.5 a numerical integrator, such as Runge-
Kutta to the fourth order8!, may be applicd.

2.2.2 The Circular Orbit

Using a numerical integrator, the equations of motion of the spacecraft may be easily
solved. However, this is an initial value problem which requires initial conditions. The
following initial conditions are applied. The initial velocity v, of the spacecraft is defined

using

p, = \/E (2.6)
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To =TEarth + hVehicle (2.7)

The initial altitude of the spacecraft, hy,;., 1s defined as 300 km and rg,,,, is defined as 6371
km at the equator. The integration proceeds with

o =,2) (2'8)

o = VYo (29)

Using these initial conditions in conjunction with the Runge-Kutta 4'h order
integrator, the orbit shown in Figure 2.2 results. As can be seen, the orbit is of constant
altitude and results in an orbit period of 86 minutes.
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Figure 2.2: Circular Orbit.

2.2.3 The Elliptical Orbit

The motion of the spacecraft may be easily expanded to include elliptical orbits. The
elliptical case differs from that of the circular case in one aspect only, the initial velocity v,.
Defining the shape of the orbit using the apogee altitude, h,, and perigee altitude, A, the

semi-major axis of the ellipse may then be calculated from
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1
a=rggp+ E(ha b)) (2.10)

Using a perigee altitude tdentical to that of the circular case and defining the apogee allitude
as 2500 km yiclds a semi~-major axis of 7771 km. Thus the initial velocity of the spacecraft
may be calculated using

o= {20

where e is the eccentricify of the orbil, defined from the semi-major axis af the ellipsc using

e=1—1a (2.12)

Integrating the equations of motion in conjunction with these initial conditions results
in the orbit shown in Figure 2.3. The orbit forms the cllipse, with the altitude varying as a
function of time. The orbit period of 113 minutes [or this case is longer than the circular case.
Thus the relative motion of the two spacecraft, one in the circular orbit, the second in an

ellipse can be rather complex. This relative motion is shown in Figure 2.4,

2.3 The Equations of Relative Motion

Consider a spacccraft orbiting the Barth in a circular orbit. If this spacecraft is
assumed to be a target with a separate chase vehicle attempting to rendezvous, then an
appropriate co-ordinate frame must be chosen. Although the two-body problem made use of
an inertially fixed Earth centred co-ordinate frame, this frame of reference is not adequate to
describe the relative motion, Therefore, a rotating co-ordinate frame attached to the target
vehicle must be used.

2.3.1 The Equations of Relative Motion

The use of a rotating co-ordinate frame, centred on the target spacecraft, as shown in

Figure 2.5, allows the derivation of a set of equations of relative motion. Examining the
position vectors of the target vehicle r,, and the chase vehicle r, in Earth-centred co-ordinates

allows the formulation of the equation

I, =L +r (2.13)

where 1 is the position vector of the chase vehicle relative (o the target spacecraft.
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Figure 2.4: Relative Motion.
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Figure 2.5: Rotating Co-ordinate Frame.
Considering the vector r, if the target vehicle is defined as the origin of a rotating co-ordinate

frame, then differentiating r with respect to the Earth-centred inertial co-ordinate frame
results in

d d
—Ir=—Tr+®XTr 2.14
dt ot ¢ )

where J indicates a differentiation in the rotating frame of reference and ® is the orbital

angular velocity of the rotating frame. Further differentiation gives the relative acceleration

> 9? .
—TI=—T+2(OXF)+OXr+mox(oxr 2.15)
SEt==3 (wxF) (@xr) (

If Equation 2.15 is used to with Equation 2.13, the acceleration of the chase vehicle, may be
obtained as

I, =T +F+2(0XF)+0Xr+oXx(oxr) (2.16)

If the relative motion of the chase is to be described in target spacecraft centred
Cartesian co-ordinates, then the relative position vector r may be expressed as

r=xi+yj+zk (2.17)

and the Earth-centred position vector of the target spacecraft becomes
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r, =—rk (2.18)

Thus, substituting Equations 2.17 and 2.18 into Equation 2.13, the position vector of the

chase vehicle may be expressed as

I, = xi+yj+ (z — )k (2.1
Consider now the acceleration due to gravity, g, acting on the target spacccraft

=g (2.20)
and also for the chase vehicle

=g, +tA (2.21)

where A represents (he control acceleration applied to the spacecraflt and g, is the acceleration
due to gravity acting on the chase vehicle. Using direction cosines g, may be expressed as

to={el 2 (-

Finally Equation 2,16 may be rcsolved into x, v and z componcnts by defining the angular

v

N ( ~
el [i+| g - i (2.22)
o 7

c

velocity vector as

W = ©j (2.23)

Performing the necessary operations, results the serics of differential cquations

xz-gci+Ax+2co;‘». + 67+ 0% x (2.24.2)
e

N 2

V=-g.—+4, (2.24.b)
%
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Z—?’t A ' v 2
N +A, —g ~20x—wx+wz (2.24.¢)
C

Z=+g,

These equaltions reprcsent the non-linear equations of relative motion. Typically, these
equations are solved using a numerical integration method. However, the equations are often

linearised to provide closed form analytic solutions.

2.3.2 The Clohessy-Wiltshire Equations of Motion

The Clohessy-Wiltshire82 cquations represent a linearised model of the non-linear
equations of relative motion. The equations may be lincarised on the assumption that the
orbital radius of the target spacecraft is very much larger than the distance from the target
spacecraft to the chase spacecraft, or

.| > |r] (2.25)

Therefore, the equations may be linearised using the following relations

172 .
re= [ﬁ +y 4z ;-,}2] - :--,{1 +—:-) (2.26.2)
2
gﬂrl 2
g=rw g:(l_—z] (2.26.b)
r 5
X X
g8 — (2.26.0)
' %
—gi=—g ¥ (2.26.d)
F 7,

+7r 2
- g(z - ] = -—gt[lu—EJ (2.26.¢)
,

Using Equations 2.26, Equations 2.24 may lincarised to give

.sc'=-g-_‘:-+Ax+2mz'+wz+w2x (2.27.2)

34




=gt A, (2.27.b)

. 27 .
. +g[1 +—_?—j+AZ — g 20 ~ax+ %2 (227.9)

¥
Egquations 2,27 correspond to the linearised equations of relative motion. However,

the linearised equations may be further simplified by considering the unforced case where the

control accelerations are zero

A=A =A =0 (2.28)

w=% (2.29)

where @ is now zero. Therefore Kquations 2.27 may be rewritten to produce the commonly
encountered Clohessy-Wiltshire equations of motion

E—203=0 (2.30.2)
j+aly=0 (2.30.b)
F 307420 =0 (2.30.c)

The Clohessy-Wiltshire equations of relative motion have been extensively applied to
rendezvous and docking problems. Again, these equations may be numerically integrated to
determine the relative motion of the chase vehicle. However, as will be seen, closed form
solutions are also available. The following two cage studies examine typical relative motion
characteristics. Then, in the following sections an orbit transfer scheme shall be examined.
Therefore the two case studies may be considered as reference trajectories for later use.

2.3.3 Case I: 70 m Up-range

The chase vehicle will be located 70 m from the target spacccrafl in the x-direction.
Therefore, the initial relative posilion vector v is defined as (70, 0, 0) and the chase vehicle is
fucated in an identical circular orbit to that of the targel vehicle. Therefore, as shown in
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Figure 2.6, there is no relative motion of the chase spacecraft and the target spacecraft as they
co-orbit the Earth. If the two spacecraft are to rendezvous, active manoeuvring by the chase
vehicle will clearly be required.
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Figure 2.6: Casc T: 70 m Up-range.

2.3.4 Case II: (-100,50,-50)

The sccond case study examines a more interesting trajectory where the chase vehicle
is offset from the target in all three axcs. From the inifial point (-100,50,-50) the chase vehicle
proceeds to drift away from the target spacecraft. Examining Figure 2.7, the motion displays
a periodic nature with the motion over two full orbits clear. This, results in the chase vehicle
being located over 3 ki downrange from the target spacecraft after 167 minutes. These cases
highlight the need for active manoeuvring of the chase vehicle to ensure successful

rendezvous with the target vehicle.

2.4 T'wo Impulse Rendezvous and the State Transition Matrix

The rendezvous of the chase vehicle to the targel vehicle will require a confrol input to
the chase vehicie. The most efficicnt transfer is the two-impulse transfer. The two-impulse
transfer involves the chase vehicle propulsion system performing a controlled impulse which
sets the vehicle on a (rajeclory which intersects the target vehicle, On arrival at the target
vehicle, the propulsion system will again perform an impulse to bring the chase vehicle to
rest. ‘The calculation of the impulse magnitude and direction, or more commonly the two-

impulse rendezvous problem83 is based on a solution to the linearised cquations of motion.
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Examining, Equations 2.3¢, it is apparent that the x and z components arve closely
coupled. However, the y component is de-coupled and may be solved by expressing the
equation as the solution of a simple harmonic oscillator

(1) =y, cos(ar) +%)’—sin(a)t) (2.31.2)

which may be differentiated to yicld
¥(t) =y, 0 sin(wt) + v, cos(wr) (2.31.b)

Thus, the y-position and velocity components may be calculated from the initial position and
velocity. The x and z terms are closely coupted, however a sofution exists in the form of a
simple harmonic escillator, but with the addition of a forcing term

0

x(t)=-2 L cos(ct)+ [4 %‘J‘— -6z, J sin(@t)—(3x, — 6ax, } +x, + %‘l (2.31.c)
c

which is differentiated to give
x(t) =22, sin(w)+ (4%, — 6z, Yeos(or) — (3%, —6ax, ) (2.31.d)

To addition, the z-component is given by
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Ky 2y *
Z{t)y=4z,-2 P + g"sm(wt) - (2 (T‘; - 320)(;0.5'(0»‘) (2.31.e)

and again differentiating vields

E

() =z, cos(wt) + (3ez, — 23, ) sin{wr) (2.31.0

Now, the trajectory of the chase vehicle relative to the target vchicle may be described
by the above equations. Re-arranging Equations 2.31, the motion of the chase may be

described using the Stare Transition Matrix © where state of (he chase vehicle at some time ¢

may be deseribed by y
s(1) = s, (2.32)
where the state vector x is defined as
§= {X,X}T (2.33.a)
where
X = {x, y,.z} (2.33.b)
and
& ={%3.2} (2.33.¢)
and the state transition matrix @ is given by
1 0 6{awr — sin(ax)y —sin(wt)~3t 0 = (1 - cos{ar)) :
o
0 cos{on) 0 0 L sin{of) 0
w
0 0 4~ 3cos{an) 2 (cos(or)-1) O L sin( ot}
D =4 @ o |
0 0 6ol - cos{ar)) 4cos(wr)-3 0 2 sin{or)
0 —@ sin{ax) 0 0 cos(ot) 0
0 0 3 sin{wt —2 sinlwt 0 cos(mt )
L () (o) @ |
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For rendezvous trajectories the initial and final positions may be used to caiculate the
required initial velecity and the final velocity at the target. Thus the magnitude of both the
initial and final impulses may be calculated. The sum of both impulse magnitudes measured
in change of velocity, or Av may be used as a measure of the cost of the transfer. Multiple
solutions do exist for the transfer corresponding to an infinite number of possible trajectories.

Therefore, to obtain an optimal solation, the minimum Av transfer may be calculated.

2.3 Velocity-Time Optimisation

The optimisation method for the transfer is derived from the state transition matrix.
This requires a direct method of calculation of the total Av which may be oblained by
arranging the state transition matrix in four quadrants

D= A B 2.35
~{C b (2.35)

where A, B, C and D arc given by

1 0 6(an—sin(on))

A=:0 cos(wr) 0
0 0 4 —3cos{wt) (2.36.2)
L4 2
{ —sin(wr) -3t 0 —(1—cos(ux
o 0 Zmcaion
B= 0 — sin{cr) 0
@ 1
3(c«:nus(a)i‘) -1) 0 — sin(cot)
@ W (2.36.b)
0 0 600(1 — cos(wr))
C=40 -msin{or) 0 (2.36.c)
0 0 3 sin{ @r)

[4 cos(at)—3 0 2 stn(ot)
D= 0 cos(at) 0 (2.36.d)
] -2 sin{ox) 0 cos{wr)

7
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Using the four quadrants, it becomes possible to re-write the slale-transition malrix in two

sections corresponding to some final position and velocity
;

X, = Ax, +Bi, (2.37.4)

%, = Cx, +Dx, (2.37.b) :

at some final time . To caleulate the required initial velocity to intercept the target, Equation

2.37.a may be re-arranged to give

X, =B (x, - Ax,) (2.38)

where the inverse of B is given by

—~cos(wt/2) 0 20 sin{ot/2)
3wt cos{wt/2)— 8 sin{owt/2) 3ot cos(wt)2) — 8 sin{wt/2)
B! = 0 @ 0
sin{ wx)
~20 sin(ct/2) (30t — 4 sin(ot/2))
| 3ax cos{wrt/2)— 8 sin(ar/2) 2 sin(wt/2)(3et cos(@r/2) ~ B sin{wr/2))
(2.39)
Therefore, the final velocity at the target may be calculated directly from the initial and final
positions by substitating Equation 2.38 into Equation 2.37.b to give
%y =Cx, +D[B7(x, - Ax, )| (2.40)

The impulse magnitudes may now be calculated. If the chase vehicle is starting from,

and finishing at rest relative to the target vehicle, then the Av is given merely by the initial
and final velocities

Av, ={,| (2.41.2)

and

Avy :ixf| (2.41.b)
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where the total Av of the transfer is given by
Av=Av,+Av ¥ (2.42)

Therefore, knowing the vectors, x, and xp the total Av of the manoeuvre may be
calculated as a function ol transfer time 7, Thercfore, using a simple functional minimisation
algorithm, the transfer time may be optimised for a minimum Av. However, this cost function
contains many minima, therefore care must be taken when choosing a minimisation
algorithm.

2.6 Point to Point Transfer

The optimisation of the {wo-impulse (ransfer results in a minimum Av value.
However, the Av and the associated trajectory will vary radically for a small change in the
time of transfer. The [ollowing three cuses aim to provide solutions to a variety of problems
to hightight the benefits and drawbacks of the trajectory optimisation using the state transition
matrix.

2.6.1 Case I' 70 m Up-range to Target Vehicle

Examining an identical case to that of Seetion 2.3.3, the objective of this transfer is to
move the chase vehicle from 70 m up-range to rendezvous with lurget vehicle. Thus, using
the stale transition matrix in conjunction with the initial and final position vectors

x, ={70,0,0}" x; ={0,00}" (2.43)

a minimisation algorithm may be used to calculate the optimal rendezvous trajectory,

Examining Figure 2.8.a, the values of Av arc plotted against time £, The plot displays
the periodic nature of the function. As can be seen the function does not have a single
minimum, thus problems may be encountered with minimisation algorithms such as Newton's
ot Fibonacci's method. The minimisation was carried out in this case using a sorting
algorithm to choose the minimum value of a sampled data sct. i.c. the function was sampled
every second for 2x104 s to produce a data set. The minimum value was then chosen from that
data set. This technique is computationally intensive, however since the analysis is carried out
only once, the loss in efficiency is acceptable.

Therefore, performing the analysis for these conditions results in an optimal time of
transfer time of

t=16259s (2.44)
41




0.5

0.45/

0.1

....................................

...........................

0.35H------ . ......... REESEREEERIEREES | B L ......... .......... L ..

Minirnum
" -

1.2 1.6

time (&)
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with an initial and final velocity vector of

1433%107

X, =X, = 0 (2.45)
0
giving an optimised Av of
Av=2866x10" m.s" (2.46)
wherc
Av, =Av, =1433x107 m.s" (2.47)

Using these parameters with the Clohessy-Wiltshire cquations results in the trajectory
shown in Figure 2.8.b 1t is apparent that the first impulse results in the chasc vehicle drifting
backwards in its orbit until such a time as it arrives at the target vehicle whereupon a second
impulse is used to bring the chase vehicle to rest. The trunsfer time ulso corresponds to
approximately three orbit periods with the drift per orbit also seen.

The transfer modelled here corresponds to the problem of orbit phasing. Orbit phasing
is the movement of vehicle along its own orbit. As can be seen in Figure 2.8.a, the minimum

Av valne per orbil cycle is decreasing as the time of transfer increases. If the optimisation
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were carried out over a longer period of time then the minimum Av would always occur in the

longest possible orbit period.
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Figure 2.8.b: Casce I: (70,0,0) 10 Targel Vehicle: Chase Vehicle Trajectory.

2.6.2 Case Il: (-100,50,-50) to Target Vehicle

Examining an identical case to that of Section 2.3.4, the objective of this transfer is to
move the chase vehicle from a displaced position along all three axes to the target vehicle.
Therefore, the initial and final position vectors are given as

X, ={-100,50,—50}T x; ={0,0,0}" (2.48)
The optimisation of the transfer produces the cost function plot shown in Figure 2.9.a. When
comparing this plot against that of thc previous case study, it is observed that the curve is

more complex. However, using the same minimisation algorithm the minimum value of Av is
obtained for a time of

£=3592s (2.49)

Using this value in conjunction with the initial and final position vectors, the initial and final
velocity vectors are obtained as




~0.112 3.414%1072
X, =|~3.566x107 Xp=| 1366x107 (2.50)
-2343%x107? 5579 %1072

thus producing an optimal Av of

Av=0178 m.s™ (2.51)

where
Av, =0.120 m.s” Av, =5754x107m.s"  (2.52)

Propagating the orbit using these values results in the trajectory shown in Figure
2.9.b. The trajectory followed by the vehicle reflects the complexity of the problem with the
chase vehicle looping over and above the target vehicle before the final orbit malching
impulse. The final transfer time is very important to the path chosen by the optimisation
algorithm. To demonstrate the variety of the possible paths, Figure 2.9.c displays theee
different trajectories for small variations in the final Av. This may have an application in
manoenvring around obstacles, however guaranteeing a safe path may only be achieved using
imtermediate waypoints. The use of waypoints rather than direct transfers to the target vehicle
is demonstrated in the following section.
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Figare 2.9.a: Case II: (-100,50,-50) to Target Vehicle: Time / Av Cost Function.
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2.6.3 Case III: (-100,50,-50) to (100,-100,100)

The possibility of using the state transition matrix to manoeuvre the chase vehicle
between two points would allow these points to be linked in to a series of manoeuvres to
shape the path [ollowed by the chase vehicle to the goal location or target vehicle. However,
the scope of this example is to demonstrate the possibility of using the state transition matrix
to transier from a generic point A to point B relative to the target vehicle, Therefore, using the
state transition matrix in conjunction with the initial and final positions

x, ={-100,50,~503" x,; ={100,-100,100}" (2.53)
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produces the cost function plot shown in Figure 2.10.a. Again the function has a complex
form, however the minimisation algorithm produccs a minimum valve of Av for a transfer
time of

t=3440s (2.54)

Using this value [or transfer time, Lhe following initial and final velocity vectors are obtained

~0.132 0.215
X, = 0.104 Xp= 0.147 (2.55)
—-3,017%x107* ~4.772 %1072

with an optimised Av of

Av =0435 m.s™ (2.56)

where
Av, =0170 m.s" Av, =0.265m.s" (2.57)

The trajectory which results from these parameters is shown in Figure 2,10.b. As can
be seen, the trajectory successfully manoeuvres the chase vehicle between the (wo points. It
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Figure 2.10.a: Case I11: (-100,50,-50) to (100,-100,100): Time / Av Cost Function,.
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should be noted that the transfer time was lower than that of the previous casc, even though
the distance travelled was higher. However, the total Av was correspondingly higher. This
results demonstrates that, although the transfer is successfully optimised, the result from the
state transition matrix and the dynamics resulting from the Clohessy-Wiltshire equations may
not always produce the expected result,

2.7 Conclusions

The main conclusion to draw from the lincarisation and optimisation of the Clohessy-
Wiltshire cquations is that the solution will provide the optimal datum value for a transler
between two points, However, there are drawbacks to the method. Principally, the flexibility
of the two impulse transfer must be called into question when considering the possibility of
obstacie avoidance. i.e. the optimisation of a transfer would be compromised if a mid-course

correclion was required.

The very natre of the linearised equations of motion will limit the types of transfer
envisaged here. The linearisation of the equations and the assumption that the distance from
the target to the centre of the Barth is very much larger than the distance to the chase vehicle
results in the limitation of the method to translers under 103 m, Therefore it may be stated
that in conclusion, the state transition method provides an optimal solution to the Av
minimisation problem, and thus provides a datum against which other, more flexible
methods, may be measured.
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Chapter Three: Potential Functions

3.1 Introduction

Having established in Chapter 1 the requirements for a control methodology for on-
orbit assembly it is now possible to define a set of specifications;

o The control method must be closed-loop, with particular attention paid to the
smooth convergence of vehicles to the desired configuration.

« The complexity of the hardware, and seftware must be minimal, Current space
qualified computer technology is not as advanced as terrestrial technology.

» The control methodology must be fully autonomous. There are large cost savings to
be made by eliminating human operators from the control loop.

« The control methodology must be stable. With the current cost of placing hardwarc
on orbit, the loss of hardware through conirol system action or inaction is
unacceptable.

Therefore, with these specifications a robust, non-linear, low complexity control methodology
is required. One such methodology is generated using Lyapunov’s Second Method.

Lyapunov's second method is not new, having originally appeared in the Russian
literature in 1892. It was not until 1907 that the a French translation appeared in Westemn
literature. ‘The method, although used extensively in Russian control problems, did not
achieve widespread popularity in the West. Eventually translated into English in 1947, the
method became more widespread culminating in the definitive papers by Kalman and

Bertram® 85 in which the method was applied to a wide variety of control problems.

Although typically described as a method, Lyapunov's method as described by
Kalman and Bertram is far from a rigorous mathematical technique. In fact, the method

should be more properly defined as an approach to conirol problems. However, it should be
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noted that Lyapunov's theorem may be formed as an explicit proof. Lyapunov originally
described the objective of the technique as;

'To answer questions of stability of differential equations, utilising the given
form of the equations but without specific knowledge of the solutions.’

Since Kalman and Bertram's paper of 1960, Lyapunov's method has been extensively applied

to stability problems for both spacecraft and terrestrial control problems. The flexibility of the
method is ideally suited to complex non-linear spacecraft control problems86, 87,

3.2 Lyapunov's Second Method and Potential Functions

The objective of Lyapunov's Second Method 1s to ensure the stability of a system of
differential equations describing a dynamical system. In physical terms, the inethod has been
described by Kalman & Bertram as the following reasoning;

If the rate of change dE(x)/dt of the energy E(x) of an isolated physical system
is negative for every possible state x, except for a single equilibrinm state x,,
then the energy will continually decrease until it finally assumes its minimum
value E(x,).'

This statement corresponds to the intuitive definition of all stability probleis. i.c. any

dissipative systein perturbed from its cquilibrium state will always return to it.

In mathematical terms, this may be expressed as;

‘A dynamical system iy stable (in the sense that it returns to equilibrium after

arry perturbation) if and only if there exists a 'Lyapunov function,’ i.e. some
scalar funciion V(x) of the state with the properties:

i) V(x)>0, V(x})<0 whenx#x, (3.1)
and

B Vix)=V(x)=0  whenx=x, (3.2)
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An extended form of the Lyapunov function, termed a potential function will be used

in the subsequent analyses. It is this function that may be defined analytically and used to
drive the state vector of a dynamical systcm to the desired goal. However, the mechanism
which forces convergence is based on the rate of chan ge of the potential function. Examining
Figure 3.1, if the rale of change of the potential, V(x) is negative, then the state vector will
converge to the goal point at the global minimum of the potential function. However, if I;’(x)

is positive, then the state vector will diverge from the goal point. In this case control
intervention is required to render V{x) negative.

«... . DIVERGING
. . PATH

S - ISOPOTENTIAL
IR SURFACE

Figare 3.1: Potential Function Stability.

Therefore, it is possible to derive a methodology to force convergence of any system
to a desired goal. Pefining a potential function based on (he statc vector X, which takes the
form

V= f(x) G5

differentiating the potential function with respect to time results in
V=Vf.x (3.4)

Therefore, with an analytical definition of V', it is possible to calculate the control inputs

required to bring the dynamcal system to the desired goal puint. In the following sections,
two methods of control are explored. The first is a continuous control method, the second is a
discrete method. The continuous method cnsures that the rate of change of potential is
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continuously negative by implementing a control action at every time step. The discrete
method differs in that control intervention is only implemented when the rate of change of the
potential is zero or positive, thus allowing the system more freedom of action. The analysis
and comparison of both methods is examined using two case studies. The first is a translation
control problem, and the second an attitude control problem.

3.3 Translation Control

Consider now the problem of a single manoeuvring chase vehicle attempting to close
to a target goal point relative to a circular reference orbit. This problem has heen previously
examined in Section 2.6, Rather than use the optimal two-impulse transfer, the discrete form
of the potential function method shall be applied and compared to the optimal solution.

3.3.1 Potential Function Definition

To guarantee that the vehicle will transiate from its initial position to the goal point,
contro] intervention is clearly required. Therefore, the problem requires a potential function
based on the location of the chase vehicle and the goal point. Defining the position vector of
the chase vehicle as r, and the goal point as rg,,; then a simple quadratic potential function
may be defined of the form

A
V= HZM (l‘ ~ Yeoat ) (l‘ = YGoal ) (35)

where A is a scaling constant. Thus the function ensures that the potential V is positive for
every position except at the solution, wheze (r - rg,,,) vanishes.

In addition, to conform with the conventional definition of Lyapunov functions, the
raie of change of potential V must be negative definite along any {rajectory except at the
goal, Therefore, differentiating the potential function gives

V=Ar—Tgom) v (3.6)

where v is the velocity vector of the chase vehicle. Thus, to ensure that the chase vehicle
converges to the goal point, the control mcthod must ensure that the rate of change of
potential is always negative definite,

3.3.2 Example: Discrete Control

The discrete control method differs from the continuous case in that control
intervention is reguired only if the rate of change of the potential is zero or positive.
Returning to Figure 3.1, the internal normal of any isopotential surface will, in every case,
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point to a lower potential. Thercfore, the rate of change of the potential shall be guaranteed

negative definite if the desired vehicle velocity vector is given by

vV

VDesired = K W if V 20 (3.7)

where x is a constant and VV/[VV] is the unit vector normal to the isopotential surface.
Substituting the gradient of the potential V in Equation 3.7, the desired vehicle velocity
vector then becomes

(r=rgua)

K (3.8}
|r—rGoal]

Y Desired = =

so that V(x) is always rendered negative definite.

The constant x in Equation 3.8 may also be represented by a shaping function. The
term is used to shape the magnitude of the velocity of the vehicle as the goal is approached.
Therefore, a function which will scale the magnitude of the impulses as the potential

decreases is given by

K =v"[1-exp(-pV)} (3.9)

where v* represents the maximum controlled velocity of the vehicle, in this case 0.1 m.s’!,
and f is a constant, typically defined as unity. Examining the case given in Section 2.6.1,
using the initial positions given in Equation 2.43.b, the wajectory of the chase vehicle may
be propagated to produce Figure 3.2.a. The intervention of the controller is clearly visible as

the path of the vehicle is shaped with four course correcting impulses implemented by the
chase vehicle. The behaviour of the potential function is plotted in Figure 3.2.b where the
control impulses are clearly visible as is the smooth convergence as the potential reduces in
an exponenttal manner to the goal. Examining Figure 3.2.c, the potential funclion is
combined with the vehicle trajectory (o show the descent of the vehicle down the potential
well. This plot is uscful in highlighting that control intervention will result in the vehicle

following the internal normal of the isopotential surface. >

The velocity profile is shown in Figure 3.2.d, and the maximum controlled velocity
of 0.1 m.s"! is clearly shown as the course corrections reset the velocity. The total Av cost of
the tansfer is 3.356 x 10-3 m.s*!, When compared to the value of 2.866 x 10-3 m.s'1 obtained
from the two-impulsc transfer, it is obvious that the transfer is less efficient. However, the
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Figure 3.2.b: Discrete Control: Potential Function.

flexibility offered by the potential function meihod, cspecially when used in conjunction with
a collision avoidance technique, ountweighs the ineificiencies. It should be noted that
currently, if the rate of change of potential is greater than or equal to zero, then conlrol
intervention is triggered. However, if the trigger was modified such that control intervention
occurred when

V(x) 2 £(V) (3.10)

then the point of control intcrvention may be varied throughout the convergence process. This
capability allows path shaping such as minimal intervention at large distances from the goal
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but as the vehicle nears the solution, control intervention increases. This provides a degree of
control which will be crucial as the technique is expanded upon.
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Figure 3.2.c: Discrete Control: Potential Function Contours.
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Figure 3.2.d: Discrete Control: Chase Vehicle Velocity.

3.4 Attitude Control

Many space based systems require the use of accurate pointing, whether as part of an
antenna mechanism or indeed a complete structure such as the Hubble Space Telescope
(HST). The control mechanism for changing the attitude of the structure may take the form of
momentum wheels which may be controlled continuously for minimal energy expenditure.
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The problem of pointing a body, as shown in Figure 3.3, may be accomplished by examining
the attitude dynamics, represented by Euler's equations, viz.

Ild)1+(13 —‘Iz)ﬁ)zﬂ)3 =T1 (3.1].3)
Tydry + (I = I3 )3 04 =T, (3.11.b)
I3 +(Ig ~ 1 Jwamy =Ty (3.11.¢)

where the body has moments of inertia I;, I, and I; with continuous control torques T;, T»
and T; applied. The Buler angles may be related to the body rates, @;, @, and @;, through the
kinematic relations

0; =3 Gyo; (3.12)
j=1

where Gy; is the transformation matrix
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Figure 3.3: Vchicle Altitude Definition.
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1 sin@ytant, cosBtanf,
G;; =40 cos @ —sin@, (3.13)
0 sinOysecB, cosl sech,

Thus, with the dynamics of the body defined, it is now possible to control the body attitude
through the use of a potential function.

3.4.1 Potential Function Derivation

The desired solution or goal point for this problem is to bring the body to rest at some
goal orientation. Therefore, the terms which must be controlled are the body rates and the
Euler angles. To this end, the potential [unction will take the form

V' = Viguter + Vieates (3.14)

The Euler angle potential function will take the form of a quadratic potential with a single
goal point, viz

o =12
Viuter = "2'2(9:' - 6;‘) (3.15)

i=]

where @; is thc goal oricntation and ¢ is a scaling constant. The body rate potential is a
simpler function with the geal corresponding to null body rates, Therefore, this potential
function will take the form

IS, 2
Viates = Ezliwt (3.16)
i=1

The total potential, being the sum of the Euler and body rates potentials will then take the
form

1 ) 2 U 3 —1\2
VZEZI"@" +—£2(65—95) (3.17)
=1

i=]
For this problem, a continuous control implementation will be used. To comply with

Lyapunov's method, the rate of change of potential V must be rendered negative definite.
Therefore, differentiating the potential results in
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3 3 .
V=Y Lo, +ay,(0;-6)8 (3.18)
i=1 =1

Rearranging and substituting Equations 3.11 and JEquations 3.13 into the rate of change of
potential and simplifying leads to the equation

.3 3 _ .3
V“ZCUJTL'“"“E(@E—O;‘)ZG;;CU} (3.19)
i=1

i=1 i=1
'I'his equation will now be used to generate a set of control taws.

3.4.3 Example: Continuous Control

Using the kinematic relations given by Equations 3.7, u control torque which will
render V' negative definite may be derived of the form

3
Tl' =—Kﬂ)i—a2GUT(6j—gj) (320)
J=1

where ¥ is a positive definite shaping fanction. When the control torque is substituted into
Equation 3.19 then V takes the form

3
V=-—xY w] (3.21)

=1

Thus the control torques which will rotate the body to the goal attitude are available in
analytical form. To evaluate the performance of the comtroller, a casc study will be
considered.

To implement the continuous control potential function, the equations of motion of
the body must first be defined. Rearranging Equations 3.11 it is found that

;-1
o =£—~(-3l--—-71-1w2a>3 (3.22.)
I,
. I —1
Dy = —’1:3-~-(~—1-~—i)—w10)3 (3.22.b)
I, 1P}
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@5 =I3—-(—Iz—_5—2w2co1
I I3

and expressing in full the kinematic relations as given in Equation 3.12, yields

9] =0 + W, sin6 tan B, + @3 cos 8, tan 0,

0y = Wy cos O — 5 sind,

83 = w, sin 6 sec Oy + @4 cosO; secH,

(3.22.0)

(3.23.a)

(3.23.b)

(3.23.¢c)

Then, a system of six simultaneous differential equations results which fully characterises the

rotation of the body.

The physical characteristics of the body will be defined as a solid cylinder of 1m

radius and 4 m length. In addition, assuming a mass of 240 kg, the moments of inertia 1;, I,

and I3 may be calculated from

1 1 2 1
I, =1,= Zmrz --%Eml2 =335kg.m”, I, =5mr2 =30 kg.m’

'The initial conditions will now be defined as
0 =Wy =03 =0

with initial Euler angles
(61,02,83)=(0, 1, w)

and final, goal conditions
W =0y =03 =0

with Euler angles

(9,,0,,9,)=(0, 0, 0)

(3.24)

(3.25.a)

(3.25.1)

(3.26.2)

(3.26.b)
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When used in conjunction with the initial conditions, Equations 3.22 and Equation 3.23,
may be integrated numerically using a Runge-Kutta scheme. The control torques arc
implemented as given in Equation 3.20 with k= 10 and &= 1.

The Euler angles representing the attitude of the body are shown in Figure 3.4.a. The ?‘
influence of the controller may be clearly seen as the three angles are slowly damped to the
goal. Thus, thc potential function drives the body to the desired orientation. In addition, the
body rates shown in Figure 3.4.b can also be seen to converge 1o the goal as they are damped.
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Figure 3.4.a: Continuous Control: Euler Angles.
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The control torques are shown in Figure 3.4.c. Again, the torques are seen to decay as the
goal attitude is approached, allowing a smooth convergence.

The strong coupling of the motion about cach body axis is also apparent. As axes 2
and 3 are controlled, axis 1 is displaced as a consequence. However, the potential function
brings the body to the goal attitude. The potential function is shown in Figure 3.4.d. As the
potential reduces to zero, it is clear that the rate of change of potential remains negative
definite, thus complying with Lyapunov's theorem and guarantesing convergence. Therefore,

the potential function method has been demonstrated to success{ully control a complex non-

-5 1 ) ] ) L 3
0 63 100 150 200 250 30¢ 350 400
ume (s}

Figove 3.3.c: Continuous Control: Control Torgues.
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Figure 3.3.d: Continuous Control: Potential Function.
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linear problem by continuously controlling the rate of change of potential. However, this is
not always an optimal solution. For a problem in which contrel intervention is minimal, such
as a ftranslational problem where excessive fuel expenditure is undesirable, then the

discretised method is more suitable.

3.5 Conclusions

It has been shown that the use of Lyapunov's second method meets the specifications
of the spacecraft control methodology previously defined. Specifically, it may be said that if a
dynamical systemn allows the definition of a Lyapunov function, then stability may be
guaranteed through an appropriale choice of controls. Thus, to summarise the specifications
required, Lyapunov's second method provides;

» A closed-loop control method allowing stable convergence to the desired
configuration.
» The complexily of the control software is minimal. The problem of controlling a

complex non-linear spacecraft system is reduced to the analytical derivation of a
potential fonction.

« Using appropriate sensors and actuators, the method appears suitable for
autonomous, on-board applications.

The control method examined here meets the criteria defined for a spacecraft control
methodology. Although two different implementations were examined, the continuous and
discrete methods, both proved satisfactory. Also, the use of the quadratic potential function
has proven to be satisfactorily applicd in both cases. In general, the continuous method has
been applied to attitude control problems while translation problems have been discrete.
However, with the usc of low thrust propulsion systems, the continuous method may alsc be
applied to translation problems. Lastly, the method is not wholly practical without
consideration of obstacles within the spacecraft path. This problem, and various techniques
for obstacle avoidance, will be examined in the following chapter,
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Chapter Four: Obstacle Avoidance

Obstacles are made to be overcome.

Anon.

4,1 Introduction

In the previons chapler, the application of potential function methods to spacecraft
translation control was discussed. However, for a real system, collision avoidance will be
required to enforce the separation between the controlled vehicle and any obstacles which
may be present. Using the cases discussed in Section 2.6.1 and Section 3.3, where the
chasc vehicle is located 70 m up-range from the target vchicle, an obstacle will now be
added. To provide an obstacle avoidance capability within the potential function, obstacles
may be rcpresented by identifying regions of high potential, thus preventing approach of
the vehicle. Considering Lguation 3.5, a quadralic potential with the addition of an
obstacle potential takes the form

V= V(?m{f + V()bs (4' 1)

where Vg, corresponds to the attractive potential described in Chapter 3 and V,
corresponds to the obstacle potential. The exact form of Vg, may be defined using a
variety of methods. In addition, Vi, may encompass either a single or multiple obstacles.
This chapter will examine [our different methods of defining the obstacle potential. The
Tour methods are the Gaussian, Power-Law, Rectangular and Superquadric obstacles. The
advantages and disadvantages of each shall also be discussed.

4,2 Obstacle Representation: Gaussian Distribution

To represent an obstacle within the potential field, the region of high potential may
he defined using a Gaussiun Potential Function. Thus, an inaccessible area is created
within the potential field due to the increase in potential as the obstacle is approached. It is
this increase, and the manmner in which it does so, that is critical to the application to

collision avoidance.
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4.2.1 Object Definition

A Gaussian potential function is based on the very common Gaussian probability
distribution. The general form of the function is given by

1 2
Vous = Aexp{— g‘r - I'Obs' } (4.2)

where A is a scaling parametet, ¢ is the standard dcviation of the distribution and r,, is
the position vector of the obstacle. The values of A and o are critical in the definition of
the obstacle potential, If an object is not completely encompassed by the obstacle potential,
a collision could result. Therefore, a rigorous method of sizing the obstacle potential is
required. A method is available, based on the assumption of a onc-dimensional problem
where the allraclive or goal potential is given by

A .
Vooat = 5-(x= Xoat ) “3)

The obstacle potential is then given by the one dimensional form of Equation 4.2, which
may be expressed as

1 2 o
Vous = AGXP{"-O?LY ~ X0ps] } {4.4)

thus resuiting in the total potential

2
.V:&(x“xG()aI)z +Aexp ______(x"'x()b,;)

2 p (4.5)

Examining Figure 4.1, the addition of an arbitrary goal and obstacle potential are
plotted. The addition of the goal and obstacle potentials may be clearly seen. However, the
addition does create a local minimum. The formation of local minima can cause problems
in the application of potential functions. However, if thc one-dimensional problem is
expanded (o multiple dimensions, the local minimum here becomes a saddle point,
Therefore, the position of the saddle point, and its distance from the centre of the obstacle
is critical when considering the size of the obstacle potential. Defining the distance I as

the characteristic dimension of the obstacle such that




potentlal

obstacle
polential

e saddla point

-
Vs
7z

7
7 atiractive
.7 potanticf

P

/

_/—"'—/

goal ®

Figure 4.1: Saddle Point Formation,

D= XSaddle — *Obs (4.6)

then A and ¢ must be chosen such that D is larger than the size of the object to be avoided.

Considering the properties of the total potential function at the saddle point, then it
may be said that

ﬂ =0  when x=x,, 4.7)
and that the value of x may be written as
Lmin = XSuddle (4.8)

Therefore, diffcrentiating Equation 4.5 with respect to x and substituting using IEquations
4,7 and 4.8 yields

2A D%
’;L(xSuddle ~ XGoal ) - ?D exp{_‘o‘_ } =0 (49)

which may be re-arranged to give




_ -H'O-(D'F XObs ™ xG{mi’)

A=
D2
2Dexpy——

where @ is the standard deviation which may be calculated using the statistical form

(4.10)

D=30 4.11)

where D encompasses 98% of the Gaussiun distribution.

Even though this cvaluation of A is only valid for onc dimensional problems it can
form the basis to calculate A for higher dimensional problems. Therefore, for a higher
dimensional potential function of the form given in Equation 4.2 the value of A becomes

_ Ao (D + !rob.s'| - ‘rGrmID

A=
D2
2D exp{-w—— }
o

where rg,, and rg,, again represent the position vector of the goal and obstacle

(4.12)

respectively.

4.2.2 Fxample

The case stndy defined in Section 2.3.3 will now be considered with the addition
of a single obstacle and with the initial positions of the chase and Larget vehicles given by

= {70,0,0} l‘Goa! = {0,0,0} (413)

Then, the repulsive component of the total potential takes the form of Equation 4.2 with a
constant A value defined by Equation 4,12 resulting in a total potential function of the
form

.t a 2
Ve % (r— ram)z . Ao (D + |lobs! ]1Gaaz|) exp{w (l‘ l‘obs) } (4.14)

2
2Dexp{—§ } ¢

where A is a constant, typically defined as unity, The characteristic dimension of the
obstacle, and the width of the potential function are delined as
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D=10m o=3.33 (4.15)

with the position of the obstacic defined as

l'obs = {50,0,0} (416)

Thus, the obstacle represented here is a 10 m diameter sphere Jocated between the chase
vehicle and the target vehicle.

Propagating the motion of the chase vehicle, the trajectory is shown in Figure
4.2.a. Although the chase vehicle does converge to the targel vehicle, examining the region
immediately surrounding the obstacle shown in IFigure 4.2.b highlights the intensive
maneceuvring required by the chase vehicle between points 1 and 2. As can be seen, the
chase vehicle path does enter into the obstacle area. The cause of the infringement is that
the characteristic dimension is derived in one dimension. There will be a variation in the
obstacle width throughout the circumference of the obstacie. However the encroachment is
minimal and separation would be enforced by incorporating an additional safety zone
surrounding the physical object.

Iixamining the potential function, the convergence of the totul potential to the
target vehicle is shown in Figure 4.2.c and in contour form in Figure 4.2.d. As can be
seen, the shaped potential function demonstrates the manner in which the obstacle is
avoided. In addition, the contour plot clearly displays control intervention when the rate of
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Figure 4.2.a: Gaussian Distribution; Chase Vehicle Trajectory.
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Figure 4.2.¢: Gaussian Distribution: Potential Function.
change potential becomes positive. Thus, the potential is successfully reduced and

vanishes at the origin. The velocity profile, shown in Figure 4.2.e, again displays the
effect of control intervention. The purely impulsive path corrections demonstrated in

Section 3.3.3 are still apparent, however in avoiding thc object, the required changes

between points 1 and 2 are almost continuous, thus resulting in a larger Av of 2,538 x
107 m.s™,

Thus, in sumnary;
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e The Gaussian function does produce an obstacle in the potential field which is
successfully negotiated.

o The chase vehicle avoids the core areas of the obstacle, but in doing so grazes
the surface.

e The saddle point of the total potential is unstable and is successfully negotiated
to allow convergence to the goal point.

The only problem encountered with this method is a computational one. The
Gaussian obstacle has an exponential decay and the use of the transcendental exponential
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Figure 4.2.d: Gaussian Distribution: Potential Function Contours.
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Figure 4.2.e: Gaussian Distribution: Chase Vehicle Velocity.
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[unction is expensive to implement computationally., This problem becomes more
pranounced the larger the number of obstacles within the vehicle space. This is the
principal reason which leads to the use of geometrically decaying functions such as the
power-law potential function.

4.3 Obstacle Representation: Power Law Distribution

The power-law obstacle originated in the field of molecnlar dynamics which will
be discussed in Chapter 5, The computational demands of modelling molecular behaviour

required a method of obstacle representation which did not require any complex

mathematical operations such as the exponential function within the Gaussian
representation. Thus, the principal rcason for applying the spherical power-law obstacle is
to reduce the computational demands in calculating the obstacle potential for a complex
environment. Therefore, to that cad, by eliminating the exponential from the function, the
need to perform a computationally expensive operation is eliminated. The precise obstacle

definition of the method will also be examined. However, in every other respect, the

application is similar to the Gaussian obstaclc.

4.3.1 Obstacle Definition

As with the Gaussian distribution, considering the problem in one dimension the

power-law obstacle potential takes the general form

A
Vobs = 357 4.17)
(x - xObs)

where A and N are constants, The function results in the potential strength Vg, varying
only with distance from the object centre and when extended to three dimensions forms a
spherical obstacle. In three dimensions, the obstacle potential becomes

A
Vous = ~———-I—2N- (4.18)

!l’ = Xoby

where 1 and rp, are the position vector of the chase vehicle and obstacle respectively. The
value of the parameter A is critical in determining the diameter of the obstacle. However, A
may be determined in a similar fashion o that of the Gaussian potential. Assuming the
one-dimensional problem, as shown in Figure 4.1, with a goal potential given by

Equation 4.3, the total potential is given as
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2 A

+ 4.19
(x — XObs )2N ( )

A
V= 5(35 — XGoal)

At the saddle point, Equations 4.7 and 4.8 still hold, therefore, differentiating the potential
with respect to x and substituting for the characteristic dimension 12 given in Equation 4.6
vields

2NA

e =0 (4.20)

(D+2gpe = XGoas )~
which may be re-arranged for A to yield

2N+
A 2D+ X4, = XGoat )P (4.21)
2N

where N is of a sulliciently high value to ensure collision avoidance.

Again, even though this evaluation of A is only valid for one dimensional problems
it can form the basis to calculate A for higher dimensional problems. Therefore, for a
higher dimensional obstacle potentizl as in Equation 4.18, the value of A is given by

A= ADlrond ;EGoaz|)Dzhr+l (4.22)

again, where 1g,, and I, represent the position vector of the goal and obstacle
respectively.

4.3.2 Example

The previous case study with the initial conditions of the chase and target vehicles
given by Equation 4,13, is used to evaluate the obstacle potential. Again, the position of
the obstacle is given by Equation 4.16 and the obstacle radius is set at 10 m. In addition,
the power N is arbitrarily defined as

N=4 (4.23)

Using a quadratic goal potential, the Lotal potential will then take the form
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'a'(D + |1'0bs| - §rG0aI |)DZN+]

2N|r - rGoalIZN

A 2
V= —2—|r ~ T * (4.24)
where A again, is a constant, typically defined as unity.

Propagating the trajectory of the chase vehicle and examining Figure 4.3.a, the
path of the vehicle is shown as it success/ully manoeuvres to the goal. However,
cxamining the path around the obstacle, Figure 4.3.b displays a clear incursion of the
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Figure 4.3.a: Power-Law Distribution: Chase Vehicle Trajectory
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Figure 4.3.b: Power-T.aw Distribution: Obstacle.
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vehicle into the obstacle area. This is obviously undesirable, however, the contour form of

the potential, shown in Figure 4.3.c and Figure 4.3.d shows that the obstacle potential

does not fully encompass the desired obstacle area. Although the saddle point is clearly at

the characteristic dimension from the obstacle centre, this radius is not maintained around

the circumference of the obstacle.

The problem of variation in radius around the circumference of the obstacle

potential may be countered by using a higher value of N. The contour plots shown in

Figure 4.3.e and Figure 4.3.f display improved obstacle avoidance with N=10. The larger

value of N leads to a sharper definition of the obstacle which in turn leads to minimal

incursion into the obstacle area. Therefore, the precise definition of the obstacle and the
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Figure 4.3.f: Power-Law Distribution: N=10, The Potential Well.

prediction of obstacle avoidance with the power-law function is related directly to the
value of N. Increasing the value of N to 100, the contour plots in Figure 4.3.g and Figure
4.3.h show precise obstacle avoidance with the chase closely following the contour of the
obstacle.

The principal motivation for using the power-law function is to provide a
computationally efficient method to implement obstacle representation in a potential
function. However, although the method is more efficient, the obstacle is not as clearly
defined as the Gaussian distribution. Thus the choice of method will clearly vary
depending on the application. Therefore, in summary;
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The Power-Law [unction does produce an obstacle in the potential field which is

successfully negotiated.

The characteristic dimension is not uniforn around the circumference of the
obstacle. The variation is very dependent on the value of N and can lead to the

vchicle encroaching into the obstacle area. Therefore, a buffer zone would be
required.

The saddle point of the total potential is unstable and successfully negotiated to
allow convergence to the goal point.

Figure 4.3.h: Power-Law Distribution: N=100, Potential Function Contours.
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Until now, the only obstaclcs examined have been, or could be, enclosed by a
spherical obstacle potential. In the following scctions the obstacle representation is

extended to include rectangular obstacles,

4.4 Obstacle Representation;: Rectangular Distribution

Until now the primary consideration has been the definition of obstacles within the
potential function. T'his wili now be extended to represent a specific obstacle geometry.
The spherical potential functions have heen shown to define the obstacle area well.
However, these potential [unctions are inefficient in the definition of wrregular objects and
can prevent a straightforward path to the goal point in otherwise free space. The logical
solution to this problem is to map the obstacle's physical attributes more precisely into the
potential space, One of the more useful representations is that of the rectangle. A
rectangular potential may be used as building blocks if two or more obstacles are added
together to represent a more complex shape. There are many definitions of rectangular
obstacle potentials or Flat-Sided Potential Functions such as FIRASSS, However the
following definition is an extension of the spherical power-law distribution and describes
the implementation of the rectangular potential as adequately as the more complex
functions.

4.4. 7 Obstacle Definition

The rectangular power-law potential function in one dimension takes the general
form given in Equation 4.17. However when extending this to three dimensions, the
obstacle potential is defined by the function

_ A
Yops == (4.25)

(x — X0ps )2N + (}’ = YOby )ZN + (Z T Z0bs )2N

where A and N arc constants. The characteristic dimension D is defined in the same
manner as for the spherical case and therefore the constant A is given by Equation 4,22
while N is of sufficiently high value to ensure abstacle avoidance, Therefore, combining
the different elements resalts in a total potential of the form

'Z’(D + lrobs ! - |l'Gual DD2N+|

2Ar[(x =~ XOhs )2N + (}’ - )’0!7.5')2N + (Z ™ Z0bs )ZN]

V= %‘r - (4.26)

which may be used to shape the vehicle path,
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4.4.2 Example

The previous case study will again be uscd with the initial conditions given by
Equation 4.13. The total potential is defined by Equation 4.26, with an obstacle of side
20m located 50m along the positive x-axis. This corresponds to a characteristic dimension
of 10m with a power N = 4, Examining the results shown in the Figures 4.4, the critical
element shown is the failure of the chase vehicle to converge to the goal, Examining
Figure 4.4.a, the path of the chase vehicle is shown as it manoeuvres towards the obstacle.

However, considering the obstacle in more detail, as shown in Figure 4.4.D,
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Figure 4.4.a: Rectangular Distribution: Chase Vehicle Trajectory.

15 | ¥ T T e | T ¥
10~ — - ;-............_...».,..__...._...__._._._.‘...._......_.].. PR .
i i
[ i
A ISR S N S ]
1 |
! 3
g o E Alr T
N .
1 i
i )
i i
_‘5~ i. ‘ BT —
i i
i i
i |
~1D} e e e e e -
_15 1 H 1, ] L 1 1
30 as 4Q 45 50 55 GO G5 70

x (m)

Yigure 4.4.b: Rectangular Distribution: Obstacle.

76




the chase vehicle converges to a point directly behind the obstacle. The behaviour of the
total potential function, shown in Figure 4.4.¢c shows the faihwe to converge with the
potential becoming constant at a non-zcro value.

The failurc to converge to the goal is as a direct consequence of the formation of a
local minimum directly behind the obstacle. The local minimum is clearly visible by
examining the contour plots of the total potential in Figure 4.4.d and Figure 4.4.e. When
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Figure 4.4.c: Rectangular Distribution: Potential Function.
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Figure 4.4.d: Reclangular Distribution: Potential Function,




X (m)

Figure 4.4.e: Rectangular Distribution: Potential Function Contours.

considering the method by which the obstacle potential is defined, it becomes apparent that
the addition of any flat sided potential and any goal potential will result in the formation of
a local minimum. Examining Figure 4.5 the goal potential contour and the obstacle
potential contour will always be coincident at points B and C. This will always indicate the
formation of a local minimum at point A. Therefore, the case study demonstrates that,
although the flat sided potential works well, when used in conjunction with a goal
potential, local minima will form. In summary;

o The rectangular power-law function does produce an obstacle in the potential
field which prohibits the chase vehicle entering into that area, but also forms a
local minimum.

e The characteristic dimension is not constant around the circumference of the
obstacle. As with the spherical power-law, the variation of the characteristic
dimension is a strong function of N.

e The saddle point of the total potential becomes a local minimum and is not
negotiated. This is not affected by the value of N and demonstrates the
inapplicability of flat sided potentials to this type of problem.

The problem of representing rectangular objects is not as straightforward as may be
envisaged. Applying a simple flat sided potential will result in the creation of a local
minimum. However, this may be addressed by using a class of obstacle potentials known

as Superquadrics.
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i Isopotential Contour

Figure 4.5: Local Minima Formation.

4.5 Obstacle Representation: Superquadric Distribution

Superquadrics are a class of geometries that were initially employed in the field of
computer graphics8?. These functions are ideal for representing objects such as rectangles
or ellipses as mathematical functions. Their use in collision avoidance was originally
proposed for use by space manipulators using potential field methods?®?1. The crucial
element of a superquadric potential function is that the contours of the function change
shape as the distance from the obstacle increases. For example, a square obstacle will be
mapped to a square potential at the obstacle surface. However, as the distance to the
obstacle increases, the contour of the repulsive potential will change shape to form an
ellipse at the intersection of the attractive and repulsive potentials. It is this characteristic
that makes superquadrics useful in as much as local minima may be eliminated. However,
to obtain such a result requires a much more complex analysis than the other methods
presented here.

4.5.1 Obstacle Definition

The general form of the superquadric in two dimensions is given by

2n 2 2n
(f-) +(2) (1) =1 where n 2> 1 (4.27)

The resulting geometric shape is often called an n-ellipse where a and b are the semi
major, and minor axes of the ellipse respectively. For this function to be applied to a
specific rectangular obstacle, then the ellipse must touch the corners of the obstacle, and
also minimise the area between the obstacle and the ellipse which leads to
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i 1
g=Y] 2 b=2| 9% (4.28)
2 7

where w and % are the x and y dimensions of the rectangle respectively.

At the surface of the ebstacle, the contour of the potential must match the obstacle
shape. Thus r must be equal to infinity at the surface for this requirement to be satisfied.
Likewise, moving away from the surface, the contours must be elliptical in the limit.
‘Therefore a function may be derived which will define the distance to the obstacle surface
and, in addition, define the potential contour value at that distance. It may be shown that
such a function is given by?®

1
2n 2, N\ oy
k=|[Z] +(2)(2 -1 (4.29)
a a b

where K is the distance to the obstacle sutface. The value #, which defines the contour
shape, must vary from infinity to unity while K varies from zero to infinity, thus » is
defined as

I
= — 4.30
T exp(—akK) (430)

where o 18 4 constant.

Following the definition of the form of ihe isepotential contours, all that remains is
to assign a potential value to them. The potential magnitude must decrease with distance,
and the function which is most commonly applied is the Yukawa®® potential of the form

xAM

= (4.31)

V()bs

where A is a scaling factor, and unless stated otherwise, is defined as unity. The definition
of the potential, and the isopotential contours leads to a non-linear problem with co-
dependency of K and . The method to solve this problem and apply the potential is best
demonsirated by exampie.
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4.5.2 Example

The solution to the problem of assigning values to X and » may be carried out

using the hisection method. However, to do so requires the manipulation of Equation 4.30
to

K| =-lirz[1m—1—i| (4.32)
164 n

and, when used in conjunction with Egquation 4,29, is rc-written as

1

S ERCENE

Clearly, K, and K, must be equal. The difierence between the two functions yields an error
term, viz

e=K -k, (4.34)

which may be solved for n vsing the bisection method. Thus K may be recalculated for the

new n value. The process is then iterated until convergence. Obtaining X then allows the
calculation of the total potential which takes the form

exp{~cK )

4.35
I (4.35)

A
V= 5|1' —Cgou] +A

where A Is unity and ¢ is set high enough to ensure that no local minima form 4t the saddle
point. Methods for calculating an optimal setting of « are also available®®. However, for

this example, the saddlc point position necd not be optimised, and so a value is chosen of
sufficiently high magnitude, in this case o = 45.

Applying this obstacle potential in conjunction with a quadratic goal potential
requires the definition of the characteristic dimension of the obstacle. In this case a square
obstacle will be considered with

fi=w=20m (4.30)
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Simulating the chase vehicle motion yields the resuils shown in the series of Figures 4.6.
As can be seen, the chase vehicle does negotiate the obstacle and converge to the goal.
Examining Figure 4.6.a, the path of the chase vehicle is shown as it successfully
negotiates the obstacle. The obstacle avoidance is shown in more detail in Figure 4.6.b, as
the chase vehicle easily clears the abstacle.

The contour plets shown in Figures 4.6.c and 4.6.d display the contours of the
total potential. As can be seen, the local minimum visible in the flat-sided potential does
not form, thus allowing the chase vehicle to travel around the obstacle. However, the
resolution of the contour map does not show the lrue form of the obstacle. Examining
Figure 4.6.e, only Lhe obstacle potential is shown with the path of the chase vehicle. As
can be clearly seen, the path does closely follow the contour of the obstacle. Thus, in
Summary;

» The superquadric function does producc an obstacle in the potential field which
allows convergence to the goal by eliminating the local minima formed by the
flat-sided power-law. In addition the saddle which is formed is unstable, again
allowing convergence.

» The height and width of the obstacle are very clearly defired, making the
obstacle definition substantially simpler than previous methods for complex
geometries.

+ 'I'he complexity of the method is not a significant factor when considering single
obstacles, however, as the complexity of the cavirominent increases, then the
computational demands will also increase.

The superquadric potential does provide the best means of defining non-spherical
obstacles within the potential field. However, it does so at the expense of complexity,
Therefore, for any obstacle avoidance potential, careful consideration of the specific
problem wounld be required before applying this function. 'The complexity is also
substantially increased if the parameter & was calculated to fully guarantee the elimination
of local minima with an analysis of the saddle point in three dimensions, Current methods
are compitationally demanding, Applying these techniques would effectively double the
computational requirements of the method.
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Figure 4.6.a: Superquadric Distribution: Chase Vehicle Trajectory.
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Figure 4.6.d: Superquadric Distribution: Potential Function Contours.
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Figure 4.6.e: Superquadric Distribution: Obstacle Potential.

4.6 Conclusions

Of the four methods of defining obstacle potentials, only one method, the flat-sided
power law potential was unsuccessfully negotiated by the chase vehicle. The remaining
three methods created obstacle potentials that, when added to an attractive potential, did
not generate local minima. Each method has its own merits, however, some have more
general applications than others. The Gaussian method for a spherical obstacle offered the
best all round performance and with specific regard to the balance of computational
complexity and accuracy. The ability to exactly define the characteristic dimension of the
obstacle and guarantee minimal incursions into that space in conjunction with easily
definable parameters makes this function more applicable to general problems.

The spherical power-law potential demonstrated good results, however the
sensitivity of the method to the value of the parameter N made it difficult to determine the
interface between the goal and obstacle potentials. Thus, incursions into the obstacle area
could not be prohibited. The advantage of this method is its computational simplicity. For
such an easily applied method, the performance is reasonable, and would be applicable to
problems where computing power was limited. Finally, the superquadric was by far the
most complex of the four methods with parameters that are obtained from non-linear
problems. However, the performance is excellent and very efficient in the use of space as
the potential function maps itself on to the contours of the body. This method would be
applicable to complex geometries where there were significant restrictions on movement.
Thus, in conclusion, the ability to model and successfully negotiate obstacles has been
demonstrated. The ability to create obstacles and shape the chase vehicle path to the goal
point is one of the principal reasons for the use of potential function methods in the
remainder of this thesis.
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Chapter Five: Molecular Dynamics

Equilibria in biological systems are governed by their tendency to move

towards states of lower free energy

T.P. Flores & ID.S. Moss

5.1 Introduction

In everyday life, construction surrounds us in may different forms. From the easily
detected human activity on a construction project, to the almost imperceptible regeneration
of our own bodies. The natural world has been producing structures far more complex and
beautiful than any human construction. 'I'herefore, this chapter looks at some of the rules
which have been developed by human science to examine and duplicate nature’s methods
of construction. The methods applied to the stedy and simulation of molecular chemistry
make use of potential functions., This chapter intends to demonstrate the relevance of
potential function methods to physical problems. In addition, the molecular potentials will
be simplified and applied to a multi-body problem with the aim of demonstrating that a
stable structure may be constructed using potential function methods. This will
demonstrate the underlying principals of potential function construction methods discussed
in the following chapter.

5.2 Applications in Molecular Biology

The science of molecular biology has grown from the desire to manufacture
molecules and chemicals with specific features. Within this objective, to examine how
molecules arc constructed, the science of Molecular Dynamics9293,94 has been developed.
The principal tenet of this field is that a molecule will rcach a state of equilibrivm when
the free energy within the molcecule is minimised.

5.2.1 Energy Minimisation

The free energy within a molecule is given by the equation
AG=-RTnx 4.0
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where AG is the Gibbs Free Encrgy, R is the Universal Gas constant, 7" is the absolute
temperature and x is the equilibrium constant for a chemical reaction with constant
pressure and temperature. However, explicitly defining the change in free energy of the
system then

AG = AE+ PAV -TAS (5.2}

where AE is the change in internal cnergy of the system, P the Pressure, V the Volumne and
AS the Entropy.

However, if the assumption is made that system under scrutiny is well-ordered at a
modest temperature and pressure, then the AL term will dominate thus resulting in the free
cncrgy taking the form

AG = AE (5.3)

Therefore, it is possible to minimise the internal energy and thus the Gibbs free energy of
the system and to maximise the stability of the resulting structure. To minimise the internal
energy of the system, the energy must be considered of the form

E=E +E, (5.4)

where the subscripts & and p represent kinetic and potential energy respectively, Thus,
since the kinetic energy of the system is a function of temperature alone, the problem will
reduce to minimising the potential energy of the system.

53.2.2. Computational Issues

In a real, biological system, the assumption that a systemn 1s well-ordered is not
valid. Thercforc, the TAS term may not be disregarded. The result of this is that the
complete free energy mnst be calculated to determine the stability of a system. This in
itsell is a much harder task. 'T'o simulate such a system requires a great deal of expertise
and computing power. We can assuine that both position and velocity are simultancously
defined. This assumption is only valid for heavier atoms and molecules i.e. Carbon atoms,
However, for smaller, lighter particles, a quantum-mechanical trcatment is required. The
computational power required o implement even such a simplified model is extreme. For
every pico-second of simulated time, 1 hour of processor time on a Cray X-MP is required.

Thus Lhe practical imit for simulated time is restricted to approximately 1 nano-second.
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5.3 Shradinger's Equation

When considering a construction problem or a civil engincering project, the
measurement of the position of the components which make up the problem is relatively
straightforward. The use of modern techniques such as laser ranging allows the accurate
positioning of large elements to millimetre accuracy. However, when considering
assembly problems on a quantum level, the positioning of sub-atomic particles with
certainty is not possible. Heisenberg's Uncertainty Principle states that the position of a
sub-atomic particle and ifs velocity may not be simultaneously measured with infinite
precision. In 1926, Shrodinger developed a formwulation of non-relativistic quantum
mechanics which forms the basis for calculations in quantum chemistry.

Shrodinger's equation provides a probability wave function, w(r,¢), which allows a

prediction of the location and velocily of sub-atomic particles of the form

1 9? L
—~ ?z—gﬁlp’(l’,f)"l- Vir,Nw(r,t)= ‘hg'ﬁ(l‘, 1) (5.5)

=l .I"”-J

for a system of N molecules with position r;, mass m;, wave function y(r, 7}, and potential
field V{r,f). I{ the molccule potential field could be fully described, then the wave
funetion would be obtained from Shrédinger's equation. However, this cquation cannot be
solved even for the simplest of molecules, such as the Hydrogen pair, H, However,
approximations which simplify Shrodinger's equation into other forms do exist, the most
prominent of these being the Bom-Oppenheimer approximation.

Originally formulated in 1927, the Born-Oppenheimer approximation allows the
electronic and nuclear distributions of a molecule to be treated separately. As a
consequence, the motion of nuclei and electrons may also be treated as separvate. Since
even the lightest nucleus has a much larger inertia than that of an electron, the
characteristic speeds and frequencies of nuclear motion are much lower than that of
electron motion. Thus, it may be assumed Lhat the electrons will forim a shell surrounding
the nucleus and the total potential energy of the molecule may be calculaied based solely
on the position of the nucles. This allows an accurate modcl of the potential energy surface
for up to 10-20 atoms.

The potential field in which the atoms exist is crucial in molecular dynamics. The
atomic force, and the total energy of the system are both dependent on the potential ficld.
The total energy of the system may be written as

1 N
Ez—z-Zm,.viz +V(r) (5.6)
=1




In practice, the calculation of kinetic energy is relatively straightforward to compute.
However, the calculation of the potential energy component is not straightforward, and key

parameters must be derived experimentally.

5.4 Potential Encrgy Functions

Deriving the polential energy funclion requires a representation of all the terms
which influence atomic bonding. In practice these are covalent bond stretching, bond angle
bending, harmonic dihedral bending, sinusoidal dihedral torsions, and non-bonded (Van
Der Waals, and Coulombic) interactions. Therefore the total potential may be written as a
summation of these components

V' = Vionas + VAngI'es +Viorsions T Yaar 3.7

where the non-bonded interaction, Vyp,; is given by

Vgt = Wanberwaals + VElecsrostatic + ]"}Iydrogen (5.8)

Computationally, the definition and application of the [ult potential function would
he too expensive. Therefore, in an effort to demonstrate the multi-body interactions
envisuged here, a reduced potential function i1s vsed. The reduced potential function is
formutlated using only the principal potentialg, the bond potential in conjunction with the
repulsive component of the Van Der Waals potential. Thus a new potential is derived of

the form.
V= Vponas + Vchm'sive .9

Thus, having identified the elements to be included within the total poteantial, it is now

possible to proceed and define the potentials associated with each element.

5.5.1 Bond Potentials

The potential function which describes bondd properties, and specifically the (ensile
properties of the bond 1s typically a function called the Morse potential. The Morse

potential function gives a good estimale of the tensile propertics and is defined as

Vionds = E’:{Db'. (t-exp{~a (8, -, )})2 _ Db,-] (5.10)

i=1
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where Dy, is the energy at the equilibrium bond length b, , @, is used as & gain to produce
the desired molecular vibration spectrum and N, is the tatal number of bonds.

Although the Morse potential gives excellent results, the bond potential may be
further simplified for bond lengths close to the equilibrium value. The potential is that of a
quadratic harmonic approximation of the form

1 Nb

Vionas =5 2. K3, (b =B)’ 5.10)

i=l

where b; is the equilibrium bond Iength and K, = 2Dbfaf . The two curves are shown in

Figure 5.1.

400] !1 i
300
R IR
% 100]
8 1 "4 5
§ -100] ‘-: Distance (A)
K | |
-200
-300] Morae potential
I Simple harmonic potential
=400

¥igure 5.1: The Morse Potential (Adapted from Ref. 92),

5.5.2 Repulsive Components

When atoms come close together, their electron clouds overlap and produce a
repulsive foree. This repulsive force increases as the separation decreases. Therefore, for a
computationally expensive problem such as this, a spherical power-law function is applied.
The choice of the power-law potential is further supported by Lennard and Jones?? who
determined that the power-law is sufficient for an arbitrarily high index. Thus, the

potential cnergy function takes the form

N/‘m)lns AU E
VRepul.sive = N {(5.12)

i<j Hj
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where ry; is the distance between the centres of the nuclei and A, is a scaling constant.

5.5 Calculatton of Non-Bonded Interactions

The calculation of long range interactions between two atoms is expensive.
Therefore, the computational cost of determining the non-bonded interactions between
every pair of atoms within a system is unreasonably high with the computation time
increasing with N2, Therefore, to redunce computing tmes, a cut-off radius R, is
introduced. Within this radius, all of the forces between atomic pairs are calculated,
however, outside of the radius all interactions are considered negligible. R, 1s generally
lower than 8 Angstroms. However, the electrostatic forces are still significant until almost
LS Angstroms. This quandary is overcome by treating local atoms as charge groups. I a
particular charge group centroid is within the R_,, distance, then the group is included
within the calculation,

5.6 Multi-Body potentials

The application of the potential function control methods to a multi-body problem
may be demonstrated by applying a molecular potential with Lyapunov’s method. Thus, a
problem with a molecule consisting of a number of generic afoms will be used fo
demonstrate that the minimisation of the potential coergy within the molecule produces a
stable structure,

3.6.1 Problem Definition

A molecule will now be defined consisting of six afoms with each atom's optimal
state corresponding to a bond te every other atom. Thus each atom will be bonded to five
other atoms. Therefore, using the attractive and repulsive components defined in

Equations 5,11 and 5.12 the total potential of the molecule takes the form

. Nf'lmnl\' A
V== ZKb;(bi_bi)z'f' 2, =% (5.13)

=l i<j Ty

where K and A in this case are defined as unity for every bond and atom and 7 has been

arbitrarily defined as 12. If the radius of each atom is one unit, and the goal bond length,
b, is defined as two units, then the final configuration will result in every atom touching
each other, This is the only condition imposed on the molecule. Aside from this criteria,

the [inal state of the molecule remains undefined.

5.6.2. Example

The potential function is minimised using the discrete control method at every
integration time step. Thus, an internal normal is calculated at each isopotential surface.
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However, since translation costs are clearly irrelcvant, as propulsion is not an issue, the
method is applied continuously with no trigger mechanism. Therefore, simulating the
molecule starting from some random initial position yields the results shown in Figures
5.2. Examining Figure 5.2.u, the potential function is shown. As expected the potential
function is minimised, however, it should be noted that the potential does not vanish.
Examining both components of the potential function, it is possible to identify the cause of
the residual potential. The first component is non-zeroe due to the physical configuration of
the molecule. If all the atoms are attempting to reach the desited bond length, then
physically this is not possible. Instead the atoms will settle to an equilibrium position
where all the bond lengths in the molecule are as close to the goal bond length as possible.
In addition, although the repulsive potential is very small, by its very nature, it can never
be zero, Therefore, a small residual is present,
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Figure 5.2.a; The Potential Function Behaviour,

The motion of the atoms are shown in Figure 5.2.b. As can be seen the atoms form
the shape which fills the least volume corresponding (o the minimum energy
configuration. In addition, the three larger equilibrivm bond lengths correspond to the
atoms at opposite ends of the molecule, Thus, it has hbeen demonsirated that potential
functions are capable of forming stable structures from multi-body systems,

5.7 Conclusions

The usc of potential functions has been expanded to include multi-body systems.
The science of molecular dynamics has been brielly reviewed and the behaviour of large
molecules used to provide insight to multi-body system dynamics. The validity of potential
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Figure 5.2.b.i: The Atomic Motion: Time =0 s.

Figure 5.2.b.ii: The Atomic Motion: Time = 1 s.




Figure 5.2.b.iii: The Atomic Motion: Time = 2 s.

Figure 5.2.b.iv: The Atomic Motion: Time = 3 s.
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Figure 5.2.b.v: The Atomic Motion: Time =4 s.

Figure 5.2.b.vi: The Atomic Motion: Time = 6 s.



functions for assembly has been seen through physical analogies from malecular
dynamics. Thus, in summary;

» For a well-ordered system, stability is directly related to potential energy. A
consequence of this is that the probability of a stable structure is increased as the

complexity of the structure is reduced. This will become increasingly more
important as a structure grows in size.

« Multi-element attractive and repulsive potential functicns can be generated.
«  Computational requirements may be reduced by introducing a cut-off radius.

» The goal configuration may not be physically possible. However, the method
will force the configuration of the bodies to the minimum energy state.

The purpose of this chapter has been to demonstrate the foundation elements of a
potential function method which may be used to assemble stable structures from multi-
body systems. This has been done using a physical analogy with molecular dynamics. The
following chapter shall expand on this by extending the methods from atom building
blocks to beam elements capable of forming useful engineering structures,
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Chapter Six: Structural Assembly

6.1 Introduction

The previous chapter has demonstrated the application of potential functions to
multi-body systems and their use in forming minimum energy configurations. The purpose
of this chapter is to expand on this to demonstrate the application of the method to
autonomous assembly of engineering structures?3%6.97, Therefore, applying the lessons
[earned from molecular dynamics to the assembly problem, a stable building block from
which larger structures may be assembled is required. The logical choice for such a
building block is a beam element. Two distinct applications of the potential function
method will now be examined. These are the Paralle! and Serial implementations®8. The
parailel method involves a simultaneous effort with all the beam elements to form a stable
structure, The serial method is a more practical implementation, with only a sub-set ot the
total number of beams within the structure being active at any one instant. The application
of both methods will be demonstrated using two structures, a simple pin-jointed triangle
and square.

6.2 Beam Element Definition

For the type of pin-jointed structures envisaged here, it is assumed that the beam
clement is capable of perfect translation and rotation to a given position and orientation.
As a conseguence, the detailed mechanics of translation and rotation may be ignored.
However, the connectors placed at the end of each beam must be modelled and in addition,
the centre of mass of the beam must also be identified. Thus, including the assumptions
stated here, it is now possible to proceed and define the characieristics ol the beam. The
beam element is defined as a uniform beam of length ! and, as shown in Figure 6.1, has
connectors placed at either end. The end connectors are used to join (he beams together

with each beam having a male and female connector. Thus, defining the position vector of

the male connector of the ith beam as




Male £

Figure 6.1: Beam Element Definition,

5 ={x,y.%} 6.1)
then the female connector of the ith beam may be described by the position vector

W = {x; +lcos0; cos¢;, y; +1sinb; cosp; z; + lsz'ngf)i} (6.2)

where 0; and ¢; define the orientation of the beam in azimuth and elevation. For the case
studies envisaged here, typically the length / of the beam is 2 m, of similar length to those
used in the ACCESS experiment described in Section 1.2.2.

If collision avoidance between the beams is to be enlorced, then the distance
between the centre of mass of (wo colliding beams must be defined. Thus, the centre of
mass of cach beam is given as the point halfway along the length of the beam. This may be
described by the position vector

/
oy = {x,- + écos@i cosP,, y; + %sin 0, cosip;, z, +5sin¢i} (6.3)

Thus, with the basic properties of the beam elements, the complete location and orientation
of the male and female connectors and the centre of mass of the # bcam may be described
using the state vector
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X = 1% ¥, 2,01 04 } (6.4)

The application of the paralle! and serial methods to the problem of assembling
individual beam elements into useful structures demands a method of translating and
rotating the beam elements into their final positions. This may be done by twe methods,
the first involves the use of a free-flying robot capable of grappling, rotating and
translating the clements. In addition, the free-flyer must demonstrate the dexterity o
assemble and manipulate the joints which will connect the beams together. The type of
vehicle envisaged bere is similar 1o that of the Ranger vehicle previously discussed in
Section 1.4.1. The second method is to include sensors and actuators within the
construction of each beam. In cffcct this creates a smarr beam capable of carrying out the
asscmbly tasks completely autonomously. ITowever, this type of beam could only be
considered Lo operate efficiently within the parallel assembly regime. In addition, it may be
noted that such a set of smart beams could provide a fully re-configurable structure as will
be discussed later in Chapter 7.

The measure of Av, based on the assumptions made cariicr regarding the properties
of the beams, provides an approximate indication of cost for beam translation. The cost of
beam rotation, however, is more complex. Considering the mechanism of bean rotation, 4
controiling vehicle will be required to implement an impulse thus applying a torque to the
beam. Examining Figure 6.2, the moment applied around the centre of mass of the beam
is given by

M=Io (6.5)

where 1 is the moment of inertia of the beam and free-flying vchicle combined which may
be expressed as

1 5 -
I=—ml*+1, 6.6
T v (6.6)

where I, is the moment of inertia of the free-flying vehicle. The moment caused by the

controlling force F, is also given by

d
M=F— 6.7
5 (6.7)

where d is the characteristic dimension of the free-fiyer, Re-arranging Equation 6.5 and
Equation 6.7 results in
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Figure 6.2: Beam and Vehicle System.
d
[Aw= EFAI (6.8)
or
IAw= %Av (6.9)

which gives an approximate relation between Av and A as

Av = % Aw (6.10)

The beam/free-flyer model which is developed here is a rudimentary one. If the model
were to be developed further, account must be taken of the free-flying vehicle moment of
inertia, sensor models and thruster actuation models. For the purpose of illustration in this
thesis, the properties of the beam and free-flyer are chosen such that the manoeuvring
impulse for rotation will be equivalent to that of a manoeuvring impulse for translation.
Therefore, for current purposes, the cost of implementing one radian per second of rotation
is equivalent to one metre per second of translation and so all manoeuvring impulses may
be measured in terms of Av. With these assumptions it is then possible to quantify the
motion of the beams.
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6.3 Parallel Assembly. Case I: Triangle

The simplest geometrical shape of any consequence in engineering structures is the
triangle. Replacing the atomic model of Chapter 5 with that of the beam element, it is
possible to proceed and develop a potential function which may be used to assembie the

triangie.

6.3.1 Potential I'unction Definition

The only major diffcrence between the structural assembly potential and the atomic
potential is the emphasis on the connections between the elements. Thus, the total
potential will take the form

V = Veounection T Vons (6.11)

where Vegpneerion feplaces the Vg, 4, term and Vi, replaces the Vo, term in Equation
5.9. The Vp,,4 term is based solcly on minimising the distance belween the centres of the
atoms while V), term prevents unwanted collisions. However, for the V., cnon t€Im in
structural assembly, the potential is based on minimising the distance between the male
and female connectors of the beamns. Therefore, for the triangle the connection potential
will take the form

1y - _ _ -
Veonnection = E{“rl . l'3i2 + ‘1'2 -1 I2 +|l'3 - l';zlz] (6.12)

which, by including the definition of the male and female connectors, may be expressed in

scalar form as

1 2 2
Veonnection = 5[(x1 -~ xq —lcas@ycos ¢3) + (x2 —x; —leos Oy cosdy)

+(X3 —Xn - ICOSQZ COS¢2)2 - (yl - ¥3 4‘335!‘193 COS@g)Z

+H{y, — y; - Isin 8 cos(bl)z +{y3 — yo +1sin0, cosqﬁz)z (6.13)
+(Z| — 23 -+ JSin¢3 )2 + (2,2 = I =+ JSIIHQJJ'] )2

+(z3 —2Zp +ising, )2]

Thus, the goal is reached when the male connector of beaimn one is connected to the female
connector of beam three, beam two is connected to beam one and beam three is connected

to beam two, thus forming the triangle.

The repulsive component is formed by adding a spherical Gaussian obstacle
potential located at the centre of mass of each beam, The Gaussian obstacle potential has
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been used in this case as opposed to the power-law obstacle due to of the ease in defining
the obstacle boundary. In addition, with only three beams considered here, this is not a
computationally intensive problem, therefore the Gaussiun potential is a logical choice.
The potential is sized to [ufly enclose the entire beam, thus preventing collision, However,
since the obstacle locations are continually moving, the magnitude of the repulsive
potential is scaled to the separation between each beam and every other beamn, viz

j‘V}!wrm.t' A’Hrnms

Vops =4 2 2 QXP{—B‘PCG,- —YCGJ-G (6.14.a)
= =T

where the distance between the two centres of mass may be expressed in scalar form as

2
{ {
II'CGE ~Teg;| = [(x,- + ~2-cos9i CoSY; —X; "500-‘9]' cosg

\2
+(y,- + ~é-sinf),- cos$; —y; —é—sin 0 ; (:o.rt?_,-) (6.14.b)

o] —

[ RS
H 7; -i'ES!nlfJ,; -2 —--2-sm¢i

6.3.2 Example

The (riangular structure is composed of three beam elements. Dach beam element is
connected to the other two beams via a male and {emale connector. The potential function
which describes the problem is derived by incorporating Equations 6.12 and 6.14 into
Egquation 6.11, thus resulting in the equation

6. = - -
B 5“"1 -B[" +]e, —Ef +ry —1'112]
Ngame Noorms (6.15)

+A Y Y exp{-Br. -1 ‘}
A =t g e ~Ticu

To derive the control inputs for the individual beams, the translational and rotational

componen(s may be obtained from the gradient of the potential as described iz Chapter 3.
Differentiating the connection potential for the x-component of each beam gives
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a v —
a—xl [VComzc.-:rfmz] = (xl - xg} - (JC 2 xl)

a — _
E [VComzectimz] = (x?_ - X )“‘ (x3 - .xz)

I, — -
gs[vt'ormecrion ] = (3‘73 ) ) - (.761 — X3 )

and for the y-component

d _ =
g} [VCamwciion] = (.}’1 — Y3 J - (3}2 - yl)

J _ -
E[Vt'ormecrmn] = (3’2 -N )"‘ (yB - )’2)

J . _ B
E[VC@J:!MCIEOH _] = (}'3 - )—' (yl —~ yS)

and the z-cotnponent

d
g} [V(';ormec.rfon] = (Z] —23 ) —_ (32 ~Z }

a - .
&_Q[VComwction] = (22 -2 )~ (53 - Zz)

d _ _
g [VCamaemion ] = (2'3 —Z2 ) i‘(‘?l %3 )

The rotational components may be derived in the same manner, viz

(6.16.2)

(6.16.b)

(6.16.c)

(6.16.d)

(6.16.c)

(6.16.1)

(6.16.%)

(6.16.h)

(6.16.1)
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J — ,
5"6_2[1/Connecn'on] = (.l‘-_;, - x?,) “Lsiny cos ¢y - ()’3 - yZ)' LcosB; cos,
a _ . _ .
-(,)—6- [VCO,WC“'O,, ] = (xl - x3)o {5in64 cos sy — ( Y =¥ ) [cos By cos ¢y
3
J

“()E'[VC'onneczion] = (x2 - X )-lCOS 0 sing +(3’2 - 3'-1) Usint) sing,
‘1

~(z2~7) Icos ¢

d - ) _ ) .
"—"[V(.'o;meczion] = (x3 “XZ]'ZCOSB2 sind; +(.V3 - }’2)' I5inB; sing,

P,

~(z3 —2‘2)~lcos¢2

a

%{Vcwmec’i‘”‘] =(x —%3)-Lcos O3 sin @3 + (v — 73 )-LsinBy sings

~(21-23) lcos g3

Nn 1ty .
\ . i . .
5 2 («“CG, “XCG,.] '@"»P{—Bllccf ~T¢g, §}+
J=Lj#i
2 Iv., 1=-a-B-
axi [ ObS] N |
Xca, —Xcg, ) ‘exp{““Bil' o, *1‘065‘}
| J=1, 0 i
K N[,’t,'mlls M ]
5 (YCG,. - Yeg, J ‘é’xﬂ{*Bll'cq ~ T, f} +
e
LG e
i gitiiny v .
2 ()’cci - Ycg, ) : exP{—B'rccj =g, l}
FENT A |

(6.16.1)

(6.16.k)

(6.16.1)

(6.16.m)

(6.16.n)

(6.16.0)

The components of the obstacle potential function may be obtained from Equation 6.12 as

(6.17.a)

(6.17.b)
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5 ZCG,» - ZCG, ) ' exp{—B]rCG‘_ - l.CGJ- |}+
=1, j#t '

Vo ]=-4-B-| 7" (6.17.¢)

&Z i wam
(ZCG,. ~ZeG, ) : e—YP{—B|1'CGj ~Icg, ”

Li=h, i

The rotational components, again are obtained by differentiating the obstacle potential in a

similar fashion, viz

Nlim.:m.t (Sin e.f COS¢J‘ ) ' (x(’(j- . xCG}' ) B
) 'exp{—B‘l'cq ~Teg, ‘}—
3 J=1,j#i (co.s'S‘ i cos; ) ()CG —JCGJ)
50 [Vors|=~4A-B
E 'VBL‘flmv (Slne COS¢ ) (xCG —xCG) i
J exp{-—-BerGJ —¥cq, |}
i=Ljri (m?f) cosd, ) ples YFG,)
(6.17.d)
xcg, "-CG) ((‘os(:) cosd; )+
NBrmlu
lvee, ‘“)’CG) (cos@;cos; )~ >-9XP{—B‘I‘CG1 ~Tce, }“’
J=1, '
P ZcG, T 2eq, ) cos )

— 1V ).s'. =-A-B
3¢e[ ose | ‘xcc) (cosO cosq)j)-i-

\
1

ot i

N 7
Heamy {

£

Yoo, ~ ¥ee, ) (cos@ cos ) exp{ B'l'ccj =Tcg, ‘}
=1, j#i

{
(
(
(50
(
(ch = Z¢g, ) CONP,)

{6.17.¢)

The desired velocities of the individual beams may now be calculated using Equation 3.7
and the components of the potential gradient derived above using

/e v_3

, a
x‘.[De.vired =-K }\-/ifl where EC:_ = "ég[v("omwrrwn] (91,. [VObs] (6.18.a)
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j’ i Desired L |VV| where é))’- a}’, [VC' ormcc!ton]"’ ay’ [VOb.',] (6-18-b)
. (?V dz; av d I A
Zi'Desired =" |V/ V{ where ;5; EN [V(“mma lqu ) az. [VObs] (6.18.¢)

The required angular velocities are then derived in the same manner as

: _ 8\// 70, » v _ d 1.9 va
0i Desived =K |V Vl wherc ?3_9: - 55: [ Vconnection _l + %: [VObs ] (6.18.d)
; IV/do; v _J 7

(7’;' Desired =K I‘;V[;bt where r7¢, a@ [h‘omwmon J+ a(pt [VOb.s] (6.18.¢)

where the normed gradient of the total potential is given by

R EEERE R e

and « is defined by Equation 3.9, The translational Av cost of the individual beams may

be calculated from

1
\
P2

> (6.19)
i

< [xi]Desz'md +‘}lji - [).’!']De.s'ired $+ \Z‘ - [Z; ]Desired (6.20.2)
and the angular rotation cost, A may be calculated {rom
Y
Ami = {Hi B [9"' ]Desr'red * ‘dn B [Q)! ]De.\'ired (620b)

The approximate relationship between Av and Aw defined in Equation 6,10 may then be
used to determine the asscmbly cost of a given structure. Intervention by the controller is
governed by the trigger mechanism described in Section 3,3.2. IPor the structural asscmbly

case, the rigger mechanism uscd is given as
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V(x)z -V (6.21)

Thus, convergence is assured in at least an exponential manner. This may be seen when
Equation 6.21 is integrated to give

V 2V, exp(—t) (6.22)

Therefore, the controller has the capability to make large course corrections more often if
the potential is large. However, as the potential decreases, control intervention becomes
less frequent as the requirement for large course corrections decreases.

When considering the application of collision avoidance to structural assembly, a
contradiction emerges. Collisions between elements are clearly undesirable, however, the
elements must be also be brought into contact for connection at the appropriate time.
Examining the total potential, the two components must vanish at the global minimun.
Therelore, the repulsive component must be scaled to allow convergence at the appropriate
time, This may be carried out by relating the repulsive term to the conneclion term by a
modification of the constant A in Equation 6.14 to take the form

A= k]. {1 —Exp (*kZ VC'umzeclir.uz )} {6.23)

where k; and k, are scaling constants. Therefore, as Viynoeion Vanishes at the goal, it can
be seen that Vi, now vanishes. Substituting the term for A, in Equation 6.14, thice
constants, B, ky, and k, appear which must be chosen to ensure collision avoidance. This is
far from a straightforward task. The three values currently used are

B = il (6.24.2)
k= 550 (6.24.b)
ky = 0.0081 (6.24.c)

These values have chosen following an extensive parameter search and will ensure

collision avoidance.

Implementing this potential function in free space with the three beams equally
spaced along the x-axis on the x-y plane results in the assembly scquence shown in Figure
6.3.a. Examining the assembly procedure, the beams do converge to the goal configuration
after approximately 120 s. It should be noted that the beams do not converge in an even
manner to the solution. Although the physical coniraction of the beam spacing o the
solution appears straightforward, the interaction of the potential function components is
morc complex. Examining Figure 6.3,b the total potential function is shown. In addition,
the individual compeonents of the potential are also plotted. Considering the total potential,
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the rate of change is continnously negarive definite and so conforms with Lyapunov's
method. However, the two components, the connection and repulsive potentials, are not
constrained divectly and their interaction is more complex. The connection potential can be
scen to be continuously decreasing. In contrast though, the repulsive component varies
considerably. Initially, the beams ave placed too close to each other, therefore, as the

beams converge to the solution, the repulsive component begins to grow. Thus, the

1
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Figure 6.3.a: Triangle Assembly.
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repulsive component maintains beam separation while the beams manceuvre to the correct

orientation. Thus, the obstacle potential moderales the pace at which the beams converge
to the goal,

The cost of assembly in terms of total Av, for all the beams is shown in Figure
6.3.¢.i to 6.3.c.iv. Examining Figure 6.3.c.i, the total cost of assembly including both
translation and rotation is shown for ail threc becams. As can be seen, the cost to each beam
is approximately 5 m.s*1. This value is reasonable, but higher than desired. Examining the
translation and rotation components in Figures 6.3.c.if to 6.3.c.iv, a value of 3 m.s! for
translation and 2 m.s-! for rotation is typical. Again, these values are acceptable, although
it would be clearly desirable if they were lower.

Therefore, summarising the results;

« The parallel assembly of the triangle has been completed successfully.

» The total potential function behaviour is stable with successful convergence,
however the behaviour of the individual components of the total potential are
more complex.,

+ The cost of assembly is reasonable. However, this area will require further
study.

The assembly of the triangle has been accomplished. However, this stmeture may
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be said to be the simplest useful constiuct and can be regarded as a starting point only.
Therefore a more complex structure, the square, will now be examined. This structure adds
complexity be demanding not only an additional beam element, but aiso that the clements
be connected together at a specific angle.

6.4 Parallel Assembly. Case 1I: Square

Considering the final configuration of the elements of a square, it can be seen that
it differs from that of the triangle in that the triangular structure is unique with beam
elements of identical length resulting in an equilateral triangle, However, this does not
hold for more complex structures. Even with a simple structure such as a square, many
different solutions are possible which meet the goal as the potential vanishes. For example,
the basic rhombus will also satisfy the connection requirements.

6.4.1 Potential Function Definition

To overcome the problem of connection angle, the total potential function must be
modified and an additional term addcd to the potential. This results in a potential function
of the form

V= VCmmection + VOb: + VAuglc (625)

In addition, the connection potential must be modified to account for the four beams in the
square structure. Thus, the modified connection potential will take the form

1 - — -2 -
Veonnection = E['rl -1 g + |l‘2 - r]|2 +|I'3 = 1'2‘? + |I‘4 - l'3|2:i (6.26)

where the malc connector of beam one is connected to the female connector of beam four,

beam two to one, beam three to two and finally beam four to beam three.

To obtain the square as a solution, a further criterion must be added to the potential
function. This addition must constrain the angle at which the beams connect. The angles
which define the orientation of the &t beam are 6; and ¢;. Therefore, to constrain the angles

at which the beams are connected, a quadratic potential may be defined of the form

Vangte = F(61.;) (6.27)

Tor the casc of the square, the oricntation of each beam must differ from its neighbours by
/2 while the elevation of each beam is constrained to zero. Thus, the potential function
takes the form
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where the goal is reached when the orientation of each beam differs from its neighbour by
/2 and the elevation is zero. It should be noted however, that to complete a structure such
as a square, although three angles are 12, the final corner angle is -3m/2. This
characteristic is simply a geometric property of the square,

6.4.2 Exarple

Simulating the assembly process with the above potential function produces the
results shown in Figures 6.4. The physical convergence of the beams is shown in Figure
6.4.a. Again, convergence occurs at approximately 350 s. Following an initial phase of
manoeuvring to reposition the beams, the square is safely formed without collision.
ixamining the potential function shown in Figure 6.4.b, the manoeuvring phase is
apparent where the connection potential convergence is retarded by the repulsive potential.
The repulsive potential increases to a point such that separation is maintained until the
beams are positioned to allow a safe connection phase from 250 to 350 s.

The cost of assembly, again measured in terms of Av is shown in Figare 6.4.¢. The
total cost of assembly ranges from 4 to 7 m.s'l. This §s consistent with the cost of
assembling the triangle in the previous section. However, surprisingly, the majarity of the
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Figare 6.4.a: Square Assembly.
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Figure 6.4.c: Total Av Cost.

Av cosl per beain is in the connection phase. Individually, the translation and rotational
components of each beam are shown in Figures 6.4.d.i to iv. Again, the Av cost is higher
in the connection phase. However, most of the cost is in the translational component. This
is consistent with the manoeuvring phase as the bulk of manoeuvring is in the rotational
component as the beams re-orientale themselves to allow convergence, whercupon the
beams may then translate safely to their final position.
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Figurce 6.4,d: Av Cost.

Summarising the results;

¢ The paraliel assembly of the square has been successfully completed.

» The total potential function monotonically decreases. However, the individual
components again are more complex with the addition of the angle constraining
potential.

» The cost of assembly is reasonable. However the rotational and translation
components have different characteristics.

The advantage of a parallel implementation is the simplicity of application. The elements
are all active and the final configuration is achicved by using the total potential. However,
this is not always practical and has led to the development of a serial implementation to
deal with the construction of larger structurcs.

6.5 Serial Assembly. Case 1: Triangle

Until now, it had been assumed that each beam element was grappled by a vehicle
which was capable of implementing the translational and rotational changes required by
the controller. However, if the assembly of larger structures is comsidered, then this
assumption becomes less practical. It would seem more desirable (o utilise only a few
vehicles performing repetitive tasks rather than & large number of vehicles performing a
single task. Therefore, in this section, it will be assumed that for the three beam elements,
there will only be two vehicles available to implement the controller commands. And so, if
the controller is to drive the potential function to the goal, the construction sequence must
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be implemented serially, rather than in parallel. This serial implementation may be
achicved using virtual elements.

6.5.1 Virtual Elemernts

The controller may accomplish the serial assembly of a structure by assuming the
existence of one or more Virtual Elements. The virtual element is a fictitious beam
element which replaces any uncontrolled beam elements. At this point, the tolal potential
may be minimised resulting in a structure consisting of rcal and virtual beam elements.
The virtual elements may then be replaced by real elements as and when controlling
vehicles become available. 'This is carried out by re-starting the convergence of the
potential function.

0.5.2 Potential Function Definition

As a demonstration of the virtual element technique, the construction of the
triangle manufactured in Section 6.3 will now be extended into a two phase process.
Initially beam elements one and two will be assembled in phase one before assembling the
final beam clement three in phase two. Therefore, the potential function given in Equation
6.15 will be implemented with the only modification being to the connection potential
which will take the form

i _ — _
Veonection = 5["‘] - rzl2 +|l’2 - v;? +|l'v -1 lz] (6.29)

where r, corresponds to the virtual element. The repulsive potential remains identical to
that of Equation 6.14 as the virtnal element has no need for any collision avoidance.
Following the convergence of the potential to the goal configuration, the virtual beam will
be replaced by the third physical beam element. Considering the two controlling vehicles,
their objectives during the first phase is to assemble beams one and (wo, when both
vehicles are assigned to these two beams. However during the second phase, one vehicle
remains with the purtly assembled structure while the second will complete the structure
by connecting beam element three.

6.5.3 Example

The assembly process will now be simulated using the potential function given in
LEquation 6,11, with the connection potential defined in Equation 6.29 and the repulsive
potential defined in Equation 6.15. The initial positions of the beams arc such that the
three beams are equally spaced along the x-axis at 2 m intervals, Examining Figure 6.5.a,
the sucecssful assembly of the triangle is shown where the (wo phases of construction may
be clearly seen. Examining the behaviour of the total potential, the two phuases of
construction become even more apparent, The total potential is shown in Figare 6.5.b and,
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starting from the initial perturbed state, the polential successfully converges in 100 s. At
approximately 130 s the virtual element is replaced with the rcal third element and the
potential is perturbed again. The potentiat then reconverges to the goal after approximately
200 s. The Av cost of assembling the triangle 1s shown in Figure 6.5.c.i with the cost o
each beam of approximately 5 m.s! being of a value similar to that {or the paralle]
triangle. In fact, ignoring the delayed assembly of beam three, all three components have a
Av profile similar to that of the paralle! triangle. Therefore, in this case, it may be said that
there is no Av penalty in moving from the parallel to serial implementation.

Summnarising the results;

« The serial assembly of the triangle has been completed successfully.

» The cost of assembly is reasonable. The Av profile is similar to the parallel
implementation.

Thus, the serial implementation of the triangle assembly has been successful. The use of
virtual elements in assembly has also been demonstrated. However the technique is
unwicldy with the potential function being re-configured many timcs over. Therefore the
following section shall examinc the possibility of streamiining this process.
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Figure 6,5.a: Triangle Assembly,
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6.6 Serial Assembly. Casc II: Square

The lormation of the triangle structure using virtual elements provides only one
method of implementing a serial construction. The virtual efement method essentially
manufactures the complete structure many times over using these fictitious elements.
However, it is more efficient to build the structure over a series of steps using potential
functions which relate only to the active beams. This technique will again be demonsirated

using the square structure of Section 6.4 as an example. The fundamental difference
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between this meothod and previous methods is that the connection potential will be
modified many times throughout construction.

6.6.1 Potential Function Definition

The total potential function for the serial construction of the square is identical to
that of the parallel implcmentation given in Equation 6.25. However, a modification of
the potential function is made such that the connection potential takes the form

=

1 e
E[r1 ~T, t,2t>1
1 Y
—2-|r2-r3| L 21>t
VC‘om:ecﬁou = 1 2 " (630)
;|r3-1‘-4| L, 21 >1,
1 |2
\_2.:|r4_‘r1‘ t'ngaf,J

where 7, 1s the initial time, and #), #,. 3, and {; represent critical poiats in the manufacture
where beam elements are added to the structurc. In addition, the initial left hand beam
element of the square will be held in place such that the female connector of the other
elements will connect to the partially formed structure. For example, during phase onc,
beam element one will be held stationary while beam element two will manoeuvre to form
the connection. The order of manulacture of the square is that beam two shall connect to
beam one, beam three to beam two and beam four to beam three thus completing the

structure.

0.0.2 Example

Using the potential given in Equation 6.25 with the connection potential given in
Equation 6.30, the overall results of the test case are shown in Figures 6.6. The assembly
of the square is shown in Figure 6.6.a. Starting from an initial position on the x-axis, the
beam clements are split into two groups. Beam one is located at the origin and represents
the site of the final structure. The remainder of the beams are distributed along the x-axis
and represent a beam store from which the controlling vehicles will retrieve the
construction elements. The order of assembly and the assembly phases are clearly shown
with beam one stationary and Deam two manoeuvring to form the first connection.
Following on, beam three then connects to the growing structure and finally beam four
completes the square.

The behaviour of the total potential is shown in Figure 6.6.b. The perturbation of
the potential from equiltbrium is scen with three peaks shown. The first peak corresponds
to phase one and the second and third peaks at 3100 s and 6900 s correspond to the second
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and third phases. There is no perturbation for the final phase as all the beams concerned
are already in their coriect positions. The total Av costs for the beams are shown in Figure
6.6.c. As cxpected the rotal costs are reasonable with values up to 5 mus-!. The first beam
which is immobile obviously results in a null cost. However, as the complexity of the
struclure grows, and the manceuvring required grows then the Av cost will also grow. This

is apparent when considering the growth of Av [rom beam two to beam four.

Examining Figures 6.6.d.i to iv the individual components of the Av costs are
shown. Again, becam one has no corresponding cost, however the remaining beams do have
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the expected increase in cost. Although beams two and three have a larger translational

cost than rotational cost, beam four has a larger rotational cost than translational. This

highlights the active manocuvring required of the final beam.

Summarising the results;

« The serial assembly of the square has been completed successfully.

« The potential function behaviour is again stable with the individual components

merging smoothly to form a total potential,
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« The cost of assembly is reasonable. However, this will again require further
study with an optimisation strategy required. Again, the Av profile is similar to
the parallel implementation.

+ As the complexity of a serial structure grows the Av cost of the final beams will
grow corrcspondingly.

Following the manufacture of the square structure, it is clear the change from a serial
implementation to a parallel implementation is not only more practical, but advantageous
in terms of the complexity and Av profile.

6.7 Conclusions

Using multi-body potentials and expanding them to include connection constraints
has demonstrated the feasibility of using polential functions to manufacture specific
structures. The parallel and serial implementation of the construction of the triangle and
square have been successful. However, problems and limitations of each method have

been highlighted. Thus, in conclusion;

+ The parallel method is the ideal approach to using poteptial functions for
manufacture. However, the number of controlling vehicles required Lo assemble
the components quickly increases with the complexity of the structure. Thus for
larger structures, the serial implementation becomes more relevant.

« The serial approach has proved successiul. The use of virtual elements and a
multi-component connection potential have aliowed convergence to the goul
configuration. However, wilh (his (ype of structure, the configurations of
intcrmediate structures must be analysed for stability during manufacture.

e Expanding the potential function te include connection constraints has been
successful.

s The cost of assembly is reasonable, however the lack of a truly optimal strategy
highlights the possibility of reducing this cost.

Following on from the molecular dynamics simulation of Chapter 5, the
manufacture of the triangle and square by parallcl and serial methods has validated the use
of multi-body potenttal functions. However, the potential functions described here have
been very specific. The following chapters will examine the possibility of extending this

technique to more general structures.
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Chapter Seven: Extended Fabrication

7.1 Introduction

Following on from the specific assembly problems described in Chapter 6, the
objective is now to expand on these to form an overall strategy for assembly ol pre-detined
structures. The assembly potential functions which have been cxamined until now have taken
the form

V= V('—'mmecrion + Vors + VAug(c (7.1)

In this chapter, the above structure shall be maintained, however, cach component shall be
expanded upon to form a more generalised approach to component assembly. In addition, the
two-dimensional case studies examined in Chapter 6 shall be expanded to include complex
three-dimensional structures.

The generalisation of component assembly will expand on the potential function given
in Equation 7.1 to produce a Global Potential Function. The global potential function itself
shall be based oh a Globaf State Vector which comprises of the beam state vector described in
Section 6.2 for every beam within the goal structure. Thus, using these global parameters it is
possible to compactly describe the components within the environment. However, a method
of describing the goal structure is now required. To describe the goal structure, a Connectivity
Matrix is used, The connectivity matrix is an Npggms X Npegms matrix, where Ny, is the
total number of beums within the structure, which describes the connections within that
structure. Therefore it becomes possible to assemble different structures with changes only to

the connectivily matrix.

7.2 General Fabrication

Expanding the potential function method to general assembly problems demands the
representation of a multi-element environment. For complex assembly problems, there will be
multiple free-flying vehicles, not just multiple obstacles. In addition, each vehicle must also
be aware ol the position of every other vehicle. Therefore, each vehicle can be defined by a
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state vector x; as defined in Section 6.2. Using the state vector of each vehicle, it then
becomes possible to define a Global State Vector X, which corresponds to a system

consisting of Ny, €lements, viz.

X={x, X0 Xy, | (7.2)

Therefore, the derivation of the global state vector now allows the construction ol a Global
Potential Function representing every element of the assembly process. The global potential
function must be defined in such a manner as to correspond with the conventional definition
of Lyapunov's method, Thus, the global potential function V may be described as a Function
of the global state vector, viz.

V= f(X) (7.3)
In particular, V is constructed such that
V—0 a XX, (7.4)

where X, is the desired final state of the elements corresponding to the assemblcd
configuration of the structurc. Therefore, utilising the same control function and conventions
established in Chapter 6, the desired transitional and rotational velocitics of all the individual
free-flying vehicles may be calculated from a potential function taking the form of Equation
7.1.

7.2.1 The Control Inputy

If the individual vehicle state vector consists of both translational and rotational
components (i.e. a full six degree of freedom problem} then the state vector of the it beam is
given by

x; ={r,0;} (7.5)

where 6; 1s the attitude vector of the vebicle. Using this stale vector in conjunction with the
discrete mothod of calculating the controls, the desired translational velocity v; and angular
velocity ; of the ith vehicle is given by

ViV aV
vgl Desired — K |VV| where \Y . V= _K“él.:.. (7.6)




and

Vo,V v
(Di[ Degired ~KW where VG,V = "Kﬁ )

2

as detailed in Section 6.3.

Thus, the global potential function supplies the desired translational and rotational
rates for each vehicle within the global state vector. These rates may then be used by the
controller to supply actuator commands to each individual vehicle. The convergence of the
controller is, in principle, guaranteed by Lyapunov's theorem. However, as demonstrated in
Scction 4.4, for complex problems local minima do exist in the potential function. It has been
tound however, that these local minima are not problematic in dynamic systems. It was found
in Chapter 4 that local minima can occur in two-dimensional potential functions. However,
in three dimensions these local minima may in fact be unstable saddle points. Tn addition,
since each element is in relative motion, and is repelled by its neighbours, any local minima
may only be short-lived. Similarly, the discrete nature of the controlier results in a quasi-
stochastic ‘noise’ which may also ¢cject clements from any local minima which form.

7.2.2 The Connection Potential

The assembly of simple iwo-dimensional structures has Dbeen demonstrated in
Chapter 6. To extend the method to include an arbitrary number of beams, as shown in
Figure 7.1, it then becomes possible to define a potential function encompassing ail the
connections within a structure. Thus, the enhanced global potential function takes the form

r
1 A'Ifmiiu' Nﬂcauu

o) ) o

7 I
I‘C'r;i.'-xm'csr‘zon )
=l j=l

where r; and ¥, correspond to the male and female end connectors of the ih beam. The

manuer in which the elements are connected is determined by the connectivity matrix €;

which is constructed (rom the logic

1 Connection belween ¥ and r;

€. = ) _ (7.9)
Y |0 No connection between T and 1y

where (2, j) corresponds to the matrix element of column i and row j, read from the top left of
the connectivity matrix. Thus, a sparse matrix is oblained which consists solely of binary
elements. For example, the connectivity matrix which corresponds to four beams formed into

a square is given by




Figure 7.1: Generic Beam Connecticns,

)
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oD - O
o = o O

J (7.10}

which corresponds to beam one connecting to beam four, beam two to one, beam thrce to two
and beam four to three, thus resulting in the square.

7.2.3 The Qbstacle Potential

For a large global state vector, consisting of many distinct objects, the repulsive
component must contain every possible combination resulting in a collision. Therefore, a
term must appear in the global potential relating every object to every other object within the
global state veclor. As in Chapfer 6, choosing a Gaussian obstacle potential, the Global
Obstacle Potential is given as

»
‘4 "I{mu Nnem.-u

Vous = 4 Z Z exp{_B|l'CGf —Tegy

i=l j=t,jai

2} (7.11)
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where I corresponds ta the position of the centre of mass of cach object within the global
state vector and A is defined in Equation 6.23.

7.2.4 The Angle Potential ‘

Finally, it had been considered in Chapter 6 that the angle potential would maintain
the angular separation between two beam elements. However, it is possible to express the
angle potential in a more general foxm which will place the /" beam in a specific orientation,
Thus, expressing the angle potential as

Emmr etitnns

]
VAngh’ = 5 )

!;

N COINS N NN —
Z ( - i)z +; BZ BZ %(‘Pi"‘f’z)z (7.12)
=1 b

results in a potential where the #th beam is manoenvred to a specific orientation (@,-, 5,-). The

purpose in doing so is that the target orientation may now be expressed in an explicit fashion
independent of any olther parumeters. However, in some cases, the orientation of the i beam
may also be related to the orientation of the jM beam element. The consequence of defining
beam orientations in such a manner is that the relative positioning of the beams may be
important, and not the individual orientation of the beams i.e, for the construction of the
square in Section 6.4 the beam orientations are not specified, but, the relative orientations are.

Thus, it is possible to express the target orientation as

8 = 1(6;) (7.13.2)
and

$:=23(¢;) (7.13.b)

The advanlage to such a definition is that the attitude of any beam element need not be
individuafly defined, thus allowing easy assembly of more complex structures.

7.3 The Connectivity Matrix

The development of the general potential function, Equation. 7.8, alters the cmphasis
on design from that of the potential function to that of the connectivity matrix. The

conncctivity matrix becomes all important and determines (he exact form of the final
structure, Therefore it is important to establish conventions for the design of the connectivity
malrix (o optimisc assembly. As the size of the structure grows, then the size of the
connectivity matrix will also grow. Thus, as the matrix becomes large, the manual

development of the connections becomes impractical. However, the problem docs iend itself
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to the use of design tools such as CAD or rapid prototyping packages which include the rules
and conventions of assembly. As examined in the following sections, this allows the
development, storage and copying of empirical connectivity matrices for use as building

blocks within larger, more complex, structures.

7.3.1 Common Beams

When two structures have common beams, as shown in Figure 7.2, where two square
structures are joined along a common beam, the desired operation is as follows

e (7.14)

i

=g:: i
goal Ylsquarel Ylsquare2

where @ is used to denote an appropriate union of the two matrices. Thus, knowing the

square structure connectivity matrix, which takes the form

(7.15)

{j square

-0 O O
©C O O -
QIS Y
o = O O

the goal connectivity matrix may then be derived.

Figure 7.2: Common Beam Connection.

The matrix for the complete structure may be derived by first creating an Npg,,,,c X
Nppams null matrix, where Np,,,s is the total number of elements within the completed
structure. Examining Figure 7.2, for the structure envisaged here, N, Will clearly be
seven. In addition, if one of the squares is assumed to added to the other, then the original

126




square connectivity matrix may be mapped onto the upper left quadrant of the basic matgix,
viz,

-~

O CO =m0

EULOGZ =3 (7.16.a)

OO0 @ S -
OO 0 e -
== -
> 0o o0 oo o o
o0 OO0 0 O O
coeococ

where the highlighted section corrcsponds to the square connectivity matrix. In this case, the
common element is beam four. Therefore, the addition of the second squarc connectivity
matrix to Equation 7.16.a will incorporate changes (o row and column four. This is carried
out by adding the second matrix to the larger matrix at element (4,4), viz.

01000 0 0

001000 0

000100 0
g =11 0001 0 o (7.16.1)
“ 1o 0000 10

0000001

0001000

thus giving the complete connectivity matrix.

7.3.2 Common Nodes

A common node connection, as shown in Figore 7.3, is a simple connection between
two structures involving multiple connections between beams. The corresponding operation
to achieve the goal connectivity matrix is given by

=&, ® e, (7.17)

ol =2
Yl gout Ultriangle1 Y liriangle2

where ® is used to denote an appropriate union of the two matrices and the connectivity
matrix corresponding to a triangle is given by




¥igure 7.3: Conunon Node Conncetion.

(7.18)

gl
Yitrigngle

0
=40
I

O D =
O = O

Again, examining Figure 7.3, the goal structute consists of six beam elements, thercfore,
using an identical technique as for the common beam connection a null 6 x 6 matrix is
generated. The two triangle connectivity matrices are then added to the null matrix in such a
manner that there are no connections between the two structures, viz.

,
s

OO O = o o

b (7.19)

i goal -

S C O = = -
_o o O O O
S @ = O o D
= O O 2

OO e o

The information regarding which node connection to join the structures may then be
added. The convention that the male conncctor corresponds to the /% column and the female
conneclor corresponds to the j' row will be used. Examining the goal structure, male
connectors one and four are connected fo female convectors three and six, thus resulting in

the additions to the connectivity matrix given by
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= R =N o= = (=)

-

8,-j goal - ¢ (720)

—_ O O == O O
QOO = O O
D D O DD

©C O ©C O OC =
QO OO =IO

where the highlighted elements correspond to the connections between the structures, thus
generating the goal connectivity matrix.

7.3.3 Connecting Beams

A structure which demands the connection of two smaller structures using a beam is
shown in Figure 7.4. The connectivity matrix, may again be generated using a null Ng, ..« X
Npeams Matrix, where Np, .., for this case is 7. The two triangles in the goal structure are
connected together using a single additional beam. The operation required to construct the
goal connectivity matrix is defined as

£, (7.21)

trianglel T\ beam Yltriangle2

v

=€
goal y

Figure 7.4: Connecting Beam.
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‘The two triangular structures may then be added to the null matrix in such a fashion that they

are unconnected. This resulfs in the matrix

\

OO O OO

il ot = (7.22)

OO0 T O LD -
B e ol ol 20—
o o O O O O O
- o s O O O O
oD = OO O O

o oo OO

where the highlighted areas represent the two triangle matrices, given in Equation 7.18.

The information regarding the positioning of the connecting beam is now required.
The [irsl structure must be connected to the second structure via two nodes by a joining
member. In essence, this type of connection is a common node connection petformed for two
nodes simultancously. In this case, the connecting beam is beam four with the male connector
of beam four joined to the female connector of beam three. In addition, the male connector of
beam five is connected to the female connector of beam four. This results in the additions to
the goal matrix shown by the highlighted areas, viz.

1000 0 0
0010000
1001000
el =10 000 100 (7.23)
0000010
00000 01
00001 00

Although the three mcthods described above are all capable of deriving the
connectivify matrix analytically, each method requires detailed information regarding the type
and specific node information of the connection. This can be a very time consuming process,
but may be automated using a graphical interface such as a CAD package. This allows the
devclepment, storage and copying of different structures which may be used in a final goal
structure. The package is then capuble of developing the complete connectivity matrix. Thus,
the complete design system, shown in Figure 7.5 will be capable of teking a developed CAD
model, and processing the complete connectivity matrix. Through Lyapunov's method this
will then result directly in actuator commands to the controlling vehicles for the assembly of
the structure.
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Figure 7.5: Design Integration.

As the size of the connectivily matrix grows, it becomes impractical to connect every
beam in a single cffart, Therefore, as discussed in Chapler 6, a method of serial
manufacturing is required. Within the conncetivity matrix, the serial assembly of a structure
will result in the activation of only a [raction of the {otal matrix. If the total potential of the
matrix is calculated, the potential will never converge since there will be inactive beam
clements, Two methods of circumventing this problem are examined within the following
examples and in Chapter 8. In the [ollowing examples, techniques are examined which group
the active components of a structure into specific areas of the total matrix which are dealt
with in a serial fashion. The second method, examined in Chapter 8 makes use of multiple
connectivity matrices and their interaction in which all the elements are aclive.

7.4 The Cuabe

When assembled, the cube forms a building block structure which may be used to
assemble more complex structures. Therefore, this structure will be examined in detail with
both a serial and parallel implementation. However, if the strocture is assembled using a
global potential, then the connectivity matrix musl be carefully designed.

7.4.1 The Connectivity Matrix

The basic cube structure may be assembled using twelve beams connected together.
Thus, the connectivity matrix will consist of a /2 x /2 matrix. However, the structure may
also be considered to be assembled from even simpler structures. If the cube is considered to
be assembled from two facing squares with four connecting beams joinring the corners, then
the connectivity matrix of the cube will take the form
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£ !}Squarel &ij Connecting [ﬁ]

g5 = [0] [0] €5 Connecting (7.24)
[0] [0] Siquum'eZ
where [0] is a 4 x 4 null matrix. Expressing the connectivity matrix in full gives

0 1 0 01 00 0 00 0 0
201 ¢6 01000 00O
0 001 001T00O0O0CO0OO0
T 00 00 O0CO0C1O0OO0OO0OO
00000000 I1O0 OO0
00 00O0CO0O0O0CO0O T OO0
“%““looooo0o00000 1 0f
66006000000 01
0 000CO0CO0O0COO0O 1O O
00000000 O0OCO0 1 C0
000 CCO0OCOO0OO0O0O 1
00000 00010 0 0

(7.25)

Thus, with the connectivity tmatrix, the global state vector and the global potential function,
the cube may be assembled. In the following examples, the cube shall be assembled in both a
paratlel and serial manner.

7.4.2 Parallel Cube

The parallel assembly method implements the connectivity matrix of the cube, given
in Equation 7.25 in a single effort using the global potential function

1 N@g‘m Npsanir N Beanis Vﬂm‘ 2
V=38 Seln-m)n-m)ra s 3 el -t v
) =l =l =1 =1, j#i (7.26)
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where A is again defined in Equation 6.13 and the final two terms representing the angular
constraints are given as

0.6)=(n/2,0_, +7/2) (7.27.2)

which forms two square sections in the y-z plane while the connecting structure is defined
using

(6..9,)=(0,0) (7.27.b)

Thus, assembly can proceed with the use of twelve controlling vehicles manoeuvring the
twelve beams into the final configuration.

Propagating the assembly of the beams, the results are shown in Figures 7.6. The
assembly of the beams into the cube is shown in Figure 7.6.a. As can be seen the beams
converge to the goal structure in approximately 800 s. This is also shown in Figure 7.6.b
where the behaviour of the potential function is plotted and the smooth asymptotic
convergence is clear. However, of more interest is the cost shown in Figure 7.6.c where the
Av cost of every beam element is shown. The maximum Av cost of any beam is 0.27 m.s"!
with an average value of approximately 0.2 m.s-!. This is a reasonable value, however, the
comparison between this value and a serial implementation of the cube will provide a clearer
measure of the Av.

N

y (m) sl

x (m)

Figure 7.6.a.i: Parallel Cube Assembly: Time =0 s.
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z(m)

Figure 7.6.a.ii: Parallel Cube Assembly: Time =255,

I'igure 7.6.a.iii: Parallel Cube Assembly: Time = 5{} s.
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Figure 7.6.a.v: Parallel Cube Assembly: Time =75 s,

Figure 7.6.a.v: Parallcl Cube Assembly: Time = 100 s.
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Tigure 7.6.a.vi: Parallel Cube Assembly: Time = 125 s.

y {m) 2 -2

Figure 7.6.a.vii: Parallel Cube Assembly: Time = 150 s.
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Figure 7.6.a.viii: Parallel Cube Assembly: Time = 500 s.
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Figure 7.6.b: Potential Functlion.
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Figure 7.6.c: Av Cost.

7.4.3 Sertal Cube

The serial case differs from the parallel case primarily in the number of vehicles
required to assemble the cube. For the serial cube, only four vehicles are required. However,
with the /2 x 12 connectivity matrix, it is clear that the cube must be assembled in stages.
Thus, dividing the connectivity matrix into three sections, the full matrix becomes

I i I
01001000000 0
001001000000
000100100000
1000.0001.0000
000000001000
Jooooooo0o001 00

%10 0000000001 0
00000000000 1
000000000100
000000000010
00000000000 1
D000000O0100O0

w

(7.28)

where section I corresponds to the construction of a square basc, section I is the addition of
the connecting beams while the remaining section III corresponds to the final square structure

required Lo coroplete the cube.

Implementing the potential function, the results for the successful assembly of the
cube are shown in Figures 7.7. The assembly of the beams into the cube is shown in Figure
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7.7.a. As can he seen, the beams do converge, in three phases, to the desircd cube structure.
However, the time of assembly is now 2800 s with the three phases completing in 200, 1000
and 2800 s respectively. This is shown in Figure 7.7.b where the potential function is plotted
and the three phascs are clear with each phase converging in a smooth and stable manner. The
Av cost, shown in Figure 7.7.¢c again demonstrates a slightly higher Av value than the parallel
case. The maximum Av cost of any beam is 0.4 m.s*! with an average value of 0.25 m.s*1.
However, the total cost of assembly is borne over four vehicles rather than twelve, thus the
average propellant requirement of every vehicle is higher than that of the parallei case.

y (IT)) -2 -2 X (m)

Fignre 7.7.a.: Scrial Cube Assembly: Time =0 s,
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Tignre 7.7.a.i: Serial Cube Assembly: Time = 25 s.

y (m) e -2

Figure 7.7.a.iii:

Serial Cube Assembly: Time = 50 s.
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y (m} -2 -2 X (m,

Tigure 7.7.a.vi; Serial Cube Assembly: Time = 500 s.

Y (m} ~2 -2 X (m)

Figure 7.7.a.vii; Serial Cube Asscinbly: Time = 750 s.
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Figure 7.7.a.viii: Scrial Cube Assembly: Time = 1000 s.

y (m)
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Tigure 7.7.a.x: Seriaf Cube Assembly: Time = 1500 s.
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Figure 7.7.a.x: Scrial Cube Assembly: Time = 2900 s,
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Figure 7.7.b: Potential Function.
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Figure 7.7.c: Av Cost.

7.4.4 Comparison of Serial and Parallel Cases

The contrast between the serial and parallel assembly of the cube highlights problems
and impracticalities associated with both methods. The principal consideration with this
analysis is that the resources required to assemble the cube are minimised. Therefore, the
topics which must be considered are as follows;

+ The total number of controlling vehicles required to assemble the structure.

» The Av cost of assembly.

» The dexterity and complexity of movement required of the controlling vehicles.

Considering the parallel case, although the assembly time was far less than that of the
serial case, the demands on the controlling vehicles were high with multiple operations being
carried out simultaneously. If the cube were to be assembled in parallel, the controlling
vehicles would find the task of connecting the structure simultaneously more complex than if
it were connected together one joint at a time. However the overall Av cost is considerably
lower per vehicle, especially in light of the higher Av being distributed over fewer vehicles
with the serial case. With the parallel case, the results here suggest that a smart beam rvather
than a distinct controlling vehicle is more practical, as will be discussed later.

In contrast, the serial case does lower the initial resources required for assembly,
especially in the area of sensors, communications and dexterity of the controlling vehicle. The
practicality of performing a series of simpie manoeuvres cannot be ignored. Howcever, the Av

cost of performing these manoeuvres is high. It is possible for the vehicle to perform as much
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as three or four operations requiring 2-4 m.s-! of Av. An additional problem which is inherent
within the serial method is that the potential function will approach the goal configuration in
an exponential manner. Therelore, a cut-off value of potential is introduced whereby the
potential never vanishes, but leaves a residual potential from every operation. This residual
may accumulate over a number of operations since the total potential is measured over the
whole connection set. Therefore, erors are introduced to the structure and later operations
may never reach the cut-ofl potential value.

7.5 Carbon 6{}

Following the successful assembly of the cube, it is now possible (o expand the size of
the connectivity matrix to include more beam eclements and larger structures. As an example
of a large assembly problem, the Carbon 60, or bucky ball structure shall now be considered.
The bucky ball structwre is a spherical structure consisting of 20 hexagons and 12 pentagons
connected together to form a faceted ball. A common example of such a structure is a
geodesic dome. Consisting of 90 beams connected together at G0 joint nodes, the ball
structure represents the most complex structure examined within this thesis. The derivation of
the connectivity matrix, and the large amount of information contained to construct the bucky
ball requites a re-examination of the connectivity matrix and the formation of a Connection
Set.

7.5.1 The Connectivity Matrix

For a slructure containing 30 beam elements, the connectivity matrix would require a
90 x 90 array. Thus, a matrix containing 8100 elements would be required. This is not
practical, especially when considering that only 90 of these elements would contain data and
the remainder would be null. Therefore, 2 more efficient approach is required which will store
the connections in an condensed form. One method of storing this information is (o consider
the co-ordinates of the conneclions within the matrix, i.e. the connectivity matrix of the

square, given in Equation 7.10, may be written as

Gopare =1(L4) (21) (32) {43)} (7.29)

where G is the connection set of the square and each co-ordinale represents the position of the

aclive joints within the connection matrix in the form (7 , ).

The bucky ball structurc is asscmbled from 20 hexagons and 12 pentagons connected
together at common beams. IHowever, the ball itsclf may be considered to consist of two cap
structures connecied together by a joining centre scction at common beams, as shown in
Figure 7.8, viz.
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i \ Bucky

The two cap sections may be assembled from a single pentagon connected to 5 hexagons at
common beams. Thus, the derivation of the connectivity matrix for the cap may be expressed

as

E; | =E,
Y1Cap v

® Sxe, (7.31)

Pentagon '\ Hexagon

where the connectivity matrix of the pentagon is given as

=<

| penta gon

(7.32)

- O O O O
O O O O -
S O O = O
S O = OO
O = O O O

and the angle constraints are defined as

_10L

Figure 7.8: Bucky Ball
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(6.6)= {9,-_1 +~2—573,0) (7.33)

The connectivity matrix of the hexagon is given as

J

010 0 0 0

0O 01 0 0 O

00 0100
ST ! (7.34)
Y| Hexagon 0O 0 0 0 1 0O

00 0 0 01

100 0 0 0

and the angle constraints are defined as

5.8)=(0.+2.7) 7.35)

where @ is a variable which constrains the elements to a single plane.

Deriving the connectivily matrix of the cap structure then results in a matrix
consisting 25 rows and columns with 625 entries. However, it is simpler to express the

connectivity matrix as a conncction set, viz.

Ls)y (21 (32) (43 (4]
61)  (72) (83  (94) (105)
=1(1L6) (127) (138) (149) (I1510)
166) (177 (188) (199) (20,10)
(2111) (2212) (2313) (24,14} (2515)]

G

-

(7.36)

Cup

Thus, with a connection set for the two cap sections, the centre section may be derived in a
similar fashion. The central section of the bucky ball may itscif be assembled from smaller
compaonents. Although the full structure consists of 10 pentagons and 10 hexagons connected
at common beams, it is possible to connect a single pentagon and hexagon together which
may then be tiled to form the complete structure. The connectivity matrix of the pentagon and

hexagon structure is derived [rom

~e, ® e (7.37)

Yl Section H Pentagon Y1 Hexagon
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where the two structures are joined at common beams. Thus, the connectivity matrix is given

as

1 00000GOCOO0
0010000GO0 0
0001000000
0000100000
0000010000
s 11 0 000 001 0D O
00000O0O0T1GO00
000000O0O0CT1O0
0000000001
0000010000

(7.38)

The complete centre section of the bucky ball may then be obtained by tiling the section
steucture into a ring. This may be expressed as

=[0xe (7.39)

Ficentre FlSection
which, when carried out, results in a connectivity matrix of 40 rows and columns. Expressing
this as a connection set gives

((Le) (2D (32) (43) (4 (65 (76
@7 (98 (109 (LD (1211} (1312) (14,13)
(1511) (1615) (1716) (1812) (19,18) (20,19) (21,20)
(22,18) (2322) (24,23) (2519) (2625) (27.26) (2827)
o _1(@925) (3029) (3130) (3226) (3332) (3433) (3534)
o T 1(36,32) (37,36} (38,37) (3933) (40,39) (4140) (42,41)
(43,39) (44,43) (4544) (46,40) (47,46) (4847) (49,48)
(50,46) (5150) (52,51) (5347) (54,53) (5554) (56,55)
(57,53) (58,57) (59.58) (60,54) (60,54) (62.61) (63,62)
[(64,60) (6564) (66,65) (67,61) (6810) (69,3) (70,69)

(7.40)
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The counectivity matrix of the complete bucky ball may then be calculated from Equation
7.30 and renumbering the beam elements. The resulting matrix may then be expressed by the
connection set given in Equation 7.41.

(s 2y (32 43 (54
60 (72) (83 (94 (103)
(1L10)  (126) (137) (148) (159)
(167) (178) (189) (1910} (20,6)
@2L16) (2217) (2318) (2419) (2520)
(2621) (27,22) (2823) (29.24) (30,25)
(3116) (3217) (3318) (34,19) (35.20)
(3626) (37,27) (3828) (39,29) (40,30)
o @ (@23 (4333) @34 @539)]
Pucky T (46,26)  (47,27) (48,28) (49,29) (50,30)
(5141) (52,42) (53,43) (54,44) (5545)
(56,45) (57.41) (58,42) (59,43) (60,44)
(6152) (62.53) (6354) (6435) (6551)
(66.65) (67,61) (68,62) (69,63) (70,64)
(7161) (72,62) (7363) (74,64) (75.65)
(76,66) (77.67) (7868) (79,69) (80,70)
(8172) (82,73) (8374) (84,75) (8571) (7.41)
(86,81) (87.82) (88,83) (89,84) (90,85)]

The connection angles of the structure need not be explicitly expressed. If the
structure is assembled from the 20 hexagons, then the relative positioning of each bewn
within the structure shall come from its position within the pentagon and hexagon. To
assemble a ninety beam structure using a parallel method would require the use of ninety
confrolling vehicles. This is an unfeasibly large mumber of vehicles, especially when
considering the sensor and communication requirements of a such a large group. However,
the assembly process may be simplified considerably if a serial construction is considered. In
fact, the construction of the connection set allows the structure to be asscmbied with a
minimum of five controlling vehicles.

7.5.2 Results

‘the assembly of the bucky ball structure is carried out using the connection set in
Equation 7.41 and the global potential function given in Equation 7.26. Propagating the
asseinbly of the beams, the results are shown in Figures 7.9. The convergence of the global
potential function is shown in Figure 7.9.a. As can be seen, the time of assembly is 3400 s
and occurs in 18 stages with the conneciion set being implemented in groups of 5. The
assembly of the structure is shown in the series of plots Figures 7.9.b. The plot shows the
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assembly of the structure at 500 s intervals. As can be seen, the assembly occurs in groups of
five, and the final structure is successfully completed.
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Figure 7.9.a: Potential Function.
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Figure 7.9.b.i: Bucky Ball Assembly: Time =0 s.
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Figure 7.9.b.ii: Bucky Ball Assembly: Time = 500 s.
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Figure 7.9.b.iii: Bucky Ball Assembly: Time = 1000 s.
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Figure 7.9.b.v: Bucky Rall Assciubly: Thine = 2000 s,
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Figure 7.9.b.vii: Bucky Ball Assembly: Time = 3000 s.
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Figure 7.9.b.viii: Bucky Ball Assembly: Time = 3250 s.

7.6 Variable Stroctures

Until this point, the application of the potential function method has been to on-orbit
assembly. In this section, the method shall again be used to assemble a structure. However,
foliowing completion of the structure, the method shall then be used to modify the properties
of the stzucture. For the two cases examined here, firstly, the geowmetry, and then the topology
of the structure shall be altered. For the first case, the orientation of specific beamns within the
structure shall be modified to alter the overall geometry of the structure, In the second cuse
the structure shall be reconfigured into a new topology.

One of the difficulties which would be encountered when assembling these structures
would be the extensive manocuvring required in proximity to the other beams and vehicles.
Although the repulsive potential would ensure separation, the task is madc all the morc
complex by the presence of the controlling vehicles. One method to case this problem would
be Lo eliminate the controlling vehicles. This may be done by creating a smart beamn, A smart
heam would include all the thrusters and sensors tequired to asscmble the siructure as an
integral part of the beam. Therefore, there would be no need for a separate controlling entity.
This would obviously be incfficient when consider structures that would be static for long
periods of time, however, for adaptive structures they would be ideally suited. This
application is considered in more depth in Chapter 9.

The application envisaged herc is that of the deployment of a supporting structure of a
large reflector. As the structure geometry changes, the attached reflector will also begin to
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deploy. In the second casc, a cube shall be formed which will then be altered (o form a twelve
sided polygon. The practical application of this would be the transformation of a structure
during a mission from a load bearing structure to a sensor array. Such reconfigurable
spacecraft may have interesting applications for future planetary missions. For example, the
load bearing structure may be required for Earth escape and orbit insertion burns. However,
once injected into orbit about the target body, the spacecraft may unfold into a new
configuration to maximise the exposed area and sensor attachment points for mapping and
remote sensing applications.

7.6.1 Variable Geometry: The Connectivity Matrix

The supporting structure of the reflector is identical to that of the cap structure given
in Equation 7.36. Constructed from a central pentagon base structure, the base is surrounded
by five hexagons which will support the reflector mesh. The orientation of the individual
beams, again as with the bucky ball comes from the relative positioning of the beams.
However, examining Figure 7.10, it can be seen that five radial elements arc formed within
the structure corresponding to beam elements 6 to 10. These elements are tixed in azimuth,
however, it becomes possible to vary the elevation of these becams and the remainder of the
structure shall follow as the structure moves to a new equilibrium. Tt is this property that will
allow the structure to be moved from a stowed, folded position to the deployed position. Such
stowed position may represent the cruise phase of an interplanetary mission, while the
deployed position represents on-orbit operations. Thus, if the elevation of the beams 6 to 10
are to be varied, then the angle potential for these elements becomes

[ o

V=Y (¢ ¢) (7.42)

2 =G

Fignre 7,10: Reflector Structure,




where the target elevation may be varied with fime, viz.

o= f(1) (7.43)
allowing the structure to be moved from the stowed to the deployed position.

7.6.2 Variable Geomelry: Resulls

The example is simulated using the global potential function defined in Equation
7.26 in conjunction with the connection set given in Equation 7.36 and the target orientations
given in Equation 7.43. Examining Figure 7.11.a, the potential function behaviour is shown
with a smooth convergence to the goal. However, if the plot is examined in closc detail, as
shown in Figure 7.11.b, the variation in the potential caused by the variation in the elevation
of the beams as the structure is deployed may be clearly seen. The variation in the controlled
angle may be clearly seen in Figure 7.11.c and, in addition, the variation in the beam
elevation as the structure is deployed. The goal elevation of the beams is determined by the
function

A
T+t

¢= (7.44)

where T is the initial deployment time and A is a constant.

Thus, constdering the potential function behaviour, the initial increase in potential foflowing
the deployment is caused by the initial rate of change in elevation swamping the giobal
potential function. As the rate of change of clevation decreases, then the potenttal function
may again start to converge. The formation of the structure, and its deployment, may be
clearly seen in Iigures 7.11.d. Considering the physical assembly of this structure, following
the initial assembly, no control vehicle intervention would be required. Howcver, a form of
simart joint would be required which would be capable of uniformly adjusting the beam
elevations. 'This will be discusscd further in Chapter 9.
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Figure 7.11.c: Controlled Angle,
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Figure 7.11.d.i: Deployment; Time =0 s.
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Figure 7.11.d.ii: Deployment: Time = S00 s.
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Figure 7.11.d.iiis Deployment: Time = 1000 s.
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Figave 7,11.d.iv: Deployment: Time = 2000 s.
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Figure 7,11.d.v: Deployment; Time = 3000 s,
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Figwre 7.11.d.vi: Deployment: Time = 4000 s,

Figure 7.11.d.vii: Deployment: Time = 5000 s.
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Figure 7.11.d.viii: Deployment: Time = 8000 s.

7.6.3 Variable Topology: The Connectivity Matrix

In this example, a set of smart beams will be used to reconfigure the topology of
structure, A cube will be considered as the tnitial structure and, using potential function
methods, will be reconfigured to a polygon. The connectivity matrix of the cube structure
from which the goal stracture will deploy has been previously defined in Equation 7.10.
However, the conncetivity matrix of the target struclure corrcsponds to a twelve sided
polygon with the connectivity matrix

100000000 0 0
001000000000
000100000000
000010000000
000001000000
, _Jooo0oo000100000
710 00000010000
000000001000
0000060000100
0000600000010
000000000001
10000000000 O

(7.45)

163




The angle potential of the cube has been previously defined in Section 7.4.2, however, the

target orientation of the polygon is defined as

@a)-(a.+Zo)

thus forming the polygon in the x-y plane.

7.0.4 Variable Topology: Results

This example is again simulated wsing the global potential function defined in

(7.40)

Equation 7.26 in conjunction with the connection set for the cube given in Equation 7.25,

the target orientations given in Equation 7,27, the connection set for the polygon given in
Equation 7.45 and the target orientation given in Equation 7.46. The potential lunction of
the example is shown in Figure 7.12.a. As can be seen, following convergence to the cube

structure, the change in connection set results in a marked increase in the potential function.

However, following convergence, the structure then reconverges to the second, polygon

structure. The physical reconliguration of the beams may be seen in Figure 7.12.b as the cube

is formed and then reconfigured.
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Figoxre 7.12.a: Potential Function.
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Figure 7.12.bd: Reconfigure: Time = 0 s.
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Figure 7.12.b.1i: Reconfigure; Time = 100 5,
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Figure 7.12.b.iii: Reconfigure: Time = 200 s.
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Figure 7.12,b.iv: Reconfigure: ‘1'ime = 300 s,

160




Yy (m) -2 - -2 X (m)

Figure 7.12.b.v: Reconfigure: Time =400 s.
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Figure 7.12.b,vi: Reconfigure: Time = 500 s.




(0}

y (m) 2 -2

Figure 7.12,b.vii: Reconfigure: Time = 600 s.
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Figure 7.12.b,viii: Reconfigure: Time = 1100 s.
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7.7 Conclusions

Examining the technique developed, it becomes apparent that for these structures, the
expansion of the basic matrices to a Global Connectivity matrix follows a simple set of rules.
However, il is the concept that these rules may be applicd at all which allows the possibility
of a broader, more complex construction strategy. Although the overall assembly process

may be complex, this method allows the problem to be analytically broken down into the

solution of a set of simpler sub-problems. Therefore, the development of 4 global potential N
function and a global connectivity maltrix may be considered to be a success. In addition, the '
caoncept of a smart joint and beam svstem lends the method (o a new class of smatt, and

adaptive structures. These reconfigurable structures may have interesting applications for
fature Earth orbiting and missions,
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Chapter Eight: Control Architecture

Subsume: Include in a rule, class, category

Oxford English Dictionary

8.1 Introduction

As previously discussed, a structure need not be asscimbled in a single effort, The
implementation of a planned sequence of tasks leads to reduced assembly times and can
simplify complex assembly problems. As with terrestrial construction, components can be
prefabricated and asscmbled on site in a pre-planned assembly sequence. As the size and
complexity of the siructure increases, Lthe required planning sequence also grows. Therefore, a
requirement exists for an overall strategy of construction. It is possible to pre-define a
construction strategy inherent within the design of the controller architecture. The strategy

considered here is that of a subsumption-type architecture.

8.2 Subsumption

Treating the complete group of assembly vehicles as a pepulation, a subsumptive-type
architecture becomes possible, If the population s divided into growups or teams capable of
working independently or in conjunction with the other teams, the capability and
effectiveness of the population is much greater than by treating the population as a single
entity, The relevance of this techmique to the assembly method developed here is that the
population is no longer dependent upon a single connectivity matrix. In fact, cach teamn may
have its own connectivity matrix, In physical terms, the teams will assemble sub-components
which will be assembled into the larger goal stracture, Thus, the use of tcams within the
vechicle population allows the advantage of parallel assembly to he combined with the
practicality of serial assembly.

The subsumption architectare requires a method of dividing the population of
assembly vehicles. In addition, the beam elements required to assemble a structure must be
managed, therefore, an overseer is required to manage and react to the whole environment.
This may be carried out with the use of a top level controller whose duties are to divide the
population into tearns, and in addition allocate resources. Future overseer controllers may
implement definite strategies. However, for the structures assembled here, the allocation of
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resources will be pre-defined. Defining this overseer coniroller as the Primary controller, the
assembly of sub-components and resources will be aliocated to a set of Secondary controllers,
thus resulting in a management tree similar to that shown in Figure 8.1, This management
scheme is best demonstrated by example.

PRIMARY
CONTROLLER i

e
' , '

SECONDARY | SECONDARY
CONTROLIER [ CONTROLLER

!

TERTIARY TERTIARY
CON'TROLLER

Tigure 8.1: Subsumption Architecture.

8.3 Case Study: Cube Assembly

The cube assemblies carried out in Section 7.4 demonstrated the practicalities of the
structure in both the parallel and serial case. Tlowever, as discussed, each method has its
advantages and disadvantages. If the subsumption approach is adopted, then the assembly
procedure may be broken into two components. The assembly sequence envisaged is shown
in Figare 8.2. The square base shown in the figure is assembled first. A second morc
complex table-like structure is then added to the base to form the cube.

8.3.1 Potential Function Definition

LExamining (he architecture required to assemble the cube, the primary controller is
required to task two secondary controllers to assemble the two separate components of the
cube. The secondary controller tasked with assembling the base unit utilises the potential
function given in Equation 7.26 with the following connection set

Gpue ={14) (21) (32) (43)} (8.1)

This is the well known conncction set associated with the assembly of a square. The primary
controlier will allocate to the assembly of the base, [our beam elements and four controlling
vehicies. On completion of the base, these four controlling vehicles will return to the general
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Figure 8.2: Cube Assembly.

population of vehicles for reassignment. In this case reassignment to the secondary controller
tasked with building the second table-like structure.

The secondary controller tasked with assembling the table-like structure again will
make use of the general potential function given in Fquation 7.26. The connection set
required to assemble the components is given by

(501) (602) (T03) (804)
G purension =4 (95)  (10,6)  (117)  (12,8) (8.2)
(912) (109) (11,10) (12,11)

where o; (1 =1 - 4) 1s the connection points of the secondary structure to the hase structure. In
this case, the values will be 1, 2, 3, 4. Thus these two connectivity scts complete the full
connectivity set as given in Section 7.4. The primary controller will assign to the secondary
controller eight beams and the cormresponding eight controlling vehicles. Thus the total
population required to assemble the cube structure is eight vehicles for a total number of
twelve beams.

8.3.2 Results

The two stages of assembly are apparent when examining the potential shown in
Figure 8.3.a. The initial stage may be seen to converge to the solution after approximately
500 seconds. The second stage is then activated by the primary controller which perturbs the
potential from the equilibrivun state. The potential again re-converges to the solution. Thus,
the cube structure is constiucted successfully. Therefore, it is possible to expand the
subsumption architecture to a more ambitious structure, such as load bearing truss.
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Figure 8.3.a: Polential Funclion.

Examining the series of plots shown in Figure 8.3.b, the assembly of thc cubce
proceeds as expected in two stages. It should be noted that an additional quadratic potential
has been added to the total potential to position the base unit at the origin. After 1,000 s, the
base square is complete and the second table structure assembly has began. The assembly of
the second structure, and thus the [inal goal structure is completed by 3,000 s. As can be seen,

the components arc successfully assembled into the goal structure,

z (m)

¥ (m) ~4 4

Figare 8.3.b.i: Cube Assembly: Time = 0 s.
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Figure 8.3.b.ii: Cube Assembly: Time = 125 5
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Figore 8.3.b.iji; Cube Assembly: Time = 250 s.

174




z {m}

Y (m) —4 -4 X (m}

Figure 8.3.b.iv: Cube Assembly: Time = 500 s.

y(m) -4 - x (M)

Figure 8.3.b.v: Cube Assembly: Time = 675 s.
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Tigure 8.3.b.vi: Cube Assembly: Time =750 s.

Figure 8.3.b.vii: Cube Assembly: Time = 1850 s.
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8.4 Case Study: Truss Assembly

The truss structure shown in Figure 8.4 represents one of the strongest, yet simplest
structures in common use. The truss consists of forty four beam elements rigidly connected to
form a larger load bearing structure. The assembly sequence for the truss is based upon the
cube assembled in Section 8.3. Following the assembly of the cube, the table-like structure
previously assembled as the second component of the cube may be used to extend the cube in
a given direction. Examining Figure 8.4, the breakdown of the assembly sequence is shown
with the initial base cube being extended.

Considering the architecture required to assemble the truss, initially a primary
controller is required which will devolve tasks to a secondary set of controllers. Examining
Figure 8.5, the architecture is shown with the primary controller controlling two secondary
controllers. The secondary controllers are responsible for the assembly of the cube base and
the extension structure. An advantage of the subsumption architecture is that the secondary
controller responsible for the assembly of the cube is identical in every respect to that of the
primary controller used in Section 8.3. Therefore it may be stated that any structure
previously assembled may be incorporated into another larger structure. Thus, it becomes
possible to build a library of validated building block structures which may be quickly and
easily assembled into larger, more practical structures.

Figure 8.4: Truss Structure.

TRUSS

'
' '

CUBE BASE EXTENSION

Figure 8.5: Truss Controller Architecture.
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8.4.1 Potential Function Definition

Considering Figure 8.5, the architecture required to assemble the truss requires two
secondary controllers. The first of the two secondary controllers is the cube controller
previously developed. This controller is tasked with extending the cabe structure and is very
similar to that of the extension unit controller used previously. The only difference is that the
commection site of the exlension structure must be updated with every extension unit added.
The total length of the truss structure envisaged here is five units. Therefore, [rom the cube,
the extension umnit controller will add four units with each unit connection set specified by
Equation 8.2 with an updated connection site. Again, considering the population size, the
total number ol vehicles required to assemble the truss is derived from the largest single task
required to assemble the structure. i.e. the extension unit requires eight vehicles for assembly,
therefore the total population required to assemble the truss structure is eight vehicles.

8.4.2 Results

The addition of the cx(ension structure and the displacement from equilibrium that
results may be clearly seen in the behaviour of the global potential, shown in Figure 8.6.a.
The potential is repeatedly displaced by the activation of the secondary conirollers, However,
every time a controller is activated and the potential displaced, Lyapunov's theorem
guarantees that the potential converges to the goal. Thus the final result is that of the goal
structure, The simulation of the assembly problem is shown in Figures 8.6.b. The assembly is
carried out by eight free-flying vehicles requiring a total time of 5250 s (87.5 minutes). From
the simulation, the assembly of the cube structure is clear. From the initial cube structure, the
addition of thc remaining extension structures can be seen with a finished goal structure of a
five bay truss.
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Figure 8.6.a: Polential Function.
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Figure 8.6.b.i: Truss Assembly: Time = (} 5.

y (m) -4

x {m)

Figure 8.6,b.ii: Truss Assembly: Time =500 s.
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Figure 8.6.b.iti: Truss Assembly: Time = 1000 s,
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Figure 8.6.b.iv: Truss Assembly: Time = 2000 s.
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Figure 8.6.b.v: Truss Assembly: Time = 2750 s.

Figure 8.6.b.vi: Truss Assembly: Time = 3750 s.
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Figure 8.6.b.vii: Tross Assembly: Time = 4750 s.

X (m)

Figure 8.6.b.viii; Truss Assembly: Time = 5295 s.
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8.5 Case Study: Truss Cube Assembly

The assembly of the cube structure and the subsequent assembly of the (russ has
demonstrated the use of a subsumption architecture in conjunction with a primary controller.
However, each of these strucltures has made use of a single team of assembly vehicles
assembling sub-components in a serial fashion. If a multi-team vebicle population is to be
demonstrated, a goal structure must be defined which requires such a population. Such a
structure is the truss-cube. A truss-cube, 18 a simple cube where each cdge is assembled not
from heams, but from the truss asscmbly. Thus, it is possible to have individual teams of
vehicles assembling individual trusses.

The use of multi-team populations and the subsequent simulation of asseibly lends
itself to a parlicular type of simulation. In this case study, cach team has been simulated by a
separatc processor in a cluster of workstations using the Paraliel Virtual Machine (PVM)
environmenl, Each teamn's assembly tasks is carried out as normal by an individual processor,
however, careful consideration must be given Lo the information flow between the processor
and thus the teams, Therefore, it is possible to have a team operating on two distinct levels.
The first level is that within the team, which demands communication between the vehicles
pertaining to position and velocity, which may be handled by a single processor. The second
level 1s communication belween the team controller and the primary controller regarding task
completion and resource allocation. This is dealt with by an oversser processor which

communicates with all the processors within the cluster.

Therefore, the use of a parallel computing enviromment has allowed a realistic
simulation of a total population of vehicles performing complex asscmbly problems. This
leads to the definition of sensor and information flow specifications between the teams and
individual team members. Currently, for the structure envisaged here, thc micro-
comynunications between team members shall be as normal, with full position and velocity
information being broadcast to other teamm members. IHowever, the macro-comumunications
between the teams themselves shall be limitcd to position information and times of
completion for individual tasks. One area not examined here is that of collisions between
vehicles on separate teams. However, this is easily circumvented by placing larger repulsive
potential spheres around the whole team and broadcasting that information to the remainder
of the population as opposed to the broadcasting of position information of each individual

team member.

8.5.1 Patential Function Development

The potential function used in this example is that given in Equation 7.26. As
previously described, this potential function will be used within every team to complete the
desired tasks. The connection sct of every team however, shall be determined by the team
primary controller and may differ from team to team. The truss-cube structure envisaged here

consists of three hundred and thirty six beam elements. The maximum number of teams
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employed shall he six, each consisting of eight members resulting in a total population of
forty-eight assembly vehicles. Thus the total number of processors required to simulate
assembly is also six. The maximum number of vehicles employed at any given time is forty-
cight, with a minimum of [our vehicles for the initial base assembly tasks.

‘The Tull subsumptive architecture is shown in Figure 8.7 with the primary truss-cube
coniroller vtilising the previously developed truss controllers. The only additional connection
set derived for this structure which has not been previously employed has been added to the
truss controller to allow two truss elements to join together to form a corner joint. This

connection sct consists of a truncated extension structure given by

Gey ={(L01) (202) (303) (404)} (8.3)

where o; (i=1 - 4), are the female connection points on the main strircture. Thus, using the

connecting element, the sides of the cube may be joined and the goal structure assembled.

TRUSS CUBE

l

TRUSS

¢ ¢

CUBE BASE EXTENSION

Figure 8.7: Truss Cube Controiler Architecture,

8.5.2 Resulis

'The simulation of the assembly problem is shown in Figure 8.8. The assembly was
carzied out in a total time of 267 minutes. From the simulation of the assembly, the growth of
the goal cube structure is clear. The initial base cube structure, the addition of the truss and
the growth of the stracture in three dimensions are clear.
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Figure 8.8.ii: Truss Cube Assembly: Time = 500 s,

185




186

Ty
i
7
o I n s
= = = S
B 5% v
s = ~ =
I °
g =
) B =
= = .
2 =)
0 = o m
s m :
w0 “ v

- < .
g =
.m @]
- %
2 . g
E £ E =
L = :
S Z
= =
= 0
P .

o
2 &
2P =

=

155
10 5
5
0

(w) z (w) z




e v
Il ;
INININAINN g AVAVAVAVAVA
><\.<»<><><>40 & »4\.4»455.40
VAL AJNAL 2 V/,.Y/AVAY,v/,Y/A VAR
0»4“?0 A 0 £ 00«»»4“».\ 7
waVA ' N/AWA" 2 A/ .
- <
i £
N A -
VAY/AY AVAVAYAY, E £
T oE
©
==
=

15
15+
10
5
0
-5

-5

(w) z (w) z

187

10
X (m)

5

1

15

10
I'russ Cube Assembly: Time = 2230 s.

y (m)

Figure 8.8.vi:



8.6 Informatics

The principal result of the architecture is the development of rclatively simple
controllers each capable of working co-operatively o assemble complex structures. The scope
of this architecture is, in principle, unlimited. Secondary controllers may be called upon in
many different scenarios. Also, the controller need only store the connectivity matrix
associated with the component it is tasked to assemble, Therefore, any supervising controller
need not see the detailed mechanism of assembly, but only requires notification of the
completion of a sub-structure.

It also important to note that the only difference in all the controilers presented here is
the connectivity matrix, the connection angles and the resources required for a sub-stiucture.
This information may bc storcd as scparate data. It therefore becomes practical to develop a
library of data sets associated with specific components, In addition, the formation of the
global potential function through a connectivity matrix allows a compact solution to complex
assembly problems. Therefore, from high level commands for the assembly of components,
the method will reduce this problem to individual actuator commands to manoeuvre the free-
flying assembly vehicles inte the correct configurations.

8.7 Conclusion

Technologically, the grealest requirements on the free-flying vehicles will be in the
area of communications and sensors. However, these requirements have been partially
addressed with the application of the sabsumptive type architecture. With the use of robot
teams, commuuicating only with other team members, the problem then reduces to managing
a group of vehicles, rather than the total vehicie population. The implication of applying a
subsumption architecture to the truss cube, and its effect on the vehicle requirements, is that
each vehicle must interact with a team numbering as much as eight, as opposed ta the total
population of forly eight.
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Chapter Nine: Conclusions

9,7 Review

Initially a review of on-orbit assembly and large space structures was provided in
Chapter 1. Then, the solution to the twa-body problem, and the examination of the relative
motion of two spacecraft provided the basis for a model of spacecraft operations on-orbit. The
resuiting motion and the optimal solution of the two impulse transfer rendezvous was then
considered in detail in Chapter 2. The development of the equations of relative motion and
the resulting linearisation provided the commonly used Clohessy-Wiltshire equations of
motion. Furthermore, the development of a closed form solution Lo these equations provided a
method of calculating the Av required to cxecute a two-impulse transfer between Lwo
arhitrary points. The development of the state transition matrix and the optimisation of the
transfer with respect to Av provided an optimal two-impulse transfer, Thus, any method
which manoeuvres a spacecralt between two points may be compared with this optimal value.
However, there are draw backs to the optimisation method. Principally the {lexibility of the
two-impulse transfer must be called into question when considering the possibility of obstacle
avoidance. i.e. the optimisation of a transfer would be compromised if a mid-course

correction were required.

An inherently flexible control method was examined in Chapter 3. The development
of the potential function method from Lyapunov's second method and the application to
spacecraft control problems was introduced. The potential function method provided a robust,
highly flexible control method which was examined for both attitude and translational control
problems. Both of these proved to be satisfactorily controlied by the use of a goal potential. In
addition, the application of a control method based on Lyapunov's theorem guaranteed
stability and, even for the complex attitude contro} problem, convergence to the solution was
ensured in a smooth manner. The application of the method to the translational problem
allowed a comparison between the potential function method and the optimal two impulse
transfer Av cost. Comparing case studies, it was found that the Av cost of transfer for the
potential function method is generally several times greater than the optimal case.

The potential {unction and the control inputs to the spacecraft may be derived
analytically within a self contained control algorithm. In addition, the method is both flexible
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and robust allowing path shaping to the goal. The transfer problem was re-examined in
Chapter 4 with the inclusion of obstacles in the environment. o introduce an obstacle into
the environment, a region of high potential was added to the goal potential function. Thus,
when the spacecraft closes on the obstacle, the potential will begin to increase and the
spacecraft will be autonomously deflected. Four methods of defining obstacle potentials were
examined. These are the Gaussian, power-law, flat-sided and superquadric obstacle
potentials. Of the four, only one method, the flat-sided obstacle potential was unsuccessfully
negotiated by the chase vehicle. The remaining three methods created obstacle potentials that,
when added to an goal potentiai, did not gencrate stable local minima.

The Gaussian obstacle potential offered the best all round performance with regard to
computational complexity and accuracy. The ability to exactly define the characteristic
dimension of (he obstacle and guarantee minimal incursions into that space in conjunction
with easily definable parameters made this function more applicable to general problems. The
power-law obstacle potential proved to be computationally efficient, however, the sizing of
the obstacle proved to be dependent on the index and difficulties were encountered in
determining the interface between the goal and obstacle potentials throughout the
circumference of the obstacle, The superquadric was by far the most complex of the obstaclc
potentials with parameters which were obtained from non-linear problems. However, the
performance was found to be excellent and very efficient in the use of space since the
potential function mapped itself onto the contours of the body. This method would be
applicable to complex geometries where there were significant restrictions on movement.

When considering an assembly contro] problem, the control philosophy must include
an examination of multi-body systems. In Chapter §, other forms of potential functions were
examined, and more specifically, those which are applied in molecular dynamics to simulate
atomic behaviour. The behaviour of large molecules was considered to provide insight to
such multi-body system dynamics. The primary consideration when examining these
melcculcs, is the relationship between the potential and stability of the molecule. Tt was found
that, as the potential decreases, the stability of the molecule increases as expected. A potential
function based on the bond length between atoms was developed which allowed a twelve
atom system to be simulated for convergence and stability. Thus, the application of potential
functions to multi-body systems proved to be feasible.

Using muiti-body potentials ard expanding them to include connection constraints has
demonstrated the feasibility of using potential functions to assemble specific structures. In
Chapter 6, a beam element was defined which allowed a potential function to be developed
from the state vectors of the beams. This assembly potential allowed both the parailel and
serial assembly of two structures, the triangle and square. The parallel assembly method,
which is the assembly of the structure in a single effort, and the serial method, which is the
assembly of the structure in stages, were both examined. The advantages and disadvantages of
each method were examined and principally, the parallel method was found to be the lesser of
the two with regards to the computational demands. However, the demands on the controlling
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vehicles rapidly increased with the complexity of the structure. The serial method was also
successful with the use of virtual beams and phased application potentials. However, the
computational complexity was higher than the parallel mcthod. In contrast, the vehicle

demands were uniform throughout the asscmbly which would be relevant to larger structures.

In addition to the development of a goal petential function, which allowed the
assembly of specific structures, a repulsive potential was developed to maintain scparation of
the beams and prevent collisions throughout the asscmbly process. However, a contradiction
emerged in that the beams must eventually be connected together and in addition separation
must be maintained. Thercfore, the repulsive potential was expanded to include the scaling of
the repulsive potential so that separation was maintained until the beams were in the correct
configuration. Once the beams were in the correct configuration, the repulsive potential
would vanish, thus allowing convergence to the goal structure.

The development of assembly potential functions and their application has proved
successful to the assembly of the triangle and squarc. In Chapter 7, the state vectors of the
individual beams were included within a global state vector. This global state veetor allowed
a global potential function capable of assembling any predetermined structure. Inherent
within the global potential function is the information regarding the form of the goal
structure. This information takes the form of a connectivity matrix. The devclopment and
manipulation of the connectivity matrix was examined. In particular, the manipulation ol the
matrix during assembly for adaptive structurcs and deployables. In addition, the use of
conneclivity matrices has allowed complex problems to be broken down by partitioning
elements of the connectivity maltix until the resources were available (o complete assembly.
Thus, assembly strategies become possible and the emphasis has altered from the
development of the potential function to that of the application of the connectivity matrix.

Finally, the use of construction strategics allowed the assembly of the structure in a
variely of ways, Howcver, the principal objective of these strategies is to complete the goal
structure using the minimum number of control vehicles. The application of a subsumptive
type architecture was examined in Chapter 8. The subsumptive architecture allows the
assembly of large, complex structures by devolving the asscmbly of sub-components to sub-
conlrollers. The application of sub-controllers has allowed the development of robot teams,
communicating only with olher team members. Thercfore, the communication and sensor
problems reduce to the management of a team of vehicles, rather than the total vehicle
population, thus simplifying the vehicle design. The delegation of sub-tasks allows the
method to multi-task and this was rcflected in the parallelisation of the potential function
controller so that six independent tasks may be carried out simultaneously.

9.2 Mission Statement

The development of the potential function and the objectives of this thesis were
developed and refined in Chapter 1 to produce the mission statement;
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"To provide an on-orbit assembly method which will incorporate o practical
and robust algorithm for individual vehicle conirol within a larger co-
operative group. The emphasis shall be on providing a practical application of
the control method which will allow further development to a prototype

article.’

In every respect, the development of the potential function has met the objectives within the

mission statement, more specifically;

o The computational elements of the control algorithm have improved with
development to produce an efficient, flexible control method which may be applied
using current computing capabilities,

e The development of test cases to assess the control algorithin performance has
allowed application to new and novel applications such as reconfigurable structures
and integrated design.

» The use of the global potential function and the connectivity matrix has allowed the
application of strategies to simplify the assembly process and vehicle design.

Considering the overall practicality of the method, current results are promising. Bspecially (o
the application of the method to areas such as variable topology structures and integrated
design.

In Chapter 7, the application of smart joints and beams was shown to be highly
successtul. This technique has proven to be an interesting characteristic of the global potential
function and in particular the connectivity matrix. It is believed that this technique offers a
capability beyond other spacecraft deployables and structures. Technologically, much work
must be carried out in the physical development of the beams and joints and also in areas such
as scnsor technologies, Some applications of this type of structure have been discussed.
However, in areas such as large reflector deployment the use of variable topology structures
could significantly reduce the launch mass of the spacecraft as the duplication of components
is not required. For example, during the launch and orbit insertion phases of a mission, the
spacecralt must withstand large loads. Therefore, the spacecraft structure must be designed to
that maximum launch load. Howcver, this is only a small fraction of the total mission
duration. Variable topology structures would allow spacecraft design to be more efficient as
the spacecraft structure would change to meet the mission demands. For cxampie, a stifl, load

beuring truss structure could reconfigure itself into a large reflector on-othit.
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Another element of the potential function method which offers distinct advantages
over conventional structures is the integrated design capability. With the development of a
accurate simulation in conjunction with an on-orbit assembly package, the design of the
structure may be carried out on computer using a CAD package. The potential function
method would then simulate the design as it assembled to the goal structure. If the goal
structure is acceptable, the connectivity matrix may then be supplied directly to the on-orbit
robot assembly team, Thus, the prototyping and assembly of components would proceed at an
unprecedented rate, and the design stage of a structure may be minimised.

Thus, in conclusion, this thesis has provided an examination of the application of
potential function methods to on-orbit assembly. Although the method has proven to be
promising, further study and research is required.

9.4 Recommendations

Any future development of the potential function assembly method can be divided
into near term development of the assembly simulation, and the long term development to a
physical prototype. With specific regards to the assembly simulation, near term improvements
may be made in the areas of];

« Incorporation of detailed physical properties of the structure: This inciudes the
development of joint and elastic beam properties. This would allow the evaluation
of strategies to develop physical properties, such as to maximise the load bearing
capability of a structure, at the top level of the subsumptive architecture.

» Incorporation of a detailed robot vehicle model: One possibility is te incorporate
developed models of the Ranger vehicle. Thus, the modelling of the assembly
process would be sufficiently accurate to allow the design of a physical prototype.
In addition, models of internal robot systems such as thrusters and sensors will
allow accurate modelling of physical translations and rotations of the vehicle thus
allowing the development of strategics to minintise the fuel consumption and thus
maximise Lhe efficiency of the vehicle operation,

« Development of a smart beam model: As discussed previously, the smart beam
and joint concept could prove to have interesting applications in spacecraft
operations. The reasons for developing an accurate vehicle model are still valid for
smart beams.

» Informatics: Although the algorithms developed for the calculation of the
potential function were successfully parallelised into teams within the subsumption
architecture, the parallelisation of individual controlling vehicles is required. Thus,
accurate modelling of the information flow and the sensor and communication
requirements of the controlling vehicles may be developed.
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In conclusion, the development of the potential function method and it's application to on-
orbit assembly has proven o be promising. Although much work would be required to
develop a physical prototype, there is significant near-term simulation tasks to be considered

which will lcad to this ultimate goal.
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