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ABSTRACT

In this present study, four cold curing adhesives, namely, F241, Redux 420, 

Araldite 2013 and XD 4416 were evaluated for bonding steel tapered double 

cantilever beams (TDCB) specimens. Fracture toughness o f the adhesives were 

compared and evaluated at temperature range of -40 °C to 60 °C. From the results 

obtained, F241 bonded joints exhibited the best fracture strength at ambient 

temperature. Relatively good results were achieved at both high and lower 

temperature compared to Araldite 2013 and XD4416. It was also observed that 

XD4416 must be post cured in order to exhibit its full strength.

Fatigue tests in a 'dry' environment were also performed on the bonded joints. R 

ratio ranging from 0.13 to 0.17 was studied. From the results it is clear that R ratio 

and maximum load is of considerable importance in influencing fatigue crack 

growth rate. Fatigue crack growth rate was observed to undergo a number of 

transitions in a nominally constant compliance test piece subjected to constant load 

ranges.

The joint fracture strength was improved by incorporating primers. Two primers 

namely Permabond SIP and A -187 were studied on F241 bonded joints. Since SIP 

is recommend for F241 by the manufacturer, the highest strength was obtained. 

Relatively high fracture strength was also obtained with a 5% solution of A-187, in 

water.
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Chapter 1

INTRODUCTION

Adhesive bonding is a technique for joining materials which, in recent years, 

has shown itself capable o f replacing or supplementing conventional methods 

such as riveting, welding and mechanical fastening in a variety of applications. 

The growth in the use of adhesives, especially in technically demanding 

applications has been rapid and many major developments in the technology of 

adhesives have been reported. Such developments include the greater use in 

the automotive and aircraft industries as well as marine industries. Particularly, 

as marine technology moves towards the design and construction of hydrofoil 

fast craft and other advanced ships, there is a growing awareness that in order 

to obtain the requisite high strength, lightweight structures, it will be necessary 

to adopt many aerospace materials and design concepts. However, the 

effective use of adhesives in advanced ships depends upon developing adequate 

design criteria.

One of the significant events o f recent years in the adhesives industry has 

been the development o f toughened epoxies and acrylics. These provide 

properties such as tolerance to oily surfaces, the ability to bond dissimilar 

surfaces over a wide temperature range, high peel strength and impact 

resistance for both systems. Such acrylic or epoxy systems, provide good gap 

filling which also acts as a sealant within a joint enabling the creation of 

complex joints that are essential for marine applications. In addition, they also 

offer the ability to dissipate the applied stress over the whole bond area. The 

toughening mechanisms in the adhesives mean that a crack propagating 

through the hard phase is stopped on reaching a rubber microsphere^'^.
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Long term durability for adhesively bonded structures under severe service 

conditions is uncertain due to a shortage of data at present. Thus it is 

important to note that in order to design adhesively bonded structures there is 

a need to develop reliability criteria for adhesive joints. The peel and lap shear 

tests normally used to characterise adhesive strengths are too dependent on 

specimen geometry to be useful for design purposes. Instead it is judged that 

fracture toughness is the appropriate criteria for adhesive failure, for 

essentially two reasons. Firstly, adhesive resins are generally brittle materials 

that fail by crack initiation and propagation rather than by gross yielding and 

flow. Secondly, even if  the adhesive resin does exhibit yielding, it does so 

with the confines of a thin bond line that is small compared to the overall joint 

dimensions, so that the joint as a whole fails in a linear elastic, brittle fashion^

Flaw resistance is thus important in the design and analysis of adhesive joints, 

since it is directly responsible for the reliability and integrity o f adhesively 

bonded structures. The current study incorporated a fracture mechanics 

approach to examine the flaw tolerance of adhesively bonded connections, 

using Tapered Double Cantilever Beam (TDCB) test pieces. The TDCB 

specimen was developed by Mostovoy and Ripling*’̂  consisting of high 

modulus contoured metal (steel) adherends bonded together by a thin layer of 

adhesive. A cohesive crack was introduced in the low modulus adhesive layer 

of the joint and the associated energy release rate was evaluated. The shape of 

the adherend is designed to give an approximately linear compliance during 

the course of crack growth.

........................................................



The current study involved the use o f cold-curing structural adhesives only. 

They were Permabond F241 Toughened Acrylic, Ciba Polymers XD4416 and 

Araldite 2013 two-part cold-curing Epoxy Adhesives. All of the test specimen 

specifications used for temperature testing were reduced to half the original 

specification and fabricated in accordance to the ASTM D3433-93^^, except 

for fatigue specimens. This was because the original full size specification was 

unable to fit into the temperature testing chamber. A correlation o f the fracture 

energy release rate between the original and half size specimen was carried out 

before temperature testing. The results show that, with the compliance 

changed for the reduced size, the firacture energy release rates obtained were 

similar to that of original size specification.

In order to reduce uncertainty o f using adhesive bonding it is necessary :

(1) To study the fracture strength o f adhesively bonded connections

The fracture strength of steel connections bonded by the different adhesives 

was compared in the current study. Previous observations by M. Fernando, 

W.W. Haijoprayitno and A.J. Kinloch^\ using aluminium-alloy TDCB joints 

bonded with toughened epoxy structural adhesives, showed that there was no 

dependence o f the value o f the adhesive fracture energy upon the type of 

surface pre-treatment employed for the substrates prior to bonding at room 

temperature. Thus in this present study, only grit blasting was used for pre­

treatment.



(2) To study the effect o f temperature on fracture strength

It was shown that the thermal effect on the adhesives leads to significant 

changes in the toughness of the joints. It was found that at lower temperatures, 

the adhesives became brittle, leading to a reduction in strength but less scatter 

in the results. At high temperatures, the adhesives softened and could not 

sustain the load, thus leading to failure by plastic yielding in the joint bond line 

and creating greater scatter in the results^’̂ .̂

(3) To study the effect o f using coupling agents to improve durability

The use of primers was examined to improve on the durability of bonded 

joints. It has been shown elsewhere that a primer can make an essential 

contribution to the strength and durability o f adhesively bonded joints^^’̂ '̂ . Two 

different silane coupling agents were used in the current study to improve the 

adhesion between the acrylic adhesives and steel substrate. The fracture 

strength o f the acrylic/silane coupling agent treated steel joints was 

investigated. The highest fi-acture strength was obtained with Permabond SIP, 

Self-indicating Pre-treatment, when compared with A187 (gamma- 

Glycidoxypropyltrimethoxysilane). An optimum concentration of the A187 

coupling agent was also determined.



(4) Fatigue behavior o f bonded joints

Cyclic fatigue behaviour of the TDCB bonded with F241 was examined. The 

early work by Mostovoy and Ripling^ clearly established the validity of using a 

linear-elastic fracture-mechanics (LEFM) approach for describing the fatigue 

crack growth behaviour. In the current study the effects of varying R ratio on 

the crack propagation rate were studied in a dry environment.



liquids, syrupy resins and thixotrope semi-solids. The curing process of the 

whole family is based on the radical polymerisation of the acrylic vinyl group 

giving, as a consequence, a 100% liquid to solid conversion.

Polymerisation is normally induced by one of two methods. In the first, a 

catalytic hardener may be applied separately to the surface to be bonded, and 

prior to the application of the adhesive to either surface, or it may be mixed 

directly into the adhesive just before use. The former technique is very 

convenient but where larger gaps are involved the second technique is 

unavoidable.

All these adhesives are intended to cure at room temperature. Some of them 

should not be heated in the uncured state, while others may be heated or 

warmed in order to speed the process. The group as a whole copes well with 

oily surfaces, they are simple to use, robust and some versions are capable of 

filling large gaps. A variety of cure speed is also available.

■ j : ®
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Chapter 2

LITERATURE REVIEW AND BACKGROUND

2.1 Acrylic And Epoxy Adhesives 

Acrylic

This is a rapidly developing group of toughened adhesives based on a variety

of acrylic monomers. They contain a dispersed, physically separate, though
.chemically attached, resilient rubbery phase which “toughens” them. Their 

.viscosity is fairly readily modified and they are available in the form of thin



Taken as a whole the group has proved to be particularly reliable, even on 

oily and contaminated surfaces, although some forms appear to be more 

subject than others to polymerisation inhibition induced by chemical 

contamination. The properties possessed by the group give the designer 

enormous freedom. The materials available possess extremely high strength, 

impact and peel resistance, Fig.l shows the family of acrylic adhesives used 

for structural and semi-structural application. One disadvantage is that, by 

comparison with the epoxides, only a relatively limited number o f individual 

formulations have been developed. However, they can meet many demands 

and should be considered whenever a robust performance is required* ̂

The earliest published durability test results involving aluminium adherends 

was by Zalucha in 1972*® whereas Minford*^ has also been accumulating 

extensive weathering data at the Alcoa Labs on the same Hughson chemical 

adhesive formulation*^. It seems quite clear from the durability test results that 

the performance on acetone degreased adherends is much inferior to that 

found on acidic deoxidised adherends even with the present state of the art 

high performance designed acrylic. Even so, the usual formulator of acrylic 

continues to recommend that these structural acrylics can bond effectively to 

non-cleaned joint surface.

I:..-JSj;



Cyanoacrylate

(Ri is CN)

• rapid hardening, 
typically hardening is 
initiated by OH ions

• small scale
• use under benign 

conditions
• relatively brittle
• avoid thick adhesives 

layers to obtain 
adequate hardening

Ri O

// y

U.V. Hardening 4-

• adhesives typically 
used for bonding glass 
to a variety o f substrates
• also modem dental adhesive 

for tooth filings

CH2 - C  — C

Anaerobic

locking and 
sealing threaded 
and plane co-axial 
joints

R2
X

Toughened
anaerobic

• true adhesives
• need to avoid porous 

substrates and thick 
adhesive layers to 
obtain adequate 
hardening

Toughened two-part adhesives

• permanent bonding of small and large stmctures
• can often be used under harsh conditions

Fig.l The family of acrylic adhesives used for stmctural and semi-structural 
applications; Ri and R2 represent various organic groups^^
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Epoxides

Epoxy adhesives are the most widely used of all structural adhesives. They are 

available in film form, as liquids, and as pastes. They are among the easiest of all 

adhesives to process. Cure temperatures vary from ambient to almost 200 °C and 

bonding pressures with some systems can be little more than contact pressure.

Epoxy adhesives are thermosetting resins which solidify by polymerisation. Like 

acrylics, the toughened versions contain a dispersed ruhbery phase. Once set, they 

will soften on heating but will not melt. Two-part resin and hardener systems 

solidify on mixing (sometimes accelerated by heat), while one-part materials 

require heat to initiate the reaction of a latent catalyst. The properties of the 

epoxies vary with the type o f the curing agent and the type of resin used. Epoxies 

generally have high cohesive strength, are resistant to oils and solvents and 

exhibit little shrinkage during curing. They provide strong, durable joints and the 

excellent creep, fatigue and impact resistance of the toughened versions makes 

them particularly suitable for structural applications. Table 1 shows the 

compatibility of the principal structural adhesives with a variety o f materials*^ 

Excellent compatibility was found to be metals except zinc bonded with acrylic 

and epoxies.

From the data of Minford^”, it is seen that a variety of unfilled and filled room 

temperature curing, two part epoxy joints had excellent durability in 2 years hot 

humidity. This performance is predicted, however, on the use o f a good surface 

pre-treatment. In Fig.la, we see 3 of 5 commercial epoxy produced joints 

showing only minor change in joint strength after 2 years in an industrial 

atmosphere.



Table 1 Compatibility o f the principle structural adhesives with a variety of 
composite and associated material^^

M aterial to be bonded

Acrylic Epoxy PU

Pseudo 1 
P art

Two
P art

One part 
(heat cured)

Two
P art

Two
Part

Metal
- Aluminium 1 1 1 1 4

1 1 4
“Zinc 2 2 2 2 4

Thermoplastic
"Polyamide (Nylon) 2 2 3 2 2

-Polyphenylene 3 3 3 2 1
“ Polypropylene 2 2 4 3 1

Thermoset
- Epoxy 2 2 1 1 2

“ Phenolic 2 2 1 1 2
- Polyester hand lay 1 1 2 1 1

- VARI 1 1 2 1 1
“ SMC 1 1 2 1 1

- Cold Press 1 1 2 1 1
- Polyurethane -RIM 3 3 4 2 1

Paint
- Cataphoretic 1 1 1 1 1

Scale : 
1 
2
3
4

Excellent
Good
Good but possible problem 
Unsuitable

10
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Fig. la  Epoxy joint- water immersion cycle21
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2.2 Mechanisms of Adhesion

Joint strength is dependent on the force with which the adhesive and adherends 

cohere and on the area of the bonding surfaces over which adhesion takes 

place. Adhesion occurs within an interfacial region of molecular dimensions 

where the adhesive meet the adherend, and can be reduced where weakly 

adherend surface layers or contamination are present. Therefore the surfaces to 

be bonded must be thoroughly cleaned and modified to a suitable condition 

before joining. Surface pre-treatment may be critical for the durability of bonds 

even though initial joint strengths with untreated surfaces are satisfactory.

The choice o f treatment will be determined by the nature and condition o f the 

adherend materials, and the type of adhesive, the joint function and loading 

requirements, environment conditions, and economic factors. Rapid solvent 

cleaning is sometimes sufficient, although a lengthy multiple cleaning and 

chemical treatment process may be required. In general, the purpose o f surface 

preparation is to ensure joint reliability and prevent premature failure^^.

An initial step towards good adhesion is to ensure that the surface of the 

adherend is free from dirt, dust, grease, moisture, corrosion products and other 

contaminates. Surface uniformity should also be ensured. Non-absorbent 

materials such as metals are often degreased first by solvents and then given 

further treatment such as grit blasting or chemical etching.

'
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Degreasing is usually adequate for low strength adhesives but further treatment 

is vital for the high strength bonds associated with structural adhesives. One 

approach involves increasing the surface area by abrasion with or preferably 

impact blasting with a shot or grit-blasting processes, the choice being 

dependent on the materials for treatment and the equipment available. Alumina, 

quartz and carborundum grit are suitable for steels and light alloys. Dry 

abrasive processes invariably produce dust on the surface which must be 

removed before bonding^’̂ ’̂ .̂

Fig.2 shows an interface in which the adherend is pre-treated by shot or grit 

blasting into which the adhesive can flow. If  it can displace the air pockets on 

the surface, the two materials are in intimate contact along a tortuous path. 

Fig. 3 shows loading which is known as mode I and results in movement of the 

adherend as shown by the dotted lines in the figure. Little energy dissipation is 

required to separate the adherends and a clean separation o f the adherends is 

possible^^. If  a wedge is driven into the edge of this bond we can see no abrupt 

plane of stress transfer. Rather, for the crack to propagate across the bond, the 

line of force has to take detours as shown in Fig.4 by the series of arrows. 

Some detours go into the adhesive. In most cases, the adhesives can deform 

more than the adherend.

Another reason surface roughness aids adhesive bonding is the interlocking 

effect. When Mode I loading is applied to the situation in Fig.4, the applied 

force cannot cleanly follow the path between the two adherends, but rather 

must make excursions. As excursions are made into either adherend, energy 

can be dissipated by plastic deformation.

13
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Note also the possibility of a “lock and key site” at which the adhesive would 

have to physically pass through the material of the adherend in order for 

separation to take piace^^. In Fig.4, a segment of the surface is indicated by 

arrows. In this segment, the adhesive has completely filled a pore on the 

surface. At this pore, the exit o f the adhesive is partially blocked by part of the 

adherend . This place in the inter-phase may exhibit the so-called “ lock and 

key” effect. A key, when turned into the tumblers of a lock, cannot be removed 

from the lock because of the physical impediment provided by the tumblers.

In the same way, a solid adhesive in a pore such as that shown in Fig.4 , cannot 

move past the “overhang” of the pore without plastically deforming. Plastic 

deformation acts as an energy absorbing mechanism and the strength of the 

adhesive bond appears to increase. Maxwelf^ made measurements of the effect 

o f different degrees of surface roughness using maple wood adherends, Boroff 

and Wake '̂^ related bond strength o f rubber to textiles to the degree of 

penetration o f fibre ends into the rubber. Perrins and Pettett^^ showed the 

coating strengths of plastics on metals appeared to involve both a mechanical 

interlocking and other interaction dependent on the surface chemistry of plastic 

polymer. Investigations o f Packham^*" on the adhesion of polyethylene to 

aluminium surface (variously treated, including ano dising) demonstrated the 

importance of mechanical interlocking components to bond strength. The 

opportunity for mechanical interlocking can range from the presence of 

macroscopically rough surface texture to microscopically rough surface 

condition, as shown by Chen et al^"' and White et The significant 

increased surface roughening of the adherend has been studied by Evans and 

Packham^^, whereas Eich et al.^^ as early as 1971, evaluated the highly

14
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significant influence o f surface roughness on both wetting and adhesion in 

dental adhesive application.

Another reason surface roughness improves adhesion is purely a matter of 

physical area of contact. Fig.3, shows a situation where the contact between 

the two materials is in a plane, the minimum possible contact area between two 

rectangular bodies. If this is imagined in three dimensions, the surface area is 

increased substantially. If interfacial interactions scale as the area of contact 

then the total energy o f surface interaction increases by an amount proportional 

to the surface area.

Bulk adherend 1 

Surface layer o f adherend

Adhesive

Surface layer of adherend 

Bulk adherend 2

Fig.2 Cross-section o f a typical joint surface treated with shot or grit blasting. 

The surface roughness of the adherend creates an interlocking between the

adhesive and adherend
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Force

Adherend 1

Wedge

Adherend 2

Fig. 3 A wedge is driven into the edge of sharp interface 

between adherends 1 and 2̂  ̂ .

Force

"Lock and Key site”

Î

Fig.4 Schematic showing a tortuous interface 

between two adhering materials^^.
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2.3 Fracture Mechanics of Adhesive Joints

Adhesive joints usually fail by the initiation and propagation of flaws and since 

the strength of most real solids is governed by the presence of flaws, resistance 

to flaws is important in the design and analysis of adhesive joints. It is directly 

responsible for the reliability and integrity o f adhesively bonded structures, 

which are used increasingly in many advanced engineering applications. The 

main aims of the various theories are to analyse mathematically the loads at 

which the flaws propagate and describe the manner in which they grow. The 

source of naturally occurring flaws may be voids, cracks, dirt particles, additive 

particles, inhomogeneities in the adhesive, etc. which may be initially present at 

a critical size to develop during the fracture test.

Essentially, fracture mechanics is the study of the strength o f a structure which 

contains a flaw, usually considered as an elliptical crack. The theories were 

originally developed for cohesive fracture o f materials^ but have been 

extended to adhesive joints^^’̂ ^

Fracture mechanics has proved to be particularly useful for characterising the 

toughness of adhesives, identifying mechanism of failure and estimating the 

service life o f ‘damaged’ structures - the ‘damage’ being in the form of cracks, 

air-filled voids, de-bonds, etc. having arisen from manufacturing, 

environmental attack, fatigue loading, sub-critical impact loads, etc.

17



Fracture mechanics is based on G. R. Irwin’ŝ  ̂first observation that the stress 

field in the vicinity o f a crack tip can be adequately defined by studies of crack 

extension and by a single parameter, K, the stress intensity factor. Since the 

parameter is a function of the applied load and crack size, K increases with 

load. When the intensity of the local tensile stresses at the crack tip attains a 

critical value, Kc, a previously stationary or slow moving crack propagates 

abruptly.

The value of Ko defines the “critical fracture toughness” and is a measure o f a 

material property. Under carefully controlled conditions, it is constant for a 

particular material, since cracking always occurs at a given value of local stress 

intensity regardless of the structure in which the material is used. Secondly, the 

energy criterion arising firom Griffiths^^ and later Orowans’ŝ * work, supposed 

that fracture occurs when sufBcient energy is released (fi-om the stress field) by 

growth of the crack to supply the requirements of a new fi’acture surface. The 

energy release comes from stored elastic or potential energy of the loading 

system and can be calculated for any type of test piece. The approach, 

therefore, provides a measure o f the energy required to extend a crack over 

unit area, and this is termed the fi*acture energy. When plane strain and tensile 

opening mode prevails it is denoted Gic. The pioneering work in the 

application of continuum fi*acture mechanics to the failure of adhesive joints 

was undertaken by Mostovoy and Ripling and co-workers^^. They developed 

the tapered double cantilever beam joint geometry, shown in Fig. 5 which is a 

constant compliance geometry. The results in the adhesive fracture energy 

being independent of crack length. Thus this geometry is well suited to 

environmental studies where velocity will be a fijinction of the applied load and 

environment.

—
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Studies by various workers^'*’'̂  ̂ have demonstrated the pronounced effect of 

bond thickness on adhesive fracture energy for rubber modified epoxy 

adhesives. Bascom et observed the effect shown in Fig.4a, for a CTBN- 

modified piperidine cured epoxy adhesive using a TDCB specimen. As shown, 

adhesive fracture energy fi-acture energy passes through a maximum, 

designated Gic, at a specific bond thickness, tm. At thickness beyond tm, 

firacture energy decline until a value is reached which remains essentially 

constant with increased thickness.

Further investigations by Bascom and Cottington^ and more recently Kinloch 

and Shaw '̂  ̂ have shown that the general bond thickness adhesive firacture 

energy relation shown in Fig.4a is maintained over a wide range of 

temperatures and displacement rates. Furthermore, an increase in temperature 

was found to have an effect similar to a reduction in rate, i.e. increases in the 

values of both Gic and tm. This demonstrates clearly the practical 

consequences o f the bond thickness effect.

"e
3

4 -

Adhesive bond fhickness, /  (m m )

Fig. 4a Effect o f adhesive bond thickness on fracture energy'48
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Stress Intensity Approach

A sharp crack in a uniformly stressed infinite homogeneous lamina of a bulk 

adhesive is shown in Fig.6. Assuming Hookean behaviour and infinitesimal 

strains, i.e. linear elastic consideration, Westergaard'^^ has developed certain 

stress functions solutions which relate the local stress concentration of stresses 

at the crack tip to the applied stress, Oo For regions close to the crack tip, 

equation 1.

Irwin^^ modified the equation to give the stress distribution in the vicinity of i 

crack tip in an infinite sheet under opening mode loading to take the form

(2)

Where r and 0 are polar co-ordinates with their origin at the crack tip. Hê ® 

relates the magnitude o f the stress intensity local to the crack in terms of the 

applied loading and geometry o f the structure in which crack is located. The 

parameter K is the stress intensity factor for linear elastic fracture mechanics 

(LEFM) and is defined as

Kj = cy^vVa (3)

20
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where

cy = applied stress 

a = crack length 

Y = geometry constant

Values of Y may be obtained experimentally or theoretically. A crack may be 

stressed in three different modes, denoted by I, II, III as depicted in Fig.7. In this 

study, only mode I loading is considered.

Determination o f Adhesive Fracture Energy

For isotropic, monolithic plane strain cases, the associated strain energy release 

rate, G,c, is related to Kj by

GIC (4)

where is the Young’s modulus of adhesive and is Poisson’s ratio of 

adhesive.

The direct application of equations 1-4 to multiphase adhesive joints has been 

assumed and used to measure but these fundamental relationships and the

validity of this toughness evaluation for fracture design of the joints have not been 

fully addressed. It is not quite clear as to what extent the crack tip field follows 

the classical fracture mechanics requirements and whether the G-K relationship in 

equation 4 is implied in the adhesive fracture. While an exact

21



analysis of the fracture o f the adhesive joints is absent at the present time, 

efforts towards understanding the fimdamental behaviour of this kind of 

fracture problem have led to the establishment of some usefiil analytical 

expressions for the commonly used specimens. The earliest and most widely 

employed analysis for the DCB specimen was based on a simple one­

dimensional monolithic beam theory'^^’'̂ .̂ Solutions for the monolithic beams 

have been assumed to hold for general cases, and fracture strength for the test 

is related to the specimen compliance, C by

where P is the applied force. Assuming that each flank behaves as a cantilever 

beam and that the compliance is not affected significantly by the presence of 

the thin adhesive, fracture strength may be approximated by

G
Eb"

3a^ 1
(6)

where E is the elastic modulus of adherend, a, is the crack length, and h is the 

beam height measured normal to the crack tip.
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This relationship is employed in the design of the approximately linear 

compliance test compliance test specimen. To construct a specimen in which the 

crack would propagate at a constant load, the shape of the adherend (variation of 

h and a) is designed so dC/da has a constant value, that is

3a' 1
m = ^  + -  (7)

where m is called the shape factor and has a dimension o f mm '(inch^). Within 

the accuracy of the simple beam theory used to derive equation 6, such a 

specimen should display a constant crack propagation force, P, regardless of the 

crack length. Thus the crack length does not need to be measured during the test. 

Substituting equation 7 to 6 gives fracture strength for the TDCB specimen as

rG .C - gyz (8)

Fig.5 shows a standard fracture test o f adhesive joint TDCB with specific m 

3.54 mm ' (90 inch ')'®.
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The earliest investigations into crack propagation in epoxy resins were by 

Broutman and McGarry'*^ and Mostovoy and Ripling^^. A feature that became 

immediately apparent from these investigations was the observation that the 

crack propagation tends to take place in epoxy resins by means o f a 

discontinuous "stick-slip’ mechanism. Broutman and McGarry''^ found that 

crack propagation was usually o f a continuous type in brittle thermoplastics but 

tended to be discontinuous in thermosets. Mostovoy and Ripling^^ examined 

the behaviour o f epoxy resins so that they could compare it with crack 

propagation in adhesive joints. They pioneered the use o f the tapered double 

cantilever beam specimens for this type o f investigation. The main advantage of 

the tapered double cantilever beam in the study o f the stability can be 

appreciated from the schematic load displacement curve in Figs.8-10. When 

propagation takes place in a continuous manner, cracks grow at a constant 

load as in Fig. 8. However, if the cracks propagate in a stick-slip manner the 

load displacement curves takes on a see-saw appearance, as in Fig. 9. The load 

at which a crack jumps is Pi and the load at which it arrest is Pa. These are 

approximately constant at all crack lengths.

Sometimes, the crack grows steadily in a controlled manner with the load for 

crack propagation remaining constant. However, unlike stable brittle 

propagation, a relatively high value o f fracture strength is now required and the 

fracture surface is rougher and tom  in appearance, indicating a more ductile 

fracture process. Therefore, this type o f crack growth, seen in Fig, 10, is often 

observed at the highest test temperatures when the yield stress o f the adhesive 

is relatively low, with severe crack tip plasticity and blunting which gives rise 

ductile failure and stable the crack growth.
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(a ) (b) (c)

Fig.7 Modes o f loading (a) Cleavage or Tensile-opening mode - mode I. 

(b) In plane shear mode - II. (c) Anti plane shear mode - mode III

Stable, brittle propagation

Load

Displacement

Fig. 8 Load displacement for stable, brittle crack propagation of tapered

double cantilever beams'*®
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Unstable, brittle propagation

initiation. Pi

Load

arrest. Pa

Displacement

Fig. 9 Load displacement for unstable, brittle crack propagation o f tapered

double cantilever beams'^^

Stable, ductile propagation

Load

Displacement

Fig. 10 Load displacement for stable, ductile crack propagation of tapered

double cantilever beams'̂ ®
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2.4 Fatigue Behaviour of Adhesive Joints

The effective use o f adhesives in structural applications such as an advanced 

ship depends upon developing adequate design criteria. Thus adhesive joints 

are expected to perform satisfactorily under service conditions which include 

dynamically and statically applied loads and exposure to hostile environments. 

It is, therefore, of importance to uSe the appropriate adhesive systems which 

will possess adequate service life under the operating conditions which are to 

be experienced by the bonded structure. This, in turn, leads to the need to 

understand the mechanism of failure and to be able to predict quantitatively, 

the expected service life. In this section, only the service life o f the adhesive 

joints subjected to dynamic fatigue will be considered.

Dynamic fatigue is the phenomenon o f failure or fracture o f a joint under 

repeated or oscillatory loading. The importance of dynamic fatigue is that 

under cyclic loads, joints will fail at stress levels much lower than they can 

withstand under monotonie loading. Also, for a given alternating stress 

amplitude, they will fail in a much shorter time than the static fatigue time 

where a constant stress o f the same magnitude has been applied. Most jointed 

structures are liable to dynamic loading, and it accounts for large number of 

service failures. Compared to other methods of fastening such as rivets, spot 

welds and mechanical fasteners, adhesively bonded joints are generally 

regarded as possessing good dynamic fatigue properties shown in Fig. 11. This 

essentially arises from the adhesive, giving a more even stress distribution in 

the joint compared to other methods^^ and imparting a lower stress 

concentration factor'^^. Data obtained by Knox et shown in Fig. 12 are the 

fatigue results for two types of loading. In the high cycle, low stress, regime 

both types of adhesive perform better than the welded equivalent.
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Aibrecht^^ has shown that the fatigue life of adhesively bonded cover plates on i

the tension range o f a steel girder can be hugely greater than that of welded

cover plates provided that the plate ends are bolted to prevent de-bonding. i

Also, Martin^ \  has demonstrated a similar superiority o f the adhesively bonded

web stiffeners.

An important reason for the scarcity o f uses of the adhesives in heavy 

structural engineering is a lack o f information about the long term properties of 

appropriate types o f adhesive in adverse environmental conditions and stress 

regimes. This has prompted extensive studies o f adhesively bonded joints.

The fatigue life of structural components subjected to cyclic loads can be

divided into three stages : initiation (region I), propagation (region II) and fast

fracture (region III). The total fatigue life is governed by factors such as i

fatigue and fracture characteristics of the material, applied load, geometry of

the component and environment. Fatigue crack initiation and propagation can

alternatively be divided into threshold and finite life regions.

The threshold behaviour for initiation and propagation is an important 

consideration in design because a large portion of the fatigue life of a structural 

component may be expended in the near threshold region. If  the applied stress 

is below the endurance (threshold) limit for the fatigue crack initiation, the 

crack may not initiate. After the crack initiates and the fatigue crack driving 

force is lower than the threshold value for crack propagation, the crack may 

not grow or only grow at an extremely slow rate. Thus, the threshold 

behaviour for crack initiation and propagation is an important consideration for 

structural integrity evaluation.
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Determination o f Adhesive Fracture Energy from Fatigue Test

A fracture mechanics approach to describe fatigue crack growth in adhesive 

joints is reported by Mostovoy and Ripling® . They employed a tapered double 

cantilever beam to obtain the value of da/dN as a function o f the maximum 

fracture energy release rate, Gmax, applied in the fatigue cycle. A sine wave 

loading form was used at a frequency o f 2 Hz.

From equation 5, the maximum value o f the fracture energy release rate, 

Gmax, applied during a fatigue cycle may be deduced using

Gmax
(Pmax)^ dC 

2b da (9)

Where Pmax is the maximum load applied during the fatigue cycle. 

Alternatively, the value o f dC/da may be describe using beam theory, seen 

equation 7. Thus the value o f Gmax may be deduced :

Gmax
4(Pmax)'

Eb'
3a^ 1 (10)
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If the fatigue data are plotted in the form of Gmax versus da/dN, using 

logarithmic axes for both parameters, then a major portion of the relationship 

so obtained is often linear and the region may be described by a form of the 

Paris equation, namely

■ ^  = D(G m axr (11)

Where the parameters D and n are constants but their values typically depends 

upon the materials variables, temperature, frequency, stress ratio and 

environment.

A typical graph of da/dN versus Gmax is shown in Fig. 13 using logarithmic 

scales. The fatigue data reveal a curve which is sigmoidal in shape with thi*ee 

distinguishable regions mention earlier :

(1) Region I - the threshold region assoeiated with low values of da/dN and 

Gmax.

(2) Region II - the linear portion.

(3)Region HI - the value of Gmax starts to approach that of critical fracture 

energy, Gc
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Simple epoxy ad h es ive
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Toughened-epoxy adhesiveO)
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Number of cycles fo failure,

Fig. 11 Dynamic fatigue properties of steel double-box hat structures either 

adhesively bonded or spot welded^^
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2.5 Silane Coupling Agents

A great many adhesive bonding applications employ some type of coating applied 

to the treated adherend surface, which usually can be described as primers or 

coupling agents. The former have the function of serving as adhesion promoters 

and protective coatings, whereas the latter serve to create a chemical bonding 

between the adhesive and the adherend. This distinction is not always as clear as 

described, however, and situations arise where primers end up acting more like a 

coupling agents, and conversely, coupling agents often are serving distinctly as 

primers in the overall joint.

Primers are important for a number of reasons. First, they protect a freshly 

prepared adherend surface from contamination or changes which might otherwise 

occur as a result of contact of the surface with its environment. The primer is 

especially useful when it can penetrate to create mechanical interlocking. A related 

function of protection against the corrosive effects o f the service environment is 

provided when special corrosion inhibiting primers are used. A second fiinction is 

to penetrate any surface roughness or porosity.

The low viscosity of most primers, as compared with the primary adhesive 

formulation in the bond line, permits ready application by different methods such as 

spraying, dipping, brushing, or roll coating. This is applied as early as possible to 

the pre-treated surface, for example, after acetone cleaning and grit-blasting. 

Falcon and MiUer^  ̂considered the benefit o f a special primer for making repairs on 

the main rotors in helicopters in 1977.
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In addition, there can be enhanced joint durability where better wetting o f the 

adherend surface by the primer is achieved than would result from the use o f the 

adhesive alone. Not only the adhesive but the primer solution as well may contain 

special wetting agents, flow-control agents, elastomeric toughening additives, and 

corrosion-inhibiting additives.

The low molecular weight o f most primers obviously is able to create the distinct 

opportunity to flow, wet, and develop more intimate and complete surface contact 

with the varying geometries o f the treated surface. There always needs to be some 

testing of any primer with a suggested adhesive where this information is not 

already available to make sure the primer adequately wets the adhesive. Herczeg et 

al.^^ have pointed out that if epoxy primers are not properly formulated, the 

surface energy level of the cured epoxy primer coat can be reduced so the adhesive 

will not wet out the primer.

Bishop et has recently offered an interesting examination o f the bonding 

between metal surface with an epoxy with and without a primer. They sectioned 

across the bond line with an ultramicrotome and viewed the sections using 

transmission electron microscopy (TEM). In the absence of a primer, it was 

possible to observed trapped air in the adherend surface roughness created by light 

abrasion. Much porosity was apparently eliminated when metal adherends were 

primed.
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The Chemistry of Silanes

Organofiinctional silanes are bifiintional molecules in that they usually have two 

types of reactivity built into single structure. Fig. 14 shows the common elements of 

a typical organofiinctional silane. Most commercially available organosilane 

coupling agents are based on following generalised anatomy structure in Fig. 14. 

The organofiinctional side (Y) is designed for reactivity with a chosen organic 

resin,

Organofunctional groups now include a range of aminos, epoxies, methacryis, 

vinyls, mercaptos, ureas, isocyanates and isocyanurates. As an additive, the 

organofunctional group is selected to take part in the cure reaction of the coating 

system. As an intermediate, the silane may be used initially to modify the resin and 

then cross-link when the coating is exposed to ambient moisture.

Between the organic functional group and the silicon atom there is a linking group, 

most commonly a proply chain. The silicon-carbon bond of the linking group is 

stable under most environmental conditions. The "silane’ side of the molecule 

offers inorganic reactivity through hydrolyzable groups attached to silicon (X). The 

hydrolyzable groups are usually alcohol residues, such as methoxy and ethoxy. 

Each hydrolyzes at a different rate and releases a different alcohol upon reaction 

with ambient moisture. In some cases, only two hydrolyzable groups are present, 

although three are more convenient synthetically and usually provide more 

moisture resistant bonds. Most coupling agents have only one silicon atom, but 

some silanes are now available with multiple silicon. Fig. 15 shows many of the 

organic functional groups available, emphasising those typically used in coatings.

37



Hydrolysis Chemistry

The reaction of the silicon end o f the molecule, as depicted in Fig. 16, is initiated by 

hydrolysis o f the aikoxy group, usually after exposure to ambient moisture. The 

result of this reaction is the release of an alcohol and the formation of a silanol. The 

speed with which this reaction occurs depends upon the pH of the formulation 

(slowest at pH 7) and upon the steric bulk and polarity of the alcohol residue 

(methoxy>ethoxy>methoxyethoxy>t-butoxy). Catalysts for the hydrolysis include 

not only hydronium and hydroxide ions, but other bases (such as organic amines) 

and metals (such as tin). In order to become “active” the silane must first 

hydrolyze.

Silane Condensation on a Surface

The naturally occurring acidity or alkalinity of most inorganic surfaces is usually 

sufficient to catalyse silane hydrolysis. The absorbed water found on these 

surfaces generally is enough to complete hydrolysis of the silane. Once in the 

silanol state, the silane can proceed to condense with a mineral surface. This is the 

first step in the actual coupling process. The silane migrates to the surface, 

hydrolzes, hydrogen-bonds with the surface and, upon release of water, forms a 

direct covalent bond with the surface. Condensation proceeds most slowly at pH 4- 

5 and is catalysed by hydronium and hydroxide ions. Other bases and metals also 

catalyse the condensation reaction.

Each silicon atom has three hydrolyzable sites, but it is unlikely all three sites will 

bond with the surface. The silanols that do not react with the surface can condense 

with themselves, forming an Si-O-Si network on the substrate surface. To 

complete the adhesion process, the organofunctional group on the silane reacts 

with the resin or binder o f the coating.
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Y ---------------- R   Si —

Organofunctional Link Silicon atom
Hydrolyzable 

group 
groups

For example :

OCH3

H2NCH2CH2CH2   Si -----  OCH3

OCH,

3-aminopropyltrimethoxy silane

Fig. 14 Anatomy of a typical organofunctional silane”
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Functional group Representative structure Typical use

A lk y l C s H iv  -  S i  -  ( 0 C H 2 C H 3 ) 3 W a t e r p r o o f i n g ,

n - o c t y i t r i e t h o x y s i la n e d is p e r s a n t

V in y l C H 2 - C H - S i ( O C H 3 > 3

v i n y l t r i m e t h o x y s i l a n e

O
j

L a t e x e s

M e t h a c t y l CH2 =  C ( C H 3 ) C O ( C H 2 ) 3 S i( O C H 3 ) 3 A r c y l i c

E p o x y

O 
/  \

H2C-CH-CH20(CH2)3Si(0CHg)3 E p o x y

r e s in s

P r im a r y  a m in o H 2N  -  (C H 2 )3 S i(O C H 2 C H 3 > 3 E p o x i e s ,

a m in o p r o p y l t r ie t h o x y s i la n e u r e t h a n e s

S e c o n d a r y  a m in o - H N - ( C H 2 ) j S i ( O C H 2 C H 3 ) 3 U r e t h a n e s ,

p h e n y la m in o p r o p y l t r im e t h o x y s i la n e p h e n o l i c s

H 2 N - [ C H 2 C H 2 C H 2 S i ( O C H 2 C H 3 ) 3 ] 2

b i s ( t r i m e t h o x y s i ly l p r o p y l ) a m i n e

Fig. 15 Selected Commercial Organofiinctional Silanes55
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Polyamino H2N -  CH2CH2NHCH2CH2CH2 -  Si(OCH3)3 

aminoethylaminopropyltrimethoxysilane

Epoxies

Mercapto HS -  (CH2)3Si(OCH3)3 

mercaptopropyltrimethoxysilane

Rubber,

urethanes

Ureido

0
1

H2NCNH -  (CH2)3Si(OCH2CH3)3 

ureidopropyltrimethoxysilane

Phenolics

urethanes

Isocyanato 0  = C = N  -(CH2)3Si(OCH2CH3)3 

isocyanatopropyltriethoxysilane

Polymer

modification

Polyether Polyether -  (CH2)3Si(OCH2CH3)3 

polyethersilane

Dispersant

Fig. 15 Selected Commercial Organofunctional Silanes (continued)
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Hydrolysis :

Y—  R—  Si(OCH3)3 R—  Si(0 H )3  + 3 CH3O

Condensation to a surface - adhésion :

Y -  R - S i ( 0 H )3 + HO -  Si -  Surface—► Y -  R -S i -  O -  Si-Surface + H 2

Condensation with another silane - crosslinking :

2 Polymer -Y  -  Si(OH)3  —►Polymer -Y  -  R -S i -O  -  Si -R  -Y  -Polymer + H2

Fig. 16 Hydrolysis and Condensation of Organofiinctional Silanes55

42

■w



i

It is important, however, to apply the silane in the correct way. The silane must 

have time to react with the steel surface before the adhesive is applied. If such time 

is not allowed, perhaps by accelerated drying of the silane coated surface, than 

little durability improvement will be seen. Three parameters affect the silane 

priming process. There are (i) the age o f the silane priming process, (ii) the age of 

the silane solution,(iii) the solvent used for the silane and (iv) the drying 

time/temperature. Only by optimising these conditions can the best durability be 

obtained^^. When this is done, there is a very good chance that the performance of 

the coatings in aggressive environments will be significantly improved.

The age of the silane solution when applied to the substrate critically influence the 

eventual durability. The durability of the joints improves with age so that it reaches 

the maximum about one hour after the silane is mixed with water. When majority 

of the water is replaced by ethanol there is little change in silane efficiency with 

time and the eventual durability is significantly lower than with the water system^^. 

An equally important parameter is the drying temperature used on the substrates 

after priming. Higher temperatures reduce the effectiveness o f the silane, probably 

by not allowing the silane complex to react with the substrate, see Table2.

Table 2 Joint strength in MNm"^ after immersion in water at 60 °C for 1500

hours^^

Solution age (min) Drying Tem perature ( °C )

20 40 60

30 34.23 26.72 25.05

60 34.38 21.98 2Z93

90 33.72 19.25 18.40

I
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Chapter 3

EXPERIMENTAL DETAILS 

3.1 Tapered Double Cantilever Beam Specimens

The tapered double cantilever beam was designed to measure the resistance to 

opening mode (mode I) fracturing. The adherend for all the tests in this study 

were fabricated from mild steel with specification of all dimensions in 

accordance to ASTM standard D3433-93^°, see Fig. 17. In monotonically 

increasing load tests, where cracking occurs rapidly, the fracture proceeds 

cohesively, in the centre of the bond. Fractures of this type are independent of 

the adherend material so that the data collected with the mild steel adherend 

should be applicable to different adherends with well made joints.

The cleaning procedure for the mild steel adherends consisted of degreasing 

and grit blasting the adherends prior to bonding the surface, which is described 

in a simple flow chart, in Fig. 18. If  silane primer was required to enhance the 

joint strength, the silane solution must be prepared in the correct proportion 

and left to react for at least 60 minutes before applying as a thin film on the 

cleaned and degreased surface^^. The primed surface must be left to dry 

completely. This drying process can also be accelerated by blow drying the 

surface with air. Once the adherends were degreased, cleaned and primed, the 

required crack length on the adherends was marked and P.T.F.E was sprayed 

on the marked portion only to prevent bonding of the shim and adherends. This 

was done by masking the unmarked portion o f the adherends. Adhesive was 

then applied on the surface according to instructions given by the 

manufacturer.
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The adherends were clamped together and were separated by shims of the size 

required. In order to obtain the proper bond-line thickness, the sharp edged shims, 

were placed in-line with the marked adherend, sprayed with P.T.F.E, to act as a 

starter crack. This resulted in an initial crack length of approximately 48mm. The 

bonded joints were then cured at room temperature for at least 24 hours. Once the 

cure cycle was completed, the clamps and shim were removed. The bonded 

specimens were then cleaned thoroughly at both sides to remove any burrs present 

prior to testing.

Fracture Testing

Tests on the TDCB specimens were conducted at a constant rate of displacement 

o f the cross-head o f the Lloyd tensile machine in order to ascertain the value of 

the adhesive fracture energy, Gjc- The rate of displacement used for these 

monotonically loaded tests was 0.5mm min Fig. 19 shows the set-up of the 

Lloyd machine for testing at ambient temperature. Fig.20 shows the set-up of the 

Lloyd machine incorporated with a chamber for testing bonded joints at 

temperatures of 60 °C and -40 °C. The load-displacement characteristics were 

recorded and from these Gjc values were derived.
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Fatigue Testing

The fatigue tests were carried out on a Dartec machine as shown in Fig.21. 

The tapered double cantilever beam was used to obtain the values of da/dN as 

a function of the fracture energy release rate, applied in the fatigue cycle. A 

sine wave loading form was employed at a frequency of 2 Hz at ambient 

temperature. The TDCB specimen was loaded in transverse tension through a 

pair of loading pins. The crack length as a function of the number o f cycles was 

determined by utilising a 40X travelling microscope. To improve the 

monitoring of the crack length, one side of the TDCB specimens was painted 

with ink and marked with equally spaced lines, see Flg.22.

All of the fatigue tests were carried out with constant load ranges. The R  ratio 

was varied by keeping the minimum load (0.2 KN) constant and varying the 

maximum cyclic load value. Test results are shown in Appendices.
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FORCE
Non Adhering Shim12.7mn
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Adhesive thickness 0.5 mm

FORCE
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48.62 mm

193.60 mm

241.3 mm

Fig. 17 Tapered Double-Cantilever Beam Specimen
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The specimen 
was bonded 

together with a 
starter crack of 48.62mm

Surface of the 
adherend was 
roughened by 
grit blasting

Roughened 
surface of adherend 

was cleaned with 
acetone

Bonded joint was left 
to cure for at least 24 hrs 

before testing

Fig. 18 Flow chart of specimen preparation

- -—
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Fig. 19 Set-up of the Lloyd machine for testing bonded joints at ambient
temperature
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Fig.20 Set-up of the Lloyd machine incorporated with a chamber for testing 
bonded joints at both 60 °C and -40 °C
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Fig.21 Dartec electro-hydraulic testing machine with controller and computer 
system to monitor the fatigue cycles
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Flg.22 Bonded joint painted one side with ink and equally marked lines
inscribed
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3.2 Adherend

In order to compare the strength of various adherend materials it is necessary 

to carry out some standard form of test to establish their relative properties. 

The tensile properties o f the adherend material were determined by using a 

standard tensile test piece for the purpose o f determining the following 

properties ; yield strength; proof strength; tensile strength; elongation; 

reduction of area. Circular machined test pieces with dimensions complying 

with BS 18:1987 British Standard - Method for tensile testing of material® 

were used as shown in Fig.23. These incorporated a transition curve between 

the gripped ends and the parallel length and were subjected to a gradually 

increasing tensile load until failure occurred. Measurement of the change in 

length were recorded throughout the loading operation by means of 

extensometers.

3.3 Bulk Adhesive

Adhesives, in general, have very much lower yield strengths than mild steel. 

The very strongest are less than half the strength o f mild steel. In a tensile test, 

at room temperature, the bulk adhesive fractured in a brittle manner when 

compared to the mild steel which fractured in a ductile manner. Nevertheless, 

there remains enormous potential for adhesive usage in structural applications 

and improvements of the adhesives properties to supply to specific industries 

are constantly being developed by adhesives manufacturers.
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The specimens and test methods were comparable to those used for. plastic 

materials. Properties determined are intrinsic to the material; they were 

obtained under a uniform and uniaxial state of stress with no influence of the 

adherends.

Deformation o f the bulk specimen was easily measured using an extensometer 

or strain gauges. The main difficulty was to produce specimens without defects 

such as voids and porosity. A technique to produce 200mm x 200mm plates 

with thickness of 2mm was used and gave excellent quality with an absence of 

voids. The technique used for producing flaw free specimens consisted of 

curing plates of bulk adhesive in a mould under pressure. This method has been 

used successfiilly with epoxides^^. A slightly different method was used to 

obtained bulk acrylic specimens. Two Teflon coated nylon plates were used. 

However, one plate was surrounded with 3 mm thickness nylon strips to 

achieve the adhesive thickness. The adhesive and initiator were applied on the 

plates and clamped together, according to manufacturer's recommendation. 

The adhesive was then left to cure at room temperature. The cured adhesive 

was removed and screwed onto a piece o f wood for extra support. Specimens 

were then obtained by machining the blanks to the required shape, as shown in 

Fig.24.

All specifications were according to BS 2782 : Part 3 : Method 322 : 1994 : 

Plastics- Mechanical properties'*^.The Young's modulus. Poisson’s ratio, 

elastic limit and failure characteristics were derived fi-om the stress-strain 

curve.
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100 mm

44 mm

7.98 mm

Fig.23 Specimens used for the adherend mechanical properties.
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>150 min

104 -113 mm 10mm

Fig.24 Specimens used for the adhesive mechanical properties
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3.4 Structural Adhesives Used 

Permabond F241 Toughened Acrylic

Permabond F241 is a toughened acrylic adhesive which is used in conjunction 

with an initiator to give a rapid, room temperature curing system. This 

adhesive has an outstanding resistance to peel, impact and shear forces; 

excellent durability and the ability to bond a wide variety of materials including 

oily steel. Table 3 shows the physical properties o f the adhesive.

Table 3 Physical Properties of Permabond F241 Toughened Acrylic

F241

Appearance Viscous off-white

Specific Gravity 1.0

Viscosity (cP) 30,000

Shelf Life (stored at 5 to 25 °C) 1 year

f

Ciba Polymers Redux 420 A/B

Redux 420 A/B is a two component, room-temperature curing paste adhesive 

of high strength and toughness. It is suitable for a wide variety of metal, 

honeycomb and fibre reinforced composite bonding applications. It has a very 

high shear strength even at temperatures up to 70 °C and a good peel strength. 

Table 4 shows the physical properties of this adhesive.
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Table 4 Physical Properties of Redux 420 A/B

Redux 420 A Redux 420 B Redux 420 A/B

Appearance Yellow Blue/Green Green

Specific Gravity 1.1-1.2 0.95-1.05 1.1-1.2

Viscosity (Pa s) 90-130 0.8-1.6 35-45

Pot Life - 1 hour

Shelf Life 

(stored at 18 to 25 °C)

3 Years 3 Years

Ciba Polymers Araldite 2013 (A V144-2 /HV997)

Araldite 2013 is a two component, room-temperature curing paste adhesive of 

high strength and toughness. It is thixotropic with good environmental and 

chemical resistance. Although it is designed as a metal bonding adhesive it is 

also suitable for bonding other materials such as ceramics, glass, rubbers, rigid 

plastics and most other materials in common use. Table 5 shows the physical 

properties o f the adhesive.

Table 5 Physical Properties o f Araldite 2013

2013 A 2013 B 2013 A/B

Appearance Grey soft paste Beige soft paste Grey paste

Specific gravity 1.14 0.9 1.2

Viscosity (Pa s) 50-95 thixotropic thixotropic

Pot Life - - 50-80 minutes

Shelf Life 

(stored at 18 to 25 °C)

3 years 3 years
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XD4416

XD4416 is a two component, room-temperature curing paste adhesive of high 

strength and toughness. It is designed for bonding composite pipes but it is 

also suitable for bonding other materials such as metals. Table 6 shows the 

physical properties of the adhesive.

Table 6 Physical Properties of XD 4416

Araldite

AV4415

Hardener

HV4416

Mixed

Appearance White-beige paste Black paste Dark grey paste

Density (Mg/m^) 1.55-1.65 1.55-1.65 1.55-1.65

Viscosity (Pa s) 90-140 50-70 80-140

Pot life - « 90 minutes

Shelf Life 2 years 2 years -
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Chapter 4

RESULTS AND DISCUSSION

4.1 Tensile Properties of Adherend - Mild Steel

Fig.25 shows a typical stress strain curve produced experimentally for cold 

rolled mild steel. Cold rolled mild steel and hot rolled mild steel were used as 

adherends throughout this study. Thus, the aim of this experiment was to 

investigate these two types of adherend. The tensile properties of adherends 

are summarised in Table 7a. Table 7b shows the comparison of fracture 

strength of bonded joints using the cold and hot rolled steel and indicates that, 

since the difference between the elastic modulus was small, the fracture 

energies of the adhesives were essentially independent o f the adherend 

material. Bell^  ̂bonded steel and carbon fibre reinforced plastic (CFPR) double 

cantilever beam with epoxies, showed in this work that the adverse adherend 

type used has a significant effect upon the plastic zone size and stress levels 

within the adhesive layer.

600

500  -

400  -  -

300  - -

200

CA 100 -

0 5 10 15 20 25 30

Strain x 10

Fig.25 Stress strain curve for cold rolled mild steel adherend at room

temperature
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Table 7a Comparison of tensile properties of cold rolled mild steel and hot
rolled mild steel.

Cold Rolled Mild Steel 0.2 % Proof Stress -  478 N/mm^

Hot Rolled Mild Steel Yield Stress = 200 N/mm^

Table 7b Comparison o f fracture strength o f adhesives using two different
steel adherends.

Adherend Type Gic K J W  

(Test no.)

Cold Rolled Mild Steel (1) 1.21

(2) 0.78

(3) 1.03

Hot Rolled Mild Steel (1) 0.94

(2) 1.12

(3) 0.84

-----------
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4.2 Tensile Properties of Bulk Adhesives

Calculations applied for bulk adhesives to produce stress strain curves are 

similar to that o f adherends. Typical stress-strain curves of polymers can be 

seen in Figs.25a-c. Examples of the different curves obtained for F241, 

Araldite 2013 and XD 4416, were all tested at ambient temperature at a 

constant cross head rate of 0.5 mm/min. Each test was replicated three times. 

Comparing the thiee curves to the various stress strain curves in Fig.25d^^, it 

can be seen that F241 is a fairly tough material. Araldite 2013 and XD 4416, 

on the other hand were found to be relatively brittle materials. A summary of 

the three adhesives tensile properties can be seen in Table 8.

Onset of necking

4.5

35

0.5 - -

0.2 0.3 0.6 0.70 0.1 0.4 0.5 0.8

Strain %

Fig.25a Stress-strain curve o f F241
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0.7G 0.1 0.2 0.3 0.4 0.5 0.6 0.8

Strain %

Fig.25b Stress-strain curve of Araldite 2013

9

8

7

1
0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Strain %

Fig.25c Stress-strain curve of XD 4416
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Fig. 25 d Typical stress/strain curves'60
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Table S Comparison o f mechanical properties of the different types of

adhesives

Adhesive Type Young’s Modulus 

(E) N/mm^

Poisson’s Ratio 

(V)

F241 Toughened Acrylic 3200 0.43

Redux 420 Two-part epoxy 14000 0.41

Aradlite 2013 Two-part epoxy 6711 0.54

XD4416 Two-part epoxy 7237 0.4
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4.3 Compliance of the Tapered Double Cantilever Beam

Full Size Specimens :

In this present study, the fracture toughness of F241, Redux 420 A/B, XD4416 

and Araldite 2013 bonded joints were investigated. Table 9 shows the 

theoretical values of m for the standard geometry and this was used for F241, 

XD4416 and Araldite 2013. However for joints bonded with Redux 420, the 

theoretical value of m cannot be used due to the bending of the specimens 

during testing as shown in Fig.26. The plastic bending of the specimen causes 

the compliance to vary from the theoretical value.

Calculations o f m :

dC 3a^ 1
^  “  da ■ h ' ^  h

Table 9 Theoretical m for full size specimen bonded with F241, XD4416 and

Araldite 2013

Theoretical m

Full size specimen 3.54 mm'^ I:
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G:#

Fig.26 Joints bonded with Redux 420 A/B showing plastic deformation
of the adherend.

Half Size Specimens :

Table 10 shows theoretical m for half size specimens which were used for 

joints bonded with F241, XD4416 and Araldite 2013. Since the specimens 

were reduced to half from the original size to enable temperature testing, the 

compliance of the half size specimens will also be changed. Therefore, it was 

necessary to correlate the fracture strength of the half size specimen with the 

full size specimens before performing temperature testing on the half size 

bonded joints.
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Table 10 Theoretical m for half size specimens.

Theoretical m

Half size specimen 7.08 m m '

Tables 11 and 12 below show a comparison of compliance and fracture 

strength o f the joints between the full and half size specimens tested at room 

temperature. It can be seen from the tables that the fracture strength of both 

the full size specimens and half size specimens is in agreement. Although the 

compliance o f the specimens has changed, the average fracture strength is 

approximately the same.

Table 11 Fracture parameters for full size TDCB specimens

Adhesives Loads(N ) Cal. Gic KJ/m^ 

m =3.54 mm *

Average Gic

k jW

F241 3330,3120,3181 1.16, 1.02, 1.06 1.08

XD4416 400.4, 689.9, 702.8 0.017, 0.049, 0.052 0.04

Araldite 2013 2745, 2710, 2545.2 0.79, 0.77, 0.67 0.74
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Table 12 Fracture parameters for half size TDCB specimens

Adhesives Loads(N ) Cal. Gic KJ/m" 

m =7.08 mm ^

Average Gic 

KJ/m%

F241 1000,1301, 1122 0.84, 1.42, 1.05 1.10

XD4416 148.8, 240.3,255.6 0.02, 0.05, 0.05 0.04

Araldite 2013 946, 892, 938.4 0.75, 0.67, 0.73 0.72

The compliance of the tapered double cantilever beam has also been observed 

by Fenando et using aluminium joints bonded with hot curing toughened 

epoxy. Excellent results between the theoretical and experiment results were 

obtained as can be seen in Table 13 .

Table 13 Compliance results11

Theoretical m Experimental m

Full size specimen 2.10 mm'^ m = 2.05 mm'^
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4.4 Fracture Strength of Acrylic and Epoxy

Fig.27 shows a comparison o f fracture strength of TDCB bonded joints, tested 

at ambient temperature. Three different cold curing adhesives were used for 

bonding the joints, namely F241, Araldite 2013 and XD 4416. It can be seen 

that F241 exhibits the highest fracture strength followed by Araldite 2013, 

while XD 4416 has the lowest fracture strength. It must be noted that XD 

4416 should be post cured in order to achieve its maximum strength. In this 

present study, XD4416 was cured at ambient temperature. It was also 

observed that F241 is a softer adhesive compared to Araldite 2013 and 

XD4416, which are very brittle. Crack propagation of F241 was by tearing, 

where cavities caused by plastic flow linked up and the crack advanced by 

tearing producing rough peaks as shown in Fig. 28. The plastic flow at the 

crack tip naturally turns an initially sharp crack into a blunt crack. Stress 

whitening was found on the rough fracture surface of the initiation region. The 

important thing that was noted was that the crack growth by tearing consumes 

a lot of energy which means the fracture strength was naturally higher.

Crack propagation in the epoxies Araldite 2013 and XD 4416 was in a much 

more brittle manner compared to F241.The fractured surface o f Araldite 2013 

was similar to that o f a fractured chalk surface indicating a brittle adhesive, 

which frequently lead to brittle fracture at a low fracture strength because it 

was confined to a very small volume compared to the size o f the specimen. 

Therefore, the amount o f plastic energy absorbed was low. Due to the cavities 

coalescing to form secondary cracks, in the case of Araldite 2013, the main 

crack propagated in a zigzag manner, which can be seen in Fig.29. As for 

XD4416, crack propagation was in a relatively straight line manner, unimpeded 

by any porosity giving a smooth surface as shown in Fig30. Similar types of 

crack propagation of epoxies were also observed by Gledhill^^ and Kinloch^^.
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Fig.27 Comparisons of fracture strength of tapered double cantilever beam 

joints bonded with three different adhesives tested at ambient temperature

Rough Peaks

Fig.28 Crack propagation of joints bonded with Permabond F241
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Çracks propagates in a 
, zigzag manner..

Fig.29 Crack propagation of joints bonded with Araldite 2013.

Fig.30 Crack propagation of joints bonded with XD4416
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4.4.1 Micromechanisms of Failure

With the use of the stable test-pieces it is possible to relate features on fracture 

surfaces to particular types of crack propagation behaviour. When failure takes 

place by continuous propagation, as for F241, the fracture surfaces observed at 

the, slow fracture initiation region was filled with irregular cavities. This could 

have been caused by imperfect bonding. Stress concentrates around these 

cavities producing stress whitening on the fractured surface with only cohesive 

failure present, which can be seen in Fig.31. Debruyne^'^ and Bascom^^ both 

furnished examples in the literature o f situations where trapped air bubbles in 

the adhesive bond line furnished sites for high localised stress situations 

resulting in premature crack initiation and propagation to joint failure. Stress 

whitening is a process whereby small crack-like entities which are normal to 

the maximum principal tensile stress are formed during deformation. The 

presence o f the white colour on the fracture surfaces of brittle adhesives has 

been taken as evidence o f highly stressed areas around the cavities. The white 

coloration is thought to be due to layers o f the material on the fracture surface 

possessing a different refractive index from the adhesive due to damage within 

the material. The white coloration is particularly noticeable on the fracture 

surface of F241 but the amount o f coloration is considerably reduced on the 

fracture surface of the epoxies. This was because F241 has a lower modulus 

compared to epoxies and the colour o f the viscous F241 was off-white. In 

Fig.32 the fast fracture end region of the fracture surface shows a relatively 

smoother surface with no stress whitening or crazing. Thus, it can deduced that 

the rapid fracturing speed at the end region o f the bonded joint (constant cross­

head speed) has a adverse effect on the appearance of the surface. The faster 

the fracture speed the less the time for stresses to build up around the cavities.
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On the other hand, when failure takes place by continuous propagation, as in

the epoxies, the fracture surfaces are relatively flat and featureless, suggesting

little or no plastic deformation. Fig. 3 3 shows a fractured surface from the

initiation region o f Araldite 2013. Weak bonds vrithin the adhesive de-bond 
.and combines together to form into a cavity and eventually coalesce with the 

crack. This causes the crack to propagate further in a zigzag manner and the 

process is repeated again. In the fast fracture end region, the fracture surface, 

as shown in Fig. 34, was found to be slightly smoother compared to the slower 

fracture o f the initiation region.

Propagation took place by a "stick-slip’ mode on the fracture surface of XD 

4416. Crack arrest lines were observed faintly on the middle region, each one 

corresponding to a jump-arrest line, as seen in Fig.35. Distinct re-initiation 

marked the direction o f crack propagation. Fig.36, shows the slow fracture 

initiation region of the XD 4416. The surface was observed to be smooth and 

reflective with embedded porosity. Similar to that of Araldite 2013, the crack 

spreads between a pair o f atomic planes giving an essentially flat surface by 

cleavage. Towards the fast fracture region, in Fig.37, the surface was similar to 

that observed in the initiation region except that more jump-arrest lines were 

found towards the fast fracture end region. This behaviour was also seen by 

Young and Beaumont^^, Selby and Miller^^ and Phillips et all using epoxy 

resins.
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The initiation fracture surface o f Redux 420 shown in Fig.38 involves cracks 

being impeded by porosity. This arises since when a crack meets an array o f 

such porosity it becomes pinned and bows out between the porosity forming 

secondary cracks. The surface o f the initiation region was also found to be a 

highly stressed region due to stress whitening present around the porosity 

indicating plastic deformation occurring around the crack tip. Failure of the 

adhesive was observed to be a combination of both cohesive and interfacial.

The fast fracture surface, seen in Fig. 3 9, was different to the initiation region.

The fast fracture surface appeared to have little or no stress whitening, 

indicating a more brittle failure in this end region.
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Stress whitening

Fig.31 Initiation region of the fractured surface of acrylic F241 (3OX)

Fig.32 End region of the fracture surface of F241 (30X)
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Fig.33 Initiation region of fractured surface of Araldite 2013 (20X)

Fig.34 End region of fracture surface of Araldite 2013 (30X)
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Fig.35 Fractured surface of XD4416 with marked river lines (20X)

m
Fig. 36 Initiation region of fractured surface of XD4416 (20X)
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Fig.37 End region of fracture surface of XD4416 (20X)

Fig.38 Initiation region of fractured surface of Redux 420 (3OX)
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Fig.39 End region of fracture surface of Redux 420 (3OX)
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4.5 Effect of Temperature on Fracture Strength

Temperature has an effect on the fracture strength on the bonded joints. This 

is readily seen in the graph of fracture strength for the different cold curing 

adhesives used for bonding the tapered double cantilever beams in Fig.40. The 

test temperature in most cases ranges from -40 °C to 60 °C. It was observed 

from the figure that F241 gave the best overall performance over the test 

temperature range. This indicates that it is most suitable for use in such adverse 

temperature environments. Mallick^^ tested CFRP/Al lap joints, at a 

temperature range o f 20 °C to -55 °C, using different adhesives. It was also 

found that an acrylic adhesive exhibited the best lap joint strength and fracture 

strength. Lees^® found good durability results with F24I using etched 

aluminium in 1982. This was based only a 3% loss in joint strength after 

lOOOhr in 100 % RH at 45 °C

Araldite 2013, on the other hand, exhibited reasonable strength when tested at 

ambient temperatures but its strength decreased drastically when tested in both 

high and low temperature. XD 4416, being very brittle results in extremely low 

fracture strength when tested at ambient and -40 °C but had the liighest 

fracture strength at 60 °C benefiting from its considerable ductility resulting 

from a post cure effect. This indicates that this adhesive is particularly suitable 

for use in this higher temperature environment. Work by Al-Hamdan^^ on 

steeFsteel lap joints bonded with Ciba-Geigy epoxy 2004 tested over a range 

of temperature of -60 °C to 200 °C showed similar results. Joints were 

strongest in the region o f 0-70 and at the lower temperatures, the adhesive 

became brittle but with a greater scatter in the results. In the current study, it 

was found that for epoxies, less scatter in results was observed as seen in 

Figs.46 and 54.
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Fig.40 Effect of temperature on fracture strength of tapered double cantilever 

beam joints bonded with different adhesives
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4.5.1 Permabond F241 Toughened Acrylic

F241 has a good ambient temperature fracture strength of approximately 0.9 

K JW , as shown in Fig.41. As the temperature increases the adhesive viscosity 

reduces, it softens and becomes unable to sustain the load thus enabling it to 

flow and wet the surface causing the fracture strength to decrease to 

approximately 0.55 KJ/m^. This explains the huge scatter in results, as seen in 

Fig.41, caused by unstable ductile tearing. The fracture surface at the higher 

test temperature can be seen in Fig.42. It appears to have more stress 

whitening lines shaped in contours, compared to those tested at ambient 

temperature which had less contoured white lines, as shown in Fig.43. At the 

low temperature, the adhesive became brittle leading to frirther reduction in 

fracture strength to 0.3 KJ/m^. More stable crack growth with less scatter in 

results was observed as shown in Fig.41 and the fracture surface at the lower 

test temperature showed no stress whitening. Defined directional river marked 

or jump-arrest lines were, instead, observed on the fracture surface as shown in 

Fig.44. These river lines indicated the initiation and arrest o f the crack during 

the process o f crack propagation. The marked lines also indicated a more 

brittle adhesives when exposed to low temperature.

Fig.45 shows a comparison of the load versus displacement traces as a 

function o f temperature for F241. The maximum load at point A of the three 

graphs seen in figure was used for calculating the fracture strength. It can be 

seen from the graph that when tested in ambient temperature it showed a 

mixture of stable and unstable continuous crack propagation in the tapered 

double cantilever beam. At the higher test temperature of 60 °C, it revealed a 

rather unstable ductile crack propagation caused by the softening o f the 

adhesive. Clearly, when tested at the low temperature of -40 °C , unstable 

‘stick-slip’ crack propagation was observed on the load-displacement trace 

which coincided with the marked lines found on the fracture surface.

I
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Fig.41 Effect of temperature on fracture strength of tapered double cantilever

beam bonded with F241

Crack
^Propagating

Contours

Fig.42 Fracture surface of F241 tested at 60 °C (20X)
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Fig.43 Fracture surface of F241 tested at ambient temperature (20X)

Crack arres

Crack
Initiation

Fig.44 Fracture surface of F241 tested at -40 °C (20X)
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Fig. 45 Comparison of the load against displacement graphs for F241 tested at

a series of temperatures.
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4.5.2 Ciba Polymers A raldite 2013

Araldite 2013 adhesive was found to be extremely temperature sensitive when 

compared to that of F241. At ambient temperature, it had a fracture strength of 

approximately 0.7 KJ/m^, but this dropped to less than half o f this value when 

tested at the higher temperature o f 60 °C, as shown in Fig.46. The results also 

appeared to have more scatter at ambient temperature compared to 60 °C and 

-40 °C. At the lower test temperature, the fracture strength was reduced from 

0.7 KJ/m^ to 0.45 KJ/m^, This reduction was not as severe as when this 

adhesive was tested at the higher temperature.

The fracture surface o f the initiation region tested at ambient temperature 

shown in Fig.47 was observed to be ‘sand’ rough and observed to be similar 

to that o f the fractured surface of chalk. The fast fracture end region, shown in 

Fig.48, shows a slightly smoother and more reflective surface. The fracture 

surface from the higher test temperature is shown in Figs.49 and 50, where a 

combination of failure was observed. Interfacial failure was found in the 

initiation region (Fig. 49) while towards the fast fracture end region, cohesive 

failure was observed (Fig. 50) At the lower test temperature seen in Figs. 51 and 

52, only cohesive failure was observed. The fracture surface seem to be lot 

smoother than those tested at ambient temperature in the initiation region and 

fast fracture end region. The fast fracture region showed furrow like fracture 

lines parallel to the crack propagation direction. Stable crack propagation 

appears to have produced this surface.
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Fig. 53 shows a comparison of the load versus displacement traces as a function 

o f temperature for Araldite 2013. The maximum load at point A of the three 

graphs seen in figure was used for calculating the fi*acture strength. It can be 

seen that when tested at ambient temperature this adhesive shows a mixture of 

stable and unstable continuous crack propagation, which explains the huge 

scatter in results. At the higher test temperature o f 60 °C, where the fi*acture 

strength decreased drastically, there was unstable but slightly ductile crack 

propagation caused by the softening of the adhesives. When tested at -40 °C , 

stable continuous crack propagation was observed.
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Fig.46 Effect of temeprature on fracture strength of tapered double cantilever 

beam bonded with Araldite 2013

Fig.47 Fracture surface of Araldite 2013 at initiation region tested at ambient

temperature (20X)
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Fig.48 Fracture surface of Araldite 2013 at end region tested at ambient

temperature (20X)

y  V

’ î*

Fig.49 Fracture surface of Araldite 2013 at initiation region tested at 60 °C

(20X)
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Fig.50 Fracture surface of Araldite 2013 at end region tested at 60 °C (20X)

Fig.51 Fracture surface of Araldite 2013 at initiation region tested at -40 °C

(20X)
_
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Fig.52 Fracture surface of Araldite 2013 at end région tested at -40 °C (20X)
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Fig.53 Comparison of the load against displacement graphs for Araldite 2013 

tested at a series of temperatures.
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4,5.3 XD 4416

Ciba Geigy two-part epoxy adhesive XD4416 is primarily intended for the use 

with warm curing and for optimum properties, a post cure treatment is 

required. In the current study, the adhesive was used with an ambient curing 

process temperature which results in only partial cure. Only at the test 

temperature of 60 °C does the adhesive becomes fully cured. The curing 

procedure adapted in this study have heavily affected the results for this 

adhesive.

This XD 4416 adhesive had a very low fracture strength of approximately 0.04 

KJ/m^ when tested at room temperature, as seen in Fig.54. At 60 °C, the 

fracture strength increased from 0.04 to 1.1 KJ/m^.This phenomenon is a 

complete reverse of the temperature dependent behaviour o f the other 

adhesives due to post cure effect. The results showed more scatter when 

tested at the higher temperature due to softening of the adhesive. At -40 °C, 

the fracture strength remained similar to that at ambient temperature. This

93

suggests that this adhesive is highly suitable for use at the high temperature

!environment.

The fracture surface of the initiation region at ambient temperature is shown in 

Fig. 5 5 and was observed to be smooth and slightly shiny. Towards the fast 

fracture region, in Fig. 56, parallel crack propagation stress whitening lines 

were observed. Figs.57 and 58 show fracture surfaces tested at 60 °C, where it 

can be seen that the fracture surfaces were found to have an increase of stress 

whitening at the initiation region while at the end region, a smooth and 

reflective surface was observed. A totally different fracture surface was 

observed at -40 °C as shown in Figs. 59 and 60, where there is a distinct
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directional wave form. At the initiation region the waves were perpendicular to 

the crack propagation direction while at the fast fracture region the waves are 

parallel to the crack propagation direction.

Fig. 61 shows a comparison of the load versus displacement traces for XD 

4116 over the test temperature range. The maximum load at point A of the 

three graphs seen in figure was used for calculating the fracture strength. It can 

be seen that when tested at ambient temperature unstable " stick- slip’ crack 

propagation was observed. At 60 with fracture strength increased more 

than four times over the ambient temperature value and revealed a mixture of 

stable and unstable crack propagation. As at ambient temperature, unstable 

crack propagation was observed when this adhesive was tested at -40 °C.
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Fig.54 Effect of temperature on fracture strength of tapered double cantilever

beam bonded with XD 4416

ii
Fig. 55 Fracture surface of XD4416 at initiation region tested at ambient

temperature (20X)
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Fig.56 Fracture surface of XD4416 at end region tested at ambient

temperature (20X)

Fig. 5 7 Fracture surface of XD4416 at initiation region tested at 60 °C (20X)
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Fig.58 Fracture surface of XD4416 at end region tested at 60 °C (20X)
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Fig.59 Fracture surface of XD4416 at initiation region tested at -40 °C (20X)
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Fig.60 Fracture surface of XD4416 at end region tested at -40 °C (20X)
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Fig.61 Comparison of the load against displacement graphs for XD 4416 

tested at a series of temperatures.
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4.6 Effect of Silane Coupling Agent on Fracture Strength

One method of improving the durability of adhesively bonded steel tapered 

double cantilever beam joints is to use a silane adhesion promoter. Silanes 

have been used for a number of years as primers or coupling agents^^, an early 

example of their use being to improve glass fibres and the resin matrix in 

glass-reinforced plastics. Silanes have been seen as an adhesion promoter, 

where the silane is applied to the substrate to be bonded to react with the 

substrate to form a more receptive surface for the adhesive and thus improve 

the bond strength. Fig.62 shows a comparison of two coupling agents namely 

Permabond Self Indicating Pretreatment (SIP) and Silquest A -187 which were 

evaluated for their effects on fracture strength. It can be seen that both 

Permabond SIP and A -187 produced a higher fracture strength compared to 

joints that were untreated. The surface treated with Permabond SIP 

recommended for F241 achieved the highest fracture strength. Work by Tod 

et al}^ using mild steel single lap bonded joints showed that the correct choice 

o f primer and adhesive combination has an adverse effect on strength and 

durability of a joint.

SIP A -187 Untreated

Fig.62 Comparison of fracture strength of both treated and untreated joints
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The A-187 primer was applied to the steel surface using different 

concentration in water and ethanol. As can be seen in Fig.63, even this minor 

change had an effect on the fracture strength of the tapered double cantilever 

beam joints bonded with F241 and tested at ambient temperature. O f all 

concentrations studied, the 5% solution in water gave the highest fracture 

strength. It was observed that using water as a solvent gave the best results. 

However, during the drying of the specimens, the surface turns rusty and 

drying is slower than when ethanol is used, which dries rapidly with little or 

no traces of rust on the surface of the specimens. From the experiment it can 

be deduced that the concentration of the silane solution has an effect on the 

joint strength. Similar results were also obtained by Tod'^. He found that an 

ethanol based solution, although essentially unaffected by ‘solution age’, 

produces bond strength significantly lower than the water based silane. 

Figs.64 and 65 show fracture surfaces for solutions with concentration in 

water and ethanol. Song"' showed the peel strength of bonded joints was 

improved by applying three different silanes. The optimum strength varied 

with different silanes and concentration used.
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Fig.63 Effect of concentration of silane on fracture strength
_

Î
a

:

t



Fig.64 Fracture surface of F241 with silane coupling agent mixed with
enthanol (20X)

Fig.65 Fracture surface of F241 with silane coupling agent mixed with water
(20X)
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4.7 Fatigue Behaviour

The tapered double cantilever beam test specimen geometry was used to 

obtain the values of crack growth rate, da/dN, as a function of the maximum 

fracture energy release rate, Gmax and AG applied in the fatigue cycle. A 

sine wave loading form was employed at a frequency o f 2 Hz. Gmax has be 

employed, as opposed to AG because the generation of surface debris, which 

prevents the crack from fully closing when it is unloaded, may give an 

artificially high value of Gmin. Thus, it has been suggested by Fernando*’ that 

it is better to use Gmax, instead o f AG. Work by Sutton '̂* implied that there is 

not a separate R ratio effect when characterising crack growth rate by AG. It 

is still unclear what mean stress effect needs to be taken account o f when 

crack growth rate is correlated with Gmax.

Fig.66a-c, show the three different graphs of crack length versus number of 

cycles tested over a range of R ratios ranging from 0.13 to 0.17. The 

minimum load for each R ratio was kept constant throughout each 

experiments. The results showed that for each R ratio, three straight lines 

could be fitted to the data with the slope of lines representing the average 

fatigue crack growth rate. Comparing the data, it was observed that the 

deviation of the slope usually occurs at an initial crack length of 

approximately 100mm and then subsequently at approximately 140mm 

indicating that there is a possibility of crack growth rate dependence of the 

crack length. This change in crack growth rate occurred despite using a 

constant compliance geometry and a constant load range and maximum load.

Ï
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Fig.67 show the crack growth rate data versus Gmax. The results showed a 

significant increase in crack growth rate when R ratio is decreased (maximum 

load increases). From the results reviewed firom experiments conducted by 

Radon and co-worker^^, as well as the present study it is clear that AP and Pm 

are of considerable importance in influencing fatigue crack growth rate. It was 

also observed that the crack growth rate increases despite Gmax remaining 

constant for each o f the three R  ratios. The increase in crack growth rate may 

be due to non-linearity of the compliance curve. Jablonski^^ showed from his 

compliance curve that non-linearity usually occurs at a shorter crack length for 

lower yield strength adhesives. In this present study, Gmax was based on 

constant compliance. Thus, it can be concluded that the compliance may not 

always be constant. It is dependent on the adhesives used and the crack length. 

It is therefore important to obtain detailed compliance curves for the different 

adhesives used. Other possible explanations for the three regimes of crack 

growth rate include (i) the inadequacy of Gmax as the characterising parameter 

for fatigue crack growth rate (Knox'’̂  found a crack length/history effect), (ii) 

changes in the proportion of mode I loading and (iii) phenomenological 

changes in adhesive failure process.

From the test, it was also noted that catastrophic failure usually occurred at a 

critical length of approximately 196.6mm for the three R ratios. Only cohesive 

failure was observed on the fi*acture surface at all the different R  ratios. Thus 

there was no dependence of the fatigue behaviour upon the surface pre- 

treatment when tested in a ‘dry’ environment. Similar failures were also 

obtained by other researchers where fatigue tests were conducted in ‘dry’ 

environments. They indicated that interfacial failure will increase with time of 

exposure to hostile environment^^
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Fatigue testing clearly shows the damaging effect of cyclic loading conditions 

compared to simply employing a constant rate o f displacement to fracture the 

adhesive joint. Indeed, the value o f the threshold fracture energy release rate, 

Gth, was far lower than the value of adhesive fracture energy, Gic, which was 

obtained under monotonie loading, i.e. the value of Gth is about 0.25 KJ/m^, 

whilst the value of the adhesive fracture energy, Gic, is about 1.02 KJ/mm^.
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Fig. 67 Crack growth rate versus Gmax for F241 tested in a "dry"' environment
for a series of R ratios.
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Chapter 5

CONCLUSIONS 

Fracture strength o f cold curing adhesives

The different forms of cold curing adhesives that are commercially available have 

been identified and discussed. Comparing the three adhesives, the best results 

when tested in ambient temperature, were obtained from joints bonded with F241 

followed by Araldite 2013. XD4416 exhibited the lowest fracture strength due to 

the post curing effect.

The loci o f joint failure for the three cold curing adhesives were observed to be 

cohesive throughout the adhesive layer. Crack propagation was observed to take 

place by a ‘stick-slip’ mode on the fracture surface of XD 4416, indicating a very 

brittle adhesive which results in such low fracture energy release rate.

Effect o f temperature o f fracture strength o f cold curing adhesives

Temperature has an effect on the fracture strength of the cold curing adhesives. 

The results clearly showed huge sensitivity to test temperature. In the vicinity of 

room temperature, F241 and Araldite 2013 adhesives exhibited high toughness, 

but as the temperature was increased to 60 °C the toughness reduced drastically. 

The toughness of XD4416 increased rapidly due to the enhanced curing at this 

temperature. This indicates that this adhesive is particularly suitable for use in 

higher temperature environment. At the low temperature of -40 °C, all of the 

adhesives exhibited low toughness.
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Effect o f silane coupling agents

The measured fracture toughness F241 on mild steel adherend was improved by 

incorporating o f organosilanes as pre-bond primers. Experimental parameters such 

as the nature of the solvent employed to prepare the initial organosilane solution, 

the concentration of the primer solution and the choice of primer and adhesive, 

have been shown to be of important. Two different silane primers namely 

Permabond self indicating pretreatment (SIP) and A-187 were evaluated and 

compared. SIP was found to exhibit the highest fracture strength. And 5% solution 

of A-187, in water was found to give the excellent fracture strength.

Fatigue behaviour

A fracture mechanics approach has been successfijlly used to examine the cyclic 

fatigue behaviour o f the bonded joints. As previously reported, cyclic fatigue tests 

conducted in a dry environment led to joint failure at far lower loads, and far lower 

values of the maximum fracture energy release rate, Gmax, applied in the fatigue 

cycle compared to the value of the adhesive fracture energy, Gmax, determined 

from monotonically loaded fracture tests^\

The locus o f joint failure was observed to be cohesive throughout the adhesive 

layer tested in the 'dry' environment. The effect of the R ratio on the fatigue crack 

initiation has been investigated but in the limited experimental programme the 

effect of changing R  is combined with changes in Gmax and AG. It has not been 

possible to disassociate these variables. Crack growth rates were observed to 

decrease with crack length under nominally constant Gmax conditions.
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Chapter 6

RECOMMENDATION FOR FUTURE WORK

It is clear that over the past decade there have been important developments in the 

understanding of fracture mechanics o f adhesively bonded connections. It has been 

proven to be particularly useful for such aspects as characterising the toughness of 

adhesives, identifying mechanisms o f failure and estimating the service life of 

‘damaged' structure being in the form of cracks, air filled voids, de-bonds rise from 

environmental attack and fatigue loading.

Nevertheless, there are still areas in the application of fracture mechanics to the 

failure of adhesive joints which are far from fully understood such as the various 

types of loading condition and environments which may adversely effect the service 

life of a bonded connection. Adhesive joints are frequently expected to perform 

satisfactorily under service conditions which include dynamically and statically 

applied loads under exposure to hostile marine environments. Thus, it is o f prime 

importance to be able to develop and recommend suitable adhesive systems which 

will possess an adequate service life under these operating conditions. If the aims 

o f reducing uncertainty o f adhesive bonding are to be achieved, the following work 

are suggested for future studies ;

(1) Durability test of TDCB bonded joints immersed in salt water over a period o f 

time

(2) Fatigue test o f TDCB bonded joints immersed in salt water over a period o f 

time
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(3) Effect of primer on durability and fatigue test of TDCB bonded joints

(4) Detailed examination of the fatigue crack growth phenomena under nominally 

constant Gmax conditions.
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Fatigue C rack Growth Rate Data

P max = 1.5 KN 
P m in -0 .2 K N

P max = 
P min =

1.3 KN 
0.2 KN

P max = 
P min =

1.2 KN 
= 0.2KN

R=0.13 R=0.15 R=0.17
a No. of cycles a No. of cycles a No. of cycles

60 109 48.6 870 49.6 16005
61 1845 49 3785 51.6 17675
63 2700 52 11048 53.6 22199
79 6288 57 13136 54.6 25785
82 7532 62 19070 61.6 32372
87 8246 68 27800 62.6 40310
91 9528 86 38453 66.6 43884
100 11815 93 47874 68.6 45456
106 13866 98 54182 71.6 51465
108 24517 100 73979 77.6 53502
127 30540 104 97884 82.6 55745
133 35155 110 103859 83.6 60784

135.5 39352 114 105099 87.6 75108
143 45085 118 128649 92.6 78471
158 49661 119 169103 99.6 83590

196.6 53661 120 193379 104 106872
122 199382 105.6 123503
127 238796 108.6 170337
137 252784 109.6 208605
142 301016 114.6 215884
147 316124 115.6 221186
152 846861 116.6 267362

196.6 2594119 117.6 269138
118.6 278704
121.6 294326
122.6 299197
123.6 318027
124.6 337038
125.6 373403
126.6 505576
135.6 1744844
145.6 1908568
150.6 3111533
196.6 5012901
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Input D ata : Pmax = 1.5 

Pmiii = 0,2 

Pmean = 0.85 

R  ratio = 0.13

R=0.13

No. of cycles, N Crack length, a mm dN da da/dN Gmax

1845 61 1736 1 0.576 0.236

2700 63 855 2 2.34 0.236

6288 79 3588 16 4.46 0.235

7532 82 1244 3 2.41 0U35

8246 87 714 5 7 0.236

9528 91 1282 4 3.12 0.236

11815 100 2287 9 3.94 0.240

13866 105 2051 5 2.44 0.236

24517 108 10651 3 0.282 0.236

30540 127 6023 19 3.15 0.236

35155 133 4615 6 1.3 0.236

39352 135.5 4197 2.5 5.96 0.236

45085 143 5733 7.5 1.31 0.236

49661 158 4576 15 3.28 0.235

53661 193.6 4000 38.6 9.65 0.235
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Input Data : Pmax = 1.3 

Pmin = 0.2 

Pmean = 0.75 

R ratio = 0.15

R=0.15

No. of cycles, N Crack length, a mm dN da da/dN Gmax

3785 49 2915 0.4 1.37 0.176

11048 52 7263 3 4.13 0.176

13136 57 2088 5 23.9 0.173

19070 62 5934 5 8.43 0.174

27800 68 8730 6 6.87 0.173

38453 86 10653 18 16.9 0.173

47874 93 9421 7 7.43 0.169

54182 98 6308 5 7.93 0.173

73979 100 19797 2 1.01 0.173

97884 104 23905 4 1.67 0.173

103859 110 5975 6 10 0.173

105099 114 1240 4 32.3 0.173

128649 118 23550 4 1.7 0.172

169103 119 40454 1 0.247 0.173

193379 120 24276 1 0.412 0.173

199382 122 6003 2 3.33 0.1763

238796 127 39414 5 1.27 a i73

252784 137 13988 10 7.15 0.173

301016 142 48232 5 1.04 0.173

316124 147 15108 5 3.31 0.173

846861 152 530737 5 0.0942 0.175

2594119 196.6 1747258 44.6 0.255 0.195
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Inpu t Data : Pmax = 1.2 

Pmin -  0,2 

Pmean = 0.7 

R  ratio = 0.17

R=0.17

No, of cycles, N Crack length, a mm dN da da/dN Gmax

17675 51.6 1670 2 12 0.1512

22199 53.6 4524 2 4.42 0.1514

25785 54.6 3586 1 2.8 0.1515

32372 61.6 6587 7 11 0.1511

40310 62 6 7938 1 1.26 0.1509

43884 66.6 3574 4 11.2 0.1508

45456 68.6 1572 2 12.7 0.1512

51465 71.6 6009 3 5 0.1513

53502 77.6 2000 6 30 0.1510

55745 82.6 2243 5 22.3 0.1508

60784 83.6 5039 1 2 0.1509

75108 87.6 14324 4 2.8 0.1511

78471 92.6 3363 5 15 0.1510

83590 99.6 5119 7 13 0.151

106872 102.6 23282 3 1.29 0.1508

123503 105.6 16631 3 1.8 0.1504

170337 108.6 46834 3 0.64 0.1510

215884 114.6 7279 6 8.2 0.1509

221186 115.6 5302 1 1.89 0.1507

278704 118.6 57518 3 0.52 0.1507

294326 121.6 15622 3 1.92 0.152

299197 122.6 4871 1 2.05 0.1508
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318027 123.6 18830 1 0.53 0.1508

337038 124.6 19011 1 0.53 0.1509

373403 125.6 36365 1 0.0275 0.1509

505576 126.6 132173 1 0.0756 0.150

1744844 135.6 1239268 9 0.0726 0.150

1908568 145.6 163724 10 0.611 0.151

3111533 150.6 1202965 5 0.0416 0.151
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