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Abstract

Current spacecraft mission analysis has highlighted a requirement for the assembly of 
large structures in Earth Orbit. This thesis investigates an autonomous method of assembly 
for such large stmctures. The scheme envisaged is based on Lyapunov’s method which is 
extended to potential function theory. The method forms an analytical solution to the 
assembly problem by generating high level control commands which are then devolved to 
individual actuator commands for the assembly vehicles. The application of the method to 
general assembly problems has allowed the development of a generic global potential 
function. The application of the global potential function has required the use of a 
connectivity matrix which contains the information required to assemble the goal structure. 
Thus, a structure may be modified by altering only the characteristics of the connectivity 
matrix. The generic assembly method is then applied using a subsumptive type architecture 
which allows the assembly controller to delegate sub-components of the total structure to 
secondary controllers. Therefore, the method may then be utilised to construct complex 
structures, which, when linked to the use of smart components and joints allows the assembly 
of adaptive structures. These adaptive and variable topology structures which may change 
their functionality with time may prove useful for future mission applications.
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■‘7,Chapter One: Introduction to On-Orbit Assembly

For I  dipt into the future, far as human eye could see,
Saw the vision of the world, and all the wonder that would be;

“Locksley Hall” Alfred, Lord Tennyson

1.1 Introduction

Currently, a continuous human presence in space is maintained solely by the 
continued operation of space station Mir. However, the next few years will see this capability 
expanded with the construction of International Space Station Alpha (ISSA). Although a 
large structure. International Space Station Alpha consists mostly of pre-fabricated units that 
will be assembled on-orbit. The proposed Extra-Vehicular Activity (EVA) required of the 
astronaut team for both assembly and maintenance is far beyond current experience. 
However, the use of telerobotics will simplify the assembly of International Space Station 
Alpha. The shuttle will make use of its own robot arm, while a station based manipulator will 
assist further in the assembly process. Currently, the development of free-flying manipulators 
is led by the Ranger^ project at the University of Maryland Space Systems Laboratory. The 
Ranger vehicle, shown in Figure 1.1, is scheduled to fly as a shuttle experiment in 1998 and 
will provide the first step in developing free-flying assembly vehicles.

This thesis will propose an autonomous assembly method applicable to general on- 
orbit assembly problems. The paiticular assembly problem considered here consists of 
assembling a series of uniform slender beams into regular, periodic stmctures. Free-flying 
Ranger-type vehicles are assumed to be used in the assembly process. The beams are 
envisaged as being fastened using a standardised rigid joint which is easily assembled but 
provides a rigid connection. The study is presented firstly with an examination of background 
control methods, consisting of Chapters 2 to 4. The extension of these methods to a control 
algorithm capable of assembling truss structures is discussed in Chapters 5 to 7. The general 
application of the control algorithm is examined in Chapter 8 with a discussion of the control 
architecture. Finally, conclusions and recommendations are drawn in Chapter 9.



Figure 1.1; Ranger Flight Vehicle (Source: Ref. 1).

1.2 A Brief History of On-Orbit Assembly

The simplest form of on-orbit assembly which is carried out on a routine basis is that 
of rendezvous and docking. The recent Shuttle missions to rendezvous and dock with the 
Russian Space Station Mir are a precursor to the more complex task of rendezvous and 
docking with International Space Station Alpha. If the International Space Station Alpha is 
successful, it is clear that the volume and complexity of operations being carried out in low 
Earth orbit will greatly increase. The following sections describe the history of on-orbit 
assembly and attempt to highlight the critical development paths.

1.2.1 On-Orbit Assembly: 1957-1968

In the late 1950s, the Soviet Union focused world attention on space. The launch of 
Sputnik^A in October 1957 would start the short space race which culminated with US Apollo 
astronaut Dr. Neil Armstrong stepping onto the surface of the moon in July 1969. However, 
the technologies which were demonstrated and applied in placing Dr. Armstrong onto the 
lunar surface also have applications in on-orbit assembly. The assembly of the Command and 
Service Module (GSM) and the Lunar Excursion Module (LEM) into a single vehicle during 
transit to lunar orbit and the subsequent ascent to rendezvous and dock from the Lunar 
surface were manually piloted manoeuvres which corresponded to two of the most critical 
single point failures of the whole mission.

The expertise required of the Apollo missions, and the failed Soviet lunar attempts 
had been in development from as early as 1962. Colonel Yuri Gagarin's launch into low Earth 
orbit on April 1 2 ^̂  aboard Vostok 1 was the first human flight in Earth orbit. However, 
as early as August lE^ 1962 the Russian space programme attempted a rendezvous between 
the spacecraft Vostok 3 and Vostok 4. Ultimately, these missions were not successful with a 
closest approach between the craft of 6.5 km. A second attempt was made with the Vostok 5



and 6 missions. Again, these missions were not successful, with a closest approach of 5 km 
being made. Another noteworthy point of the Vostok 6 mission is that the cosmonaut was 
Valentina V. Tereskhova, the first woman in space. Political infighting and a lack of direction 
within the Soviet Union resulted in a failure to capitalise on this early lead. Although the 
Voshkod 1 mission of October 1964 and the Voshkod 2 missions would be successful in 
demonstrating the first space-walk and multi-crew missions, the next manned mission would 
not be until the unsuccessful Soyuz I mission of 1967 in which Vladimir Komarov lost his 
life.

The American preparations for the proposed Apollo lunar missions would proceed 
with the successful Mercury program. Following on, the larger and more complex Gemini 
program began to examine on-orbit operations. The Gemini III mission of March 1965 would 
be the first orbit correction conducted by a crew. The Gemini VI mission in December of that 
year would go a step further and successfully manoeuvre to within one foot of the Gemini VII 
spacecraft. However, the first on-orbit assembly was to be carried out by the Gemini VIIF^^ 
crew in March 1966 when the spacecraft rendezvoused and docked with a passive Agena 
target vehicle, shown in Figure 1.2. Coincidentally, the mission commander of Gemini VIII 
was Dr. Neil Armstrong. The remainder of the Gemini flights consolidated this technique 
with four additional dockings over the six months before the first manned Apollo missions 
commenced in October 1968. These missions were all manually piloted by the crew. 
However, the process of automated docking was later pioneered by the Soviet Union using 
the Soyuz and Progress spacecraft.

5? -S îC

Figure 1.2: Agena Vehicle, viewed from Gemini VIII (Source: NASA).



■il
1.2.2 On-Orbit Assembly: 1968-1986

The completion of the Apollo lunar program in December 1972 marked a change of 
emphasis in both the American and Soviet programs. The launch of the Soviet Salyut I  space 
station in April 1971 and the American Sky lab station in May 1973 marked the 
commencement of a continuing human space presence which would last until the present day. 
Although the American Skylab program would be short lived, lasting until early in 1974, the 
Soviet program would continue to gain momentum with a series of five Salyut stations 
throughout the 1970s. In addition, the Soyuz program and its derivative Progress feriy 
pioneered the use of automated rendezvous and docking. Although little is known of the 
technical specifications of these docking methods, the Igla rendezvous and docking system 
flew on the unmanned Progress vehicle to later Salyut stations as early as 1978. This docking 
system was initially developed for use onboard the Salyut 6 and 7 stations. These two 
stations, launched in September 1977 and April 1982 respectively, represented the second 
generation of Soviet space station. However, although Salyut 7 was in operation until early in 
1986, these designs were eventually superseded by the third generation Mir space station.

Although the American space program moved away from the space station concept in 
the eai'ly 1970s, the flight of the shuttle Columbia in April 1981 heralded the possibility of an 
expansion of space-based operations. Following the Challenger disaster of Januaiy 1986, that 
expansion has not yet been fulfilled. However, prior to the disaster, experiments such as the 
ACCESS /  EASE mission provided large amounts of data on the possibility of using astronaut 
construction teams to assemble large stmctures on orbit. These experiments, flown on the 
second flight of the shuttle Atlantis on mission 61B in November 1985, consisted of 
assembling two truss structures using a variety of different assembly techniques.

The 'Assembly Concept for Construction of Space Structures' {ACCESS)^ mission, 
Figure 1.3, was principally initiated as a structural mechanics experiment. The objective was 
to manufacture a 10-bay, 30 m long truss consisting of 96 individual beams and 30 joint 
clusters. The construction team of two astronauts were held in foot restraints while the tmss 
was rotated and translated to present proper work positions. The MIT lead 'Experimental 
Assembly of Structures in EVA' {EASEfl mission, Figure 1.4, was intended as an 
examination of astronaut performance during assembly®. The experiment grew from the 
'Structural Assembly Demonstration Experiment' (SADEflX^ and involved two astronauts in 
the shuttle payload bay constructing a single tetrahedral structure. The astronauts worked with 
a 'low man', who used foot restraints on the floor of the payload bay, and a 'high man' who 
worked without resti'aints at the opposite end of the beam.
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Figure 1.3: ACCESS Structure (Source: NASA),

I

Figure 1.4: EASE Structure (Source: NASA).



Although both of these experiments were successful, and the structures were fully 
assembled by the astronaut team, the infrastructure required to perform even a simple 
assembly task prompted further research into the field of automated assembly. The MIT team, 
led by Prof. David Akin, began to examine the general field of robotics and more specifically, 
telerobotics for assembling EASE type structures. Following a switch to the Neutral Buoyancy 
Facility at the University of Maryland, Prof. Akin and his team began work on a series of 
robotic vehicles and structures which would eventually lead to the Ranger telerobotic vehicle. 
Ranger is due to fly on the Shuttle late in 1999 and will be discussed in more detail later.

1.2.3 On-Orbit Assembly: 1986-1997

The Mir station was launched in February 1986, and represented the first large space 
structure which would require assembly on-orbit. The main core of the Mir station was an 
upgraded Salyut design, however, the following year saw the addition of the Kvant module to 
the station. The Kvant module was launched on March 1987 and provided an additional 40 
m  ̂ of working space to the station. The station continued to grow with the addition of the 
Kvant-2, Kristall, Spektr and Priroda modules. In addition, in 1995 a docking adapter was 
added to allow the American space shuttle to use the Mir facilities. The final internal usable 
volume of the station is now approaching 400 m .̂

The Mir station is the first space station which has been continually manned since its 
launch. The station has been assembled using a combination of automatic docking techniques 
and cosmonaut assistance. A significant lesson learned from these additions to the station was 
that the assembly of cables and plumbing, both internally and externally formed a significant 
proportion of the assembly procedure. With the launch of the space station in 1986, an 
upgraded Soyuz TM manned spacecraft was introduced. Also, in 1989, the Progress M ferry 
began to service Mir. The significance of these spacecraft is that they are both capable of 
automatic rendezvous and docking using the Kurs system. Again, little is known of the 
technical specification of this system. However, it is clear that the system will be installed on 
the Russian components of International Space Station Alpha. The collision between a 
Progress TM feriy and the Spektr module arising from a failed docking procedure in July 
1997 has cast doubt on the future of Mir. However, the long duration stays of the cosmonauts 
and the resulting Extra Vehicular Activity (EVA) has provided experience of on-orbit 
operations which will be vital for the assembly of International Space Station Alpha, Figure 
1.5.

NASA's commitment to the ACCESS /  EASE missions highlighted their desire to 
develop the capability to manufacture structures in space. As a consequence, the Automated 
Structures Assembly Laboratory (ASEL) was initiated at the NASA Langley Reseai'ch Centre 
in the late 1980s. Initially, their work focused on two main areas of research. Firstly, 
telerobotic assembly methods and vehicles, and secondly, the development of a Space Crane 
concept, which is designed to provide a custom construction facility for on-orbit assembly.



Figure 1.5; International Space Station Alpha (Source: NASA).

One of the structures that was identified as being required in the near term was that of large 
scale precision reflectors*!.

ASEL began its studies in telerobotics and automation by examining the supporting 
structures required to assemble a large reflector on-orbit. Initially traditional 'pick and place' 
techniques were applied. This is a technique very similar to that used in terrestrial production 
lines where robot manipulators pick an object from a predetermined location and place it in 
another location. This is a fairly rudimentary approach, however, the objectives of the study 
were principally to develop a proof of concept system, and not to develop new technology. 
Thus the development needs were formalised as;

Practical experience of automated systems. 

Software capability for robust systems. 

Proven telerobotic interfaces.

To gain experience, ASEL began experiments using a robot manipulator to construct a 
honeycomb truss structure consisting of 102 beams of 2 m length. Incorporated within the 
experiment were error terms in positioning and velocity which were overseen by a human 
operator capable of telerobotically recovering the manipulator from any errors. Results from 
the experiment indicated that the system was indeed feasible. In addition, the assembly time 
per beam was approximately five minutes, including the time spent overcoming errors. This 
has prompted further research into the assembly of truss structures where experiments have 
incorporated elements such as machine vision*^, structure validation*^, advanced software 
hierarchies*"* including expert systems*^ and Artificial Intelligence planning architectures*^.



The second area of research was aimed at the development of on-orbit hardware 
capable of providing the infrastructure to apply automated construction techniques. The 
concept that has been developed to fulfill this mission is the Space Crane. The crane is 
assembled from truss elements very similar to that of the ACCESS mission which themselves 
are manufactured from uniform beams. Various joints have been examined including 
articulated joints, rotary joints and high stiffness joints to provide a vibration damping 
cap ability *'7. Much of the analysis has been focused out on the structural properties*^d9 of the 
Space Crane. The process of assembling the Space Crane has been largely assumed to be 
automated with the experience being provided by the reflector assembly studies.

1.2.4 On-Orbit Assembly: 1997-

Following the collapse of the Soviet Union, NASA and the Russian Space Agency 
(RSA) began a series of experiments which will lead to the construction of International 
Space Station Alpha. Following a formal agreement in 1993^^ a cash-strapped RSA has 
allowed NASA use of the Mir station leading to a series of shuttle missions by the Atlantis 
and Discovery orbiters docking with Mir. The use of Mir has allowed NASA and RSA 
astronaut / cosmonaut teams to gain experience of joint on-orbit operations with the specific 
aim of proving technologies for the launch and assembly of International Space Station Alpha 
components, the first of which is due to be launched in 1998.

The International Space Station Alpha programme grew from a series of proposals for 
the American space station Freedom?'^ and is itself the proof of concept for Large Scale 
Structures {LSS) being assembled on-orbit. As the cost of Freedom grew, NASA looked to 
international partners to assist in financing the station. Currently, the space station will 
provide working and living quarters for scientists from Japan, Europe, Canada, the USA and 
Russia. The size and scope of the station is far beyond any previous platform. With a total 
length of 108 m and a breadth of 74 m, the overall station size is 2.5 times larger than Mir'^ .̂ 
Thus, the station must be assembled on orbit from forty separate launches, which remains the 
largest engineering challenge of the programme^^. The main modules of the station have been 
manufactured in both the USA and Russia. These components will be assembled for the first 
time on-orbit using a combination of automatic docking procedures (the Russians will 
assemble the initial components using the Kurs docking system), shuttle borne robotic arms 
and teams of Astronauts / Cosmonauts. The EVA requirement for the station is for 1,000 
hours over a period of five years. This requirement is larger than the current total EVA 
experience of all previous space programmes.

The sections of the station may be categorised as the pressurised modules, solai' panels 
and radiators, the main station truss and external scientific payload. The pressurised modules 
will all be assembled as discussed previously, in addition, the solai’ panels and reflectors will 
all be deployed automatically with assistance from robotic arms, as will the external scientific 
payload^"*. However, the main truss of the station, onto which the remainder of the station 
will be attached consists of a framework of beam elements^s. As a consequence of the



ACCESS / EASE experiments, the Hubble refurbishing missions and experience of operations 
on Mir, the task of assembling the truss on-orbit and installing wiring looms and plumbing 
connectors was thought to be a task beyond the on-orbit assembly experience currently 
available. Therefore, the decision has been taken by NASA and the international partners to 
assemble the framework and install the necessary equipment on the ground to ease the 
workload of the astronauts.

1.2.5 Future Studies

If current population growth continues, conservative estimates place the total world 
population in excess of 7 billion people by the year 2020. As a consequence, many studies 
have examined the need for clean power to supply such a large global population. One of the 
options examined has been the Solar Power Satellite {SPS) concept^^. Originally examined in 
the late 1960s, a patent for an orbiting solar farm was filed in 1968 by Peter Glaser '̂ .̂ The 
original concepts examined by NASA and other organisations involved massive projects. 
Some studies have estimated an overall cost of a Geostationary SPS approaching $300 billion 
in 1997 dollars^^. This relates to a 5-10 gigawatt output from a 5x10 km satellite. This 
translates into an installed cost of 5 $.kW*. Some estimates in manpower have identified a 
support requirement of over 600 people for a 90 day tour.

Studies carried out in 1995 have presented a much more modest structure^^. The more 
recent studies have been based on a modulai* design called the Sun Tower system. The cost of 
Sun Tower is much lower at $10-$ 15 billion in 1997 dollars delivering a power output of 250 
megawatts in Medium Earth Orbit (MEG). Examining the baseline costs of solar panels.
typical costs of photo-voltaic arrays are in the region 1-2 $.kW'^ This results in an installed 
cost approaching 5 $.kW‘*. This can be compared with 1.25 $.kW'^ for a conventional power 
plant. However, in Earth orbit, the energy output from the Sun results in a potential maximum 
output of 1.365 kW.m'2 from a solar power satellite. Therefore, in the long term, the SPS 
concept may prove commercially attractive. Other applications for advanced modulai* solai* 
power concepts are in areas such as low thrust electric propulsion. This type of propulsion 
would allow faster Mars missions and missions to the outer planets. However, the cost of 
developing the technology is dwaifed when compared to the cost of launch to Low Earth 
Orbit (LEO).

The cost to LEO is critical to many proposed missions. Early studies of the 
International Space Station in the form of the American Freedom station involved provision 
for the assembly of large telescopes and orbital construction facilities for the assembly of 
large mass vehicles such as Lunar and Mars transfer vehicles. As the cost of the station grew, 
the cost of marginal missions such as these became untenable. Thus, most of these facilities 
did not make the transition to International Space Station Alpha, However, as the launch cost 
to LEO is reduced, these missions may become more attractive and large scale construction 
facilities will be required for on-orbit assembly.
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1.3 State of the Art: Structures

Many large spacecraft are limited by the volume of the launch vehicle nose fairing. 
Therefore, if there is a requirement for a large volume spacecraft, a method of construction is 
required which will allow a transition to the operational configuration on-orbit. Currently, the 
structures which allow such transitions may be divided into three distinct classes: erectables, 
déployables, and inflatables. Each of these structures has associated advantages and 
disadvantages. The following sections shall explore these in detail.

1.3.1 Erectables

An erectable structure is simply that. This class of structure requires assembly, 
whether by astronaut EVA or robotic manipulators in-situ. Experience using neutral buoyancy 
tank simulations has shown that unaided construction techniques are achievable by 
astronauts. However, these techniques prove to be both demanding and fatiguing for the 
astronauts32. Therefore, various techniques have been developed which will assist astronauts 
in the assembly of structures on-orbit. Principally, the type of structures envisaged here are 
that of large load bearing truss structures which themselves are assembled from individual 
beam elements ranging from 2 m to 6 m in length. To assemble this type of structure, studies 
and tests have been carried out using a Mobile Work Station (MWS) and Swing Aim Beam
Erector (5ABEjR)33. 34.

The MWS is a mechanical device consisting of mobile foot restraints and a rail which 
translates the whole mechanism along the partly assembled truss. The astronauts aie held in 
place by the foot restraints which may themselves be adjusted. However, the prescribed 
envelope of movement is rather limited. Thus, the astronaut is relieved of some of the 
fatiguing translation and, in addition, is provided with a mechanism to react against the forces 
and moments incurred during assembly. Working co-operatively, two astronauts were found 
to be very efficient in building truss elements consisting of 6 m struts. Average assembly 
times of approximately 40 second / beam were achieved in neutral buoyancy simulation^.

The SABER device operates in a similar fashion to that of the MWS. However, a 
fundamental difference is that the astronaut is held in position while the truss element is 
rotated and translated to present the astronaut with the next work site. Again, this was found 
to be very efficient with average assembly times of 30 second / beam for a beam length of 
2m. Both of these studies culminated in the ACCESS mission. The ACCESS mission made 
use of a SABER type assembly mechanism where the astronauts were restrained in the shuttle 
payload bay while a 96 beam, 30 m long element was assembled. The mission was highly 
successful with an average assembly time of 16 second / beam for a beam length of 1 m^.

An exponent of erectable structures is Anthony Coppa3S, In a series of papers and 
patents, Coppa has designed a system of interlocking beams which assemble to form a 
Coppatruss. A  Coppatruss is a lineai* truss consisting of close packed tetrahedrons. The truss 
structure and joint mechanisms are very similar to other proposals, however the assembly
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method uses a robotic assembler which is self-contained. The assembler utilises a jig structure 
which will assemble triangles which are then connected to form the truss. The beams which 
form the triangles are supplied from a cartridge module. Thus, the robot assembler would be 
supplied with raw materials which are loaded from a cartridge and a Coppatruss would 
automatically result. The need for EVA or free-flying assemblers would therefore be 
eliminated.

Studies carried out in the late 1980s^ have highlighted a number of technology needs 
which are required to allow feasible structures to be assembled on-orbit at a reasonable cost. 
These are;

• Demonstration of rapid EVA assembly techniques.

• Development and demonstration of automated assembly techniques.

• Development and demonstration of a large stiff space crane.

• Validated hardware and assembly design costing algorithms.

In addition, the following aieas have been identified as critical issues for large spacecraft 
operations36;

Validated dynamic analysis.

Validated accuracy prediction methods.

Space qualified passive damping concepts. 

Demonstrated active control concepts.

Demonstrated adaptive stmctures.

Demonstrated structural integrity monitoring concepts. 

Validated design costing algorithms.

The erectable structure is recognised as a principal technology for the assembly and servicing 
of large spacecraft in the future. However, at this moment in time, the emphasis has altered 
from astronaut focused operations to remote teleoperated vehicles.

L3.2 Déployables

Deployable structures are considered to be the only practical method of constructing 
some of the very light structures in use todaŷ '̂ » A deployable structure is one which, 
following insertion into orbit, will begin to deploy itself on cue from a ground signal. One
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example of this would be a solar panel unfolding itself. Their reliability has lead to their 
inclusion on most spacecraft in the form of furlable booms, lattice columns and solar ai*ray 
wings. However, these different tasks may be reduced to the following structural types;

• Long Slender Beams.

• Deployable Reflectors.

Long slender beams are used in many different applications. For example, the solar 
wings of the Hubble Space Telescope (HST) aie deployed using a long slender beam which, 
as it deploys, drags the remainder of the solar panel with it. The Voyager spacecraft also made 
use of a long slender beam to deploy science packages, as have many other missions. Of all 
the applications, the four main types of long slender beams may be categorised as;

• Storable Tubular Expendable Member (STEM).

• Continuous Longeron Coilable Booms (CLCB).

• Articulated Lineai* Trusses and Fold-Out Beams.

• Deployable Reflectors.

STEM structures, or more commonly, bi-stem structures are deployable in a fashion 
similar to that of a carpenters measuring tape. The stem itself is stored in a flat roll which may 
be deployed using the potential energy of the flattened material or a small motor for more 
precise deployment rates. A bi-stem uses two stems interlinked to form a complete tube as 
shown in Figure 1.6 The bi-stem is the more common structure which allows greater 
bending stiffness and mechanical damping behaviour. Many hundreds of these structures have 
flown in spacecraft with a tube diameter in the region of 1-5 cm. The longest structure ever 
deployed was a stem unit flown on the Radio Astronomy Explorer (RAE) in the late 1960s. 
Four units were flown, each being over 250 m in length. The stem and bi-stem structures are 
not useful for very precise structures, however, their low cost and high packing efficiency 
make them very attractive.

CLCBs are widely used on spacecraft and are considered to be a mature technology 
with very predictable characteristics. Invented in 1972 by the Astro Aerospace Corporation, 
and more commonly known as the Astromast, the CLCB is a linear truss structure with a 
triangular cross section. The structure may be deployed from a veiy compact configuration 
with a typical stowed length less than 2 - 3% of the total deployed length. Figure 1.7 shows a 
typical CLCB. The structure is made up of triangular elements joined by linear elements with 
a pretensioned diagonal which stores enough internal potential energy to allow a self
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deployment once in orbit. A controlled deployment is possible by using a lanyard cable 
attached to the end-most unit which may be played out to the desired length. Typical widths 
of the structure are between 15 cm and 75 cm. The maximum practical width is estimated at 1 
m due to the internal energy of the diagonals growing dangerously large.

0 #

Figure 1.6: Bi-Stem Structure (Source: Ref. 6).

Figure 1.7: CLCB Structure (Source: Ref. 6).
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Articulated trusses are essentially similar to the trusses considered in the ACCESS / 
EASE missions. However, instead of manual constmction, these structures make use of 
scissors and pantograph mechanisms to deploy. Thus, from a relatively close packed 
configuration, it is possible to deploy a large strong linear truss. However, the only practical 
precision example of this type of structure to have flown is on the Seasat and ERS 2 synthetic 
aperture radar (SAR) payloads. This example was manufactured by the Astro Aerospace 
Corporation, the principal developers of CLCBs. The advantages of using this type of 
structure is their high strength and their ease of deployment. In addition, if a surface is added 
to one of the faces of the deployed structure, a stable platform is provided with good support 
properties. However, the disadvantages are their mechanical complexity and their relatively 
poor packing efficiency. Careful consideration must be given to the application of this type of 
structure.

Deployable reflectors are used on-board spacecraft for a number of tasks. Applications 
include remote sensing and communications. Since a wide range of power and frequencies 
must be supported by these structures, a variety of different types have emerged, which may 
be divided into two classes;

• Single piece reflectors.

• Moderate precision deployable mesh reflectors.

Single piece reflectors are very similar in size to that of a typical TV satellite dish. 
Their small size allow them to be launched fully formed. Therefore, it is possible to 
manufacture these out of relatively common composite or metallic materials. In addition, due 
to their manufacture occurring at a single point in time, the accuracy of the reflector may be 
very precisely defined. In orbit, these dishes are deployed in a single action. Simply, they will 
be manoeuvred from a stowed to an operational configuration. Also, since the receptor or feed 
of the dish may be pre-installed, the housing for the reflector need only point the instrament 
in the necessaiy direction.

If a mission demands a larger dish, then a deployable mesh reflector will be used. 
These reflectors are quite common, having flown on several missions. However, the most 
well know case is the Galileo high gain antenna which failed to deploy during transit to 
Jupiter. These large reflectors must be deployed, or unfurled in orbit. This is usually carried 
out using an umbrella type assembly where the reflecting mesh material is attached at various 
points. On deployment of the mechanism, the mesh will also unfurl, thus forming the 
necessary parabola. However, due to the limited attachment points of the material to the 
supporting structure, the surface accuracy of the reflector remains at best moderate. The mesh 
material itself requires careful design in that it must appear solid to the impinging radiation. 
Therefore, the mesh must be woven to a very high specification so that each mesh cell is
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smaller than that of the wavelength of the incoming radiation. Typical materials are synthetic 
or metallic fibres and typical reflector diameters range from 5 m to 15 m.

1.3.3 Inflatables

Inflatable structures have been the subject of much attention since the beginning of the 
space programme^. Principally, their advantage is their high packing efficiency and ease of 
deployment. They have been flown extensively on spacecraft such as Echo /, Echo I f  Pageos, 
Explorer IX, and Explorer XIX. Recent experiments such as the Inflatable Antenna 
Experiment (lAE), Figure 1.8, have highlighted this area as a promising technique for the 
deployment of large space structures^*, 39 Generally inflatables are considered for 
applications which do not require highly precise shapes. This is due to the difficulties 
associated with manufacturing the thin polymers and fabrics used. In addition, due to the 
inherent high coefficient of thermal expansion of polymers, the contours of the structure will 
change with temperature. Currently, there are two classes of inflatable structures in use;

• Pressure Stabilised Inflatables.

• Rigidised Inflatables.

Pressure stabilised inflatables are commonly used as antennas or concentrators. Due to 
their low mass and packaged volume, their launch costs are distinctly lower than other classes 
of structure. Typically, an inflatable structure will be an order of magnitude lower mass and 
packaged volume than deployed structures. A typical example of this type of structure is the 
antenna used on the Echo II passive communications satellite. In general, these structures 
have demonstrated excellent performance. Their large continuous surfaces

Figure 1.8: Inflatable Antenna Experiment (Source: NASA).



mean good thermal properties, typically being isotheiinal to within 10 Kelvin. In addition, 
having been used extensively on military systems in space, they appear to be very reliable 
with few failure modes.

Dynamically, structural deformations cannot occur without the internal volume of the 
inflatable changing. The volume change is opposed by the internal pressure and so results in a 
stable structure where resonance problems are unlikely. In addition, the fabrics used have 
exhibited a large damping coefficient, thus resulting in a rapid damping of disturbances with a 
typical surface accuracy of a 0.1-1 mm and an operational pressure in the range of 10*3-10-5 
atmospheres. At such low pressures, it is possible to use a gas reservoir which can maintain 
internal pressure for an operational lifetime of order 10 years.

Rigidised inflatables are similar to pressure stabilised inflatables with one major 
difference. These inflatables are treated such that they will become rigid in space, thus 
allowing them to function as load bearing structures. This type of structure was used in the 
Echo II and Explorer missions. The type of material used here was a laminate of aluminium 
and polyester which sets following inflation. Currently, two materials are used. The first uses 
a space curing resin which is enclosed by two impermeable films. On exposure to space, the 
resin will harden. A second material used is a Gelatin / Fabric Composite. These fabrics work 
by impregnating a carrier material with gelatin. On exposure to space a solvent, usually water 
is released from the material thus hardening the film. It has been shown that this type of 
structure has a good performance coupled with minimal degradation over time.

1.3A  Conclusion

Due to their unique nature, design and development dominates the cost of current 
spacecraft production"* .̂ In contrast, a civil engineering project has a design and development 
cost of less than 10% of the total project cost^. To make large structures affordable, two areas 
have been highlighted as critical technologies. Firstly, the development of off-the-shelf 
building block components. And secondly, a method of construction and validation which 
will minimise the cost of system integration"**. However, for large space structures, 
acceptance by the space community will firstly require the demonstration of a validated 
method of assembly"* ,̂ hi addition, the costs of such large structures mean that two questions 
must be addressed; whether the structure will be deployed, or assembled, as expected and as a 
consequence, whether the structure will operate as expected. Therefore, with the limited 
experience of lai'ge space structures available today, the risks are seen by many to be too high 
at present.

1.4 State of the Art: Robotics & Sensors

Currently, there is a wealth of reseaich material concerning the development of 
robotics and sensors. There is, however, limited research in robotics specifically designed for 
operations in space"*3. However, NASA is actively promoting robotics and telerobotics with a
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number of projects including Mars Pathfinder and demonstration robots such as Dante^^^
At the forefront of this research is the Ranger project and the Inspektor class of robot. 
However, the development of robotic vehicles in other fields will have a beneficial influence 
on space robotics in that the terrestrial technology is reaching maturity.

1.4.1 Ranger

The Ranger vehicle is currently being designed and constructed in the Space Systems 
Laboratory at the University of Maryland. The project originated as a consequence of the 
earlier EASE mission. The EASE mission highlighted the difficulties faced by astronauts on a 
construction EVA. Therefore, the Space Systems Laboratory began development of the first 
dextrous space telerobot. A precursor of the Ranger vehicle was the Beam Assembly 
Telerobot (BAT)"*  ̂which was a vehicle developed for testing in a neutral buoyancy tank to 
demonstrate the core technologies required of the Ranger vehicle. Principally the BAT 
vehicle made use of two dextrous robotic arms to bring together and connect two beams.

Following the successful demonstration of BAT, the Ranger vehicle was proposed for 
development with a total budget of $10 million in 1997 dollars*. The prototype Ranger NBV 
(Neutral Buoyancy Vehicle) neared completion in 1995"*'̂ . Tests and development continued 
in the neutral buoyancy tank at the University of Maryland until 1997 when an agreement was 
reached with NASA to fly the vehicle on the shuttle late in 1998"**’ "*̂’ The vehicle
which will fly on the shuttle, the Ranger SEX (Space Flight Experiment) will have a final 
mass of 800 Kg and is approximately the size of an original Mercury capsule.

The principal objective of the Ranger experiment is to calibrate and validate ground 
neutral buoyancy tests with the on-orbit performance, thus allowing future development to 
occur on the ground. Other objectives include determining the capabilities and limitations of 
space telerobotic systems. This will be carried out using a series of servicing tasks ranging 
from the straightforward to the complex. The technologies which will be demonstrated are the 
robotic manipulator control algorithms, a full immersion virtual environment interface^Z for 
the operator, obstacle detection's, obstacle avoidance^"* and adaptive flight control methods. 
Thus, this vehicle will represent a proof of concept demonstration for the construction 
problem which will be discussed later in this thesis. If this experiment is successful, then real 
on-orbit assembly experiments could be carried out sooner rather than later.

1.4.2 Remote Inspection Robots

Another class of robots which has attracted much attention is that of remote inspection
vehicles. These vehicles have been designed to fly free from International Space Station 
Alpha and the Space Shuttle to inspect the surface of the vehicles in inaccessible sites. 
Currently, there are several studies examining these types of vehicles. The first is the NASA 
developed Autonomous EVA Robotic Camera (AERCam), Sprint^^. Sprint is a teleoperated 
vehicle which is due to fly at Mir in 1998^ .̂ The vehicle consists of a stable platform capable
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of both translation and rotation. The sensor suite onboard the vehicle will consist of a camera 
and lighting system in addition to a communication module for control purposes. Although 
the initial vehicle will be tightly controlled by an astronaut, later generations are planned 
which will elaborate on the original vehicle by including various degrees of autonomy '̂^» 58

European studies are also proceeding, principally with the Inspector vehicle currently 
being developed by Daimler-Benz. Essentially this vehicle is identical to the Sprint vehicle in 
concept, the only differences being in the engineering design. However, the final Inspector 
vehicle is designed to be fully autonomous, moving between predetermined way-points with 
minimal intervention from the astronaut controller. A third vehicle, called Scamp, is currently 
being used as a test-bed for a second generation vehicle at the University of Maiyland. The 
principal objective of the Scamp vehicle is to demonstrate telerobotic interfaces. Currently, a 
computer vision obstacle avoidance algorithm has been developed which will run from a 
desktop PC, thus proving the control architecture of these vehicles is not prohibitive.

One of the major design specifications of these vehicles is that they will not translate 
quickly enough to damage another vehicle if there is a collision. Therefore, the translation 
capability of the vehicle is provided by a modest propulsion system. Any translation between 
two way-points may consist of relatively long periods of acceleration and deceleration. In 
addition, since any control system will be based on visual cues, conventional optimal control 
methods will not be applicable. New, control algorithms such as the potential field techniques 
developed at the University of Glasgow will also require extensive testing before being 
certified for operations near any manned habitat in orbit.

1.4.3 Sensors

Any free-flying robotic vehicle which is designed to work on-orbit either alone or with 
a group of similar vehicles will require a wide range of capabilities. With regard to sensors, 
although the robot may carry many different types of sensors, these may be reduced to just 
two classes. The first class of sensor, herein referred to as Formation sensors, would be used 
to determine the robot's place within the environment. An example of this would be the robot 
determining its relationship to the other working robots. The second class of sensor, herein 
referred to as Proximity sensors, is designed for the detection and manipulation of any objects 
within the immediate proximity of the robot vehicle. An example of this would be a gripper 
arm reaching out and grasping a component.

Formation sensors are typically based on utilising the Global Positioning System 
(GPS) or GPS-like systems. This method has been proposed for use with the Spacecraft 
Interferometer Concept at the Jet Propulsion L aborato ry^^  which makes use of a GPS-like 
technique. The interferometer concept requires that each spacecraft is positioned very 
accurately relative to one another over large distances. The method envisaged here is the 
Autonomous Formation Flying (AFF) system which allows the calculation of the relative 
distance and angles between spacecraft. The method requires each spacecraft to transmit a
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phase and pseudo-range signal which is received by multiple antennas on the other spacecraft. 
The multiple antennae on each spacecraft allows complete solid angle coverage. Thus each 
spacecraft can calculate its position relative to the others with high precision. The accuracy 
possible with this method is estimated to be 1 cm in range and 1 arcmin in relative angle.

Currently, there are a large variety of proximity sensors available commercially. There 
are also many applications, typically where robots are utilised. Although many of the sensors 
available are designed to perform the same task, the method by which they do so is varied. 
However, it is possible to classify the range of sensors into four main groups. These are;

• Laser and photo-electric triangulation.

• Optical reflection intensity.

• Optical and microwave time of flight.

• Inductive and capacitive.
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Laser and photo-electric triangulation sensors work in a manner where they emit a 
naiTow beam of light at an offset angle from the spacecraft. This beam of light is then 
reflected back from the target object with the location of the returned beam allowing the 
calculation of the range-to-target. Experimentally, this type of sensor promises extended 
range and lower sensitivity to the surface properties of the target. However, they are rather 
complex, so much so that data handling is processed by a neural network. In addition, certain 
types of laser emitters can cause problems with eye safety and so their use may be limited to 
environments where humans are not present. Due to sensor geometry, a typical range for this 
class of sensor is 3-50 cm.

Optical reflection intensity sensors operate as their name would suggest. A beam of 
light is emitted from the spacecraft to the taiget object and the intensity of the reflection is 
measured. Currently, this is the most widely used sensor, however, it is very susceptible to 
environmental and target surface conditions. Ranges vary from as little as 10 cm to 350 cm. A 
similar class of sensor is that of optical and microwave time of flight sensors. These sensors 
work in a similar fashion to that of reflection intensity sensors, however they measure the 
time between emission and return of the carrier beam. The principal advantage of using this 
sensor is that it can perform over a wide range of distances, typically from 15 cm to 15 m. 
However, the sensor is expensive and the resolution is limited to only 15 cm.

Inductive and capacitive sensors are commonly used in two areas; production lines 
and metal detectors. They have a very limited range, and the resolution is limited to detecting 
object presence rather than range. These sensors utilise two plates or coils. A current is passed 
across the coils, and the presence of a metallic object will distort the signal. They have a very
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limited range, typically less than 1 cm. Research is currently attempting to extend the range of 
this type of sensor for use in the end effectors of robot aims.

A study carried out at the Jet Propulsion Laboratory for NASA^** concluded that the 
sensors which were best suited to space operations were the;

• Idec/Izumi SAID triangulation sensor.

• Sick DME2000 laser time of flight sensor.

• Capacitec 410SCBNC capacitance sensor.

Of these three sensors, the DME2000 laser time of flight sensor gave the best overall 
performance. However, a more cost effective choice would be the SAID triangulation sensor 
which is better for measuring point-to-point distances. For application to area coverage, such 
as a sleeve for a robot manipulator, the capacitance sensors give better performance. The best 
of these is the 410SCBNC sensor. An ideal application of this sensor would be on working 
surfaces such as grippers.

1.5 State of the Art: Assembly Philosophies

Currently, there are numerous control methodologies available to the engineer. 
However, for the scope of this study, Lyapunov's method and the associated potential function 
method shall be considered the method of choice. Although Lyapunov's method was 
originally formulated at the turn of the century, it is only recently that it has received 
widespread attention. A number of studies exist applying Lyapunov's method, which will be 
discussed further in Chapter 3. However, a brief introduction shall be provided here and the 
application to spacecraft systems discussed.

1.5.1 Control via Lyapunov's Second Method

Lyapunov's second method may be described more as a philosophy than a strictly 
defined method. The method is applied by firstly specifying some goal condition or state. 
From any initial condition or state, if the system moves towards the goal, then the system is 
converging and, in principle, no control action is are required. Alternatively, if the system is 
moving away from the goal, then the system is divergent and a control action is required to 
ensure that the system is again moving towards the goal and is convergent. There are many 
differing methods of formulating and applying these control actions.

The potential function, or energy, method is one such method of deriving control 
inputs. Each condition or state within the system domain is assigned a positive 'potential' 
value. The potential is assigned so that if the system diverges from the goal, the potential will 
increase with time, and if convergent, then the potential will decrease until the potential
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vanishes at the solution. A common analogy is that if the potential magnitudes were plotted 
throughout the domain, a 'salad bowl' paraboloid geometry would result with the goal at the 
bottom of the bowl. Thus, if a marble were to be dropped into the bowl, every possible 
outcome would result in the marble reaching the bottom of the bowl.

Obstacles may be included in the domain by adding areas of high potential in the 
region of the obstacle. However, the addition of the high potential may cause the formation of 
a local minimum. A local minimum is a region within the domain where, if that condition is 
reached, the potential function would be uniformly increasing in every direction. Returning to 
the 'salad bowl' analogy, this would be the equivalent of fixing an obstacle to the side of the 
bowl such that it was possible for the marble to be trapped behind it, thus preventing the 
marble falling to the goal condition. The formation of local minima has proved to be a 
stumbling block in many applications of the potential function method. Therefore, the 
application of obstacle potentials and the resulting local minima shall be examined in greater 
depth in Chapter 4.

Although the application of potential functions to spacecraft control is well 
documented, much of the work has concentrated on robot manipulators*^*. The expansion of 
the technique to include aieas such as spacecraft orbit and attitude control has been carried 
out by the research team lead by Mchmes at the University of Glasgow^^. Much of this work 
has concentrated on areas such as proximity m a n o e u v r i n g ^ ^ ^  large angle slew manoeuvres*»"*, 
terminal descent guidance for remote landers^^  ̂ constellation and formation keeping*»*» and 
rendezvous and docking '̂7.

1.5.2 Automated Docking Methods

Many automated docking schemes are currently in use or in development. Of the 
methods available, they include radar*, laser and visual based systems. However, of interest to 
this study is the application of automated control algorithms. Lyapunov's theorem provides a 
method which demonstrates the flexibility required for such complex problems. The two 
principal proponents of Lyapunov's method and its application to spacecraft rendezvous and 
docking are Wang at the Jet Propulsion Laboratory and St. John-Olcayto and Mchines at the 
University of Glasgow. Wang^* has examined a generic docking case where an active body is 
closing to dock with a static body. For this case, both are assumed to be 6 degree of freedom 
bodies which are controlled in both attitude and position. The method, when applied, relies on 
shaping the closure rate between docking adapters situated on each body. A control input is 
then derived which will ensure this closure rate is always negative definite in both attitude 
and position. Strictly speaking this method represents a pure application of Lyapunov's 
second method, however, the approach does not utilise a potential function. The method has 
been expanded to include a simple collision avoidance scheme and has been applied to many 
different problems, including the interaction^^» '̂ ** and formation keeping^*» of groups of 
micro-spacecraft.
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An extensive s t u d y ^ 3  carried out at the University of Glasgow on behalf of the 
European Space Agency has examined the application of potential functions to the 
rendezvous and docking problem. The study was aimed at deriving an advanced control 
algorithm for the Automated Transfer Vehicle (ATV) which ESA is developing to re-supply 
the ISSA. The dynamic model provides a very accurate simulation of the ATV incoi*porating 
elements such as sensor noise, tliruster execution errors and collision avoidance. Based on 
this model, several control algorithms have been developed using potential functions and 
Laplace Navigation. In addition, two classes of obstacle potentials have been examined, the 
Gaussian potential, and the power-law potential. Both of these potentials are examined in 
greater detail in Chapter 4.

Laplace Navigation utilises fluid potential flow theory so that goal conditions may be 
defined using sinks, and obstacles formed using sources. A distinct advantage over 
conventional potential function methods is that the addition of an obstacle source will not 
form a local minima. This may be verified using Laplace's equation. If a potential function is 
chosen such that it satisfies Laplace’s equation

vV = o (1.1)

where V is the potential function, the potential function will not contain any local minima as 
the second derivative shall always be zero. Therefore no maxima or minima may form other 
than at the solution or boundaries of the problem. In addition, the use of irrotational vortices 
may be used to specify the direction in which an obstacle is negotiated. The disadvantage of 
Laplace Navigation is the computational demands posed by the grid solution to the Laplace 
equation. Thus the method may prove difficult to apply to rapidly changing environments.

1.5.3 Controlling Groups of Small Robotic Vehicles

The automated rendezvous and docking methods which have been described have 
been expanded to include both formation-keeping and path planning. However, there are 
many other control methods which have been applied to the problem of controlling groups of 
vehicles in different environments. The few which shall be discussed here are relevant to the 
problem of on-orbit assembly not because of their robot navigation strategies, but more so 
their application to the problem and the control architecture which has been derived.

The group of robotic vehicles envisaged here is typified by the work of Bay'̂ "* and the 
Army-Ant group of robots. The Army-Ant group study was designed to examine the properties 
of a group of homogenous robotic vehicles. The robots were designed to be capable of 
working as a group to perform tasks such as lifting, transporting and placing pallets and 
outsized objects within a warehouse environment. The criteria for the experiment is that each 
robot should cost less than $2,000 and as a group demonstrate;
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Robustness.

Flexibility.

Small Size.

Simplicity.

Emergent Group Behaviour.

The last element is critical, the army-ant concept is very dependent upon the group 
capability being greater than the sum of the individual capabilities. Thus, the design of the 
individual control mechanism must incorporate emergent group behaviour. Currently, the 
robot control scheme is based on each robot following a self-elected leader. Any given robot 
may elect itself leader by detecting the objective before its compatriots. The remainder of the 
robots will follow the exacts movements of the leader. Although Bay has proposed this 
concept and begun development of the robotic vehicles in question, the study has not reached 
fruition as yet. However, it is interesting to note the comparisons which may be drawn 
between this study and the field of animal behaviour.

Niwa'75 has examined the behaviour of fish schooling and developed a mathematical 
model of the school behaviour. Within this study, it is assumed that no individual leader 
exists within the school of fish. Rather, the behaviour of any individual fish within the group 
is based on the behaviour of its nearest neighbour in terms of separation and velocity, both of 
which have strong correlations to the average size of the individual fish within the school. 
Thus, based on a very simple set of rules, it may be assumed that no individual will lead the 
school, but rather the school itself is the leader, and that the school is behaving as a single 
organism. It is this type of emergent behaviour which is critical to the development of 
behavioural models for groups of robotic vehicles.

Noreils and Chatila'^^ proposed a very detailed examination of task execution for a 
single mobile robot. The study addressed issues such as planning, control, reactivity and 
robustness where the robot control architecture was split into three very distinct control 
levels, these are;

• Planning.

• Control.

• Function.

The planning level consists of a task plan. Although complex strategies are envisaged, 
the task plan consisted of a simple list of goals divided into very explicit tasks. The control 
level consists of a more complex management scheme. This scheme has four components, a 
supervisor, executive, error recoveiy management and surveillance manager. The objective of
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this control level is to translate global strategies formulated by the planning level into specific 
operations. The functional level consists of series of modules performing specific tasks such 
as sensors and translation. Each module within the functional level provides a capability for 
the robot. The modules will exchange information with the other modules and also the control 
level. This type of architecture incorporates the advantage that tasks and events, errors and 
problems are dealt with at the lowest level of the architecture. In fact, this is a common 
approach to robot control, with the layered control method originally proposed by Brooks' '̂ .̂ 
The interaction between the layers ensures the architecture's ability to react to external 
stimuli. As an event occurs which cannot be processed by a control layer, that stimuli is 
passed to a higher control layer which subsumes the task. This control method is commonly 
called a subsumption architecture and is discussed further in Chapter 8.

Driven by a need for higher precision assembly of electronic components, Flollis'^  ̂ at 
Carnegie Mellon University has developed an alternative control method for a group of 
construction robots. The robots operate in groups of up to forty on a conventional air table. 
The robots float on a steady cushion of air to provide the very high degree of accuracy that 
wheels could not. Steering is provided by on-board magnetic thrusters. Power is supplied via 
a cable which also provides a communication capability between the robots. Two types of 
robots exist in the domain. A courier robot and a manipulator. The manipulator is generally 
stationary, but will rotate between the task and a parts bin. The courier robots restock the 
parts bins. This is a complex system with courier robots travelling throughout the domain. 
However, to simplify the communication and software management problem, an overseer is 
not used, but rather levels of protocols are pre-programmed into the individual robots to deal 
with specific events.

The Hollis system corresponds to a decentralised scheme where the management 
structure is very shallow. The subsumption architecture of Brooks however, represents a very 
deep management stmcture. These two methods correspond to the two extremes of robot 
control. For this study, a compromise shall be made where central task planning shall be 
required. However, the individual elements of the group will retain a large degree of 
autonomy. Considering the task of path planning, strategies to consider external events have 
been formalised. One such study^^ proposes a taxonomy to formulate strategies. However, 
much of the work on on-orbit assembly strategies have focused on structural characteristics. 
Hamernik et have devised a strategy based on vibration damping in structures by the 
optimal placing of damping beams. However, it may said that the strategy must be formulated 
for specific tasks. Current research may yet provide a generic strategy for the autonomous 
assembly of space stmctures.

1.6 Mission Statement

The objective of this study is to provide a method which will allow the autonomous 
assembly of components in space. The problem has been approached in three broad areas 
consisting of;
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• The development of a control algorithm.

• The development of a model to test the control algorithm.

• The derivation of an architecture to simplify information handling.

The autonomous assembly problem is assumed to be carried out using autonomous free-flying 
vehicles such as a production model of the Ranger vehicle.

The control of the assembly vehicles and the development of control algorithms will 
firstly focus on the control of a single vehicle in both position and attitude. This will then be 
expanded to the control of a group of vehicles in both position and attitude. Finally, the 
control algorithm will be expanded to allow a series of components to be assembled by a 
group of vehicles to produce a predetermined structure.

The model which will be used to evaluate the control algorithms will be based on a 
model of a single assembly vehicle as a point mass. For each point mass a state vector shall 
be defined for position, velocity, attitude and attitude rates. Their shall be no external forces 
acting on the vehicle other than control forces and those derived from the orbital mechanics 
of the problem. The model of the single vehicle is then expanded to include a number of 
identical vehicles. The components within the model shall be assumed to be active only when 
manoeuvred by a controlling vehicle. However, when inactive, their dynamics shall again be 
propagated by the orbital mechanics of the problem.

The control architecture shall be developed in such a manner that the assembly 
process may be reduced to a series of connections carried out in a specific order. This will 
require a method of information handling such that each assembly vehicle shall have access to 
a database of the connections required to assemble the desired structure. In practice, this will 
take the form of a connectivity matrix in which connections between specific components are 
represented by a binary flag, hi addition, management of the assembly process shall be 
developed to simplify the assembly of complex structures. This will entail the reduction of a 
laige group of vehicles into smaller teams with limited tasks. This will reduce the demands on 
each individual vehicle in terms of communication bandwidth and sensor range.

Therefore, concisely, the objective of this study is;

To provide an on-orbit assembly method which will incorporate a practical 
and robust algorithm for individual vehicle control within a larger co­
operative group. The emphasis shall be on providing a practical application of 
the control method which will allow further development to a prototype 
article.
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Chapter Two; Orbital Mechanics

Orbital Mechanics is just Newton's Law of Gravitation. However, one has to
know this law very well

A.E.Roy

2.1 Introduction

The development of a method to control an engineering system demands an analysis 
of the system and its environment. This will involve the development of a model to simulate 
that system. This chapter will aim to provide an analysis, model and optimised solution to the 
problem of on-orbit manoeuvring. Thus, in future chapters, the model developed here may 
provide a datum against which any orbital manoeuvring algorithms may be compared. The 
chapter will aim to solve this problem in three broad areas;

To develop a dynamic model of an Earth orbiting spacecraft.

To develop a model of an orbiting spacecraft relative to a rotating co-ordinate
frame.

Solve the above problem to provide an optimised two impulse transfer between
points relative to the rotating co-ordinate frame.

The model of the Earth orbiting spacecraft is based on the well known two-body problem. 
The use of a rotating co-ordinate frame will allow an analysis of the motion of a second 
spacecraft orbiting relative to the datum spacecraft. This is an essential part of any model 
devised for the analysis of the rendezvous and docking problem which is dealt with in 
Chapter 3. Using the rotating co-ordinate frame, an analysis is provided which allows 
optimal two-impulse transfers between two points relative to the datum spacecraft. This will 
allow any proposed rendezvous and docking control method to be compared to the optimal 
solution.
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2.2 The Two-Body Problem

Currently engineering simulations are available which describe orbit propagation with 
a high degree of fidelity. However, the two-body problem is the basis of many simple orbit 
simulations. The two-body problem requires certain assumptions to be made which allows a 
closed form solution to the equations of motion for the orbiting spacecraft. These assumptions 
are;

• The Earth and orbiting spacecraft may be modelled as point masses.

• The analysis will not include the effects of aerodynamic forces.

• The only external force is gravity and may be expressed to first order as an inverse 
square force field.

Using these assumptions, the two bodies, the Earth and the spacecraft may be located in a co­
ordinate frame as shown in Figure 2.1.

2.2.1 Equations of Motion

Examining Figure 2.1, a mass is defined to represent the Earth with mass at
position vector rj. A second mass is defined to represent the spacecraft with mass m2 at
position vector The force which attracts the two bodies may be expressed using Newton's 
second law as

’U

Figure 2.1: Two-Body Problem.
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m{vi r ( 2 . 1 )

for mass and

m'2 \'2  = - G — ^  r (2.2)
r

for mass m2 . Dividing Equation 2.1 by mj and Equation 2.2 by mg and subtracting 
Equation 2.2 from Equation 2.1 the relative acceleration of the two masses is given by

(2,3)

where r ~ i-g - is the position of m2 relative to mj.

The gravitational parameter is defined as

= GmEarth (2.4)

where G is the Universal Gravitational Constant (6.673 x m^.kg'^.s) and is the
mass of the Earth (5.976 x 10^4 kg). In addition, making the assumption that mj is very much 
larger than mg then the two-body relative equation of motion may be written as

To propagate the orbit described by Equation 2.5 a numerical integrator, such as Runge- 
Kutta to the fourth order^l, may be applied.

2.2.2 The Circular Orbit

Using a numerical integrator, the equations of motion of the spacecraft may be easily 
solved. However, this is an initial value problem which requires initial conditions. The 
following initial conditions aie applied. The initial velocity v^ of the spacecraft is defined 
using

V „ = l ^  (2.6)

where the initial radius of the spacecraft, r^ is given by
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^Earth ^Vehicle (2.7)

The initial altitude of the spacecraft, hygf̂ ^̂ ig is defined as 300 km and is defined as 6371 
km at the equator. The integration proceeds with

(2.8)

(2.9)

Using these initial conditions in conjunction with the Runge-Kutta 4̂  ̂ order 
integrator, the orbit shown in Figure 2.2 results. As can be seen, the orbit is of constant 
altitude and results in an orbit period of 86 minutes.

X 10

Figure 2.2: Circular Orbit.

2.2.3 The Elliptical Orbit

The motion of the spacecraft may be easily expanded to include elliptical orbits. The 
elliptical case differs from that of the circular case in one aspect only, the initial velocity v̂ . 
Defining the shape of the orbit using the apogee altitude, h^, and perigee altitude, hp, the 
semi-major axis of the ellipse may then be calculated from
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^  -  ^Earth +  — ) (2. 10)

Using a perigee altitude identical to that of the circular case and defining the apogee altitude 
as 2500 km yields a semi-major axis of 7771 km. Thus the initial velocity of the spacecraft 
may be calculated using

(2 .11)

where e is the eccentricity of the orbit, defined from the semi-major axis of the ellipse using

e =  l - ^  (2.12)
a

p  ( 1 + e
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Integrating the equations of motion in conjunction with these initial conditions results 
in the orbit shown in Figure 2.3. The orbit forms the ellipse, with the altitude varying as a 
function of time. The orbit period of 113 minutes for this case is longer than the circular case. 
Thus the relative motion of the two spacecraft, one in the circular orbit, the second in an 
ellipse can be rather complex. This relative motion is shown in Figure 2.4

2.3 The Equations of Relative Motion

Consider a spacecraft orbiting the Eailh in a circular orbit. If this spacecraft is 
assumed to be a target with a separate chase vehicle attempting to rendezvous, then an 
appropriate co-ordinate frame must be chosen. Although the two-body problem made use of 
an inertially fixed Earth centred co-ordinate frame, this frame of reference is not adequate to 
describe the relative motion. Therefore, a rotating co-ordinate frame attached to the target 
vehicle must be used.

2.3 J  The Equations of Relative Motion

The use of a rotating co-ordinate frame, centred on the taiget spacecraft, as shown in 
Figure 2.5, allows the derivation of a set of equations of relative motion. Examining the 
position vectors of the taiget vehicle and the chase vehicle r^ in Earth-centred co-ordinates 
allows the formulation of the equation

Fg = r̂  + r (2.13)

where r is the position vector of the chase vehicle relative to the target spacecraft.
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Figure 2.5: Rotating Co-ordinate Frame.

Considering the vector r, if the target vehicle is defined as the origin of a rotating co-ordinate 
frame, then differentiating r with respect to the Earth-centred inertial co-ordinate frame 
results in

d d— r = — r-Tcoxr 
dt dt

(2.14)

where d indicates a differentiation in the rotating frame of reference and co is the orbital 
angular velocity of the rotating frame. Further differentiation gives the relative acceleration

dr
r  =

dt‘
r + 2(co xr)-hd)xr-i-cox(coxr) (215)

If Equation 2.15 is used to with Equation 2.13, the acceleration of the chase vehicle, may be 
obtained as

r̂ , = Tj -f r-I-2(coxr)-Koxr-i-cox(coxr) (2.16)

If the relative motion of the chase is to be described in target spacecraft centred 
Cartesian co-ordinates, then the relative position vector r may be expressed as

r = jci + yj-l-zk C217)

and the Earth-centred position vector of the target spacecraft becomes
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= -r^k (2.18)

Thus, substituting Equations 2.17 and 2.18 into Equation 2.13, the position vector of the 
chase vehicle may be expressed as

I'c = xi + yj + (z-rt)k (2.19)

Consider now the acceleration due to gravity, gj, acting on the target spacecraft

I't =  g t (2.20)

and also for the chase vehicle

= g c + A (2.21)

where A represents the control acceleration applied to the spacecraft and ĝ  is the acceleration 
due to gravity acting on the chase vehicle. Using direction cosines ĝ  may be expressed as

-g c i +
'c J

(
j+ (2.22)

Finally Equation 2.16 may be resolved into x, y and z components by defining the angular 
velocity vector as

(2.23)

Performing the necessary operations, results the series of differential equations

X — ~§Q + 2û)z + û)z + C0 X
K.

(2.24.a)

ÿ  =  - g c — + A (2.24.b)
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z = +gc - —— + A_ -  -  2cûx ~ct)x + (O^z (2 .24 .C )

These equations represent the non-linear equations of relative motion. Typically, these 
equations are solved using a numerical integration method. However, the equations are often 
linearised to provide closed form analytic solutions.

23,2 The Clohessy-Wiltshire Equations o f Motion

The C l o h e s s y - W i l t s h i r e ^ ^  equations represent a lineaiised model of the non-linear 
equations of relative motion. The equations may be linearised on the assumption that the 
orbital radius of the target spacecraft is very much larger than the distance from the target 
spacecraft to the chase spacecraft, or

rd>> r (2.25)

Therefore, the equations may be linearised using the following relations

2lV2

'■-y
(2.26.a)

S,r,
2 (2.26.b)

(2 .26 .C )

(2.26.d)

-  g
z + r 2z

y y
(2.26.e)

Using Equations 2.26, Equations 2.24 may linearised to give

x = - g — \- A^+2cùz + é)z + C0  X (2.27.a)
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-g-+A „ (2.27.b)
r

z — "t  ̂ ~8~2cox — 6)x + co^z (2.27.c)

Equations 2.27 correspond to the linearised equations of relative motion. However, 
the linearised equations may be further simplified by considering the unforced case where the 
control accelerations are zero

==/ly =24, =  0  (:L218)

In addition, if the target spacecraft is in a circular orbit, then O) may be written as

m = . j ^  (2.29)

where co is now zero. Therefore Equations 2.27 may be rewritten to produce the commonly 
encountered Clohessy-Wiltshire equations of motion

x-2cùz = 0 (2.30.a)

z - 3 m ^ z  +  2m% =  0  (2 .30 .C )

The Clohessy-Wiltshire equations of relative motion have been extensively applied to 
rendezvous and docking problems. Again, these equations may be numerically integrated to 
determine the relative motion of the ehase vehicle. However, as will be seen, closed form 
solutions are also available. The following two case studies examine typical relative motion 
characteristics. Then, in the following sections an orbit transfer scheme shall be examined. 
Therefore the two case studies may be considered as reference trajectories for later use.

2.3.3 Case I: 70 m Up-range

The chase vehicle will be located 70 m from the target spacecraft in the %-direction. 
Therefore, the initial relative position vector r  is defined as (70, 0, 0) and the chase vehicle is 
located in an identical circular orbit to that of the target vehicle. Therefore, as shown in
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Figure 2.6, there is no relative motion of the chase spacecraft and the tai'get spacecraft as they 
co-orbit the Earth. If the two spacecraft are to rendezvous, active manoeuvring by the chase 
vehicle will clearly be required.
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Figure 2.6: Case I: 70 m Up-range.

2.3.4 Case II: (-100,50,-50)

The second case study examines a more interesting trajectory where the chase vehicle 
is offset from the target in all three axes. From the initial point (-100,50,-50) the chase vehicle 
proceeds to drift away from the target spacecraft. Examining Figure 2.7, the motion displays 
a periodic nature with the motion over two full orbits cleai’. This, results in the chase vehicle 
being located over 3 km downrange from the target spacecraft after 167 minutes. These cases 
highlight the need for active manoeuvring of the chase vehicle to ensure successful 
rendezvous with the tai'get vehicle.

2.4 Two Impulse Rendezvous and the State Transition Matrix

The rendezvous of the chase vehicle to the target vehicle will require a control input to 
the chase vehicle. The most efficient transfer is the two-impulse transfer. The two-impulse 
transfer involves the chase vehicle propulsion system performing a controlled impulse which 
sets the vehicle on a trajectory which intersects the target vehicle. On arrival at the target 
vehicle, the propulsion system will again perform an impulse to bring the chase vehicle to 
rest. The calculation of the impulse magnitude and direction, or more commonly the two- 
impulse rendezvous problem*^ is based on a solution to the linearised equations of motion.
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Figure 2.7: Case II: (-100,50,-50).

Examining, Equations 2.30, it is apparent that the a' and z components ai*e closely 
coupled. However, the y component is de-coupled and may be solved by expressing the 
equation as the solution of a simple hai'monic oscillator

y(0 = yo cos{cot)-i-~sin{cot) 
0)

which may be differentiated to yield

ÿ(0 -  -ygO) sin{cot) + % cos{cot)

(2.3 La)

(2.31.b)

Thus, the y-position and velocity components may be calculated from the initial position and 
velocity. The % and z terms are closely coupled, however a solution exists in the form of a 
simple hai'monic oscillator, but with the addition of a forcing term

-2  ̂  cos{cot) + [ 4 ̂  -  6zo 1 sin{cot) -  (3i^ -  6c0Zo + ^  (2.31 .c)
CO \  CO J CO

which is differentiated to give

x{t) = 2zo sin{cot) + (4x^ ~6coZo)cos{cot)~(3x^ - 6coZo) (2.3l.d)

In addition, the z-component is given by
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z(?) = 4zo -  2  ^  sin{œt) -  (^2  ̂  -  3z  ̂1  cos{cot)
(0  CO \  CO J

(2.3 l.e)

and again differentiating yields

z[t) = Zg cos{cot) + {3c0Zfj - 2 x^)sin(cDt) (2.3 l.f)

Now, the trajectory of the chase vehicle relative to the target vehicle may be described 
by the above equations. Re-arranging Equations 2.31, the motion of the chase may be 
described using the State Transition Matrix 0  where state of the chase vehicle at some time t 
may be described by

s{t) = 0 Ŝ (2.32)

where the state vector x is defined as

. iTs = {x,x} (2.33.a)

where

= {x,y,z} (2.33.b)

and

(2.33.0)

and the state transition matrix 0  is given by

0

4 2
1 0  6 {cotsin(cot)) —sin{cot)-?>t 0  —(l -  coj'(mf))

0  cos{cot) 0  0  ~sin{cot) 0

0  0  A -  3cos(cot) ~{cos{cot)-\) 0

0 0 6 co{\ -  cos{cot)) 4cos{cot)~3 0

0  -cosin{cot) 0  0  cos{cot)

0 0 3cosin{o)t) -2sin{(Ot) 0

1 sin{cot) 
CO

2  sin{cot) 

0

cos{cot)
(2.34)
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For rendezvous trajectories the initial and final positions may be used to calculate the 
required initial velocity and the final velocity at the target. Thus the magnitude of both the 
initial and final impulses may be calculated. The sum of both impulse magnitudes measured 
in change of velocity, or Av may be used as a measure of the cost of the transfer. Multiple 
solutions do exist for the transfer corresponding to an infinite number of possible trajectories. 
Therefore, to obtain an optimal solution, the minimum Av transfer may be calculated.

2.5 Velocity-Time Optimisation

The optimisation method for the transfer is derived from the state transition matrix. 
This requires a direct method of calculation of the total Av which may be obtained by 
arranging the state transition matrix in four quadrants

A B 
C D

(2.35)

where A, B, C and D are given by

A =
1 0 6(o)t -  sin(o)t))
0 cos{o)t) 0
0  0  4 - 3  cos{cot) (2.36.a)

B

—sin(cot)-3t 
CO CO

CO
■sin(cot) 0

ICO
(cos{cot) - 1) 0

CO
■sin{cot)

(2 .3 6 .b )

C =
0 0 6û)(l -  cos{cot)f
0  —CO sin{cot) 0

0 0 3co sin{cot)
(2 .36 .C )

4  cos{cot) -  3 2 sin{cot)
cos{cot)

-2sin(cot) cos{cot)
(2 .3 6 .d )
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Using the four quadrants, it becomes possible to re-write the state-transition matrix in two 
sections corresponding to some final position and velocity

Xf = Ax^ +Bx^ (2.37.a)

Xf = Cx^ +Dx^ (2.37.b)

at some final time tj-. To calculate the required initial velocity to intercept the target, Equation 
2.37.a may be re-airanged to give

'(x y -A x „) (2.38)

where the inverse of B is given by

B -1

-CÛ c o s i c o t j l )

3œt cos{o)t/2) -  8  sin(œt/2)
0

œ

-2 co sin{cotj2 )
sin{cot) 

0

2 co sin{o)tl2 )
3cotcos(o)t/2) -  8  sin(cotl2) 

0

£ü(3û>/ -  4 sin{cùt/2^
3cot cos{cotf2) -  8  sin{cotl2) 2 sin{cùtl2){3(ot cos{cot!2) -  8  sin{œtj2'fj

(2.39)

I?

Therefore, the final velocity at the target may be calculated directly from the initial and final 
positions by substituting Equation 2.38 into Equation 2.37.b to give

Xf = CXg +D B -'(x ^ -A x „ ) (2.40)

The impulse magnitudes may now be calculated. If the chase vehicle is stalling from, 
and finishing at rest relative to the target vehicle, then the Av is given merely by the initial 
and final velocities

Av  ̂= X (2.41.a)

and

AVy = X y (2.4 l.b)
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where the total Av of the transfer is given by

Av = AVg + Avy (2.42)

Therefore, knowing the vectors, and Xy, the total Av of the manoeuvre may be 
calculated as a function of transfer time tj. Therefore, using a simple functional minimisation 
algorithm, the transfer time may be optimised for a minimum Av. However, this cost fonction 
contains many minima, therefore care must be taken when choosing a minimisation 
algorithm.

2.6 Point to Point Transfer

The optimisation of the two-impulse transfer results in a minimum Av value. 
However, the Av and the associated trajectory will vary radically for a small change in the 
time of transfer. The following tliree cases aim to provide solutions to a variety of problems 
to highlight the benefits and drawbacks of the trajectory optimisation using the state transition 
matrix.

2.6.1 Case I: 70 m Up~range to Target Vehicle

Examining an identical case to that of Section 2.3.3, the objective of this transfer is to 
move the chase vehicle from 70 m up-range to rendezvous with target vehicle. Thus, using 
the state transition matrix in conjunction with the initial and final position vectors

x„ ={70,0,0}'^ x^ = {0,0,0p (2.43)

a minimisation algorithm may be used to calculate the optimal rendezvous trajectory.

Examining Figure 2.8.a, the values of Av are plotted against time ?y. The plot displays 
the periodic nature of the function. As can be seen the function does not have a single 
minimum, thus problems may be encountered with minimisation algorithms such as Newton's 
or Fibonacci's method. The minimisation was canied out in this case using a sorting 
algorithm to choose the minimum value of a sampled data set. i.e. the function was sampled 
every second for 2x10^ s to produce a data set. The minimum value was then chosen from that 
data set. This technique is computationally intensive, however since the analysis is carried out 
only once, the loss in efficiency is acceptable.

Therefore, performing the analysis for these conditions results in an optimal time of 
transfer time of

16259 s (2.44)
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Figure 2.8.a; Case I: (70,0,0) to Target Vehicle; Time / Av Cost Function, 

with an initial and final velocity vector of

^1.433x10“^^ 
0  

0

(2.45)

giving an optimised Av of

Av = 2.866 X 10  ̂m. s (2.46)

where

Av  ̂ = Avy = 1.433 X 10 m. s' (2.47)

Using these parameters with the Clohessy-Wiltshire equations results in the trajectory 
shown in Figure 2.8.b It is apparent that the first impulse results in the chase vehicle drifting 
backwards in its orbit until such a time as it aii'ives at the target vehicle whereupon a second 
impulse is used to bring the chase vehicle to rest. The transfer time also corresponds to 
approximately three orbit periods with the drift per orbit also seen.

The transfer modelled here corresponds to the problem of orbit phasing. Orbit phasing 
is the movement of vehicle along its own orbit. As can be seen in Figure 2.8.a, the minimum 
Av value per orbit cycle is decreasing as the time of transfer increases. If the optimisation
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were cai'ried out over a longer period of time then the minimum Av would always occur in the 
longest possible orbit period.
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Figure 2.8.b: Case I; (70,0,0) to Target Vehicle: Chase Vehicle Trajectory.

2.6.2 Case II: (-100,50,-50) to Target Vehicle

Examining an identical case to that of Section 2.3.4, the objective of this transfer is to 
move the chase vehicle from a displaced position along all three axes to the target vehicle. 
Therefore, the initial and final position vectors are given as

={-100,50,-50}'^ Xy = {0,0,0} (2.48)

The optimisation of the transfer produces the cost function plot shown in Figure 2.9.a. When 
comparing this plot against that of the previous case study, it is observed that the curve is 
more complex. However, using the same minimisation algorithm the minimum value of Av is 
obtained for a time of

'"s:

I
?
■sS

t = 3592 s (2.49)

Using this value in conjunction with the initial and final position vectors, the initial and final 
velocity vectors are obtained as
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 ̂ - 0 .1 1 2  ^ '  3.414x10"^ ^
-3.566x10“^ 1.366x10”^

^-2.343x10“^^ ^-5.579 x l0 “2^
(2.50)

thus producing an optimal Av of

Av = 0.178 m.s‘ (251)

where

Av„ = 0.120 m.s' Avy = 5.754 xl0"^Ti.s (2.52)

Propagating the orbit using these values results in the trajectoiy shown in Figure 
2.9.b. The trajectory followed by the vehicle reflects the complexity of the problem with the 
chase vehicle looping over and above the target vehicle before the final orbit matching 
impulse. The final transfer time is very important to the path chosen by the optimisation 
algorithm. To demonstrate the variety of the possible paths, Figure 2.9.c displays three 
different trajectories for small variations in the final Av. This may have an application in 
manoeuvring around obstacles, however guaranteeing a safe path may only be achieved using 
intermediate waypoints. The use of waypoints rather than direct transfers to the target vehicle 
is demonstrated in the following section.
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Figure 2.9.a; Case II: (-100,50,-50) to Target Vehicle: Time / Av Cost Function.
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Figure 2.9.c; Case II: (-100,50,-50) to Target Vehicle: Trajectories Variations with Time of Transfer.

2.6.3 Case III: (-100,50,-50) to (100,-100,100)

The possibility of using the state transition matrix to manoeuvre the chase vehicle 
between two points would allow these points to be linked in to a series of manoeuvres to 
shape the path followed by the chase vehicle to the goal location or target vehicle. However, 
the scope of this example is to demonstrate the possibility of using the state transition matrix 
to transfer from a generic point A to point B relative to the target vehicle. Therefore, using the 
state transition matrix in conjunction with the initial and final positions

x„ = {-100,50-50}' Xj-={100,-100,100}'’ (2.53)
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produces the cost function plot shown in Figure 2.10.a. Again the function has a complex 
form, however the minimisation algorithm produces a minimum value of Av for a transfer 
time of

3440 s (2.54)

Using this value for transfer time, the following initial and final velocity vectors are obtained

" -0.132 ^ " 0.215 ^
0.104 Xf - 0.147

,-3.017x10"^, ^-4.772X10"^^

with an optimised Av of

(2.55)
1!r
'.ÏÏ
'.-.I:'/,

Av = 0.435 m.s"

where

(2.56)

Av„ =0.170 m.s' Avy =0,265 m.s'^ (2.57)

The trajectory which results from these parameters is shown in Figure 2.10.b. As can 
be seen, the trajectory successfully manoeuvres the chase vehicle between the two points. It
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Figure 2.10.a: Case III: (-100,50,-50) to (100,-100,100): Time / Av Cost Function.
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should be noted that the transfer time was lower than that of the previous case, even though 
the distance travelled was higher. However, the total Av was correspondingly higher. This 
results demonstrates that, although the transfer is successfully optimised, the result from the 
state transition matrix and the dynamics resulting from the Clohessy-Wiltshire equations may 
not always produce the expected result.

2.7 Conclusions

The main conclusion to draw from the linearisation and optimisation of the Clohessy- 
Wiltshire equations is that the solution will provide the optimal datum value for a transfer 
between two points. However, there are drawbacks to the method. Principally, the flexibility 
of the two impulse transfer must be called into question when considering the possibility of 
obstacle avoidance, i.e. the optimisation of a transfer would be compromised if a mid-course 
correction was required.

The very nature of the lineaiised equations of motion will limit the types of transfer 
envisaged here. The linearisation of the equations and the assumption that the distance from 
the tai'get to the centre of the Earth is very much larger than the distance to the chase vehicle 
results in the limitation of the method to transfers under 10̂  m. Therefore it may be stated 
that in conclusion, the state transition method provides an optimal solution to the Av 
minimisation problem, and thus provides a datum against which other, more flexible 
methods, may be measured.

47



Chapter Three: Potential Functions

3.1 Introduction

Having established in Chapter 1 the requirements for a control methodology for on- 
orbit assembly it is now possible to define a set of specifications;

• The control method must be closed-loop, with particular attention paid to the 
smooth convergence of vehicles to the desired configuration.

• The complexity of the hai'dware, and software must be minimal. Current space 
qualified computer technology is not as advanced as terrestrial technology.

• The control methodology must be fully autonomous. There are large cost savings to 
be made by eliminating human operators from the control loop.

• The control methodology must be stable. With the current cost of placing hardware 
on orbit, the loss of haidwaie through control system action or inaction is 
unacceptable.

Therefore, with these specifications a robust, non-linear, low complexity control methodology 
is required. One such methodology is generated using Lyapunov's Second Method,

Lyapunov's second method is not new, having originally appeared in the Russian 
literature in 1892. It was not until 1907 that the a French translation appeared in Western 
literature. The method, although used extensively in Russian control problems, did not 
achieve widespread popularity in the West. Eventually translated into English in 1947, the 
method became more widespread culminating in the definitive papers by Kalman and 
Bertram^^' in which the method was applied to a wide variety of control problems.

Although typically described as a method, Lyapunov's method as described by 
Kalman and Bertram is far from a rigorous mathematical technique. In fact, the method 
should be more properly defined as an approach to control problems. However, it should be
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noted that Lyapunov's theorem may be formed as an explicit proof. Lyapunov originally 
described the objective of the technique as;

'To answer questions of stability of dijferential equations, utilising the given 
form of the equations but without specific knowledge of the solutions. '

Since Kalman and Bertram's paper of 1960, Lyapunov’s method has been extensively applied 
to stability problems for both spacecraft and terrestrial control problems. The flexibility of the 
method is ideally suited to complex non-linear spacecraft control problems®^’

3.2 Lyapunov’s Second Method and Potential Functions

The objective of Lyapunov's Second Method is to ensure the stability of a system of 
differential equations describing a dynamical system. In physical terms, the method has been 
described by Kalman & Bertram as the following reasoning;

'If the rate of change dE(x)/dt of the energy E(x) o f an isolated physical system 
is negative for every possible state x, except for a single equilibrium state x^, 
then the energy will continually decrease until it finally assumes its minimum 
value E(xJ.'

This statement corresponds to the intuitive definition of all stability problems, i.e. any 
dissipative system perturbed from its equilibrium state will always return to it.

In mathematical terms, this may be expressed as;

'A dynamical system is stable (in the sense that it returns to equilibrium after 
any perturbation) if and only if there exists a 'Lyapunov function,' i.e. some 
scalar function V(x) of the state with the properties:

i) yfx j> 0 , V fx)<0 w h en x ^x^  (3.1)

and

ii) V(x) = V(x) = Q w h en x ^x ^  (3.2)
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An extended form of the Lyapunov function, termed a potential function will be used 
in the subsequent analyses. It is this function that may be defined analytically and used to 
drive the state vector of a dynamical system to the desired goal. However, the mechanism 
which forces convergence is based on the rate of change of the potential function. Examining 
Figure 3.1, if the rate of change of the potential, V(x) is negative, then the state vector will 
converge to the goal point at the global minimum of the potential function. However, if ÿ(x)

is positive, then the state vector will diverge from the goal point. In this case control 
intervention is required to render ÿ(x) negative.

DIVERGING
PATH

SURFACE
NORMAL

CONVERGING
PATH

GOAL POINT

ISOPOTENTIAL
SURFACE

Figure 3,1; Potential Function Stability.

Therefore, it is possible to derive a methodology to force convergence of any system 
to a desired goal. Defining a potential function based on the state vector x, which takes the 
form

v = m

differentiating the potential function with respect to time results in 

y = v / .x

(3.3)

(3.4)

Therefore, with an analytical definition of V, it is possible to calculate the control inputs 
required to bring the dynamical system to the desired goal point. In the following sections, 
two methods of control are explored. The first is a continuous control method, the second is a 
discrete method. The continuous method ensures that the rate of change of potential is
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continuously negative by implementing a control action at every time step. The discrete 
method differs in that control intervention is only implemented when the rate of change of the 
potential is zero or positive, thus allowing the system more freedom of action. The analysis 
and comparison of both methods is examined using two case studies. The first is a translation 
control problem, and the second an attitude control problem.

3.3 Translation Control

Consider now the problem of a single manoeuvring chase vehicle attempting to close 
to a target goal point relative to a circular reference orbit. This problem has been previously 
examined in Section 2.6. Rather than use the optimal two-impulse transfer, the discrete form 
of the potential function method shall be applied and compared to the optimal solution.

3.3.1 Potential Function Definition

To guarantee that the vehicle will translate from its initial position to the goal point, 
control intervention is clearly required. Therefore, the problem requires a potential function 
based on the location of the chase vehicle and the goal point. Defining the position vector of 
the chase vehicle as r, and the goal point as then a simple quadratic potential function 
may be defined of the form

V = ~{r-rG oai)ir-raoai)

where A is a scaling constant. Thus the function ensures that the potential V is positive for 
every position except at the solution, where (r - l'coaù vanishes.

In addition, to conform with the conventional definition of Lyapunov functions, the 
rate of change of potential V must be negative definite along any trajectory except at the 
goal. Therefore, differentiating the potential function gives

l> = A (r-re„a/)-v (3.6)

where v is the velocity vector of the chase vehicle. Thus, to ensure that the chase vehicle 
converges to the goal point, the control method must ensure that the rate of change of 
potential is always negative definite.

3.3.2 Example: Discrete Control

The discrete control method differs from the continuous case in that control 
intervention is required only if the rate of change of the potential is zero or positive. 
Returning to Figure 3.1, the internal normal of any isopotential surface will, in every case.
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point to a lower potential. Therefore, the rate of change of the potential shall be guaranteed 
negative definite if the desired vehicle velocity vector is given by

^  D e s i r e d  if V >0 (3-7)

where k  is a. constant and W /|V y | is the unit vector normal to the isopotential surface. 
Substituting the gradient of the potential V in Equation 3.7, the desired vehicle velocity 
vector then becomes

y Desired ""-"'l (3.8)
F - l e w  I

.
so that ÿ(x) is always rendered negative definite.

The constant k  in Equation 3.8 may also be represented by a shaping function. The 
term is used to shape the magnitude of the velocity of the vehicle as the goal is approached. 
Therefore, a function which will scale the magnitude of the impulses as the potential 
decreases is given by

K = v*[l-exp{~pV)] (3.9)

where v* represents the maximum controlled velocity of the vehicle, in this case 0 .1  m.s'^ 
and P is a constant, typically defined as unity. Examining the case given in Section 2.6.1, 
using the initial positions given in Equation 2.43.b, the trajectory of the chase vehicle may 
be propagated to produce Figure 3.2.a. The intervention of the controller is clearly visible as 
the path of the vehicle is shaped with four course correcting impulses implemented by the 
chase vehicle. The behaviour of the potential function is plotted in Figure 3.2.b where the 
control impulses are clearly visible as is the smooth convergence as the potential reduces in 
an exponential manner to the goal. Examining Figure 3.2.c, the potential function is 
combined with the vehicle trajectory to show the descent of the vehicle down the potential 
well. This plot is useful in highlighting that control intervention will result in the vehicle 
following the internal normal of the isopotential surface.

The velocity profile is shown in Figure 3.2.d, and the maximum controlled velocity 
of 0.1 m.S’i is clearly shown as the course corrections reset the velocity. The total Av cost of 
the transfer is 3.356 x lO"̂  m.s'h When compared to the value of 2.866 x lCf3 m.s-  ̂ obtained 
from the two-impulse transfer, it is obvious that the transfer is less efficient. However, the
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Figure 3.2.a: Discrete Control: Chase Vehicle Trajectory.
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Figure 3.2.b: Discrete Control: Potential Function.

flexibility offered by the potential function method, especially when used in conjunction with 
a collision avoidance technique, outweighs the inefficiencies. It should be noted that 
currently, if the rate of change of potential is greater than or equal to zero, then control 
intervention is triggered. However, if the trigger was modified such that control intervention 
occurred when

(3.10)

then the point of control intervention may be varied throughout the convergence process. This 
capability allows path shaping such as minimal intervention at large distances from the goal
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but as the vehicle nears the solution, control intervention increases. This provides a degree of 
control which will be crucial as the technique is expanded upon.
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Figure 3.2.c: Discrete Control: Potential Function Contours.
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Figure 3.2.d: Discrete Control: Chase Vehicle Velocity.

3.4 Attitude Control

Many space based systems require the use of accurate pointing, whether as part of an 
antenna mechanism or indeed a complete structure such as the Hubble Space Telescope 
(HST). The control mechanism for changing the attitude of the structure may take the form of 
momentum wheels which may be controlled continuously for minimal energy expenditure.
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The problem of pointing a body, as shown in Figure 3.3, may be accomplished by examining 
the attitude dynamics, represented by Euler's equations, viz.

Iicbi + (I3 - 12 (3.1 La)

l 2 ® 2  + (ll ~ I3 “  T2 (3.1 Lt))

I36U3 + (I2 “  1% ̂ CÛ2 0)i — T3 (3.11.C)

where the body has moments of inertia Ij, I2 , and I5 with continuous control torques T 
and Tj applied. The Euler angles may be related to the body rates, coj, CO2 and % , through the 
kinematic relations

(3.12)

where is the transformation matrix

Figure 3.3: Vehicle Attitude Definition.
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1 sin 6 i tan 6 2  cos tan 6 2  

0  cosOi -sinGi
0  sin0 isec 6 2  cosOi sec6 2

(3.13)

Thus, with the dynamics of the body defined, it is now possible to control the body attitude 
through the use of a potential function.

3.4.1 Potential Function Derivation

The desired solution or goal point for this problem is to bring the body to rest at some 
goal orientation. Therefore, the terms which must be controlled are the body rates and the 
Euler angles. To this end, the potential function will take the form

^  ~ ^Euler ^Rates (3.14)

The Euler angle potential function will take the form of a quadratic potential with a single 
goal point, viz

(3-15)
^ (=1

where Bi is the goal orientation and a: is a scaling constant. The body rate potential is a

simpler function with the goal corresponding to null body rates. Therefore, this potential 
function will take the form

^Rates ? (3.16)

The total potential, being the sum of the Euler and body rates potentials will then take the 
form

= (3.17)
^ i=l ^ i=l

For this problem, a continuous control implementation will be used. To comply with 
Lyapunov's method, the rate of change of potential V must be rendered negative definite. 
Therefore, differentiating the potential results in
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V = 'ZliCOiCOi + a 2 { d i - e i ) 0 ,  (3,18)
i= l  i= l

Rearranging and substituting Equations 3.11 and Equations 3.13 into the rate of change of 
potential and simplifying leads to the equation

r  = (3.19)
1=1 i=l j = l

This equation will now be used to generate a set of control laws.

3.4.3 Example: Continuous Control

Using the kinematic relations given by Equations 3.7, a control torque which will 
render V negative definite may be derived of the form

T ;=-K r® ,.-aX C ?ÿ'^(0;-0;) (3.20)

where k  is a positive definite shaping function. When the control torque is substituted into 
Equation 3.19 then V takes the form

3
V = -KY,(Oi (3.21)

i= \

Thus the control torques which will rotate the body to the goal attitude are available in 
analytical form. To evaluate the performance of the controller, a case study will be 
considered.

To implement the continuous control potential function, the equations of motion of 
the body must first be defined. Rearranging Equations 3.11 it is found that

Û), = (3,22.a)

®2 = — -  <»\a>3 (3.22.b)
I n  I n
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(0i,02,e3) = (O. 1. (3.25.b)

and final, goal conditions

CÛI = CO2 ~ CO3 = 0 (3.26.a)

with Euler angles

(0 i ,0 2 .e 3 ) = (O, 0 , 0 ) (3.26.b)
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T, f c - I i )
(3 .22 .C )

in in

and expressing in full the kinematic relations as given in Equation 3.12, yields

01 = 0)i+W 2 sin6 1 tan0 2 +CÛ2 cos61 tan6 2  (3.23.a)

02 = CO2 CO5 01-CO3 (3.23 .b)

02 = CÛ2 sin0i sec02 cosOi sec02 (3.23.c)

Then, a system of six simultaneous differential equations results which fully chaiacterises the 
rotation of the body.

The physical characteristics of the body will be defined as a solid cylinder of Im 
radius and 4 m length, hi addition, assuming a mass of 240 kg, the moments of inertia Ij, I2 

and I3 may be calculated from

Ij == I 2 = — mr^ + =  335 kg,m^, I 3 = =  30 kg.m^ (3.24)
4 12 2

The initial conditions will now be defined as

cOi ~ CD2 — CÛ2 = 0 (3.25.a)

with initial Euler angles
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When used in conjunction with the initial conditions, Equations 3.22 and Equation 3.23, 
may be integrated numerically using a Runge-Kutta scheme. The control torques are 
implemented as given in Equation 3.20 with K*= 10 and a =  1.

The Euler angles representing the attitude of the body ai'e shown in Figure 3.4.a. The 
influence of the controller may be clearly seen as the three angles are slowly damped to the 
goal. Thus, the potential function drives the body to the desired orientation. In addition, the 
body rates shown in Figure 3.4.b can also be seen to converge to the goal as they are damped.
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Figure 3.4.a: Continuous Control: Euler Angles.
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Figure 3.4.b: Continuous Control: Body Rates,
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The control torques aie shown in Figure 3.4.C. Again, the torques are seen to decay as the 
goal attitude is approached, allowing a smooth convergence.

The strong coupling of the motion about each body axis is also apparent. As axes 2 
and 3 are controlled, axis 1 is displaced as a consequence. However, the potential function 
brings the body to the goal attitude. The potential function is shown in Figure 3.4.d. As the 
potential reduces to zero, it is clear that the rate of change of potential remains negative 
definite, thus complying with Lyapunov's theorem and guaranteeing convergence. Therefore, 
the potential function method has been demonstrated to successfully control a complex non-
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Figure 3.3.c; Continuous Control: Control Torques.
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linear problem by continuously controlling the rate of change of potential. However, this is 
not always an optimal solution. For a problem in which control intervention is minimal, such 
as a translational problem where excessive fuel expenditure is undesirable, then the 
discretised method is more suitable.

3.5 Conclusions

It has been shown that the use of Lyapunov's second method meets the specifications 
of the spacecraft control methodology previously defined. Specifically, it may be said that if a 
dynamical system allows the definition of a Lyapunov function, then stability may be 
guaranteed through an appropriate choice of controls. Thus, to summarise the specifications 
required, Lyapunov's second method provides;

• A closed-loop control method allowing stable convergence to the desired 
configuration.

• The complexity of the control software is minimal. The problem of controlling a 
complex non-linear spacecraft system is reduced to the analytical derivation of a 
potential funetion.

• Using appropriate sensors and actuators, the method appeal's suitable for 
autonomous, on-boaid applications.

The control method examined here meets the criteria defined for a spacecraft control 
methodology. Although two different implementations were examined, the continuous and 
discrete methods, both proved satisfactory. Also, the use of the quadratic potential function 
has proven to be satisfactorily applied in both cases, hi general, the continuous method has 
been applied to attitude control problems while translation problems have been discrete. 
However, with the use of low thrust propulsion systems, the continuous method may also be 
applied to translation problems. Lastly, the method is not wholly practical without 
consideration of obstacles within the spacecraft path. This problem, and various techniques 
for obstacle avoidance, will be examined in the following chapter.
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Chapter Four: Obstacle Avoidance

Obstacles are made to be overcome.

Anon.

4.1 Introduction

In the previous chapter, the application of potential function methods to spacecraft 
translation control was discussed. However, for a real system, collision avoidance will be 
required to enforce the separation between the controlled vehicle and any obstacles which 
may be present. Using the cases discussed in Section 2.6.1 and Section 3.3, where the 
chase vehicle is located 70 m up-range from the target vehicle, an obstacle will now be 
added. To provide an obstacle avoidance capability within the potential function, obstacles 
may be represented by identifying regions of high potential, thus preventing approach of 
the vehicle. Considering Equation 3.5, a quadratic potential with the addition of an 
obstacle potential takes the form

^  ==̂ Goal~̂ ^Obs (4-1)

where Vgoa/ corresponds to the attractive potential described in Chapter 3 and 
corresponds to the obstacle potential. The exact form of Vqij  ̂ may be defined using a 
variety of methods. In addition, Vqî  ̂may encompass either a single or multiple obstacles. 
This chapter will examine four different methods of defining the obstacle potential. The 
four methods are the Gaussian, Power-Law, Rectangular and Superquadric obstacles. The 
advantages and disadvantages of each shall also be discussed.

4.2 Obstacle Representation: Gaussian Distribution

To represent an obstacle within the potential field, the region of high potential may 
be defined using a Gaussian Potential Function. Thus, an inaccessible area is created 
within the potential field due to the increase in potential as the obstacle is approached. It is 
this increase, and the manner in which it does so, that is critical to the application to 
collision avoidance.
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4.2.1 Object Definition

A  Gaussian potential function is based on the very common Gaussian probability 
distribution. The general form of the function is given by

Vobs = ^  ^ | r  -  ‘bfc P I  (4.2)

where A is a scaling parameter, <r is the standard deviation of the distribution and is 
the position vector of the obstacle. The values of A and cr are critical in the definition of 
the obstacle potential. If an object is not completely encompassed by the obstacle potential, 
a collision could result. Therefore, a rigorous method of sizing the obstacle potential is 
required. A method is available, based on the assumption of a one-dimensional problem 
where the attractive or goal potential is given by

^Goal ~ ^Gool  ̂ (4.3)

The obstacle potential is then given by the one dimensional form of Equation 4,2, which 
may be expressed as

Vobs = A e x p i^ -~ \x ~ X o i,j\  (4.4)

thus resulting in the total potential

y ~ —(^x-X G oaiŸ + ^^w \--------------------------------------------------------- (4.5)

Examining Figure 4.1, the addition of an arbitrary goal and obstacle potential are 
plotted. The addition of the goal and obstacle potentials may be clearly seen. However, the 
addition does create a local minimum. The formation of local minima can cause problems 
in the application of potential functions. However, if the one-dimensional problem is 
expanded to multiple dimensions, the local minimum here becomes a saddle point.

. t
Therefore, the position of the saddle point, and its distance from the centre of the obstacle |  
is critical when considering the size of the obstacle potential. Defining the distance D as 
the characteristic dimension of the obstacle such that
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Figure 4.1: Saddle Point Formation.

^  ^Saddle ^Obs (4.6)

then A and a  must be chosen such that D is lai'ger than the size of the object to be avoided.

Considering the properties of the total potential function at the saddle point, then it 
may be said that

dx
= 0  when x = x^^ (4.7)

and that the value of x may be written as

^min ^Saddle (4.8)

Therefore, differentiating Equation 4.5 with respect to x and substituting using Equations
4.7 and 4.8 yields

Saddle -  ^Goal ~ ~  |  ~ ^

which may be re-aixanged to give

(4.9)
■
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_ Xa{D + Xoi,s-XGoal)A -  (4.10)
2D e x p i^ --  I

where a  is the standard deviation which may be calculated using the statistical form

D = 3(7 (4.11)

where D encompasses 98% of the Gaussian distribution.

Even though this evaluation of A is only valid for one dimensional problems it can 
form the basis to calculate A for higher dimensional problems. Therefore, for a higher 
dimensional potential function of the form given in Equation 4.2 the value of A becomes

2D expMl
where I'Q̂ ai and again represent the position vector of the goal and obstacle 
respectively.

4.2.2 Example

The case study defined in Section 2.3.3 will now be considered with the addition 
of a single obstacle and with the initial positions of the chase and target vehicles given by

r - {70,0,0} % w =  {0,0,0} (4.13)

Then, the repulsive component of the total potential takes the form of Equation 4.2 with a 
constant A value defined by Equation 4.12 resulting in a total potential function of the 
form

(4.14)

where /I is a constant, typically defined as unity. The characteristic dimension of the 
obstacle, and the width of the potential function are defined as
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£)=10 m (7 = 3.33 (4.15)

with the position of the obstacle defined as

I’Ofo ={50.0,0} (4.16)

Thus, the obstacle represented here is a 10 m diameter sphere located between the chase 
vehicle and the target vehicle.

Propagating the motion of the chase vehicle, the trajectory is shown in Figure
4,2.a. Although the chase vehicle does converge to the tai'get vehicle, examining the region 
immediately surrounding the obstacle shown in Figure 4.2.b highlights the intensive 
manoeuvring required by the chase vehicle between points 1 and 2. As can be seen, the 
chase vehicle path does enter into the obstacle area. The cause of the infringement is that 
the characteristic dimension is derived in one dimension. There will be a variation in the 
obstacle width throughout the circumference of the obstacle. However the encroachment is 
minimal and separation would be enforced by incorporating an additional safety zone 
surrounding the physical object.

Examining the potential function, the convergence of the total potential to the 
target vehicle is shown in Figure 4.2.c and in contour form in Figure 4,2.d. As can be 
seen, the shaped potential function demonstrates the manner in which the obstacle is 
avoided. In addition, the contour plot cleaidy displays control intervention when the rate of
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Figure 4.2.c: Gaussian Disti’ibution; Potential Function.

change potential becomes positive. Thus, the potential is successfully reduced and 
vanishes at the origin. The velocity profile, shown in Figure 4.2.e, again displays the 
effect of control intervention. The purely impulsive path corrections demonstrated in 
Section 3.3.3 are still apparent, however in avoiding the object, the required changes 
between points 1 and 2 are almost continuous, thus resulting in a larger Av of 2.538 x 
1 0 '^m .s'\

...I:

Thus, in summary;
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The Gaussian function does produce an obstacle in the potential field which is 
successfully negotiated.

The chase vehicle avoids the core areas of the obstacle, but in doing so grazes 
the surface.

The saddle point of the total potential is unstable and is successfully negotiated 
to allow convergence to the goal point.

The only problem encountered with this method is a computational one. The 
Gaussian obstacle has an exponential decay and the use of the transcendental exponential
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Figure 4.2.d: Gaussian Distribution: Potential Function Contours.
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Figure 4.2.e: Gaussian Distribution: Chase Vehicle Velocity.
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function is expensive to implement computationally. This problem becomes more 
pronounced the larger the number of obstacles within the vehicle space. This is the 
principal reason which leads to the use of geometrically decaying functions such as the 
power-law potential function.

4.3 Obstacle Representation: Power Law Distribution

The power-law obstacle originated in the field of moleculai' dynamics which will 
be discussed in Chapter 5. The computational demands of modelling molecular behaviour 
required a method of obstacle representation which did not require any complex 
mathematical operations such as the exponential function within the Gaussian 
representation. Thus, the principal reason for applying the spherical power-law obstacle is 
to reduce the computational demands in calculating the obstacle potential for a complex 
environment. Therefore, to that end, by eliminating the exponential from the function, the 
need to perform a computationally expensive operation is eliminated. The precise obstacle 
definition of the method will also be examined. However, in every other respect, the 
application is similar to the Gaussian obstacle.

43.1 Obstacle Definition

As with the Gaussian distribution, considering the problem in one dimension the 
power-law obstacle potential takes the general form

Vo»s=-,---------------------------------------------------------------------------------- (4.17)
^Obs )

where A and N  aie constants. The function results in the potential strength Vpiŷ  varying 
only with distance from the object centre and when extended to three dimensions forms a 
spherical obstacle. In three dimensions, the obstacle potential becomes

where r and are the position vector of the chase vehicle and obstacle respectively. The 
value of the parameter A is critical in determining the diameter of the obstacle. However, A 
may be determined in a similar fashion to that of the Gaussian potential. Assuming the 
one-dimensional problem, as shown in Figure 4.1, with a goal potential given by 
Equation 4.3, the total potential is given as
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V = ^ ( x - X o ^ , f + -  2N (4,19)
4 (X-Xobs)

At the saddle point, Equations 4.7 and 4.8 still hold, therefore, differentiating the potential 
with respect to ;r and substituting for the characteristic dimension D given in Equation 4.6 
yields

(D+Xobs ~ ̂ Goai ) “  ^^ '2]v+i “  0 (4.20)

again, where I'Qoai and represent the position vector of the goal and obstacle 
respectively.

4.3.2 Example

N = 4 (4.23)

Using a quadratic goal potential, the total potential will then take the form
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which may be re-aiTanged for A to yield

A -  —  (4.21)

where A is of a sufficiently high value to ensure collision avoidance.

Again, even though this evaluation of A is only valid for one dimensional problems 
it can form the basis to calculate A for higher dimensional problems. Therefore, for a 
higher dimensional obstacle potential as in Equation 4.18, the value of A is given by

.i

The previous case study with the initial conditions of the chase and target vehicles 
given by Equation 4.13, is used to evaluate the obstacle potential. Again, the position of 
the obstacle is given by Equation 4.16 and the obstacle radius is set at 10 in. In addition, 
the power N  is arbitrarily defined as



AI |2 , ^ { ^  + \̂ 'obs\-~\'̂ 'Goal\)̂

---------

2N+1

( 4 . 2 4 )

where X again, is a constant, typically defined as unity.

Propagating the trajectory of the chase vehicle and examining Figure 4.3.a, the 
path of the vehicle is shown as it successfully manoeuvres to the goal. However, 
examining the path around the obstacle, Figure 4.3.b displays a clear incursion of the

Obstacle
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Figure 4.3.a: Power-Law Distribution: Chase Vehicle Trajectory
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vehicle into the obstacle area. This is obviously undesirable, however, the contour form of 
the potential, shown in Figure 4.3.C and Figure 4.3.d shows that the obstacle potential 
does not fully encompass the desired obstacle area. Although the saddle point is clearly at 
the characteristic dimension from the obstacle centre, this radius is not maintained around 
the circumference of the obstacle.

The problem of variation in radius around the circumference of the obstacle 
potential may be countered by using a higher value of N. The contour plots shown in 
Figure 4.3.e and Figure 4.3.f display improved obstacle avoidance with N=10. The larger 
value of N  leads to a sharper definition of the obstacle which in turn leads to minimal 
incursion into the obstacle area. Therefore, the precise definition of the obstacle and the

40

30

20

10

0

-10

-20

-30

50 60 70 80-10 0 10 20 30 40
x(m)

Figure 4.3.c: Power-Law Distribution: N=4, The Potential Function.
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prediction of obstacle avoidance with the power-law function is related directly to the 
value of N. Increasing the value of N  to 100, the contour plots in Figure 4.3.g and Figure 
4.3.h show precise obstacle avoidance with the chase closely following the contour of the 
obstacle.

The principal motivation for using the power-law function is to provide a 
computationally efficient method to implement obstacle representation in a potential 
function. However, although the method is more efficient, the obstacle is not as clearly 
defined as the Gaussian distribution. Thus the choice of method will clearly vary 
depending on the application. Therefore, in summary;
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The Power-Law function does produce an obstacle in the potential field which is 
successfully negotiated.

The characteristic dimension is not uniform around the circumference of the 
obstacle. The variation is very dependent on the value of N  and can lead to the 
vehicle encroaching into the obstacle area. Therefore, a buffer zone would be 
required.

The saddle point of the total potential is unstable and successfully negotiated to 
allow convergence to the goal point.
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Figure 4.3.g; Power-Law Distribution: N=100, Potential Function.
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Until now, the only obstacles examined have been, or could be, enclosed by a 
spherical obstacle potential. In the following sections the obstacle representation is 
extended to include rectangular obstacles.

4.4 Obstacle Representation: Rectangular Distribution

Until now the primary consideration has been the definition of obstacles within the 
potential function. This will now be extended to represent a specific obstacle geometry. 
The spherical potential functions have been shown to define the obstacle area well. 
However, these potential functions ai’e inefficient in the definition of irregular objects and 
can prevent a straightforward path to the goal point in otherwise free space. The logical 
solution to this problem is to map the obstacle's physical attributes more precisely into the 
potential space. One of the more useful representations is that of the rectangle. A 
rectangular potential may be used as building blocks if two or more obstacles are added 
together to represent a more complex shape. There are many definitions of rectangular 
obstacle potentials or Flat-Sided Potential Functions such as FIRAS^^. However the 
following definition is an extension of the spherical power-law distribution and describes 
the implementation of the rectangular potential as adequately as the more complex 
functions.

4.4.1 Obstacle Definition

The rectangulai* power-law potential function in one dimension takes the general 
form given in Equation 4.17. However when extending this to three dimensions, the 
obstacle potential is defined by the function

"̂ Obs -  / , / \2 /v , / siN (4.25)
[X~Xobs) -^\Z-Zobs)

where A and N  are constants. The characteristic dimension D is defined in the same 
manner as for the spherical case and therefore the constant A is given by Equation 4.22 
while N  is of sufficiently high value to ensure obstacle avoidance. Therefore, combining 
the different elements results in a total potential of the form

2N+\

2 ' 2N {x-X obsf'^+  { y -y o b s f ’̂ + { ^ -^ 0 b s f^

which may be used to shape the vehicle path.

(4.26)
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4.4.2 Example

The previous case study will again be used with the initial conditions given by 
Equation 4,13. The total potential is defined by Equation 4.26, with an obstacle of side 
20m located 50m along the positive x-axis. This corresponds to a characteristic dimension 
of 10m with a power #  = 4. Examining the results shown in the Figures 4.4, the critical 
element shown is the failure of the chase vehicle to converge to the goal. Examining 
Figure 4.4.a, the path of the chase vehicle is shown as it manoeuvres towai’ds the obstacle. 
However, considering the obstacle in more detail, as shown in Figure 4.4.b,
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the chase vehicle converges to a point directly behind the obstacle. The behaviour of the 
total potential function, shown in Figure 4.4.c shows the failure to converge with the 
potential becoming constant at a non-zero value.

The failure to converge to the goal is as a direct consequence of the formation of a 
local minimum directly behind the obstacle. The local minimum is clearly visible by 
examining the contour plots of the total potential in Figure 4.4.d and Figure 4.4.e. When
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Figure 4.4.e: Rectangular Distribution: Potential Function Contours.

considering the method by which the obstacle potential is defined, it becomes apparent that 
the addition of any flat sided potential and any goal potential will result in the formation of 
a local minimum. Examining Figure 4.5 the goal potential contour and the obstacle 
potential contour will always be coincident at points B and C. This will always indicate the 
formation of a local minimum at point A. Therefore, the case study demonstrates that, 
although the flat sided potential works well, when used in conjunction with a goal 
potential, local minima will form. In summary;

The rectangular power-law function does produce an obstacle in the potential 
field which prohibits the chase vehicle entering into that area, but also forms a 
local minimum.

The characteristic dimension is not constant around the circumference of the 
obstacle. As with the spherical power-law, the variation of the characteristic 
dimension is a strong function of N.

The saddle point of the total potential becomes a local minimum and is not 
negotiated. This is not affected by the value of N  and demonstrates the 
inapplicability of flat sided potentials to this type of problem.

The problem of representing rectangular objects is not as straightforward as may be 
envisaged. Applying a simple flat sided potential will result in the creation of a local 
minimum. However, this may be addressed by using a class of obstacle potentials known 
as Superquadrics.
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4.5 Obstacle Representation: Superquadric Distribution

Superquadrics are a class of geometries that were initially employed in the field of 
computer graphics*^. These functions are ideal for representing objects such as rectangles 
or ellipses as mathematical functions. Their use in collision avoidance was originally 
proposed for use by space manipulators using potential field methods^®’̂ .̂ The crucial 
element of a superquadric potential function is that the contours of the function change 
shape as the distance from the obstacle increases. For example, a square obstacle will be 
mapped to a square potential at the obstacle surface. However, as the distance to the 
obstacle increases, the contour of the repulsive potential will change shape to form an 
ellipse at the intersection of the attractive and repulsive potentials. It is this characteristic 
that makes superquadrics useful in as much as local minima may be eliminated. However, 
to obtain such a result requires a much more complex analysis than the other methods 
presented here.

4.5. J Obstacle Definition

The general form of the superquadric in two dimensions is given by

a
where n > 1 (4.27)

The resulting geometric shape is often called an «-ellipse where a and b are the semi 
major, and minor axes of the ellipse respectively. For this function to be applied to a 
specific rectangular obstacle, then the ellipse must touch the corners of the obstacle, and 
also minimise the area between the obstacle and the ellipse which leads to
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(4.28)

where w and h are the % and y dimensions of the rectangle respectively.

At the surface of the obstacle, the contour of the potential must match the obstacle 
shape. Thus n must be equal to infinity at the surface for this requirement to be satisfied. 
Likewise, moving away from the surface, the contours must be elliptical in the limit. 
Therefore a function may be derived which will define the distance to the obstacle surface 
and, in addition, define the potential contour value at that distance. It may be shown that 
such a function is given by^^

In

"H

_1_

2n
(4.29)

where K  is the distance to the obstacle surface. The value n, which defines the contour 
shape, must vary from infinity to unity while K varies from zero to infinity, thus n is 
defined as

n =
l~exp{~aK)

(4.30)

where a  is a constant.

Following the definition of the form of the isopotential contours, all that remains is 
to assign a potential value to them. The potential magnitude must decrease with distance, 
and the function which is most commonly applied is the Yukawa^^ potential of the form

%O bs A exp(~aK)
K

(4.31)

where A is a scaling factor, and unless stated otherwise, is defined as unity. The definition 
of the potential, and the isopotential contours leads to a non-linear problem with co­
dependency of K  and n. The method to solve this problem and apply the potential is best 
demonstrated by example.
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4.5.2 Example

The solution to the problem of assigning values to K  and n may be carried out 
using the bisection method. However, to do so requires the manipulation of Equation 4,30 
to

K. =  In
a

(4.32)

and, when used in conjunction with Equation 4.29, is re-written as

2/1 2n
(4.33)

Clearly, Ki and K2 must be equal. The difference between the two functions yields an error 
term, viz

£ — K-\ ~ Kn (4.34)

which may be solved for n using the bisection method. Thus K  may be recalculated for the 
new n value. The process is then iterated until convergence. Obtaining K  then allows the 
calculation of the total potential which takes the form

AI |2 .expi-oK )
V=--\r-raoai\ +A (4.35)

where A is unity and a  is set high enough to ensure that no local minima form at the saddle 
point. Methods for calculating an optimal setting of a  are also a v a i l a b l e ^ o  However, for 
this example, the saddle point position need not be optimised, and so a value is chosen of 
sufficiently high magnitude, in this case a  = 45.

Applying this obstacle potential in conjunction with a quadratic goal potential 
requires the definition of the characteristic dimension of the obstacle. In this case a square 
obstacle will be considered with

f

h = w = 2Qm (4.36)
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Simulating the chase vehicle motion yields the results shown in the series of Figures 4.6. 
As can be seen, the chase vehicle does negotiate the obstacle and converge to the goal. 
Examining Figure 4.6.a, the path of the chase vehicle is shown as it successfully 
negotiates the obstacle. The obstacle avoidance is shown in more detail in Figure 4.6.b, as 
the chase vehicle easily clears the obstacle.

The contour plots shown in Figures 4.6.c and 4.6.d display the contours of the 
total potential. As can be seen, the local minimum visible in the flat-sided potential does 
not form, thus allowing the chase vehicle to travel around the obstacle. However, the 
resolution of the contour map does not show the true form of the obstacle. Examining 
Figure 4,6.e, only the obstacle potential is shown with the path of the chase vehicle. As 
can be clearly seen, the path does closely follow the contour of the obstacle. Thus, in 
summary;

• The superquadric function does produce an obstacle in the potential field which 
allows convergence to the goal by eliminating the local minima formed by the 
flat-sided power-law. In addition the saddle which is formed is unstable, again 
allowing convergence.

• The height and width of the obstacle are very clearly defined, making the 
obstacle definition substantially simpler than previous methods for complex 
geometries.

• The complexity of the method is not a significant factor when considering single 
obstacles, however, as the complexity of the environment increases, then the 
computational demands will also increase.

The superquadric potential does provide the best means of defining non-spherical 
obstacles within the potential field. However, it does so at the expense of complexity. 
Therefore, for any obstacle avoidance potential, careful consideration of the specific 
problem would be required before applying this function. The complexity is also 
substantially increased if the parameter a  was calculated to fully guarantee the elimination 
of local minima with an analysis of the saddle point in three dimensions. Current methods 
are computationally demanding. Applying these techniques would effectively double the 
computational requirements of the method.
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Figure 4.6.b: Superquadric Distribution: Obstacle.
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Figure 4.6.e: Superquadric Distribution; Obstacle Potential.

4.6 Conclusions

Of the four methods of defining obstacle potentials, only one method, the flat-sided 
power law potential was unsuccessfully negotiated by the chase vehicle. The remaining 
three methods created obstacle potentials that, when added to an attractive potential, did 
not generate local minima. Each method has its own merits, however, some have more 
general applications than others. The Gaussian method for a spherical obstacle offered the 
best all round performance and with specific regard to the balance of computational 
complexity and accuracy. The ability to exactly define the characteristic dimension of the 
obstacle and guarantee minimal incursions into that space in conjunction with easily 
definable parameters makes this function more applicable to general problems.

The spherical power-law potential demonstrated good results, however the 
sensitivity of the method to the value of the parameter N  made it difficult to determine the 
interface between the goal and obstacle potentials. Thus, incursions into the obstacle area 
could not be prohibited. The advantage of this method is its computational simplicity. For 
such an easily applied method, the performance is reasonable, and would be applicable to 
problems where computing power was limited. Finally, the superquadric was by far the 
most complex of the four methods with parameters that are obtained from non-linear 
problems. However, the performance is excellent and very efficient in the use of space as 
the potential function maps itself on to the contours of the body. This method would be 
applicable to complex geometries where there were significant restrictions on movement. 
Thus, in conclusion, the ability to model and successfully negotiate obstacles has been 
demonstrated. The ability to create obstacles and shape the chase vehicle path to the goal 
point is one of the principal reasons for the use of potential function methods in the 
remainder of this thesis.
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Chapter Five: Molecular Dynamics

Equilibria in biological systems are governed by their tendency to move 
towards states of lower free energy

T.P. Flores & D.S. Moss

5.1 Introduction

In everyday life, construction surrounds us in may different forms. From the easily 
detected human activity on a construction project, to the almost imperceptible regeneration 
of our own bodies. The natural world has been producing structures far more complex and 
beautiful than any human construction. Therefore, this chapter looks at some of the rules 
which have been developed by human science to examine and duplicate nature’s methods 
of construction. The methods applied to the study and simulation of molecular chemistry 
make use of potential functions. This chapter intends to demonstrate the relevance of 
potential function methods to physical problems. In addition, the molecular potentials will 
be simplified and applied to a multi-body problem with the aim of demonstrating that a 
stable structure may be constructed using potential function methods. This will 
demonstrate the underlying principals of potential function construction methods discussed 
in the following chapter.

5.2 Applications in Molecular Biology

The science of molecular biology has grown from the desire to manufacture 
molecules and chemicals with specific features. Within this objective, to examine how 
molecules are constmcted, the science of Molecular Dynamics '̂^*^^’̂  ̂has been developed. 
The principal tenet of this field is that a molecule will reach a state of equilibrium when 
the free energy within the molecule is minimised.

5.2.1 Energy Minimisation

The free energy within a molecule is given by the equation

AG = -R TlnK  (5.1)
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where AG is the Gibbs Free Energy, R is the Universal Gas constant, T is the absolute
temperature and K is the equilibrium constant for a chemical reaction with constant
pressure and temperature. However, explicitly defining the change in free energy of the 
system then

AG = AE+PAV~TAS (5.2)

where AE is the change in internal energy of the system, P the Pressure, V the Volume and 
the Entropy.

However, if the assumption is made that system under scrutiny is well-ordered at a 
modest temperature and pressure, then the AE term will dominate thus resulting in the free 
energy taking the form

AG -  AE (5.3)

Therefore, it is possible to minimise the internal energy and thus the Gibbs free energy of 
the system and to maximise the stability of the resulting structure. To minimise the internal 
energy of the system, the energy must be considered of the form

E ~ Ej^+ Ep (5.4)

where the subscripts k and p represent kinetic and potential energy respectively. Thus, 
since the kinetic energy of the system is a function of temperature alone, the problem will 
reduce to minimising the potential energy of the system.

5.2.2. Computational Issues

In a real, biological system, the assumption that a system is well-ordered is not 
valid. Therefore, the TAS term may not be disregarded. The result of this is that the 
complete free energy must be calculated to determine the stability of a system. This in 
itself is a much harder task. To simulate such a system requires a great deal of expertise 
and computing power. We can assume that both position and velocity ai'e simultaneously 
defined. This assumption is only valid for heavier atoms and molecules i.e. Carbon atoms. 
However, for smaller, lighter particles, a quantum-mechanical treatment is required. The 
computational power required to implement even such a simplified model is extreme. For 
every pico-second of simulated time, 1 hour of processor time on a Cray X-MP is required.
Thus the practical limit for simulated time is restricted to approximately 1 nano-second.
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5.3 Shrodinger’s Equation

When considering a constraction problem or a civil engineering project, the 
measurement of the position of the components which make up the problem is relatively 
straightforward. The use of modern techniques such as laser ranging allows the accurate 
positioning of large elements to millimetre accuracy. However, when considering 
assembly problems on a quantum level, the positioning of sub-atomic particles with 
certainty is not possible. Heisenberg’s Uncertainty Principle states that the position of a 
sub-atomic particle and its velocity may not be simultaneously measured with infinite 
precision. In 1926, Shrbdinger developed a formulation of non-relativistic quantum 
mechanics which forms the basis for calculations in quantum chemistry.

Shrodinger's equation provides a probability wave function, y/{r, t) , which allows a 

prediction of the location and velocity of sub-atomic particles of the form

^ 2  Af 1 ^ 2  ^
-  - y  ^  0  (5.5)

for a system of N  molecules with position r,-, mass wave function y/{r, t) , and potential 
field V(r, t) . If the molecule potential field could be fully described, then the wave 

function would be obtained from Shrodinger's equation. However, this equation cannot be 
solved even for the simplest of molecules, such as the Hydrogen pair, H2 . Plowever, 
approximations which simplify Shrodinger's equation into other forms do exist, the most 
prominent of these being the Born-Oppenheimer approximation.

Originally formulated in 1927, the Born-Oppenheimer approximation allows the 
electronic and nuclear distributions of a molecule to be treated separately. As a 
consequence, the motion of nuclei and electrons may also be treated as separate. Since 
even the lightest nucleus has a much larger inertia than that of an electron, the 
characteristic speeds and frequencies of nuclear* motion are much lower than that of 
electron motion. Thus, it may be assumed that the electrons will form a shell surrounding 
the nucleus and the total potential energy of the molecule may be calculated based solely 
on the position of the nuclei. This allows an accurate model of the potential energy surface 
for up to 1 0 - 2 0  atoms.

The potential field in which the atoms exist is crucial in molecular dynamics. The 
atomic force, and the total energy of the system are both dependent on the potential field. 
The total energy of the system may be written as

+V{r) (5.6)
^  (=1



In practice, the calculation of kinetic energy is relatively straightforward to compute. 
However, the calculation of the potential energy component is not straightforwar d, and key 
parameters must be derived experimentally.

5.4 Potential Energy Functions

Deriving the potential energy function requires a representation of all the terms 
which influence atomic bonding. In practice these are covalent bond stretching, bond angle 
bending, harmonic dihedral bending, sinusoidal dihedral torsions, and non-bonded (Van 
Del Waals, and Coulombic) interactions. Therefore the total potential may be written as a 
summation of these components

V — y  B onds "F y  A n gles F  y jo r s io n s  (5*7)

where the non-bonded interaction, is given by

y N B I  ~  yV a iiD erW aals ^ E lec tro sta tic  y  H ydro gen  (5.8)

y  y  B onds F y  R epulsive  (5.9)

Thus, having identified the elements to be included within the total potential, it is now 
possible to proceed and define the potentials associated with each element.

5.5.1 Bond Potentials

The potential function which describes bond properties, and specifically the tensile 
properties of the bond is typically a function called the Morse potential. The Morse 
potential function gives a good estimate of the tensile properties and is defined as

^Bonds ~ Z-j 
i= \

Db. -cti (^i -  t>o- )} ) -  ^b. (5.10)

Computationally, the definition and application of the full potential function would 
be too expensive. Therefore, in an effort to demonstrate the multi-body interactions 
envisaged here, a reduced potential function is used. The reduced potential function is 
formulated using only the principal potentials, the bond potential in conjunction with the 
repulsive component of the Van Der Waals potential. Thus a new potential is derived of 
the form.
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where is the energy at the equilibrium bond length is used as a gain to produce

the desired molecular vibration spectrum and Njj is the total number of bonds.

Although the Morse potential gives excellent results, the bond potential may be 
further simplified for bond lengths close to the equilibrium value. The potential is that of a 
quadratic haiinonic approximation of the form

i= l

where is the equilibrium bond length and Ky =2D^ ai . The two curves are shown in 

Figure 5.1.
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Figure 5.1: The Morse Potential (Adapted from Ref. 92).

5.5.2 Repulsive Components

When atoms come close together, their electron clouds overlap and produce a 
repulsive force. This repulsive force increases as the separation decreases. Therefore, for a 
computationally expensive problem such as this, a spherical power-law function is applied. 
The choice of the power-law potential is further supported by Lennard and Jones^^ who 
determined that the power-law is sufficient for an arbitrarily high index. Thus, the 
potential energy function takes the form

%
Âloms A

R epulsive = S
i<j ^

(5.12)
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5.5.7 Problem Definition

5.5.2. Example

The potential function is minimised using the discrete control method at every 
integration time step. Thus, an internal normal is calculated at each isopotential surface.
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where is the distance between the centres of the nuclei and is a scaling constant.

5.5 Calculation of Non-Bonded Interactions

The calculation of long range interactions between two atoms is expensive. 
Therefore, the computational cost of determining the non-bonded interactions between 
every pair of atoms within a system is unreasonably high with the computation time |  
increasing with A .̂ Therefore, to reduce computing times, a cut-off radius is 
introduced. Within this radius, all of the forces between atomic pairs are calculated, 
however, outside of the radius all interactions are considered negligible. Rç̂ ^̂  is generally 
lower than 8  Angstroms. However, the electrostatic forces are still significant until almost 
15 Angstroms. This quandary is overcome by treating local atoms as charge groups. If a 
particular charge group centroid is within the distance, then the group is included 
within the calculation.

5.6 Multi-Body potentials

The application of the potential function control methods to a multi-body problem 
may be demonstrated by applying a moleculai’ potential with Lyapunov’s method. Thus, a 
problem with a molecule consisting of a number of generic atoms will be used to 
demonstrate that the minimisation of the potential energy within the molecule produces a 
stable structure.

A molecule will now be defined consisting of six atoms with each atom's optimal 
state corresponding to a bond to every other atom. Thus each atom will be bonded to five 
other atoms. Therefore, using the attractive and repulsive components defined in 
Equations 5.11 and 5.12 the total potential of the molecule takes the form

(5.13)
Kj 5/

where and Ap in this case are defined as unity for every bond and atom and n has been
'  ■£

arbitrarily defined as 12, If the radius of each atom is one unit, and the goal bond length, 
b , is defined as two units, then the final configuration will result in every atom touching 
each other. This is the only condition imposed on the molecule. Aside from this criteria, 
the final state of the molecule remains undefined.



However, since translation costs aie clearly irrelevant, as propulsion is not an issue, the 
method is applied continuously with no trigger mechanism. Therefore, simulating the 
molecule starting from some random initial position yields the results shown in Figures
5.2. Examining Figure 5.2.a, the potential function is shown. As expected the potential 
function is minimised, however, it should be noted that the potential does not vanish. 
Examining both components of the potential function, it is possible to identify the cause of 
the residual potential. The first component is non-zero due to the physical configuration of 
the molecule. If all the atoms are attempting to reach the desired bond length, then 
physically this is not possible. Instead the atoms will settle to an equilibrium position 
where all the bond lengths in the molecule are as close to the goal bond length as possible. 
In addition, although the repulsive potential is very small, by its very nature, it can never 
be zero. Therefore, a small residual is present.
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Figure 5.2.a: The Potential Funetion Behaviour.

The motion of the atoms are shown in Figure 5,2.b. As can be seen the atoms form 
the shape which fills the least volume corresponding to the minimum energy 
configuration. In addition, the three larger equilibrium bond lengths correspond to the 
atoms at opposite ends of the molecule. Thus, it has been demonstrated that potential 
functions are capable of forming stable structures from multi-body systems.

5.7 Conclusions

The use of potential functions has been expanded to include multi-body systems. 
The science of molecular dynamics has been briefly reviewed and the behaviour of lai’ge 

molecules used to provide insight to multi-body system dynamics. The validity of potential
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Figure 5.2.b.i: The Atomic Motion: Time = 0 s.
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Figure 5.2.bâi: The Atomic Motion: Time = 1 s.
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Figure 5.2.b.iii: The Atomic Motion: Time = 2 s.
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Figure 5.2.b.iv: The Atomic Motion: Time = 3 s.
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Figure 5.2.b.v: The Atomic Motion: Time = 4 s.
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Figure 5.2.b.vi: The Atomic Motion: Time = 6 s.
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functions for assembly has been seen through physical analogies from molecular 
dynamics. Thus, in summary;

• For a well-ordered system, stability is directly related to potential energy. A 
consequence of this is that the probability of a stable stmcture is increased as the 
complexity of the structure is reduced. This will become increasingly more 
important as a structure grows in size.

• Multi-element attractive and repulsive potential functions can be generated.

• Computational requirements may be reduced by introducing a cut-off radius.

• The goal configuration may not be physically possible. However, the method 
will force the configuration of the bodies to the minimum energy state.

The purpose of this chapter has been to demonstrate the foundation elements of a 
potential function method which may be used to assemble stable structures from multi­
body systems. This has been done using a physical analogy with molecular dynamics. The 
following chapter shall expand on this by extending the methods from atom building 
blocks to beam elements capable of forming useful engineering structures.
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Chapter Six: Structural Assembly

6.1 Introduction

The previous chapter has demonstrated the application of potential functions to 
multi-body systems and their use in forming minimum energy configurations. The purpose 
of this chapter is to expand on this to demonstrate the application of the method to 
autonomous assembly of engineering stractures^^»^^’̂ '̂ . Therefore, applying the lessons 
learned from molecular dynamics to the assembly problem, a stable building block from 
which larger structures may be assembled is required. The logical choice for such a 
building block is a beam element. Two distinct applications of the potential function 
method will now be examined. These are the Parallel and Serial implementations^^. The 
parallel method involves a simultaneous effort with all the beam elements to form a stable 
structure. The serial method is a more practical implementation, with only a sub-set of the 
total number of beams within the structure being active at any one instant. The application 
of both methods will be demonstrated using two structures, a simple pin-jointed triangle 
and square.

6.2 Beam Element Definition

For the type of pin-jointed structures envisaged here, it is assumed that the beam 
element is capable of perfect translation and rotation to a given position and orientation. 
As a consequence, the detailed mechanics of translation and rotation may be ignored. 
However, the connectors placed at the end of each beam must be modelled and in addition, 
the centre of mass of the beam must also be identified. Thus, including the assumptions 
stated here, it is now possible to proceed and define the characteristics of the beam. The 
beam element is defined as a uniform beam of length I and, as shown in Figure 6.1, has 
connectors placed at either end. The end connectors are used to join the beams together 
with each beam having a male and female connector. Thus, defining the position vector of 
the male connector of the beam as
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Figure 6.1; Beam Element Definition.

= k , (6 .1)

then the female connector of the /th beam may be described by the position vector

_ 1^. I cos Oi cosipi, y I + 1 sin 0 i cos (pi, Zi + 1 sin(pi} (6 .2 )

where and (pi define the orientation of the beam in azimuth and elevation. For the case 
studies envisaged here, typically the length I of the beam is 2  m, of similar length to those 
used in the ACCESS experiment described in Section 1.2.2.

If collision avoidance between the beams is to be enforced, then the distance 
between the centre of mass of two colliding beams must be defined. Thus, the centre of 
mass of each beam is given as the point halfway along the length of the beam. This may be 
described by the position vector

I

/ / . I
' iC M  =  y i  +  2 (6.3)

Thus, with the basic properties of the beam elements, the complete location and orientation 
of the male and female connectors and the centre of mass of the beam may be described 
using the state vector
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M = Iû) (6.5)

where I is the moment of inertia of the beam and free-flying vehicle combined which may 
be expressed as

I = — (6. 6) 
1 2

where ly is the moment of inertia of the free-flying vehicle. The moment caused by the 
controlling force F, is also given by

M = f |  (6.7)

where d is the characteristic dimension of the free-flyer. Re-arranging Equation 6.5 and 
Equation 6.7 results in
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(6.4)

The application of the paiallel and serial methods to the problem of assembling 
individual beam elements into useful structures demands a method of translating and 
rotating the beam elements into their final positions. This may be done by two methods, 
the first involves the use of a free-flying robot capable of grappling, rotating and 
translating the elements. In addition, the free-flyer must demonstrate the dexterity to 
assemble and manipulate the joints which will connect the beams together. The type of 
vehicle envisaged here is similai* to that of the Ranger vehicle previously discussed in 
Section 1.4.1. The second method is to include sensors and actuators within the 
constmction of each beam. In effect this creates a smart beam capable of cairying out the 
assembly tasks completely autonomously. However, this type of beam could only be 
considered to operate efficiently within the paiallel assembly regime. In addition, it may be 
noted that such a set of smart beams could provide a fully re-configurable structure as will 
be discussed later in Chapter 7.

The measure of Av, based on the assumptions made earlier regarding the properties 
of the beams, provides an approximate indication of cost for beam translation. The cost of 
beam rotation, however, is more complex. Considering the mechanism of beam rotation, a 
controlling vehicle will be required to implement an impulse thus applying a torque to the 
beam. Examining Figure 6.2, the moment applied around the centre of mass of the beam 
is given by

I
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Figure 6.2; Beam and Vehicle System.

IAci) = —FAr 
2

(6 .8)

or

IAco = —Av 
2

(6.9)

which gives an approximate relation between Av and Aco as

A 2 1  ^Av = — Aco 
d

(6 . 10)

The beam/free-flyer model which is developed here is a rudimentary one. If the model 
were to be developed further, account must be taken of the free-flying vehicle moment of 
inertia, sensor models and thruster actuation models. For the purpose of illustration in this 
thesis, the properties of the beam and free-flyer are chosen such that the manoeuvring 
impulse for rotation will be equivalent to that of a manoeuvring impulse for translation. 
Therefore, for current purposes, the cost of implementing one radian per second of rotation 
is equivalent to one metre per second of translation and so all manoeuvring impulses may 
be measured in terms of Av. With these assumptions it is then possible to quantify the 
motion of the beams.
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^C onnection  ^
In  -  i2 . I _ |2 I -  |2

«âl + |r2 - i 'i | +|r3->;2 (6 .12)

which, by including the definition of the male and female connectors, may be expressed in 
scalar form as

^ C on n ection  ^  ~  -  I COS 6  ̂  COS ( j ) ^ f  +  { x 2  ~  X^ ~  l c O S 0  ̂ C O S t p ^ f

+(%3 -  ~lcos02 cos(p2Ÿ' + (y% ~ +lsin02 COStp^Ÿ

+{y2 ~ y \ +lsin0iCosp-iŸ +{y3 (6.13)

+(zi - Z 3 -hlsincp^Ÿ + (z2 -Z i +lsinp-^Ÿ

+ ( ^ 3  ~ Z 2 +  l s i n p 2 Ÿ

Thus, the goal is reached when the male connector of beam one is connected to the female 
connector of beam three, beam two is connected to beam one and beam three is connected 
to beam two, thus forming the triangle.

The repulsive component is formed by adding a spherical Gaussian obstacle 
potential located at the centre of mass of each beam. The Gaussian obstacle potential has
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6.3 Parallel Assembly. Case I: Triangle

The simplest geometrical shape of any consequence in engineering structures is the 
triangle. Replacing the atomic model of Chapter 5 with that of the beam element, it is 
possible to proceed and develop a potential function which may be used to assemble the 
triangle.

6.3,1 Potential Function Definition

The only major difference between the structural assembly potential and the atomic 
potential is the emphasis on the connections between the elements. Thus, the total 
potential will take the form

^  ~  ^ C onnection  ^ O b s (6.11)

si

where Vconnection replaces the V̂ onds term and Vgbs replaces the VRepulsive term in Equation 
5.9. The VBonds term is based solely on minimising the distance between the centres of the 
atoms while V qi ŝ term prevents unwanted collisions. However, for the Vco n n ec tio n  term in I

structural assembly, the potential is based on minimising the distance between the male |
and female connectors of the beams. Therefore, for the triangle the connection potential 
will take the form

'II:::•r|
I
I

if



been used in this case as opposed to the power-law obstacle due to of the ease in defining 
the obstacle boundary. In addition, with only three beams considered here, this is not a 
computationally intensive problem, therefore the Gaussian potential is a logical choice. 
The potential is sized to fully enclose the entire beam, thus preventing collision. However, 
since the obstacle locations are continually moving, the magnitude of the repulsive 
potential is scaled to the separation between each beam and every other beam, viz

^  Beams ^  Beams f

X  e x p \ - B
/=i

'C G i ~  ^ C G (6.14.a)

where the distance between the two centres of mass may be expressed in scalar foim as

I’CG/ “  r CG i X i +  c o s  O f c o s  (p i -  X j  ~ ~ ~  COS 0 j  c o s  (j)

( I  / Y+ \ y i  +  — s i n 0 i c o s p i  ~ y j  ~ —s i n 0 j  c o s p j  I (6.14.b)

I .+  Zi +  — sin (p i~ Z j  —  sin (p

6 .3.2 Example

The triangular stmcture is composed of three beam elements. Each beam element is 
connected to the other two beams via a male and female connector. The potential function 
which describes the problem is derived by incorporating Equations 6.12 and 6.14 into 
Equation 6.11, thus resulting in the equation

y  = 1 I _ |2  I -  |2  , I _ |2
T i - 1 2  + I 2 - I 3 + 1 3 - 1*1

^ B e a m s  ^ B e a m  r

+ A X  2 : e xp l
1=1 7= 1, M i

■B'̂ iCM ^icM

(6.15)

To derive the control inputs for the individual beams, the translational and rotational 
components may be obtained from the gradient of the potential as described in Chapter 3. 
Differentiating the connection potential for the x-component of each beam gives
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"n ['^C onnection  ] “  (-̂ 1 ~  3̂ ) ~  (-̂ 2 ~  -̂ 1 ) (6-16.a)dXi

\y C o n n e c tio n  ] ~  (-^2 ~  — (-^3 ~  ) (6-16,b)
0 X2

I
.I
I:

^  [̂ Yo/inec7/<?/7 ] (■̂3 -̂ 2 ) (^I ^3 ) (6.16.c)

■i

and for the y-component 

d
^  \y C o n n e c tio n  ] ~  ~  }̂ 3 ) “  (>'2 “  ) (6. 16.d)

\^ C o n n ec tio n  ] “  ()'2 “  3̂1 ) ~  (%  ”  IV2 ) (6-16 .e)

[̂ Co/mfic/ü'wî ] (3̂ 3 3 2̂ ) (3̂ 1 3 3̂ ) (6.16.f)
dyz

and the z-component 

d
^  \yConnection\ (̂ 1 ^3 ) i f2 ) (6.16,g)

d z
[^ C on n ection  ] “  (̂ 2 “  ) “  (̂ 3 ~ -̂ 2 ) (6.16.h)

2

~ ^ [ ^ C o n n e c t i o n ] ~  (̂ 3 “  ^2)"^1 “  3̂ ) (6. 16.1)

The rotational components may be derived in the same manner, viz
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ddi
[yConnecHon] = { ^ 2  ~ Xi) - 1  sinOi COSpi - ( ^ 3 -yi)-lcosO i COSp̂  (6.16.j)

dO' {y C o n n e c H o n  ] == (-^3 “  ̂ 2  ) ' ̂  ̂ in 0 3  COS (j)2 ~ { y 3  ~ y 2 ) ‘  ̂COS 03 COf (^3 (6.16.k)

dO' {y C o n n e c tio n  ] =  (̂ 1 “  3̂ ) '  ̂ 3̂ CO.? 03 “  (̂ 1 “  3̂3 ) '  ̂^0.9 6 3  COS 03 (6.16.1)

^T-'fc/mecfwn] = {x2 ~ x^)-1 COS 6  ̂sirKp^+(y2 ~ yi)-1 sinO^ sinp^
# 1  (6.16.m)

-{z2 -Z\)'lcOSp^

3 — [̂ Connecf/on ] = ( ^ 3  -  ^ 3  ) • / CO.Ç <93 sifl 02 +  (^ 3  “  3^2 ) '  ̂ 6*3 sm 03
# 2  (6.16.n)

-{z3 -Z 2 )'IcOS^2

d
d(p3

[yConnection ] = {xi ~ X^)-IcosO^ sm 0 3  + (^i “  ^3  ) • / O3 sin 0 3  

- (z i-% )  /cOf03
(6 .I6 .O )

.1

The components of the obstaele potential function may be obtained from Equation 6.12 as

dxi [yobs] = ~ ^ ' ^ '

y  Beams' fefljjw I \ r
2 , C c G ,~ ^c G .j-^m -B  

=lj*i '■

2 f c G j  -XcG,) -^w {-B
M.i*i

1 CG,. ”  I'CGy

I'CGy - I ’CG,.

(6.17.a)

-  - A  - 5

ggffl'» I \ rX fcG, -y c c ,
=l.jVi

' ' cgtfHij I \ r
X  (3'CG, -3'CG,j '^ ^ ( - ^

J=lMi

1*CG,. -1  CGy

I'CGy - 1CG,

' +

(6.17.b)

i
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dZi
[Vobs] = -A -B

2  (ZCG, -Z c c J  g v j -B

^̂ ams I \ r
X [zCGj

M J^i

I'CG, “  I'CGy !+

I'CGy “  I'CG, }
(6.17.C)

The rotational components, again are obtained by differentiating the obstacle potential in a 
similar fashion, viz

dO; [ y o b s] -" ^ '

x̂"“

^  Beams

I

[sinBj c o s^ j)• pcG, -  XcG, 

[cosdj cos<j)j ) • (ycG, -  y CGi 

(s!>)0 , COJ0 j ) - ( x c G .  - % C G , ) -

{coseiCos(j>i)-[ycG. -ycG,

exp{ -B

e x p j - S r c G ,  -I'CG, }

(6.17.d)

d<ti,

B̂egins
Xr

^ B e a ms

, x ,

f—f

^CG, -  ^CGj ) ■ (egg 0 iCOS^i) +

ycG, (e g g B y C O j iÿ ,) -

ZCG, -Z C G ,)  (ggg'^, )

(̂ CC, -  ) ■ (coi coi ) +

(ycG, - y c o f  {coseJ COS<i>j)

(zCG, - Z cgJ ' M ' / ’j )

expj-Brcc, -  I'cG, j -

exp{~B CG, ~ i C G

(6.17.e)

The desired velocities of the individual beams may now be calculated using Equation 3.7 
and the components of the potential gradient derived above using

.  [ dV/dxi
4Desired=-’̂ - T ^ ^ [Vco„nec,ion] +  £ : lV o b s ]  ( 6 . 18. a )dxi dx̂

105



yi* I D esired = Y  = ' - ]  + Y F o(>J (6,18.b)|VV| à y i  d y i  *

• I dV/dzi ,
4Desired=-’̂ - f { ^  "'^ere yconneclhn ] + ̂  ] (6.18 .c)

The required angular velocities are then derived in the same manner as

6 ; dV/dOi = ~K ' , ~ where
D esired (90. d e - d o - (6.18.d)

% I _ dV/dpi
’̂ ‘loesired “  |W | <9 0 , 9 0 yComiectUm] + ̂ y O b s ]  (6 .1 S.e)

where the normed gradient of the total potential is given by

|vy| =
N ,

,5 ydXij
+

»
+

i j
+

K^^iJ
+

d(j)\ ^ r i j
(6.19)

and K is defined by Equation 3.9. The translational Av cost of the individual beams may 
be calculated from

Av̂  = H \.^i\Desired'^ [ÿ^Desiredï'^ [̂ ^Desir̂i D es ired
(6 .2 0 .a)

and the angular rotation cost, A(0  may be calculated from

Act)/ = k “ [0 /]
D esired

+
* J D es ired

(6 .2 0 .b)

The approximate relationship between Av and Aco defined in Equation 6.10 may then be 
used to determine the assembly cost of a given structure, hitervention by the controller is 
governed by the trigger mechanism described in Section 3.3.2. For the structural assembly 
case, the trigger mechanism used is given as
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V ( x ) > - V  (6.21)

Thus, convergence is assured in at least an exponential manner. This may be seen when 
Equation 6.21 is integrated to give

V>V^ exp{-t) (6 .2 2 )

A  = k y { l ~  e x p { -k 2 Vconnection )} (6 .23 )

where /ĉ  and /c2 are scaling constants. Therefore, as Vconnection vanishes at the goal, it can 
be seen that Vqî  ̂ now vanishes. Substituting the term for A, in Equation 6.14, three 
constants, B, k^, and k2 appear which must be chosen to ensure collision avoidance. This is 
far from a straightforward task. The three values currently used are

B = 1.1 (6.24.a)
ki = 550 (6.24.b)
/c2 = 0.0081 (6.24.C)

These values have chosen following an extensive parameter search and will ensure 
collision avoidance.

Implementing this potential function in free space with the three beams equally 
spaced along the x-axis on the x-y plane results in the assembly sequence shown in Figure
6.3.a, Examining the assembly procedure, the beams do converge to the goal configuration 
after approximately 120 s. It should be noted that the beams do not converge in an even 
manner to the solution. Although the physical contraction of the beam spacing to the 
solution appeal’s straightforward, the interaction of the potential function components is 
more complex. Examining Figure 6.3.b the total potential function is shown. In addition, 
the individual components of the potential are also plotted. Considering the total potential,
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Therefore, the controller has the capability to make large course corrections more often if 
the potential is large. However, as the potential decreases, control intervention becomes 
less frequent as the requirement for lai’ge course corrections decreases.

When considering the application of collision avoidance to structural assembly, a 
contradiction emerges. Collisions between elements are clearly undesirable, however, the 
elements must be also be brought into contact for connection at the appropriate time. 
Examining the total potential, the two components must vanish at the global minimum. 
Therefore, the repulsive component must be scaled to allow convergence at the appropriate 
time. This may be carried out by relating the repulsive term to the connection term by a 
modification of the constant A in Equation 6.14 to take the form



the rate of change is continuously negative definite and so conforms with Lyapunov's 
method. However, the two components, the connection and repulsive potentials, ai’e not 
constrained directly and their interaction is more complex. The connection potential can be 
seen to be continuously decreasing. In contrast though, the repulsive component varies 
considerably, hiitially, the beams are placed too close to each other, therefore, as the 
beams converge to the solution, the repulsive component begins to grow. Thus, the
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repulsive component maintains beam separation while the beams manoeuvre to the correct 
orientation. Thus, the obstacle potential moderates the pace at which the beams converge 
to the goal.

The cost of assembly in terms of total Av, for all the beams is shown in Figure
6.3.C.Î to 6,3.c.iv. Examining Figure 6.3.C.1, the total cost of assembly including both 
translation and rotation is shown for all three beams. As can be seen, the cost to each beam 
is approximately 5 m.S"h This value is reasonable, but higher than desired. Examining the 
translation and rotation components in Figures 6.3.c.ii to 6.3.c.iv, a value of 3 m.s'^ for 
translation and 2 m.s'^ for rotation is typical. Again, these values are acceptable, although 
it would be clearly desirable if they were lower.

Therefore, summarising the results;

• The parallel assembly of the triangle has been completed successfully.

• The total potential function behaviour is stable with successful convergence, 
however the behaviour of the individual components of the total potential are 
more complex.

• The cost of assembly is reasonable. However, this area will require further 
study.

■I

The assembly of the triangle has been accomplished. However, this structure may
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be said to be the simplest useful construct and can be regai'ded as a starting point only. 
Therefore a more complex structure, the square, will now be examined. This structure adds 
complexity be demanding not only an additional beam element, but also that the elements 
be connected together at a specific angle.

6.4 Parallel Assembly. Case II: Square

Considering the final configuration of the elements of a square, it can be seen that 
it differs from that of the triangle in that the triangular* structure is unique with beam 
elements of identical length resulting in an equilateral triangle. However, this does not 
hold for more complex structures. Even with a simple structure such as a square, many 
different solutions are possible which meet the goal as the potential vanishes. For example, 
the basic rhombus will also satisfy the connection requirements.

6.4.1 Potential Function Definition

To overcome the problem of connection angle, the total potential function must be 
modified and an additional term added to the potential. This results in a potential function 
of the form

y  — +  V o b s  "h ^ A n g le  (6.25)

hi addition, the connection potential must be modified to account for the four beams in the 
square structure. Thus, the modified connection potential will take the form

V = i"C onnection 1*1 -  1*4P + |**2 -  I'lP + h  ~ I2 P +k4 -1*3^1 (6.26)

where the male connector of beam one is connected to the female connector of beam four, 
beam two to one, beam three to two and finally beam four to beam three.

To obtain the square as a solution, a further criterion must be added to the potential 
function. This addition must constrain the angle at which the beams connect. The angles 
which define the orientation of the î ^̂ beam are 6  ̂and Therefore, to constrain the angles 
at which the beams are connected, a quadratic potential may be defined of the form

(6.27)

For the case of the square, the orientation of each beam must differ from its neighbours by 
%/2 while the elevation of each beam is constrained to zero. Thus, the potential function 
takes the form

no



%Angle ( ^ 1 - ^ 4 ) “ “ !  + | ( ^ 2 " ^ i ) “ “ |  +  j (^3 - ^ 2 ) - y j

+ |(0 4 - 0 3 ) + — I  + 0 1 ^+(^2 ^ +

0 5 . 2 8 )

where the goal is reached when the orientation of each beam differs from its neighbour by 
7t/ 2  and the elevation is zero. It should be noted however, that to complete a structure such 
as a square, although three angles are 7t/2 , the final corner angle is ~3%I2. This 
characteristic is simply a geometric property of the square.

6.4.2 Example

Simulating the assembly process with the above potential function produces the 
results shown in Figures 6.4. The physical convergence of the beams is shown in Figure
6.4.a. Again, convergence occurs at approximately 350 s. Following an initial phase of 
manoeuvring to reposition the beams, the square is safely formed without collision. 
Examining the potential function shown in Figure 6.4.b, the manoeuvring phase is 
appai'ent where the connection potential convergence is retarded by the repulsive potential. 
The repulsive potential increases to a point such that separation is maintained until the 
beams are positioned to allow a safe connection phase from 250 to 350 s.

The cost of assembly, again measured in terms of Av is shown in Figure 6.4.c, The 
total cost of assembly ranges from 4 to 7 m.s"h This is consistent with the cost of 
assembling the triangle in the previous section. However, surprisingly, the majority of the

Figure 6,4.a: Square Assembly.
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Av cost per beam is in the connection phase. Individually, the translation and rotational 
components of each beam are shown in Figures 6.4.d.i to iv. Again, the Av cost is higher 
in the connection phase. However, most of the cost is in the translational component. This 
is consistent with the manoeuvring phase as the bulk of manoeuvring is in the rotational 
component as the beams re-orientate themselves to allow convergence, whereupon the 
beams may then translate safely to their final position.
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Figure 6.4.d: Av Cost.

Summarising the results;
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The parallel assembly of the square has been successfully completed.

The total potential function monotonically decreases. However, the individual 
components again are more complex with the addition of the angle constraining 
potential.

The cost of assembly is reasonable. However the rotational and translation 
components have different characteristics.

The advantage of a pai'allel implementation is the simplicity of application. The elements 
are all active and the final configuration is achieved by using the total potential. However, 
this is not always practical and has led to the development of a serial implementation to 
deal with the construction of larger structures.

6.5 Serial Assembly. Case I: Triangle

Until now, it had been assumed that each beam element was grappled by a vehicle 
which was capable of implementing the translational and rotational changes required by 
the controller. However, if the assembly of larger stmctures is considered, then this 
assumption becomes less practical. It would seem more desirable to utilise only a few 
vehicles performing repetitive tasks rather than a large number of vehicles performing a 
single task. Therefore, in this section, it will be assumed that for the three beam elements, 
there will only be two vehicles available to implement the controller commands. And so, if 
the controller is to drive the potential function to the goal, the construction sequence must
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be implemented serially, rather than in parallel. This serial implementation may be 
achieved using virtual elements.

6.5.1 Virtual Elements

The controller may accomplish the serial assembly of a structure by assuming the 
existence of one or more Virtual Elements. The virtual element is a fictitious beam 
element which replaces any uncontrolled beam elements. At this point, the total potential 
may be minimised resulting in a structure consisting of real and virtual beam elements. 
The virtual elements may then be replaced by real elements as and when controlling 
vehicles become available. This is carried out by re-starting the convergence of the 
potential function.

6.5.2 Potential Function Definition

As a demonstration of the virtual element technique, the construction of the 
triangle manufactured in Section 6.3 will now be extended into a two phase process. 
Initially beam elements one and two will be assembled in phase one before assembling the 
final beam element three in phase two. Therefore, the potential function given in Equation 
6.15 will be implemented with the only modification being to the connection potential 
which will take the form

^ C onnection  2
1 I -  |2 , I _ i2 , I -  i2

1*2 ! +F2 - i ‘v| + K - n | (6.29)

where corresponds to the virtual element. The repulsive potential remains identical to 
that of Equation 6.14 as the virtual element has no need for any collision avoidance. 
Following the convergence of the potential to the goal configuration, the virtual beam will 
be replaced by the third physical beam element. Considering the two controlling vehicles, 
their objectives during the first phase is to assemble beams one and two, when both 
vehicles are assigned to these two beams. However during the second phase, one vehicle 
remains with the paitly assembled structure while the second will complete the structure 
by connecting beam element three.

6.5.3 Example

The assembly process will now be simulated using the potential function given in 
Equation 6.11, with the connection potential defined in Equation 6.29 and the repulsive 
potential defined in Equation 6.15. The initial positions of the beams are such that the 
three beams are equally spaced along the x-axis at 2 m intervals. Examining Figure 6.5.a, 
the successful assembly of the triangle is shown where the two phases of construction may 
be clearly seen. Examining the behaviour of the total potential, the two phases of 
construction become even more apparent. The total potential is shown in Figure 6.5.b and,
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starting from the initial perturbed state, the potential successfully converges in 100 s. At 
approximately 130 s the virtual element is replaced with the real third element and the 
potential is perturbed again. The potential then reconverges to the goal after approximately 
200 s. The Av cost of assembling the triangle is shown in Figure 6.5,c.i with the cost to
each beam of approximately 5 m.s‘* being of a value similar to that for the parallel
triangle. In fact, ignoring the delayed assembly of beam three, all three components have a 
Av profile similar to that of the pai'allel triangle. Therefore, in this case, it may be said that 
there is no Av penalty in moving from the parallel to serial implementation.

Summarising the results;

• The serial assembly of the triangle has been completed successfully.

• The cost of assembly is reasonable. The Av profile is similar to the parallel
implementation.

Thus, the serial implementation of the triangle assembly has been successful. The use of 
virtual elements in assembly has also been demonstrated. However the technique is 
unwieldy with the potential function being re-configured many times over. Therefore the 
following section shall examine the possibility of streamlining this process.
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6 . 6  Serial Assembly. Case II: Square

The formation of the triangle structure using virtual elements provides only one 
method of implementing a serial construction. The virtual element method essentially 
manufactures the complete structure many times over using these fictitious elements. 
However, it is more efficient to build the structure over a series of steps using potential 
functions which relate only to the active beams. This technique will again be demonstrated 
using the square structure of Section 6.4 as an example. The fundamental difference
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between this method and previous methods is that the connection potential will be 
modified many times throughout constmction.

6.6.1 Potential Function Definition

The total potential function for the serial construction of the square is identical to 
that of the parallel implementation given in Equation 6.25. However, a modification of 
the potential function is made such that the connection potential takes the form

VC. = <Connection

1 j 12

1 1 _  12
2 K “ U| f; >  f >

1 | .2
t 2 > t > t j ,

1 1 _  12
2 ^ 4 - r i | t 2 > t > t f

(6.30)

where is the initial time, and ti, 3̂ , and ty represent critical points in the manufacture 
where beam elements are added to the structure. In addition, the initial left hand beam 
element of the square will be held in place such that the female connector of the other 
elements will connect to the paitially formed structure. For example, during phase one, 
beam element one will be held stationai’y while beam element two will manoeuvre to form 
the connection. The order of manufacture of the square is that beam two shall connect to 
beam one, beam three to beam two and beam four to beam three thus completing the 
structure.

6.6.2 Example

Using the potential given in Equation 6.25 with the connection potential given in 
Equation 6.30, the overall results of the test case aie shown in Figures 6.6. The assembly 
of the square is shown in Figure 6.6.a. Starting from an initial position on the x-axis, the 
beam elements are split into two groups. Beam one is located at the origin and represents 
the site of the final structure. The remainder of the beams are distributed along the x-axis 
and represent a beam store from which the controlling vehicles will retrieve the 
constmction elements. The order of assembly and the assembly phases are clearly shown 
with beam one stationary and beam two manoeuvring to form the first connection. 
Following on, beam three then connects to the growing structure and finally beam four 
completes the square.

The behaviour of the total potential is shown in Figure 6.6.b. The perturbation of 
the potential from equilibrium is seen with three peaks shown. The first peak corresponds 
to phase one and the second and third peaks at 3100 s and 6900 s correspond to the second
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and third phases. There is no perturbation for the final phase as all the beams concerned 
are already in their correct positions. The total Av costs for the beams are shown in Figure 
6 . 6 . C .  As expected the total costs aie reasonable with values up to 5 m.s'h The first beam 
which is immobile obviously results in a null cost. However, as the complexity of the 
structure grows, and the manoeuvring required grows then the Av cost will also grow. This 
is appaient when considering the growth of Av from beam two to beam four.

Examining Figures 6 .6 .d.i to iv the individual components of the Av costs are 
shown. Again, beam one has no corresponding cost, however the remaining beams do have
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the expected increase in cost. Although beams two and three have a larger translational 
cost than rotational cost, beam four has a larger rotational cost than translational. This 
highlights the active manoeuvring required of the final beam.

Summarising the results;

• The serial assembly of the squaie has been completed successfully.

• The potential function behaviour is again stable with the individual components 
merging smoothly to form a total potential.
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Figure 6.6.d: Av Cost.
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• The cost of assembly is reasonable. However, this will again require further 
study with an optimisation strategy required. Again, the Av profile is similar to 
the parallel implementation.

• As the complexity of a serial structure grows the Av cost of the final beams will 
grow correspondingly.

Following the manufacture of the square structure, it is clear the change from a serial 
implementation to a parallel implementation is not only more practical, but advantageous 
in terms of the complexity and Av profile.

6.7 Conclusions

Using multi-body potentials and expanding them to include connection constraints 
has demonstrated the feasibility of using potential functions to manufacture specific 
structures. The parallel and serial implementation of the construction of the triangle and 
square have been successful. However, problems and limitations of each method have 
been highlighted. Thus, in conclusion;

• The parallel method is the ideal approach to using potential functions for 
manufacture. However, the number of controlling vehicles required to assemble 
the components quickly increases with the complexity of the stmcture. Thus for 
larger structures, the serial implementation becomes more relevant.

• The serial approach has proved successful. The use of virtual elements and a 
multi-component connection potential have allowed convergence to the goal 
configuration. However, with this type of structure, the configurations of 
intermediate structures must be analysed for stability during manufacture.

• Expanding the potential function to include connection constraints has been 
successful.

• The cost of assembly is reasonable, however the lack of a tmly optimal strategy 
highlights the possibility of reducing this cost.

Following on from the molecular dynamics simulation of Chapter 5, the 
manufacture of the triangle and square by parallel and serial methods has validated the use 
of multi-body potential functions. However, the potential functions described here have 
been very specific. The following chapters will examine the possibility of extending this 
technique to more general structures.
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Chapter Seven: Extended Fabrication

I
7.1 Introduction

Following on from the specific assembly problems described in Chapter 6, the 
objective is now to expand on these to form an overall strategy for assembly of pre-defined 
structures. The assembly potential functions which have been examined until now have taken 
the form

Y  — ^ O b s ^ A n gle  i )

In this chapter, the above structure shall be maintained, however, each component shall be 
expanded upon to form a more generalised approach to component assembly. In addition, the 
two-dimensional case studies examined in Chapter 6 shall be expanded to include complex 
three-dimensional structures.

The generalisation of component assembly will expand on the potential function given 
in Equation 7.1 to produce a Global Potential Function. The global potential function itself 
shall be based on a Global State Vector which comprises of the beam state vector described in 
Section 6.2 for every beam within the goal structure. Thus, using these global parameters it is 
possible to compactly describe the components within the environment. However, a method 
of describing the goal stmcture is now required. To describe the goal structure, a Connectivity 
Matrix is used. The connectivity matrix is an x matrix, where is the
total number of beams within the structure, which describes the connections within that 
structure. Therefore it becomes possible to assemble different stmctures with changes only to 
the connectivity matrix.

7.2 General Fabrication

Expanding the potential function method to general assembly problems demands the 
representation of a multi-element environment. For complex assembly problems, there will be 
multiple free-flying vehicles, not just multiple obstacles. In addition, each vehicle must also 
be aware of the position of every other vehicle. Therefore, each vehicle can be defined by a
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State vector x,- as defined in Section 6.2. Using the state vector of each vehicle, it then 
becomes possible to define a Global State Vector X, which corresponds to a system 
consisting of elements, viz.

X = {x „ x „ ...,x „ ,_ }  (7.2)

Therefore, the derivation of the global state vector now allows the construction of a Global 
Potential Function representing every element of the assembly process. The global potential 
function must be defined in such a manner as to correspond with the conventional definition 
of Lyapunov's method. Thus, the global potential function V may be described as a function 
of the global state vector, viz.

Tf = jr(3C) (7.3)

In particular, V is constructed such that

V —> 0 as X —> Xg (7.4)

where Xg is the desired final state of the elements corresponding to the assembled 
configuration of the structure. Therefore, utilising the same control function and conventions 
established in Chapter 6, the desired transitional and rotational velocities of all the individual 
free-flying vehicles may be calculated from a potential function taking the form of Equation 
7.1.

7.2.7 The Control Inputs

If the individual vehicle state vector consists of both translational and rotational 
components (i.e. a full six degree of freedom problem) then the state vector of the beam is 
given by

x,.={r,.,0,.} (7.5)

where 0, is the attitude vector of the vehicle. Using this state vector in conjunction with the 
discrete method of calculating the controls, the desired translational velocity v,' and angular 
velocity (Ô of the vehicle is given by

VgV dV
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and

. Va y
VeV = - x —  (7.7)

as detailed in Section 6.3.

Thus, the global potential function supplies the desired translational and rotational 
rates for each vehicle within the global state vector. These rates may then be used by the 
controller to supply actuator commands to each individual vehicle. The convergence of the 
controller is, in principle, guaranteed by Lyapunov's theorem. However, as demonstrated in 
Section 4.4, for complex problems local minima do exist in the potential function. It has been 
found however, that these local minima are not problematic in dynamic systems. It was found 
in Chapter 4 that local minima can occur in two-dimensional potential functions. However, 
in three dimensions these local minima may in fact be unstable saddle points. In addition, ;
since each element is in relative motion, and is repelled by its neighbours, any local minima 
may only be short-lived. Similarly, the discrete nature of the controller results in a quasi­
stochastic 'noise' which may also eject elements from any local minima which form.

7.2.2 The Connection Potential

The assembly of simple two-dimensional structures has been demonstrated in 
Chapter 6. To extend the method to include an arbitrary number of beams, as shown in 
Figure 7.1, it then becomes possible to define a potential function encompassing all the 
connections within a structure. Thus, the enhanced global potential function takes the form

^ C onnection  ~  ^ ^  ^  ^7/ (7-8)

j:
2  /=!

where r̂  and correspond to the male and female end connectors of the beam. The 

manner in which the elements are connected is determined by the connectivity matrix 
which is constructed from the logic

f 1 Connection between ü and r.
£ ~ T (7 9)

 ̂ jo  No connection between q and rj

where ( i , j) corresponds to the matrix element of column i and row j\ read from the top left of 
the connectivity matrix. Thus, a sparse matrix is obtained which consists solely of binary 
elements. For example, the connectivity matrix which corresponds to four beams formed into 
a square is given by



i+3

i+2

i+2

i+1

Figure 7.1: Generic Beam Connections.

^ij -

0 I 0 o'

0 0 1 0
0 0 0 1

' 1 0 0 0̂ (7.10)

which corresponds to beam one connecting to beam four, beam two to one, beam three to two 
and beam four to three, thus resulting in the square.

7.2,3 The Obstacle Potential

For a large global state vector, consisting of many distinct objects, the repulsive 
component must contain every possible combination resulting in a collision. Therefore, a 
term must appeal’ in the global potential relating every object to every other object within the 
global state vector. As in Chapter 6, choosing a Gaussian obstacle potential, the Global 
Obstacle Potential is given as

' ̂ Beams ^̂neains f

Vobs=Al j  X
; - i  L/=1

'̂cGi '̂cGj (Ti l )
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where corresponds to the position of the centre of mass of each object within the global 
state vector and A is defined in Equation 6.23.

7.2.4 The Angle Potential

Finally, it had been considered in Chapter 6 that the angle potential would maintain 
the angular sepaiation between two beam elements. However, it is possible to express the 
angle potential in a more general form which will place the beam in a specific orientation. 
Thus, expressing the angle potential as
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É  +% É  E  (7.12)
 ̂ i = \  ^  Z=1 7=1

results in a potential where the beam is manoeuvred to a specific orientation (0,-, The

purpose in doing so is that the target orientation may now be expressed in an explicit fashion 
independent of any other parameters. However, in some eases, the orientation of the Ẑ*̂ beam 
may also be related to the orientation of the j*  beam element. The consequence of defining 
beam orientations in such a manner is that the relative positioning of the beams may be 
important, and not the individual orientation of the beams i.e. for the construction of the 
square in Section 6,4 the beam orientations are not specified, but, the relative orientations are. 
Thus, it is possible to express the target orientation as

0 ,= / ( e , )  (7.13.a)

and

h  = g{^j)  (7.13.b)

The advantage to such a definition is that the attitude of any beam element need not be 
individually defined, thus allowing easy assembly of more complex structures.

7.3 The Connectivity Matrix

The development of the general potential function, Equation. 7.8, alters the emphasis 
on design from that of the potential function to that of the connectivity matrix. The 
connectivity matrix becomes all important and determines the exact form of the final 
structure. Therefore it is important to establish conventions for the design of the connectivity 
matrix to optimise assembly. As the size of the structure grows, then the size of the 
connectivity matrix will also grow. Thus, as the matrix becomes large, the manual 
development of the connections becomes impractical. However, the problem does lend itself



to the use of design tools such as CAD or rapid prototyping packages which include the rules 
and conventions of assembly. As examined in the following sections, this allows the 
development, storage and copying of empirical connectivity matrices for use as building 
blocks within larger, more complex, structures.

7.3.1 Common Beams

When two structures have common beams, as shown in Figure 7.2, where two square 
structures are joined along a common beam, the desired operation is as follows

8 ,-/ ,=£/,• , ® 8 ;;
^  \ g o a l  •' \ s q u a r e \  \ s q u a r e 2

(7.14)

where 0  is used to denote an appropriate union of the two matrices. Thus, knowing the 
square structure connectivity matrix, which takes the form

\ s q u a r e

fo 1 0 0
0 0 1 0
0 0 0 1
1 0  0 0

(T15)

the goal connectivity matrix may then be derived.

Figure 7.2: Common Beam Connection.

The matrix for the complete structure may be derived by first creating an x
Ngeams ^"1 1  matrix, where is the total number of elements within the completed
structure. Examining Figure 7.2, for the structure envisaged here, will clearly be
seven. In addition, if one of the squares is assumed to added to the other, then the original
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square connectivity matrix may be mapped onto the upper left quadrant of the basic matrix, 
viz.

g o a l

where the highlighted section corresponds to the square connectivity matrix. In this case, the 
common element is beam four. Therefore, the addition of the second square connectivity 
matrix to Equation 7.16.a will incoiporate changes to row and column four. This is carried 
out by adding the second matrix to the larger matrix at element (4,4), viz.

fo 1 0 0 0 0 01
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0

g o a l
(7.16.b)

thus giving the complete connectivity matrix.

7.3.2 Common Nodes

A  common node connection, as shown in Figure 7.3, is a simple connection between 
two structures involving multiple connections between beams. The corresponding operation 
to achieve the goal connectivity matrix is given by

 ̂ i tr ia n g le l
(7.17)

where ® is used to denote an appropriate union of the two matrices and the connectivity 
matrix corresponding to a triangle is given by
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Figure 7,3: Common Node Connection.

triangle

0 1 o'
0 0 1> (7.18)
1 0 0

Again, examining Figure 7.3, the goal stmcture consists of six beam elements, therefore, 
using an identical technique as for the common beam connection a null 6 x 6  matrix is 
generated. The two triangle connectivity matrices are then added to the null matrix in such a 
manner that there are no connections between the two structures, viz.

go a l

0 1 0 0 0 O'
0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

(7.19)

The information regarding which node connection to join the structures may then be 
added. The convention that the male connector corresponds to the column and the female 
connector corresponds to the row will be used. Examining the goal structure, male 
connectors one and four are connected to female connectors three and six, thus resulting in 
the additions to the connectivity matrix given by
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go a l

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0

(7.20)

where the highlighted elements correspond to the connections between the structures, thus 
generating the goal connectivity matrix.

7.3.3 Connecting Beams

A structure which demands the connection of two smaller structures using a beam is 
shown in Figure 7.4. The connectivity matrix, may again be generated using a null x
Ngeams matrix, where for this case is 7. The two triangles in the goal structure are
connected together using a single additional beam. The operation required to construct the 
goal connectivity matrix is defined as

J \goal 'j Itrianglel 8 ,'■t \beam ‘AlriangleZ (7.21)

Figure 7.4: Connecting Beam.
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The two triangular structures may then be added to the null matrix in such a fashion that they 
are unconnected. This results in the matrix

g o a l

0 1 0 0 0 0 o'
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

(7.22)

where the highlighted areas represent the two triangle matrices, given in Equation 7.18.

The information regarding the positioning of the connecting beam is now required. 
The first structure must be connected to the second structure via two nodes by a joining 
member. In essence, this type of connection is a common node connection performed for two 
nodes simultaneously. In this case, the connecting beam is beam four with the male connector 
of beam four joined to the female connector of beam three. In addition, the male connector of 
beam five is connected to the female connector of beam four. This results in the additions to 
the goal matrix shown by the highlighted areas, viz.

g o a l

' 0 1 0 0 0 0 O'
0 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

(7.23)

Although the three methods described above are all capable of deriving the 
connectivity matrix analytically, each method requires detailed information regarding the type 
and specific node information of the connection. This can be a very time consuming process, 
but may be automated using a graphical interface such as a CAD package. This allows the 
development, storage and copying of different structures which may be used in a final goal 
structure. The package is then capable of developing the complete connectivity matrix. Thus, 
the complete design system, shown in Figure 7.5 will be capable of taking a developed CAD 
model, and processing the complete connectivity matrix. Through Lyapunov's method this 
will then result directly in actuator commands to the controlling vehicles for the assembly of 
the structure.
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Figure 7.5: Design Integration.

As the size of the connectivity matrix grows, it becomes impractical to connect every 
beam in a single effort, Therefore, as discussed in Chapter 6, a method of serial 
manufacturing is required. Within the connectivity matrix, the serial assembly of a structure 
will result in the activation of only a fraction of the total matrix. If the total potential of the 
matrix is calculated, the potential will never converge since there will be inactive beam 
elements. Two methods of circumventing this problem are examined within the following 
examples and in Chapter 8. In the following examples, techniques are examined which group 
the active components of a structure into specific areas of the total matrix which are dealt 
with in a serial fashion. The second method, examined in Chapter 8 makes use of multiple 
connectivity matrices and their interaction in which all the elements aie active.

7.4 The Cube

When assembled, the cube forms a building block stmcture which may be used to 
assemble more complex structures. Therefore, this structure will be examined in detail with 
both a serial and parallel implementation. However, if the structure is assembled using a 
global potential, then the connectivity matrix must be carefully designed.

g

Î':

:,!ï.

i

7.4.1 The Connectivity Matrix

The basic cube structure may be assembled using twelve beams connected together. 
Thus, the connectivity matrix will consist of a 72 x 72 matrix. However, the structure may 
also be considered to be assembled from even simpler structures. If the cube is considered to 
be assembled from two facing squares with four connecting beams joining the corners, then 
the connectivity matrix of the cube will take the form

■!ï:

I

131



y Squarel 
[0]
[0]

ÿ Connecting 

[0]
[0]

Connecting 

'J Squarel

where [0] is a x ^ null matrix. Expressing the connectivity matrix in full gives

£ij = <

0 1 0 0 1 0 0 0 0 0 0 o'
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0

(7.25)

Thus, with the connectivity matrix, the global state vector and the global potential function, 
the cube may be assembled. In the following examples, the cube shall be assembled in both a 
parallel and serial manner.

7.4.2 Parallel Cube

The parallel assembly method implements the connectivity matrix of the cube, given 
in Equation 7.25 in a single effort using the global potential function

B̂eatws B̂eams

1=1 y=i /=1

2~
- B *-CG/ *’cG j

1 B̂eams B̂egins . O 1 Beams ‘'̂Begins r,

■ ■ ■ ^ i= i j = i

Kenms Nn

2 i=l .7=1

(7.26)
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where A is again defined in Equation 6.13 and the final two terms representing the angular 
constraints are given as

- 0 i )  =  b / 2 ,  + ; r / 2 ) (7.27.a)

which forms two square sections in the y-z plane while the connecting structure is defined 
using

(0 , .0 ,) = (O,O) (7.27.b)

Thus, assembly can proceed with the use of twelve controlling vehicles manoeuvring the 
twelve beams into the final configuration.

Propagating the assembly of the beams, the results are shown in Figures 7.6. The 
assembly of the beams into the cube is shown in Figure 7.6.a. As can be seen the beams 
converge to the goal structure in approximately 800 s. This is also shown in Figure 7.6.b 
where the behaviour of the potential function is plotted and the smooth asymptotic 
convergence is clear. However, of more interest is the cost shown in Figure 7.6.c where the 
Av cost of every beam element is shown. The maximum Av cost of any beam is 0.27 m.s'^ 
with an average value of approximately 0.2 m.s'h This is a reasonable value, however, the 
comparison between this value and a serial implementation of the cube will provide a clearer 
measure of the Av.

-2 -2
y ( m )  -  X (m)

Figure 7.6.a.i: Parallel Cube Assembly: Time = 0 s.

133



4-

3s

2 s

I
N

- 1 sJ

-2 -2y(m) -  x(m)

Figure 7.6.a.ii: Parallel Cube Assembly: Time = 25 s.
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Figure 7.6.a.iii: Parallel Cube Assembly: Time = 50 s.
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Figure 7.6.a.iv; Parallel Cube Assembly: Time = 75 s.

-2 -2y(m) -  X (m)

Figure 7.6.a.v: Parallel Cube Assembly: Time = 100 s.
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Figure 7.6.a.vi: Parallel Cube Assembly: Time =125 s.
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Figure 7.6.a.vii: Parallel Cube Assembly: Time = 150 s.
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Figure 7.6.a.viii; Parallel Cube Assembly: Time = 500 s.
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Figure 7.6.c: Av Cost.

7.43 Serial Cube

The serial case differs from the parallel case primarily in the number of vehicles 
required to assemble the cube. For the serial cube, only four vehicles are required. However, 
with the 12 X 12 connectivity matrix, it is clear that the cube must be assembled in stages. 
Thus, dividing the connectivity matrix into three sections, the full matrix becomes

I
0 1 0 0

II
,1 0 0 0

III
0 0 0 0 ^

0 0 1 0 ;o 1 0 0 0 0 0 0

0 0 0 1 :o 0 1 0 0 0 0 0

1 0 0 0 :o 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

p 0 0 0 0 0 0 0 1 0 0 0 ^ C 7 . 2 8 )

where section I corresponds to the constmction of a squaie base, section II is the addition of 
the connecting beams while the remaining section III corresponds to the final square structure 
required to complete the cube.

Implementing the potential function, the results for the successful assembly of the 
cube are shown in Figures 7.7. The assembly of the beams into the cube is shown in Figure
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7.7.a. As can be seen, the beams do converge, in three phases, to the desired cube structure. 
However, the time of assembly is now 2800 s with the three phases completing in 200, 1000 
and 2800 s respectively. This is shown in Figure 7.7.b where the potential function is plotted 
and the three phases are clear with each phase converging in a smooth and stable manner. The 
Av cost, shown in Figure 7.7.c again demonstrates a slightly higher Av value than the parallel 
case. The maximum Av cost of any beam is 0.4 m.s'^ with an average value of 0.25 m.s'h 
However, the total cost of assembly is borne over four vehicles rather than twelve, thus the 
average propellant requirement of eveiy vehicle is higher than that of the paiallel case.

E
N

-2

■2 -2y  ( m ) X  ( m )

Figure 7.7.a.i: Serial Cube Assembly: Time = 0 s.
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y(m) -  x(m)

Figure 7,7.a.ii; Serial Cube Assembly: Time = 25 s.
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Figure 7.7.a.iii; Serial Cube Assembly: Time = 50 s.
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Figure 7.7.a.vi: Serial Cube Assembly: Time = 500 s.

y (m) -2  -2 X  ( m )

Figure 7.7.a.vii: Serial Cube Assembly: Time = 750 s.
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Figure 7.7,a,viü: Serial Cube Assembly: Time = 1000 s.
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Figure 7.7.a.ix: Serial Cube Assembly: Time = 1500 s.
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Figure 7.7.a.x: Serial Cube Assembly: Time = 2900 s.
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Figure 7.7.b; Potential Function.
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Figure 1.1.c: Av Cost.

7.4.4 Comparison of Serial and Parallel Cases

The contrast between the serial and parallel assembly of the cube highlights problems 
and impracticalities associated with both methods. The principal consideration with this 
analysis is that the resources required to assemble the cube are minimised. Therefore, the 
topics which must be considered are as follows;

• The total number of controlling vehicles required to assemble the structure,

• The Av cost of assembly.

• The dexterity and complexity of movement required of the controlling vehicles.

Considering the parallel case, although the assembly time was far less than that of the 
serial case, the demands on the controlling vehicles were high with multiple operations being 
carried out simultaneously. If the cube were to be assembled in parallel, the controlling 
vehicles would find the task of connecting the structure simultaneously more complex than if 
it were connected together one joint at a time. However the overall Av cost is considerably 
lower per vehicle, especially in light of the higher Av being distributed over fewer vehicles 
with the serial case. With the parallel case, the results here suggest that a smart beam rather 
than a distinct controlling vehicle is more practical, as will be discussed later.

hi contrast, the serial case does lower the initial resources required for assembly, 
especially in the area of sensors, communications and dexterity of the controlling vehicle. The 
practicality of performing a series of simple manoeuvres cannot be ignored. However, the Av 
cost of performing these manoeuvres is high. It is possible for the vehicle to perform as much
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as three or four operations requiring 2-4 m.S'  ̂ of Av. An additional problem which is inherent 
within the serial method is that the potential function will approach the goal configuration in 
an exponential manner. Therefore, a cut-off value of potential is introduced whereby the 
potential never vanishes, but leaves a residual potential from every operation. This residual 
may accumulate over a number of operations since the total potential is measured over the 
whole connection set. Therefore, errors are introduced to the structure and later operations 
may never reach the cut-off potential value.

7.5 Carbon 60

Following the successful assembly of the cube, it is now possible to expand the size of 
the connectivity matrix to include more beam elements and larger structures. As an example 
of a large assembly problem, the Carbon 60, or bucky ball structure shall now be considered. 
The bucky ball structure is a spherical structure consisting of 20 hexagons and 12 pentagons 
connected together to form a faceted ball. A common example of such a structure is a 
geodesic dome. Consisting of 90 beams connected together at 60 joint nodes, the ball 
structure represents the most complex stmcture examined within this thesis. The derivation of 
the connectivity matrix, and the large amount of infoianation contained to construct the bucky 
ball requires a re-examination of the connectivity matrix and the formation of a Connection 
Set,

7.5,1 The Connectivity Matrix

For a structure containing 90 beam elements, the connectivity matrix would require a 
90 X 90 array. Thus, a matrix containing 8100 elements would be required. This is not 
practical, especially when considering that only 90 of these elements would contain data and 
the remainder would be null. Therefore, a more efficient approach is required which will store 
the connections in an condensed form. One method of storing this information is to consider 
the co-ordinates of the connections within the matrix, i.e. the connectivity matrix of the 
square, given in Equation 7.10, may be written as

G s „ „ „ r . = { i . l A )  (2 ,1) (3,2) (4,3)} (7.29)

where G is the connection set of the square and each co-ordinate represents the position of the 
active joints within the connection matrix in the form (/, j).

The bucky ball structure is assembled from 20 hexagons and 12 pentagons connected 
together at common beams. However, the ball itself may be considered to consist of two cap 
structures connected together by a joining centre section at common beams, as shown in 
Figure 7.8, viz.
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£„ .| [0 ] [0 ]
€::\ = *  

^ 1 Bucky [0 ] e,,|
•' \ Centre [0 ]

[0 ] [0 ] £,.,1
'l\C a p 2 ^

(7.30)

The two cap sections may be assembled from a single pentagon connected to 5 hexagons at 
common beams. Thus, the derivation of the connectivity matrix for the cap may be expressed 
as

£..\ = £;;
J \Cap ■' I Pentagon

5X6 I Hexagon
(731)

where the connectivity matrix of the pentagon is given as

£,7 =<
'J I Pentagon

0 1 0 0 o'
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

(732)

and the angle constraints are defined as

-10

G a p  1

C e n t r e

- 1 5 ' -----------------
-10  -8

C a p  2

- 6  - 4  - 2 0
x(m)

8 10

Figure 7.8: Bucky Ball
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The connectivity matrix of the hexagon is given as

‘J I Hexagon

'0 1 0 0 0 o'
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

(7.34)

and the angle constraints are defined as

(e7.a=h-.+f.̂ “ (7.35)

where ^ is a variable which constrains the elements to a single plane.

Deriving the connectivity matrix of the cap stmcture then results in a matrix 
consisting 25 rows and columns with 625 entries. However, it is simpler to express the 
connectivity matrix as a connection set, viz.

Cap

' (1,5) (2 ,1) (%2 ) (4,3) (5,4) '
(6 ,1) (7,2) (%3) (9,4) (10,5)

(11 ,6 ) (12,7) (13,8) (14,9) (15,10)
(16,6) (17,7) (18,8) (19,9) (2 0 ,1 0 )
(2 khO (2 2 ,1 2 ) (23,13) (24,14) (25,15)

(7.36)

Thus, with a connection set for the two cap sections, the centre section may be derived in a 
similar fashion. The central section of the bucky ball may itself be assembled from smaller 
components. Although the full structure consists of 10 pentagons and 10 hexagons connected 
at common beams, it is possible to connect a single pentagon and hexagon together which 
may then be tiled to form the complete stmcture. The connectivity matrix of the pentagon and 
hexagon structure is derived from

s J  ” £,7
J \Seclion Pentagon

£::
J I Hexagon

(7.37)
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where the two structures are joined at common beams. Thus, the connectivity matrix is given 
as

 ̂I Section

0 1 0 0 0 0 0 0 0 O'
0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 ;

0 0 0 0 1 0 0 0 0 0 ■
0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

(7.38)

The complete centre section of the bucky ball may then be obtained by tiling the section 
structure into a ring. This may be expressed as

eJ =10x6,7
'J \C entre iSection

(7.39)

which, when carried out, results in a connectivity matrix of 40 rows and columns. Expressing 
this as a connection set gives

Ĉentre

(1,6 ) (2 ,1) (3,2) (4,3) (5,4) (6,5) (7,6) '
(8.7) (9,8) (10,9) (11 ,1) (1 2 ,1 1) (13,12) (14,13)

(15,11) (16,15) (17,16) (18,12) (19,18) (20,19) (2 1 ,2 0 )
(22,18) (23,22) (24,23) (25,19) (26,25) (27,26) (28,27)
(29,25) (30,29) (31,30) (32,26) (33,32) (34,33) (35,34)
(36,32) (37,36) (38,37) (39,33) (40,39) (41,40) (42,41)
(43,39) (44,43) (45,44) (46,40) (47,46) (48,47) (49,48)
(50,46) (51,50) (52,51) (53,47) (54,53) (55,54) (56,55)
(57,53) (58,57) (59,58) (60,54) (60,54) (62,61) (63,62)
(64,60) (65,64) (66,65) (67,61) (6 8 ,1 0 ) (69,3) (70,69)

(7.40)
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The connectivity matrix of the complete bucky ball may then be calculated from Equation 
7.30 and renumbering the beam elements. The resulting matrix may then be expressed by the 
connection set given in Equation 7.41.

B̂ucky -  <

' (15) (2 ,1) (3,2) (4,3) (5,4) '
(6 .1) (7,2) (8,3) (9,4) (10,5)

(1 1 ,1 0 ) (1 2 ,6 ) (13,7) (14,8) (15,9)
(16,7) (17,8) (18,9) (19,10) (2 0 ,6 )
(21,16) (22,17) (23,18) (24,19) (25,20)
(26,21) (27,22) (28,23) (29,24) (30,25)
(31,16) (32,17) (33,18) (34,19) (35,20)
(36,26) (37,27) (38,28) (39,29) (40,30)
(41,31) (42,32) (43,33) (44,34) (45,35)
(46,26) (47,27) (48,28) (49,29) (50,30)
(51,41) (52,42) (53,43) (54,44) (55,45)
(56,45) (57,41) (58,42) (59,43) (60,44)
(61,52) (62,53) (63,54) (64,55) (65,51)
(66,65) (67,61) (68,62) (69,63) (70,64)
(71,61) (72,62) (73,63) (74,64) (75,65)
(76,66) (77,67) (78,68) (79,69) (80,70)
(81,72) (82,73) (83,74) (84,75) (85,71)
(86,81) (87,82) (88,83) (89,84) (90,85)

(7.41)

The connection angles of the structure need not be explicitly expressed. If the 
structure is assembled from the 2 0  hexagons, then the relative positioning of each beam 
within the structure shall come from its position within the pentagon and hexagon. To 
assemble a ninety beam strueture using a parallel method would require the use of ninety 
controlling vehicles. This is an unfeasibly large number of vehicles, especially when 
considering the sensor and communication requirements of a such a large group. However, 
the assembly process may be simplified considerably if a serial construction is considered. In 
fact, the construction of the connection set allows the structure to be assembled with a 
minimum of five controlling vehicles.

7.5.2 Results

The assembly of the bucky ball structure is carried out using the connection set in 
Equation 7.41 and the global potential function given in Equation 7.26. Propagating the 
assembly of the beams, the results are shown in Figures 7.9. The convergence of the global 
potential function is shown in Figure 7.9.a. As can be seen, the time of assembly is 3400 s 
and occurs in 18 stages with the connection set being implemented in groups of 5. The 
assembly of the structure is shown in the series of plots Figures 7.9.b. The plot shows the
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m

assembly of the stmcture at 500 s intervals. As can be seen, the assembly occurs in groups of 
five, and the final stmcture is successfully completed.

3500

3000

2500

_  2000

1500

1000

500

500 1000 1500 2000 2500 3000 3500
time (s)

Figure 7.9.a: Potential Function.

y (m) - 5  - 5
X (m)

Figure 7.9.b.i: Bucky Ball Assembly: Time = 0 s.
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y (m) - 5  - 5
X (m)

Figure 7.9.b.ii: Bucky Bail Assembly: Time = 500 s.

y (m) - 5  - 5
X (m)

Figure 7.9.b.iii; Bucky Bail Assembly: Time = 1000 s.
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y  ( m ) - 5  _5 X  ( m )

Figure 7.9.b.iv: Bucky Bail Assembly: Time = 1500 s.
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Figure 7.9.b.v: Bucky Bail Assembly: Time = 2000 s.
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y (m) - 5  - 5
X (m)

Figure 7.9.b.vi: Bucky Bail Assembly: Time = 2500 s.

y (m) - 5  - 5
X (m)

Figure 7.9.b.vii; Bucky Bail Assembly: Time = 3000 s.
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-5  - 5- x(m)

Figure 7.9.b.viii: Bucky Ball Assembly: Time = 3250 s.

7.6 Variable Structures

Until this point, the application of the potential function method has been to on-orbit 
assembly. In this section, the method shall again be used to assemble a structure. However, 
following completion of the structure, the method shall then be used to modify the properties 
of the structure. For the two cases examined here, firstly, the geometry, and then the topology 
of the structure shall be altered. For the first case, the orientation of specific beams within the 
structure shall be modified to alter the overall geometry of the structure, hi the second case 
the structure shall be reconfigured into a new topology.

One of the difficulties which would be encountered when assembling these structures 
would be the extensive manoeuvring required in proximity to the other beams and vehicles. 
Although the repulsive potential would ensure sepaiation, the task is made all the more 
complex by the presence of the controlling vehicles. One method to ease this problem would 
be to eliminate the controlling vehicles. This may be done by creating a smart beam. A smait 
beam would include all the thrusters and sensors required to assemble the structure as an 
integral part of the beam. Therefore, there would be no need for a sepai'ate controlling entity. 
This would obviously be inefficient when consider structures that would be static for long 
periods of time, however, for adaptive structures they would be ideally suited. This 
application is considered in more depth in Chapter 9.

The application envisaged here is that of the deployment of a supporting structure of a 
large reflector. As the structure geometry changes, the attached reflector will also begin to

f
■I

i.

Î:
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deploy. In the second case, a cube shall be formed which will then be altered to form a twelve 
sided polygon. The practical application of this would be the transformation of a structure 
during a mission from a load bearing structure to a sensor array. Such reconfigurable 
spacecraft may have interesting applications for future planetary missions. For example, the 
load bearing structure may be required for Earth escape and orbit insertion burns. However, 
once injected into orbit about the target body, the spacecraft may unfold into a new 
configuration to maximise the exposed area and sensor attachment points for mapping and 
remote sensing applications.

7.6.1 Variable Geometiy: The Connectivity Matrix

The supporting structure of the reflector is identical to that of the cap structure given 
in Equation 7,36. Constructed from a central pentagon base structure, the base is surrounded 
by five hexagons which will support the reflector mesh. The orientation of the individual 
beams, again as with the bucky ball comes from the relative positioning of the beams. 
However, examining Figure 7.10, it can be seen that five radial elements are formed within 
the structure corresponding to beam elements 6  to 10. These elements aie fixed in azimuth, 
however, it becomes possible to vary the elevation of these beams and the remainder of the 
structure shall follow as the structure moves to a new equilibrium. It is this property that will 
allow the structure to be moved from a stowed, folded position to the deployed position. Such 
stowed position may represent the cruise phase of an interplanetary mission, while the 
deployed position represents on-orbit operations. Thus, if the elevation of the beams 6  to 10 
are to be varied, then the angle potential for these elements becomes

1 lU
(7.42)

Figure 7.10: Reflector Structure.
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where the target elevation may be varied with time, viz.

0 - / W  (7.43)

allowing the stmcture to be moved from the stowed to the deployed position.

7.(5.2 Variable Geometry: Results

The example is simulated using the global potential function defined in Equation 
7.26 in conjunction with the connection set given in Equation 7.36 and the target orientations 
given in Equation 7.43. Examining Figure 7.11.a, the potential function behaviour is shown 
with a smooth convergence to the goal. However, if the plot is examined in close detail, as 
shown in Figure 7.11.b, the vaiiation in the potential caused by the vaiiation in the elevation 
of the beams as the structure is deployed may be clearly seen. The variation in the controlled 
angle may be cleaiiy seen in Figure 7.1 l.c and, in addition, the variation in the beam 
elevation as the structure is deployed. The goal elevation of the beams is determined by the 
function

(7.44)
T + t

where T is the initial deployment time and A is a constant.

Thus, considering the potential function behaviour, the initial increase in potential following 
the deployment is caused by the initial rate of change in elevation swamping the global 
potential function. As the rate of change of elevation decreases, then the potential function 
may again start to converge. The formation of the structure, and its deployment, may be 
clearly seen in Figures 7.1I.d. Considering the physical assembly of this structure, following 
the initial assembly, no control vehicle intervention would be required. However, a form of 
smart joint would be required which would be capable of uniformly adjusting the beam 
elevations. This will be discussed further in Chapter 9.
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Figure 7.11.a: Potential Function.
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Figure 7.11.b: Potential Function.
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Figure 7.11.c; Controlled Angle.
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Figure 7.11.d,i: Deployment: Time = 0 s.
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Figure T.ll.d.ii: Deployment: Time = 500 s.
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Figure 7.11.d.iii: Deployment: Time = 1000 s.
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Figure 7.11.d.lvî Deployment: Time = 2000 s.
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Figure 7.11.d.v: Deployment; Time -  3000 s.
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Figure 7.11.d.vi; Deployment: Time = 4000 s.

0

2

4

6

8

10
- 5

5  5 y  ( m )X  ( m )

- 5

Figure 7.11.d,vii: Deployment; Time = 5000 s.
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Figure 7,ll.d.viii; Deployment: Time = 8000 s.

7.6.3 Variable Topology: The Connectivity Matrix

In this example, a set of smart beams will be used to reconfigure the topology of a 
structure. A cube will be considered as the initial structure and, using potential function 
methods, will be reconfigured to a polygon. The connectivity matrix of the cube structure 
from which the goal structure will deploy has been previously defined in Equation 7.10. 
However, the connectivity matrix of the target structure corresponds to a twelve sided 
polygon with the connectivity matrix

(7.45)
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0 1 0 0 0 0 0 0 0 0 0 O'
0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
1 -

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0



The angle potential of the cube has been previously defined in Section 7.4.2, however, the 
target orientation of the polygon is defined as

(7.46)

thus forming the polygon in the x-y plane.

7.6.4 Variable Topology: Results

This example is again simulated using the global potential function defined in 
Equation 7.26 in conjunction with the connection set for the cube given in Equation 7.25, 
the target orientations given in Equation 7.27, the connection set for the polygon given in 
Equation 7.45 and the target orientation given in Equation 7.46. The potential function of 
the example is shown in Figure 7.12.a. As can be seen, following convergence to the cube 
structure, the change in connection set results in a marked increase in the potential function. 
However, following convergence, the structure then reconverges to the second, polygon 
structure. The physical reconfiguration of the beams may be seen in Figure 7.12.b as the cube 
is formed and then reconfigured.
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Figure 7.12.a: Potential Function.
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Figure 7.12.b.i; Reconfigure: Time -  0 s.

-2 -2y(m) -  X (m)

Figure 7.12.b.îi; Reconfigure: Time = 100 s.
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Figure 7.12.b.iii: Reconfigure: Time = 200 s.
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Figure 7.12.b.iv: Reconfigure: Time = 300 s.
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Figure 7.12.b.v: Reconfigure: Time = 400 s.
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Figure 7.12,b,vi; Reconfigure: Time = 500 s.
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Figure 7.12.b.vii: Reconfigure: Time -  600 s.

4

3

2

1

0

1

-2
4

y{m ) x(m)

Figure 7.12.b.viii; Reconfigure: Time = 1100 s.

168



7.7 Conclusions

Examining the technique developed, it becomes appaient that for these structures, the 
expansion of the basic matrices to a Global Connectivity matrix follows a simple set of rules. 
However, it is the concept that these rules may be applied at all which allows the possibility 
of a broader, more complex construction strategy. Although the overall assembly process 
may be complex, this method allows the problem to be analytically broken down into the 
solution of a set of simpler sub-problems. Therefore, the development of a global potential 
function and a global connectivity matrix may be considered to be a success. In addition, the 
concept of a smart joint and beam system lends the method to a new class of smait, and 
adaptive structures. These reconfigurable structures may have interesting applications for 
future Earth orbiting and missions.
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Chapter Eight: Control Architecture

Subsume: Include in a rule, class, category

Oxford English Dictionary

8.1 Introduction

As previously discussed, a structure need not be assembled in a single effort. The 
implementation of a planned sequence of tasks leads to reduced assembly times and can 
simplify complex assembly problems. As with terrestrial construction, components can be 
prefabricated and assembled on site in a pre-planned assembly sequence. As the size and 
complexity of the structure increases, the required planning sequence also grows. Therefore, a 
requirement exists for an overall strategy of construction. It is possible to pre-define a 
construction strategy inherent within the design of the controller architecture. The strategy 
considered here is that of a subsumption-type architecture.

8.2 Subsumption

Treating the complete group of assembly vehicles as a population, a subsumptive-type 
architecture becomes possible. If the population is divided into groups or teams capable of 
working independently or in conjunction with the other teams, the capability and 
effectiveness of the population is much greater than by treating the population as a single 
entity. The relevance of this technique to the assembly method developed here is that the 
population is no longer dependent upon a single connectivity matrix. In fact, each team may 
have its own connectivity matrix. In physical terms, the teams will assemble sub-components 
which will be assembled into the larger goal structure. Thus, the use of teams within the 
vehicle population allows the advantage of parallel assembly to be combined with the 
practicality of serial assembly.

The subsumption architecture requires a method of dividing the population of 
assembly vehicles. In addition, the beam elements required to assemble a structure must be 
managed, therefore, an overseer is required to manage and react to the whole environment. 
This may be carried out with the use of a top level controller whose duties ai*e to divide the 
population into teams, and in addition allocate resources. Future overseer controllers may 
implement definite strategies. However, for the structures assembled here, the allocation of

%
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resources will be pre-defined. Defining this overseer controller as the Primary controller, the 
assembly of sub-components and resources will be allocated to a set of Secondary controllers, 
thus resulting in a management tree similar to that shown in Figure 8.1. This management 
scheme is best demonstrated by example.

TERTIARY
CONTROLLER

TERTIARY
CONTROLLER

PRIMARY
CONTROLLER

SECONDARY
CONTROLLER

SECONDARY
CONTROLLER

Figure 8.1: Subsumption Architecture.

8.3 Case Study: Cube Assembly

The cube assemblies carried out in Section 7.4 demonstrated the practicalities of the 
structure in both the parallel and serial case. However, as discussed, each method has its 
advantages and disadvantages. If the subsumption approach is adopted, then the assembly 
procedure may be broken into two components. The assembly sequence envisaged is shown 
in Figure 8.2. The square base shown in the figure is assembled first. A second more 
complex table-like structure is then added to the base to form the cube.

&

8.3.1 Potential Function Definition

Examining the architecture required to assemble the cube, the primaiy controller is 
required to task two secondary controllers to assemble the two separate components of the 
cube. The secondary controller tasked with assembling the base unit utilises the potential 
function given in Equation 7.26 with the following connection set

(2,1) (3.2) (4,3)} (8.1)

This is the well known connection set associated with the assembly of a square. The primary 
controller will allocate to the assembly of the base, four beam elements and four controlling 
vehicles. On completion of the base, these four controlling vehicles will return to the general
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Figure 8.2: Cube Assembly.

population of vehicles for reassignment. In this case reassignment to the secondary controller 
tasked with building the second table-like structure.

The secondary controller tasked with assembling the table-like stmcture again will 
make use of the general potential function given in Equation 7,26. The connection set 
required to assemble the components is given by

G E xtension

(5,cJi) (6 , 0 -2 ) (7 . 0 -3 ) (8 . 0 -4 )'
(9,5) (10,6) (11,7) (12,8)
(9,12) (10,9) (11,10) (12,11)

(8.2)

where or (i = 1 - 4) is the connection points of the secondary structure to the base structure. In 
this case, the values will b e l ,  2, 3, 4. Thus these two connectivity sets complete the full 
connectivity set as given in Section 7.4. The primary controller will assign to the secondary 
controller eight beams and the corresponding eight controlling vehicles. Thus the total 
population required to assemble the cube structure is eight vehicles for a total number of 
twelve beams.

8.3.2 Results

The two stages of assembly ai'e apparent when examining the potential shown in 
Figure 8.3.a. The initial stage may be seen to converge to the solution after approximately 
500 seconds. The second stage is then activated by the primary controller which perturbs the 
potential from the equilibrium state. The potential again re-converges to the solution. Thus, 
the cube structure is constructed successfully. Therefore, it is possible to expand the 
subsumption architecture to a more ambitious structure, such as load bearing tmss.

172



700

600

500

_  400

300

200

100

200 400 600 800 1000 1200 1400 1600 1800 2000
time (s)

Figure 8.3.a: Potential Function.

Examining the series of plots shown in Figure 8.3.b, the assembly of the cube 
proceeds as expected in two stages. It should be noted that an additional quadratic potential 
has been added to the total potential to position the base unit at the origin. After 1,000 s, the 
base square is complete and the second table structure assembly has began. The assembly of 
the second structure, and thus the final goal structure is completed by 3,000 s. As can be seen, 
the components aie successfully assembled into the goal structure.
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Figure 8.3.b.i; Cube Assembly: Time = 0 s.
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Figure 8.3.b.ii: Cube Assembly: Time =125 s.

-4 -4■ X(m)

Figure 8.3.b.iii: Cube Assembly; Time = 250 s.
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Figure 8.3.b.iv: Cube Assembly: Time = 500 s.
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Figure 8.3.b.v: Cube Assembly: Time == 675 s.
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Figure 8.3,b.vi: Cube Assembly: Time = 750 s.
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Figure 8.3.b.vii: Cube Assembly: Time = 1850 s.
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8.4 Case Study: Truss Assembly

The truss structure shown in Figure 8.4 represents one of the strongest, yet simplest 
structures in common use. The truss consists of forty four beam elements rigidly connected to 
form a larger load bearing structure. The assembly sequence for the truss is based upon the 
cube assembled in Section 8.3. Following the assembly of the cube, the table-like structure 
previously assembled as the second component of the cube may be used to extend the cube in 
a given direction. Examining Figure 8.4, the breakdown of the assembly sequence is shown 
with the initial base cube being extended.

Considering the architecture required to assemble the truss, initially a primary 
controller is required which will devolve tasks to a secondary set of controllers. Examining 
Figure 8.5, the architecture is shown with the primary controller controlling two secondary 
controllers. The secondary controllers are responsible for the assembly of the cube base and 
the extension structure. An advantage of the subsumption architecture is that the secondary 
controller responsible for the assembly of the cube is identical in every respect to that of the 
primary controller used in Section 8.3. Therefore it may be stated that any structure 
previously assembled may be incorporated into another larger structure. Thus, it becomes 
possible to build a library of validated building block structures which may be quickly and 
easily assembled into larger, more practical structures.

Figure 8.4; Truss Structure.

TRUSS

EXTENSIONCUBE BASE

Figure 8.5: Truss Controller Architecture.
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8A.1 Potential Function Definition

Considering Figure 8.5, the architecture required to assemble the truss requires two 
secondary controllers. The first of the two secondary controllers is the cube controller 
previously developed. This controller is tasked with extending the cube structure and is very 
similar to that of the extension unit controller used previously. The only difference is that the 
connection site of the extension structure must be updated with every extension unit added. 
The total length of the truss structure envisaged here is five units. Therefore, from the cube, 
the extension unit controller will add four units with each unit connection set specified by 
Equation 8.2 with an updated connection site. Again, considering the population size, the 
total number of vehicles required to assemble the truss is derived from the largest single task 
required to assemble the structure, i.e. the extension unit requires eight vehicles for assembly, 
therefore the total population required to assemble the truss structure is eight vehicles.

#

8A.2 Results

The addition of the extension structure and the displacement from equilibrium that 
results may be clearly seen in the behaviour of the global potential, shown in Figure 8.6.a. 
The potential is repeatedly displaced by the activation of the secondary controllers. However, 
every time a controller is activated and the potential displaced, Lyapunov's theorem 
guarantees that the potential converges to the goal. Thus the final result is that of the goal 
structure. The simulation of the assembly problem is shown in Figures 8.6.b, The assembly is 
caiTied out by eight free-flying vehicles requiring a total time of 5250 s (87.5 minutes). From 
the simulation, the assembly of the cube structure is cleat'. From the initial cube structure, the 
addition of the remaining extension structures can be seen with a finished goal structure of a 
five bay truss.
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Figure 8.6.a: Potential Function.
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Figure 8.6.b.i: Truss Assembly: Time = 0 s.
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Figure 8.6.b.ii: Truss Assembly: Time = 500 s.
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Figure 8.6.b.iii: Truss Assembly: Time = 1000 s.
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Figure 8.6.b.iv: Truss Assembly: Time = 2000 s.
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Figure 8.6.b.v: Truss Assembly: Time = 2750 s.
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Figure 8.6.b.vi: Truss Assembly: Time = 3750 s.
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Figure 8.6.b.vii: Truss Assembly: Time = 4750 s.

- 4  0“ X (m)

Figure 8.6.b.viii; Truss Assembly: Time = 5295 s.
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8.5 Case Study: Truss Cube Assembly

The assembly of the cube stmcture and the subsequent assembly of the truss has 
demonstrated the use of a subsumption aichitecture in conjunction with a primary controller. 
However, each of these structures has made use of a single team of assembly vehicles 
assembling sub-components in a serial fashion. If a multi-team vehicle population is to be 
demonstrated, a goal structure must be defined which requires such a population. Such a 
structure is the truss-cube. A truss-cube, is a simple cube where each edge is assembled not 
from beams, but from the truss assembly. Thus, it is possible to have individual teams of 
vehicles assembling individual trusses.

The use of multi-team populations and the subsequent simulation of assembly lends 
itself to a paiticular type of simulation. In this case study, each team has been simulated by a 
separate processor in a cluster of workstations using the Parallel Virtual Machine (PVM) 
environment. Each team's assembly tasks is carried out as normal by an individual processor, 
however, careful consideration must be given to the information flow between the processor 
and thus the teams. Therefore, it is possible to have a team operating on two distinct levels. 
The first level is that within the team, which demands communication between the vehicles 
pertaining to position and velocity, which may be handled by a single processor. The second 
level is communication between the team controller and the primary controller regarding task 
completion and resource allocation. This is dealt with by an overseer processor which 
communicates with all the processors within the cluster.

Therefore, the use of a parallel computing environment has allowed a realistic 
simulation of a total population of vehicles performing complex assembly problems. This 
leads to the definition of sensor and information flow specifications between the teams and 
individual team members. Currently, for the structure envisaged here, the micro­
communications between team members shall be as normal, with full position and velocity 
infomiation being broadcast to other team members. However, the macro-communications 
between the teams themselves shall be limited to position information and times of 
completion for individual tasks. One ai*ea not examined here is that of collisions between 
vehicles on separate teams. However, this is easily circumvented by placing larger repulsive 
potential spheres around the whole team and broadcasting that information to the remainder 
of the population as opposed to the broadcasting of position information of each individual 
team member.

8.5.1 Potential Function Development

The potential function used in this example is that given in Equation 7.26. As 
previously described, this potential function will be used within every team to complete the 
desired tasks. The connection set of every team however, shall be determined by the team 
primary controller and may differ from team to team. The truss-cube structure envisaged here 
consists of thi'ce hundred and thirty six beam elements. The maximum number of teams
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employed shall be six, each consisting of eight members resulting in a total population of 
forty-eight assembly vehicles. Thus the total number of processors required to simulate 
assembly is also six. The maximum number of vehicles employed at any given time is forty- 
eight, with a minimum of four vehicles for the initial base assembly tasks.

The full subsumptive architecture is shown in Figure 8.7 with the primary truss-cube 
controller utilising the previously developed truss controllers. The only additional connection 
set derived for this structure which has not been previously employed has been added to the 
truss controller to allow two truss elements to join together to form a corner joint. This 
connection set consists of a truncated extension structure given by

=  (2 .^ 2 )  (3.0-3) (4 .O 4 )} (8.3)

where 0\ (i=l - 4), are the female connection points on the main structure. Thus, using the 
connecting element, the sides of the cube may be joined and the goal structure assembled.

EXTENSIONCUBE BASE

TRUSS CUBE

TRUSS

Figure 8.7: Truss Cube Controller Architecture.

8.5.2 Results

The simulation of the assembly problem is shown in Figure 8.8. The assembly was 
carried out in a total time of 267 minutes. From the simulation of the assembly, the growth of 
the goal cube structure is clear. The initial base cube structure, the addition of the truss and 
the growth of the structure in three dimensions are clear.
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Figure 8.8.1: Truss Cube Assembly: Time -  0 s.
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Figure 8.8.Ü: Truss Cube Assembly: Time = 500 s.

185



15 15 X (m )

y (m )

Figure 8.8.iii: Truss Cube Assembly: Time = 1000 s.
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Figure 8.8.iv: Truss Cube Assembly: Time = 1500 s.
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Figure 8.8.v: Truss Cube Assembly: Time = 2000 s.
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Figure 8.8.vi: Truss Cube Assembly: Time = 2230 s.
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8.6 Informatics

The principal result of the architecture is the development of relatively simple 
controllers each capable of working co-operatively to assemble complex structures. The scope 
of this architecture is, in principle, unlimited. Secondary controllers may be called upon in 
many different scenarios. Also, the controller need only store the connectivity matrix 
associated with the component it is tasked to assemble. Therefore, any supervising controller 
need not see the detailed mechanism of assembly, but only requires notification of the 
completion of a sub-structure.

It also important to note that the only difference in all the controllers presented here is 
the connectivity matrix, the connection angles and the resources required for a sub-structure. 
This information may be stored as separate data. It therefore becomes practical to develop a 
library of data sets associated with specific components. In addition, the formation of the 
global potential function through a connectivity matrix allows a compact solution to complex 
assembly problems. Therefore, from high level commands for the assembly of components, 
the method will reduce this problem to individual actuator commands to manoeuvre the free- 
flying assembly vehicles into the correct configurations.

8.7 Conclusion

Technologically, the greatest requirements on the free-flying vehicles will be in the 
area of communications and sensors. However, these requirements have been partially 
addressed with the application of the subsumptive type architecture. With the use of robot 
teams, communicating only with other team members, the problem then reduces to managing 
a group of vehicles, rather than the total vehicle population. The implication of applying a 
subsumption architecture to the truss cube, and its effect on the vehicle requirements, is that 
each vehicle must interact with a team numbering as much as eight, as opposed to the total 
population of forty eight.
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Chapter Nine: Conclusions

9.1 Review

Initially a review of on-orbit assembly and large space structures was provided in 
Chapter 1 Then, the solution to the two-body problem, and the examination of the relative 
motion of two spacecraft provided the basis for a model of spacecraft operations on-orbit. The 
resulting motion and the optimal solution of the two impulse transfer rendezvous was then 
considered in detail in Chapter 2. The development of the equations of relative motion and 
the resulting linearisation provided the commonly used Clohessy-Wiltshire equations of 
motion. Furthermore, the development of a closed form solution to these equations provided a 
method of calculating the Av required to execute a two-impulse transfer between two 
arbitrary points. The development of the state transition matrix and the optimisation of the 
transfer with respect to Av provided an optimal two-impulse transfer. Thus, any method 
which manoeuvres a spacecraft between two points may be compared with this optimal value. 
However, there are draw backs to the optimisation method. Principally the flexibility of the 
two-impulse transfer must be called into question when considering the possibility of obstacle 
avoidance, i.e. the optimisation of a transfer would be compromised if a mid-course 
correction were required.

•i:
An inherently flexible control method was examined in Chapter 3. The development 

of the potential function method from Lyapunov's second method and the application to 
spacecraft control problems was introduced. The potential function method provided a robust, 
highly flexible control method which was examined for both attitude and translational control 
problems. Both of these proved to be satisfactorily controlled by the use of a goal potential. In 
addition, the application of a control method based on Lyapunov's theorem guai'anteed 
stability and, even for the complex attitude control problem, convergence to the solution was 
ensured in a smooth manner. The application of the method to the translational problem 
allowed a comparison between the potential function method and the optimal two impulse 
transfer Av cost. Comparing case studies, it was found that the Av cost of transfer for the 
potential function method is generally several times greater than the optimal case.

The potential function and the control inputs to the spacecraft may be derived 
analytically within a self contained control algorithm. In addition, the method is both flexible
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and robust allowing path shaping to the goal. The transfer problem was re-examined in 
Chapter 4 with the inclusion of obstacles in the environment. To introduce an obstacle into 
the environment, a region of high potential was added to the goal potential function. Thus, 
when the spacecraft closes on the obstacle, the potential will begin to increase and the 
spacecraft will be autonomously deflected. Four methods of defining obstacle potentials were 
examined. These are the Gaussian, power-law, flat-sided and superquadric obstacle 
potentials. Of the four, only one method, the flat-sided obstacle potential was unsuccessfully 
negotiated by the chase vehicle. The remaining three methods created obstacle potentials that, 
when added to an goal potential, did not generate stable local minima.

The Gaussian obstacle potential offered the best all round performance with regard to 
computational complexity and accuracy. The ability to exactly define the characteristic 
dimension of the obstacle and guarantee minimal incursions into that space in conjunction 
with easily definable parameters made this function more applicable to general problems. The 
power-law obstacle potential proved to be computationally efficient, however, the sizing of 
the obstacle proved to be dependent on the index and difficulties were encountered in 
determining the interface between the goal and obstacle potentials throughout the 
circumference of the obstacle. The superquadric was by far the most complex of the obstacle 
potentials with pai'ameters which were obtained from non-linear problems. However, the 
performance was found to be excellent and very efficient in the use of space since the 
potential function mapped itself onto the contours of the body. This method would be 
applicable to complex geometries where there were significant restrictions on movement.

When considering an assembly control problem, the control philosophy must include 
an examination of multi-body systems. In Chapter 5, other forms of potential functions were 
examined, and more specifically, those which are applied in molecular dynamics to simulate 
atomic behaviour. The behaviour of large molecules was considered to provide insight to 
such multi-body system dynamics. The primary consideration when examining these 
molecules, is the relationship between the potential and stability of the molecule. It was found 
that, as the potential decreases, the stability of the molecule increases as expected. A potential 
function based on the bond length between atoms was developed which allowed a twelve 
atom system to be simulated for convergence and stability. Thus, the application of potential 
functions to multi-body systems proved to be feasible.

Using multi-body potentials and expanding them to include connection constraints has 
demonstrated the feasibility of using potential functions to assemble specific structures. In 
Chapter 6, a beam element was defined which allowed a potential function to be developed 
from the state vectors of the beams. This assembly potential allowed both the parallel and 
serial assembly of two structures, the triangle and square. The parallel assembly method, 
which is the assembly of the structure in a single effort, and the serial method, which is the 
assembly of the structure in stages, were both examined. The advantages and disadvantages of 
each method were examined and principally, the parallel method was found to be the lesser of 
the two with regards to the computational demands. However, the demands on the controlling
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vehicles rapidly increased with the complexity of the structure. The serial method was also
successful with the use of virtual beams and phased application potentials. However, the
computational complexity was higher than the parallel method. In contrast, the vehicle 

.demands were uniform throughout the assembly which would be relevant to larger structures.

In addition to the development of a goal potential function, which allowed the 
assembly of specific structures, a repulsive potential was developed to maintain separation of 
the beams and prevent collisions throughout the assembly process. However, a contradiction 
emerged in that the beams must eventually be connected together and in addition separation 
must be maintained. Therefore, the repulsive potential was expanded to include the scaling of 
the repulsive potential so that separation was maintained until the beams were in the correct 
configuration. Once the beams were in the coiTect configuration, the repulsive potential 
would vanish, thus allowing convergence to the goal structure.

The development of assembly potential functions and their application has proved 
successful to the assembly of the triangle and square. In Chapter 7, the state vectors of the 
individual beams were included within a global state vector. This global state vector allowed 
a global potential function capable of assembling any predetermined structure. Inherent 
within the global potential function is the information regarding the form of the goal 
structure. This information takes the form of a connectivity matrix. The development and 
manipulation of the connectivity matrix was examined. In particular, the manipulation of the 
matrix during assembly for adaptive structures and déployables. In addition, the use of 
connectivity matrices has allowed complex problems to be broken down by partitioning 
elements of the connectivity matrix until the resources were available to complete assembly. 
Thus, assembly strategies become possible and the emphasis has altered from the 
development of the potential function to that of the application of the connectivity matrix.

Finally, the use of construction strategies allowed the assembly of the structure in a 
variety of ways. However, the principal objective of these strategies is to complete the goal 
structure using the minimum number of control vehicles. The application of a subsumptive 
type architecture was examined in Chapter 8. The subsumptive architecture allows the 
assembly of large, complex structures by devolving the assembly of sub-components to sub­
controllers. The application of sub-controllers has allowed the development of robot teams, 
communicating only with other team members. Therefore, the communication and sensor 
problems reduce to the management of a team of vehicles, rather than the total vehicle 
population, thus simplifying the vehicle design. The delegation of sub-tasks allows the 
method to multi-task and this was reflected in the parallélisation of the potential function 
controller so that six independent tasks may be carried out simultaneously.

9.2 Mission Statement

The development of the potential function and the objectives of this thesis were 
developed and refined in Chapter 1 to produce the mission statement;
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'To provide an on-orbit assembly method which will incorporate a practical 
and robust algorithm for individual vehicle control within a larger co­
operative group. The emphasis shall be on providing a practical application of 
the control method which will allow further development to a prototype 
article. '

In every respect, the development of the potential function has met the objectives within the 
mission statement, more speeifically;

• The computational elements of the control algorithm have improved with 
development to produce an efficient, flexible control method which may be applied 
using current computing capabilities.

• The development of test cases to assess the control algorithm performance has 
allowed application to new and novel applications such as reconfigurable structures 
and integrated design.

• The use of the global potential function and the connectivity matrix has allowed the 
application of strategies to simplify the assembly process and vehicle design.

Considering the overall practicality of the method, current results are promising. Especially to 
the application of the method to aieas such as variable topology structures and integrated 
design.

In Chapter 7, the application of smart joints and beams was shown to be highly 
successful. This technique has proven to be an interesting characteristic of the global potential 
function and in particular the connectivity matrix. It is believed that this technique offers a 
capability beyond other spacecraft déployables and structures. Technologically, much work 
must be carried out in the physical development of the beams and joints and also in areas such 
as sensor technologies. Some applications of this type of structure have been discussed. 
However, in areas such as large reflector deployment the use of variable topology structures 
could significantly reduce the launch mass of the spacecraft as the duplication of components 
is not required. For example, during the launch and orbit insertion phases of a mission, the 
spacecraft must withstand lai'ge loads. Therefore, the spacecraft structure must be designed to 
that maximum launch load. However, this is only a small fraction of the total mission 
duration. Variable topology structures would allow spacecraft design to be more efficient as 
the spacecraft structure would change to meet the mission demands. For example, a stiff, load 
bearing truss structure could reconfigure itself into a large reflector on-orbit.
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Any future development of the potential function assembly method can be divided 
into near term development of the assembly simulation, and the long term development to a 
physical prototype. With specific regai'ds to the assembly simulation, near term improvements 
may be made in the areas of;
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Another element of the potential function method which offers distinct advantages 
over conventional structures is the integrated design capability. With the development of a 
accurate simulation in conjunction with an on-orbit assembly package, the design of the 
structure may be carried out on computer using a CAD package. The potential function 
method would then simulate the design as it assembled to the goal structure. If the goal 
structure is acceptable, the connectivity matrix may then be supplied directly to the on-orbit 
robot assembly team. Thus, the prototyping and assembly of components would proceed at an 
unprecedented rate, and the design stage of a structure may be minimised.

Thus, in conclusion, this thesis has provided an examination of the application of 
potential function methods to on-orbit assembly. Although the method has proven to be 
promising, further study and research is required.

9.4 Recommendations

• Incorporation of detailed physical properties of the structure: This includes the 
development of joint and elastic beam properties. This would allow the evaluation 
of strategies to develop physical properties, such as to maximise the load beai'ing 
capability of a structure, at the top level of the subsumptive architecture.

• Incorporation of a detailed robot vehicle model: One possibility is to incoi*porate 
developed models of the Ranger vehicle. Thus, the modelling of the assembly 
process would be sufficiently accurate to allow the design of a physical prototype. 
In addition, models of internal robot systems such as thrusters and sensors will 
allow accurate modelling of physical translations and rotations of the vehicle thus 
allowing the development of strategies to minimise the fuel consumption and thus 
maximise the efficiency of the vehicle operation.

Development of a smart beam model: As discussed previously, the smait beam 
and joint concept could prove to have interesting applications in spacecraft 
operations. The reasons for developing an accurate vehicle model are still valid for 
smart beams.

Informatics: Although the algorithms developed for the calculation of the 
potential function were successfully parallelised into teams within the subsumption 
architecture, the parallélisation of individual controlling vehicles is required. Thus, 
accurate modelling of the information flow and the sensor and communication 
requirements of the controlling vehicles may be developed.



In conclusion, the development of the potential function method and it’s application to on-
orbit assembly has proven to be promising. Although much work would be required to 
develop a physical prototype, there is significant near-term simulation tasks to be considered 
which will lead to this ultimate goal.
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