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Summary

Plane strain asymptotic solutions for the stress fields of a stationary crack in a 

homogeneous isotropic material under mixed-mode loading have been 

constructed analytically. Without loss of generality the fields are taken to 

comprise elastic and plastic sectors. Slip line solutions have been developed for 

the plastic sectors and semi-infinite elastic wedge solutions for the elastic 

sectors. The fields, which exhibit full continuity of tractions, have been verified 

by numerical calculations based on modified boundary layer formulations. For 

mode 1, the loss in constraint depends on the second order term in the Williams 

expansion (T). A compressive T stress results in the formation of an elastic 

wedge on the crack flanks and a loss of crack tip constraint. The relation 

between the loss of constraint and the structure of the asymptotic field has been 

determined analytically. These fields form the basis of a two parameter, 

constraint-based characterisation of mode I fields. For mixed mode fields in non­

hardening and incompressible conditions, the loss of constraint has been 

correlated to plastic mode mixity.

The asymptotic crack tip fields of a stationary crack located on the interface 

between a rigid body and an elastic-plastic matrix subject to mixed mode loading 

have been investigated under small scale yielding and incompressible 

deformation. The analysis does not require the assumption that plasticity fully 

surrounds the crack tip and satisfies continuity of stress, except for an allowable 

discontinuity in radial stress across the interface. Under negative mode mixities, 

the maximum hoop stress is located in the matrix and leads to the possibility that 

the crack may propagate into the matrix rather than along interface. The crack 

tip fields and hence the fracture toughness for this failure mode can be 

correlated with the fields and toughness in unconstrained mode I loading.

The plane strain asymptotic stress fields of interface cracks in elastically 

matched but strength mismatched materials have been examined numerically 

and analytically under mixed mode loading. Stationary cracks located in the 

interface, as well as normal to the interface have been studied. A family of



interface crack fields which depend on strength mismatch factor and phase 

angle have been constructed analytically in association with Prof. T-L Sham. 

These have been verified by a finite element method using boundary layer 

formations. For cracks normal to the interface, the crack tip stress field has 

been investigated by using boundary layer formulations under mode I with 

different levels of T stress and mixed mode loading. For weak and moderate 

strain hardening, the loss of constraint due to compressive T stress gives rise a 

family of fields which differ in a largely hydrostatic manner. This feature of 

mixed mode fields is similar to that of homogeneous materials. Both T and 

Mode II component cause a loss of constraint at the crack tip.

All these fields have the same important feature, that they differ in a largely 

hydrostatic manner on the plane of the maximum principal stress. For stress 

controlled failure, these fields can be correlated with the homogeneous mode I 

small scale yielding field allowing constraint based homogeneous mode I failure 

criterion to be used for bi-material interface cracks as well cracks in 

homogenous materials under mixed mode loadings.
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Chapter 1 Introduction

Composite materials are important in structural engineering because they can be 

designed to have a desired combination of mechanical and physical properties. 

For this reason they are now widely used for aerospace and other applications 

where high strength and stiffness-to-weight ratios are required. However such 

composites may have flaws or cracks due to processing, and in particular, 

defects may occur on weak interfaces. The effect of these defects can be 

addressed through fracture mechanics. The purpose of fracture mechanics is to 

ensure the fitness for purpose, and structural integrity, of engineering 

components which contain defects. The foundations of the subject lie in the 

energetics of crack advance, paralleled by descriptions of the crack tip field by a 

suitable characterising parameter. The internationally accepted approaches for 

homogenous material are through the measurement of a single parameter such 

as the J-integral introduced by Rice (1968a) or two parameters J and a 

constraint parameter Q/T. The first parameter, J, scales the asymptotic 

singularity at the crack tip while the second parameter, Q/T, indicates the level of 

stress triaxiality at the crack tip fields and characterises geometric constraint. 

However, current standards for failure assessment using fracture mechanics 

were developed for homogenous materials and can not be directly applied to the 

assessment of fracture behaviour of bi-material.

The present study is mainly concerned with small scale yielding analysis of 

elastically mismatched and strength mismatched interfacial crack tip fields under 

mixed mode loading. The primary aim is to find a relation between bi-material 

crack tip stress fields and homogenous crack tip stress fields. The objective is to 

develop a method to characterise elastic-plastic crack tip fields and develop a 

failure criterion for bi-material in terms of the known behaviour of single-phase 

materials.

In Chapter 2, elasticity, plasticity and slip line fields are briefly reviewed as a 

necessary background to this study. Chapter 3 introduces the fundamentals of



Chapter 1 Introduction

linear elastic fracture mechanics, elastic plastic fracture mechanics and two 

parameter fracture mechanics for homogeneous materials. Then the fracture 

mechanics of bi-material is reviewed in chapter 4 which includes elastic fracture 

mechanics of a bi-material, the stress fields of a crack on an elastically 

mismatched interface and the fields on strength mismatched interface under 

mode I with a T stress.

Chapters 5 and 6 develop analytic solutions for characterising homogenous 

mode I and mixed mode crack tip stress fields under non-hardening perfectly 

plastic deformation. Chapter 7 presents a small scale yielding analysis of an 

elastically mismatched interfacial crack tip under mixed mode loading. The 

strength mismatched interfacial crack tip stress fields under mixed mode loading 

are discussed in Chapter 8. Chapter 9 investigates a crack normal to a strength 

mismatched interface. In Chapters 7, 8, and 9, the crack tip stress fields for both 

non-hardening and strain hardening response are examined. In several 

significant cases the maximum principal stress is located in the matrix rather 

than on the interface. On the plane of the maximum principal stress direction, 

these fields belong to a similar family to the homogenous mode I fields which are 

deviatorically similar but differ mainly hydrostatically. The loss of constraint of bi­

material fields due to mode II loading have been correlated with homogenous 

mode I fields. This allows the constraint based homogenous mode I failure loci 

to be mapped into bi-material data.

Finally, Chapter 10 summarises the work, presents conclusions and suggestions 

for future work.



Chapter 2 Constitutive Relations: Elasticity And Plasticity

Chapter 2 Constitutive relations: Elasticity and plasticity

The constitutive relations of elasticity and plasticity are fundamental to the 

material behaviour in the present work. This chapter describes these relations. 

Firstly, the concepts of the stress and strain are introduced and stress strain 

transformation are reviewed in both compact and expanded forms. The yield 

criteria are introduced and finally, plane strain slip line theory is presented to 

describe the stress and strain fields of a plastically deforming region.

2.1 Constitutive relations of elasticity

The constitutive relations for elastic deformation are discussed in a number of 

standard texts including Timoshenko and Goodier, (1970) and Slater, (1977). It 

is convenient to use an orthogonal Cartesian co-ordinate system with axes x„ 

(i=1,2,3) as shown in Figure 2.1. The Cauchy stress tensor is denoted atj

(i,j=1,2,3). Normal stresses are indicated by repeated subscripts, while shear 

stresses are indicated by mixed subscripts. Let t and u, denote time and 

displacement and p  the density. The equilibrium equation of motion under body 

forces F, can then be written as:

Under conditions of small deformation, the displacement of particles in a 

deformed body can be resolved into components u, parallel to the co-ordinate 

axes Xj as illustrated in Figure 2.2. The strain-displacement relation is written as:

I âui ^
â x  j  d x i

(2 .1-2)

For an isotropic elastic solid the stress and strain are related by relations such

as:
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^y=^kk^u+2jU0ij (2.1-3)

Here À and ju are the Lamé constants and Sy is the Kronecker delta.

S ij ~ J i — j  
S ij ~ 0 i ^  j (2.1-4)

The relationship between stress and strain for a general elastic anisotropic solid 

is described by Hooke’s law:

C y — Cijki Ski (2.1-5)

where Cyu 3*"® the elastic constants or stiffness. Equation (2.1-6) is written in

tensor notation, which is very compact. Written out in the full expanded form, 

this equation has 81 elastic constants. It is however common practice to use a 

contracted matrix notation for writing stresses, strains, and elastic constants. Cmn 

is used for Cyki, <Jm for cry, and for ê i as indicated in the following 

procedure:

ÿ or kl 11 22 33 23 31 12
m or n 1 2 3 4 5 6

Equation (2.1-5) can be then rewritten

Cm Cmn Sn (2 .1-6)

The energy stored in an elastically strained body depends on the current strain 

state, and not on the path by which the strain state is reached, which implies the 

symmetry Cmn = C„,„- (Kelly and Groves, 1970)

Equation (2.1-6) can be written with the stress as the subject of the equation 

using Smn, the compliance matrix as the inverse of the stiffness matrix C„,n.

:
■:"33%

I'
%
Î
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Sm — Smn (2.1-7)

In the expanded form, equation (2.1-6) may be written as

0*1 'Cn C,2 Cl3 C,4 C,5 C,6~
0*2 C 22 C 23 C 24 C 25 C 26 S2
0-3 C 33 C 34 C 35 C 36 S3

0*4 C 44 C 45 C 46 S4

CTs C 55 C 56 Ss
CFg_ Cô6_

(2.1-8)

The matrix is symmetric and in the most general case contains 21 independent 

elastic constants. The number of independent elastic constants can be further 

reduced because of the symmetry elements present. For an orthotropic material 

with the co-ordinate axes parallel to the symmetry axes of the material, many of 

the stiffnesses are zero, allowing equation (2.1-8) to be written as;

CTi c„ C,2 C\3 0 0 0 " S\
0-2 C 22 C 23 0 0 0 S2
0-3 C 33 0 0 0 S3

<74 C 4 4 0 0 S4

<75 C 55 0 Ss
_0-6̂ C66_

(2.1-9)

For isotropic materials in which elastic properties are independent of direction, 

only two of the elastic constants are independent, allowing equation (2.1-9) to be 

further reduced.
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Cl1 Cl 2 Cl2
ai Cil C12 0 0 0 S i

0-2 Oil 0 0 0 S2

CT3 C11 -  C12 0 0 S3

CX4 2
C1 1 - C 12

S4

0<JS
2 Ss

_ 0 -6 _ C11 ~ C12

2 J

(2.1- 10)

materials.

Si
Sz
S 3

€4
Ss
Ss

can also be written in terms of the compliance matrix for isotropic

S12 S12 0 0 0
Sli S12 0 0 0 (T1

S11 0 0 0 <J2
S11 — S12 

2
0 0 CT3

(2.1-11)
S11 -  Si 2 <J4

2
u <75

S11 “ S12

For an isotropic material these compliances can easily be expressed in terms of 

Youngs’ modulus, E, Poissons’ ratio v and the shear modulus G (Chawla, 1987):

E u S n

Su
G = --(S u~ S n) (2 .1-12)

For incompressible deformation, Poisson’s ratio is equal to 0.5 and the 

compliances are related to the stiffness by:

=
C\] + C22

(Cii — 0 22X^11 + 2 C22)

<S'l2
C l 2

(Ci 1—CiiKç] I+2 C22) (2.1-13)
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2.2 Plasticity

When a material is loaded beyond its elastic limit, the deformation is not entirely 

recoverable and the body does not regain its original shape on unloading. This 

non-recoverable or irreversible deformation is defined as plastic deformation 

(Hill,1950). The material is said to have yielded, in uniaxial tension, the stress 

at which the plastic deformation starts is called the yield strength, c%. Two yield 

criteria are commonly used to define the limit of elastic behaviour under general 

stress states; the Tresca yield criterion and the von Mises criterion. Tresca 

(1864) predicted that yielding would occur if the maximum shear stress, Tmax, 

exceeded the yield stress in shear, k. If ov, 0 5  and as are the principal stresses 

and ai > g2 >as, %ax= (cri - as)/2. The Mises yield criterion (1913) can be 

conveniently written in terms of deviatoric stresses S,y which are defined as:

Sij a  ij Sij akk  ̂^ (2.2-1)

The Mises yield criterion is then:

(2 .2-2)

Where k is the yield stress in pure shear. Writing the yield criterion out in ful 

leads to

+ (o -z -a x f  /  6  +  [a% + oi + a i) j = k

In terms of the principal stresses, (oi, 0 2 , 0 3 )

(2.2-3) 'a
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{a i-as) +(<T2“ 0-i) +{ars~~cri) ~ 2 a l  (2.2-4)

where ob is the uniaxial yield stress. Under incompressibility and plane strain

conditions, the Mises yield criterion is reduced to

^4a]2^4k^  (2.2-5)

Within a plastically deforming region, the stress state in plane strain and non­

hardening conditions may be represented by a point P in the Mohr stress circle 

diagram shown in Figure 2.3b. The corresponding physical plane is illustrated in 

Figure 2,3a. Two mutually orthogonal planes are represented by the points (1) 

and (2) on which the shear stresses attain the maximum possible values of ±k 

respectively while the normal stress has the values of hydrostatic stress of 

cTm =fe+cTyj/v. These planes are the planes of maximum shear strain but are 

directions of zero extension or contraction rate. The stress components on any 

other plane can be expressed in terms of the hydrostatic stress, cr„ =ok#/3, and 

the yield shear stress, k,

Ok = cr,„ - ksin2^ 

oy= +ksin2<^

icFxy “ d: kcos2(f) (2,2-6)

here  ̂ is the angle through which the plane PY must rotate anti-clockwise to 

coincide with the first shear line.

•"ï;=
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2.3 Plane strain slip line theory

The maximum principal stresses (cti, %  as) in the plastically deforming field can 

be expressed as

a\ = a,„ + k a 2 ~ am 3nd a  ̂= a„, -  k (2.3-1 )

The direction of the maximum principal stress is oriented 90^ from the minimum 

principal stress while the intermediate principal stress is normal to the direction 

of maximum and minimum principal stresses. The maximum shear stress (k) 

acts on surfaces which make angles of ±n/4 with the principal directions 

(Slater, 1977). The directions of these surfaces are usually designated the alpha, 

a, and beta, p, directions. The a direction or first shear direction is 45^ clockwise 

from the first principal direction and p direction or second shear direction is 

therefore 90° anti-clockwise from the first shear direction. The maximum 

principal stress thus lies in the first and third quadrants of the a, j3, curvilinear co­

ordinate system. There are two orthogonal families of curves whose directions 

at every point coincide with those of the direction of maximum shear stress in 

the plastic region. These families of curves are known as slip lines called a  lines 

and J3 lines. The maximum shear stress, k, is constant throughout the plastic 

region and can be related to the uniaxial tensile yield stress, ao, by the Mises 

yield criterion, k = a-„/V3 .

2.3.1 Hencky stress equations

The equilibrium equations can be expressed in terms of the independent 

quantities p ^ -a ^  = -a n /3, k and ^ following Hencky (1923):
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§ ; - 2 k § -  = 0 (2.3-2)

These equations are applicable to all points along the slip lines. Integration 

produces the relationships:

p+2k^ -C i along an a line.

p-2k^=C2 along a Jdline (2.3-3)

The constants C/ and Cg vary from one slip line to another. If p and ^ are 

prescribed for a boundary condition then the hydrostatic pressure everywhere in 

the slip line field can be determined along constant a and p  lines.

Two common slip line fields are shown in Figure 2.4. In Figure 2.4a, the slip line 

field consists of two orthogonal families of straight lines. The angle (j) is constant 

because the slip lines are straight. As a result of the Hencky equilibrium 

equations, the hydrostatic stress, cr„,, is constant and the stress components are 

also constant. This slip line field thus represents a constant stress state.

The slip line field shown in Figure 2.4b comprises a set of radial straight lines 

emanating from a point O, say a lines, and a family of concentric circular arcs,
'

say p  lines. Since (j> is constant along an a line, the hydrostatic stress, p , must 

be constant. However ^ varies linearly along a p  line and the hydrostatic stress 

must also varies linearly along a p  line because where /  and R are the 

length and radius of a concentric circular arcs respectively. Thus, the hydrostatic 

stress is constant in the radial direction and varies linearly with angle measured 

from the x axis. This type of slip line field is known as a centred fan.

,
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2.3.2 Geiringer veiocity equations

If the displacements or velocities are prescribed at a point P in a plastically 

deforming region, the Hencky equations are not sufficient to obtain a solution 

and velocity compatibility equations derived by Geiringer (1930) must be 

considered. Let the displacement components of displacement along the a and 

p  slip lines be u and v respectively. Then the displacement components Ux and 

Uy in the PX and PY direction shown in Figure 2.5 are:

Ux~ u cos(f) -V sin(p (2.3-4a)

Uy = u sin(/> +v cos(j) (2.3-4b)

Differentiating equations (2.3-4a and 2.3-4b) with respect to x and y produces:

Ï  = (2.3-5a)

^  = + + (2.3-5b)

When (j) =0, PX and PY coincide with the tangents to the a and p  slip lines. 

Since no extension or contraction can occur along the slip lines, u~v=0 and 

equation 2.3-5 can be reduced to:

(dUx
3(

â U y

â J  â (j}
- v - f  = 0  (2.3-6a)

a  a

âv âé
_  = ^  + = '  (2.3-6b)

This leads to
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du - vdijf = 0 along an a line (2.3-7a)

dv + udi^ = 0 along a p  line (2.3-7b)

When the stress boundary conditions are insufficient to obtain a unique slip line 

field then the Hencky equations must be solved simultaneously with the 

Geiringer velocity equations using both the stress boundary conditions and the 

velocity boundary conditions.
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Chapter 3 Fracture mechanics

The failure of engineering structures containing cracks or defects may occur at 

very low stress levels due to the stress concentration at the crack tip. Fracture 

mechanics quantifies the critical combination of the flaw size, the fracture 

toughness and the applied stress, and hence ensures the integrity and safety of 

these structures.

This chapter introduces single and two parameter fracture mechanics. The first 

two sections overview linear elastic fracture mechanics and elastic-plastic 

fracture mechanics, including the J integral. In the third section, two parameter 

fracture mechanics is reviewed. The effect of the second term in Williams 

expansion, T-stress and J-Q theory are described under elastic-plastic 

conditions.

3.1 Single parameter fracture mechanics

3.1.1 Linear elastic fracture mechanics

In a cracked body the asymptotic stress field for a crack tip in a homogeneous 

isotropic elastic solid under tension or shear can be described by the Williams 

(1957) expansion using cylindrical co-ordinates (r,0) centred at the crack tip as 

shown in Figure 3.1. The crack lies on the plane 0= ±7u.

o, j  =  A , j { Q ) r ~ ‘2 +  B,y(e) +  C j ( e ) r J  +  ... (3 .1- 1)

In this expression, the first term is singular, the second term is finite whereas the 

remaining high order terms are zero at the crack tip. This allows the dominant 

elastic singularity to be expressed in term of the stress intensity factor K.
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^ ‘J ~~ f  iji^) (3.1 -2 )

The stress intensity factor K depends on the level and mode of loading and 

geometry of the body while the angular function fij(0 )  depends on the mode of

loading only. Three failure modes are illustrated in Figure 3.2. Mode I Is defined 

as an opening mode where the crack surfaces move directly apart with the crack 

plane being a plane of symmetry. Mode II is an in-plane sliding mode, in which 

the crack surfaces slide over one another in a direction perpendicular to the 

leading edge of the crack and anti-symmetry is maintained across the crack 

plane. Mode III is a out-of-plane tearing mode, where the crack surfaces move 

relative to one another and parallel to the leading edge of the crack. In most 

structural applications mode I is generally the most important. The stress 

intensity factor introduced by Irwin (1967) for a mode I crack is defined as;

K/ = Urn <Jij ■\l2rrr (0=0) (3.1 -3)

Ki is thus proportional to the remotely applied load and the square root of a 

characteristic dimension such as crack length. It can be envisaged as 

characterising the magnitude of the crack tip singularity. A critical value of the 

stress intensity factor K\c is used as a measure of fracture toughness under 

plane strain and small scale yielding conditions. Methods for determining Kic are 

given in both British and American standards (B.S. 7448, 1991b, ASTM E399- 

83, 1983).

3.1.2 The Griffith criterion

Griffith (1920) introduced the concept that the work required to extend a crack is 

a balance between the released strain energy and the surface energy. The strain 

energy, is a function of the applied stress and crack length. For a central 

crack of length 2 a in an infinite plate of thickness, f, subject to a remote tensile 

stress the strain energy is:

- .....
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= (3.1-4)

The term E’ is defined to equal Young’s modulus, E, for plane stress and E -  

E/(1-x^ ) for plane strain conditions. The surface energy, of the cracked

surfaces is:

'1

^uriBce (3.1-5)

where ys is the surface energy per unit area. The work required to extend a 

crack is equal to the increase in the potential energy of the elastic body ( 7 5  

which has the form:

jr f
/7-y7o = 4 a fr .-^ ^ ^ -^  (3.1-6)

■.-,s

77 and [Jo are the potential energy of a body with and without a crack. The 

critical condition is determined by differentiating the potential energy ( 7 5  with 

respect to the crack length and setting the differential equal to zero

(3,1.7,

This leads to the well known Griffith criterion which defines the fracture 

conditions as:

I
■

Î

--------------------------- ----------------------------------------------------------- -
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^  l i n K  (3 .1 -8 )
V m i

The strain energy per unit thickness for extending a crack at distance da:

The critical stress intensity factor K/ for a Griffith crack can then be written as

Ktc -cTf 4 m  (3.1-10)

The critical value of the strain energy released rate Gc can thus be expressed in 

terms of K/c ;

G c = .^  (3.1-11)
E'

3.1.3 The application o f elastic fracture mechanics

The application of linear elastic fracture mechanics is subject to severe size 

limitations intended to ensure that plasticity is restricted to a local perturbation of 

the elastic field. When the material fails in a macroscopically elastic manner the 

critical value of the stress intensity factor, is a measure of fracture 

toughness. ASTM (E 399-83, 1983) and British Standard (BS-7448, 1991b) 

gave the standard test methods for determining the fracture toughness K/c 

experimentally. A standard text geometry is the deeply cracked bend bar shown 

in Figure 3.3 which has a crack length, a, a thickness, B and ligament length W~ 

a. To obtain valid LEFM results, every dimension is required to be large
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compared to the radius of the plastic zone. In plane strain conditions, the 

requirements given by ASTM (E339-83,1983) are:

a > 2.5

B>2.5

Kh
(Jo 

\  (To

\  (Jq 2
(3.1-12)

a„ is the uniaxial yield stress. The value of K ic is calculated from a critical 

applied load, p T  ■ The standards give the requirements for the determination of 

, while the corresponding critical stress intensity factor K ic can be calculated 

from the expression:

papp
(3.1-13)

where f {a  /  W) is a dimensionless function of a/W.

3.1.4 Crack tip plasticity

The crack tip stress concentration causes the material at the tip to yield locally. 

The maximum radius of the crack tip plastic zone can be estimated by combining 

either the Tresca or the von Mises yield criterion with crack tip stress equations 

(Broek, 1991). In plane stress, the radius of the Tresca plastic zone is

ef. . e
cos-^l+sm^ (3.1-14)

    _.  ..   .. .
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and in plane strain condition, it is the larger of:

l-2v+sin™ and
e

2k  Go
(3.1-15)

where v is Poisson’s ratio. The maximum radius of von Mises plastic zone in 

plane stress condition can be written as:

2 k  G o

3 . 0  
1 + “  sin̂  — + cos 0 (3.1-16)

For plane strain condition, it is:

4k oi
“ Sin ■~ + (l~2v)^(l + cos^) (3.1-17)

Figure 3.4 shows the plastic zone shapes determined using the Tresca and von 

Mises yield criteria.

Interest is now focused on an elastic perfectly plastic material under plane strain 

mode I deformation. Within the framework of small deformation theory, the 

stresses close to the crack tip can be derived from an Airy stress function F(r,0).

âF
G r

JË.(Æ
â' \râ9

(3.1-18a)

(3.1-18b)

(3.1-180)

i

J

I
:i
s
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The assumption that the crack tip stresses are finite at crack tip leads to the 

condition (Rice, 1968)

F{r,6) = rV(É>) as r~^0 (3.1-19)

This allows the stress at the crack tip to be written as

<Jrr =  2 f ( 6 )  +

CTæ  =  2 f { 0 )

CTre æ

(3.1-20a) 

(3.1-20b)

(3.1-20c)

Substituting (3.1-20) into the Mises yield criterion gives

f{0 ) = ±2k0-¥C, 

and

f {0)= :{k /2)cos2{0^0,)^C2

(3.1-21a)

(3.1-21b)

where C/, C? and e„ are constants of integration. From (3.1-19-21) it follows 

that only the following two types of stress fields can appear in the plastic zone 

near the crack tip:

O'fr —  O q q  —  O 2Z —  On) —  i 2 k 0  4" C y

Ore -+  k

and

O rr  =  " k  COS 2 ( 0  +  0„) + 2 C2

(3.1-22a) 

(3.1-22b)

(3.1-23a)
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a<x, = kcos2{9 + 0„) + 2C2 (3.1-23b)

<Jzz — Cm ~  2 C2 (3.1“23c)

O rff -  k  s in  2(e + 6>„) (3.1-23d)

The Prandtl field shown in Figure 3.5 is an important crack tip stress field in 

which the yield criterion is satisfied at all angles. The complete crack tip stress 

field is assembled from constant stress and centred fan sections in such a way 

that continuity of hoop and shear stresses and the boundary conditions are met 

(Rice, 1982). The field may be solved by starting with the boundary condition on 

the traction free flanks (0 =±7t, = {? ) and following the slip lines into the

constant stress sector ahead of the crack. The stress field in the constant stress 

sector on the crack flank is:

Gee -  k { l - cos 26) (3.1 -24a)

Grr = k(l 4- COS 29) (3.1 -24b)

Gt9 = k sin 29 (3.1 -24c)

Gzz~Gm — k (3.1-24d)

The straight lines in this region imply a homogeneous stress state. Following a 

slip line into the centred fan gives the stress distribution in this sector:

Gee -  G rr ~ Gzz = Gm ~ k{^l 4- -  2 ^  (3.1 -25a)

Gre-k  (3.1-25b)

The mean stress in this sector varies linearly with angle. The change in the 

mean stress is associated with rotation of the slip lines through the Hencky 

equilibrium equations (Hill, 1950). Finally the stress field in the constant sector 

ahead of the crack is:

Gee ~ k{7T + 1 + cos 29) (3.1 -26a)
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Grr = k(n: +  1 - c o s  20) (3.1 -26b)

Grd = k  s in  29 (3 .1  -26c)

Gzz -  Gm  =  k{7T  + 1) (3.1 -26d)

The Prandtl fields is significant in the sense that it has been widely identified with 

the development of local plasticity at the crack tip under constrained yielding 

conditions, and appears as a example of the crack tip fields identified by 

Hutchinson (1968) and Rice and Rosengren (1968) for non-hardening plasticity.

3.1.5 Elastic-plastic fracture mechanics

The severe restrictions on the use of linear elastic fracture mechanics can be 

relaxed by non-linear elastic-plastic fracture mechanics. Hutchinson (1968), 

Rice and Rosengren (1968) independently argued that the stress and strain field 

in a non-linear material for a mode I deformation can be expressed as an 

asymptotic series:

a,j = Aijr'aÿ^(0,n)+Bijr'crf^{e,n) + C„r"aiP(0,n)+--- s < t < U  (3.1-27)

The strength of the singularity is determined by the exponents of the radial 

distance r. For non-linear elasticity, s is equal to 1/(n+1). Â y, Bij, Q . . .  are

dimensionless amplitudes of each term and Gf(9,n) are angular functions

which depend on the strain hardening exponent n in a Ramberg-Osgood stress- 

strain relation:

— = —  + « — I (3.1-28)
So G o  ^  G o ‘’

where so, ob, and a  are material properties. The leading term in (3.1-27) is 

identified as the HRR field:
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------------------------------------------------------------------------------------------------------------------------------

-
n + I ~  ;V!

(3.1-29) g

I

Shih (1983) has tabulated the functions of Gij {0,n) in terms of their arguments as 

shown graphically in Figure 3.6 for n=3 and 13. I „  is an integration constant 

which is a function of the strain hardening exponent n shown in Figure 3.7. The 

HRR fields are essentially small geometry change solutions where the crack tip 

is assumed to remain sharp. The strength of the singular field is characterised 

by the J integral introduced by Rice (1968). J  integral is a line integral describing 

the amount of released energy during crack extension, and is directly related to 

the crack tip opening displacement. Rice expressed the path independent 

integral in the form;

= W =t2 ,3  (3.1-31)

The second term in (3.1-30) is the work done by the external forces, in which P is 

the traction vector applied to the body bounded by / ,  u is the displacement 

vector. The level of deformation is characterised by J, which is related to the 

crack opening displacement ô by a relation given by Rice (1968b) for a non­

hardening material under plane strain conditions.

.'4

'I
J  = (3.1-30)

GXl

r is  the length of the path surrounding the crack tip as shown in Figure 3.8. The

first term in the expression is the strain energy density or work of deformation per 

unit volume, which is defined by:
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J = 2 \ l  + ̂ jk S  (3.1-32)

The role of J in non-linear field is analogous to the manner in which K is used to 

characterise the strength of the elastic singularity. J is used to characterise the 

strength of the elastic-plastic singularity in constrained elastic-plastic crack tip 

fields. By making contact with both linear and non-linear material response it 

provides the most general single parameter characterisation of crack tip 

deformation. Equation (3.1-32) enables the crack displacements within the 

plastic zone to be related to the outer elastic field, where the plane strain small- 

scale yielding relation establishes the relationship between J and K.

= (3.1-33)

Fracture criteria based on J assume that the crack tip stresses can be uniquely 

described by the HRR fields as characterised by the J-integral. McMeeking and 

Parks (1979) demonstrated that fields characterised by J  are identical to those 

observed in small scale yielding when a single parameter characterisation based 

on J is valid.

3.1.6 Lim its fo r one parameter characterization

In 1971, McClintock noted that in the absence of strain hardening, single 

parameter characterisation is limited by the lack of uniqueness of the fully plastic 

flow field. For example, centre cracked panels are incapable of maintaining full 

constraint under fully plastic conditions, and the maximum principal stress within 

plastic zone is approximately 61% less than that in the HRR (Prandtl) field. 

Figure 3.9 Shows the slip line field for a centre cracked panel. Shallow edge 

cracked bars exhibit unconstrained flow fields while fully constrained Prandtl field 

is only developed in deeply cracked bend bars. The slip line fields for both 

shallow and deep double edge cracked bars are shown in Figure 3.10 (Ewing,
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1968, and Green, 1953). In full plasticity shallow edge cracked bars lose crack- 
tip constraint.

In 1981, Shih and German proposed a J-dominance criterion which required that 

the stress field is within 10% of the HRR field at a distance r<y„/ J -2  ahead of 

the tip. Since the difference between the HRR field and the small scale yielding 

field Is in general less than 5% (Du and Hancock 1991), Karstensen (1996) used 

the small scale yielding field as a reference field and found that shallow edge 

cracked bars exhibit a compressive 7 stress and lose J dominance at low levels 

of deformation. As an example, for shallow single edge cracked bars (shown in 

Figure 3.3) in bending, single parameter characterisation seems to be lost for a 

very low level of deformation characterised by cao/*7 as illustrated in table 3.1 

and Figure 3.11 where c is the width of the ligament (W-a). At a/W=0.1 and 

n=13 the breakdown of a J-characterisation occurs at 7=3200, the limit 

calculated in terms of the crack length extend the singular parameter 

characterisation to «cjo /  7 = 360. Deeply edge cracked bars retain J-dominance 

line until coo /  7=20, independent of a/W  ratio and hardening rate, indicating that 

the crack length is the controlling dimension rather than the ligament.

3.2 Two parameter fracture mechanics

3.2.1 T-stress

Larsson and Carlsson (1973) demonstrated that the second term In the Williams 

expansion has a significant effect on the shape and size of the plastic zone 

which develops at the crack tip. Rice (1974) denoted the second non-singular 

term as the 7-stress which is independent of the radial distance and corresponds 

to a uniaxial stress parallel to the crack.

G l i  G i 2 K 7 „ (8 ) f M y  o'

G  21 G22_ ■J2%r /« (0 ) /« (e ). 0 0
(3.2-1)
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where fy are universal functions of the angular co-ordinate 8 .

f i i —

f 22 =  COS 0
1 + sin

= fzi = cosl s/n(^|

30
2

The value of the T stress depends on the geometry and the applied load. A 

range of analytical and numerical techniques have been used to calculate T, but 

the simplest method is to examine the stress field on the crack flanks. The 

leading term in the Williams expression is zero for 0=n; because /^(;r)=0, and

the T-stress is consequently identical to uu :

(3.2-2)

It should be mentioned that the use of numerical methods in conjunction with a 

singular stress field requires a highly refined mesh if accurate results are to be 

obtained. Most refined methods have been discussed by Kfouri (1986).

The T-stress is sometimes expressed in terms of a bi-axiality parameter p  

following Leevers and Radon (1983) which has been tabulated for a wide range 

of geometries T - p K /  . Table 3.2 and 3.3 show the value of K; and p  for a

range of a/W  ratios of single edge cracked bars under tension and bending 

following (Sham, 1991). Data for centre cracked panels (Nekkal, 1991) and 

double edge cracked panels (Leevers and Radon, 1983) are given in Table 3.4.

____
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3.2.2 Modified boundary layer formulations

Fracture processes occur in a physically small region close to the crack tip where 

plastic deformation occurs due to the stress and strain concentration. In order to 

investigate the nature of elastic-plastic crack tip fields, it is desirable to avoid 

modelling a complete engineering structure. This problem was resolved by Rice 

and Tracey (1973) who introduced the concept of a boundary layer formulation 

for analysing crack tip plasticity in small scale yielding. The circular region close 

to a crack tip shown in Figure 3.12 can be regarded as a substructure of a whole 

body in which the local boundary conditions are based on the first term or the 

first two terms of the Williams expansion. The small scale yielding condition is 

satisfied by restricting plasticity to a very small proportion of the surrounding 

elastic region. Because boundary layer formulation analysis isolates the non­

linear area, it reduces computational time and removes geometry effects while 

allowing mixed mode calculations.

Figure 3.13 shows a typical focused finite element mesh for modelling crack tip 

plasticity. The loading applied on the elastic boundary corresponds to mode I 

(Ki) plus T stress term giving rise to displacements u t and ui^
-

Mi = wf + ul

U 2= ^U 2  +  U l

r lT  A: 2
—   cos—
27r) 2G 2

r \ \  K . 0
—   sm —
2nJ 2G 2

7 ] 2  coŝ  I —

e

Ô

8 G

8 G
(3.2-3)

where rj-3-4v in plane strain conditions, v is Poisson’s ratio and G the shear 

modulus. K is established by far field conditions.

The two parameter approach has been developed by Bilby et al. (1986) and 

more recently by Betegôn and Hancock (1991), Al-Ani and Hancock (1991) and 

O’Dowd and Shih (1991). The T-stress affects not only the shape of crack tip

-a---- '
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plastic zone but also the stresses within plastic zone. Detailed investigations of 

the non-hardening problem have been presented by Du and Hancock (1991) 

using finite element analysis methods based on modified boundary layer 

formulations. As T is proportional to the applied load, the T-0  field is significant 

in the sense that it is the field which applies at very small load levels and is thus 

the small scale yielding field. Du and Hancock (1991) found that compressive T 

stresses both enlarge the maximum radius of the plastic zone and cause the 

plastic lobes to swing forward. In contrast, tensile stresses cause the plastic 

zone to decrease in size and to rotate backwards. The change of plastic zone 

shape due to the T-stress is illustrated in Figure 3.14. Plasticity only 

encompasses the tip for closely defined conditions in which T is positive (tensile). 

When T is negative (compressive) plasticity does not surround the tip and an 

elastic sector appears on the crack flank giving rise to an incomplete Prandtl 

field. Figure 3.15 shows the slip line field representation of the mode I crack tip 

stress fields with different level of T stress. Of particular significance is the 

observation that compressive T stress causes a loss of crack tip constraint 

ahead of the crack. Parallel experimental work has demonstrated that this leads 

to enhanced level of toughness for both cleavage given by Betegôn, 1990, 

Betegôn and Hancock, 1991, Kirk, Koppenhoefer and Shih in 1993 (see Figure 

3.16) and ductile tearing given by Hancock, Reuter and Parks, 1993.

3.2.3 J”Q theory

The higher order terms in the non-linear asymptotic expansion of the mode I 

crack tip field shown in equation (3.1-27) have been investigated recently. Li and 

Wang (1986) and Sharma and Avaras (1991) have examined the first two terms 

in this series. Following their work Yang and co-workers (1993a, b) and Xia, 

Wang and Shih (1993) have sough three and four terms expansions. But a 

major simplification was proposed by O’Dowd and Shih (1991a,b) who 

Introduced a widely accepted notation in which the amplitude of the second term 

in the expansion is denoted Q.
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2 l
Go

J n+l ~
CTÿ(0 ,«) + Ô

/  \  

r
J

V Go7

(Jij (0, n) + higher order terms (3.2-4)

On this basis Q may be defined as

J
V cr„y

Go
(3.2-5)

CT,

It is argued that the exponent t can be approximated to zero, leading to a 

distance independent second order term. For non-hardening plasticity Du and 

Hancock (1991) found that the difference between o-eo in the HRR field and the 

small scale yielding (T=0) field is about 2% directly ahead of the crack. This 

allows the reference field to be defined as small scale yielding (T=0) field or the 

HRR field

Gij -  g I   ̂ +  Q g o àij (3.2-6)

where ôÿ is the Kronecker delta. The Q parameter can be inferred by 

subtracting the stress field for the 7=0 reference state from stress field of 

interest:

Go
at 0 = 0  and = 2 (3.2-7)

In small scale yielding, 7 and Q are uniquely related. Betegôn and Hancock 

(1991) have given a relation based on numerical calculations for n=13:
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Ts I T Ÿ  T
Q = 0.64 —  -0.4 ^  —  <0 (3.2-8)

( T o2  V  C T o J  C7o

Both Q and T can be used as a measure of the loss of constraint in small scale 

yielding.

3.2.4 J-Q toughness locus

Fracture mechanics attempts to ensure structural integrity by applying toughness 

measurements obtained from laboratory specimens to real defects. Classical 

single-parameter fracture mechanics assumes that fracture toughness is a 

material constant and geometry independent. Nevertheless, crack tip 

deformation and fracture toughness are geometry independent only within a 

limited range of loading and geometric conditions, which ensure fully constrained 

fields. The restrictive nature of these size and geometric requirements is a major 

limitation on the applications of plane strain elastic-plastic fracture mechanics. It 

is necessary to characterise fracture toughness as a function of constraint for 

allowing the application of fracture mechanics to a wider and less restrictive 

range of configurations.

Jc = Jc{q) or Jc = Jc{T) (3.2-9)

Thus fracture toughness is no longer viewed as a single value; rather, it is a 

curve that defines a critical locus of J and Q or T values. This relationship has 

been discussed by Betegôn and Hancock (1991), Hancock, Reuter and Parks 

(1993), Sumpter and Forbes (1992) and Sumpter and Hancock (1994). They 

examined the critical value of J for geometries with different levels of constraint 

(T or 0), and found that shallow edge cracked bars and centre cracked panels 

with the most negative T values are tougher than deeply cracked specimen with 

positive T values. Figure 3.17 is an example of a J-T fracture locus determined 

by Sumpter (1993) from three point bend tests and centre cracked tensile tests. 

Figure 3.18 shows the same data but re-plotted as J - 0  fracture locus (Sumpter
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and Hancock, 1994). Although there is some scatter, the trend in these figures 

are clear. The critical J values increases as O or T become more negative. 

Fracture toughness tends to increase as constraint decreases.

Single parameter fracture mechanics theory assumes that toughness values 

obtained from laboratory specimens can be transferred to structural applications. 

J-Q theory implies that the laboratory specimen must match the constraint of the 

fracture; i.e., the two geometry must have the same Q or T at failure in order for 

the respective Jc values to be equal. Figure 3.19 illustrates the application of 

the J-Q approach to structures. The applied J versus Q curve for the 

configuration of interest is obtained from finite element analysis. It is plotted with 

the J-Q toughness locus which is a range of possible Jc values for the structure 

incorporating the scatter in toughness data. Failure is predicted when the driving 

force curve passes through the toughness locus.

3.2.5 Crack tip stress fields under mixed mode loading

Under mixed mode loading, comprising combinations of mode I loading and 

mode I in plane strain conditions, the elastic crack tip stress field in a 

homogeneous material can be written as:

<Jxx
K ,

(Tyy

G x y

cos( J /  2)[i -  sin(^ /  2) sin(36> /  2)] 

cos(û /  2)[l 4- sin(^ /  2) sin(3<9 /  2)] 

sin(6> /  2) cos(0 /  2) cos(30 /  2)

A//
4 2 ^

-  sin(^ /  2)[2 +  cos(<9 /  2) cos(3<9 /  2)] 

sin(^ /  2) cos(<9 / 2) cos(3^ /  2) 

cos(6> /  2)[l -  sin(^ /  2) sin(30 / 2)]

Gn K,
Geo

c o s { e / 2 ) \ l ^ s i n ' ( 0 / 2 ) ]  

cos^{6 /  2) 

s m { 0 / 2 ) c o s ' ( 9 / 2 )

G z z  -  y { o - x x  +  O T yy) =  v ( c r r r  +  C T g g )

CTxz =  O -yc =  ( J r z  =  O-0Z =  ^

+
K ,

4271T

4 i n ( e / 2 ) [ l - 3 s i n \ e / 2 ) \

~ S s i n { e / 2 ) c o 4 ( e / 2 )

c o s ( 9 / 2 ) [ l - 3 s î n ^ ( 9 / 2 ) \

(3.2-10)

I

   _ _     _ .............
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The nature of the remote elastic field can be defined by an elastic mixity 

parameter introduced by Shih (1974) for homogeneous material.

Mel =  ~  tan
TV

-I El
Ku TV

tan-I lim
r->0

cveeir.O)
GrO

(3.2-11)

The elastic mixity defines both the ratio of tension to shear in the remote elastic 

field and also directly ahead of the crack in the fully elastic case. However when 

crack tip plasticity occurs, the ratio of tension to shear directly ahead of the crack 

is defined by a plastic mixity factor Mp (Shih, 1974).

Mr — ta n ^  i  l im
TV r-yO

G qq(r,0 )
GrB

(3.2-12)

In general the remote elastic and plastic mixities are not identical. For small 

scale yielding, the elastic mixity provides a measure of the relative strength of 

the shear and direct stresses in the outer elastic field, while the plastic mixity 

gives the relative contribution of the local shear to tension in the plastic zone at 

the tip. The relation of near field plastic mode mixity versus far-field elastic mode 

mixity given by Shih (1974) under small scale yielding and plane strain conditions 

is shown in Figure 3. 20.

For non hardening plasticity, Shih (1974) sought mixed mode slip line fields in 

which plasticity was assumed fully surround crack tip. Since the equilibrium 

equations demand that the hoop and shear stresses are continuous, but allow a 

jump in the radial stress, a stress discontinuity was postulated along a radial line 

emanating from the crack tip. Figure 3.21 illustrates the discontinuity occurs at 

an angle a  from the crack flank. The angle a  increases with the Mode I I  

component until it equals tvJ4, At this mixity a centred fan develops and giving

---------------
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rise to continuous stress fields. In pure Mode II the angular span of the fan is 

8.2° recovering a field originally discussed by Hutchison (1968b).

Hancock and co-workers (1997) presented a set of mixed mode slip line fields 

under small scale yielding using boundary layer formulation shown in Figure 

3.22, without the assumption that plasticity fully surrounds crack tip. In 

comparison with those given by Shih (1974), the fundamental difference is that 

the fields do not exhibit stress discontinuities and feature an elastic sector on 

one crack flank except pure mode II loading. The mode I field is the incomplete 

Prandtl field. With increasing levels of mixity the constant stress diamond ahead 

of the crack rotates. The maximum principal stress and the maximum 

hydrostatic stress occur across a radial plane through the centre of the constant 

stress diamond. This angle is of particular interest in terms of stress controlled 

brittle fracture, as it is frequently argued that such failure occurs at the orientation 

at which the propagating crack extends locally in mode I. In the case of non­

hardening plasticity the stress at this angle was matched with the stress in an 

unconstrained mode I field. For non-hardening plasticity, the fields within ±n/4 of 

the direction of maximum hoop stress can only differ by a hydrostatic term. 

However Hancock, Nekkal and Karstensen (1997) have shown that for 

moderately hardening materials the fields also differ hydrostatically but are 

deviatorically similar. On this basis the constraint of mode I fields parameterised 

by Q or T can be correlated with the constraint of mixed mode fields 

parameterised by elastic mixity as shown in Figure 3.23.

3.2.6 Limitation o f two parameter characterization

The limitations of two parameter characterisation have been described by 

Karstensen (1996) by comparing full field solutions with modified boundary layer 

solutions at the same level of T-stress. The T-stress in full field solutions was 

defined from a biaxiality parameter, /3, and the stress intensity factor, K:

T = -Ç =  (3.2-13)
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The values of and K are given in Table 3.2-4. T is proportional to the remote 

load level. The modified boundary layer formulation solutions were obtained by 

applying the displacement loading associated with T and K  on the outer- 

boundary of the mesh. Two parameter characterisation was considered to be 

valid as long as the stresses were within 1 0 % of the stress field defined by the 

modified boundary layer formulation at the same value of T. This reference 

stress is denoted as gmblf- Figures 3.24-26 show the stress at distance ro(/J=2 

non-dimenslonalised by okjblf as a function of the level of deformation cob/J for 

single edge cracked bend bars, single edge cracked tension bars and centre 

cracked bars respectively. The results for each geometry are shown for four 

different hardening rates. Perfect agreement between MBLFs and full geometry 

solutions corresponds to cre^crmLF '̂  ̂■

Tables 3.5 gives the critical values of cob /J for the three types of geometry; edge 

cracked bend bars, edge cracked tention bars and centre cracked panels. 

Comparing this table with Table 3.1 demonstrates that two parameter J-T 

characterisation extends the limits beyond one parameter characterisation for 

shallow edge cracked bars and centre cracked panels because these geometries 

exhibit loss of constraint due to negative T stress. Deeply cracked bars (a/W > 

0.35 in bending and a/W > 0.55 in tension) are within the limits of single 

parameter characterisation until cao/J>25.

The limits of J-Q characterisation for shallow cracked bars in bending and 

tension have been discussed by Shih and O’Dowd (1992). Because Q varies 

with distance at high deformation levels for the edge cracked bars, they 

suggested a criterion by limiting the Q gradient term Q’:

Q’= Æ -  (3.2-14)

J
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In practice Shih and O’Dowd (1992) have used the mean gradient of Q over the 

interval 1 < rcxc/J <5  from the crack tip.

Q'=
Q\

rcTo
J (3.2-15)

This leads to |Q’| < 0.03 as the limit for J-Q characterisation. J-Q 

characterisation Is thus valid as long as the distance dependency of the stress 

field compared to the reference field is small.

■ft;

Î



Figure 3.1 Definition of coordinate system for a stationary crack.
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Figure 3.2 Three types of mode applied at a crack tip.
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Figure 3.3 Illustration of a bend bar.
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Figure 3.4 Plastic zone shapes according to Von Mises (a) and Tresca (b) 
yield criteria, Broek, 1991.



Figure 3.5. Prandtl field
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Figure 3.6 Angular variation of stresses at a crack tip in HRR fields 
in plane strain conditions, Shih, 1983.

#
a
'I

Î

.a
■:i1

I
t

Ï
:



6

5
4

Plane strain

3
Plane stress

2

1

0
n

12 15

Figure 3.7 Value of I as function of strain hardening rate n, Shih, 1983.
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Figure 3.8 Arbitrary contour around the tip of a crack.



Figure 3.9 Slip line field for a centre cracked panel, McClintock, 1971.
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Figure 3.10 Slip line fields for both shallow and deep double edge cracked bars, 
Ewing, 1968, and Green, 1953.



a /W 7 1 = 3 n = 6 n = 1 3 7 2 = 0 0

T >
0.1 160 1600 % 3200 R^SOOO
0.2 60 100 500 1200
0.3 40 40 40 50
0.4 20 20 20 30
0.5 20 20 20 30
0.6 20 20 20 30
0.7 20 20 20 30
0.8 20 20 20 30
0.9 20 20 20 30

(i) Single edge cracked bend bars.

a /W 72=3 72=6 72=13 72 =  00

T >
0.1 280 % 3000 % 5000 % 5000
0.2 60 1000 2000 3500
0.3 40 500 1000 1000
0.4 25 120 300 450
0.5 20 45 60 100
0.6 20 20 20 25
0.7 20 20 20 25
0.8 20 20 20 25
0.9 20 20 20 25

(il) Single edge cracked tension bars.

a /W 72=3 72=6 72=13 7 2 = 0 0

T > T >
0.1 3000 % 5000 % 5000 % 5000
0.2 1200 4800 % 5000 % 5000
0.3 800 3200 4600 % 5000
0.4 550 2000 2800 % 5000
0.5 400 1300 1800 % 5000
0.6 350 950 1600 4000
0.7 280 800 1200 2800
0.8 250 750 1100 2000
0.9 250 600 900 1800

iii) Centred cracked panels.

Table 3.1 Limits for one parameter characterisation of single edge cracked bend 
bars, Karstensen, 1996.
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Figure 3.11 The stresses directly ahead of a crack in edge cracked bend bars 
normalised by the small scale yielding field, Karstensen, 1996.



a/VV - 4 “<T\/i:a
ft _(j —• —J*—

0.1 0.11877E1 -0.46436E0
0.2 0.13650E1 -0.43362E0
0.3 0.16570E1 -0.37G70E0
0.4 0.21G83E1 -0.27762E0
0.5 0.2821GE1 -0.15293E0
0.6 G.4G254E1 0.69027E-2
0.7 0 .63457E I 0.2101GE0
0.8 0 .1 I926E 2 0.50105E0
0.9 0.34485E2 0.10306E1

Table 3.2 Values of Ki and p for single notched bars in tension, Sham,1991



Pure Bending Three Point Bending

a /W crs/Tra 0  =  ' ^
0.1 0.10458E1 -0.36263E0 0.10234E1 -0.36062E0
0.2 0.10534E1 -0.22852EO 0.10272E1 -0.23295E0
0.3 0.11220E1 -0.73444E-1 0.10937E1 -0.90071E-1
0.4 0.12586E1 0.92115E-1 0.12290E1 0.60928E0
0.5 0.14951E1 0.26160EO 0.14647E1 0.21685E0
0.6 0.19100E1 0.43325E0 0.18787E1 0.37921E0
0.7 0.27210E1 0.61041E0 0.26880E1 0.55311E0
0.8 0.46642E1 0.83862E0 0.46270E1 0.78585E0
0.9 0.12406E2 0.12675E1 0.12358E2 0.12273E1

Table 3.3 Values of Ki and p for single notched bars in bending and three point 
bending, Sham,1991.



Centre Cracked Panels Double Edge Cracked Bars

a /W K
<Ts/"̂ a "  -  A

K
£T\/ira

0.1 0.1006E1 *0.1017E1 0.12130E1 -0.436E0
0.2 0.1025E1 -0.1034E1 0.12123E1 -0.445E0
0.3 0.1058E1 -0.1051E1 0.12175E1 -0.458E0
0.4 0.1109E1 -0.1068E01 0.12322E1 -0.463E0
0.5 0.1187E1 0.1085E1 0.12659E I -0.471E0
0.6 0.1303E1 -0.1102E1 0.13342E1 -0.441E0
0.7 0.1488E1 -0 .1261E I 0.14588E1 -0.411E0
0.8 0.1816E1 -0.1460E1 0.16671E1 -0.330E0
0.9 0.2312E1 -0.1930E1 0.19927E1 -0.196E0

Table 3.4 Values of K| and p for centre cracked panels and double edge 
cracked bars, Nekkal, 1991 and Leavers and Radon, 1983.
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Figure 3.12 Schematic boundary layer formulations.



Figure 3.13 Focused mesh.
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Figure 3.14 The effect of the T-stress on the non-dimensionallzed plastic zone 
shape . Du and Hancock, 1991.



0.446oO
crack

129'

130'

crack

105’

- 0.443aO
crack

'7 8

■s'
90'

crack

Figure 3.15 Effect of T stress on mode 1 slip line fields, following 
Du and Hancock, 1991.
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Figure 3.17 J-Tlocus for 3PB and CCT specimens, high strength weld steel at 
-30° C, Sumpter, 1993.
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Figure 3.18 J-Q locus for 3PB and CCT specimens, high strength weld steel at 
-30° C, Sumpter and Hancock, 1994.
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Figure 3.19 Application of a J-Q toughness locus.
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Figure 3.20 Near-field mixity Mp versus far-field mixity Me for small-scale 
yielding in plane strain, Shih, 1974.
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Figure 3.21 Slip line fields and stress distributions at the tip of a crack in a 
perfectly plastic material for plane strain, Shih, 1974.
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Figure 3.22 Slip line fields under mixed mode loading in homogeneous material, 
following Hancock, al,et., 1997.
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Figure 3.23 Correlation of constraint and elastic mixity, Hancock, Nekkat and 
Karstensen, 1997.
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>J —

0.1 35 50 65 30
0.2 35 40 40 30
0.3 35 40 30 30
0.4 20 20 20 30
0.5 20 20 20 30
0.6 20 20 20 30
0,7 20 20 20 30
0.8 20 20 20 30
0.9 20 20 20 30

(i) Single edge cracked bend bars.

a /W 7 7 = 3 77 =  6 7 7 = 1 3 7 7 = 0 0

0.1 3 0 100 180 1000
0.2 20 25 120 160
0.3 20 20 20 50
0.4 20 20 20 25
0.5 20 20 20 25
0.6 20 20 20 25
0.7 20 20 20 25
0.8 20 20 20 25
0.9 20 20 20 25

{ii)Single edge cracked tension bars.
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0.2 - 25 50 3200
0.3 - - - 2000
0.4 - - - 280
0.5 - - 300 420
0.6 - 260 350 500
0.7 80 280 400 400
0.8 80 250 400 450
0.9 80 300 500 450

(iii) Centred cracked panels.

i<^stenserl''l996°^ characterisation for single edge cracked bend bars,
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Chapter 4 Fracture mechanics of bi-materials

The performance of composite materials is often determined by the response of 

bi-material interfaces, so that failure of the interfaces by crack propagation is 

particularly important. Characterisation of interfacial crack tip fields is required 

for the assessment of the integrity of mechanical structures as well as for the 

transferability of laboratory test results to structural components. This chapter 

reviews progress in modelling stationary interfacial cracks.

4.1 Elastic fracture mechanics of interface cracks

As usual Cartesian axes (x, y) centred at the crack tip are employed. Two 

elastically mismatched solids joined along the x-axis, with a crack lying on the -x 

axis are illustrated In Figure 4.1. Material 1, above the interface, and material 2, 

below the interface, have Young's modulus E,- and Poisson s ratio vj (i=1,2).

Two distinct elastic interfacial crack-tip idealisations can be identified: a traction- 

free crack tip model introduced by Williams (1959), and a friction less closed 

crack-tip model discussed by Comninou (1977).

4.1.1 Traction-free crack tip mode!

Williams (1959) postulated a stress function, </> which satisfies traction free i

boundary conditions on the crack flanks.

4{r,e) = r^^ '[Asin(l-^ l)e  +Bcos(X ^ l)e  + C s in (X - l)e  + D c o s (X - l)ô ]

F{0) (4.1-1)

Iwhere A, 6, C and D are constants, and Û is identified in Figure 4.1. The 

relations between stress, displacements and the stress function are given in 

standard texts including Timoshenko and Goodier (1970):

Ï
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Oee

G re — '■-'[-XF'ie)]

â r‘

- I  ^(f> 1 ai>
r a - æ ^ æ

(4.1-2b) 

(4.1-2c)

uo = ^ r - *  {-F '{0) -  4{1 -  Ç)[Ccos(X -  l)0 -D s in {X  -  T)#]} (4.1-3a)

Ur = - ^ r ^ { - {X  + I)F{0) + 4{1 -  0 [C  sin{X -1 )9 +D cos(X -  7)^]} (4.1 -3b)

where the primes denote derivatives with respect to Û. G is the shear modulus, 

and Ç-v/(1+v).

Quantities in regions 1 and 2 have the appropriate subscript, Fi, F2, Ay, X2, <̂1, 

<̂2, vi, V2; etc, respectively. If the crack faces are traction free, age (tt) = uee {-n) 

= GreU^) -  Or/ W  = 0, which implies the conditions:

Fl (7t)-F2 (-7T)-F'i (tt)- F '2 (~7t)=0 ( 4 . 1 - 4 - 7 )

Furthermore the hoop and shear stresses and displacements must be 

continuous across the interface (0=0).

(0) = Gee (0) , Grû (0) = G r /  (0) 

uJ(0) = Ue(0), UrUo) = u?(0)

In order to make these four boundary conditions independent of radial distance 

C must be equal to %2- These conditions lead to:

F i (0)^F2(0)

F 'i (0)=^F'2(0)

1
2Gi [ -  F',{0) -4 C {1 -  C)] = F'2{0) -4C2{J~

( 4 . 1 - 8 )

( 4 . 1 - 9 )

( 4 . 1 - 1 0 )

s
s
I

I
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Fi(0) -  4 D i{l 2q  i) Flip) ■¥ 4 D2(1 — Ç ^  (4.1-11)

Substitution of Fi(9) and F2(0) in (4.1-4-11), leads to the eight homogeneous 

linear equations with eight unknowns Ai,, A2, ... D i„ Dg. By letting the 

determinant of the eight equations be zero, Williams (1959) gives:

COŜ ÀrTV + = 0 (4.1-12)

where r  = G//G;. There are an infinite number of X values that satisfy the 

boundary conditions. The dominant complex eigenvalue is X - ^  + is ,

which contains a real component (1/2), producing the usual square-root 

dependence on r seen in homogeneous solutions, and an imaginary component 

(\s) (Zywicz and Parks, 1992). The bi-material constant, g, depends on the 

elastic mismatch of the two materials which is characterised by two Dundur’s 

parameters a and p.

a r (k 2 + i) - {k i + i) 
r { k 2  +  /)■*“ {k t  +  / )

F(k,2 — 1) Î) 
r { k 2  +  f)  +  {k i +  / )

(4.1-13)

(4.1-14)

where = 3 -  4 V, for plane strain (M ,2) and k i ^ { 3 - v ) / ( l  for plane

stress. The Dundurs parameter a measures the mismatch in the plane tensile 

modulus whereas >3 characterises the mismatch in the in-plane bulk modulus and 

varies from -Vz to %. Under plane strain conditions, p  vanishes for: identical 

materials; two incompressible materials; or one incompressible and one rigid 

material (Comninou, 1990). The relation between the bi-material constant, s, 

and elastic mismatch parameter, p, was given by Rice (1988):

I



Chapter 4 Fracture Mechanics of Bi-material 38

For compressible bi-materials, s ^0 , interpenetration arises mathematically in a 

small crack tip zone (England, 1965). This physically inadmissible mathematical 

crack-face interpenetrating is interpreted as crack face contact which “occurs” 

whenever W{Au(r)} <0, <9= ;r(Rice, 1988).

4.1.2 Frictionless dosed crack-tip mode!

The physical anomaly associated with the traction free crack flanks motivated 

Comninou (1977) to develop a frictionless closed crack-tip model shown in 

Figure 4.2. Directly ahead of the crack tip only the shear tractions are singular, 

exhibiting the square-root type of singularity, regardless of the nature of the 

applied loads. The compressive tractions in the contact zone behind the crack 

tip have a square-root singularity. A stress intensity factor k i  can be defined 

and related to the mode II stress intensity factor Kn following Comninou, 1990;

Kl^±PKu (4.1-16)

where the + sign applies when the bond is to the left of the crack tip, and the - 

sign when the bond is to the right of the crack tip. Since K i is always negative 

due to the nature of compression, it follows that Kn has opposite signs at the 

two tips of a finite crack. Figure 4.3 shows asymptotic of a closed crack tip 

(Comninou, 1990).

4 .1.3 Complex stress intensity factor

The dominant asymptotic traction free interfacial crack tip stress field has been 

given by Rice and Sih (1965) in terms of a complex stress intensity factor K

Gyy(r,0 ~ O) + i(7xy{r,0 ~ O) = (4.1-17)
■42m'
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where K=K/+iK// and / = Following this work, Hutchinson et al. (1987)

proposed a modification in which the complex stress intensity factor was 

expressed in the form:

% = (A:/ + i kn)J^ cosh Tts (4.1-18)

The term VF arises in converting the lower case k of that period to the more 

modern definition of the stress intensity factor. The introduction of cosh Æg 

makes the magnitude of the traction vector analogous to the homogeneous 

case.

^ (o i + c r ^ , ) = W /V ^  (4.1-19)

The corresponding asymptotic crack-face displacement Au(r) can be written in 

terms of the complex stress intensity factor K:

Au(r)  -  w(r, 0== tv)- u{r,  ( 9  = -;r )=  ^  (4.1 -20)
42tv{1 + ûs) coshyTve)

where u{r,0) = uy{r,0) + iux{f'.0) and Cj==(1-Vj)/Gj (j-1,2) are elastic compliances.

Equation (4.1-18) reduces to K=Ki+iKu for a homogeneous solid where C2 

and g=0.

The complex intensity factor K thus uniquely characterises the crack tip field in 

the same way that a conventional stress intensity factor defines the field of a 

homogeneous material. Even though non-linearities cause the actual field to 

differ locally from Williams stress and deformation distributions, the field 

approaches the standard Williams elastic singularity of a strength characterised 

by a complex intensity factor K at large radius r. The complex intensity factor, K,
'

therefore provides the boundary conditions determine the onset of crack growth 

in small scale yielding.

I
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4.1.4 Cracks lying between an elastic matrix and a rigid substrate

In most composite materials the reinforcement is much stiffer than matrix, such 

as a metal matrix reinforced by ceramic fibres. In these cases, the 

reinforcement may be modelled as a rigid body (material 2) and matrix (material 

1) as an elastic-plastic material. Figure 4.4 illustrates a stationary crack located 

between a rigid body in the lower half space and an elastic-plastic matrix in the 

upper region. To avoid the oscillatory asymptotic analysis of the elastic fields at 

the tip of a open interface crack, interest is currently focused on incompressible 

elastic deformation. When the matrix is an elastic incompressible continuum, 

the normal and shear traction singularities can be de-coupled and measured by 

the standard definition of the intensity factors K; and K u at the crack tip 

(Sharma and Aravas, 1993). In a opening crack model, the leading order stress 

fields in Cartesian co-ordinates system were found to be (Rice and Sih 1965):

(

Gxy(x,y)

1

K F

.  0 50]3 cos—+ cos—  
2 2 

_ 0 505 cos— cos —  
2 2

. 0 , 5 0
-s m —+ sm—  

2 2

+ K i i

_ . 6» . 501^-7sm— sm—
2 2

. 0 . 50
-s m —+ sm—

2 2
_  6! 56»3cos—+ COS—

2 2 jv (4.1-21)

while in polar co-ordinates system, the dominant stress fields were given by 

Fang and Bassani (1995):

Grg{r>0)
G n {r ,0 )

Ged{r,0)
A-flTir K ,

, 9  . 36» 1
sm—+ sm—

2 2
5cos—-cos— r + Kir
n 9 30
3cos—+ COS—

2 2

0  ̂ 30cos—+ 3 cos—  
2 2

.6»  , 3 0-5 sm—+ 3sm—  
2 2

, 3 0-3sm— 3sm—  
2 2 (4.1-22)

The corresponding dominant asymptotic displacement field is:
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Ur{r,0)]
u e irM

± .  J L
4 G \2 tv

0
cos— — 301 cos---- r . 0  3 0 1 ]-s in — + 3sin—

2
3 s in ^

2
. 30 -s in  —

+ Kn 2 2
o 6» _ 36» 1 —3 cos — h 3 cos—

2 2 . 2 2_,

(4.1-23)

where G is the shear modulus of the matrix. K i and Kn are the stress intensity 

factors corresponding to mode I and mode II established by far field conditions 

such as the applied loading and the geometry of the cracked body. In this open 

crack model, Ki>0. A remote positive shear in the Cartesian axes shown in 

Figure 4.1 corresponds to Kn >0 while negative shear to Kn <0.

In the closed face model, the incompressibility assumption can be relaxed. 

There is only one independent eigenfunction and the leading order solution for 

frictionless contact at an interfacial crack tip in Cartesian co-ordinates was given 

by Comminou (1977) and Sharma and Aravas (1993);

Gxx
G y y

G xy

KFn
427W 2(k-¥l)

(2k ^ 5) sin —^ sin —  
2 2

(2 k -3 )s in — + sin —  
2 2

(2k + l)cos — + cos—  
2 2 (4.1-24)

where k = 3 - 4v for plane strain problems and Kn is the stress singularity for 

the frictionless contact. Since the normal tractions are not singular, the mode I 

strength intensity factor Ki disappears.

The dominant stress fields have also been given in polar co-ordinates by 

Comninou (1977):

G  rr 

Gee
Gre

Kn
44Jr

5(l + p ) s in ~ - { 3 - 0 )s in Y

3(I + p )s in~  + ( 3 - p ) s in ^  

(1 + P )cos^ + (3 - p ) c o s ~

;!5?;
f
a

■I
I.Î
1

(4.1-25)

f
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When the lower region is assumed to be rigid, the Dundurs bi-material constant 

ip) becomes;

i  + k (4.1-26)

The corresponding dominant asymptotic displacement field is:

^  Ka42r 
U0{r,0)\ 8G

{2 k-1){1 + p) sin ~ - { 2 - p )  sin y  

(2 k + 1){1 + p) COS ~  -  {3 ~p) cos y
(4.1-27)

To ensure compressive traction in the contact zone (ooe < 0 when 0=Tr) loading 

is restricted to k3i >0 for p>0 and k3i <0 for p<0. However when p=0 and 0=7v, 

088 is zero for any value of Kji . Since the shear stress is the only singular 

stress component directly ahead of the crack tip as r - ^ ,  the asymptotic solution 

is mode-ll-like.

4.2 Elastic-plastic fracture mechanics of elastically mismatched interface
cracks

Interfacial cracks with elastic mismatch have recently received considerable 

attention because of a variety of applications involving heterogeneous metal 

combinations. Based on the dominant singularity term determined by Williams 

(1959), elastically mismatched interfacial crack-tip fields under small scale 

yielding conditions have been investigated by Shih and co-workers (1988, 1991) 

and Zywicz and Parks (1989, 1992).

4.2.1 Mixed mode loading

The crack tip stress fields are characterised in terms of a complex stress 

intensity factor, K, and a near tip phase parameter which is defined by (Zywicz 

and Parks, 1989)
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Ç^^^Z-K + e lr ir")  (4.2-1)

where AK  = atan (Ki/Ki) and represents the maximum radius of a crack tip 

plastic zone,

= — — ^ ^ 7 7 — : (4.2-2)cr ysTVCOSh ( tvs)

ays is the yield stress. The near tip phase parameter (^q) depends on p, that is

to say, on the elastic constants of the two materials, and accounts for the 

coupling between AK  and rp • Zywicz and Parks noted that near tip fields vary

appreciably with the phase parameter. When -30° < < 0, interfacial

triaxialities reach 3.29, a condition extremely conducive for ductile void 

nucléation, growth and coalescence, while the fields for fg < -50° contain 

extremely large interfacial shear strains. As fg is increased in the range > 0,

normal tractions across the interface decrease and the crack face elastic zone 

extends as shown in Figure 4.5 (Zywicz and Parks, 1992). Correspondingly, the 

accompanying shear traction increases up to its maximum value of k. Thus 

interfacial failure governed by maximum shear traction criteria appear more 

favourable at large positive and most negative ^  values. The largest shear 

strains reside in centred fans close to the crack face-elastic-constant-state-fan 

border but slowly reorient toward the interface as ->90°. Under these loading

conditions, crack advance by shear localisation appears more favourable at 

angles slightly inclined from the interface, in the maximum shear strain direction, 

than along the interface.

Zywicz and Parks (1992) analysed the elastic sectors at the crack tip which 

behave as semi-infinite plane strain elastic wedges loaded by constant surface 

tractions. The stress field within the elastic sectors can thus be obtained from 

the general wedge solution (Timoshenko and Goodier, 1970). Complete
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independent analytic solutions were not possible as the boundary conditions 

were provided by numerical solutions.

However in some cases such as the case described by Li and Hancock (1997), 

elastic sectors appear between an interfacial crack flank and a centred fan 

sector under mixed mode loading, and following independent analytical solutions 

may be established. This will be discussed in chapters 5, 6, and 7.

4,2.2 Effect o f T stress

Kim and co-workers (1996) found that the Dundurs parameter, a, also plays an 

important role in elastically mismatched interfacial crack tip constant due to the 

linear dependence of the non-singular stress T on a. The magnitude of the non­

singular stresses for both materials 7/ are given in terms of a:

Ti=(1+a)T : T2=(1-a)T (4.2-3)

T denotes the magnitude of the T stress for elastically homogeneous materials, 

such that the first two terms of the Williams expansion for material 1 are:

Gki(r,0) KI
P2m' cosh(7rs)

Gici + TiSjk S/I (4.2-4)

The corresponding displacement fields are represented by:

\K \^
-JJk  cosh{!tB) G ! ’  8Gi

\K \F  - (k ,-3 )
8G,

T/rsinO

(4.2-5a)

(4.2-5b)

For material 2, the stress components are:

KI Gki'^TiSxkSu (4.2-6)

■ = ' ' ..........................   ' I
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The corresponding displacement fields are:

G, (4 2-7a)

where cr̂ y, ŵ ând are function of phase angle and material properties (Kim

and co-workers, 1996). For, a = ^0 , the displacement field reduces to that of a 

homogeneous materials. The effect of the T-stress on the crack tip constraint 

for elastically dissimilar bi-material as:

\
—  =3.20 + 0.56{l + a)T-1.97[{l+a)Tf (4.2-8a)
O’o'̂  g^Q

I =3.20 + 0.29{l + a )t-1 .6 0 \(U a )z f (4.2-8b)
 ̂O'o'̂  ĝg

where t=T/cto. It is noteworthy that for identical geometries and loadings, 

different bi-material specimens (having different value of a) can have very 

different interfacial crack tip constraints.

4.2.3. Cracks lying between an elastic-plastic matrix and a rigid substrate

For a crack lying between elastic-plastic matrix and a rigid substrate, 

investigations for the interfacial crack tip stress field can be carried out within the 

framework of plane strain slip line theory. The fields can be expressed in terms 

of a plastic mode mixity by noting that the plastic mixity defines the ratio of hoop 

to shear stress directly ahead of the crack. This can be determined by following 

the slip lines from a crack flank to the region directly ahead of crack within the 

plastic zone. Based on the assumption that plasticity entirely surrounds the 

crack tip, Quanxin Guo and Keer (1990) presented a one-parameter family of 

asymptotic near tip stress fields for the traction free interfacial cracks lying

•___________
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-0.7638 <Mp S 0.3302 (4.2-9)

Mp = —tm '\^ -T2 (cosa -s ina )-1 + 2a^ 0.3302SAf^ <0.8897 (4.2-10)

A'
between elastic plastic material and a rigid substrate, for a limited range of 
plastic mixities.

I

Figure 4.6 shows examples of the postulated slip line fields, in which 9i is also 

identified.

Fang and Bassani (1996) have also presented an one-parameter family of 

asymptotic near tip stress fields which extends the range of plastic mixity.

The corresponding slip line fields and definition of a are shown in Figure 4.7. 

The reason that perfect plasticity solutions with Mp approaching ±1 do not exist

is evident by examining the boundary conditions prescribed at 0=0. For a rigid 

substrate, the interface at 6^0 must be a stress characteristic with =±k. Thus

the plastic mode mixity evaluated with non-zero shear stresses at 0=0 cannot 

give Mp=±'\. A pure mode I slip-line field, therefore, is not possible to occur 

directly ahead of the interfacial crack.

4.3 Elastic-plastic fracture mechanics of strength-mismatched interface

cracks

In many civil and marine structures, welded steel joints are places of crack 

initiation due to inherent metallurgical or geometrical defects. The elastic 

properties of the welding metal and the baseplate are nearly the same but there 

is often a strong yield strength-m is match due to differences in alloy content, 

manufacturing and welding. The problem of an interface crack between 

elastically matched but yield strength mismatched materials is thus of 

fundamental and practical significance. When a crack lies along the interface of 

strength mismatched weldments, there is a significant gradient in plastic
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deformation resistance and the crack tip stress and deformation fields (Ganti 

and Parks, 1997). The features of these fields differ both qualitatively and 

quantitatively from the homogeneous fields reviewed in chapter 3. Ganti and 

Parks (1997) developed an idealised model of strength mismatched interface 

crack subjected to far-field mode I loading under small scale yielding conditions. 

The symmetry of the crack tip fields that exists for homogeneous materials is lost 

with strength mismatch. For non-hardening deformation, the angular span of the 

centred fan increases on the soft side while it decreases on the hard side. At a

given remote loading level, strain is focused into the soft side of the mismatch 

while decreasing the peak plastic strain on the hard side. Hence the stress and 

deformation intensities locally experienced by material points differs from those 

in homogeneous specimens of either material. The triaxial constraint increases 

almost linearly with strength mismatch which is defined as the ratio of yield 

strength of the hard and soft materials, y = a^/af, > 1, and reaches a saturation 

level at y=1.421. Ganti and Parks presented families of slip line fields which 

depend on the level of mismatch, as well as on overall deformation (J) and 

triaxial constraint (Q/T). These fields have then been used in conjunction with 

local fracture criteria to establish models for the toughness of strength- 

mismatched interface cracks.

i

The effect of T on the shape of plastic zone at a strength-mismatched interface 

crack tip has been investigated by Kim and co-workers (1996). The dependence 

of the plastic zone shape for bi-materials (y=°o) on T-stress is similar to that for 

the homogeneous material (y=1). Figure 4.8 compares the slip line fields under 

mode I loading with different level of T stress for y=1 and y=oo . The angular 

spans of the centred fan for a bi-material in all loading modes are bigger than 

that for a homogeneous material. This leads to the observation that the 

hydrostatic stress at the interface for a bi-material is much higher than in 

homogeneous materials because the hydrostatic stress, 0 ,̂ changes only in the 

centred fan sector. The hoop and mean stress directly ahead of crack increase 

only slightly for a positive T stress, but decrease substantially for a negative T. 

Kim et.al (1996) adapted Du and Hancock’s (1991) Idea and proposed a relation 

for bi-materials y=oo under mode I loading and negative T-stress
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cr„
Q̂Q

3.20+ 0.56T-1.97 r

3.20+ 0.29T-1.60

(4.3-1)

(4.3-2)

where t=T/(Jo . Zhang and co-workers (1997) also investigated the near tip 

stress field of a plastically dissimilar bi-material interface with effect of T stress, 

and established that for a given material mismatch, the T stress shifts the near 

tip stress level of the interface crack up and down without significantly affecting 

the material mismatch constraint parameter, y, and suggested that the effect of 

T stress and material mismatch on the crack tip can be separated allowing a J- 

Q-y formulation to characterise the near tip stress field.

 ■ ■ ■
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Chapter 5 Analytic solutions for mode f crack tip stress fields 

in a homogeneous elastic-perfectly plastic material

5.1. introduction

In contained yielding, local crack tip plasticity is completely contained within an 

outer elastic field. The level of constraint within the plastic zone depends on the 

nature of the non-singular terms in the outer elastic field. Detailed investigations 

of the asymptotic field of a mode I crack in a homogeneous solid have been 

presented by Du and Hancock (1991) using finite element analysis methods 

based on modified boundary layer formulations. Of particular significance Is the 

observation that compressive T stress causes a loss of crack tip constraint 

ahead of the crack. Parallel experimental work has demonstrated that this leads 

to enhanced level of toughness for both cleavage and ductile tearing, Betegon 

and Hancock, 1991; Hancock, Reuter and Parks, 1993 and Kirk, Koppenhoefer 

and Shih, 1993.

In this chapter analytical solutions for incompressible deformation under mode I 

with zero and compressive T-stress are constructed. Without loss of generality 

these fields are taken to comprise elastic and plastic sectors. The stresses 

within the elastic sectors are obtained by reference to solutions for a semi-infinite 

elastic wedge, while the plastic sectors are discussed in terms of plane strain slip 

line fields. To verify the analytic solutions, numerical solutions were obtained 

using modified boundary layer formulations.

5.2. Analytical solutions

5.2,1 Stress distribution in eiastic sectors

Initially, consider the deformation field within an elastic sector. It is convenient to 

use polar co-ordinate systems; 0 is measured anticlockwise from a plane directly 

ahead of the crack and right handed rule is used for stresses. The angular span 

of the elastic wedge is denoted <p as illustrated schematically in Figure 5.1. The
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assumption that crack tip stress in elastic and plastic sectors are bounded (Rice, 

1974) gives:

(5-1)

This allows the equilibrium equations (Timoshenko and Goodier, 1970),

à  a rt , i  ^CTrO , CTrr ~  <Jee n—_— ^  —  =0
â ' r  Ô9 r

i  à  (Tee , ^ (T re  , ^  Cro
■i +■

r  6 0  3 '
=  0 (5-2)

to be reduced to:

àcTre
æ

à(Jee

4" CTrr -  CTgg = 0 

+ 2ard = 0

(5-3a)

(5-3b)

The equilibrium equations must be satisfied along with the compatibility 

conditions in plane strain.

^  7
+ — I" +

\ â r ^  r  à ' j
f  O’r r  r r  00J —  0 (5-4)

The bounded nature of crack tip stresses reduces the compatibility equation to:

y  (O rr  +  O m )
=  0 (5-5)

This equation has a solution in the form:
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Ort +  CTee -  A O + B  (5-6)

Here A and B are constants. Differentiating with respect to 9 and combining with 

equation (5-3b) gives:

-  2 crrd = A (5-7)

Further differentiating this equation with respect to 6>and combining with (5-3a) 

and (5-6) gives

^ ^  + 2 a r r -  A9 + B  (5-8)

The solution of this equation is of the form:

a-rr = Csin 20+ Dcos 20+~ —  ? (5-9)

Where C and D are constants. The hoop and shear stress can thus be written:

crw = -C s in 2 0 -  Z)cos2g+ ^ ^  ^  (5-10)

a r e = C c o s  2 9 - D s i n 2 9  +  L (5-11)

In the present chapter all elastic sectors lie on the crack flanks. The constants 

A, B and L can therefore be expressed in terms of C and D by using the 

boundary conditions on the traction free flank, 9=±;r, oa = oee = 0 and the yield 

criterion:

L=-C , A=4C, B=2D-2C7t (5-12)

The stress field within an elastic sector can thus be simplified to:
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<J00 ~C(29-27r~' sin 29) -¥D(1 -  cos 29) (5-13a)

arr = C(29 -  27T̂  sin 29) + D(1 + 29) (5-13b)

= C(cos 2 9 -1 )-  Dsin 29 (5-13c)

The coefficients C and D can be determined by applying the elastic-plastic 

boundary conditions and o><?=Kat 9=;r-ç).

^  _ Hsin 2(p -  K (l -  cos 2ç)
2{l-cos2ç-(psin2(p) (5-14a)

^  H{l-cos2tp) + K{sin2(p-2(p) (5-14b)
2 { l  -  cos 2 (p-(p sin 2 rp)

5.2.2 Plastic sectors

It is now appropriate to consider the form of the deformation within plastic 

sections at the crack tip. The stresses within the plastic sectors can be 

conveniently represented by slip line fields as the incompressibility associated 

with plastic deformation justifies the slip line approach. In the Prandtl field 

(Figure 3.5), the yield criterion is satisfied at all angles and the crack tip stress 

distribution can be determined by starting with the boundary condition on the 

traction free flank a,0 = 0-00 = 0 ) and moving into the constant stress sector 

ahead of the crack using the Hencky equations of equilibrum (Hill, 1950). 

However, for the fields in which plasticity does not fully surround the tip, slip lines 

can only start or terminate at an elastic and plastic boundary. The stresses in 

the plastic sectors can, therefore, be expressed in terms of the hoop and shear 

stresses (H and K) on the elastic-plastic boundary. For the particular case of an 

elastic sector adjoining a centred fan, the value of K is equal to the yield stress in 

pure shear k. Thus the analytic solution within a centred fan can be written:

Oee = O rr = CJz2 = Gm = 2k(K ~ (p ~ 9)-^H (5-15a)

a r e = ^ k  (5-15b)
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Within a constant stress sector,

God ~ k^cos 20 — + H  (5-16a)

Grr= k(^-COs20-2(p + ̂ 7^ + H (5-166)

( j r o -  k s i n 2 0 (5-16c)

Gzz = Gn, -  k [ ^  TV ~ 2<^ + H  (5-16d)

5.2.3 Assembly o f the sectors

The complete asymptotic crack tip field is now determined by assembling the 

elastic and plastic sectors such that hoop stresses and shear stresses, as well 

as the hoop displacements are continuous functions of 0. However the 

equilibrium equations permit a jump in the radial stress. The jump in radial 

stress can be determined from the allowable two roots of the plane strain yield 

criterion Gt and G7r (Shih, 1974).

o t  ” CT00 + 2^fk^ -  a i  (5-17a)

Orr = 088 ~ 2-yJk̂  ~ Ort) (5-175)

The allowable stress discontinuity is therefore:

{aî, -  o-;) = 4 ^ k '-a le  (5-18)

For the particular case of a centred fan adjoining an elastic sector, Gr& -  k and 

there can thus be no jump radial stress, and full continuity of all the stress 

components is required. Compatibility conditions are satisfied across the 

boundary as both hoop and radial strains are zero for incompressible 

deformation in the two types of sector. In this case, the hoop and shear stresses

s

_________ ______________ __
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(H and K) can be obtained by noting that Gre = k and = cr,, on the elastic- 

centred fan boundary from equations (5-13a) and (5-13b):

2(pk cos 2 (p -k  sin 2<p (5-19a)

yielding field to be approximated by the HRR field:

+ 'JSkQ (5-21 )

■I,:

!.:

1 -  cos 2<p

K=k (5-19b)

The sectors can now be conveniently assembled by initially selecting a value for 

the angular span of the elastic wedge, ç>. Equations (5-19a-b) define the 

constants H and K, which can be used in equations (5-14a~b) to define C and D. 

The stresses in the elastic sector are then given by equations (5-13a~c). The 

stresses in the centred fan are given by equations (5-15a~b), and the constant 

stress sector by (5-16a~d). These solutions are valid in the range n/4>(p>3n/4, 

outside this range, the yield criterion is violated in any postulated elastic sector.

5.3 Crack tip stress fields in terms of a constraint parameter Q

It is useful to be able to determine the field by assembling the sectors for a given 

value of the constraint parameter Q, (O'Dowd and Shih, 1991).

= + (5-20)

where the superscript SSY denotes the small scale yielding (T=-0) field. If 

plasticity surrounds the crack tip, the HRR field describes the nature of the 

dominant singularity and is the only possible non-trivial field which exhibits full 

continuity of tractions around the tip. It is therefore an important limiting case of 

a family of fields which arise when the higher order terms are insignificant. The 

hoop stress directly ahead of the crack in small scale yielding is 2.83^0 while the 

corresponding HRR value is 2.97Go ■ The small difference allows the small scale
I
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The value of Q depends on the elastic wedge angle, and can be determined by 

combining equations (5-16), (5-19) and (5-21):

(5-22)
\ 2  l~ cos2 (p

The complete stress field is then determined for the appropriate elastic wedge 

angle as already described. Figure 5.2 shows the variation of Q with the elastic 

wedge angle, rp, in the range 45°<cp<135°. When (çr45°, the stress distribution 

around the crack tip is identical to the fully constrained (HRR) field.

5.4. Finite element solutions

To verify the analytic solutions, a finite element method has been used to obtain 

numerical solutions. Calculations have been performed in mode I loading with 

two levels of the T stress, T=0 and T/cr„ = -0.443. The Cartesian displacements, 

Ui, corresponding to the first two terms of the Williams expression are:

U,= uf + uJ = \ ~ )

I
 ̂ I r V  Ô u, = u ,+u,=\— ) - s i n -

T} — 1 + 2 sin [ —

7]+ 1-2 coŝ

(5-23a)o(j

+ ~ rT s :n d  (5-23b)
o G

where rj-3-4v and G is the shear modulus, K and T are loading parameters 

established by the far field conditions.

The crack-tip field has been modelled by using the highly focused mesh shown 

in Figure 3.13. Symmetry allowed the mode I problem to be represented by a 

symmetric half. The mesh is based on of 24 rings of 24 isoparametric second- 

order hybrid elements concentric with the crack tip. The crack tip thus consists 

of 49 initially coincident, but independent nodes. Displacement boundary 

conditions corresponding to equations (5-23) were applied to the outer
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circumference of the mesh corresponding to the nodal displacements associated 

with mode I and a compressive or zero T stress.

The finite element code Abaqus, (1995), was employed to perform all the 

calculation while Matlab (1995) was used for post processing. The crack tip 

stress fields with a non-hardening incompressible response were determined by 

extrapolating the stresses to the tip along radial lines such that the tip was 

approached asymptotically from different angles. Figures 5.3-4 show the 

angular variation of the Mises and mean stress. These numerical solutions were 

interpreted as the slip line fields shown in Figure 5.5. Firstly, the angular span of 

the elastic sectors was determined from the angular range over which the yield 

criterion was not satisfied. Secondly the span of the centred fan was determined 

from the angular range over which the mean stress varied linearly with angle 

within a plastic sector. Finally the constant stress sector was identified from the 

region in which the mean stress does not change with angle. The angular 

variation of each stress component and the Mises stress under mode 1 with T=0 

and -0.443Go are shown in Figure 5.6. These are compared with the analytical 

solutions and it is clear that there is full agreement between the analytical 

solutions given by lines and the numerical solutions given as data points.

5.5. Conclusions

Analytic solutions for Mode I fields have been constructed by using slip line 

solutions for plastic sectors and semi-infinite elastic wedge solutions for elastic 

sectors for incompressible plane strain deformation. The fields, which exhibit full 

continuity of tractions, have been verified by numerical calculations based on 

modified boundary layer formulations. Unlike the HRR fields, these fields do not 

exhibit plasticity at all angles around the crack tip. The difference between these 

fields and the HRR fields can be attributed to the effect of higher order terms, 

which are significant even in small scale yielding (T=0). In mode I , the HRR field 

is identified as the complete Prandtl field, while in small scale yielding the Prandtl 

field is incomplete.
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" -f

The loss in constraint depends on the level of the compressive T stress which 

results in an elastic wedge on the crack flanks. The angular span of the elastic 

wedge increases as T becomes more negative and corresponds to loss of 

constraint directly ahead of the crack tip. For a given value of the constraint 

parameter Q, the span of elastic sector can be determined and the elastic and 

plastic sectors assembled around the crack tip to give the full analytic solutions.

These fields form the basis of a two parameter, constraint based characterisation 

of mode I fields.
■
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Figure 6.1 Illustration of elastic wedge.
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Chapter 6 Homogeneous crack tip stress fields under mixed 
mode loading

6.1 Introduction

Plane strain mixed mode I/ll fields have been constructed by Shih (1974), on the 

assumption that plasticity entirely surrounds the crack tip. With the exception of 

the near mode II fields, the fields require a discontinuity in radial stress in a 

sector trailing the crack front. In contrast Hancock, Nekkal and Karstensen 

(1997) have numerically determined fields which differ from those constructed by 

Shih (1974) in that plasticity does not fully surround the crack tip. With the 

exception of the fields close to mode II, an elastic wedge appeared on the crack 

flanks. Following Hancock et al (1997), this chapter will construct the numerical 

and analytical solutions for the plane strain mixed mode I/ll fields with 

incompressible elastic deformation.

6.2 Numerical solutions

Plane strain small scale yielding calculations have been performed under the 

five levels of elastic mixity given in Table 6.1. The corresponding boundary 

conditions have been applied to a full boundary layer formulation mesh shown in 

Figure 3.13, as the mixed mode problem can not be simplified by symmetry. 

The mesh, element type and material properties are given in chapter 5. 

Displacements Ui, U2, corresponding to stress intensity factors Ki and Kn have 

been applied on the outer boundary of the mesh.

U\ -  u f  +  w™ ^ —1 + 2 sin̂
. 0

+ Ki! sin— 1 n7 +1 + 2cos J

T} + 1 -  2 cos'"
0 0

-  Kucos — t ] - l - 2 s i n  y—j

(6-1)
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The stress fields at the crack tip were determined by extrapolating the stress to 

the tip along radial lines such that the tip was approached asymptotically from 

different angles. Figures 6.1 and 6.2 show the angular variation of the 

hydrostatic and the Mises stresses under each level of mode mixity. These 

numerical solutions have been interpreted as slip line fields shown in Figure 6.3 

in the way discussed in Chapter 5. These slip line fields are closely similar to 

those determined by Hancock, Nekkal and Karstensen (1997) for compressible 

elastic deformation. They can be understood by imagining that the constant 

stress sector ahead of the crack in mode I loading rotates as the mixed mode 

loading is applied and the elastic wedge on one crack flank expands.

Table 6.1. Mode mixity for a range of mixed mode problems

Mci Mp

K, 1 . 0 0 1 . 0 0

K,=2K„ 0.71 0.81

Ki ^Ki] 0.50 0.69

K i ^0.5 KII 0.30 0.50

Kn 0 . 0 0 . 0

6.3 Analytical solutions of mixed mode crack tip stress fields

Under general mixed mode loadings, the crack tip slip line fields lose the 

symmetry of pure mode I or mode II loading. The stresses both above and 

below the line of the crack can be solved starting from the traction free crack 

flanks. In the lower part, two possible conditions can be identified. In the first, 

the fully plastic part of the crack comprises a constant stress triangle, a centred 

fan and part of a constant stress diamond, as illustrated in Figure. 6.4a. In this 

case, the field is defined by the span of the centred fan, a.

Using the notation of Figure 6.4a the stresses in the constant triangle are.

I

I
I
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#
I
i

j



Chapter 6 Homogeneous crack tip stress fields under mixed mode loading 60

(Tn^‘‘k(C O S 20^1)

cj0&̂ k(cos2 &^1) 

(Jrs -ksin29 180^ < 0 ^ 2 5 0 (6-2)

In the centred fan:

(Jrr~ <y$Q̂ -2k0 k(57i/2-1) 

OrC “ k

In the diamond,

(Trr= k [-cos2 ( 0  - a) - (1 -̂ 2 a)] 

0 -00  ̂k [cos2 (0 - a) - (1 +2 a)] 

CTr0 =ksin2 (0 - a)

(6-4)

22^<e<225'^+a, a >45° (6-3)

225°+a:^0<36Of’ , a > 45°

Alternatively for lower values of mixity there may be two centred fans as 

illustrated in Figure. 6.4b. For complete plasticity in the lower half, the total span 

of the two fans must be n/4. Following the slip line to the centred fan directly 

ahead of the crack, the stress distribution is:

CTrr= ao0 -  2k9 - k(4a+^+77i/2)

C T r0 ~  k 315°+a<e<36(f, a <45° (6-5)

In the upper half space the field comprises an elastic sector, a centred fan and 

part of diamond, or a centred fan and an elastic sector. The analytic solutions in 

the upper half can therefore be obtained in the similar way as for a mode I field. 

All the sectors can be assembled to give full continuity of tractions (see chapter 

5). The analytic solutions for the four levels of mode mixity (except pure mode I 

case) are shown in Figure 6.5 where they are compared with the finite element 

solutions and agree perfectly.

Ig

i

gl
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6.4 Crack tip stress fields in terms of plastic mode mixity

Under mixed mode loading, comprising combinations of mode I and mode II, the 

elastic and plastic mixities are in general not identical as shown in Table 6.1. 

The slip line fields can be also expressed in terms of the plastic mixity by noting 

that the plastic mixity defines the ratio of hoop to shear stress directly ahead of 

the crack. This can be determined by following the slip lines from a crack flank 

to the region directly ahead of the crack within the plastic region. In the lower 

half space when mode I dominates;

= „ > „ / 4  (6 -8 )
71 V - s i n 2 a

and when mode II dominates;

M p ~ - —t a n ‘ \ ^ - 4 a ~ l \  a < 7r/ 4  (6-9)
TV \ 2i

In the upper half space in configuration 6.4a, the field is fixed by the span of the 

elastic sector (9 ) and the part span of the diamond in the top side (Ô) where ô=a- 
7i/4 . Thus 9  and 5 can be expressed in terms of the plastic mixity.

,, 2 _ , \ [ s i n 2 d  +  2 { n - 5 % l - c o s 2 < p ) - 2 ( p ^ s i n 2 < p \

For low mixities, such as configuration 6.4b, the field consists of elastic sector 

and a centred fan ahead of the crack. This geometry is fixed by the span of the 

elastic sector (9). The hoop and shear stress directly ahead of the crack can be 

determined from equation (5-15). Thus the fields in terms of the plastic mixity for 

low mixities are ;
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7T \  l ~ C 0 s 2 ( p  '  '  '

6.5 Conclusions

In plane strain mixed mode I/ll fields the constant stress sector ahead the mode I 

{T-0) crack rotates with increasing mode II component, and loses constraint. 

Mixed mode fields except close to mode II, consist of distortions of the mode I 

field in which the angular span of the crack flank elastic wedge increases with 

decreasing mixity. Unlike the fields discussed by (Shih 1974), these fields 

exhibit full continuity of tractions around the crack tip. Close to mode II plasticity 

surrounds the crack tip, contact is established with the mixed mode HRR fields 

discussed by Shih (1974) and finally the mode II field originally discussed by 

Hutchinson (1968b) is recovered. Although analytic solutions for these fields 

have been assembled, it has not proved the possibility to establish an analytic 

relation between the inner elastic-plastic field and the outer elastic field, although 

this relationship has been established computationally.
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Chapter 7 Small scale yielding analysis of an interfacial crack 

on a rigid substrate

7.1 Introduction

The performance of composites is often determined by the integrity of bi-material 

interfaces, interface failure by crack propagation is thus particularly important. 

Recently, attention has focused on the analysis of an interfacial crack lying 

between an elastic-plastic material and a rigid substrate. On the assumption 

that plasticity entirely surrounds the crack tip, Quanxin Guo and Keer (1990) and 

Fang and Bassani (1996) have presented two types of asymptotic near tip stress 

fields for different ranges of plastic mixity and non-hardening plasticity. It is 

significant to note that some of these fields feature a discontinuity in radial stress 

in the constant stress sector.

This chapter addresses the same problem but relaxes the assumption that 

plasticity fully surrounds the crack tip. Attention is focused on a stationary crack 

located on the interface between a rigid body in a lower half space and an 

elastic-plastic matrix In an upper half-space as illustrated schematically in Figure 

7.1. As usual in-plane Cartesian co-ordinates x, and cylindrical co-ordinates (r,0) 

centred at the crack tip are employed. The crack lies on the - x i  axes (0=±k). 

The matrix is either elastic-perfectly plastic or power law hardening with an 

incompressible elastic response. Small scale yielding of the upper half space 

close to the crack tip is examined in plane strain conditions using boundary layer 

formulations under combinations of mode I and mode II loading. Numerical 

solutions have been compared with the analytic solutions developed in chapter 

5. The relation between the plastic mixity and the configuration of elastic and 

plastic sections at the tip has been established analytically for non-hardening 

deformation. The intention is to investigate the hypothesis that mixed mode 

fields belong to a family of fields which are deviatorically similar but differ mainly
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hydrostatically at the angle of maximum hoop stress. In this context, the effect 

of mode mixity on the interfacial crack tip stress fields has been investigated for 

strain hardening materials (n~6 and 13). The mixed mode fields have been 

related to unconstrained mode I J-Q/T fields. Mode 1 constraint based failure 

loci have then been used to infer mixed mode failure for stress controlled 

propagation of interface cracks into the matrix.

7.2 Numerical model

A crack lying on the interface between an elastic-plastic matrix and a rigid 

substrate (shown in Figure 7.1) is taken to have a perfectly-bonded interface 

leading to continuity of tractions and displacements between the two media.

The rigid substrate assumption simplifies the problem, and is often justified if the 

two material systems have significantly different yield stresses and elastic 

moduli. The deformable medium in the upper region is loaded under plane 

strain conditions and occupies the region 0 <9 <7t. The crack face is taken to be 

open and, therefore, traction free. Consequently, the boundary conditions 

satisfied by the asymptotic field are:

&Ur(n,0) -  u${r,0)  =  0

(7re(n 4  =  o-eeir, n) = 0 )

Crack tip deformation has been modelled by using the highly focused mesh 

shown in Figure 7.2. The mesh and the element type are described in detail in 

Chapter 5. Nodal displacements corresponding mixed mode loading listed in 

table 7.1 were applied to the outer boundary of the mesh. The nodal 

displacements on the radial line, 0=0, were completely restrained to model the 

interface with a rigid substrate.

I
%
I

s

:



Chapter 1 Small scale yielding analysis of an interfacial crack tip under mixed mode loading 65

Table 7.1. Elastic mode mixity for a range of mixed mode problems.

Mel
Ki 1.00

Ki =+2 Kll ±0.71
Ki =±Kii ±0.60

Ki =±0.5 Kll ±0.30
±Kii 0.00

In accord with the procedure described by Tracey (1976), plasticity was only 

permitted to extend to one hundredth of the radius of the outer boundary of the 

mesh, corresponding to small-scale yielding conditions. In the calculations the 

lower rigid region was not explicitly modelled, while the upper region had a ratio 

of Young's modulus to uniaxial tensile yield stress of 1000 and a Poisson's ratio 

of 0.49 to give an almost incompressible response.

7.3 Non-hardening materials

For an interfacial crack lying between a rigid substrate and an elastic-plastic 

deformable material, the symmetry of homogeneous deformation field is lost, 

and the fields depend on the sense of the applied shear stresses. As an 

example, consider a crack in a homogeneous material under an arbitrary mixed 

mode loading, K/ and Kn, for which Ki > 0 and Kn > 0. The solution for the 

problem in which K/ > 0 and Kn < 0  can be obtained by inverting the field about 

the crack plane. For this reason it is not necessary to present solutions to 

homogeneous mixed mode problems for Ki > 0 and Kn < 0. However, for 

interfacia! crack problems, these problems are distinct and must be solved

I
:

I
I
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separately. In this chapter, positive shear Is defined such that the elastic-plastic 

deformable material shears towards the interface {Ku > 0) while negative shear 

that the elastic-plastic deformable material shears towards the crack flanks {Ku < 

0).

7.3.1 Positive mixities

The size and shape of the plastic zones developed at the interfacial crack tip 

under positive mode mixities are illustrated in Figure 7.3-(a) for a non-hardening 

material. Mode II loading enlarges the maximum radius of the plastic zone and 

causes the plastic lobes to swing ahead of the crack. Figure 7.4 shows the 

displaced models in an exaggerated form under five levels of mixity.

In order to describe the crack tip stress field, the hydrostatic and Mises stresses 

have been extrapolated to the tip along radial lines at 15-degree intervals, 

ignoring data within a radial distance of 2J/(jo-  Figure 7.5 illustrates the 

angular variation of the hydrostatic stress non-dimensionalised by the uniaxial 

yield stress, Oq , under the five levels of mode mixity shown in Table 7.1. These

mixities correspond to an opening tensile K| component and a positive Kn 

component. As the contribution from the remote positive shear increases, the 

near tip hydrostatic stresses changes from tensile to being slightly compressive 

in the limit, Mei= 0. The maximum tensile and hydrostatic stresses occur directly 

ahead of the interfacial crack, suggesting that stress controlled failure will occur 

along the interface. The angular extent of yield at the tip under each level of 

elastic mixity is shown in Figure 7.6. Ahead of the crack, plasticity limits the 

Mises stress to the yield stress, qq , for all mixities. It is, however, significant to

note that the near tip material does not yield all angles around the tip.

The slip line fields constructed from Figures 7.5-6 are shown in Figure 7.7. The 

elastic sector has been identified by the angular range over which the yield 

criterion is not satisfied. The angular span of the centred fan is determined from 

the range In which the hydrostatic stress varies linearly with angle within a
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plastically deforming region. The constant stress sector is identified as the 

angular range in which the mean stress does not change with the angle within a 

plastic region. The complete fields are assembled in such a way that the 

continuity of hoop and shear stresses and the boundary conditions are met. The 

slip line fields for the first four levels of mixity thus comprise a centred fan ahead 

of the crack and an elastic sector extending to the crack flank. The angular span 

of the centred fan decreases and swings ahead of the crack as the contribution 

from mode II increases.

For stress controlled brittle fracture, the crack extends in the maximum principal 

stress direction (Erdogan and Sih (1963), Williams and Ewing (1972) and 

Budden (1987). For the first four levels of mode mixity, the maximum principal 

stress occurs on the interface directly ahead of the crack. This stress can be 

used to establish local failure criteria. Figure 7.8 shows the radial variation of the 

maximum principal stress directly ahead of the crack and at 30° degrees to the 

crack plane under five levels of mode mixity. It may be noted that all the stress 

profiles are very weakly dependent on radius, r. Since the deviatoric stress for 

incompressible deformation under plane strain and non-hardening conditions is 

necessarily equal to the yield stress in pure shear, k, within the plastic zone, 

these stress profiles can only differ by a hydrostatic term. As expected, the 

stress level directly ahead of the crack is higher than that at 30° degrees under 

all mixities.

To verify the numerical solutions, corresponding analytic solutions have been 

developed in chapter 5. Figure 7.9 shows the angular variation of each of the 

stress components under the first four levels of positive mixity. The numerical 

solutions, given by data points, match the analytic solutions, given by lines, 

perfectly.
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7.3.2 Negative mixities

When a remote tensile mode I (K| > 0) field and negative shear stresses (Kn < 0) 

are applied, the form of crack tip field is fundamentally different from that under 

positive shear stresses. To understand the difference, calculations under the 

levels of mixity shown in table 7.1 have been performed. Figure 7.10 illustrates 

angular variation of the hydrostatic stress. Because the hydrostatic stress 

decreases as the contribution from mode II increases, the role of mode II is to 

decrease the constraint at the crack tip. The angular variation of the Mises 

stress is shown in Figure 7.11 which indicates that the yield criterion is not 

satisfied in front of the crack tip under near mode I loading. Plasticity, however, 

develops all angles around the crack tip as the negative shear stress starts to 

dominate the mixity.

The slip line fields under four levels of negative mode mixity were determined 

from Figures 7.10-11 in the way described in section 7.3.1. The fields are 

illustrated in Figure 7.12. When Mode I dominates the mode mixity, an elastic 

sector emerges in front of the crack tip. But at K/=-K//, the yield criterion is 

satisfied at all angles around the crack tip. This then permits only two types of 

sectors: a constant stress sector and a centred fan. The slip line fields shown in 

7.12(b, c, and d) are therefore simple distortions of the mode II field 

corresponding to a rotation of the main constant stress sector which swings 

ahead of the crack tip as the contribution from negative mode II decreases. The 

plane of the maximum principal stress is oriented diagonally through the centre 

of the constant stress diamond. This plane is located in the matrix and rotates 

towards the crack flank as the contribution from mode II increases. This implies 

that failure may occur in the matrix rather than along the interface, if the 

interface is strongly bonded. Figure 7.13 shows the hoop and deviatoric 

stresses on the planes of maximum principal stresses for the last three mode 

mixities given in Table 7.1. The deviatoric stress for non-hardening 

incompressible deformation within the plastic zone is necessarily equal to the 

yield stress in pure shear and the fields are thus only hydrostatically different.
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For stress controlled fracture, this feature is very important and will be 

highlighted in section 7.3.4.

7.3.3. Families o f near tip stress fields

For positive mixities, the crack tip stress fields comprise an elastic sector and a 

centred fan except in the pure mode II case. The hoop and shear stress directly 

ahead of the crack can be obtained by combining equations (5-15) and (5-19)

sin2(p  -  27T cos 2(p +  2{7v -  <p)

= ----------- {I-C0S2Ç) *

45°<(p<135°. (7-3)

Where q> is the span of elastic sector as shown in Figure 5.1. The plastic mixity 

can thus be expressed as

2 , (  s in  2 ç  ~  2tc cos 2(p +  2(7t -  <p^
Mp =  — tan~‘ 

n (7 -  cos 2(p)
45°<cp<135°. (7-4)

The critical elastic wedge angle, 9  or the span of the centred fan p  (p=7c-(p) 

shown in Figure 7.14 is only functions of the plastic mode mixity, Mp> This

analytic solution therefore gives a continuous family of crack tip fields for a range 

of loading between pure mode I and positive shear with some tension, 

(0.8897>Mp^0.3302). Outside these bounds, the yield criterion is violated in any 

postulated elastic sector. Figure 7.15 shows variation of the plastic mode mixity 

Mp at the tip with the angular span of the centred fan p. This relation is also

compared with that given by Fang and Bassani (1996) where plasticity is 

assumed to fully surround the interfacial crack tip with a stress discontinuity in 

(jn • The present solutions merge with Fang’s solutions for p  = 4 5 °and 135°
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For negative mode mixities, the angular span of the centred fan ahead of the 

crack tip shown in Figure 7.16 is denoted 6 . This angle depends on the mixity 

level and increases with the contribution from negative mode If (see Figure 

7.12). The stresses in the constant stress diamond and the centred fan directly 

ahead of crack can be derived from the boundary condition on the traction free 

crack flank. Using a cylindrical co-ordinates (r, 6) centred at the crack tip, the 

stress fields within a constant stress diamond can then be written as:

o-« = /t(y  + l + s in (20 -2^ )-25 j (7-5a)

cTrr = k {^ ^ \-s : in (2 e - 'lS ) -2 ^  (7-5b)

Ore = k(cos{20 -  2S)) . (7-5c)

(Tzz = CTm = + 7 -  (7-5d)

In the centred fan directly ahead of crack, the field becomes:

cTgg = cTrr~cT = k\^0 + "y ± 7 — 4Sj (7-6a)

OrO = k (7-6 b)

The relation between the angle, S, and plastic mode mixity, Mp, can be written as

2 + 7T + 2 tan] ^
=  ̂ '  :  ' 0 < 0 < 4 5 °  (7-7)

o

This gives another family of fields in the range -0.764< Mp < 0.330, The 

difference between the two one parameter family of crack stress fields and those 

presented by Quanxin Guo and Keer (1990) and Fang and Bassani (1996)
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derives from the fact that the present analysis was not limited by the assumption 

that plasticity fully surrounds the crack tip.

7.3.4 Crack tip stress fields unified by constraint

In the case of non hardening plasticity, the stress fields within the plastic zone 

only differ by a hydrostatic term. The family of fields under negative mode 

mixities is therefore deviatorically similar but hydrostatically different, allowing 

parameterisation by a constraint parameter, such as Q.

Equations (5-20) and (5-21) allow the hydrostatic stress in the constant stress 

diamond to be written in terms of the fully constrained Prandtl field.

cTn,=̂ (n: + l)k  + Q(T„ (7-8)

Constraint characterisation of mode I and mixed mode crack tip fields for 

homogeneous materials has been investigated by Hancock and co-workers 

(1997). Figure 3.22 shows the slip line fields for a range of mixed mode 

problems. The direction of crack propagation has been identified with the plane 

of maximum hoop stress (Erdogan and Sih (1963), Williams and Ewing (1972) 

and Budden (1987) which occurs at an Inclined angle, such that the propagating 

crack grows locally in Mode I. In interfacial crack problems, the mixed mode 

fields dominated by shear {Ku>K i)  exhibit a centred fan ahead of the crack. 

Directly ahead of the crack (0=0) the displacements {u, v) must be zero as the 

slip lines are lines of zero extension rate. There are also the boundary 

conditions required on a rigid interface. The result is that the homogeneous 

mixed mode fields can be mapped onto the corresponding rigid interface 

problem. If the homogenous crack tip stress field is divided into two parts along 

the crack as illustrated in Figure 7.17, the top part is identical to the 

corresponding rigid interfacial crack tip stress field under mode I with positive 

shear while the bottom part to the corresponding rigid interfacial crack tip stress
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field under mode I with negative shear. This produces a connection between the 

constraint of homogeneous mixed mode fields and the constraint of interfacial 

crack problem under mixed mode loading. The failure criteria based on J-Q locus 

for homogeneous material can therefore be used for bi-material provided the 

interfacial crack propagates into matrix under mainly negative shear loading.

Using the homogenous HRR field as the reference state, the stress fields can be 

expressed in terms of the constraint parameter Q for the constant stress 

diamond;

cfQo-k[7z^l-^cos20-v^^  (7-9a)

(Jrr = k{7t^rl~COs(2ê)-\-43^ (7-9b)

Ozz = Om -  k[n; + 7 + (7-9c)

(Jre = k sin( 43Q + 20) (7-9d)

In the centred fan directly ahead of crack, the field becomes:

Oee -  <Jrr ~ cr̂ z = (Jm -  + ̂  + 7 -t- (7-1 Oa)

( J r 9 = k  (7-1 Ob)

Q can be obtained by equating (7-9c) and 7-5d):

0  = - ^ ^  0<S£45^ (7-11)

Where is a function of plastic mode mixity, Mp, shown in equation (7 -7 ). 

Figure 7.18 shows the variation of constraint, Q, with negative plastic mixity, Mp. 

For any given value of plastic mixity in the range of -0.7566 < Mp < 0.3302 or 

constraint parameter in the range -1.0774 < Q < -0.5774, the interfacial crack tip
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field under mainly mode II loading is defined. Mixed mode loading can therefore 

be regarded as a mechanism leading to loss of in-plane constraint. The loss of 

constraint, Q, and the plastic mode mixity, Mp, can be correlated in equations

(7-7) and (7-11) for non hardening deformation. It may be noted that the angular 

variation of Mp (equations (6-9) and (7-7)) and the definition of Q for the

homogenous material and the bi-material are the same. Consequently, if the 

material have weak or moderate strain hardening response, it is possible to map 

the constraint based Mode I failure loci into plastic mixity for interfacial crack 

problems provided the interface is strongly bonded and the crack propagates 

locally in Mode I into the matrix.

7.4. Power-iaw hardening materials

The deformation fields of power-law hardening materials necessarily interpolate 

between linear elastic materials and those which exhibit a non-hardening 

response. This leads naturally to the concept that structural materials with low 

and moderate hardening rates develop deformation fields which share many 

non-hardening features. The present section develops this theme in the context 

of elastic-plastic fracture mechanics. Kinematically similar fields which differ 

only through a hydrostatic stress term have been identified for non-hardening 

materials. To investigate the possibility of a constraint based characterisation, 

these crack tip stress fields are re-examined with strain hardening. Numerical 

calculations were performed under the five levels of elastic mode mixity given in 

table 7.1 with strain hardening exponents, n=13 and 6 . In uniaxial tension the 

material has an isotropic elastic response for stresses less than the uniaxial yield 

stress, (Jo' Yield is determined by the von Mises yield criterion and plastic

deformation occurs following an associated flow rule. In Abaqus (1994), the 

yield surface is defined by giving the value of the uniaxial yield stress as a 

function of the equivalent plastic strain in the form:

f

1:7:
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s =  a l  E  _ or< a o

So  C 7 >  CTo

e = 8p + So (7-12)

where sp is plastic strain component, and S o (=0.001) are the uniaxial stress

and strain at initial yield, while n is the hardening exponent. Figure 7.19 shows 

the stress-strain relation for both hardening and non-hardening materials.

The size and shape of plastic zones at the crack tip for the hardening materials 

are shown in Figures 7.3b~c. The plastic zones for both hardening and non­

hardening materials have similar shapes when the applied elastic mixities are 

the same and plastic zone radius increases with the contribution from mode II.

As the hardening exponent (n) decreases, the size of the plastic zone decreases 

and tends to develop in the crack wake.

To understand the role of mixity, the radial variation of the maximum principal 

stress and the corresponding deviatoric stress for n=13 and n=6 have been 

examined on the plane of maximum principal stress for both positive and 

negative mode mixities. For positive mode mixity, the maximum principal 

stresses occur directly on the interface ahead of the crack. Figures 7.20-21 

show the radial variation of the maximum principal stress (o-f) and the 

corresponding deviatoric stress ( a . , )  at these planes under five levels of positive 

mode mixity for strain hardening exponents n=13 and n=6. These stresses are 

non-dimensionalised with respect to the uniaxial yield stress, cj-„, while the radial
^2 , 1̂2

distance from the crack tip is non-dimensionalised by ~ — — . It may be noted
2E(To

that the stress profiles for all mixities vary weakly with radial distance and

hardening exponent at distances greater than r /~ — ~  = 2, which is the
2E(jo
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approximate distance over which crack tip blunting and finite geometry changes 

affects the fields. Comparing Figures 7.20 and 7.21, it is clear that the effects of 

mixity on the deviatoric stress is weak, especially for the weakly hardening 

material (n=13). The stresses close to the crack tip can therefore be regarded 

as a family of fields, which are deviatorically similar but differ mainly 

hydrostatically.

For negative mode mixities (n=6 and 13), the plane of maximum principal stress 

is close to the orientation for the corresponding non-hardening material. The 

plane rotates clockwise as the mode II component increases. Figures 7.22-23 

illustrate the radial variation of the maximum principal stress (ai) and the 

corresponding deviatoric stress (o-g) for the two hardening rates. As with the 

field which develops under positive mode mixities, the crack tip stresses differ 

mainly by a hydrostatic term for both strong and weak hardening materials. On 

this basis the constraint of mode I fields parameterised by Q can be correlated 

with the constraint of mixed mode fields parameterised by elastic mixity, as 

shown in Figure 7.24 which is compared with homogenous case given by 

Hancock and co-workers, 1997 for n=13. The fracture resistance of these 

configurations can thus be unified by a single constraint based fracture 

toughness locus.

7.5 Stress distribution in the rigid substrate

The stress distribution within the rigid substrate in the lower half of an interfacial 

crack can be solved by using a solution for a semi-infinite elastic body in plane 

strain loaded by constant shear and pressure as shown in Figure 7.25, (Nadai, 

1963). The crack face occupies negative -x axis and the interface positive x 

axis. The boundary conditions on the plane y=0, a=0, cr, = = 0 and a=7t,

crpp=constant in Figure 7.25(a) and in Figure 7.25(b). By superposing the 

two distributions, the stress components can be written as
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cTx =  {2  a  +  sin 2 a ) ~ ~ { 2 l n r  +  sin^ a )
2 n  ^

a y - ^ { 2 a ~ s i n 2 a )  ■\-~sin^ a  
2 n  7t

<̂xy = - ; ~ ( l  -cos2a ) (c? + sinacos«r) (7-13)2n n

On the interface, a=n, there is a continuity in hoop and shear stresses but 

discontinuity in radial stress which is weakly singular due to the logarithmic 

dependence on the radius, r.

7.6 Conclusions

Mixed mode solutions have been developed for elastic/plastic incompressible 

material and allow the characterisation of the crack tip fields of an interfacial 

crack under small scale yielding conditions. In contrast with the analyses of 

Fang and Bassani (1996), the current analysis does not require the assumption 

that plasticity fully surrounds the crack tip and satisfies continuity of stress 

components except across the interface. For a non-hardening material, this 

leads to incomplete crack tip plasticity; an elastic wedge emerges on the crack 

flanks under positive mode mixities except those near mode II and directly 

ahead of crack under mainly mode I with negative shear. The span of the 

centred fan under positive mode mixities decreases with the increased 

contribution from applied mode II loading but the maximum principal stress 

directions all occur on the interface directly ahead of crack. The analytical 

solutions agree well with numerical solutions.

Under negative mode mixities, the maximum hoop stresses are located within 

the matrix and the orientation of the relative plane swings to the flank of the 

crack as the contribution from mode II increases. This leads to the possibility of 

crack propagating into matrix rather than along the interface under negative 

mode mixities except those close to mode I. For hardening materials the stress 

fields can be regarded as a family of fields which are deviatorically similar but Jî:
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differ mainly hydrostatically for weakly hardening material under positive mode 

mixities but for both strong and weak hardening materials under negative mode 

mixities. The fracture resistance of these configurations can thus be unified by a 

single constraint based fracture toughness locus. :

i
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Figure 7.1 Schematic of the crack tip region.
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Figure 7.2 Focused mesh
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Figure 7.3 Plastic zones for the family of mixed mode problems.

______  ___



Y#

K, = 2K.,

K, = K,,

K, = 0.5K„

K„

Figure 7.4 Displaced models for mixed mode problems.

j
#

I
1
■ÎÎ

   ■



Ou

Oc

4

3

2

1

0

1

•2
60G 30 90 120 150 180

O KI=2K1I

KI=KII

KI=0.5KI1

0 (d e g )

Figure.7.6 Angular variation o f mean stress non-dimensionalised by the yield stress 
for a range of applied elastic mode mlxitles, non-hardening material.

m

0
0.8

0.6

0.4

0.2

6030 90 1200 150 180

- # - K I  

- O -  KI=2KII 

n&-K I=Ktl 

- & r -  KI=0.5KII 
Kll

0(deg)

Figure 7.6 Angular variation of the Mises stress non-dlmenslonalised by the yield stres; 
for a range of applied elastic mode mixities, non-hardening material.

,'i

Î

Si

Î

s



120'

K, = 2K,

K, = K,

60'

K, =0.5K,

45'

Figure 7.7 Slip line fields under five levels of positive mode mixity

f

i
"It'

%

I
•f
I

s



<x 9 ~ 0n=oo

- o2

0 2 64 108

- * — Kl
Q — KI=2KII

--A -- KI=KII

—A KN0.5KII
..♦ ... Kll I

Ki+K»
2 E O o

a

10
8
6
4

2
CC0CX>-O- o

0 { 
-2

0

n=oo e=-30"

- •a - -  KI=2Kil 
--A — KI=KII 
- A — KI=0.5KII 
- A  Kll

10

K ?  +  K ? i  

2EG0

Figure 7.8 Radia! variation of maximum principal stresses directly ahead 
of crack and at 30 degrees.

__ ,v_; V /



Kl
3.5

(7
2.5

(7o

0.5

-0.5
0 30 60 90 120 150 180

KI=2KH
a

0.5

-0.5 (Jô6
( T r r

0 ( d e g )

KI-KH
a

0.5

(TrO
-0-5

0 ( d e g )

0 30 60 90 120 150 180

^  1-5
Go 1

KI=0.5Kn

0.5 à~o-<>~o^cx

0
-0.5

-1
-1.5

0 30 60 90 120 150 180
0 ( d e g )

Figure 7.9 Stress distribution at an interfacial crack tip. Data points refer to the finite 
element solutions and lines to the analytical solutions.



a .
4

3

2

1

0
6 00 3 0 9 0 120 18 015 0

O  KI=-2KII

-àr~ KI=-KII 

- A -  Ki=-0.5KI[ 

 ♦ - -Kll

0 (d e g )

Figure 7.10 Angular variation of mean stress non-dimensionaiised by the yield stress 
for a range of applied negative mode mixities, non-hardening material.

O

0.8

0.6

0.4

0.2

0 30 60 90 150 180120

- O -  KI=-2KII 

- A -  KI=-K1I 

- A -  KI=-0.5KII

O(deg)

Figure 7.11 Angular variation of Mises stress non-dimensionalised by the yield stress 
for a range of applied negative mode mixities, non-hardening material.

.-I':':,: . J  .



fit

45
K | = - 2 K |

45

K i = - K i

3t

K , = - 0 . 5 K „

“Kll

Figure 7.12 Slip line fields under negative mode mixities.

a
5

I
-t:

:

I

;

_____



£ i  ^
O o

4

3

2

1

0

n=oo

* *^  * *
o

4 6

rao
J

(a)

Kl=-K)l
A— KI=-0.5K[I

10

Go
5

4
n=oo

3

2

0
0 2 6 84 10

( b )

KI='KII

KI=-0.5KÎI

rGo
J

Figure 7.13 Radial variation of maximum principal stress (a) and maximum divatoric 
(b) stress under three levels of negative mode mixity.

   _



,, ,

Figure 7.14 Illustration of angle p

  _



0.8

0.6

0.4

0.2

0 30 60 90 120 150 180

P { d e g )

Figure 7.15 Variation of piastic mode mixity with the span of centered fan unde 
continuous variation of positive mode mixitte/r i 4 < p < 3tt i 4 
Soiid line refers to the solution from LI and Hancock, 1997 and 
Dashed line from Fang and Bassani, 1995.

 .

I.



Figure 7.16 Illustration of angle Ô.
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Chapter 8 Strength mismatched interfaciai crack tip stress 

fields under mixed mode loading

8.1 Introduction

A crack lying on the interface between a weld metal and the heat-affected-zone 

in a weldment may have critical effect on the strength of the structure (Thaulow 

et al., 1994; Minami et al., 1994). Such defects can be modelled as an interfacial 

crack between two materials that have identical elastic constants but different 

yield strengths. Strength mismatched interfacial crack tip stress fields under 

mode I and combined K-T stress loading have been investigated by Ganti and 

Parks (1997), Kim and co-workers, (1996) and Zhang and co-workers (1997) by 

using modified boundary layer formulations.

This chapter attempts to develop fields for the more general case of remote 

mixed mode loading. Plane strain slip line fields with matched elastic properties 

but mismatched yield strengths have been constructed by using a combination of 

numerical and analytical methods. The numerical solutions are obtained by 

using modified boundary layer formulations under small scale yielding conditions. 

In the corresponding analytical method, the local field is characterised by a yield 

strength mismatch, y, and a phase angle which quantifies the ratio of tension to 

shear on the interface at the crack tip. The fields are identified starting from an 

observation Rice (1982), that the asymptotic crack tip field of non-hardening 

solids can only be combinations of elastic sectors, centred fans and constant 

stress sectors. Continuity of tractions between the sectors plus the traction free 

conditions on the flanks determine the family of asymptotic fields. The analytical 

and numerical solutions are found to agree perfectly.

8.2 Numerical solutions for a non-hardening solid

Figure 8.1 illustrates a crack lying on an interface between two strength 

mismatched materials which are taken to have identical elastic properties, in­

plane Cartesian co-ordinates (xi, X2) and polar co-ordinates (r, 0) are employed. 

Both co-ordinate systems are centred at the crack tip. The crack flanks occupy 

the negative xy-axis while the positive xraxis coincides with the material
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interface. The strength mismatch is defined as the ratio of yield strength of 

material 2 in the lower half space to that of material 1 in the upper half space, y = 

/  ai, . Changes in strength mismatch factor were affected by keeping the yield 

stress of material 1 constant but changing the yield stress of material 2. The 

elastic response is assumed to be isotropic and incompressible. Thus together 

with plastic incompressibility, the body is fully incompressible. In uniaxial tension 

the material response is assumed to be elastic up to the yield stress {ao  ̂ or aô ) 

after which it is perfectly plastic.

Numerical calculations were carried out by using boundary layer formulations in 

which the crack tip field was modelled by using the highly focused mesh 

discussed in chapter 5 (see Figure 3.13). The maximum radius of the plastic 

zone at a crack tip was limited to less than one hundredth of outer radius of the 

mesh. Displacement fields corresponding to the Ki and Kii stress intensity 

factors for a homogenous material (equation 6.1) were imposed on the outer 

boundary of the mesh. Calculations were performed with incompressible 

deformation for strength mismatch factors of 125 and 1.5 under the five levels of 

elastic mixity shown in Table 6.1

To understand the effect of elastic mixity and strength mismatch on the 

interfacial crack tip stress field, the angular variation of the Mises and mean 

stresses under the 5 levels of mode mixity are shown in Figures 8.2-5 for y=1.25 

and 1.5. Since the error between the computed J and the applied J at the 

boundary is less than 6% (Zhang, et.al. 1997), the computed J was used in the 

present calculations. The jumps in Mises and mean stress at interface in both 

plots are caused by the discontinuity of radial stress across the interface. Under 

pure mode II loading, plasticity fully surrounds the crack tip in both materials. 

Figure 8.6 shows the crack tip sector assembly for a homogeneous body under 

remote pure Mode II loading (Hutchinson, 1968). It may be noted that a centred 

fan lies directly ahead of the crack tip and extends symmetrically across the 

crack line. If a centred fan was postulated ahead of the crack tip for an interface 

crack with mismatched yield strengths, the shear stress, are, would undergo a 

jump due to the mismatched yield strengths across 0=0. This is not possible as

  .    . .
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it violates the traction continuity condition required by the equilibrium equations. 

However, the crack tip sectors for an interface crack with a relatively small yield 

strength mismatch should not deviate substantially from those in a 

homogeneous body. Guided by these considerations, it is postulated that there 

exists an additional constant stress sector bordering the interface and lying in the 

part of the body that has higher yield strength. This will enable continuity of hoop 

and shear stresses but allow a jump in radial stress across the interface.

The slip line fields, shown in Figures 8.7-8, were obtained by noting that the 

mean stress does not change with angle in constant stress sector but varies 

linearly in any centred fan sector in the plastic region. The angular span of the 

sectors agree with analytic solutions to within the accuracy of the numerical 

interpolations. The angular span of the elastic sector was identified as the 

region in which the yield criterion was not satisfied. The crack tip stress field in 

material 1 comprises an elastic sector and a centred fan except in the pure mode

I and II cases. The angular span of the centred fan decreases with mode II 

component. This implies that the plastic deformation in soft material decreases 

with contribution from mode II loading. In the hard material, an elastic sector 

appears directly ahead the crack tip under loading close to mode I. When mode

II dominates the mode mixity, plasticity in the hard material develops to the 

interface and a constant stress sector appears ahead of the crack. Plasticity 

fully surrounds the tip in both hard and soft materials, but is necessarily 

asymmetric with respect to the interface. When y=1.5, the mode I field is not the 

same as the limiting case given by Ganti and Parks (1997) for y=1.421. 

Comparing Figure 8.7 and Figure 8.8, it may be noted that the mixed mode fields 

for the two strength mismatch factors are very similar.

In order to protect the weld metal from high deformation, the weld metal in 

welding processes is usually harder than the parent plate. However the 

maximum principal stress appears in hard material and its magnitude decreases 

with mode II component but increases with the strength mismatch. For stress 

controlled fracture, this implies that the interfacial crack may propagate into weld 

metal under mixed mode loading and high strength mismatch may lead to high 

constraint at the crack tip and hence low toughness. This prediction agrees with
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the observation that the toughness of the Heat Affected Zone decreases with 

increasing weld metal strength (Kocak, 1988).

8.3 Analytic solutions for a non-hardening solid

To verify the numerical solutions, analytical solutions have been developed by 

Sham, Li and Hancock (1998). The strength mismatched crack tip stress fields 

can be assumed to consist of combination of centred fan, constant stress sectors 

and elastic sectors. This family of crack tip stress fields is parameterised by a 

local parameter, phase angle and strength mismatch factor, y, in the following 

manner.

Let t be the traction on the interface at the crack tip. The traction f is defined to 

be a complex quantity with real and imaginary components which correspond to 

the hoop and shear stresses.

t  =  ( j 0 d + i C T r 0  ( 8 - 1 )

where / is the imaginary unit. The complex traction can also be represented in 

terms of a magnitude f t /and a phase angle

t ~ |/|(co5 +  i sin (8 -2 )

Thus

^  TT  -  ^ (8-3)
\ t \  M

The normalised crack tip tractions on the interface can be expressed graphically 

in the phase-plane as shown in Figure 8.9. This diagram can be used to identify 

the regions of positive and negative interface traction components. Equation (8- 

3) allows the crack tip interface traction components to be related through the 

phase angle
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sin (jm = cos (j> are (8-4)

The crack tip stress fields for phase angles in the range have been

determined explicitly. Crack tip stress fields for any phase angles outside this 

range can be obtained by transformation rules presented in Appendix 3.

For the case of mixed mode loading of a crack in a homogeneous body, a local 

plastic mixity factor, Mp, is customarily employed to parameterise the mixed 

mode crack tip stress fields (Shih, 1974; Li and Hancock, 1997). Ho\wever, for 

strength mismatched interface cracks, it is important to use the phase angle, (f), 

instead of the local plastic mixity factor, Mp , as it allows a distinction to be drawn 

between the case of am  =  ct, are =  - b  from aee =  -a , are = b where a and b  are 

arbitrary constants.

For convenience, the crack tip sectors to be employed in the assembling the 

asymptotic fields are categorised in the following way.

(i) Type I Constant Stress (GS-I) Sector:

ail = 2k, a22 = ct/2 = 0, ass ~ k (8 -5 )

;ii) Type II Constant Stress (CS-li) Sector:

a u  =  ~ 2 k ,  a 22 =  <yi2 -  0 , a s s  =  ~ k

(ill) General Constant Stress (CS) Sector:

a j i  — A j ,  a22 — A2, a u — As, ctss ~ / 4( A / +  As)

(iv) Type I Centred Fan (CF-I) Sector:

cTrr =  cTee ~  <7ss =  ~ 2 k O  +  cons tan t , a r e  =  k

(8-6)

(8-7)

(8-8)

I

I
I

I
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(v) Type II Centred Fan (CF-II) Sector:

Î

CTrr ~ <760 = CTsS" 2k6 + COnS tan t , arO -  ~k (8-9)

(vi) Elastic Sector

c T r r ^ ^ E i  S i n  2 9  + Ez cos 2 9  -f (£ j 6> + /  2

(700 ~  —E is in 2 9  — E ic o s 2 9  +  ( ^ E 3 ^ E J ) / 2  

cTr0 = EiCos29-  E2sin29~ Es f 4 

<733 —  { E s Q +  E ^  / 2

(8-1 Oa) 

(8-1 Ob) 

(8-1 Oc) 

(8-1 Od)

These sectors will be assembled in a manner that is consistent with continuity of 

tractions, aee and are across the sector boundaries and the material interface. 

Traction free boundary conditions on crack faces must also be enforced when 

necessary. It is noted that both C8-I and CS-II sectors satisfy traction free 

boundary conditions on the upper and lower crack faces. If an elastic sector is 

contiguous with a plastic sector within the same material region, the yield 

condition is enforced on both the elastic and plastic sides of the sector boundary. 

However, when an elastic sector adjoins a plastic sector along the material 

interface, the elastic stress state is not required to satisfy the yield condition on 

the elastic side of the material interface. For general constant stress sectors, the 

yield condition has to be enforced on the constant stress fields. As the crack tip 

stress fields are parameterised by the phase angle (j), aee, and are on the 

material interface can be related by equation (8-4) and this defines an additional 

condition.

In assembling the asymptotic crack tip sectors only traction continuity conditions, 

but not the full stress continuity conditions, are enforced at sector boundaries 

within the same material. However, the requirement that the elastic stress state 

satisfies the yield criterion at the elastic-plastic boundary within the same 

material region is identical to the requirement that the Mises stress is continuous 

across such a sector boundary. Since the Mises stress is necessarily continuous 

across elastic-plastic sector boundaries that are within the same material region,
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this additional requirement at the elastic/plastic sector boundary leads to the 

conclusion that the yield function is continuous everywhere within the same 

material region. For the plane strain form of the Mises yield criterion

f  {̂<Jee~<7rry 4-4a lo -4k \  continuity of f, am, and aro implies that arr is 

continuous. Thus, it may be concluded that all stress components are 

continuous within the same material region for the one-parameter family of crack 

tip stress fields. Of course, these crack tip stress fields have discontinuities in 

arr across the material interface, but these are consistent with the traction 

continuity requirement.

There are 7 configurations to be assembled. The configurations change at 

critical values of the phase angle denoted (i -1 to 6). The critical phase angles 

are shown in Table 8.1 for y = 125 and 1.5.

Configuration A. (f>i <(p<90''
Consider the sector configuration given in Figure 8.10a.

In material I, starting from the upper crack face, this configuration consists of a 

CS-II sector, a CF-I I sector, a general CS sector, and a CF-I sector;

In material II: starting from the lower crack face the configuration comprise, a 

CS-I sector, a CF-I I sector, a general CS sector, a CF-I sector, and a general CS 

sector.

There are 7 sector boundaries and 13 constants for the stresses. The conditions 

for determining these 20 unknowns are: 16 traction continuity conditions at 7 

sector boundaries and 1 material interface, 3 conditions from enforcing yielding 

in 3 general CS-sectors, and equation 8.4 relating the interface tractions. Thus, 

the 20 unknowns from these 20 conditions can be determined when a phase 

angle  ̂ is specified (Sham, Li and Hancock, 1997). The details of the 

expressions for the sector angles and stresses for this configuration, and others 

to follow, are given in Appendix 2.
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As the phase angle (j> Is decreased from 90^ the sector boundary at 9q rotates 

anticlockwise towards the one at Oq and the angular extent of the CF-I I sector in 

the range 9q<9<9b gradually decreases. When (f> reaches this centred fan 

vanishes and the two neighbouring constant stress sectors collapse into one CS- 

II sector, resulting in the limiting configuration depicted in Figure 8.10b.

The remaining six configurations are assembled in a similar way and are shown 

in Appendix 1.

Based on numerical solutions, the phase angles for each level of mode mixity for 

y-1.25 and 1.5 are shown in Table 8.2. The analytical angular variations of the 

stress components were calculated for each phase angle and compared with the 

corresponding numerical solutions, as shown in Figures 8.11 and 8.12 for y= 125  

and 1 5  respectively. It is clear that there is full agreement between the 

analytical solutions given by lines and the numerical solutions given as data 

points.

8.4 Strain hardening

Attention is now focused on the effect of strain hardening on strength 

mismatched fields. A modified power-law relationship between uniaxial stress 

and strain is used.

G
Go

( 7

0*0
C7>(7o (8-11)

Here <jo and s„  are the stress and strain at yield in uniaxial tension, n is the 

hardening exponent. The total strain is decomposed into elastic Go and plastic 

Gp components in the usual way:

S  -  S o  +  8c (8-12)

The uniaxial stress-strain relations are generalised into multi-axial states of 

stress using the Mises yield criterion and the associated flow role. Strength
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mismatch may occur due to either a difference in initial yield stress or different 

strain hardening rates. In the present analyses, only the former is considered.

The two strength mismatched materials have the same strain hardening rate, n, 

but different initial yield strengths, and ob̂ .

Numerical calculations were performed with stain hardening exponents, n=13 

and 6 under mixed mode loading. To determine the plane on which the 

maximum principal stress and minimum shear occurs, the angular variation of 

the stress components under each level of mixity for y-1.25  and n-6, 13 are 

shown in Figures 8.13~14. The stresses are non-dimensionalised with respect 

to the uniaxial yield stress of soft material 1, ob̂ . It was found that the continuity 

in shear and hoop stress across the boundary was always satisfied, as required 

by the equilibrium equations. The maximum hoop stresses appeared in the hard 

material and decreased with increasing mode II component. Figures 8.15-16 

show the radial variation of maximum principal stresses and deviatoric stresses 

on the planes of the maximum hoop stresses for n=6 and 13 respectively. The 

radial distance from the crack tip, r, is non-dimensionlised by J / o b ® .  It is 

significant to note that the stress profiles are parallel to each other. For weak 

and moderate strain hardening, the stress fields are qualitatively similar to the i

non-hardening case, and are devatorically similar but differ hydrostatically.

To investigate the effect of strength mismatch factor on the stress fields, the 

yield stress in the material 2 was increased to 1.5ob .̂ Figure 8.17 shows radial 

variation of maximum principal stress and deviatoric stress under mode mixities 

for n=13. The stresses profiles are similar to those for y-1.25 (n-13).

Since the fields differ mainly hydrostatically, the constraint of all these fields may 

be correlated with the homogeneous mode I field in small scale yielding 

conditions. Take small scale yielding solutions of material 2 as reference field, 

the constraint parameter, Q, can be defined as the difference in mean stresses 

between the strength mismatched crack tip stress field and the reference field on 

the plane of maximum principal stress:

• Jér
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(8-13)

Figure 8.18 illustrates the constraint parameter Q as function of elastic mode 

mixity at rob®/J=2 for hardening rate of n=6 and 13. By using this relationship, 

the corresponding J-Q locus from mode 1 experimental data shown in Figure 

8.19 given by Betegôn and Hancock (1991) can thus be mapped into the J-mixity 

locus for stress controlled fracture as shown in Figure 8.20.

8.5 Conclusions

Numerical and analytic solutions have been developed for the asymptotic small 

scale yielding crack fields of a crack located on the interface between two elastic 

perfectly-plastic solids, with matching elastic properties, but mismatched yield 

strengths. The results are expressed as plane strain slip line fields which 

comprise combinations of elastic sectors, centred fans and constant stress 

sectors. Solutions are developed under mixed mode loading as a function of the 

plastic mismatch between the two solids. Numerical solutions developed using 

finite element methods in which the small scale yielding field is modelled by i
boundary layer formulations agree well with analytic solutions.

By assuming the strength mismatch arises only from the difference in initial yield 

stress, the strength mismatched interfacial crack tip were also investigated in 

hardening materials. The maximum principal stresses decreases with the 

contribution from mode II but increases with strength mismatch. The planes of 

the maximum principal stresses are located in the hard material and rotate as 

the mode II component increases. On these planes, the stress profiles are 

parallel and differ mainly by a hydrostatic term for weak and moderate levels of 

strain hardening. For stress controlled failure, this allows these fields to be 

correlated with the homogeneous unconstrained mode I fields allowing the 

homogeneous mode I failure criterion to be used for strength mismatched 

materials.
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Figure 8.1 Schematic of a strength mismatched interfacial crack.
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Table 8.1 Limiting phase angles

y 4)1 4)2 (y) 4)3 (y) 4>4 (y) 4)5 4)6 (y)

1.25 60.28*" 31.08° 11.85° 6.40° -21.26° -56.61°

1.5 60.28*" 34.11° 9.93° 9.93° -21.26° - 54.20°
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Figure 8.10 Sector configuration A (a) and Limiting configuration (j>1, (b).
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Table 8.2 Phase angle of strength mismatched interfacial crack

Strength
mismatched

factor

Elastic mode 
m ixity

Phase angle

<p(deg)

y=1.25

Kl 3.1167 0.2979 5.46

KI=2KII 1.9554 0.5779 16.46

KI=KII 1.1129 0.5777 27.43

KI=0.5KII 0.5433 0.5758 46.66

Kll -0.1388 0.5734 103.6

y -1 .5

Kl 3.2301 0.4831 8.51

KI=2KII 1.9554 0.5779 16.46

KI=KII 1.1358 0.5796 27.04

KI=0.5KII 0.5462 0.5762 46.53

Kll -0.2362 0.5722 112.43
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Chapter 9 A crack normal to a strength mismatched interface

i
9.1 Introduction

In welded structures cracks often occur in a hard phase, such as a heat affected 

zone adjacent to a softer phase such as the parent plate. A similar configuration 

occurs in composite materials when high strength fibres embedded in a ductile 

matrix may crack. Such cracks may lie in the interface or be normal to it. This 

chapter investigates the features of cracks normal to a strength mismatched 

interface under mode I and mixed mode loading.

9.2 Model description

As usual in-plane Cartesian co-ordinates (x̂ , Xg) and cylindrical co-ordinates (r,

0) centred at the crack tip are employed. The crack flanks lie on the -xi axis 

(0=±7r) while the interface lies on txg, xt=0, 0=±7t/2 as illustrated in Figure 9.1.

The crack tip is located in the interface between two elastically identical but 

strength mismatched materials. Material 1 is located in the right half space, Xi>0 

and material 2 is located in the left half space, xi<0. Both materials are either 

compressible or almost incompressible (v=0.49). Material 1 has an elastic- 

plastic response with a yield strain (cro/E=0.0005). Material 2 is elastically 

identical, but has an infinite yield strength so that the strength mismatch factor is 

infinity (y=oo). Plastic deformation of the matrix is limited to small scale yielding 

under plane strain conditions, using the highly focused mesh described in 

Chapter 5 (see Figure 3.13). The boundary conditions correspond to a boundary 

layer formulation for a homogenous crack tip field. Displacement loading 

characterised by stress intensity factors K i and K ii for a homogenous material 

was applied to the outer circumference of the mesh. Calculations were then 

performed with both compressible and incompressible responses under the five 

levels of elastic mode mixity shown in Table 6.1, as well as mode I with different 

levels of T stress. The stresses at the crack tip were taken from the central 

integration points of each element and extrapolated linearly along radial lines to 

the tip such that the tip was approached asymptotically at different angles. Post
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processing was carried out using Matlab (1992) which is a commercial software 

designed for matrix calculations.

9.3 Compressible deformation with a non hardening response

Figures 9.2 and 9.3 show the angular variation of the Mises and hydrostatic 

stresses under five levels of mode mixity with compressible elastic deformation. 

The deformation of the plastic sections is interpreted in terms of slip line fields 

which is justified by the almost incompressible plastic response. The 

corresponding slip line fields shown in Figure 9.4 are assembled in the following 

way: firstly, the angular span of the elastic sectors is determined from the 

angular range over which the yield criterion is not satisfied. Secondly the span 

of the centred fan is determined from the angular range over which the mean 

stress varies linearly with angle. Finally the constant stress sector is identified 

as the region in which the mean stress does not change with angle. For both 

pure mode I and pure mode II loading, the fields are symmetric with respect to 

the crack but this symmetry is lost under mixed mode loading. The mode I slip 

line field comprises a diamond directly ahead of crack and a centred fan 

between the diamond and the strength mismatched interface on each side of the 

crack. The plane of the maximum principal stress is oriented radially out through 

the constant stress sector. The maximum principal stress under mode I loading 

is thus located directly ahead of the crack. Under mainly mode I loading, the 

same fields are also admissible fields if material 1 is rigid because the slip lines 

are orthogonal to the interface. As the contribution from mode II increases, the 

constant stress diamond and the maximum principal stress direction rotate 

clockwise. Under pure mode )l loading, the maximum principal stress occurs on 

the interface. For stress controlled brittle fracture, failure can be expected occur 

at these orientations in which the propagating crack extends locally in mode I.

9.4 Incompressible deformation with a non hardening response

Poisson's ratio has a significant effect on the development of crack tip plasticity. 

Figures 9.5-6 show the angular variation of both the Mises stress and the 

hydrostatic stress under five levels of mode mixity with incompressible 

deformation. The corresponding slip line fields shown in Figure 9.7 are
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9.6 Effect of T stress

■

determined in the way described previously. It may be noted that the mode I slip 

line field in Figure 9.7a differs from that in Figure 9.4a in which the Poisson ratio 

is 0.3. In Figure 9.7a, plasticity does not completely surround the material 1 and 

an elastic sector appears directly ahead of the crack. Within this sector the 

mean stress has similar features to the constant stress sector in Figure 9.4a, in 

that a homogenous stress field is developed. When mode II loading starts to 

contribute, the span of the centred fan above the crack plane in material 1 has a 

span of 90°. The span of the fan decreases with the contribution from mode II.
%

Below the crack plane in material 1, a constant stress diamond appears under 

largely mode I loading. As the contribution from mode II increases, the constant 

stress sector rotates clockwise and becomes incomplete as it intersects the 

interface, while the span of the elastic sector increases. Under pure mode II 

loading, the slip line field is identical to Figure 9.4e with v=0.3. The effect of 

mode mixity for an incompressible material is therefore similar to that for a 

compressible material. |

9.5 Analytic solutions

To verify the numerical solutions, analytic solutions can be derived by using slip 

line theory for plastic sectors and elastic wedge solutions for the elastic sectors.

For a given constraint or mean stress directly ahead of the crack, the whole field 

can be determined by ensuring the continuity of hoop and shear stress on the 

boundaries of the sectors but allowing a jump in radial stress across the strength 

mismatched interface. A comparison of the mean stresses obtained from both 

numerical and analytical methods is shown in Figure 9.8 for the pure mode I 

case and in Figure 9.9 for mixed mode cases. It is clear that they agree well.

The loss of constraint caused by a compressive T stress at a crack tip in 

homogeneous material has been investigated by Du and Hancock (1991). In 

order to examine the effect on a crack normal to a strength mismatched 

interface, the angular variation of the Mises stress and the mean stresses under 

mode I with different levels of T stress are plotted in Figures 9.10-11. With zero 

and positive T stresses, plasticity does not fully surround the crack tip in the

1
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material 1 and the magnitude of the mean stresses are very similar. In 

comparison with the mean stress directly ahead of a crack in a homogenous 

material, the non-dimensionlised mean stress, 2.7, was higher than that for a 

homogenous material (2.3 under pure mode I). This indicates that the constraint 

of a crack normal to a strength mismatched interface is higher than that in a 

homogeneous material and hence lower toughness is expected.

Although plasticity develops at all angles in the soft material when the T stress 

was -1.0<Jo, the mean stress in the elastic sector ahead of the crack under 

positive or zero T stress has the same features as a plastic constant stress 

sector. The mean stress within this elastic sector also decreases as the T stress 

becomes more negative. This implies that compressive T stress causes a loss 

of constraint at the crack tip. A crack tip constraint parameter, Q, for a crack 

normal to the strength mismatched interface can be defined as the reduction in 

hydrostatic stress with respect to the homogenous SSY mode I field, ■

(9_i)
(To

Based on the numerical calculation, the relationship between Q and T for n-oo 

can be expressed approximately as

Q=2.34T/cto+0A2 T/cjo<0 (9-2)

Figure 9.12 shows the slip line fields under different levels of T stress.

9.7 Strain hardening

With a plastically non-hardening material, the fields can only differ by a 

hydrostatic term. Attention is now focused on investigating whether this feature 

is retained with a strain hardening response of the soft material 1.

In uniaxial tension the soft material is assumed to have elastic response for the 

stresses less than the uniaxial yield stress (Tq. Yield is determined by the von
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Mises criterion. At stress greater than the yield stress, material 1 follows the 

uniaxial stress-strain relation shown in section 8.4. Figure 9.13 shows the 

stress-strain relation for both hardening and non-hardening materials. Material 2 I
is assumed to have the same elastic properties but an infinite yield stress.

# 

i
9.7.1 Mode ! fieid

The maximum principal stress under mode I loading occurs directly ahead of the 

crack due to the symmetry of applied loading and geometry. Figures 9.14-15 

show the radial variation of the maximum principal and deviatoric stresses 

directly ahead of the crack tip for both strain hardening materials {n=13, 6). It is 

clear that they are deviatorically similar but differ hydrostatically. The 

relationship between Q and T for n=13 can be expressed approximately as

Q=1.46T/ao+0.09 T/cto<0 (9-3)

Using this relation, the data of J-T locus for mode I homogenous field given by 

(Sumpter, 1993) shown in Figure 3.17 can be mapped into J-Q plot for the crack 

normal to a strength mismatched interface as shown in Figure 9.16.

9.7.2 Mixed mode fields

In order to determine the plane of maximum principal stresses under mixed 

mode loading, the angular variation of hoop stresses for n-13  and 6, shown 

Figures 9.17-18, were obtained by extrapolating the data from the central 

integration station of each element to the tip. The plane of the maximum hoop 

stress is the plane of maximum principal stress. It may be noted that the 

maximum hoop stress decreases with mode mixity.

For both strain hardening rates, the radial variation of the maximum principal 

stress and the corresponding deviatoric stress under five levels of mode mixity 

on the plane of the maximum principal stress direction are shown in Figures 

9.19-20. The stresses are non-dimensionlised with respect to the uniaxial yield 

stress of material 1, while the radial distance from the crack tip, r, is non-
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dimensionlised by J/<jq. The important point is that the fields with weak and 

moderate strain hardening differ mainly hydrostatically but remain deviatorically 

similar.

The relationship of the constraint parameter, Q, and the elastic mode mixity, Mw, 

is thus illustrated in Figure 9.21 for hardening exponents n-13. For stress 

controlled fracture, the J-Q locus from mode I data given by Betegôn (1991) 

shown in Figure 8.26 can now be mapped into mixed mode data, J-mixity locus 

shown in Figure 9.22 for n=13, by using the Q-Mei relationship given in Figure 

9.21.

9.8 Conclusions

The asymptotic stress field for a crack normal to a strength mismatched interface 

has been investigated by using boundary layer formulations under mode I with 

different levels of T stress and mixed mode loading. With incompressible and 

non-hardening deformation, the mean stress directly ahead of the crack tip under 

mode I with zero and positive T stress is higher than that in the corresponding 

homogeneous SSY field. Higher constraint and lower toughness than mode I 

homogenous field are thus expected for a crack normal to a strength 

mismatched interface. With weak and moderate strain hardening, the loss of 

constraint due to a compressive T stress gives rise a family of fields which differ 

in a largely hydrostatic manner. This allows the toughness in homogenous 

material under mode I loading to be correlated with a crack normal to a strength 

mismatched interface.

A feature of mixed mode fields which is similar to that of homogeneous 

materials, is that, mode II component causes a loss of constraint at the crack tip. 

On the plane of the maximum principal stress for a weak and moderate strain 

hardening material, there is a family of fields which are deviatorically similar but 

hydrostatically different. For stress controlled fracture, this allows the constraint 

based homogeneous mode I failure J-Q locus to be mapped into the strength 

mismatched mixed mode data, J-m/x/fy locus.

1
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Chapter 10 Conclusions and future work

10.1 Conclusions

1I
Asymptotic plane strain solutions for Mode I fields have been constructed using 

slip line solutions for plastic sectors and semi-infinite wedge solutions for elastic 

sectors. The fields, which exhibit full continuity of tractions, have been verified 

by numerical calculations using modified boundary layer formulations. The loss 

in crack tip constraint depends on the T stress. This feature is retained by weak 

and moderately strain hardening materials. The loss in constraint can be 

quantified by Q, which can be determined analytically for non-hardening 

deformation. The relevant fracture toughness depends on constraint through a 

J-Q/T failure locus.

For homogeneous materials mixed mode loading also results in a loss in crack 

tip constraint. On the plane of the maximum hoop stress, the mixed mode fields 

are hydrostatically different but deviatorically similar for both non hardening and 

moderately strain hardening materials. This has allowed relations to be 

established between constraint and remote elastic mode mixity.

For cracks lying an interface between a rigid substrate and an elastic-plastic 

material subject to a mixed mode loading with negative shear stresses, the 

maximum principal stress is located in matrix rather than interface. This may 

lead to matrix failure provided the interface is strongly bonded. On the plane of 

maximum hoop stress the fields can be interpreted as belonging to a single 

family which differ hydrostatically but are deviatorically similar, for both non 

hardening and moderate hardening rates.

A combination of numerical and analytic methods have been developed for the 

asymptotic small scale yielding crack fields of a crack located on the interface 

between two elastic-plastic solids, with matching elastic properties, but 

mismatched yield strengths. The results have been expressed as plane strain 

slip line fields which comprise combinations of elastic sectors, centred fans and
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constant stress sectors. Solutions are developed under mixed mode loading as 

a function of the plastic mismatch between the two solids. Numerical solutions 

developed using finite element methods in which the small scale yielding field 

was modelled by boundary layer formulations agree well with analytic solutions. 

With strain hardening material, the maximum principal stress decreases with the 

contribution from mode II but increases with the strength mismatched factor. 

The planes of maximum principal stresses are located in the hard material and 

rotate clockwise as the mode II component increases. On these planes, the 

non-dimensionalised stress profiles are parallel and differ mainly by a hydrostatic 

term for weak and moderate levels of strain hardening. This allows stress 

controlled fracture to be correlated with the toughness measured in the 

unconstrained mode I fields of homogenous materials.

The crack tip stress field for a crack normal to a strength mismatched interface 

under mode I with different level of T stresses has been shown to exhibit a loss 

of constraint due to a compressive T stress. This gives rise a family of fields 

which differ in a largely hydrostatic manner for both non hardening and strain 

hardening materials. Under mixed mode loading, the Mode II component causes 

a loss of constraint at the crack tip. On the plane of maximum principal stress in 

the hardening material, there is a family of fields which are deviatorically similar 

but which differ hydrostatically.

For all these fields, the strength of the dominant singularity in the leading sectors 

around the plane of maximum hoop stress Is similar to the unconstrained mode I 

fields. Constraint loss can be expressed by the introduction of a distance 

independent second order term which is largely hydrostatic in nature. The 

fracture resistance of these configurations can thus be unified by a single 

constraint based homogeneous fracture toughness locus for stress controlled 

failure.
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10.2 Future work

Strength mismatch may occur due to either a difference in initial stress or 

different strain hardening rate. The ratio of the strain hardening rates may have 

a strong effect on the strength mismatched Interfacial crack tip stress field under 

mixed mode loading. This should be investigated in the future.

Since the T-stress and mode II loading both cause a loss of constraint at the 

crack tip, the correlation of the effects of T-stress and mode 11 loading may need 

to be explored experimentally to determine the theoretically proposed criterion 

between crack extension in homogenous materials and bi-material interface.

Relations between local and remote fields have yet to be established analytically. 

For example the relation between the remote elastic mixity and the local plastic 

mixity (phase angle) can only be established computationally. Similarly the 

connection between T-stress and constraint has yet to be established 

analytically.

Æ k . ________  ' i l
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Appendix 1

Seven asymptotic crack tip configurations have been identified for an interface 

crack between elastically similar but strength mismatched materials. The 

configurations are described in terms of angle (i=1,6).

Configuration A. <t)i < <j) < 90°

The angles î \ (i~1 to 6) are shown in Table 8.1 for y=1.25 and 1.4. Consider the 

sector configuration given in Figure Al ,1a. This configuration consists of:

Material I: starting from the upper crack face, CS-II sector, CF-II sector, general 

CS sector, and CF-I sector;

Material II: starting from the lower crack face, CS-I sector, CF-II sector, general 

CS sector, CF-I sector, and general CS sector.

There are 7 sector boundaries and 13 constants for the stresses. The 

conditions for determining these 20 unknowns are: 16 traction continuity 

conditions at 7 sector boundaries and 1 material interface, 3 conditions from 

enforcing yielding in 3 general CS-sectors, and equation 8.4 relating the 

interface tractions. Thus, the 20 unknowns from these 20 conditions can be 

determined when a phase angle (j> is specified (Sam,1997). The details of the 

expressions for the sector angles and stresses for this configuration, and others 

to follow, are given in the Appendix 2.

As the phase angle ({) is decreased from 90° the sector boundary at 0e rotates 

anticlockwise towards the one at 08 and the angular extent of the CF-II sector in 

the range 06 < 0 < 08 gradually decreases. When (]) reaches this centred fan 

vanishes and the two neighbouring constant stress sectors collapse into one 

CS-II sector. This ([)= (|)i limiting configuration is depicted in Figure A l.ib .

 : .............



Configuration B. ^(y) < (j) < (])i

As the phase angle (|> is further decreased from (j)i, the stress level within CS-II 

sector in material I cannot sustain yield and a new sector configuration involving 

an elastic sector emerges as shown in Figure A1.2a. This configuration consists 

of:

Material I: starting from the upper crack face, elastic sector, and CF-I sector;

Material II: starting from the lower crack face, CS-I sector, CF-II sector, general 

CS sector, CF-I sector, and general CS sector.

There are 5 sector boundaries and 13 constants for the stresses. The 

conditions for determining these 18 unknowns are: 12 traction continuity 

conditions at 6  sector boundaries and 1 material interface, 2 traction free 

conditions for the upper crack face, 2 conditions from enforcing yielding in 2 

general CS sectors ,1 condition from enforcing yielding of the elastic stress state 

at sector boundary 84, and equation 8.4 relating the interface tractions. Thus, 

we can determine these 18 unknowns from these 18 conditions when a phase 

angle (j> is specified. The details are given in the Appendix 2. As the phase 

angle (|> is decreased from the angular extent of the CF-I sector in the range 

03 < 0 < 01 gradually decreases. When ^ reaches (j>2(y), this centred fan vanishes 

and the two neighbouring constant stress sectors emerge into one general CS 

sector. This (|)=(|)2(y) limiting configuration is depicted in Figure Al .2b.

Configuration C, (j)3(y) < (t> < ^(y)

As the phase angle <j) is decreased from (j)2(y), the stress level within the general 

CS sector in material II cannot sustain yield and a new sector configuration 

involving an additional elastic sector emerges as shown in Figure A1.3a. This 

configuration consists of:



Material I: starting from the upper crack face, elastic sector, and CF-I sector;

Material II: starting from the lower crack face, CS-I sector, CF-II sector, and 

elastic sector.

There are 3 sector boundaries and 10 constants for the stresses. The conditions 

for determining these 13 unknowns are: 8 traction continuity conditions at 3 

sector boundaries and 1 material interface, 2 traction free conditions for the 

upper crack face, 2 conditions from enforcing yielding of the elastic stress state 

at sector boundaries 84 and 81 and equation 8.4 relating the interface tractions. 

Thus, we can determine these 13 unknowns from these 13 conditions when a 

phase angle (j) is specified. The details are given in the Appendix 2 .

As the phase angle (j> is decreased from (j)2(y) the sector boundary at 0 i which 

separates the CF-II sector and the elastic sector in material II gradually rotates 

anticlockwise towards the interface and the stress level within the elastic sector 

increases. When the phase angle (j) is decreased to (|)3(y), the elastic stress state 

in the angular range 01 < 0 < 0 reaches yield in the entire sector. Thus, this 

elastic sector becomes a general CS sector in this limit. The (|)=(j)3(y) limiting 

configuration is depicted in Figure A1.3b.

Configuration P . (|)4 (y) <4)< ^(y)

As the phase angle <j) is decreased from (j)3(y), an additional constant stress 

sector bordering the material interface is required in the new sector configuration 

as shown In Figure A l .4a. This configuration consists of:

Material I: starting from the upper crack face, elastic sector, CF-I sector, and 

general CS sector;



Material II: starting from the lower crack face, CS-I sector, CF-II sector, and

general CS sector.

There are 4 sector boundaries and 12 constants for the stresses. The conditions 

for determining these 16 unknowns are: 10 traction continuity conditions at 4 

sector boundaries and 1 material interface, 2 traction free conditions for the 

upper crack face, 2 conditions from enforcing yielding in 2 general CS-sectors, 1 

condition from enforcing yielding of the elastic stress state at sector boundary 08 

in material I, and equation (8.4) relating the interface tractions. Thus, these 16 

unknowns can be determined from these 16 conditions when a phase angle (j> is 

specified. The details are given in the Appendix 2.

As the phase angle (j> is decreased from (|)3(y), the sector boundary at 0e in 

material I which separates the elastic sector and the CF-I sector rotates 

gradually towards the upper crack face and the stress state within the elastic 

sector elevates. When the phase angle (j) is decreased to (|)4(y), the elastic 

stress state within the angular range 08 < 0 < E reaches yield and this elastic 

sector is turned into a CS-I sector. This ()>=(|)4(y) limiting configuration is depicted 

in Figure A l .4b.

Configuration E (j)5(y) <<^< (}>4(y)

As the phase angle (j> is decreased from <|)4(y), the stress state within the CS-I 

sector in material II of Figure Al .4b cannot sustain the yield level. A new 

configuration involving an elastic sector emerges. This new sector configuration 

is shown in Figure A l .5a. This configuration consists of:

Material I: starting from the upper crack face, CS-I sector,CF-I sector, and 

general CS sector;

      __________   _ _ _



Material II: starting from the lower crack face, elastic sector, CF-II sector, and

general CS sector.

There are 4 sector boundaries and 12 constants for the stresses. The 

conditions for determining these 16 unknowns are: 10 traction continuity 

conditions at 4 sector boundaries and 1 material interface, 2 traction free 

conditions for the lower crack face, 2 conditions from enforcing yielding in 2 

general CS-sectors, 1 condition from enforcing yielding of the elastic stress state 

at sector boundary 8? in material II, and equation (8.4) relating the interface 

tractions. Thus, we can determine these 16 unknowns from these 16 conditions 

when a phase angle ^  is specified. The details are given in the Appendix 2 .

As the phase angle is decreased from (|)4(y), the sector boundaries at 04 In 

material I and at 0? in material II rotate anti-ciockwisely. When ^  is decreased to 

# , a limiting configuration is realised where 04 =90° and the general CS sector in 

the angular range 0 < 0 < 04 becomes, in the slip-line terminology, a diamond 

sector. This (|)=(j)5 limiting configuration is depicted in Figure Al .5b.

Configuration F. (|)6(y) < (t> < <j)5

As the phase angle (j> is decreased from (j>5, an additional centred fan in material I 

bordering the interface is required. This new configuration is shown in Figure 

A l .6a. This configuration consists of:

Material I: starting from the upper crack face, CS-I sector, CF-I sector, general 

CS sector, and CF-II sector.

Material II: starting from the lower crack face, elastic sector, CF-II sector, and 

general CS sector.

I

I
i



There are 5 sector boundaries and 13 constants for the stresses. The 

conditions for determining these 18 unknowns are: 12 traction continuity 

conditions at 5 sector boundaries and 1 material interface, 2 traction free 

conditions for the lower crack face, 2 conditions from enforcing yielding in 2 

general CS-sectors, 1 condition from enforcing yielding of the elastic stress state 

at sector boundary 03 in material II, and equation 8.4 relating the interface 

tractions. Thus, we can determine these 18 unknowns from these 18 conditions 

when a phase angle (j) is specified. The details are given in the Appendix 2 .

As the phase angle <j) is decreased from (j)5, the sector boundary at 6 3  in material 

II rotates anti-clockwisely towards the interface and the stress state within the 

elastic sector in material II elevates. When cj) is decreased to <|>6(y), the sector 

angle 03 becomes - 7t / 4  and the stress state within the elastic sector reaches 

yield. This (t)=(j)6(y), limiting configuration is depicted in Figure Al .6 b.

Configuration G. -90° < (|) < (|)6

As the phase angle (j) is decreased from (})6, a new configuration emerges as 

shown in Figure A1.7. This configuration consists of:

Material I: starting from the upper crack face, CS-I sector, CF-I sector, general 

CS sector, and CF-II sector;

Material II: starting from the lower crack face, CS-II sector, CF-I sector, general 

CS sector, CF-II sector, and general CS sector.

There are 7 sector boundaries and 13 constants for the stresses. The 

conditions for determining these 20  unknowns are: 16 traction continuity 

conditions at 7 sector boundaries and 1 material interface,3 conditions from 

enforcing yielding in 3 general CS-sectors, and equation 8.4 relating the 

interface tractions. Thus, we can determine the 20 unknowns from these 20

______ ___________________



'

conditions when a phase angle (j) is specified. The details are given in the 

Appendix 1. This configuration persists as the phase angle (t> is decreased from 

(t)6(y) towards -90°.
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Figure A1-2 Sector configuration B (a) and Limiting configuration (\>2 , (b).
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Figure A1-5 Sector configuration E (a) and Limiting configuration (b).
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Figure A1-6 Sector configuration F (a) and Limiting configuration (|)6, (b).
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O] 1 — — 2  , a i2  — Cf22 — 0  , Cf33 ~  — 1

— Oqq — O3 3  — — 1 — 3tc/2 + 20 , g^q — — 1 .

C F-I sector, 0 < 0 < 6 4

Orr -  0 0 0  = Ô3 3  = COt(j) - 2 0 ,  âr 0  = 1 .

Appendix 2

In this appendix, the details of the assembled crack tip sectors are presented for sector configurations
covering the phase angles in the range -  90° < <j> < 90°. The stress components are normalized with respect to f
k\ which is the yield stress in shear in material I. These assemblies are for a mismatched yield strength factor, : ;
y , greater than 1 .

1.1. Configuration A, (|)i < (|) < 90°

04 =  (cOt<|) +  l )/4  +  7T/8 , 06 =  04 +  Jt/2  , 0g -  37t/4 , 05 =  03 -  k /2 , 07 =  -  3%/4 -y

CS-II sector, 0g < 0 < tt

C F -II sector, 0g < 0 < 0g

.

General CS-sector, 0 4  < 0 < 06

011= sin206 + 206 -  1 -  3k /2 , 022 = “  sin206 + 206 -  1 -  3%/2 , Ï
0,2 = -  COs206 , O33 = ‘/2 (0,1 + O22)

General CS-sector, 0 , < 0 < 0

Ô,; = -  y ( sin20, -  403 + 20, -  1 -  k!2 ) , Ô22 = -  y ( -  sin20, -  403 + 20, -  1 -  71/2 ) ,

0,2 = y cos20, , Ô33 = '/2 (0,1 + Ô22)
a 
::

CF-I sector, 03 < 0 < 0 ,

O rr  =  Ô00 =  033 =  y  ( I +  Tt/2 +  403 ) -  2 y  0 , 0 r 9 =  y  . I

a/
General CS-sector, 05 < 0 < 03

O j, =  y  ( -  s in203 +  203 +  1 +  tt/2  ) , 622 =  y  ( s in203 +  203 +  1 +  tt/2  ) ,

0,2  =  y  cos203 , Ô33 =  ‘/2 ( 0,1 +  Ô 22)

CF-II sector, ©7 < 0 < ©5

Grr -  âge =  Ô3 3  =  y ( 1 +  3îi/2 ) +  2y 0 , ô^q =  -  y .

   _ _ _     :



a

CS-I sector, -  Tt < 8  < 87

â ji =  2 y ,  0 , 2  =  0 2 2  =  0 , Ô3 3  = y .

Tlie sector angles 0, and 0 3  are given by the equations:

/  j(0 ,) = 1 -  y cos20, =  0 , with -  7C < 0, < 0 (A . l)

/ 2 (0 i, 0 3 ) = y sin(t) ( sin20, +  I + 7t / 2  +  4 0 3  -  20, ) -  cos(j) = 0 (A .2)

A limiting sector configuration is realized as tlie phase angle (j) is decreased from 90° towards ^ =  at
which the C F-II sector in the angular range 0g < 0 <  0g vanishes. The limiting phase angle (j), can be obtained 

by setting 0g = 3tc/4 in the above equations for the sector angles. This gives

04 = 7t/ 4  , (j), =  cot” '( -1  +  ?t/2 ) = 60.28° . (A .3)

Using these angles for the sector boundaries, the expressions given above can be used to obtain the stresses in 

the remaining sectors in this limiting configuration.

1.2. Configuration B, (})2Cy) ^ -  4)|

0 3  =  0 3 — 7t/ 2  , 0 7  =  — 3 7 x/ 4  , cos2 0 4  ^ 1

Elastic sector, 04 < 0 < TC

The stress components in this elastic sector are given by equations (1.22). The constants, as normalized 
by A:,, are given by

Ë 3  =  4Ë , , £ 4  = 2 Ë 2  -  ,

_  cos2 0 4  _  sin2 0 4

E '
I -  cos204 ’ 1 -  cos204

CF-I sector, 0 < 0 < 04

Orr = ôee = CF33 = -  (sin204 + In  cos204 -  204) / (1 -  cos204> - 2 0 ,  0^9 = 1 .

General CS-sector, 0 , < 0 < 0

o ^ = y  ( — sin20 , + 403 — 20 , + 1 + ix/2 ) , (T22 — y ( sin20, + 403 — 20 , + 1 + rc/2 )

0,2 = y  cos20, , Ô33 = '/2 (0,1 +  022)

CF-I sector, 83 < 0 < 0 ,

Grr = 009 = CF33 = V ( 1 + tt/2 + 403 ) -  2y 0 , 0^8 = y .

General CS-sector, 85 < 0 < 83

5 ii = y ( -  sin203 + 203 + 1 + tc/2 ) , Ô22 = y ( sin203 + 283 + 1 + nil ) ,
0,2 = y cos203 , Ô33 = ‘/2 (On + O22)

._____   __ __ _ ___    _     .. -'v ■ +



CF-II sector, 67 < 0 < 85

r̂r =  âge = Ô3 3  =  y ( 1 + 3ti/2 ) + 2y 0 , ô^g = -  y .

CS-I sector, -  it < 0 < 07

âi 1 =  2 y , â i 2  =  0 2 2  =  0  , Cf3 3  =  y .

The sector angles 0 i, 8 3  and 0 4  are given by the equations:

/ ] ( 0 i )  = 1 -  y cos20| = 0 , with -  tc < 0| < 0 (A.4)

f 2 (0 1 > O3 » O4 ) =  y ( “  20, +  4 0 3  + 7c/ 2  +  sin20, +  1 ) — 2k  j  cos2 0 4

+ y ( -  sin20, + 20, -  4 0 3  -  k/2 -  1 ) + 2 0 4  -  sin2 0 4  = 0 . (A .5)

/ 3 (0 4 ) = ( 2 0 4  -  sin2 0 4  -  2k  cos2 0 4  ) sin(j) -  (1 -  cos2 0 4 ) coscj) = 0, (A .6 )

From eqn (A .6 ), it can been seen that the condition of cos2 0 4  1 is satisfied as 9 ^ 0  for the range of phase
angles that this sector configuration is valid.

A limiting sector configuration is approached as the phase angle (j> is decreased from ^ = towards 

<!> = at which the CF-I sector in the angular range 8 3  < 0 < 0, vanishes. This limiting phase angle (j)2 (y) 
for a given mismatched factor y can be obtained by the following steps.

Given y , solve for 0, from eqn (A .4). Set 0 3  =  0, and use eqn (A .5) to solve for 0 4 . Once 0 4  is found, 
we can solve for the limiting phase angle <t>2 0 ')  from eqn. (A .6 ).

1.3. Configuration C, ^ ^ )

0 7  =  — 3jt/4 , cos204 7  ̂ 1 , 0 ] # O

Elastic sector I, 04 < 0 < a:

The stress components in this elastic sector are given by equations (1.22). The constants, as normalized 
by  ̂I, are given by

£ ' 3  =  4 £ ' , ,  £ 4  =  2^2 ~ 4tcE, ,

-  cos2 0 4  _ sin2 0 4

E 1 =   rr~ , E-) -  ~
1 -  cos204 ’  1 “  cos204

C F -I sector, 0 < 0 < 0 4

ô r r  -  Ô00 =  833 = -  (sin2 0 4  + 27t cos204 -  2 0 4 ) / ( 1  -  cos204>- 2 8 ,  = I .

Elastic sector I I ,  0, < 0 < 0

The stress components in tliis elastic sector are given by equations (1.22). The constants £ , ,  Ej and £3, 
as normalized by & ,,are given by

£ , = ( y ( 2  + 3% ) - £ 4 ) cos20| / (48,) , £ 2  = -  ( y (2 + 3jt) -  £ 4  ) sin20, / (40,) (A.7a)

£ 3  = ( jy ( 40, + 2 + 3jt ) -  £ 4  ) / 0, (A.7b)



CF-II sector, 67 < 0 < G,

r̂r = Ô0 0  =  Ô3 3  =  y ( 1 +  3k/2 ) + 2y0 , 0 ^ 0  = -  y .

CS-I sector, -  tc < 0 < 8 7

C u = 2 y , 0 , 2  =  0 2 2  =  0 , Ô3 3  = y .

The sector angles 0, and 0 4  and the constant £ 4  for elastic sector I I  are given by the following equations;

/ , ( 0 , )  = ( £ 4  -  (2 + 3tc) y )  cos20| +  (2 + 3jc +  40,) y + 40, -  £ 4  =  0 , with -  tc < 0, < 0 (A .8 )

/ 2 (0 b O4 , £ 4 ) -  [ “  sin20,(2 + 3tc) y + £ 4 (~ 20, + sin20,) + 8tc0, j cos2 0 4

+ sin20,(2 + 3tc) y + 4 0 ,  (sin2 0 4  -  2 0 4 ) -  £ 4  (sin20, - 2 0 , )  = 0 , (A .9)

7 3 (0 4 ) s  2 0 4  -  sin2 0 4  -  2tc cos2 0 4  j sincj) -  (1 -  cos2 0 4 ) cos(|) =  0 . (A .10)

Again, we find from eqn (A . 10) that the condition of cos2 0 4  7  ̂ 1 is satisfied as (j) î* 0 in the range of phase 

angles that this sector configuration is valid.

A limiting sector configuration is realized as the phase angle (|) is decreased from <]> =  <j>2 (y ) towards 
(|) -  (j)3 (y ) at which the stress state of elastic sector I I  reaches yield everywhere within the angular range 

0 , < 0 < 0. To determine such a limiting configuration, we may use the general expressions for the elastic
stresses given in eqns (1.22) to evaluate the yield function / .  I f  the elastic stress state reaches yield within the
entire sector, we must have

7 ( 0 )  =  0 , and d /(0 )/d 0  = O . ( A . l l )

The second condition leads to

( £  I sin2 0  + £ 2  cos2 0  ) £ 3  =  0

which is satisfied everywhere in the sector if  £ 3  = 0. Using £ 3  =  0 in eqn (A .7b), we find

£ 4  =  y ( 40, + 2 +  3tc ) ,

and the constants £ ,  and £ 2  in (A .7a) are reduced to

£ , = ~ y c o s 2 0 , , £ 2  =  y sin2 0 , .

Using these constants in eqns (1.23), we find

â ,, = y ( sin20, + 20, +  1 + 3tc/2 ) , O2 2  =  y ( -  sin20, + 20, + 1 + 3k/2 ) ,

0 , 2  =  -  y cos2 0 , , Ô3 3  =  ' / 2  (Ô,, + Ô2 2 ) .

It can be verified that these stresses satisfy the yield condition and hence they represent the stress state of a 

general CS sector.

In this limit, we find further that eqn (A .8 ) is simplified to

7 i ( 0 | )  = 1 + y cos20, = 0 , with -  Ti < 0, < 0 . (A . 12)

For a given value of y , eqn (A . 12) gives two roots in the said range of 0,. The more negative root coiresponds
to the limiting configuration for The less negative root gives the value of 0, for the limiting
configuration (J) =  (})3 (y). To determine tlie limiting phase angle (t>3 (y ) for a given y , substitute the appropriate 

value of 0, and the corresponding £ 4  from above into eqn (A .9). Determine 0 4  from tlie resulting equation.



The limiting phase angle (|)3 (> ) can then be determined from eqn (A . 10).

1.4. Configuration D, ({)4 (y ) < ( } ) <  (])3 (y)

8 7  =  -  3%/4 , cos208 1

General CS-sector, 0 < 8  < 0 4

/ 3 (0 ,) s  (sin29| - 1  - 2 0 , -  3%/2 ) sin(|) -  cos20, cos^ = 0 (A . 16)

Elastic sector, 0g < 0 < 71

The stress components in this elastic sector are given by equations ( 1.22). ITie constants, as normalized 
by AI, are given by

£ 3  =  4£ , , £ 4  =  2£2 — 4Tt£, , (A. 13a) -

_ cos20g sin20g
"  1 - c o s 20g ’ ^2 = -  y — gQg20g ’ (A .13b)

CF-I sector, 84 < 0 < 0g

Orr = = Ô33 = -  ( sin20g + 2tï cos20g -  20g ) / (1 -  cos20g)- 2 0 ,  â -o = 1 .

0 , 1  = (2jc -  2 0 4  -  sin2 0 4 ) -  ( 2 k  -  20g + sin20g) (1 + cos20g) / sin^lGg , 

Ô2 2  =  (2n: -  2 0 4  + sin2 0 4 ) -  (27t -  20g + sin20g) ( 1  + cos20g) / sin220g ,

0 ,2  =  c o s 2 0 4  , O 3 3  =  (0 , 1  +  022)

General CS-sector, 0 , < 0 < 0

0 , ,  = y  ( 20,+  3k /2 + 1 + sin20, ) , 022 = y  ( 20, + 3k /2 + 1 -  sin20, )
™ _ _ _ _ _
0 ,2  = -  y cos20, , 033 = ‘A ( 0 , ,  + 022)

C F -II sector, 87 < 0 < 0 ,
_  _  _  __
O r r  =  O00 =  033 =  y  ( I +  3 k /2  ) +  2y 0 , 0^8 =  -  y  .

CS-I sector, -  tc < 0 < 87

0 \\ = 2y , 0 ,2  =  022 =  0 1 G 33 =  y  .

The sector angles 0 ,, 04 and 0g are given b y the fo llow ing  equations:

/ j ( 0 i, 84) =  y cos2 0 | +  c o s 2 0 4  =  0 , with -  TC < 0 , <  0 , 0 < 04 < TC (A. 14)

/ 2(0], 04, 0g) =  I (20 , +  3 tc/2  +  1 -  sin20,)y -  sin204 -  2 tc +  2 0 4 1 cos20g

+ (— 20, — 3t c /2 — 1 + sin20])y — sin29g + sin2 0 4  — 2 0 4  + 20g = 0 , (A, 15)

. . ._ ______________________ _ ............  ......



Appendix 3 

Other Phase Angles and Yield Strength Mismatches

The results presented in the previous sections for a mismatch factor y>1 can 

be extended to the case of y<1 in the following manner. Let the results for 

y=y <1 at phase angle be desired. Then the sector configuration for this 

case will be the same as the one for y=1\y and 0=0. The stresses are 

obtained by using the following transformations:

arr{0;y,^) = a rr{-0 ;l / y -ÿ ) (A3-1)

Oee [O; y ,0) = Ooe (~ 9;1 / y -0 ) (A3-2)

O s s id ;  y,0) = 9;1 / y - 0 ) (A3-3)

Ore{9;y4) = <yre[-9;l ! y -ÿ ) (A3-4)

0 = 0±iSO° (A3-5)

For the same strength mismatch the previous results may be extended to 

cases for which the phase angle is outside the range -90* < 0 < 90* In the

following manner. Let 0=0, where 90* < 0 <180* be a phase angle for which

the crack tip stress field is desired. The sector configuration for 0=0 is the 

same as the one with a phase angle 0=0.

-E

The plus or minus sign is selected so that -90° < 0 < 90*. The stresses for 

the desired phase angle 0 can be obtained by using the following 

transformations:

_________
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O r r { 9 ; ^ )  =  - < J n \ ^ - 0 ; ( f > j (A3-6)

Oee{9;(l>) — ~aee(^—9;<p̂ (A3-6)

O r o { 0 ; ' ^ ) ^ - a r e { ^ - d ; ( l ) ^ (A3-6)

— “ CTjif — d;<f>] (A3-6)


