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ABSTRACT

Worldwide, breast cancer is the most commeon cancer in women. In Scotland, there are
cutrrently over 3,000 women diagnosed with the disease each year and the incidence
continues to rise. Despite some major advances in the treatment of breast cancer, with
the discovery of tamoxifen and the on-going development of cytotoxic drugs, only 60%
of women are still alive atter five years, many of whom have a rclapse at some later

stage,

Against that background, the main aims of this thesis are to interpret the findings of a
survival analysis of cases of breast cancer in Scotland; to investigate whether the
method of including extra categories for unknown values in factors in that analysis is
appropriate; and to check whether the assumption of proportional hazards is valid.
Chapter 1 provides a general introduction, whilst Chapter 2 examines the burden that
breast cancer places on the National Health Service in Scotland and throughout the
world. The risk factors for getling the disease and the different strategies available for

treatment of the cancer are also presented.

To identify how women with breast cancer in Scotland were managed, Chapter 3
outlines some background 1o a national retrospective audit of all cases of invasive breast
cancer in the years 1987 and 1993, Analyses of a subgroup of the 1987 cohort

constitute the majority of this thesis.

Chapter 4 examines the associations among the variables included in the survival
analysis. The patterns among the missing values in four of the prognostic factors are
also investigated, using log-linear modelling. The method employed in analysing this
cohort of women was to crcate extra categories to represent unknown values in cach of
the factors. Other technigues available for handling missing valucs in models are

discussed, along with a summary-of the methods used in other relevant studies of breast

b .

cancer survival.



Chapter 3 presents a survival analysis of the cohott, including a discussion of the
findings in relation to other relevant studics. Model checking is performed on the best
fit model! to assess the adequacy of the fit of it and to validate the assumption of
propottional hazards. The remainder of the chapter focuses on a comparison of the
results from fitting Cox models using the additional catcgorics and the complete cases
methods. This investigates whether different interpretations would be concluded from

these models.

In Chapter 6, simulated datasets are generated using exponential distributions to
investigate whether the proportional hazards assumption is valid when additional
categories are used to extend two factors at two levels to three [evels in an exponential

regression model. The extent of any biases for the parameter estimates is examined.

Chapter 7 provides a summary of the key conclusions and highlights areas of future

research.
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SECTION A :

BACKGROUND




CHAPTER1 INTRODUCTION

1.1 SURVEY OF BREAST CANCER IN SCOTTISH WOMEN IN 1987 AND IN
1993

In 1996, the Scottish Breast Cancer IFocus Group (SBCT(G), the Scottish Cancer Trials
Breast Group and the Scottish Cancer Therapy Network (SCTN) produced a report for
the Chicf Scicntist and Clinical Resource and Audit Group in Scotland, entitled
‘Scottish Breast Cancer Audit 1987 & 1993’ (SBCEG et al, 1996), known here as the
‘Audit Report’. This detailed the preliminary results of a national population-based
study of all women diagnosed with invasive breast cancer in Scotland in these two

years.

The main aims of the audit were:

o to identify how women diagnosed with invasive breast cancer i Scotland in

1987 and in 1993 were managed,

» to investigate whether there had been any changes in the patierns of care
between the two study years, during which time a national breast screening

programme had been introduced;
¢ to examine how many women were managed according to best practice;

¢ to identify the factors affecting various outcome measures for (he 1987 cohort

only.

The cohorts were based on all women registered with the national Seottish Cancer

Registry (SCR) for these two years of diagnosis. However, rather than limit the analysis




to data collected and held on the national register, specially trained Data Managers from
the SCTN sought all of the case notes relating to the breast cancer for thesc women.
They re-examined the contents of them and collected a large amount of supplementary
data to augment that from the SCR records. This additional information relates to
referral patterns; initial staging of the tumour at the clinic; the surgical procedures
performed; other forms of treatment given; pathology details, including extra staging

information; and follow-up and outcome details.

This dalasel provides two national ‘snap-shots’ of the management of breast cancer in
Scotland. The Audit Report gives analyses of the quality of the data collected; the effect
of the breast screening programme; referral patterns, including surgical case load and
time for referral between presentation and diagnosis; pathological information collecicd,;
the management of women who did not undergo any surgery; the management of
women who had surgery, with and without radiotherapy; the use of systemic adjuvant
treatment; survival of those women undergoing surgery in 1987; and finally entry into

clinical trials for breast cancer.

Subsequent to the Audit Report, to date, three peer-reviewed papers (Twelves et al,
1998a; Twelves et al, 1998b; Dewar et al, 1999) and a letter to the BMJ (Twelves et al,
1999} based on the data collected in the Audit have been published. These relate to the
survival from breast cancer of women undergoing surgery in the 1987 cohort; factors
affccting clinical trial cntry for breast cancer in Scotland for both cohorts; the increase in
workload of oncologists due to increased use of radiotherapy and adjuvant systemic
therapy between the two years; and factors which determined whether a woman moved

out of her Health Board of residence for her surgery respectively.

1.2 AIMS OF THE MSC

The idea of the project for this thesis came from my heavy involvement in some ol the

analyses of the Breast Cancer Audit data, especially the survival analysis of the 1987



cohort; both for the preliminary report (SBCFG et al, 1996) and for the publication by
T'welves et al (1998a).

One of the problems encountered during analysis of the retrospective Audit data was the
large extent of unknown information for some variables. This was due to looking back
at case notes, rather than collecting the information prospectively as women are

diagnoscd with breast cancer. For cxample, for some women in the 1987 cohorl, the

case notes were eight years old when they were examined, Whilst some of the case
notes simply could not be found, some of the information was not available because it
just had not been recorded. How ta dcal with the missing valucs in the survival analysis
was an issue. For both publications, the decision was taken to include additional
categories for the unknowns in each of the factors, so as to avoid throwing away a large

number of cases and losing information about other variables for these women.

The first aim of this thesis is, therefore, to examine whether using these additional

categories gives different results from those that are obtained when only those women

with complete information are retained in the analysis. This will discuss whether
different implications, in terms of political and organisational structures, could be drawn

from the resulis.

From this initial aim, others follow naturally. These include looking at simple
frequency distributions of the factors to determine the full extent of the missingncss;
investigating whether there are any patterns or associations between the missing values;
and researching other possible technigues for handling missing data to try to identify any

which could be applied to the Breast Cancer Audit data.

One final aim is to cxaminc whether it is likely that including the additional catcgorics
for the unknowns in the survival analysis of the Audit data violates the assumption of
proportional hazards imposed by fitting a Cox regression model. This will be

researched using various randomly generated simulated datasets constructed from

kanown theoretical distributions.




CHAPTER 2 BREAST CANCER

This chapter provides some background information about breast cancer - how common
it is, what factors increase the chances a woman will get the disease, how it is usually

treated and the survival chances for women who have breast cancer.

2,1 DESCRIPTIVE EPIDEMIOLOGY OF BREAST CANCER

Breast cancer is the most common cancer in women worldwide (Parkin et al,1993). In
Scotland in 1995 there were 3,156 new cases registered with the national Scottish
Canccr Registry, representing 26% of all malignant neoplasms in females (Figure 2.1),
Current estimates suggest that 1 in 12 women in the UK will get breasl cancer during

their lifetime (FEvans et al, 1994).

Relatlve frequencies of nlne most common sltes
for females in Scotiand, 1995
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FFigure 2.1: Relative frequencies of female cancers in Scotland in 1995.




2.1.1 CANCER REGISTRATION IN SCOTLAND

1947 - 1996

Information about new cases of cancer in Scotland has been collected on a national basis
since 1947, although computer records only date back to 1958. The file was tumour~
based with each new malignancy as the basis of a new record. The Scottish Cancer
Registry, based at the Information & Statistics Division (ISD) of the NHS in Scotland
(NLISiS), manages the data centrally.

Data were either collected manually using Scottish Morbidity Record 6 (SMRG) paper
forms or electronically from various databases held independently within hospital or
pathology departments. The data were sent to ISD via five regional registries. Basic
information included name, date of birth and postcode of the patient; date of birth; the
hospital where the cancer was registered; and the ‘date treatment commenced’. There
were also details about the site code of the cancer to 4 digits, based on the ninth revision
of the International Classification of Diseases (ICD-9) (World Health Organisation,
1977}; whether the patient had had previous tumours; whether the current diagnosis was
histologically verified and if it was, the morphology code, based on the International

Classification of Diseases for Oncology (ICD-0O) (World Health Organisation, 1976).

Derived fields, such as Health Board of residence (based on postcode) and age at
diagnosis, were then attached to the record. A regular record linkage using probabilistic
matching (Kendrick & Clarke, 1993) between the cancer file and the death records
supplicd by the General Registers Office (GRO) cnabled follow-up of cancer paticnts

from diagnosis to death.

1997 ONWARDS
The SMR6 scheme was replaced by a {ully computerised system, known as SOCRATES

(Scottish Open Cancer Registration And Tumour Enumeration System), in 1997,

The aim of SOCRATES is to identify possible new cases of cancer from multiple
sources of records. These include hospital discharge records (SMR1), GRO death




records and pathology and oncology departmental records. SOCRATES links
information obtained from the various sources and automatically creates a provisional
cancer regisiration. The information held on SOCRATES is patient-based, rather than

tumour-based.

Alier allowing six months for treatment details to accumulate, a trained Cancer
Registration Officer (CRO) scrutinises medical case notes relating to the provisional
registration. The registration is then confirmed or deleted if invalid. The CRO
supplements the basic details with information about the management of the cancer
including whether surgery was performed, chemotherapy or radiotherapy were given,
and the initial stage of the tumour is recorded. For breast cancer, pathological
information about axillary node status and the size of tumour are also noted. All of the
additional data will be useful for clinical audit and will allow extra prognostic factors to
be included in survival analyses. These factors were not available from the old SMR6

files,

The computer records from the SMR6 scheme were appended to SOCRATES to enable
epidemiological studies of incidence and mortality over time. Therefore, (he
SOCRATES system has records dating back to 1958, now linked by patients rather than

tumours.

‘The validity of performing epidemiological studies on the Scottish Cancer Registralion
database is supported by the long collection period, and also more importantly, because
the information is widely recognised to be of a high standaud in terms of both accuracy
and completeness (Brewster ct al, 1994; Brewster ct al, 1997). In general, high accuracy
is reflected by a high percentage of registrations based on tumours having a microscopic

verification (%MV). The %MV for breast cancer in Scotland in 1995 was 89.6%.

Completeness of ascertainment describes the proportion of cases which are registered
out of those which should have been registered. This can be indirectly assessed from
the percentage of registrations made on the basis of a death certificate only (%DCO)
which occurs when this is the only record supporting the diagnosis of cancer. For these
records, the date of diagnosis entered onto the cancer registry file is the date of death

from the death certificate. These DCO cases are usually excluded from survival




analyses as they have zero survival time and provide no other details relating to the
cancer. A high %DCO rate suggests that incidence rates may be underestimated, In
1995, the %DCO for breast cancer in Scotland was low at 2.8%, sugpesting high

completeness.

2.1.2 INCIDENCE OF BREAST CANCER

There are approximaltely 720,000 new cases of breast cancer in the world each year
(Parkin et al, 1993) with 34,500 cases registered in 1991 in the UK (Cancer Research
Campaign, 1996). The number of cases registered with the Scottish Cancer Registry for
the years 1986-1995 arc given in Table 2.1.

Year of Number of Women
Registration | with Breast Cancer
1986 2617
1987 2684
1988 2680
1989 2775
1990 2969
1991 3171
1992 3233
1993 3110
1994 3071
1995 3156

Table 2.1: Numbers of cases registered in
Scotland, 1986-1995.

This table shows an increasing trend in the annual number of reported cases with a
marked jump around 1990-1992. Although the increase in numbers of cases may imply
an increase in incidence, it is important to consider the population at risk and the rate of
discase. To allow for population changes in age distribution over time, it is preferable

to study age-specific rates (Boyle & Parkin, 1991; Sharp ct al, 1993),




Age is the most important known risk factor for breast cancer, with the elderly, in
general, being the high risk group (Henderson et al, 1996). The most dramatic increase
for all countries is between the age-bands 30-34 to 50-54, between which the rate more
than doubles. This can be seen in Figure 2.2 which gives the age-specific incidence
rates per 100,000 population for breast cancer for Scotland and four other countries

from the developed world.

For the Western World countries, the increase in the age-specific rate slows down for
postmenopausal women but it is still present. In contrast, for Japan, the curve reaches a
plateau and remains almost constant after the age of menopause. Hoel et al (1983)
observed that the level of oestrogen in postmenopausal Japanese women is probably not

very high as they have low body weight and not many excess fat cells (see Section
2.2.1).
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Irigure 2.2: Age-specific rates for various countries for breast cancer (Purkin et al,

1997).

The increase in the number of registrations in 1990-1992 seen in Table 2.1 is primarily
due to an increase in the age-specific rates for the screening age group 50-64 shown
below in Figure 2.3 and is probably due to the introduction of the Scottish Breast
Screening Programme. This was phased in throughout Scotland from 1988, attaining

national coverage in 1994 (Scottish Breast Screening Programme Central Co-ordinating




Unit, 1997) and led to detection of a larger number of small early breast cancers. In

1993, 546 (17.6%) of cases of breast cancer were screen-detected.

Age speclflc breast cancer incidence ratas by year, Scotland 1974-95
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Figure 2.3: Age-specific rates in Scotland, 1974-1995, by age group (Scattish Breast
Screening Programme Central Co-ovdinating Unit, 1997).

Another important risk factor for breast cancer is the country in which the women grew
up {(Parkin et al, 1993), although this may in part be due to reproductive risk factors; for
cxample, the age of menarche can be affccted by temperature, climate and social welfare
conditions in a country (see Section 2.2.2). To allow comparisons of incidence figures
for countries with different age structures, the populations are usually standardised to an
arbitrary standard population. Often this is either the World Standard Population (WSP)
or the European Standard Population (ESP), both of which were first detatted by Doll et
al (1966). Figure 2.4 shows the variation in World age-standardised rates (WASR)
across several regional registries, countries and racial groups (Parkin et al, 1997) and it

is clear that there is a six-fold variation in the rates, although the differences have been

decreasing gradually over time {Lipworth, 1995).




World age-standardised incidence rates for selected countries,
cancor of the female breast, 1988-92
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Figure 2.4: World age-standardised incidence rates for various countries (Parkin ef al,
1997).

Doll et al (1966) point out that probably the most important bias when comparing
incidence data from different countries is due to different methods of collection used to
report the cancers. Some incidence rates may be low simply because known cases are
not registered; alternatively, rates may be artificially higher because cases are registered

without being verified pathologically to confirm the diagnosis.

Studies of migrants from Japan to the US have shown that these women have a
marginally increased incidence rate compared with women of similar ages who have
remained in Japan (Buell, 1973). However, Japanese women born in the US (i.e.
descendants of these migrants) have very similar incidence rates to those of white US
women (Shimizu et al, 1991), although this is not so obvious from Figure 2.4 for the
period 1988-1992 in women in San Francisco. These findings indicate that
environmental and social factors may be more important than genetic factors in altering

the risk of getiing breast cancer,

Breast cancer is also known to be a disease of the affluent, with a much higher incidence
in women resident in areas of low deprivation or women in high social class (Sharp et

al, 1993; Henderson et al, 1996). However, this pattern is not observed in either

10




mortality or survival rates where both a higher mortality rate and worse survival figure
are associated with a greater extent of social deprivation in some (Karjalainen &
Pukkala, 1990, Schrijvers et al, 1995; Carnon ct al, 1994) but not all (T'welves et al,
1998a) studies (see Section 5.2.3).

Figure 2.5 below shows the association between the risk of breast cancer and the
Carstairs deprivation index (Carstairs & Morris, 1991). This measure of deprivation is
often used for Scottish health statistics. The Carstairs classification of socio-cconomic
deprivation was adapted to represent quintiles from the total Scottish population, based
on the 1981 Census and updated for the 1991 Census. This measure is area-based and
assigns to the populations living within small areas a score to reflect not readily

measurable quantities, such as material well-being or poor access to amenities.

Agp standardised (World Standard Population) incldence rates for
Scotlancd,1936-95 by deprivation cetegory
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2.1.3 MORTALITY ¥FROM BREAST CANCER

For the whole of the UK, breast cancer is the most common cause of female cancer
mortality, representing 20% of all female cancer deaths (Cancer Research Campaign,
1996). Breast cancer was the cause of death for 3.9% of the 31,709 women who died in
1995 in Scotland (General Register Office for Scotland, 1996). Although breast cancer
is more common in older women, it has the highest impact on mortality on women aged
35-54 (Figure 2.6). In this age range, breast cancer accounted for 15% of all female
deaths, not just those due to cancer, during 1995 in Scotland compared to 13% due to

ischaemic heart disease (ICD-9 410-414) and 8% due to lung cancer (ICD-9 162).

Porcentage of deaths due to breasi cancer out of all female deaths
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Figure 2.6: Percentages of deaths due to breast cancer by age group.

Scotland has one of the highest rates of breast cancer mortality and can be compared to

those in other countries (Table 2.2; World Health Organisation, 1996).




World age-standardised mortality rates per
100,000 population from breast cancer,
selected countries, most up-to-date years
Netherlands (1994) 26.7
| England & Wales (1994) 25.8
Scotland (1995) 25.2
Israel {1993) 24.5
US (1992) 21.4
Australia (1993) 20.4
France (1993) 19.8
Italy (1992) 19.8
Norway (1993) 19.4
Estonia (1994) 17.8
Finland (1994) 16.1
Japan (1994) 7.1
China, various urban (1994) 6.2
China, various rural (1994) 3.6

Table 2.2: World age-standardised mortality rates per
100,000 population from breast cancer for selected
countries for the most up-to-date years.

One of the main aims of introducing the Scottish Breast Screening Programme (Scottish

Breast Screening Programme Central Co-ordinating Unit, 1997) was to try o reduce

mortality from breast cancer in the screened age group, 50-64 years old. Figure 2.7

shows the European age-standardised mortality rates per 100,000 for Scotland {or 1950~

1995 (Brewster et al, 1996a).
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Mortality from breast cancer in Scotland has risen gradually since 1950, although it inay
now be levelling out, or even falling (Brewster et al, 1996a). A fall in mortalitly is
supported by data for the whole of the UK (Quinn & Allen, 1995; Peto, 1998). These
three studics suggest that the widespread introduction of adjuvant tamoxifen is the
probable reason for this reduction in mortality. Death rates may be expected to fall

further as benefits of screening are unlikely to have become fully apparent yet.

2.1.4 SURVIVAL FROM BREAST CANCER

In contrast to mortality, survival depends only on the number of deaths from the disease
{or from any cause) among patients with the disease and therefore does not depend on

the incidence (Berrino et al, 1995). Due to this difference, reduction in mortality should
be the aim of any treatment (curative or preventative) or early diagnosis scheme, such as

screening, However, treatment effects can best be assessed by examining survival.

CRUDE AND RELATIVE SURVIVAL

The relative survival figure for breast cancer tries to adjust the crude survival from
breast cancer to cotrect for other causes of death. It does this by comparing the
obscrved survival with the expected survival, bascd on the general mortality lifc tables
for a population with the same age structure, for the same time period (Iiderer et al,
1961). Relative survival is therefore age adjusted but does not allow for any variations
in the numbers of deaths expected in the different deprivation categories, or Health

Boards, say.

In Scotland, the crude and relative 5-year survival figures for all ages (0-84) have
steadily improved since 1968 (Table 2.3). The figures are from Black et al (1993} and
Harris et al (1998), except the 1988-1992 crude survival figure, which was calculated

separately as this has not yet been published.




Period Crude S-year | Relative S-year
sarvival (%) | survival (%)
1968-1972 49.5 56.4
1973-1977 52.0 59.7
1978-1982 55.1 63.1
1983-1987 56.3 64.3
1988-1992 63.8 70.1

Table 2.3: Crude and relative S-year survival in Scotland.

Crude and relative survival figures may vary by age. For cxample, S-year relative
survival for the 35-44 group was 95.3% compared to 71.3% for the 55-64 group and
only 18.2% for the 75-84 age group for the 1983-1987 cohort (Black et al, 1993).

Survival figures can also vary by country. Figure 2.8 shows S-year relative survival
values for the period 1981-1982 for twelve countries in the EUROCARE study (Berrino
et al, 1995), for women diagnosed with breast cancer in the period 1978-1985. The
1981-1982 figures are shown because information was not available for all countries for
the other years. Sant et al (1998) modelled these data and found variation by age, year
of diagnosis and country, possibly due to variations in the quality of the data collected,
or in the quality of the treatment women receive in the different countries (Sant et al,

1998; Berrino ct al, 1995).
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INTERPRETATIONS QF SURVIVAL FROM BREAST CANCER

Identification of prognostic factors for breast cancer survival (Miller et al, 1994) can;
» aid the decision of which treatment to give to a particular patient;

o allow treatments given to groups of patients with similar risks of recurrence or

death to be compared;

» enhance understanding of breast cancer, which may lead to new {reatments or

strategies being developed;

» assess health education, to encourage eatlier presentation;

help evaluate the impact of the screening programme,

Differences in survival may be due to differences in case mix, by age, region,
deprivation or variables associated with service provision from the National Health
Service in Scotland, such as surgical case load. However, it is necessary to remember
that case mix can vary for different levels of these variables as well as any treatment
effects. That is, the case mix of a group of women may affect the survival chances for
that group, irrespective of the treatment the women in the group receive. Thus,
prognostic factors can influence the overall survival prospects of a group of women, as

well as affecting the chances of an individual surviving.

For example, it may appear that a group of women detected by the screening
programme, and therefore treated at a specialist centre (see Section 2.3.1), have better
survival chances than women treated elsewhere. However, this group of screen-detected
cases will almost certainly have a higher percentage of women with small, node
negative tumowrs (see Section 2.3.2) and will, thetefore, inherently have belter survival
prospeets than the group ol non sereen-detected cases, notwithstanding the [act that

these women may also receive superior treatment having been seen at a specialist centre.




2.2 AETIOLOGY OF BREAST CANCER

Some basic biological details relating to cancer in general, and specifically (o breast
caneer, are given in Section 2.2.1, whilst known and possible risk factors for developing

the disease are discussed in Section 2.2.2.

2.2,1 BASIC BIOLOGICAL DETAILS

Normal cells in an organ, such as the breast, are continuously growing, reproducing and
dying to allow normal function of the organ, Breast cell turnover is under partial control
of circulating oestrogens, a group of female hormones. It appears that both ocstrogen
(Henderson et al, 1985) and progesterone stimulate cell division in the breast (Ferguson
& Anderson, 1981; Henderson et al, 1996). As well as being produced by the ovaries in
premenopausal women, oestrogen is also produced in smaller amounts from the
conversion of the adrenal androgens to oestrogen in fat cells. Virtually all of the

circulating oestrogens in postmenopausal women are produced via this route.

Cancer is the term used to describe the occurrence of a growth when this continual birth
and death process goes wrong and abnormat cells develop and become invasive. If
DNA in a c¢ell becomes transformed, this leads to allered regulation of cell turnover,
which then leads to cancer. The term malignant tumour or malignant neoplasm can also
be used for cancer. The majority of breast cancers form in the epithelial cells lining the

milk ducts in the breast (Henderson et al, 1996).

Boyle & Leake (1988) point out that breast cancer is not one discasc, but scveral and
prognosis and survival depend on various factors. Firstly, the tumour can be hormone
sensitive or independent, which affects a woman’s response to hormonal treatment.

Secondly, tumours can be aggressive in nature or can be slow growing, and finally, that




the tumour will either remain as a disease of the breast, being controlled locally, or it
can metastasise very quickly; that is, the ability to “spread from the site of origin to
distant tissues” (Souhami & Tobias, 1995). This is the main attribute which sets
cancerous cells apart from normal cells. This spread of the cancer occurs when tumour
cells invade local tissues, or are carried via blood or lymphatic systems to other organs
throughout the body. Common secondary cancers from the breast include bone, the
liver, the lungs and skin (Souhami & ‘F'obias, 1995). In the case of breast cancer, it is

usually the metastases that kill patients, not growth confined to the local tissue.

2.2.2 RISK FACTORS FOR BREAST CANCER

Oestrogens appear to play an important role in actiology of breast cancer and may
mediate the apparent cilcets ol age and geography (Section 2.1.2). Other risk factors

can be split into those related to reproductive life and those unrelated to it.

RISK ASSOCIATED WITH REFRODUCTIVE LIFE

Tiour risk factors which can be thought of as the natural reproductive factors (i.e. those
linked to exposure to oestrogen and also to progesterone occurring naturally in the body)
are age at menarche, length of menstrual cycle, age al menopause and age at [irst
pregnancy. Two other factors: use of oral contraceptives and use of hormone
replacement therapy are artificial reproductive factors. Table 2.4 overleaf gives the

levels associated with higher risk of developing breast cancer for these factors.

OTHER POSSIBLE RISK FACTORS

Other known or possible factors for breast cancer are now discussed.

Height, weight and body mass index (BMI): Obesity is often measured using the
Body Mass Tndex, defined as weight divided by height’, measured in kg/m”.




Vatlen (1996) lound strong evidence that height, weight and BMI are all positively

associated with breast cancer risk for postmenopausal women, The relationship of

height and weight with breast cancer risk is not so clear for premenopausal women,

although there is some evidence to support the argument that being obese decreases the

risk of getting breast cancer for premenopausal women.

Risk Factor

Higher Risk

References

Age at Menarche

LEarly age.
Two year delay: relative risk
0.9 (95% CI: 0.85, 0.94).

I1sieh et al (1990);
Titus-Ernstoff et al (1998)

Length of Menstrual
Cycle

Short cyele.
28 day vs 33 day cycle: twice
the risk

Henderson et al {1985)

Age at Menopause Late age. Hsieh et al (1990);
Aged 55 vs under 45: twice Trichopoulos et al (1972)
the risk.
Pregnaney Nullparity. MacMahon et al (1970);
Nulliparous vs parous: 1.5 Henderson et al (1996);
times the risk. Tavani ct al (1997)
Late age at pregnancy.
Aged over 35 vs <18 years: 3
times the risk.
Use of Oral Currently taking the Pill. The Collaborative Group on
Contraceptives Relative risk 1.24 (95% CI: Hormonal Factors in Breast

1.15, 1.33)

Within 10 years of stopping
use.

Relative risk 1.07 (95% CL:
1.02, 1.13).

Cancer (CGHFBC, 1996)

Use of Hormone
Replacement
Therapy (HRT)

Currently taking HRT or
within 5 years of stopping
taking it.

For each year of use, risk
increases by factor 1.02 (95%
Cl: 1.01, 1.04)

CGHFBC (1997)

Table 2.4: Risk facrors for breast cancer due to reproductive life.

Family history: Evans ct al (1994) showed that there is an increased risk of getting

breast cancer if there is a history of breast cancer or other associated cancers (ovary,

prostate, colon) in the family. This risk is even higher if these cancers occurred at an

early age in the relative. Most of the cases related to family history occur at early age so
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that virtually all breast cancer cases that are diagnosed in women over the age of 60 are

not due to inherited gene mutations.

Benign breast disease: This is a general term that is given to several different types of
non-cancerous diseases that can affect the breast. There is some evidence to suggest an
increased risk of developing malignant breast cancer for women who had benign breast
disease compared to women who do not have any previous breast disease (Cancer

Research Campaign, 1996).

Radiation: Tokunaga et al (1994) examined the incidence of breast cancer among the
atomic bomb survivors of | liroshima and Nagasaki in Japan, They found a strong linear
dose response relationship of radiation exposure with hreast cancer risk. This was much
stronger for women aged under 20 years at the time of the exposure than for women
aged 40 and over at the time of the bombings. Radiation given as chest x-rays searching
for tuberculosis showed similar increased risk for getting breast cancer (Lipworth,
1995).

Diet: Many studies have examined whether there is any relationship with breast cancer
risk and diet. These studies are difficull to conduct as it is hard to know what
‘exposure’ there was from food and energy levels ought to be taken into account. Since
diet varies between individuals, across countries and across socioeconomic
backgrounds, several components have been cxamined for their links with breast cancer
risk. No firm evidence has been found to support the link between dietary fat (Cassidy,
1996); dietary fibre (Howe et al, 1990; Stoll, 1996) and vitamins A, C and E (Cassidy,
1996; Bohlke ct al, 1999) with breast cancer risk.

Alcohol intake and smoking: A recent meta-analysis by Longnecker (1994) showed
some evidence of a positive association of breast cancer risk with alcohol consumption,
both in terms of some versus none and the amount of aleohol consumed. There does not
appear to be much evidence to link breast cancer risk with smoking (Henderson et al,
1996). A weak inverse association between circulating levels of cestrogens and

smoking are discussed by Michnovicz et al (1986).
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2.3 MANAGEMENT OF BREAST CANCER

Whilst there have been some major breakthroughs in the treatment of breast cancer and
the development of drugs which attack the cancer in an effort to prevent it spreading
throughout the body, only about 60% of women survive for five years, many ot whom
have a relapse at some point. The organisation of breast cancer services in Scotland; the
wide range of treatments available for breast cancer and the importance of participation

in clinical trials are discussed in this chapter.

2.3.1 ORGANISATION OF BREAST CANCER SERVICES IN THE
NATIONAL HEALTH SERVICE IN SCOTLAND

Traditionally breast surgery was not a separate sub-specialisation but was performed by
most surgeons. Increasingly, treatment is now focused at a Breast Unit or one of the
Screening Centres, with surgery being performed by a breast specialist. A policy
document from the Chief Medical Officers of England and Wales (Expert Advisory
Group on Cancer, 1995), known as the ‘Calman/Hine’ report, detailed plans of a
network between primary care through Cancer Units at district hospitals to Cancer
Centres for the provision of cancer services in England and Wales. One of the main
points was that breast cancer can be managed at Cancer Units at district hospitals, but
with Cancer Centres providing expertise in the management of all cancers and having

additionat specialist diagnostic and therapcutic resources, such as radiotherapy,

The Scottish Cancer Co-ordinating and Advisory Committee (SCCAC) proposed a
similar nctwork for Scotland (SCCAC, 1996). The Cancer Centres were identified as
the locations where radiotherapy is given, namely: Raigmore Hospital in Inverness plus
the four large teaching hospitals: Aberdeen Royal Infirmary; Ninewells Hospital and
Medical School in Dundee; Western General Hospital (which in 1987 included the

Longmore Breast Unit, now closed) in Edinburgh and the Western Infirmary/Beatson
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Oncology Centre in Glasgow. In Scotland, 15 Health Boards provide health care for
residents within their defined areas. The five Health Boards containing the Cancer

Centres are Highland, Grampian, Tayside, Lothian and Greater Glasgow respectively.

These Cancer Centres are the bases for non-sutgical oncology with many of the
oncologists bascd at them visiting Cancer Units fo aid decisions about the prescription
of chemotherapy. Women are referred from the Cancer Units to the Cancer Centres for
their radiotherapy. There is an increasing acceptance of the need for a multidisciplinary
approach at specialist Breast Units with specialist surgeons, radiologists, breast care

nurses, pathologists, oncologists and plastic surgeons.

Richards et al (1997) describe how the implementation of the Calian/Hine proposals
has worked so far in the West Midlands. Dewar et al (1999) cxamined the increase in
the usc of radiotherapy and chemotherapy between the years 1987 and 1993 in Scotland
(based on the Breast Cancer Audit data). They found that there had been an increase in
the number of patients being referred to an oncologist from 1076 (50% of Audit
population in 1987) to 1634 (64% of Audit population in 1993), which is a 52%
increase. The number of patients receiving adjuvant radiotherapy and chemotherapy
increasing by 72% and 215% respectively. However, there was only an increase from
32 to 37 consultant oncologists (16% increase) between the two years. Whilst the
increase in the use of adjuvant therapy is necessary to ensure appropriate treatment for
women with early breast cancer (see next section), there must be enough staff with the
expertise needed to deliver this service. Richards & Parroft (1996) showed that
oncologists currently only see half of the patients with cancer in Britain. The SCCAC

report can only serve to increase the workload of these oncologists further.

The main purpose of both the Calman/Hine and SCCAC repotts are that all women
should have uniform access to high levels of specialist care to provide optimal
treatment. Twelves et al (1999) point out that there were inequalities in determining
whether or not a woman moved Health Board for her treatment (that is, she was treated
at a hospital that is not within her Health Board of residence}. They found that younger
women and women living in affluent areas were more likely to move Health Boards for

their treatment than more elderly or women living in social deprivation.




Several papers have shown a benefit from women being managed by specialist
surgeons, and more importantly by a multidisciplinary team (Sainsbury et al, 1995a;
Sainsbury et al, 1995b; Gillis & Llole, 1996; Twelves et al, 1998a; Twelves et al, 1998b)
in terms of receiving more appropriate treatment, entering clinical trials and improving

survival from breast cancer.

2.3.2 TREATMENT OF BREAST CANCER

INTRODUCTION

By the time the woman presents, the cancer may already have spread from the breast
tissue into the lymph nodes, or formed secondary cancers in other organs. The
management and prognosis of women with no evidence of mctastascs at presentation is
very different to that for women where the cancer has spread, Figure 2.9 shows the
Kaplan-Meter survival curves (see Section 5.1.1) for these two groups of women based
on all of the women (n=2148) included in the Breast Cancer Audit in Scotland in 1987
(Scottish Breast Cancer Focus Group et al, 1996). The non-metastatic group has been

broken down into those who underwent surgery and those who did not.

Of the 8% of women who had metastases at presentation, only about 10% of them were
still alive at five years. The 16% of women who did not undergo surgery despite having
no evidence of metastases at diagnosis had a better outlook, with approximately 35% of
them surviving at 5 years. These women were mainly elderly and may have been
deemed too unfit to have an operation. Alternatively, the tumour may have been too
large, growing too quickly, or the women may simply have refused surgery. The
remaining 76% of women did not have metastases at presentation and did undergo

surgery. This is the subgroup that was included in all subsequent analyses, as this is the

only group where there is a realistic chance of cure.




Survival functions for the different patient groups

”"w.\w\w
‘L\M.
I e L e Surgical
S T (n=1619)
Z
&
@
=
E \
3
£ L
3 B
v, Non-metastatic,
_ Non-surgical
(n=354)
A Lﬂ\—‘—"‘-ﬂ—h‘_&_ Metastatic
—  (n=175)
OIO L) L} T ) ) Ll [] T
0 1 2 3 4 5 6 7 8 g
Time in years

Figure 2.9: Estimated survival curves for the different types of breast cancer.

The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) define early breast
cancer to mean any cancer which is confined to the breast (or to the lymph nodces) and
which can be removed surgically. Thus, disease that has metastasised beyond the breast
and axilla (metastatic cancer) and tumours that are too large, too aggressive or located in
an awlward location in the hreast such that it cannot be excised (locally advanced
cancer) are not included in the definition of early breast cancer. The two non-metastatic
groups above (surgery and no surgery) fall roughly into the carly and locally advanced
categories respectively, although the non-surgical group may have included women
whose discase was technically early, but who were too unwell with concomitant

diseases to survive surgery or those who refused such treatment.

The EBCTCG have drawn together data from a large number of clinical trials for early
breast cancer from around the world and have published several overviews. The
Scottish Intercollegiate Guidelines Network (SIGN), in collaboration with the Scottish
Cancer Therapy Network (SCTN), recently published clinical guidelines (SIGN/SCTN,

1998) for the management of breast cancer in Scotland (not only for eatly breast cancer,
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but also for locally advanced and metastatic breast cancer). How a woman is treated

depends largely on her prognosis when she presents at the clinic,

DETERMINATION OF THE DISEASE AND OP1IMAL MANAGEMENT

When a woman has been referred to a breast clinic with a suspected breast tumour,
usually fine needle aspiration followed by a biopsy is used to check whether the cells in
the lump are malignant. Once the diagnosis has been confirmed, some basic staging
investigations are performed. These include a blood test to check blood cell count and
liver function, a chest x-ray and a clinical examination. The clinical stage and

metastatic status are determined from results of these simple tests.

Cancers can be described in terms of clinical stage and metastatic status. The clinical
stage describes the state of advancement of the disease. One widely used system is the
four category I'NM classification (UICC, 1987) which depends on the clinical tumour
(1) size measured, whether there is any nodal (N) involvement (obtained by palpation)
or any evidence of distant metastases (M). ‘The metastatic status can also be
determined by imaging techniques such as bone isotope, MRI and ullrasound scans.

‘The presence of metastases means that the cancer is incurable and the survival prospects

are therefore very poor.

If there is evidence of metastases then treatment is generally palliative (see below). If
no secondary deposits can be found then the initial priority is local treatment to deal

with the cancer in the breast.

TREATMENT FOR EARLY BREAST CANCER

The choice of treatment for early breast cancer should be made on the basis of the risk
of recurrence of the disease, the menopausal status of the woman and the wishes of the
patient, However, the initial management is hormally surgery, cither conscrvative
(where only the lump is cxcised) or a mastectomy (where the whole breast is removed).
The surgeon often removes some or all of the lymph nodes in the axilla (axillary sample

or clearance), both for diagnostic and therapeutic purposes. Usually when only the lump




is exciscd, radiotherapy (RT) is given fo the breast, although it can also be given to the

chest wall after a mastectomy or to the axilla o try (o control the disease locoregionally.

EBCTCG (1995) showed that there was no survival benefit from performing a
mastectomy as opposed to lump excisions plus RT for tumours <4cm in size. The
results from this overview are based on approximaiely 28,000 women, entered into triais
Tor surgery with or without RT, which began randomisation before 1985. In this case

(size <4cm), the decision for surgery type should depend on factors such as the ratio of

the size of the tumour (o the size of the breast, the age of the patient and the patient’s

choice. b

Although most women do not have clinical evidence of metastases at diagnosis, surgery

is not usually sufficient because undetectable micrometastases may already be in the

blood. These may lay dotmant for a number of years until they develop into a clinically
detectable recurrence which may eventually kill the patient. It is, therefore, necessary to
identify the risk of relapse to guide the choice of adjuvant systemic treatments given at
the same time as surgery. The aim of these therapies is to treat the whole body to try to
prevent the disease recurring or spreading. The factors which identify the risk of relapse

also, therefore, affect the overall prognostic chances of survival for a woman,

The single most important prognostic factor is pathological node status. This is
obtained from tissue removed from the axilla. The tissue is examined to determine how

many of the total number of nodes examined show tumour invelvement. The status is

often just given as positive or negative, Nodal involvement is often an indicator that the
disease has micrometastasised, with tumour cells already spread into the blood supply

but have not yet infiltrated other tissuc and so cannot be detected. In general, if no

nodes are positive, the prognosis is goed. 'Lhe outlook worsens as the number of &

positive nodes increases.

Miller et al (1994) show that survival dcercases as the number of nodes involved
increases, with 10-year survival rates being 65%, 38% and 13% for none positive, 1-3
nodes positive and = 4 nodes positive, respectively. Alternatively, any nodal

involvement had 10-year survival rate of 25%.

26




Another important prognostic factor is pathological tumeur size, as measured by the
pathologist. Ewertz et al (1991) found an increasing risk of death with tumour size, as
did Miller et al (1994), Newman et al (1997) and Gordon et al (1992). When compared
to tumours < 2em, the hazard ratios of dying for tumours of size 2.1-5¢m and >5cm
were 1.43 (95% CI: 1.09, 1.88) and 2.13 (1.33, 3.43) respectively (Newman et al, 1997).
However, Carter et al (1989) reported an interaction between pathological size and
pathological node status. That is, the effect on survival was larger [or node status
negative compared to node positive, when tumour size was large than when tumour size
was small. Conversely, the survival effect was larger for small tumour size compared to
large, when node status was positive rather than negative. They showed thal in 71% of

women with tumour size = Scm, at least one node is expected to have involvement.

Tumour differentiation or grade measures the degree of differentiation of the cells in
the tumour. ‘That is, how similar the cancer cclls are in appearance, shape and structure
compared to the normal cells in the breast. Miller et al (1994) showed that the grade of
the tumour affects the survival [igures. Grade I (well-differentiated) tumours had a 10-
year survival of 85% compared to poorly-differentiated tumours (Grade II) having a

40% survival at 10 years. Ewertz et al (1991), Freedman ct al (1979) and Sainsbury et

al (1995a) all found a similar relationship of survival with grade.

Age is another factor which is both prognostic for survival and may infiuence choice of
treatment. Some of the studies demonstrate a linear decrease of survival with age
(Freedman et al, 1979; Karjalainen & Pukkala, 1990; Sainsbury et al, 1995a). However,
other studies showed an increased hazard of death for women aged under 35 compared
with the group of women aged over 35 (Miller et al, 1994; Richards et al, 1996) and
under 40 (Newman et al, 1997) compared to 40-49, with the risk then increasing for the
age groups greater than 40-49.

Clinical stage is not really used to determine choice of adjuvant treatment for early
breast cancer, but it is another prognostic factor, since one of its components is the
presence of metastases. Several staging methods have been included in reported

survival analyses, some use the TNM staging method (UICC, 1987), whilst others use
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the extent of disease: local (no nodes or metastases), regional (nodal involvement) or

metastases. i

Shek & Godolphin (1988) found that survival decreased as the clinical stage increased.

Sainsbury et al (1994) show that the survival at five years for Stages [, Il, Ill and IV
were 84%, 71%, 48% and 18% respectively. Stage IV disease represents metastatic

breast cancer. Clinical stage obtained from the TNM system is not always reliable

because the measurements are based on clinical assessment and not pathological details

(Sainsbury et al, 1994). Bundred et al (1994) suggest that true prognostic information

can only be achieved by histopathological assessment of the nodes removed from the
axilla becanse only 70% of involved nodes can be detected clinically. Brewster et al
(1996b) showed that there was poor agreement between clinical and pathological
staging information. Sainsbury et al (1995a) and Schrijvers et al (1995) used extent of
disease to stage the tumour with Sainsbury et al (1995a) quoting an increased hazard of
death for nodal involvement of 1.99 (95% CI: 1.89, 2.09} and an even higher one for
metastatic disease (4.39; 95% CI: 3.98, 4.85) when compared to local disease after
adjusting for age, grade, deprivation, period of treatment and combination of treatment

given, Schrijvers et al (1995) reported similar findings.

Oestrogen receptor (ER) status gives a measurement about the presence or absence of

oestrogen receptors in the cells of the sample of tissue excised. Several ways of
reporting the ER status mean that scores given by different labs cannot be directly
compared. The scores are on a continuous scale, with a cui-off selected to separate
negative from positive. Often only the binary variable is reported and used in statistical

analyses, itrespective of the method used to obtain it.

The ER status of the woman is determined at the age when the transtformation of the
DNA in the cell takes place and not the age at diagnosis. Pujol et al (1998) found that
67% of peri- & postmenopausal group had ER positive tumours compared to 59% ol
premenopausal women. Souhami & Tobias (1995) suggest similar figures for
postinenopausal (65% ER positive) but only 30% ER positive for premenopausal
women. [n gencral, having an ER negative tumour implics a poorer prognosis than
having an ER positive tamour (Newman et al, 1997), with a hazard ratio for ER

negative vs ER positive of 1.76 (95% Cl: 1.35, 2.29). Similar findings were observed
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by Gordon et al (1992), Hawkins et al (1996) and Shek & Godolphin (1988). However,
Miller et al (1994) suggest that the effect of ER status on survival weakens over time.
They also point out that ER status and tumour grade are often correlated and give the
example that most Grade 111 tumours are ER negative. Giutlrida et al (1992) observed
thut ER status was significantly associated with body mass index, with obese women

more likely to have ER positive tumours in both pre- and postmenopausal women.

The importance of ER status is considerable for guiding whether or not hormone
treatment would be useful. Endocrine therapy aims to prevent the cancer cells getting
the hormones that they need to grow and survive. The usual drug of first choice is
tamoxifen which is an anti-oestrogen, but endocrine therapy also includes aromatase
inhibitors, which block the production of oestrogen from the fatty tissue in

postmenopausal women.

Two EBCTCG overviews (EBCTCG, 1992; EBCTCG, 1998a) have examined the
prescription of tamoxifen and the results are based on roughly 37,000 women in 55
trials. The annual reduction in the odds of recurrence in the two overviews were 25%
(standard deviation (8D) 2) and 26.4% (SD 1.5) respectively. Similarly, there was an
annual reduction in the odds of death of 17% (SD 2) and 14.5% (SD 1.7) for use of
tamoxifen versus none for all ages. From the earlier report (EBCTCG, 1992), the
cotresponding 10-year susvival figures for all deaths were 58.8% for the use of
tamoxilen and 52.6% Jor none, which gives a very highly significant difference of 6.2%
(8D 0.9). The benefits increased with longer duration of {amoxifen (i.e. use of drug for
five years instead of two years) and SIGN/SCTN (1998) recommend that it be given for

at least five years.

Ovarian ablation is another form of endocrine therapy. The puwrpose is to stop the
normal function of the ovaries. This can be achieved surgically by removal of both of
the ovaries; by irradiation of the ovaries; or by drugs which suppress their control of the
menstrual cycle, hence altering the levels of oestrogen and progesterone circulating in

the blood. Ovarian ablation can be used for early, locally advanced or metastatic breast

cancer.




Two overviews (EBCTCG, 1992; EBCTCG, 1996) examined the results for about 3,000
women given ovarian ablation in total, roughly 2,000 of whom werc under 50 years in
age. The major finding was that ovarian ablation only provided a benefit in women
aged under 50 years (a surrogate for premenopausal women), with an overall reduction
in mortality per year of 18% (SD 5.7) for the under 50 group in the latter report. This
was equivalent to a 15-year survival difference of 6% (SD 2.3) of 45.0% vs 39.0%.

An alternative systemic treatment is chemotherapy (CT), used to kill cancer cells, both
in the breast and the metastatic cells throughout the body. Chemotherapy is the term
given to one or more cytotoxic drugs prescribed for this sole purpose and can be used
for women with early, locally advanced or metastatic breast cancer. 1t can cause partial

or complete ovarian suppression in premenopausal women (EBCTCG, 1996).

Two overviews examine the use of chemotherapy (EBCTCG, 1992; EBCTCG, 1998b)
and are based on approximately 18,000 women. Chemotherapy was given cither as
single agents or in combinations and data are available from over 100 trials. The largest
bencfit was gained from giving polychemotherapy (multi-agents) for a prolonged period,
although no additional benefit was gained from extending the period bevond 3-6 months

(EBCTCG, 1992).

For women of all ages, the odds reduction in mortality was 11% (SD 2), which was
highly significant (EBCTCG, 1992). The 5-year survival figures showed a benefit of
3.3% (SD 1.1) for chemotherapy vs none, and at 10 years the difference was verv highly
significant at 6.3% (SD 1.4). The benefit of giving CT was much preater tor women
aged under 50, although there was still a significant reduction observed for the 50-69
group. The gain for use of CT was higher for node positive women compared with node
negative disease (EBCTCG, 1998b).

The exact choice of adjuvant systemic treatment for early breast cancer depends on the
prognostic factors for risk of relapse and age or menopausal status of the patient, but it
is generally accepted that either endocrine therapy or chemotherapy be given, either

alone or in combination, following surgery (Richards et al, 1994).




TREATMENT FOR LOCALLY ADVANCED BREAST CANCKER

In a minority of patients without evidence of metastatic disease at presentation, the
woman cannol be operated upon because the disease has infiltrated the skin of the breast
or chest wall; is in an awkward position; or is growing too rapidly. This cancer is
known as Iocally advanced disease and the median survival for this group of women is

about 24-30 months, with S-year survival between 1% to 30% (Rodger et al, 1994).

The initial treatment is radical radiotherapy, followed by systemic treatment
(SIGN/SCTN, 1998). Rodger et al (1994) point out that it may then be possible to
perform some surgery if the systemic therapy reduces the bulk of the tumour. Often
surgery is only performed on locally advanced disease to attempt to remove most of the
tumour if it is fongating through the skin (Souhaimi & Tobias, 1995). A large number of
paticnts with locally advanced cancer will develop uncontrolled disease of the chest
wall. Patients given standard chemotherapy regimens have lower rates of recurrence

than women not receiving CT, but they do not have improved survival.

TREATMENT FOR METASTATIC BREAST CANCFR

This can either be for women with metastases at presentation or those who develop them
as secondary cancers. “Currently, patients with distant metastases are incurable. The
aim of treatment is therefore to maintain the highest quality ol life and relieve
symploms™ (SIGN/SCTN, 1998). Therefore, all of the treatment given at this stage is

palliative and not curative in intent.

The median survival for women with metastases from breast cancer is about 18-24
months, although this varics considerably, depending on the site of the metastases,
whether the tumour is hormoene sensitive or not, and, for women with non-metastatic
disease at presentation, the speed of progression of the metastases. Women with
metastases in the bones and soft tissue (skin, other breast, [ymph glands) have the best
outlook, whereas patients with metastatic discasc in the lungs, liver or brain may survive

for as little as two months (Leconard ct al, 1994).

Usually endocrine therapy is given first because it is not as toxic as chemotherapy. The

exceptions to this are if the metastases are in sites such as the liver, lung or brain; or if
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there has only been a short interval between primary treatment (for patients without
metastases at presentation) and the occurrence of metastases. [n these situations,

chemotherapy is the first line of treatment.

In some cases, surgery is performed to remove either the primary tumour and/or some of
the metastases. The decision to operate or not will depend on site of the deposit and the

overall health of the patient.

SIGN/SCTN (1998) recommend tamoxifen (or ovarian ablation for premenopausal
women) as the first line of treatment, with progestogens (or aromatase inhibitors for
postmenopausal wonien) as second line treatment if these fail (i.e. no response to the
treatment or an initial response followed by disease progression). Only about 30% of
women have an objective response (complete or partial) (0 hormone treatment, although

women with ER positive tumours have a much higher rate of response of about 50-60%
(Leonard et al, 1994).

When hormonal treatments no longer appear 1o have any effect on the cancer,
chemotherapy is then considered. The first line response rates to CT (40-60%) are, in
general, higher than for hormonal therapy, although they tend not to last as long and
have more side-effects (Souhami & Tobias, 1995). Gregory et al (1993) found that it
was not possible to predict which patients were likely to respond, but that women who
responded to first line CT treatment were more likely to respond to second line CT

treatment than those who did not respond to the first line treatment (24% vs 12%:;
P=0.04).

'The survival benefit due to giving CT may be several months in a4 few women. These
must be balanced against the toxic effects of treating women where CT gives no

response (Souhami & Tobias, 1995; Ramirez et al, 1998).

When standard chemotherapy regimens fail to work, Leonard et al (1994) suggest that
experimental CT drugs can be administered (with the patient’s consent and adherence to
the necessary guidelines for administering experimental treatments). In addition, the

other symptoms of the cancer are treated to try to improve quality of life. Radiotherapy




can be given as a palliative measure for women suffering from pain due to metastatic

disease.

CLINICAL TRIALS FOR WOMEN WITH BREAST CANCER

There is, as described, wide variation in treatments given for breast cancer, cspecially
among early, locally advanced and metastatic disease, but also within each of these three
groups. With many new drugs becoming available, it is essential that they are tested
both alone and in combination with other treatments. They can be assessed fully only
through the use of Phase 1l randomised controlled trials (RCTs), although experimental

Phase I and II trials provide the guidance for setting up RCTs.

Clinical trials are an integral part of defining better treatiments, providing improved
standards of carc and optimising the standard therapy. They offer the opportunity of a

major breakthrough in the treatment of cancer.

The overviews mentioned above demonstrate the large number of trials that have heen
available for early breast cancer. Despite this, participation in clinical trials for breast
cancer is low. Tate et al (1979) estimated that on average 8% of patients with breast
cancer in the UK entered clinical trials, whilst overall, 12% of women entered clinical
trials in Scotland in 1987 (Twelves et al, 1998b) from analysis of the Breast Cancer
Audit data.

From that Audit, 8.4% and 8.7% of patients in 1987 and 1993 respectively entered trials
for early or locally advanced breast cancer in Scotland (T'welves et al, 1998b). In this
study, it was found that being treated by a ‘specialist’ surgeon or sceing an oncologist
implied that a woman was much more likely to enter a clinical trial. They also found
that women treated on a clinical trial were more likely 10 have their tumour staged more
thoroughly. FFor example, only 16% of women on a trial did not have their node status
known compared to 32% of women not treated on a trial. Thus, patients treated on a
trial may be managed more appropriately. Ramirez et al (1998) suggested that women
on a clinical trial may have a better prognosis than women treated outwith the trial
setting. Twelves et al (1998b) did not find a significant survival benefit for trial entry,

although with only 58 deaths in women treated on a trial in the 1987 cohort examined
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for survival, the lack ol significance may simply be due to a lack of power, as the hazard
ratio suggested a benefit, 0.79 (95% CI: 0.59, 1.04; P=0.10) for those women entcred

onto a clinical trial.

Of the women diagnosed with breast cancer in Scotland in 1987, only 83 of the women
included in the Breast Cancer Audit data (n=2148) were entered into trials for metastatic
cancer (Twelves et al, 1998b). These women represent 12.8% of the 775 (175 with
metastases at presentation plus 600 with non-metastatic discasc at presentation, who had
had a distant rclapsc by the time the data were collected) women eligible for entry to a

trial for women with metastases.

It seems imperative that the number of women entering clinical trials increases. The
reorganisation of the health service and support of trials provided by the Scottish Cancer
Therapy Network mean it ought to be possible to achieve a similar level of participation
for breast cancer trials in Scotland as that observed for entry of children into trials of
acute lymphoblastic leukaemia (over 50%; Stiller, 1994). This should lead to improved
treatments for women with breast cancer, and hopefully, ultimately lead to improved

survival prospects,

This chapter has mainly focused on the risk of getting brcast cancer, the optimal
treatment available to women who do get the disease, and the survival chances for these
women. The next chapter describes the purpose of a national retrospective audit of ail
women identified as having invasive breast cancet in Scotland in the ycars 1987 and

1993, "This was performed to cxaminc what trcatment these women were receiving and

what were their survival chances.




CHAPTER 3 SURVEY OF BREAST CANCER IN SCOTTISH
WOMEN IN 1987

3.1 AIMS OF THE STUDY, METHODS OF DATA COLLECTION AND THE
SUBSET OF PATIENTS SELECTED FOR ANALYSIS

AIMS

The main aims of the audit were to identify how women diagnosed with invasive breast
cancer in Scotland in 1987 and in 1993 were managed and to investigate whether there
had been any changes in the patterns of care between the two study years, during which
time a national breast screening programme was infroduced (Section 2.1.2). This thesis
is only concerned, however, with analysis of the 1987 cohort. Analyses relating to the
management patterns for these women and survival analysis results are discussed in the
text. One issue to bear in mind is that this study is only a retrospective audit and not a
controlled randomised clinical {rial. Therefore, any conclusions reached can only be
descriptive, indicating areas where a clinical irial might be appropriate or where further

research could be beneficial,

METHODS OF DATA COLLECTION
A list of all women diagnosed with breast cancer in 1987 was obtained from the Scottish

Cancer Regisiry.

All patients who were deemed ineligible were removed from this list. These included
women who were DCO (death certificate only) registrations, because, by definition, only
limited diagnostic information is held about such patients. Other women excluded were

those who were diagnosed and treated outside Scotland; those women who in fact had




non-invasive disease and also those women who had a previous diagnosis of breast

cancer, identified using probabilistic record linkage (Kendrick & Clarke, 1993).

Having excluded the ineligible womern, case notes wetre then sought for all eligible
patients. However, not all of the case notes for these women could be found because
some sets were either missing or had already been destroyed. From the case notes that
were available, much additional information was collected, to supplement the data that
had already been provided by the cancer registration system, by trained Data Managers
from the Scottish Cancer Therapy Network (SCTN). A quality check was performed on
a random sample of case notes io assess the accuracy of extraction of information firom
the case notes, using cross-checking of data cxtraction by Data Managers, and also
checks were performed to assess the accuracy of the data entered onto the audit

database.

NUMBERS INVOLVED IN THE 1957 COHORT

At the time that the list was drawn up from the Scottish Cancer Registry, there were
2,581 women who were registered in 1987 as having breast cancer. Out of thesc
wonien, 79 were excluded as they were DCO registrations. Another {01 women were
deemed ineligible because they were diagnosed and treated outside Scotland, their
disease was non-invasive or they had had 4 previous diagnosis of breast cancer. This

left 2,401 women who were considered to be eligible for inclusion in the study.

The Data Managers were unable to find 164 scts of notes and a further 89 sets had been
destroyed. This meant, therefore, that information was available for 2,148 women in
1987. This represented 89% of the eligible cascs. Data collection was undertaken

during the years 1994-5.

It is important to be aware of the fact that there were significantly more notes missing
(either not located or destroyed) for elderly patients. These patients were more likely to
have died by the time of the data collection. Notes belonging to deceased people are
more likely to have been destroyed or archived (where there may be a problem of
retrieval). This possible bias cannot be accounted for in any subsequent analyses and

needs to be remembered when interpreting any results.
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ANALYSIS DATASET

A further 529 women were also excluded here. This was because only 1619 women
were included in the eohort used in the survival analysis performed on the Breast Cancer
Audit data (Twelves ct al, 1998a). In that study, only those women who had no
evidence of metastases at diagnosis and who underwent surgery were included in the
analysis. One of the main purposes of this thesis was to investigate the ettects of the

unknowns on the results and conclusions from that survival analysis (see Chapter 5)

and, thevefore, the cohort of 1619 women was studied here.

The 529 women excluded were those with metastatic disease (175 in 1987), because
these women would have been treated very differently from those women with early

breast cancer (Section 2.3.2), and the women whose disease was non-metastatic, but did

not undergo surgery (354 in 1987). This latter exclusion was because the three
important prognostic factors: pathological node status, pathological tumouwr size and ER
status can only be recorded if tissue is removed by surgery. Rather than perform the
analysis on factors with even greater percentages of unknowns (see Scction 4.2), the
women who did not undergo surgery were not included in the analysis. It is possible
that some selection bias may have been introduced by this exclusion, say for example, if
different Health Boards had different policies for selecting women for surgery, leading

to only the better prognosis women undergoing surgery.

Thus, the subgroup of women included in all analyses based on the Breast Cancer Audit
data in this thesis relate to the 1619 women who had no evidence of metastatic discasc

at presentation and who underwent surgery.

OQUTCOME INFORMATION

The initial plan had been to supplement outcome information collected from case notes
by linkage to the death records from the General Registers Office (GRO). At the time of
the initial analysis the latest death information available for linkage was up to the end of

1993.

It was realised that there would be a problem with the approach of using death

information collected from case notes with data collection taking place during 1994 and
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the start of 1995. Bias would be introduced for those case notes examined towards the

end of collection as these women would have had a longer time in which to have died or

still have been seen alive. ‘Lhis bias could be regional systematic with Glasgow (being
the largest region for data collection) taking the longest time to collect all of the

information.

Therefore, it was decided that the most valid analysis would be to use the probability
matching technique (Kendrick & Clarke, 1993) to link the cases with the GRO death
records to obtain the date of death. For those women with no recorded death, the
assumption that the women were still alive at 31/12/93 was made. Clearly, this would
nusclassily women who had migrated out of Scotland after diagnosis and died

elsewhere. TTowever, these women are likely to be few in number.

3.2 VARIABLES COLLECTED AND THE SUBSET SELECTED FOR
ANALYSIS

INTRODUCTION

The information collected from case notes for all of the women in both years of the
audit covered the referral patterns; the initial staging information collected at the clinic;
the surgical procedures undertaken, by which surgeon and the date ol diagnosis; other
forms of treatment given; pathology details including extra staging information; and
follow-up and outcome details, The data collected at cach of these stages of

management are discussed separately in Appendix 1.
Only information relevant to the analyses undertaken in this thesis are discussed

subsequently. Analyses based on variables relating to non-relevant information can be

found in *Audit Report’ (Scottish Breast Cancer Focus Group (SBCFQG) et al, 1996).
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VARIABLES SELECTED FOR ANALYSIS

The included variables were identificd belore undertaking the analysis. They fell into
three categories: clinical, treatment and service(-related) variables. The clinical
variables (Table 3.1} represent features of the patient and the disease at diagnosis.
These are known to influence survival from prior clinical research (Section 2.3.2). The
treatment variables (Table 3.2) are known from clinical trials to be of significant
importance for determining outcome (Section 2.3.2). The service variables (Table 3.3)
were chosen because they reflect the modc of service delivery by the National Health
Service in Scotland (NHSIS). A social factor, deprivation was also included in with the

service variables.

Clinical Variables:

Variable Variable Categories

Age at diagnosis <50, 50 - 64, 65 - 79, >80 years
Clinical stage I, 11, 1L, not known

ER status positive, negative, not known
Pathological node status positive, negative, not known
Pathological tumour size | <2 cm, >2 cm, not known

Table 3.1: Clinical variables and definitions of the factors levels used in the analyses.

Age was divided into I5-year age bands so as to include the 50-64 range (the screening
group) as one group. There were only 33 women aged under 35 years, so the original
groups <35 and 35-49 were merged into one <50 group and analysed together in all

analyses.

Clinical stage was derived from TNM staging. Since Stage IV patients are those with
metastases, there are no Stage IV patients in the subgroup of 1619 women chosen for

analysis.

ER status was considered positive if cytosolic protein = 20 fmol/mg or staining > 10%,

otherwise it was taken to be negative.

Women were classified as unknown node status for three reasons: the information was

not known as they had no axillary surgery; it simply was missing from the case notes;
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the sample was inadequate in that it contained less than four nodes, alt of which were

negative.
The two original groups for pathological tumour size, >2-5 cm and >5 cm, were merged

together to form one group, >2 cm, because there were only 79 women with tumours

that were greater than 5 ¢m in diameter.

Treatment Variables:

Variable Variable Categories
Type of surgery mastectomy, breast conscrvation
Adjuvant chemotherapy given, not given

Adjuvant endocrine therapy | given, not given
(including ovarian ablation)

Any systemic treatment given, not given

Adjuvant radiotherapy given, not given

Tahle 3.2: Treatment variables and definitions of the fuctors levels used in

the analyses.

As seen in Section 2.3.2, primary treatment of early breast cancer can include surgery,
radiotherapy, chemotherapy and hormone treatments. Variables chosen for analysis are

given in Tabie 3.2.

Women who had breast conscrvation followed by a mastectomy within three months of

the initial surgery were coded as having had a mastectomy as their primary treatment.

Adjuvant endocrine therapy included both hormone treatment and ovarian ablation. The
‘any’ adjuvant systemic treatment group consisted of patients receiving chemotherapy or

cndocrine therapy or a combination of these treatments.

Adjuvant radiotherapy can be given to three different sites: to the breast, for women
who havc had breast conservation; to the chest wall, for those woimnen who have had a
mastectomy; and to the axilla, for all women, except those who have had an axillary
clearance. As explained in Section 2.3.2, radiotherapy is a treatment of local control

(trying to prevent local recurrences) rather than systemic control and has not been shown
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to have benefit in terms of overall survival. Therefore, in this thesis, site specific usage

of radiotherapy is not considered.

Service Variables:

Variable Variable Categories

Deprivation [ = least deprived, II, III, IV, V = most deprived

Health board of first ABCFEFGHILLNSTV,Y

treatment

Referral to oncologist yes, no, not known

within 3 mths of diagnosis

Surgical caseload 1 - 9 patients per year, 10 - 29 patients per year, member
of team or 230 patients per year, not known

Table 3.3: Service variables and definitions of the fuctors levels used in
the analyses.

Thesc variablcs represent the social background of the patient and organisational
infrastruciure of the NHSIS under which the primary treatment was administered. Table

3.3 gives the service variables chosen for analysis.

The Carstairs classification of socio-economic deprivation (Carstairs & Morris, 1991)
was adapted to represent quintiles from the tolal Scotlish population, based on the 1981
Census (Section 2.1.2). This is an area-based measure of socio-cconomic status, derived

from the postcode of residence at the time of diagnosis.

The Health Board of first treatmen( was the Health Board in which primary treatment
was administered. Although a few palients may have had nco-adjuvant treatment, the
decision was made to derive the Health Board of first treatment to be the Health Board
where surgery was performed for all of those women who underwent surgery (all of the
cases in the chosen subgroup of analysis for this thesis). Health Board of residence was
not used because the aim of the audit (SBCFG et al, 1996) was to examine management

patterns and the effect on survival.
Due to the small numbers of women treated in the Health Boards covering the Islands

(Orkney, Western Istes and Shetland), these three Health Boards were grouped together

as the ‘Islands’ to represent off-mainland treatment. Appendix 2 gives the key to the
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Health Board labels given in Table 3.3. These labels are those used in the virtually all
NHSIS documents.

Referral to an encologist for primary treatment meant that women for whom the date of
referral was unknown had to be excluded because the referral could have been for
primary treatment or later following a recurrence. The classification ‘no’ for referral to
an oncologist included those women who saw an oncologist after three months as it was
assumed that this referral was not as part of the primary treatment. The reason for the
majority of women seeing an oncologist would have been for the prescription of

radiotherapy, rather than chemotherapy.

The original surgical case load breakdown was 19, 10-24, 25-49 and ‘team’ or =50
patients per year, Here ‘team’ indicates a group of breast surgeons who collaborate and
work together in a breast clinic. This was used for some of the analyses reported in the
‘Audit Report’ (SBCT'G et al, 1996). However, the breakdown given in Tablc 3.3 was
the one used in the initial survival analysis given in that report and also by Twelves et al
(1998a) 10 allow comparisons with the recently published paper by Sainsbury et al
{1995a). The mumber of cases a surgeon dealt with per year was based on the total
number of patients with breast cancer diagnosed under their care, including those
women who did not eventually undergo surgery. Women who were recorded us having
had surgery in their case notes, but the surgeon’s name was not stated had to be

excluded from analyses involving surgical case load.
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CHAPTER 4 DETERMINATION OF MISSING VALUES AND
CHARACTERISATION OF VARIABLES

4.1 GENERAL CHARACTERISTICS OF VARIABLES SELECTED FOR
ANALYSIS

INTRODUCTION

This section presents some basic descriptive statistics for the variables choscen for
analysis in the Breast Cancer Audil. Also discussed are associations for pairs of
variables with cross-tabulations gtven in Appendix 4. All of the variables used in the

analysis were categorical.

BASIC DESCRIPTIVE STATISTICS
Clinical Variables: Table A3.1 in Appendix 3 gives the breakdown of the numbers and
percentages of cases in the different levels for the factors for clinical variables. Figures

4,1 to 4.5 illustrate these breakdowns. Note that ‘NK stands for not known.

Pareentages in the different age groups Fercentages in the diferent clincal stagos Fercentages inthe d ferent BR stalus

%
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64 79
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Figure 4.1: Percentages by Figure 4.2: Percentages by Figure 4.3 Percentages by
age group. clinical stage. ER status.
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Figure 4.4: Percentages by  Figure 4.5: Percentages by i
node status. tumour size,

For the 1619 surgical patients, both the mean and median ages at diagnosis were 58
ycars. The youngest and cldest women receiving surgery were aged 23 and 89 years
respectively and the interquartile range was 48 to 67 years. The largest group for age
was the 50 to 64 age group. Most of the tunours were clinical stage II, that is, either

small tumours with node involvement or large tumours with no nodal involvement.

Menstrual status was collected for all but 85 (5.3%) women. This clinical variable was
not examined further because it was found (o be non-significant in the Cox’s survival

analysis (sce Section 5.2.2).

Despite histological grade being an important prognostic factor for breast cancer (Miller
et al, 1994), this variable was not included in the list of available clinical factors because
53% of the women did not have this information recorded, This decision is suppoited
by Schemper & Smith (1990), who state that using covariate deletion is their chosen

oplion when a large percentage, say 50%, of the data are missing.

Treatment Variables: Table A3.2 in Appendix 3 gives a corresponding breakdown of

cases for the treatment variables. Figures 4.6 to 4.10 illustrate the percentage

breakdowns.




Percentape of aduyent endorng tnerapsy

Gven et
aven
Endocrine therapy

Tereentege of adjuvam chenxtlisrapy

100 -
aa 4
aa
40

Given ot
giver

Chemotherapy

Pareantags of adirvant rasictherapy

%
c3BE8588

Ghven hal
e

radiothopapy

Figure 4.6: Percentages by
adjuvant endocrine
therapy.

Figure 4.7: Percentages by
adiuvant chemotherapy.

Puisunluge of tho dilifurom surgery iypes

Mast Cons
Type of surgery

Figure 4.9: Percentages by
type of surgery (Mast
stands for mastectonty,
Cons stands for
conservation).

Percentage of any adjuvant systemlc
Merepy

o0
b7 —
)
£0

Givuq Not
given

Any syatam|c therapy

Figure 4.10: Percentages
by adjuvant chemotherapy
or endocrine therapy.

Figure 4.8: Pe:‘cenr&ge.'s" by
adiuvant radiotherapy.

Mastectomy was the most common surgical procedure in this 1987 cohort, perhaps

reflecting the fact that the majority of tumours were greater than 2 cm in size. However,

the mastectomy group included the 117 women who had breast conservation, followed

by a mastectomy within three months of the conservation surgery.

The majority of women getting some form of endocrine therapy received tamoxifen,

Adjuvant chemotherapy was not widely preseribed for carly breast cancer in 1987. The

classification adjuvant chemotherapy or endocrine therapy is also known ag any

adjuvant systemic therapy in this thesis.

Service Variables: Table A3.3 in Appendix 3 provides a breakdown of the cases for

each of the service factors. Figures 4.11 to 4.14 illustrate these breakdowns.
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Figure 4.14: Percentages by Health Board,

The fact that 25% of women were in the least deprived group, which was derived to be a
quintile of the Seottish population, reflected the known higher incidence of breast
cancer among women living in the less deprived areas (Harris et al, 1998). Only three
categories were used, instead of five, to highlight the differences between the least

(category I) and most deprived (catcgory V) women more clearly.

There were 278 women in the surgeon case load grouping who managed onfy one to
nine cases of breast cancer in 1987, Seventy-eight surgeons saw these women, with 23
surgeons only seeing one patient in that year. Thus 17% of the women in the cohort
were operated on by surgeons who were relatively inexperienced with breast cancer,
although there might be some underestimation of the casc loads of surgeons who took

up post or retired during the year of study (likely to be few in number).
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The five Health Boards containing Cancer Cenixes arc Highland, Grampian, Tayside,
Lothian and Greater Glasgow respectively (Section 2.3.1) and are known in this thesis £
as Cancer Centre Health Boards (CCHB). The other Health Boards are known here as 1

non-Cancer Centre Fealth Boards.

The number of women living in a CCHB was 885. Of these women, only 477 (53.9%) %

were actually operated on at the Cancer Centre. i

ASSOCIATIONS BETWEEN PAIRS OF VARIABLES

The clinical variables were examined to investigatc whether these variables, which
represent the state of the tumour the clinician was faced with at the clinic, were related.
A selection of relationships which were deemed to be interesting from a clinical point of
view were also investigated. Table 4.1 presents the P values for the x” tests of

association which were performed.

C Aok

L % %

N ¥k * 5 &k

T 0.001 *oof £ S * ¢

H. 0.001 k¥ EES * %k o

S Hok * ¥k A% *% | 042 -

R %% * ok - - - - .

D 0.24 [032 | »* | - i : = :

CT e - _ e ok - _ _ * - ~

TS - - - - - - 1027 | - - -
A C _|E_|N_|T [H IS R _|D |cCT

Table 4.1: P values for y* tests of association for various variables. Note that ‘“**’
indicates a P value <0.001; - means that the association was not tested. Age is given ;
by 4, clinical stage(C), node status(N), tumour size(T), ER status(E), Health Board(H), 2
surgeon case load(S), referral to oncologist(R), deprivation group(D),
chemotherapy(CT) and type of surgery(TS) respectively.

All of the clinical variables were associated with each other and also there were
differences in the levels of these variables amongst the Health Boards. These significant
results for Health Board could be because there were differences in the proportions

originally selected for surgery in the different Health Boards (data not given). This
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could lead to different distributions of the clinical factors for the patients treated in

different Health Boards.

Neither age nor clinical stage at presentation were associated with the deprivation
category assigned to the postcode of residence, although there was a significant
association between deprivation and ER status. This is discussed further in Sections
5.2.2 and 5.2.3. Use of chemotherapy depended upon referral to an oncologist, age and
node status. These results were expected with the majority of women receiving
chemotherapy being aged under 50 years with node positive disease. This is the group
of women, subsequently shown in the overview (CBCTCG, 1992), where chemotherapy
has a beneficial survival cffect over no use of chemotherapy (Section 2.3.2). The type
of surgery performed was independent ol the casc load of the surgeon, although all of

the clinical variables, except tumour size, were associated with surgeon case load.

Cross-tabulations of pairwise clinical variables: It is possible that some of the P
values for the tests of association were only significant because of differences in the
proportions of unknowns in the different levels. Tables A4.1 to A4.10 in Appendix 4
give the percentages in the cross-tabulations of the pairs of clinical variables. To
examine whether different proportions of unknowns caused (he significant results, tests
of association on each of the pairwise-complete pairs of variables were performed
(Table 4.2).

C RS

E 0.001 [0.13

N 0.42 ¥ 1 0.58

T 0.09 ** 10.001 i
A C | 0 N

Table 4.2: P values for y* tests of association for
pairwise-complete clinical variables. Note that '**’

indicates a P value <0.001. Age is given by A, clinical stage(C),
node status(N), tumour size(T) and ER status(E) respectively.

Therefore, the observed significant associations for the pairs of variables: age by node
status; age by tumour size; clinical stage by ER status and ER status by node status

appeared 10 be due to differences in the proportions of unknowns in the different levels
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of the factors. Here, when all of the information was complete, the hypothesis of

independence for each of these four pairs of factors could not be rejected. However,

there were still significant differences between the numbers observed and expected for
the different levels for the pairs of factors: age by clinical stage; age by ER status;

clinical stage by node status; clinical stage by tumour size; ER status by tumour size and

node status by tumour size. Some findings from the tables for these six cross-

tabulations are now given.

From Table A4.1 in Appendix 4, there was a larger percentage of clinical stage T women
in the under 50 age group, but a lower proportion of women with clinical stage III
disease in this age group, than expected. There appeared to be larger number than

expected of these stage Il women in the age group 65-79.

There also appeared to be a larger percentage of ER negative women aged under 50
(Table A4.2 in Appendix 4) than in the older age groups. This agrees with Souhami &
Tobias {1995; Section 2.3.2). However, (here was a larger proportion of cases with ER

status unknown for women aged over 65, especially those over 80 years.

There were many more women with pathological node negative disease with clinical

stage I than expected from a statistical point of view, although not from a clinical point

of view, with clinical node status being a component of clinical stage. ‘L'hat is, it would

be expected that pathological node status would be related to clinical stage. Similarly,
there were more women with pathological node positive disease whose clinical stage
was stage II or Il especially III. There were more women with pathological node status

not determined for women with clinical stage [ disease or with clinical stage unknown
(Table A4.6 in Appendix 4).

Similarly, there were many more women with pathologically small (< 2em) tumours
with clinical stage I than expected under the assumption of independence between these
factors. However, with clinical tumour size being a component of clinical stage, it is nol
surprising from a clinical point of view that clinical stage was associated with
pathological tumour size. There were more women with large tumours (>2cm) with
clinical stage IT or IlI. Again, there were more women than expected who had neither of

these factors recorded (Table A4.7 in Appendix 4).
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There were more women with small tumours which were IR positive than expected and
more women with large tumours that were R negative. There were also differences in
the propottions with unknown tumour size across the Jevels of ER status (Table A4.9 in

Appendix 4).

There were many more women with node ncgative disease who had small tumours than
expected. Similarly, there was a larger percentage of women with large tumours that
also had nodal involvernent than would be expected by chance (i.e. under the
assumption of independence). This supported the findings of Carter et al (1989; Section
2.3.2). There were more women with both of these factors missing than expected

(Table A4.10 in Appendix 4).

Cross-tabulations of the clinical variables with surgeon case load: The associations
of surgeon case load with the clinical variables were then cxamined to investigate
whether significant results were due to differences in the proportions in the unknowns in
the different levels. The cross-tabulations for each of the clinical variables with surgeon
case load are given in Appendix 4 (l'ables A4.11 to A4.15), although there was no
evidence to reject independence of surgeon case load by pathological tumour size,

‘These were examined because surgeon case load and specialisation has been linked to
survival in scveral studies (Gillis & Hole, 1996; Sainsbury et al, 1995a; Sce Section

5.2.3).

‘I'here were more women aged under 65 years who were managed by a surgeon in the
Team or 30 or more cases per year group. This group of surgeons high case load) saw
many more women with clinical stage II disease, but also more ER positive tumours.
However, the most striking observation from the tables given in Appendix 4 is that this
higl surgeon case load group had much lower proportions of unknowns in the clinical
variables. When the unknowns were excluded from the analyses, the pairs of factors
became non-significantly associated (P=0.50 for clinical stage; 0.08 for ER status; 0.20
for node status). This suggests that the observed differences in the levels for the known
factors by surgeon casc load were because the high case load group was managing more
women whose disease had been better staged. The possible influences on survival are

discussed further in Section 5.2.3.
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4.2 PATTERNS OF MISSING VALUES AND LOG-LINEAR MODELLING

The last section showed that the clinical variables were inter-related. The four
variables; clinical stage, pathological node status, pathological tumour size and ER
status have all been shown to have prognostic importance in terms of survival from
breast cancer (Miller et al, 1994). There were some cases where this information was
missing for these factors, and the patierns of the missing values in these data are now

cxamined, both descriptively and by log-linear modelling.

4.2.1 THE VARIABLES: CLINICAL STAGE, PATHOLOGICAL NODE
STATUS, PATHOLOGICAL TUMOUR SIZE AND OESTROGEN-RECEPTOR
(ER) STATUS

For the 1619 patients, Table 4.3 shows thc numbers and percentages which were known

and missing for each variable.

Variable Number (%) Number (%) | Total
Known Missing

Clinical Stage 1302 (80.4) 317 (19.6) 1619

Pathological Node Status 1184 (73.1) 435 (26.9) 1619

Pathological Tumour Sizc 1287 (79.5) 332 (20.5) 1619

ER Status 990 (61.1) 629 (38.9) 1619

Table 4.3: Numbers and percentages of known and missing values for each of the
Sfour variables of interest.

Only 578 (35.7%) of the women had all four variables known. These cases comprise
the group known as the ‘complete cases’. The number of cases where there was only
one, two or three of the four variables missing were 546 (33.7%), 350 (21.6%) and 113
(7.0%) respectively. There were only 32 (2%) of the 1619 women who had no
information recorded for any of the four variables. Therefore, about 30% of cases had

two or more of these variables missing,
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To investigate whether the missing values are related, log-tinear modelling is performed.

Some theory is now given for this technique.

4.2.2 THEORY OF LOG-LINEAR MODELLING

In the situation where several categorical variables have been cross-classificd to give a
contingency table, it is the counts of the individuals falling into the cells of this table

that are modelled.

Let x,, represent the frequency of the ( 7.k, ,m.) th ccll, where the four variables take
the values:

ER status (E}: j=1,2

Tumour size (1) £ =1, 2

Node status (N): /=1,2

Clinical stage (C): m=1,2,

wlhere cach factor has level 1 meaning known and level 2 meaning missing.

Also, let 9, represent the probability that a randomly selected individual falls into cell

( j,k,l,m]. Let the vectors x and & represent the 16 x , frequencies and the 16

probabilities &, respectively, for simplicity.

Considering the total sample size to be fixed (# = 1619), the sampling distribution from
which these counts are assumed to come can be shown to be multinomial (Dobson,
1990), since the assumption is made that the original counts are from independent
Poisson variables, but these are constrained by the total fixed sample size and arc thus

from a multinomial sampling distribution.
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‘I'he probability density tunction for the vector x conditional on z X
Jhlm

i = 11, 18 given

by
‘9.,1"““1 i

flx8n) =nt] [

Jiln x Jkim *

with the constraints 0< &, <1 and ; '9. wm = L.
Jrin

The expected value of a particular element of x is given by

B(x ) =08 (EQ422_1)

g

In a log-linear model the logarithms of the expected frequencies are assumed to have a

linear form

16
log E{x ,,) = 255, (Fq422.2)

where £ is an 16 x 1 vector of unknown parameters and z isan 16 x 1 vector of

indicator variables, z,.
One hypothesis of interest is that of complete marginal independence. When this holds,

'gj.fa'm = 19;;.!9..‘1".'51..!.‘9..31 » (E’q 4'2'2_3)

where &, = Z i » the marginal probability of being in ER status level jfor 7 =1,2.

tim

Similatly, 8, , &, and 4 , are the marginal probabilities for the tumour size, node

status and clinical stage variables respectively.

Therelore, 1f the hypothesis of global independence holds then, rom Eqgs 4.2.2_ 1 and

4.2.2_3, the expected {requencies are given by

E(JCJ-M“,) = ”19,-...3;;,.‘9..;.‘9.__»; '




This can be written in terms of a main c¢ffects log-linear model with the structure

g1/l

log E(xmm) = U+ 0z, Bz, + 2, + 6,7,

with the appropriate constraints on the parameters «,, 5, ,y, and &

m”°

Similarly, the maximal {or fully-saturated) model can be written as the model with a
constant x ; four main effects; six two-way interaction terms; four three~way interaction

terms and a four-way interaction term.

Since the sampling distribution is assumed to be multinomial with » fixed, the log-

linear modcl must include the corresponding parameter . In this analysis, a corner-

point constraint is imposed, with cell (1,1,1,1) where all of the variables are known,

taken as the reference cell. Also, all of the terms including the first levels of the

variables are set to be zero. Thus, o, =0, =0, y, =0, § =0, (aﬁ)“ =0,

(aﬁ)u =0 etc.

Every variable has only two levels and since all of the terms involving the first levels are
set to zero, there is no need to include the subscripts on the parameter terms. Therefore,

the unknown parameters given in Eq 4.2.2_2 can be written as:

B=u; B=a: B=F B=r: K=0: B=(ef): £ =(ar);
ﬁs=(a’5); ,Bg=(,3?"); ﬂ10=(ﬁ5); ﬂllz(yé‘); ;3112(“18}’);
B =(0pd): By =(a); Bs=(8): Be=(aprd).

The main effects are represented by « for ER status; 8 for tumour size; ¥ for node

status and & for clinical stage respectively. The two-way, three-way and four-way

interactions are denoted, for example, by (aﬁ) , (aﬁy} and (05,63/5) respectively.
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4.2.3 RESULTS OF LOG-LINEAR MODELLING

T'or the four variables of interest in the Breast Cancer Audit data, the breakdown of the

observed values in the 16 cells is given in Table 4.4,

ER Status | Tumour Size | Node Status Clinical Stage
Known Missing

Known Known Known 578 81
Missing 133 26

Missing Known 100 30

Missing 32 10

Missing Known Known 232 73
Missing 124 40

Missing Known 65 25

Missing 38 32

Table 4.4: Observed numbers of cases in each of the 16 cells.

GLOBAL INDEPENDENCE

For the complete marginal independence model, the likelihood ratio statistic had a %*
value of 137.12 on 11 degrees of freedom (df} with P<0.0001. Therefore, the
hypothesis that the missing values in the variables were independent of each other could
be rejected. Thus, examination of the interactions between the variables was necessary

and a scarch was madc to try to identify the ‘best’ log-linear model fitting the data.

OTHER MODELS

The technique of backward elimination (Armitage & Berry, 1994) was used for the
model selection. Only hierarchical models were sought. Table 4.5 below shows the
results of this process starting with the maximal model, but only gives the highest
generaling classes for the model fitted at each step. A generating class is a way of

describing what terms are in the model and is best illustrated through an example.




Example: Step 4 from Table 4.5 below has generating classes given by

E¥{*C, T*N*C, E*N,
where E, T, C and N stand for ER status, tumour size, node status and clinical stage
respectively. ‘

E*T#C means that all of the terms(o:ﬂ5),(aﬁ),(a5),( ﬁ&), a, 3,6 and 1 are
included in the model.

T*N*C with E*1*C means that the extra terms {#8),(8y),(78)and 7 are
also included in the model.

E*N with both E¥T*C and T*N*C means that the extra term(ay) is also

included in the model.

Due to the hierarchical structure, only the highest order terms were assessed for removal

at each step. Thus for example at Step 4, despite the fact that there were 13 terms in the
model, only the interactions (aﬁé‘),( ﬁyﬁ) and (a;v) were examined to see whether they

could be removed from the model. At each step, the term which gave the smallest non-
significant change of the likelihood ratio was removed. The model fitted (shown using
the generating classes representation), along with the P values for removal of the highest

order terms, are presented for each step in Table 4.5.

BEST FIT MODEL
Step 7 below shows that the best fit model included all of the two-way interactions,

except for the one between node status and clinical stage. The likelihood ratio goodness

of fit statistic for this model was 7.64 as ¥ (P value =0.266) and hence this model

could not be rejected.

Ot en,

R X A




Terms examined Changein LR | P Value
Step 1: Generating Class: E*T*N*C
(2y5) 2.812 | 0.0936 - removed
Step 2; Generating Classes: E¥*T*N, E*T*C, E¥N*C, T*N*C
{apy) 0.025 0.8755
(a35) 0.504 0.4778
(a70) 0.000 0.9828 - removed
(875) 1.105 0.2932
Step 3: Generating Classes: EXT*N, E*T*C, T*N*C
{a8y) 0.024 0.8768 - removed
(o) 0.509 0.4757
(s} 1.105 0.2932
Step 4: Generating Classes: E*T*C, T*N*C, E*N
(ap5) 0.498 0.4806 - removed
(8r6) 1,157 0.2820
{ar) 46.974 <0.0001

Step S:

Generating Classes; T¥N*C, E*N, E*T, E*C

(85 0.928 0.3353 -removed
{ar) 46.728 <0.0001
{ap) 7.623 0.0058
() 26.143 <0.0001
Step 6: Generating Classes: E*¥N, E¥T, E*C, T*N, T*C, N*C
() 46.725 <0.0001
(e8) 7.621 0.0058
(e6) 26.141 <0.0001
(87) 4.869 0.0273
(55) 17.009 <0.0001
() 3.378 0.0661 - removed

Step 7: Generating Classes: E¥N, E*T, E*C, T*N, T*C
BEST FIT MODEL
(o) 51.204 <0.0001
(ap) 7.326 0.0068
{a5) 30.619 <0.0001
{Br) 5.908 0.0151
{p6) 18.048 <0.0001

Table 4.5: The steps in the backward elimination process with the highest generating
classes for each set of variables, along with the P values for removal of the highest
order terms from model, based on change in the likelihood ratio (LR). Nofe that E
stands for ER status, tumour size(T), node status(N) and clinical stage(C).
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The parameter estimates with their standard errors for the best fit model are given in
Table 4.6. All of the terms have 1 df. No standard crror was calculated [or the constant
term because the multinomial sampling distribution was assumed and so (his term was

considered to be fixed.

Term Parameter | Parameter Standard
Estimate Lrror (se)

Constant (all known) H 6.3497 —

LR status missing o -0.9036 0.0716

[wmour size missing B -1.7418 0.0949

Node status missing 4 -1.4300 0.0837

Clinical stage missing ) -1.8752 0.0962

ER status missing by () 0.3495 0.1287

tumour sizc missing

ER status missing by (cr) 0.8193 0.1148

node status missing

ER status missing by {ad) 0.7072 0.1278

clinical stage missing

Tumour size missing by {Br) 0.3328 0.1355

node status missing

Tumour size missing by {#5) 0.6236 0.1437

clinical stage missing

Table 4.6: Parameler estimates and their standard errors for the terms in the best
fit model.

All of the paramcter cstimates for the interactions represented being missing compared
with being known. Since all of these parameter estimates were positive, then this
implied that there was a positive association between the chances of the values being
missing in both variables in each of the two-way interactions, except for the non-
significant interaction between node status and clinical stage. Thus, it was more likely
that the second variable was missing if the first variable was missing than when the first

variable was known.

Table 4.7 below gives the estimated fitted valucs from the ‘best” model for the 16 cells
along with the observed values from Table 4.4, If can be seen that the estimated
expected numbers of cases falling into each of the cells are fairly close to the observed

numbers,




ER Tumour | Node Clinical Stage
Status Size Status
K M
K K K O | 578 E | 572301 O g8l E 87.75
M O 133 | E 13696 O { 26| E 21.00
M K O 100 | E 100.271 O 30] E 28.68
M O 321 E 33471 O 16| E 9.57
M K K O 2321 E 23185 O 731 E 72.10
M O 1241 E 12589 O i 40| E 39.15
M K O 65( E 57621 O | 25| E 33.43
M O 381 E 43.64 | O 32| E 25.32

Table 4.7: Observed (O) and expected (E) numbers of cases in each of the 16 celly.
Note that K and M stand for known and missing respectively.

LOOKING AT THE SUB-TABLES

To obtain a general picture as to why the significant two-way interactions were needed
in the model it is possible to look at the sub-tables of observed values for the pairs of
variables (casily obtainable from Tables A4.1 to A4.10 in Appendix 4). The
percentages for being missing in the second variable given that the first variable was
missing compared with being missing in the second variable given that the first variable
was known are given for the six pairs ol variables in Table 4,8. The P values for the
differences between the proportions and for the corresponding interactions in the log-

linear model are also given.

The associations between missing values in the pairs of variables are apparent from
examination of the percentages. Tt can be seen that the proportion missing in the second
variable when the first variable was missing is always larger than the proportion missing
in the second variable given that the first variable was known. Caution is needed when
interpreting the univariate results because the sub-tables arc not derived from the log-
linear model, The percentages are based only on the collapsed sub-lables of observed

values for the pairs of variables and as such are only illustrative.

The reason for caution can be demonstrated by looking at the observed proportions for
the clinical stage by node status sub-lable. Simple comparison shows that the node
status was missing in 34% of the cases when clinical stage was also missing but was

wissing in only 25% of cases when clinical stage was known. This observed difference
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was statistically significant (P=0.001) for the univariate test of differences in the

proportions (Table 4.8). However, the interaction between this pair of variables

dropped out of the log-linear model at Step 6, with a P value of 0.066 (1'able 4.5). This

P’ value 1s conditional on the other variables being in the multivariate model. There is,

perhaps, some weak evidence to suggest that the missing values were related, although

this was not statistically significant at the 5% level.

First % Second variable | % Second variable | I’ value test for | P value in log-
variable missing given first | missing given first | differences in | linear model
variable missing variable known | proportions
Node status Node status
ER status 37 20 -<<0.0001 <0,0001
Tumour size Tumour size
ER status 25 17 0.0001 0.007
Node Tumour size Tumour size
status 26 19 0.002 0.015
Clinical ER status ER status
stage 54 35 <0.0001 <0.0001
Clinical Tumour size Tumour size
stage 31 8 <0.0001 <0.0001
Clinical Node status Node status
stage 34 25 0.001 0.066%*
* not included in the log-linear model

Table 4.8: Percentages missing in the second variable given that the first variable was
either missing or known, along with the P values for testing that the proportions were
the same in the univariate sub-tables and P values for the terms, conditional on the
other terms, in the multivariate log-linear model.

CONCLUSIONS

The aim of this analysis was to find out whether there were any associations among the

missing vatues in the variables. The hypothesis of no association among the binary

variables was rejected. It was found that all two-way interactions were necessary in the

model, except the interaction of node status by clinical stage. Thus, there was pairwisc

dependence between each pair of variables, although there was no evidence to suggest

that each two-way interaction was affected by the values of the third and fourth

variables. This interpretation holds except for the interaction of node status with

clinical stage. For this term, there was insufficient evidence to reject conditional

independence between these two variables, given the third and fourth variables.




In general, a log-linear model with a significant two-way interaction of two factors, each
at two levels, suggests that the expected numbers of cases at level 2 of factor 1 are
different for the two levels of factor 2. In this analysis, for example, there was a
significant interaction for clinical stage with ER status, both at two levels either known
or missing. Here the two-way interaction indicated that the expected number of cases
with ER status missing was associated with whether clinical stage was known or

missing.

CLINICAL INTERPRETATIONS
From a clinical point of view, il is not entirely clear how the missing values in the
variables are expected to be associated with one another. Having discussed this matter
with clinical colleagues prior to the analysis, two possible opposing hypothcscs were
given:

(i) it may be argued that there will be associations among the missing values of
the three pathological variables: node status, tumour size and ER status. However, no
associations are expected between whether or not clinical stage is missing with these

three pathological variables being missing, except possibly with node status.

The reasoning behind this hypothesis is that there were three individuals involved in the
process of recording the information about these four clinical variables in 1987. The
surgeon determined clinical stage in his clinic prior to surgery and may or may not then
have entered the details onto the case notes. The pathologist examined any material
excised during the operation and recorded the pathological features (node status and
tumour size) of the tumour. Thus, it might be expected that if one of these were
missing, then so would the other. ER status was determined by the biochemist if'a
specimen was sent from the pathologist. However, there is a possibility that node status
might be associated with clinical stage because the node status in the axilla can only be
recorded by the pathologist if the surgeon actually removed some nodes from the axilla

as part of the surgical procedure, perhaps because of the clinical node status.
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(i1} it might be expected that all of the variables will be associated with one

another in terms of the missing values.

The reasoning behind this hypothesis is that institutions may have agreed protocols, or
at least informal practice agreements, for management of women with breast cancer.
Thus, you might expect that hospitals which are less systematic in recording clinical
information, may also have less well defined protocols for recording pathological data.
The ideal situation is where there are multidisciplinary teams involved at all stages of
the care of the woman and where all information is recorded by all of the specialists

involved.

The fact that all of the two-way interactions were significant in the model, except for the
clinical stage by node status interaction, appears to support the second hypothesis more
strongly than the first hypothesis. For example, it was more likely that ER status and
tumour size were missing when clinical stage was missing than when it was known.

The non-recording of clinical stage had a strong bearing on the non-recording of the
three pathological factors, although less so on node status. Overall, from Table 4.3 in
Section 4.2.1, ER status was missing in 39% of cases; tumour size was missing in 21%
of cases and node status was missing in 27% of cases. However, when only the women
when clinical stage was not noted in the case notes (L.e. 317 cases) were included, these

figures rose to 54%, 31% and 34% respectively, as can be seen in Table 4.8.

4.3 GENERAL DISCUSSION OF METHODS FOR HANDLING MISSING
VALUES IN COVARIATES

INTRODUCTION

The last two sections examined the general characteristics of some of the variables in
the Breast Cancer Audit data and also patterns of missing values in the four main
prognostic factors. For each of the factors, extra categories to represent the cases with

unknown values for each factor were created. This was the approach used in the




analysis of the survival data (Twelves et al, 1998a). However, there are other
techniques that can be used when analysing data with missing values in some of the
covariates, as described below. Any discussions about the different technigues tend to
focus on their applicability to analysis of survival data. Tiirstly, however, possible
structures for missing values in data are reviewed. All statistical methods are likely to
be affected when underlying assumptions made about the structure of any missing data

are not valid.

STRUCTURE OF MISSING DATA
Missing Completely At Random (MCAR); "Ihe mechanism of missing valucs is said to
bec MCAR when the obscrvations that are missing do not depend on any of the data,

either those which are known or those which are missing.

Missing At Random (MAR): Data are said to be MAR when the observations that arc
missing do not depend on any of the unobserved values, either in the variable that is

missing or in any other variable, but may depend on observed values in other variables.

Non Missing Af Random (non-MAR): If, however, the probability that an observation
is missing depends on its unobserved true value or on the true value of any other
variable with missing information, then this mechanism for missing values is said to be

non-MAR,

Pafterns of Missing Values: There may be observed patterns among the missing values

for several variables. However, this may not actually mean that the data are non-MAR.

Vach (1997) suggests the need to examine the assumption of the data being MAR using
sensitivity analyses, but he makes the point that it is not possible {o know if this
assumption is valid using the available data. However, background subject knowledge

may help to determine whether or not the assumption is reasonable.




METHQODS OF ANALYSING DATA WITH MISSING VALUES
A number of techniques are now described. The first four are easily implemented using
standard software. The remaining four are more complicated methods which require

specialist software or fairly advanced programming skills.

Complete Cases Analysis: I'his method is the simplest approach of all (Greenland &
Finkle, 1995). Here, only cases with complete information lor all of the covariates are
retained in the analysis. Cases with missing data for any of the covariates are simply
discarded. This is very wasteful as it throws away information that has been recorded
for some of the other covariates. When there is a large number of covariatces, the
number ol cases that have to be excluded can be substantial, even if there are relatively

few missing values for each covariate.

When his method 1s used, it assumes that there is no bias introduced by using only a
subgroup of cascs which has all of the information known and that this subgroup is
representative of the whole population. However, this is a strong assumption to make
and the estimates obtained based on these cases alone may be very biased (Schemper &
Smith, 1990). Vach & Blettner (1991) investigate the situation of missing values in
case-control studies. Using a simple context, they demonstrate that the estimate
obtained for the odds ratio is not biascd when MCAR can be assumed to be valid, but is

biased when the data are MAR.

The complete cases method also produces estimates which have higher than necessary
variances (Greenland & Finkle, 1995). The technique can be applied to survival
analysis and is often the suggested method when there are only a few missing values in
the data (Schemper & Smith, 1990). Whether the bias observed for MAR data in the
case-control framework (Vach & Bletiner, 1991) would be evident in survival analysis

is not clear.

Available Cases Analysis: This method is another simple approach. It is desctibed by
Little {1992) in the confext of multivariate normal data. Here the estimale of every

element in the variance-covariance matrix is obtained separately. The value of element
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(. i ,k) is estimated using the data which are complete for both variables jand k. One

problem with this approach, however, is that the variance-covariance matrix is not
necessarily positive-definite. This is a problem when the covariates are highly
correlated. It is not obvious how this available cases approach could be applied easily to
survival data since values of parameters in a model are not independent of the other

variables included in the model.

Anrnalysis Using Indicators For Missing Data: Greenland & Finkle (1995) outline this

simple approach where indicator variables, m,, to indicate missing values are created
for every covariate, x;, which contains some unknown information. Both 2, and x,
are then included in the analysis in the following manner. If x, is missing then m, = 1;

otherwise m; = 0. Then m; is simply added to the model, whereas the variable x, is

replaced by the product (1 —m, )x ;- The method is described for the regression

problem, but the technique could be used in survival analysis.

Using this approach in the regression problem, information is obtained for the
regression parameters, based on the subiects with known data. Whilst the extra terms
involving m; are used to oblain the regression {it, the parameters obtained for them are
not reported when the results of the fit are given. Greenland & Finkle (1995) state that

the estimates obtained for this method can be biased.

They also point out that when only onc variable contains missing data, this method is
the same as adding an additional category to represent these unknowns in the factor.

This is the next method discussed.

Analysis Using Additional Cartegories For Missing Data: This method is another
simple approach and was the one used in the survival analysis of the Breast Cancer

Audit data. Additional levels were added to each of the factors with missing data to
represent a category of unknowns in each variable. In their paper regarding missing

values int case-control studies, Vach & Blettner (1991) demonstrate that the estimate for
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the odds ratio is biased for all of the different scenarios for the missing data
mechanisms, including MCAR and MAR. They do not discuss the implications of these

results for other study designs.

Imputation Methods: The idea behind imputation is to estimate and assign values for
the missing data using the known data, There are several ways of obtaining thesc

estimates.

(i) "L'he simplest approach is to replace all of the missing values for a covariate with the
overall mean for this variable based on the known values. One problem with this
approach is that the variance will be underestimated if many missing values are

allocated the mean valuc.

(i1} A slightly improved method involves the use of conditional means. Suppose
variable j has some cases which are missing, but vaciable & is known for those cases.
Then different estimates of variable ; are obtained for the different values of & based on
the cases where variable j and variable & are known. Usually, linear regression is used
to obtain these estimates. For example, suppose age is not known for some people, but
sex ts known for all. Then the average ages for males and females would be calculated
from the available data. Males with missing valucs for age would be given the average
age for men and similarly, women with missing data on age would now take the female

average age, obtained from those with age known.

(sually the assumption of MCAR is necessary. The theory has been developed for
linear regression and is described in Little & Rubin (1987). The variance-covariance
matrix is underestimated by the sample variance-covariance matrix. This method of
imputing values based on conditional means could be used for survival analysis if a
suitable model can be developed for the data. This would be similar to the approach of

Schiuchter & Jackson (1989) described below.

(i11) Vach & Blettner (1991) present a simple technique of filling the cells of a

contingency table in the case-control context. They use knowledge of the proportions




for the known observations to impute values for the missing data. They point out that
this method can only be utilised when the assumption of MAR can be made. This
method, along with all of those described above, is an ad hoc method, requiring
specially derived formulae. The remaining imputation techniques and other methods

discussed relate to modelling the data.

(iv) The Probability Iimputation ‘T'echnique was described initially in the paper by
Schemper & Smith (1990} and updated in Schemper & Heinze (1997). The technique is
presented only for binary variables, taking values Q or 1. Based on the data for known
cases, the probability, -, of getting a 1 is calculated. The missing values are then given
either the value 1- 7 or 7z, instead of 0 or 1, depending on the vatues of the other

covariates. It is similar to the conditional means approach.

Schemper & Heinze (1997) point out that their method is only to be used with binary
0/1 coded variables. It is not clear whether it would be possible to generalise this
technique to categorical variables with more than two levels. Schemper & Smith (1990)
say that the technigue can be applied to the Cox model, In all situations, the method

needs the assumption of MAR.

(v) In Multiple Imputation, rather than using average values to fill missing data, a set of
imputed values is produced, possibly assuming a known distribution or conditional
known distributions. For each of the cases with missing values, a random value is
selected from the appropriate distribution. Parameter estimates are then obtained based
on all cases, i.e. on the known cases and the missing cases, which have all been replaced
by the random values. The process is then repeated many times, thus generating a set of
parameter estimates. These are then combined in a variety of ways, details of which can

be found in Little & Rubin (1987).

Maximum Likelihood Approach: Here, the approach is to use maximum likelihood

{ML) to model the known data to obtain estimates for the parameters of the model and
hence for the missing values simultaneously. To apply ML theory, a parametric model
must be used for the joint distribution of the covariates (Vach & Blettner, 1995). They

note that it ts not always possible to obtain this. Liitle & Rubin (1987) question whether
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using the information matrix to calculatc standard errors is valid in this context and .
point out that large sample normality of the likelihood function may not apply as the

data will not necessarily be an independent, identically distributed sample.
() The simplest application of the ML approach involves the situation where the data
have some special patterns of missingness and the likelihood function can be factored

into components which can be easily maximised. Little (1992) gives an example.

(ii) When there are no specific patterns in the data, the likelihood function cannot be

factored and it is necessary then to use an iterative maximisation procedure,

Possibilities include the Newton-Raphson and the EM algorithms. These methods are

computer intensive,

Little (1992) peints out that the ML approach is valid for MAR data, but can also be
adapted for some situations involving non-MAR data. The technique does not perform ‘
well when there is only a small number of cases and is mainly recommended for use

with large samples.

Little (1992) states that this method is not very useful when the covariates with missing
values are categorical. Schemper & Smith (1990} point out that it may not be possible
to use ML for survival analysis due o the fact that the Cox model uses partial
likelihood. Vach (1997) also comments on this fact and makes usc of a logistic model

with grouped survival data to permit use of the MI. theory.

Ar Explicit Model: Schiuchter & Jackson (1989) attempt to incorporate missing data in
catcgorical covariates into a sutvival ahalysis. This papet uses ML theory. The joint
distribution of the survival data and the covariates is modclled using a flexible log-linear
model. The covariates are assumed (o have a multinomtal distribution, determining the
probability of the observation taking a certain value, either known or missing. They
state that they assume thal the “hazard function, conditional on the covariates, is a

stepwise function over disjoint time intervals, Thus, the survival times have piecewise

exponential distributions”. To employ this method, the assumption that the data are

MAR must be made.
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DISCUSSION

Not all of the techniques described above could easily be applied to survival data. The
fact that the Cox model is semi-parametric in nature means that no explicit joing
distribution can be written down between the survival times and the covariates. That is,
the hazard for a set of covariates can be modelled, but the underlying baseline hazard
function cannot. Thus, any approach which uses ML theory would be difficult to adapt
for the Cox model. The semi-parametric nature of the Cox model also presents a
problem for using Multiple Imputation. Schluchter & Jackson (1989) fitted a fully
parametric model. Schemper & Heinze (1997) state that the probability imputation
technique can be used with the Cox model but they also point out that only binary
variables can be used in their method. No indication is given as to whether it would be

possible to extend this to non-binary categorical variables.

Vach & Blettner (1991) point out that the method of additional categories is used
extensively in published literature in many circumstances including case-control studies,
despite the fact that the estimates obtained for this method are biased for all missing

data mechanisms.

Tor all of the methods described above, the data need to be MAR, otherwise the results

will potentially be biased.




4.4 POSSIBLE APPROACHES TO THE PROBL.EM OF MISSING VALUES IN
THE BREAST CANCER AUIMT DATA

INTRODUCTION
In the last section, various methods were presented for handling missing values in
general situations. Here, the methods used to analyse the Breast Cancer Audit survival

data are described.

The pattern of the missing values has already been presented in Section 4.2.3. It was
shown that all but one of the two-way interactions for the four prognostic factors
(clinical stage, node status, tumour sizc and ER status) were significant in a log-linear
model describing the probability of being missing for each variable. Thus, a patient was
more likely to have a missing value in node status when the tumour size was also
missing. However, this only provided information about the structure of the missing

data and not whether having missing data affected the survival results,

In the case of the Breast Cancer Audit survival data, it is not clear whether the missing
information in the four main clinical prognostic covariates were MAR. If, for example,
node status was missing because of the irue unknown value of tumour size, then the data
would be non-MAR. However, if the data were missing in both of these variables
because of an external policy of recording pathological information within the hospital,
then perhaps the Breast Cancer Audit data can be assumed to be MAR. It seems

unlikely that the assumption of MCAR could be taken to be valid.

In the analysis of the data presented in the paper by Twelves et al (1998a), the missing
values were included in the analysis using the method of additional categories. The
decision to use this method was made for two reasons. {he first was that use of the
complete cases method was thought to be unacceptable due to the large amount of
missing data present in the four main prognostic clinical factors (64%). The second
reason was that many other studies have used the additional categories method (these
are discussed in the next section, along with the other techniques employed in survival

analysis of breast cancer data). It is not clear whether the estimates obtained and
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reported by Twelves et al (1998a) will be greatly biased using this method for analysing

missing data in survival analysis.

To try to address this issue, the results obtained for a complete cases analysis, the
simplest alternative to the technique employed, were compared with those from the
additional categories method to see if there was any consistency between the findings
for the two methods. The results of this comparison are given in Section 5.4.2. The
main objection to the complete cases analysis method, that of wasting too much
information, has already been stated. It is also not clcar whether the subgroup of women
with complete information would have been representative of the whole population. Tf
it were not, then bias could be introduced into the estimates of hazard ratios. This
would not be important if the survival for the women in the subgroup for a particular
combination of factors was representative of the survival of all women in that particular
combination. Another objection to this method of handling missing values is that there
1s the possibility of a loss of power due to the substantially reduced sample size thus

reducing the possibility of detecting any relationships.

Another approach looked at briefly is an ad-hoc combination of the available cases,
complete cases and addilional categories methods. Ilere, two further subgroups of the
1619 surgical cases included in the Breast Cancer Audit were considered (known here as

partial-complete cases analysis). The subgroups included those cascs where:

(1) both nodc status and tumour size needed 1o be known, but the other factors
clinical stage and ER status could be etther known or missing; and
(i1) all three pathological factors (ER status, node status and tumour size) had to

be known but clinical stage could be cither known or missing.

The clinical reasons for looking at (1} were that node status and tumour size have been
known to be important prognostic factors for a long time (Blamey et al, 1979) and are
more likely to have been recorded than ER status, which is harder to determine, with
several different methods used to analyse the specimens (Barnes et al, 1996). Indeed,
examination of the recording of the Breast Cancer Audit data, given in Section 4.2.1,

showed that nearly 40% of the cases did not have this information available.




The subgroup of cases given by (il) was examined because clinical stage might not have
been recorded in the notes if the pathological information was available. Also, the

misclassification of clinical stage is a known problem (Bundred et al, 1994) and the

agreement of clinical and pathological findings is not always very high (Brewster et al,

1996b). [t was important to obtain a model based on the more important prognostic

pathological factors and compare the estimates from this analysis with those bascd on all

1619 cases and just the *proper’ complete cases analysis.

The results from fitting Cox models to these subgroups of cases were compared with
those from the additional categories and the complete cases analyses and are reported in

Section 5.4.2.

It was decided that it was not feasible in the time available to apply the other methods

discussed in the last section to the Breast Cancer Audit survival data. The main reason

was the complexity and the need for specialist software. It is not certain that any of the

techniques, other than the probability imputation technique (PIT; Schemper & Smith,
1990) could be applied to the Cox model. The PIT scems to require that all of the

variables with missing information are binary. Three of the four clinical factors with

missing information are indeed binary (ER status, node status and tumour size), but
clinical stage is not, aithough it could be made binary. However, the technique still
needs the missing data to be MAR. Whether this assumption is valid for the Breast
Cancer Audit data remains unclear. However, this method would probably be the most

appropriaie to try to implement if the computer software and time were available. o

No casy solution exists to the issues of missing data. However, analysis of retrospective
cancer audit data still needs to be performed to provide some idea of the survival
chances of the people with cancer in Scotland and the variation in survival across levels
of treatment and other factors, such as Health Board. Therefore, it is necessary to move
forward tentatively, and provide a set of results to inform decision making., Of course,
any proposed solution must be interpreted cautiously in light of the potential bias, due to
the imperfect nature of the data. In the next section, how other relevant literature dealt

with missing values in survival data is discussed.
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4.5 EXAMINATION OF HOW OTHER BREAST CANCER STUDILES DEALT
WITH MISSING VALUES

INTRODUCTION

Ta investigate how data with missing values were analysed in other studies of survival
from breast cancer, 14 papers were examined. These papers highlight known prognostic
factors for breast cancer, and support the [indings of the survival analysis of the Breast
Cancer Audit data (Twelves et al, 1998a). Any references that are not discussed here,
but which are mentioned in sections 2.3.2 and 5.2.3, do not directly involve any analysis

of survival data.

Eleven of the 14 papers are retrospective studies, similar in nature to the Breast Cancer
Audit. Two of the studies (Gordon et al, 1992; Haybiitle et al, 1997) involve clinical
trial data. These papers reported the effects of socioeconomic data on survival rather
than the primary results of the trial. Omne study (Hawkins et al, 1996) was a prospective
study lor prognostic lactors. Both this study and Gordon et al (1992), have no missing
information, except for three cases in Gordon et al (1992) and are, therefore, not
discussed further. The data in Haybittle et al (1997) do contain missing information in
variables not used as part of the randomisation process. 'The approaches to dealing with

missing information in the 12 studies is now detailed.

The first observation 1s that none of the papers included a discussion about the
assumption of the structure of the missing data, and whether or not the data arc assumed
to be MAR. Several of the studies which used the Complete Cases (CC) method did
compare the characteristics of the CC subgroup with all of the cases or with the
excluded cases (Gillis & Hole, 1996; Newman et al 1997; Shek & Godolphin, 1988).
Most of the studies concluded that the CC were representative of the whole population
because the proportions in the levels of each of the factors were similar for all cases
versus complete cases. Thus, the implicit assumption was made that the unknowns that
would also be in the same proportions across the levels of the factors and, therefore, that
the data are MAR. However, the important fact is whether ot not the survival of the
women in CC for a particular combination of factor levels is representative of the

survival of all women in that particular combination, although this cannot be known.
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Several of the papers explicitly state that they have used the CC analysis, by reporting
that women with missing information were excluded from the analysis. The percentages
of cases dropped in these studies (Haybittle et al, 1997; Ewertz et al, [991; Carter et al,
1989; Shek & Godolphin, 1988; Newman et al, 1997) were 12%, 18%, 26%, 26% and

66% respectively. This last figure is almost identical to that in the Breast Cancer Audit

data.

Two of the papers (Basnett et al, 1992; Gillis & Hole, 1996) do not explicitly say what

they did with the missing values, although it appears that the cases were dropped and

CC analyses performed. Basnett ot al (1992) only had missing information for stage,

wlich was unknown in only 9% and 4% of cases seen in teaching and non-(eaching
districts respectively, Gillis & ITole (1996) had a much higher percentage of missing
information, with 31% and 22% missing for tumour size for non-specialist surgeons
(non-spec) and specialist surgeons (spee) respectively. Similarly, 38% and 17% of
women had no node status recorded for non-spec and spec respectively. Gillis & Hole
(1996) guote crude survival figures for each of the factors separately, based on the cases
where information was known in each of the factors, and also for the women with
missing information. It is not clear, however, whether the adjusted hazard ratios
obtained from the Cox regression model were based only on a CC analysis or whether

additional categories were used for the unknowns.

The remaining five studies adopied the same method as used by Twelves et al (1998a);
that is, the additional categories method. The percentages of cases with missing values
that would otherwise have been lost, had a CC analysis been performed instead, were
9% (Karjalainen & Pukkala, 1990); 11% (Richards et al, 1996); 20% (Schrijvers et al,
1995); 47% (Sainsbury et al, 1995a), and 70% (Freedman et al, 1979).

Therefore, from this limited sample of papers chosen as suitable references for
prognostic factors, it appears that none of the sophisticated techniques, such as Multiple
Imputation, the Probability Imputation Technique or Maximum Likelihood methods are
being used for the analysis of survival data with missing information. Instead, the only

two techniques used were CC analysis and the additional categories method. Which of

these methods, if either, is the more appropriate remains uncleatr.




CHAPTER 5 SURVIVAL ANALYSES

5.1 INTRODUCTION TO SURVIVAL DATA AND METHODS OF ANALYSIS

INTRODUCTION TO SURVIVAL DATA

Data which represent time from a definite origin to a particular event, or end-point, are

known as survival data. Often, as with the Breast Cancer Audit data, the end-point of

interest is death.

The survival times are assumed to be observations from a random variable 7. Since

time to an event is always positive, the distribution of the data is not symmetrical, but is
generally positively-skewed. Therefore, the standard techniques for modelling normally
distributed data cannot be used and so other techniques for modelling survival data have

been developed.

THE SURVIVOR FUNCTION AND THE HAZARD FUNCTION '

The survivor function is defined as the probability that an individual survives up to or ‘

beyond time ¢ . Thus, .
S()=P(Tz1)=1-F),

where F(f)is the cumulative distribution function. The probability density function of

T is therefore given by

7420

— ds(2) . {(Eq5.1_1)

dt dt




The instantaneous death rate of an individual surviving to time ¢ is given by the
probability than an individual dies at time ¢, given that they survived to that time. This

is known as the hazard function and can be written as (Collett, 1994).

i) = %m —%{logS(r)} from Eq 5.1 1.

Thus, S(f) =exp{H(#)} or H(f)=-logS{r), (Bqs5.1_2)
where H(¢) = J-h(u) du .

H(t)is the cumulative hazard. Note that (¢} is not a probability density function.

CENSORING

Survival analysis needs to take into account subjects for whom the end-point does not
occur before the end of the period of observation of the study. Rather than discarding
data for such subjects, the information that an event did not occur is retained in the
analysis by a method known as censoring. There are several types of censoring, but only

that kitown as right-censoring will be explained here.

A subject is right-censored when it is known only that an event has not occurred by a

certain point in time, {_say, from the time origin, #,say. The observation is censored at
f,, and has a right-censored survival time of (tc - fﬂ) . The analysis of censored data is
only straighiforward if it can be assumed that the true unknown survival time, f > #_, is

independent of the reason why the individual was censored at time £, .

METHODS OF ANALYSIS
The analysis ol observed survival times provides estimates of both the survivor and

hazard functions. Parametric, non-parametric or semi-parametric methods can be used

to obtain estimates of these functions.




A parametric model is fully described by a set of parameters for which probability
distributions can be specified. One example used in survival analysis is the Weibull
model. The hazard function for this distribution is given by

H(t) = An”!
with A2 >0 and y > 0. The corresponding survivor function is given by

S(r) = exp(— At? ) (Eq5.1_3)
The scale parameter is A and the shape parameter is ¥ . The simplest form of the
Weibull distribution is the exponential distribution, which has shape parameter equal to
1. Parametric models were not fitted to the Breast Cancer Audit data, but the

exponential distribution was modelled in a theoretical exercise based on simulated

datasets, described in Chapter 6.

In contrast, a non-parametric model makes no assumptions about the distribution of 7.
An example of this approach, the Kaplan-Meier technique, is discussed in the next
section. The third method is the semi-parametric approach. Part of the model is
specified by parameters which can be obtained from modelling the data. The Cox’s
proportional hazards model is an example of a semi-parametric model and is described

in Section 5.1.2.

5.1.1 KAPLAN-MEIER THEORY AND THE 1LOG-RANK TEST

INTRODUCTION

The Kaplan-Meier method is a non-parametric technique for estimating the survivor
function, S(¢}, at time ¢ . Rather than model the survival data, it obtains the survivor
function for intervals between conseculive end-points (i.e. deaths in the present context)

{rom the ratio of the number of subjects still at risk (i.e. alive here} at the end of an

interval to the number of subjects at risk at the start of that interval.




The Kaplan-Meier estimate of the survivor function is a step function. Collett (1994)

provides a full derivation of this, a brief summary of which is outlined below.

BRIEF DERIVATION
The observed survival times for the » individuals in the sample are assumed to be

f,, ty, ..., t,. These may include censored observations and ties at the same time

points. Thus, there are only » death times among the »individuals, with » <#. The

jth ordered death time is denoted here by £y

j

The probability that an individual survives past t given that they were at risk just

i

before 4,y can be estimated by

5 =1 ,{L_nf_d-f
PR = »
n, n,

where d is the number of deaths that occurs at f and #; is the number of people still at

risk just before fy-

f

As no deaths are assumed to occur in the interval from 1‘( | to just before ¢

; (+1)? then pis

equivalent to the probability of surviving from I'( e

7

With the time intervals spanning from onc death time to the next death time, the

probability of surviving past £, is equivalent to surviving through all of the intervals
before ¢, and surviving through the interval from tgy 10 Ly, where k=1, 2, .., 7.

Therefore, the overall Kaplan-Mcicr cstimate of 8(¢) is given by

for t,) St <ty k=12, .., r, S(F)=1fort < f) -

e a2 T

i




The standard error for the Kaplan-Meier estimate of the surviver function for any value

of ¢ in the interval from £, to £, is

19—

se{S()} =[$()] iﬁ , (Eq5.1.1 1)

LR \R, =

and is known as Greenwood’s formula (Collett, 1994).

POINT ESTIMATES WITH CONFIDENCE INTERVALS

An approximate confidence interval for the estimate $(r) can be obtained using its

calculated standard error. This is derived under the assumption that S’( t) comes from a
normal distribution with mean S(z) and standard deviation given by Eq 5.1.1 1.
Survival curves can be generated for subgroups of individuals in each of the levels of a
factor; such as, different age groups. The results of the Kaplan-Meier analyses of the

Breast Cancer Audit data are given in Section 5.2.1.

TESTING FOR EQUALITY OF THE SURVIVAL CURVES
Several tests of equality of the survival curves can be carried oul. The log-rank and
Wilcoxon tests are discussed here for a factor with only two levels, but both can be used

for factors with more levels.

The null hypothesis for both of these tests for two levels of a factor is
Hy: S,(1)=8,(¢) forall >0,

‘The log-rank test is powerful when the assumption of proportional hazards is valid
(Gregory ct al, 1997). If this scems questionable, it may be better to use the Wilcoxon
test (Collett, 1994). To decide which of these tests to perform, it is good practice to

examine whether or not the hazards for the levels are proportional, The survivor

functions for the different levels do not cross when the hazard functions are proportional

(Collett, 1994). Thus, examination of the estimated survival curves for the two (or
more) levels gives an informal indication as to whether the proportional hazards

assumption holds or not for the set of data being considered.
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Having identified factors where there is evidence to reject the test of equality among the
survival curves for the levels of the factors, multivariate survival analysis is then often
employed to investigate whether or not the differences remain once other factors have

been taken in account,

5.1.2 THEORY OF COX’S PROPORTIONAL HAZARDS REGRESSION
MODELS

INTRODUCTION

The aim of modelling the survival data is to describe the dependence of the outcome on
one or more of the covariates. Models with proportional hazards are often used in
survival analyses. The assumption of proportionality implies that the ratio of the
hazards between different levels of a factor, or diffcrent valucs of a continuous variable,

are constant over time. The Cox model is one example of a proportional hazards model.

THE MODLEL

A Cox’s proportional hazards rcgression model is usually given in the general form

i x) = cxp(_ﬂ_?g)ho(f) :

h,(¢) is known as the baseline hazard and is assumed 1o be unknown and is not itsetf

necessarily of interest. 1t represents the hazard function for an individual with all of the

explanatory covariates taking the value zero. As no form is assumed for ko(t) , this part

of the model is non-parametric. A parametric component of A(z;x) arises through

exp( i 5) and hence the model is referred to as semi-parametric,




BRIEF DERIVATION OF THE REGRESSION PARAMETERS

Cox (1972) showed how the regression parameters could be estimated without the
necessity of calculating #,(f) using a method called partial likelihood. Collett (1994)
provides details of this, a brief summary of which is given here.

Again, it is assumed that there are » individuals with survival times ¢, £,, ..., ¢

[

There are r < n death times, with the jth ordered death time given by t( e Let the

individuals at risk, i.e. those alive and uncensored, just before a‘{j] be denoted by

R(! ( ,—)) and be called the risk set at that time. Then, the probability that the

ith individual dics at time {y conditional on {@, being a time of death, is equal to

cxp( 8 x()
Z CXP(ETEJ) ,

/ ER(J[}.] )

where x(,)represents the covariates for the individual who dies at time !'(j} and x, are

the explanatory variables for individual /. Using independence, the partial likelihood

function is given by

roexplfTx 5
A1 ng;p(}}l i
rerfiy) T

The method of maximum likelihood can be used to find the estimates for 3 by

maximising the partial likelihood function. Thus, the estimates for the parameters for
the covariates have been derived without knowing anything about the baseline hazard

function, #,(¢) .

THE SURVIVOR FUNCTION
Having cstimated the regression parameters, the baseline hazard function and

corresponding survivor function (Kalbfleisch & Prentice, 1980) can then be obtained to
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provide an estimate of the survival curve for all times. The estimated survivor function

is given by
S0 =[5, (r)}c""(é *) (Eq5.12_1)

with covariate pattern x, for the ithindividual and S, () is the estimated baseline

survivor function, obtained from Eqs 5.1_2 in Section 5.1.

The formula for the standard error for §,{¢) can be obtained from Kalbfleisch &

Prentice (1980). I'hese estimates for survival and their standard etrors are available in

stalistical packages such as SPSS and SAS,

MODEL SELECTION

In arriving at a final Cox model, variable selection methods used in multiple regression

PO S CT W)

are commonly employed. Both forward selection and backward elimination can be
performed, along with other stepwise techniques (Armitage & Berry, 1994). The
forward selection stepwise method was used to obtain the model in the analysis of the

Breast Cancer Audit data and this was checked using backward elimination.

The results of fitting a Cox mode! to the Breast Cancer Audit data are presented in the

paper by Twelves et al (1998a) and are extended in Section 5.2.2.

5.2 SURVIVAL ANALYSIS OF TILE BREAST CANCER AUDIT DATA

INTRODUCTION

A survival analysis was performed on data from the Breast Cancer Audit. Only the

subgroup of women who had no evidence of metastases at presentation and who
underwent surgery were included in the analysis (Section 3.1). The aim was to
investigate any variations in survival after surgery for women diagnosed with breast

cancer in Scotland in 1987.
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CENSORING AND END-POINT IN THE BREAST CANCER AUDIT DATA

‘The time origin was taken to be the time of diagnosis and the end-point was death from
any cause. Cause-specilic survival was not analysed because cause of death information
from death certificates has been shown to be unreliable (Maudsley & Williams, 1993).
Deaths up to the end of 1993 were linked to the original audit data using probability
matching (Kendrick & Clarke, 1993) with death data from the General Registers Office.
Thus, subjects without a recorded death from the matching were assumed to be alive at

31/12/1993 and were censored at this point.

THE DATA
Table 5.1 presents the variables chosen for inclusion in the survival analysis. The levels

for these factors have already been given in Section 3.2,

CLINICAL FACTORS

Age

Clinical stage

Pathological node status

Pathological tumour size

QOestrogen receptor (I'R) statug

SERVICE FACTORS

Health Board of first treatment

Deprivation

Surgical case load

Scen by an oncologist

TREATMENT FACTORS

Type of surgery

Adjuvant radiotherapy

Adjuvant chemotherapy

Adjuvant endocrine therapy

Adjuvant chemotherapy or endocrine therapy

Table 5.1: List of variables in the three categories.

ANALYSIS STRATEGY
Initially univariate log-rank tests were performed on all of the factors listed above to

identify which were important. Kaplan-Meier survival estimates at five years were also

obtained for the levels of each factor.




Subsequently, two Cox regression models were fitted. The first model included the
significant clinical factors plus any signiticant service factors. The second model
included the significant clinical factors, but this time incorporated any significant
treatment factors. The treatment and serviee factors were not included in a single model
because the study was retrospeclive and so the nature of trcatment may have been
determined, in part, by service factors and would therefore be confounded. For
example, women were unlikely to receive chemotherapy if they did not see an

oncologist.

USING SPSS FOR SURVIVAL ANALYSES

SPSS was used to perform both the Kaplan-Meier and the Cox survival analyses. An
estimated ‘average’ survivor function for any of the death times can be obtained from
the Cox model by using the means as the values of the covariates, This is
straightforward for continuous variables. However, for categorical variables, the
‘average’ is oblaiued by using the relative frequencies of the numbers of cases in each of
the levels as weights. These are then multiplicd by the corresponding paraneter

estimates for each level and an ‘average’ survival obtained from this.

For example, for factor A with three levels, the ‘average’ risk, exp(é ! x) from Eq

5.1.2 1 in Section 5.1.2, would be given by

exp( é ! K) = exp{ 7, n,

ﬂ) . (Fg52.1)

a

1 5 a2 5
20 4
n, A n, P n

where n,,, n,,, 1, and n, represent the numbers of cases in levels 1, 2 and 3 of factor A
and the fotal number of cases in factor A respectively. ﬁ: » ,BA2 and ,6: represent the

parameter estimates for levels 1, 2 and 3 of factor A, with B; = 0 in the particular set-up
of indicator variables. The *average’ survival cstimate would then be obtained using Eq
5.1.2_1 from Section 5.1.2. This would give an indication of how the hazards
calculated from the parameter estimates affect the pereentage of patients surviving to a

particular time point, in general.
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It is also possible (o derive model based survival estimates for particular risk factor
profiles; thal is, obtaining the risk for certain levels of the factors. For example, age
group 50-64, clinical stage LI, CR posilive, node negative, tumour size < 2cm. The
survival estimate at five vears for individuals with these characteristics could then be

reported.

3.2.1 RESULTS OF UNIVARIATE ANALYSES

Separate Kaplan-Meier analyses were performed on a subgroup of the factors in the
Breast Cancer Audit data. A [ull table of results showing the 5-year % survival figures
can be found in Table 1 of the paper by Twelves et al (1998a). The overall Kaplan-
Meier estimate of 5-year survival was 70.9% with a 95% confidence interval (68.6%,
73.1%). The P values for log-rank tests for equality of the survival curves are given
below in Table 5.2,

Factor I’ value
CLINICAL FACTORS
Age <0.0001
Clinical stage <0.0001
Pathological node status <0.0001
Pathological tumouwr size <0.0001
ER status <0.0001
SERVICE FACTORS
HB of first treatment 0.02
Deprivation 0.03
Surgical case load 0.03
Seen by an oncologist 0.25
TREATMENT FACTORS
Type of surgery 0.01
Adjuvant radiotherapy 0.49
Adjuvant chemotherapy 0.02
Adjuvant endocrine therapy 0.74
Adjuvant chemotherapy or endocrine therapy .28

Table 5.2: P values for the overall log-rank tests of equality of the
survival curves in univariate analyses.




As can be seen, there were significant differences between levels for each of the clinical
factors. Figures 5.1 and 5.2 give the Kaplan-Meier estimated survival curves for the
factors pathological node status and pathological tumour size to illustrate the
differences. The remaining Kaplan-Meier curves for the clinical variables are given in
Section 5.3.2. There was also evidence of variation in survival among the lcvels of all
of the service factors, except referral to an oncologist, and of the treatment factors type

of surgery and use of adjuvant chemotherapy.

Survival functions for pathalegical node status Survival functions for pathologica) tumour size
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Figure 5.1: Kaplan-Meier survival Figure 5.2: Kaplan-Meier survival
curves for pathological node status. curves for pathological tumour size.

Having identified the statistically significant factors in the univariate analyses,
multivariale Cox’s proportional hazards regression modelling was then used to
investigate whether these factors remained statistically significant once other factors had

been allowed for. The results of this analysis are described in the next section.

5.2.2 COX’S PROPORTIONAL, HAZARDS ANALYSIS: THE ‘CLINICAL
FULL’ MODEL

INTRODUCTION AND METHODS
The results of fitting two Cox’s proportional hazards (PH) regression models are

reported. The first Cox model involved testing all of the clinical and service factors




(Model 1), whereas the second model had all of the clinical and treatment factors

available for selection (Modcl 2).

The forward selection stepwise technique (Armitage & Berry, 1994) was used to
identily the “best” model on the basis of the variables offcred to it. Unfortunately, it was
not possible to enter all of the service factors together in Model 1 without losing some
cases; i.e. those with ecither surgical case load or referral to an oncologist unknown.
These factors were therefore included scparately into a model with the clinical factors
and Health Board.,

Variables were added to the model if they were significant at the 5% level and were
removed if, with the addition of other variables, they became non-significant at the 10%
level. The P values for the Wald statistics for the cstimatces in the model, conditional on
the other variables being present, are given for the significant variables, whereas the

score statistics for entering are given for those that were non-significant.

The P values given here [or the non-significant factors are slightly different to those
quoted by T'welves ct al (1998a). In that paper, the P values shown for the Wald
statistics were [or furced entry, one at a time, for the non-~significant factors with only
the significant clinical factors included in the model. The reason for the difference is
that a referee requested that the adjusied survival estimates be given for the non-
significant factors to allow comparison with the Kaplan-Meier estimates. Health Board
was not included in this procedure of [orcing in variables as some of the service factors
were correlated with this factor. However, it was included in the analysis reported
below for Model 1, where the service factors were available for entry with the clintcal

factors and [Health Board.

Hauck & Miike (1991) suggest a method for presentation of results when using the
stepwise selection technique. Their technique illustrates the order of entry of the
variables by highlighting which variable enters at each step. The P values shown in
their suggested table format are for entry for those variables not included in the model
and for removal for these from the model. They also identify variables whose
significance changes greatly between steps n -~ 1and »n as a result of another variable

entering at step # indicating a high degree of correlation between the variables. Thus,
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these variables probably will not both enter the model, even though both may affect the
dependent variable independently. Gordon et al (1992) make use of this mode of
presentation in their paper with minor modifications. Elements of this and the original

approach are used in this thesis.

Only point estimates for survival are given in this thesis for Cox regression models
because an apparent problem was discovered during this research with the estimated
standard error obtained for the survival estimate from Cox regression using Version 9,0
of the SPSS statistics package. Some examples of this problem arc given in Appendix
5, along with the resulis ol fitting a simpler model using binary variables only. This was
used to compare the standard errors obtained from SPSS and SAS. The estimates are
different (substantially in some situations) from the two packages. All of the other
estimates and standard errors relating to survival analyses appear to be correct in SPSS,
and it is only in the standard error on the survival estimate that there are differences

between the two statistics packages.

Unfortunalely, there was not enough time to repeat all of the Cox regression analyses
given in this thesis uging SAS due to the difficulties in dealing with categorical
covariates in SAS. On the basis of the findings discusscd in Appendix 5, it was decided
not to include standard errors uniil the apparent discrepancies had been sorted out.
However, this issue is currenily unresolved and remains a subject under discussion with

SPSS Ine.

RESULTS FOR MODEL !

All of the clinical factors were required in the model as expected, along with the service
factor [ealth Board (IB) of treatment. The P values given in Table 5.3 are for Wald
statistics for presence in the model [or that factor with all of the other significant

variables in the model.
The other service factors: deprivation, surgical case load and referral to an oncologist

were not significant in models with the factors given in Table 5.3, and were therefore

notf included in Modcl 1. The P values for the variables that were not entered into the
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model were 0.36 for deprivation, 0.88 for surgical case load and 0.34 for referral to an

oncologist.

Signifieant Factors P Value
Age Group 0.0017
Clinical Stage 0.0008
ER Status <().0001
Node Status <0.0001
Tumour Size <0.0001
Node Status by Tumour Size 0.0059
1B of Treatment 0.0160

Table 5.3: P values for Wald statistics for the
significant fuctors in Model 1.

To present the hazard ratios and the 5-year % survival estimates for the interaction
between node status and tumour size, a factor consisting of the nine possible
combinations of the two factors was created. The numbers and percentages for the

levels of this new variable are given in Table 5.4.

Caombination Number Yo
Node not known, Tumour size < 2ecm 185 114
Node not known, Tumour size > 2cm 138 8.5
Node not known, Tumour size not known 112 6.9
Node positive, Tumour size < 2cm 171 10.6
Node positive, Tumour size > 2cm 312 19.3
Node positive, Tumour size not known 100 6.2
Nodc negative, Tumour size < 2Zcm 269 16.6
Node negative, Tumour size > 2cm 212 13.1
Node negative, Tumour size not known 120 7.4
Total 1619 100.0

Table 5.4: Numbers und percentages in each of the combinations of the
interaction between node status and (umounr size.

Table 5.5 shows the order of entry of the variables along, with the P values for removal

lor those variables already in the model and for entry for the non-gignificant variables.
As can be seen from this table, all of the clinical factors were highly significant and the

order of entry of these factors is not important. The significance of deprivation altered

upon the addition of EK status into the model at Step 2.
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Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

A 0.0001 <0.0001 0.0001 e0.0002 a0.0012 a0.0014 a0.0035
C <0.0001 <0.0001 0.0005 0.0026 e 0.0022 a0.0009 a0.0007
E <0.0001  e<0.0001 a<0.0001 a<0.0001 a<0.0001 a<0.0001 a<0.0001
N e <0.0001 a<0.0001 a<0.0001 a<0.000f a<0.0001 a<0.0001 a<0.0001
T <0.0001 <0.0001 ¢<0.0001 a<0.0001 a0.0004 a<0.0001 a<0.0001
N*T  0.0093 0.0177 0.0097 0.0098 0.0040 ¢ 0.0045 a0.0059
H 0.0154 0.0251 0.0051 0.0134 0.0113 0.0141 e 0.0157
D 0.0410 0.1278 0.1860 0.1819 0.2485 0.2808 (.3628

Table 5.5: Presentation of resulls from performing the stepwise selection on the
variables that were initially offered to Model 1. Note that ‘¢’ indicates which variable
entered the model at that stage and that ‘a’ indicates that the variable has already been
entered in the model. The P values represent entry for the ones not already in the model
and removal for those factors in the model, Age group is given by A, clinical stage (C),
ER status (E), node status (N), tumour size (T), their interaction (N*1), Healilr Board
(H) and deprivation (D).

The overall adjusted 5-year survival estimate was 74.3%. This represents the survival at
five years for an “average’ subjcect. It uses the wetghted risks for each of the levels in
each of the factors. Thus, the ‘average’ subject does not represent any individual
subgroup. Table 5.6 below gives the hazard ratios with 95% confidence intervais (CI)
along with the adjusted S-year % survival for the significant factors in Model 1. No Cls
are given for the survival estimates due to the apparent problem with the estimates of

their standard errors from SPSS (Appendix 5).

The adjusted survival estimates were obtained by specifying in SPSS that the survival
cstimates for cach of the levels of the separate factors be given, whilst averaging over
the other factors. These figures are the estimates for all women in one level of one
particular factor, conditional on having weighted tisks for other factors. The weighted
risks of the other factors are assumed 1o be the same for all levels of that particular
factor. For example, lhe estimate of adjusted survival at five years for age group 50-64
represents the survival for women in this age group, assumed to have ‘average’
characteristics for all of the other factors. The estimatc does not represent the true risk
for the women aged 50-64 in the cohort, all of whom will have meaning{ul levels of the

other prognostic factors.

The purpose of reporting thesc figures is because the adjusted survival cstimates simply

re-express the hazard ratios on a scale that is easier to interpret; namely, percentage

surviving at five years.




Variable Hazard Ratio Adjusted S-yr
(95% CI) % Survival

Age
< 50 years 1 76.4
50 - 64 1.04 (0.84. 1.29) 75.5
65 - 79 1.18 (0.95, 1.47) 72.8
> 80 years 2.01 (1.39, 2.90) 58.2
Clinical Stage
Stage 1 1 80.9
1 1.41 (1.07, 1.85) 74.2
111 1.98 (1.42, 2.78) 65.6
Not known 1.54 (1.13, 2.09) 72.2
ER Status
Positive 1 80.7
Negative 2.11 (1.69, 2.63) 63.6
Not known 1.45(1.15, 1.82) 73.3
Node Status by Tumour Size
Nnk, T<2cm | 2.28(1.50,3.48) 771
Nnk, T>2 3.53 (2.32, 5.38) 66.9
Nk, T nk 3.00 (1.93, 4.67) 71.1
N-ve, T <2em | 3.91 (2.62, 5.84) 64.1
N +ve, T>2 4.37 (3.01, 6.35) 60.8
N +ve, T nk 4.46 (2.89, 6.88) 60.2
N-ve, T<2cm |1 80.2
N-ve, T>2 2.72 (1.82,4.07) 73.4
N -ve, T nk 1.45 (.86, 2.44) 84.8
Health Board
A 1.52 (1.10, 2.10) 66.9
B 1.46 (0.72, 2.93) 68.1
C 1.49 {1.06, 2.10) 67.5
F 1.55(1.05,2.29) 66.3
G 1 76.8
|5} 0.97 (0.61, 1.54) 77.4
I 0.64 (0.31,1.34) 84.5
L 1.20 (0.86, 1.66) 72.9
N 0.95 (0.69, 1.31) 77.8
S 0.88 (0.65, 1.19) 79.3
T 1.33 (0.94, 1.87) 70.4
v 1.41 (0,90, 2.20) 68.9
Y 1.11 (0.71, 1.76) 74.5

Table 5.6: Hazard ratios and adjusted 5-yv % survival estimates,
with 95% Cls for the hazard vatios. Note that N and T stand for node
status and tumour size respectively. Also, nk stands for not known,
+ve for positive and -ve for negative.




The signilicance ol the node status by tumour size interaction highlights the importance
of both of these factors in terms of the survival prospects of women with breast cancer.
Women who were node negative with small tumours had a 89% adjusted 5-year survival
estimate whereas women with large tumours and node negative disease only had a 73%
chance of survival at five years, This indicates that if a woman had a favourable node
status, she still had reasonable (though not as good) chances of survival when her
tumour was large. However, women with node positive disease with small tumours
only had a marginal advantage over women with large tumours and node positive
disease (64% compared with 61% respectively). Thus, the effect of tumour size was
less for women who were node positive compared with those with node ncpative

discasc.

The finding that Health Board of treatment was significant in the model is important.
The magnitude of the apparent differences among the Health Boards were clinically
significant when compared with the magnitude differences in the survival estimatcs
between use and no usc of treatments such as tamoxifen and chemotherapy drugs seen

in clinical trials (Section 2.3.2).

UNIVARIATE VERSUS MULTIVARIATE RESULTS FOR MODEL 1

It does not make sense to directly compare the survival estimates obtained from the Cox
model with those from Kaplan-Meier analysis because of the difference in the
interpretations of the survival estimates. A Kaplan-Meier figure represents the actual
survival for particular group of women with a particular level of a factor. The Cox
regression estimate represents the risk for a particular level of a factor ‘averaged’ over

the other factors.

As expected, all of the clinical factors were significant in both the univariate and
multivariate analyses. The laciors deprivation and surgical case load were significant in
the univariate log-rank tests but not in the multivariate Cox’s PH model, once the
clinical factors had been adjusted for. It appeared that least deprived women had a
better prognosis from the univariate analysis, but deprivation was not significant in the
Cox model with clinical factors in it. Table 5.5 suggested that deprivation and ER status

were correlated because the significance of deprivation changed from 0.04 to 0.13 when
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ER status was added to the model. The test statistic for the y* test for association

between deprivation and ER status was significant with P value <0.001. Table 5.7
displays this association and reveals that there were more women who were ER negative
and resident in an area of greatest deprivation then would be expected had these

variables been independent.

The association remained when the women with ER status unknown were excluded
from the analysis (P=0.004); that is, there was still an excess of women with ER
negative discasc resident in arcas of high deprivation. Thus, the poorer observed 5-year
survival for being most deprived may be due in part to this greater proportion of women

who were I'R negative. This is discussed further in Section 5.2.3.

L.cast Deprived | Intermediate Most Deprived
ER Obs 165 354 80
Positive Exp 149.5 363.3 86.2
Res 1.8 -1.0 -(.9
ER Obs 90 218 83
Negative Exp 97.6 237.2 56.3
Res -1.0 -2.3 4.4
ER Obs 149 410 70
Not known  Exp 157.0 381.5 90.5
Res -0.9 3.0 -3.0

Table 5.7: Observed (Obs) and Expected (Exp) numbers of cases under the assumption
of no association between the variables ER status and deprivation. Note: Res stands for
the adjusted standardised residual for the cell and can be tested as a Normal (0.1)
deviate. Thus, cells with magnitude in excess of about +2 or -2 can be regarded as
heing significant.

Referral to an oncologist was not significant in either the univariate or multivariate
analyses. This is not a surprising result as it is likely that whether or not a women saw
an oncologist, as well as a surgeon, would depend on the nature of her disease. Some
women will have had a good prognosis and will have had breast conservation tollowed
by radiotherapy (thus seeing an oncologist). Others will have had a poor prognosis

being node positive, but would be seen by an oncologist for the administration of

chemotherapy.
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RESULTS FOR MODZEL 2

The second Cox model fitted was restricted to clinical and treatment factors. It was
found that none of the treatment factors were significant. The P values for the score
statistics [or non-enliry of these factors were 0.90, 0.60, 0.98, 0.42 and 0.25 for type of
surgery, use of adjuvant radiotherapy (RT), use of chemotherapy (CT), use of adjuvant
endocrine therapy and use any adjuvant systemic therapy respectively. The fact that all
of these treatment factors were non-sigunificant is not completely surprising with this
being a retrospective study and not a randomised trial. The treatment would have been
determined by the severity of the disease and thus would probably be strongly

confounded by the presence of the clinical factors in the model.

Significant differences were observed between the survival curves in the Kaplan-Meier

analyses for both use of CT and type of surgery (Figures 5.3 and 5.4).
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Figure 5.3 Kaplan-Meier survival Figure 5.4: Kaplan-Meier survival
curves for use of chemotherapy. curves jor type of surgery.

Thus, the poorer Kaplan-Meier survival chances are for women who had a mastectomy
or received CT. These treatments tend to be given te women with poorer prognosis
fumours, i.e. women with a large tumour size or with node positive disease. Therefore,
the women who needed to receive these treatments will have been expected to have the
worse observed survival chances. This is accounted for in the full multivariate model,

in which the treatment effects are no longer signiticant, once the clinical factors have

been modeiled.




THE 'CLINICAL FULL’' MODEL

Model T was taken to be the “best’ model for these Breast Cancer Audit data and was
the one used to obtain results presented in Twelves et al (1998a). The same model was
obtained when the method of backward climination was used (Armitage & Berry, 1994),
when only the main effects and two-way interactions among the clinical factors were
offered to the model. The only interaction that approached significance at the 5% level

was that of clinical stage by node status, with P value 0.062.

Thus, the ‘Clinical Full’ model includes the factors: age, clinical stage, ER status, node
status, tumour size, their two-way interaction and HB of treatment. Further discussion
about the interpretation of these findings and comparison with the results of other
studies are given in the next section and investigation into the use of the additional
categories method for dealing with the missing values in the covariates is presenied in

Section 5.4.2.

5.2.3 DISCUSSION OX THE AUDIT RESULTS AND COMPARISON WITH
OTHER RELEVANT STUDIES

INTRODUCTION
The findings of the analysis of the Breast Cancer Audit data are now compared with the
published literature and discussed in the different groups: clinical factors, service

factors, deprivation, treatment factors and patient characteristics.

CLINICAL FACTORS

All of the expected clinical factors were significant in the 'Clinical Full' model. It was
found that there was a monotonically increasing hazard ratio of death from any cause
with increasing age group. The 33 women aged under 35 years at diagnosis were
combined with the 35-49 age group prior to the survival analysis, giving <50 vears as

the reference category. Therefore, it was not possible to examine whether the under 35




(=

year olds had a worse prognosis, as suggested by Miller et al (1994) and Richards et al
(1996). g

Clinical stage was also a significant factor in the results from the Audit data, with an
increasing risk of death with increasing stage. Similarly, ER status was significant in
the model, with ER negative tumours having a worsc outcome than ER positive
tumours. Both node status and timour size were significant in the Breast Cancer Audit
data analysis, along with the interaction between them. This is similar to the finding of
Carter et al (1989). The general effects of all of these factors on survival from breast

cancer were discussed in Section 2.3.2.

SERVICE FACTORS

Basnett et al (1992) showed that survival was better for women treated in a hospital in a
teaching district (T) than for women treated in a non-teaching (N'T) district. The odds
ratio of death for NT vs T, adjusted for age and clinical stage, was 1.74 (95% CI: 1.34,
2.27). They suggested that variations in use of different forms of adjuvant treatments in
the NT and T districts may be the reason for the different survival Ggures observed.
Similarly, Sainsbury et al (1995b) found variations in survival chances probably duc to

differences in use of adjuvant treatment in different regions in Yorkshire. Although not

identical, use of Health Board of treatment in the analysis of the Audit data showed that
none of the three Health Boards which had significantly higher hazard ratios (A, C and
F) than Greater Glasgow Health Board (G) contained a Cancer Centre or a teaching
hospital and appeared to have lower odds of use of adjuvant treatment (see Table 3 in
Twelves et al, 1998a). However, use of any adjuvant systemic therapy was not
statistically significant in the survival model, possibly because the Audit was not a
randomised trial, with the clinical factors probably determining the treatment given, A

fuller discussion is given in Twelves et al (1998a).

Instead of cxamining the facilities of the hospital delivering the care, Sainsbury et al .
(1995a) investigated the effect of the case load of the surgeon on survival. They found

that surgeons treating more than 30 women a year had a risk ratio of death of 0.85 (95% *

CI: 0.77, 0.93) when compared fo surgeons seeing less than 10 women with breast

cancer per year. They also examined the rates of the usage of chemotherapy and
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endocrine therapy and found that high case load surgeons were more likely to prescribe
adjuvant treatment than low case load surgeons, suggesting a possible reason for the
observed improved survival rates for the high case load surgeons. The administration of
chemotherapy suggests involvement of an oncologist implying, perhaps, that it was the

multidisciplinary approach to care which imyproved survival,

Rather than using case load as a measure of expertise of the surgeon, Gillis & Hole
{1996} coded each surgeon responsible [or women with breast cancer in the West of
Scotland in 1980-88 as being specialist surgeons or not. The surgeons were coded by
“local perception”. Gillis & Hole (1996) point out that each of the specialist surgeons
“demonstrated the following indicators of specialist interest ... setting up a dedicated
breast clinic; a defined association with pathologists and oncologists; organising and
facilitating clinical trials; and maintaining a separate record of all patients with breast
cancer in their care.” The hazard ratio for specialist (spec) vs non-specialist (non-spec)
was 0.84 (95% CI. 0.75, 0.94), alter adjustment for age, tumour size, deprivation and

any nodal involvement.

In the analysis of the Breast Cancer Audit data, the variable described by Sainsbury et al
(1995a) for surgeon case load was used, except that it was modified to include surgeons
identified prior to analysis as working in breast clinic teams in the groups treating 30 or
more women per year. ‘Lhis factor was found to be significant when a log-rank test was
perlormed on the factor univariately (Section 5.2.1), but was not significant in the
multivariate Cox model (Section 3.2.2). This makes sense because Section 4.1 showed
that surgeon case load was sigunificantly associated with each of the factors: age, clinical
stage, BR status and node status in %~ tests of association for the pairs of variables.
Initial cxamination of the breakdown of these pairs of variables in Appendix 4 shows
that the surgeons with a higher case load had a better case~-mix and saw patients with

already improved prognoses.

ITowever, these surgeons provided better stuging of the disease lor the women ireated in
their care as there was a lower proportion than expected in the unknown categories in
the clinical factors for the high case load surgeons., When the unknowns in the clinical
factors were removed from the analysis, none of the paits of associations for the clinical

factors with surgeon case load remained significant.
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Thus, only the association between surgeon case load and age group was significant
when unknowns were excluded. Therefore, the observed better survival chances for
women seen by the high case load surgeons were partly due to these surgeons seeing a
younger group of women (mainly <65 years) and partly because they staged the disease
more extensively, thus providing the opportunity for the most appropriate freatment to

be given.

Twelves et al (1998a) make the point that taking the results from Gillis & Hole (1996)
and Sainsbury et al (19953} with the findings from the Audit leads 1o the conclusion that
the ‘surgeon ellect” probably translates into an effect of improved overall care, with

treatment administered in a multidisciplinary team.

DEPRIVATION OR SOCIAL CLASS

Gillis & Hole (1996) showed that there were differences in the crude survival figures by
deprivation, although the absolute figures varied by whether or not the women were
treated by a specialist surgeon or not. Affluent women had 72% and 64% survival at
five years for spec and non-spec respectively, compared to deprived women having 5-

year survival figures of 65% and 54% for spec and non-spec respectively.

Sainsbury et al (1995a) also reported a higher hazard ratio for the most deprived
category vs the rest (1.16; 95% CI: 1.10, 1.22}, having adjusted for other factors in a
Cox model. Schrijvers et al (1995) detailed a similar relationship for relative survival
rates. Gordon et al (1992) used different area-based measures of socioeconomic status,
such as percentage with higher education, mean family income, percentage in poverty.
They also reported a higher risk of death with lower socioeconomic status. Carnon et al
(1994) discussed a gradient in survival by deprivation category in approximately 7,500
women in the West of Scotland. They examined the association between deprivation
category and the prognostic factors: tumour size, percentage of nodes positive, grade
and ER status in about 1,300 women and found none of them to be significant.

However, they did not examine survival in this subgroup of women where pathological

information was available.




Rather than use the area-based measures of deprivation category, Karjalainen & Pukkala
(1990) and Haybittle et al (1997) used social class, based on occupation, as a measure of
material affluence (OPCS, 1975). Karjalainen & Pukkala (1990) found that the risk of
death for being in a high social class (low deprivation) was 0.78 (95% CI: 0.68, 0.90)
times that of being in the lowest social class. However, Haybittle et al (1997) did not
find significant differences between the social classes with manual (Ilkm, IV, V) vs non-
manual (I, II, IIIn) having a relative risk of 1.07 (95% Cl: 0.97, 1.19). The P value for
the Iog-rank test between these groups was .12,

In the analysis of the Breast Cancer Audit data, deprivation was significant in the
univariate analysis, but not in the multivariate Cox model. ‘Lhis suggests that the
observed survival differences for the deprivation categories could partly be explained to
the different proportions of IR status in the deprivation categories, with a larger number
of ER negative women in the most deprived group (see last section). ER negative
tumours have been shown to have a worsc prognosis than ER positive tumours, both in
the Audit and by other studies (Newman et al, 1997; Shek & Godolphin, 1988; I[Tawkins
et al, 1996), thus perhaps explaining why women Jiving in deprived areas had a poorer

observed survival.

One possible explanation why women living in deprived areas have more ER negative
tumours could be because a larger proportion of women resident in deprived areas also
have low or average body mass index (BMI); that is not in the obese category. This
hypothesis follows from Giuffrida et al (1992), who showed an excess of ER negative
tumours in women with low or average BMI. However, the weight and deprivation
relationship in the Breast Cancer Audit could not be examined as weight details were

not collected.

Overall, although there is some evidence to support the observation that deprivation

affects survival, it has still not been proved definitely.

TREATMENT FACTORS
Univariately, having a mastectomy or receiving chemotherapy indicated significantly

worse survival in the analysis of the Breast Cancer Audit data. These factors were not
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significant in the multivariate model, however. ‘I'his was as cxpected with the Audit
being not being a randomised trial but a relrospective study of how women had their
breast cancer managed in 1987. Thus, the treatment would probably have been driven
by the prognostic clinical {actors, with most of the women receiving chemotherapy
having poor prognosis node positive disease, for example. The influence of treatient

factors on survival have already been discussed in Section 2.3.2.

PATIENT CHARACTERISTICS

Haybittle et al (1997) found that survival was alfected by the weight of women who
were posimenopuausal, with a highly significant risk ratio for women >60 kg vs <60 kg
being 1.20 (95%CI : 1.08, 1.33). No relationship was observed for pre- or
perimenopausal women of weight on survival. However, Ewertz et al (1991) found a
different pattern with relative risks of 1.48 (1.03, 2.12) for <50 kg; 0.88 for 60-69; 0.99
for 70-79; and 1.02 (0.90, 1.55) for >80 kg with 50-59 taken as the reference category.
Gordon et al (1992) found no relationship of survival with body mass index (BMI),
which has weight as one of its constituents. However, Newman et al (1997) did find
that BMI was related to survival, but only [or women who were node negative. The
hazard ratios relative to women with BMI <22.8 with no nodal involvement were 2.1
(1.1, 4.2) and 2.5 (1.2, 5.2) for no nodal involvement and BMI 22.8-28.9 and BMI >28.9
respectively. Neither weight nor BMI were available for analysis in the Audil. The

relationship of these factors with survival remains unclear.

Overall, it would appear that the results from the analysis of the Breast Cancer Audit
data discussed here and in Twelves et al (1998a) are similar to the findings of others and
support the need for a multidisciplinary approach to the care of women with breast

cancer.
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5.2.4 EXPLORATION OF OTHER TWO-WAY INTERACTIONS

INTRODUCTION

When the original survival analysis was performed (Twelves et al, 1998a), the available
computing facilities were not sufficiently powerful to allow for interactions with the
factor for Health Board to be examined (because this factor has 13 levels). Each of the
two-~way interactions between the pairs of the clinical factors was exatmined for
significance. None achieved the 5% significance level, except for the interaction
between node status and tumour size. This factor makes clinical sense as discussed in

Section 5.2.2.

However, the compuling facilities are now available to allow the interactions between

Health Board and the clinical factors to be examined. The results are presented below.

RESULTS

The interaction between node status and tumour size is already part of the 'Clinical Full'
model. Two [urther interactions were significant (P=0.02 for clinical stage by Health
Board; P=0.03 for node status by Health Board). However, the model including the
interaction between node status and Health Board did not converge properly before the
Information matrix became singular and therefore the result presented for that
interaction relate to the model that had been fitted in the iteration before this happened
and may or may not be acceptable. Thus, this possible interaction must be treated very

cautiously.

The model including the interaction between clinical stage and Health Board did

converge and so further investigation was necessary. Initially, the numbers in each

Hcalth Board for each clinical stage were cxamined. These numbers are shown in Table

5.8 below.




Clinical Stage

Health Board I 11 XX Unknovwn Total
A 17 53 11 45 126
B 6 8 2 6 22
C 21 44 14 28 107
F 31 48 9 3 9]
G 73 180 29 61 343
H 17 31 7 17 72

I 3 8 8 6 25

L 16 66 22 31 135
N 31 73 38 44 186
S 34 162 33 6 235

T 25 79 3 41 148
vV 11 31 5 21 68
Y 17 30 6 8 61
Total 302 813 187 317 1619

Yable 5.8: Simple breakdown of numbers of cases in each clinical stage
Jor each Health Board.

As can be seen, some of the clinical stage by Health Board combinations have very
small numbers in them. These give concern about the stability of the model containing
this mteraction and, therefore, about the reliability of the estimates obtained for the
hazard ratios for these combinations. In fact, when the standard errors were examined

for some of the parameter estimates, it was clear that the model was unstable.

To investigate the two interactions further, some of the Health Boards were grouped
together and new interaclions fitted. The Health Board variable in groups kept the five
Health Boards containing Cancer Centres separate (i.e. G, H, N, S and T) and combined
the remaining Health Boards into onc group to represent ‘the rest’. This grouped Health
Board variable with six levels was then fitted both as the main effect for [lealth Board

and 1in interactions with the clinical variables.

Table 5.9 shows the significance for inclusion of these new interactions with the slightly

modified 'Clinical Full’ model and also the pairs of clinical variables in the original

'Clinical Full' model,




Interactions P Value
Pairs of Clinical Factors
A*C 0.815
A*E 0.720
A*N 0.804
A¥T 0.749
C*E 0.166
C*N 0.062
C*T 0.859
E*N 0.709
E*T 0.326
Health Board with Clinical Ioctors
A*HG 0.320
C*HG 0.085
E*G 0.163
N*HG 0.647
T*HG 0.405

Table 5.9: Significance for inclusion of the interactions with

Health Board in groups in the slightly modified 'Clinical Full'

model and the pairs of clinical factors in the 'Clinical Full' model.

Age group is given by A, clinical stage (C), ER status (E), tumour

size (T}, node status (N} and Health Board in (HG) groups respectively.

None of the interactions of the clinical factors with Health Boards in groups were

significant.

DISCUSSION

The model mcluding the interaction between node status and all of the Health Boards
scparately did not converge properly. Although the intcraction between clinical stage
and all of the ealth Boards separately appeared to converge, the estimates of some of
the standard errors implied that the model was unstable, When the Health Boards were
grouped, the interaction of this variable with clinical stage was not significant (P=0.09).
However, the group comprising the ‘rest’ of the Health Boards consisted of a mixture of
very different Health Boards, which may have cancelled out any differences between
these Health Boards in terms of the treatment of women with different clinical stage. It
does not make sensc to group any of the clinical stages together. The conclusion,
therefore, was that when the Iealth Board was grouped, none of the interactions were
significant. Overall it, therefore, cannot definitely be concluded that any further

interactions were necessary in the 'Clinical Full' model, and therefore none were added.
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5.3 MODEL CHECKING FOR ADEQUACY OF FIT AND VALIDITY OF
PROPORTIONAL HAZARDS ASSUMPTION

INTRODUCTION
This section now investigates the adequacy of the fit of the 'Clinical Full' model and the _.«3'55

validity of making the assumption of preportional hazards in that model.

The adequacy of the model is looked at using Cox-Snell residuals and is discussed more

fully in the next section. 4

The proportionality of the hazards assumption is studied in Section 5.3.2 using two

techniques. Firstly, informally through a plot of lo g{— log SA(I)} versus log{¢} and,

secondly, by including a time-dependent covariate in the Cox regression model.

5.3.1 EXAMINING THE ADEQUACY OF THE FIT OF THE MODEL.

INTRODUCTION
The ‘Clinical ¥ull” model defined in Section 5.2.2 1s the model with the variables: age i
group, clinical stage, ER status, pathological node status, pathological tamour size, their
two-way Interaction and also Health Board of trcatment. All of these variables were
fitted as categorical factors, How well this model fits is assessed informally by

examining the Cox-Snell residuals for all of the cases and then separately for each of the

factors by plotting the different levels of the factors.




THEQRY - DERIVING tHE COX-SNELL RESIDUALS
Let the survival times lor the # individuals be £, ¢,, ..., {, and suppose there are
¥ death times among the »nindividuals, with » < . The estimated hazard function from

the Cox model for the ithindividual with covariatex,, i=1, 2, ..., », is given by

()= exp(é Tgi)ﬁ(, (. (Bq5311)

The Cox-Snell residuals are defined, for the ith individual, as

Foi ™ eXP(/éTE: )ﬁn(ﬁ)

= ﬁ,. (ti) , by integrating Eq 5.3.1 1
=-log8(s,)., (Eq5.3.1.2)
where H, (r,. ) is the estimated cumulative baseline hazard, evaluated at the observed

survival time for the ith individual.

The following mathematical result is needed to derive the Cox-Snell residuals.

Result 1: If T'is the random variable associated with the survival time of an
individual with corresponding survivor function of S{¢), then the random
variable ¥ = —log S(¢) will have an exponential distribution with unit mean,

irrespective of the form of S(¢).

If the fitted model is appropriate, then

Sie,)= St
That is, the fitted value of the survivor function is close to the true value of the survivor
function for the ith individual at time #,. Therefore, from Result 1, —log 5, (!',_.) should
be consistent with being a sample from a unit exponential distribution. The values

~log8,(1, ) are the Cox-Snell residuals, r, (see Eq 5.3.1_2).

These residuals are unlike thase obtained for linear regression as they do not relate the
observed value to the expected value. Instead, they are useful for studying how well the

residuals fit an exponential distribution with mean one. They are not symmetrically

distributed, cannot be negative and are positively skewed.




THEORY - ASSESSING THE FIT OF THE MODEL
Front the survivor function for a Weibull distribution, given in Bq 5.1_3 in Section 5.1,

for the exponential distribution,

log{— log S(r)} = Alog? .
Hence, for data from an exponential distribution with parameter A = 1, a pliot of
lug{— log S(s )} against log{¢} should be approximately a straight fine with intercept at
zero and a slope of one (Collett, 1994). Note that log{w Tog S( r)} is the same as the

estimated log cumulative hazard from the known relationship between the hazard and

survivor function, given in Eq. 5.1_2 in Section 5.1.

Thus, by analogy, if a plot of 10g{~— log §(rc,. )} against log{rﬂ. } gives a straight line with
slope one and zero intercept, then this implies that the Cox-Snell residuals can be

assumed to come from a unit exponential distribution. This, in turn, implies that the

fitted model is a good one (from Result 1).

METHODS
The Cox-Snell residuals were obtained by fitting a Cox regression model to the data and

saving the cumulative hazard for each individual to give the Cox-Snell residuals, 7, .

These values were then taken as the ‘survival times’ in a Kaplan-Meier analysis and the

values of §(ra. ) obtained from this. A plot of log{-— log §(rm.)} , by transforming the

5‘(;;, ) obtained from Kaplan-Mcicr, against log{rc,} , with the 7, obtaincd from the Cox

regression, was examined to see whether the scatter plot of the observations lay roughly

on a line with slope one and intercept zero.

It was also possible to look at the log cumulative hazard plots of the Cox-Snell residuals
for different levels of each of the factors. If the fitted model is a good one, the points on
the plot should be homogenous across the different levels of each factor. If, however,

the points for the different levels are widely dispersed, then there would be a suggestion

that this factor has not been fully taken into account in the model. The points on the

curves only represent the Cox-Snell residuals for the event times.




RESULTS FOR THE ‘CLINICAL FULL’ MODEL
All Cases: The plot of the log cumulalive hazards of the Cox-~-Snell residuals against the
log of the Cox-Snell residuals for all of the cases (Figure 5.5) shows that the ‘Clinical

Full’ model appeared to fit quite well, with only very slight departure from the line with

unit slope and intercept zero at small values of log{rd }

Cox-Snell residuals for all cases

log(-leg(S(C%-Snall resitis)))

log(Cox-Snell resids)

Figure 5.5: Log cumulative hazards plot for Cox-Snell vesiduals for all
cases.

Individual Factors: However, looking at each of the plots for the separate factors: age
group, clinical stage and ER status (Figures 5.6 to 5.8) suggests some departures from
the line through zero with slope one. Some of the points for the different levels in the
factors separated out, rather than overlapping each other. Most of the separation,
however, occurred for the early event times and appeared to stabilise for the majority of

the residuals.
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Figure 5.0: Log cumulative hazards plot for Cox-Snell residuals for age
group.
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Figure 5.7: Log cumulative hazards plot for Cox-Snell residuals for clinical
stage.




Cox-Snell residuals for ER status
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Figure 5.8: Log cumulative hazards plot for Cox-Snell residuals for ER
status.

Due 1o the fact that an interaction lterm for node status and tumour size was included in
the model, it seemed sensible to examine the plot for the combined levels rather than for
the factors alone. However, this plot was too busy to make any sense of and, therefore,

is not given.

The slight deviations noted from these plots perhaps suggests that there was some lack
of it of the model.

5.3.2 ASSESSING THE ASSUMPTION OF PROPORTIONAL HAZARDS IN
THE COX MODEL

INTRODUCTION

This section concentrates on checking the crucial assumption of proportional hazards.
This was assessed initially using two informal graphical methods. These plots were
obtained from Kaplan-Meier analyses on the individual factors that were ultimately
significant in the Cox model. The second method is a formal examination of the
proportional hazards assumption using the technique of time-dependent modelling.

Before the results are presented, some theory needs to be given.
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THEORY - KAPLAN-MEIER SURVIVAL CURVES AND LOG CUMULATIVE HAZARD
PLOTS

Log cumulative hazard plots: The survivor function for a Cox model (Section 5.1.2) is

S() =[5, ()]
Therefore,
log{—- logS(t)} = 1og{— logSU(t)} +gT,_t .

Thus, log{— log S(i‘)} is a function ol'time plus a constant.

Therelore, plots of log{—— log S(t)} versus a function of time should be parallel across

different levels of variablcs of x. This suggests estimating S(z) within subgroups and
plotting log{— log §(t)} against /, say, for each subgroup, to look for departures from
parallelism, indicating non-proportionality. Now log{— logS(l')} = log H(t) , which is

the log cumulative hazard function, indicating the name of the plot.

Kaplan-Meier survival curves: When the hazards are proportional,
(1) = k(1)

for a factor at two levels, say, aand b, s0
H(t)=kH,(r)

or —logS ()= k' {— log Sb(r)}.

Thus,
s, =[8,0]".

Therefore, the survivor function of one level is always greater than or equal to the
survivor function of the other level for all times. This argument can be extended to

Tactors with more than two levels.

It is therefore worth examining the Kaplan-Meier survival curves for each of the factors
to check whether the estimated curves for the different levels cross or not. If they do

cross repeatedly, the assumption of proportional hazards may be in question.
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Alternatively, this could also suggesi that there is no difference between the levels of the
factor. The assumption of proportionality may also be doubtful if the curves diverge

considerably.

Both of these informal plots are obtained using the Kaplan-Meier method. In contrast,
the next subsection relates to the theory of some formal modelling, where the Cox

model is fitted to examine the assumption of proportional hazards.

THEQRY - TIME-DEPENDENT MODELLING TQO ASSESS THE PROPORTIONALITY OF
HAZARDS ASSUMPTION

The assumption of proportional hazards means that the ratios of the instantaneous risks
of death for the individuvals in each of the levels of a factor arc assumed te be constant
over time. The technique of fitting time-dependent covariates can be used to assess this

assumption.

The idea is to fit the chosen Cox model with an additional term for the interaction
between some function of time and one of the covariates. The significance of the
parameter for the interaction in the extended model is then examined. This is
straightforward for continuous and binary variables, but is more problematic for

categorical factors at more than two levels.

Suppose, for simplicity, that all of the covariates are binary with x;, =0 for level 1 and

x;=1 for level 2 of the covariatesx,, j =1, ..., p, where x = (x,,xz, ...,xp)j.. Let the
validity of the proportional hazards assumption be checked for covariate x,. An
additional lerm is created to represent the multiplicative interaction of this covariate
with a function of time. So let

Xpet = x,.8(t),

where g{#) is any function of time, although it is usual to assume a monotonic form for

g.




'I'he hazard for the ith individual is given by

Al

i =l B 5+ Bk i ).

Now x,,, =0 forlevel 1 ofx) and x,,, = g{t) forlevel 2 of x,. Therefore, the hazard

ratio for being in level 2 versus level 1 for covariate x, is given by

‘33’\119(,[§1s + ﬁ;ﬂg(t ))

Thus, the hazard ratie depends on time ¢ and, therefore, is no longer constant for all
time, meaning that the hazards are no longer proportional.

~
&

The null hypothesis that 5,,, = 0 is examined using the Wald statistic for this parameter

when the interaction of the function of time multiplied by covariate x, is added into the

model. The Wald statistic is compared to the y; distribution for significance.

METHODS

Since the ‘Clinical Full” model consisted entirely of factors at more than two levels, it
was necessary to create dummy variables for every Ievel for cvery factor. No unique
method exists to circumvent this problem and, therefore, this way was chosen so that
each contrast comparcd each level with the rest of the levels, for each factor, thus

providing one degree of [reedom tests for each of the interactions.

Thus, for example, for age group, four duminy variables were created as follows:

agelt50 = 1 ilage <50 yrs
0 otherwise;

age5064 = 1 if age 50-64 yrs
0 otherwise;

age6579 = 1 if age 65-79 vrs
0 otherwise;

agege80 = 1 ifage >80 yrs
0 otherwise.
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The dummy variables were named so as to indicate which level was being compared
against the rest of the levels for each contrast in each factor. Dummy variables were
created in a similar fashion for the other factors. Thus, for cxamplc, stagel x ¢ gives the
interaction of clinical stagc [ vs the rest (of the clinical stages) with time. Tor the
interaction between node status and tumour size, nine dummy variables were set up to
represent the nine different possible combinations for these two factors, cach with three

levels. Full details are given in the Results section.

The dummy variables were entered separately, onc at a time, with the "Clinical Full'
modcl. Thus, for cach factor, a series of Cox models were fitted, each assessing an
assumption of proportional hazards. In this manner, it was possible to check whether
there was any time-dependency in a particular level versus the rest of that particular
factor, after allowing for the effects of the other explanatory variables being in the

model. For each model, the other factors were assumed to be independent of time.

For example, for age group, four different Cox models were fitted. The {irst was the
'Clinical Full' model plus the interaction ageft5( x ¢, That is, the interaction of the
single contrast age less than 50 years versus the rest with time was added into the
‘Clinical Full' model, where age group was already incinded with three degrees of
freedom, with the other three levels compared to age less than 50. The next three Cox
models fitted were the 'Clinical Full' model along with age5064 x t, age6379 x  and
agegeS80 x t (the “ge’ standing for greater than or equal to). The results of the modelling
are given below, along with the informal plots, for each of the factors separately. The

chosen (unclion of Lime here was simply g(e‘) =t.

RESULTS

Age Group:
Firstly, the Kaplan-Meier survival curves and the log cumulative hazards plots for age
group are presented (Figures 5.9 and 5.10) respectively). The Kaplan-Meier curves do

not cross, except for the curves for the <30 and 50-64 groups. These two groups appear

to be nearly identical as they cross several times.
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Figure 5.9: Kaplan-Meier survival curves for age group.
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Figure 5.10: Log cumulative hazards plot for age group.

Looking at the log cumulative hazards plot shows that the scatter plots for each of the
levels are nearly parallel. Perhaps, there is a slight suggestion that the curves come
together. However, this could just be due to the fact that there were not many
observations early on and that too much weight is being given to the data occurring in

the first two vears. 1n fact, there were only 58 deaths in total during the first year.

The dummy variables created to examine the proportional hazards assumption for age

group were given in the Methods section above. Table 5.10 below gives the results for

fitting the four intcractions of the dummy variables with time,

114




Parameter Standard P value for
estimate error Wald statistic
agelt50 x 1 -0.0400 0.0547 0.4649
aged064 X ¢ 0.0165 0.0504 0.7437
age6579x ¢ 0.0098 0.0510 0.8479
agegeS0Xx 1 0.0274 0.0927 0.7676

Table 5.10: Results of time-dependent modelling for age group.

Each of the contrasts represent one level of the factor vs the
complementary levels in the interaction with time. Note that
I and ge stand for less than and greater than or equal to

respectively.

None of these interactions were significant at the 5% level and, therefore, there was no

reason to reject the assumption of proportional hazards for age group.

Clinical Stage:

Examination of the Kaplan-Meter survival curves for clinical stage (Figure 5.11) shows
that the curves do not really cross except, perhaps, the unknown group and stage II,
showing that the group of unknowns are very similar to the group with stage II disease.
Alternatively, the unknowns could be a mixture of all three clinical stages and the

mixture just happened to be similar to the stage Il group. Figure 5.12 gives the

corresponding log cumulative hazards plot for clinical stage.

Cumulative survival

Figure 5.11: Kaplan-Meier survival curves for clinical stage.
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Log cumulative hazard vs time
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Figure 5.12: Log cumulative hazards plot for clinical stage.

Again, the curves scem to be reasonably parallel after the first two years.

None of the interactions were significant when the formal modelling for clinical stage
with time was performed (range of P values for contrasts from 0.46 to 0.99). ‘Thus,

there is no evidence to assume that the hazards were not proportional for clinical stage.

ER Status:

The Kaplan-Meier survival curves for ER status 1s given in Figure 5.13. It does not
show any serious crossing, except the ER negative curve drops down dramatically at
about six months. In fact, out of 22 events that occurred before six months, 16 were in
the ER status unknown group. This was compared with two in the ER positive group

and four in the ER negative group. Discussion of this seemingly strange pattern is given

below and in the next section.
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Figure 5.13: Kaplan-Meier survival curves for ER status.

The log cumulative hazards plot for ER status (Figure 5.14) reflects the pattern observed
in Figure 5.13.
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Figure 5.14: Log cunnddative hazards plot for ER status.

The main problem occurs prior to the first year of survival. The curves are not parallcl
and the sudden drop in survival observed in the Kaplan-Mcicr plot (Figure 5.13) for the
ER negative group is mirrored by the rapid increase in the log cumulative hazard for this
group after the six months mark (Tigure 5.14). After the first year of survival, however,
the curves are nearly parallel, although there is a slight suggestion that they converge on

each other. The occurtence of this pattern is due 1o the fact that until three months the




hazard ratio for being ER negative vs ER positive is one, as no events happened for
either group, There was an event at three and at five months in the ER positive group.
Four events occurred between five and six months in the ER negative group. After this
point, the hazard increases for both groups. This increase is more rapid for ER status
negative than positive. Eventually, however, the hazard ratio for being ER negative vs
ER positive begins to attenuate as the gradient of the estimated survival corve for ER

negative, seen in Figure 5.13, becomes less steep.

The results of fitting the interactions of the dummy variables for this factor with time are

given below in Table 5.11.

Parameter | Standard P value for
estimate error Wald statistic
erpas X [ 0.1904 0.0547 0.0005
erneg Xt -0.1153 0.0530 0.0268
eruk x t -0.0559 0.0488 0.2518

Table 5.11: Results of time-dependent modelling for ER status.
Each of the contrasts represent one level of the factor vs the
complementary levels in the interaction with time. Note that
pos, neg and uk stand for positive, negative and unknown
respectively.

Both of the interactions of time with ER status positive vs rest and ER status ncgative vs
rest were significant. Thus, there appeared to be a changing risk ratio of deuth over time

for ER status.

The signs of the parameter estimates for the two interactions were positive for ER
positive vs rest with (ime and negative for ER negative vs rest with time. Thus, the risk
ratio for being ER negative decreased with time, although Figure 5.13 shows that
women having ER ncgative tumours had a poorer prognosis than those with ER positive
tumours. One interpretation of these results could be that being ER negative carried an
important additional risk in the short term, but the magnitude of the risk decreased over

time. These findings arc discusscd further in Section 5.3.3.
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Node Status with Tumour Size:
Neither the Kaplan-Meier survival curves nor the log cumulative hazards plots are given
hete because the plots showing the nine combinations for this interaction were too busy

{o interpret meaningfuily.

When the formal time-dependent modelling was performed for this factor, nonc of the
interactions were significant and, therefore, the proportional hazards assumption could

not be rejected for the node status by tumour size interaction with time.

Health Board:
Again, due to the large number of levels (13) for Health Board, neither the Kaplan-

Meier survival curves nor the log cumulative hazards plots arc given here. The time-

dependent modelling for this factor revealed that two of the interactions were significant
at the 5% level. These were the Islands Health Board (I) vs the rest (P=0.034) and Forth
Valley HB (V) vs the rest (P=0.018). If these two interactions were not just due to
chance, then this meant that the ratios of the risks of death for these two levels with the

others were changing over time,

The hazard ratio for the Islands Health Board vs Greater Glasgow Health Board (G) in ’”
the 'Clinical Full' model was less than one, implying a decreased risk. However,

because the parameter estimate for the interaction with time was positive, then women

treated in the Islands HB appeared to have an incteasing risk with time. In contrast,
women treated in Forth Valley (V) appeared to have a decreasing risk compared to the
rest over time. This Health Board had an increased risk of death compared to Greater

Glasgow I1B in the ‘Clinical Full' model.

It is hard to interpret exactly what is happening when there are so many levels involved.
This problem is heightened by the fact that in the 'Clinical Full' model the contrasts for
the full Health Board factor, with twelve degrees of freedom, were all compared with
Greater Glasgow, whereas in the interactions with time the thirteen individual contrasts
of each level for time dependence were each compared to the rest of the twelve levels
together. Possible interpretations for these two significant interactions are given in the

next section.
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5.3.3 CONCLUSIONS FROM THE MODEL CHECKING

INTERPRETATIONS OF THE RESULTS

Adequacy of the model: The previous two sections presented the results from
examining the adequacy of the fit of the Cox model and of the validity of the
proportional hazards assumption. From Section 5.3.1, the global plot of the Cox~Snell
residuals for all cases seemed to fit adequately (igure 5.5). However, when the
subgroups were examined, the plots for the individual factors (Figures 5.6 to 5.8)
showed that there was some suggestion that the model did not entirely fit adcquately and
that the factors had not fully been taken into account in the Cox model. However,
when other interactions (the interaction of node status by twmour size is already present
in the ‘Clinical Full' model) were searched for in Scction 5.2.4, it was found that none of
the interactions were significant when added to the modified 'Clinical Full' modcl, when

the Health Board variable was grouped.

Proportional hazards assumption: The (inding that there were significant interactions
with time for two of the three levels of UR status and two of the 13 levels of Health

Board is perhaps of greater concern.

(1) ER status: Examination of Iligures 5.13 and 5.14 in Section 5.3.2 showed that the
ER status unknown group had the worst prognosis early on (up to about six months) and
then the group became the intermediate prognostic group once deaths in the ER negative
group became more abundant. It was found that 16 out of 22 women wheo had dicd
before six months did not have ihe ER status of their tumours determined. This number
appeared to be too great to simply be due to chance. Possible reasons to explain why
this pattern was observed have been explored, following discussions with clinical

colleagues.

One interpretation could be that some women had such poor prognoses that they did not
have their ER status ascertained. This seemed an unlikely explanation, however, since
the cohort for these analyses included only those women who were deemed fit enough
for surgery and in whom no documentation of evidence of metastatic disease at

presentation was found.
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Another suggestion was that the 16 women with ER status not recorded and who died
within the first six months were treated at rural hospitals, which may have low annual
breast cancer case loads and no definitive protocols for staging the tumour. However,
when the list of hospitals performing the surgety on these 16 cases was collated, this

argument could not be supported (data not given).

A further possibility examined was that these women died suddenly of a cause of death
not related to breast cancer; for example, a heart attack. However, ten of the cases had
breast cancer as the primary cause of death; two cascs had another cancer (lung and
stomach, which probably were actually metastases from the breast cancer) and only four
cases had deaths due to heart or pulmonary problems. Therefore, this suggestion was

also not supported.

{hus, leading to the remaining possible clinical reason that all of the women dying
before six months did in fact have metastases despite that there was no mention of them
in the documentation. In many cases, metastases are not routinely searched for unless
they are suspected at presentation or there is extensive lymph nodal involvement.
Section 4.2.3 showed that ER status was more likely to be missing if node status was
missing than if node status were known. However, examination of staging of node
status and tamour size was similar in the women dying early, with and without ER
status recorded. Thus, there is no obvious reason why having metastases not detected at
presentation should be morc prevalent in women with ER status unknown, than in those

women where it was known.

None of these clinical reasons explained the observation and so it seems, therefore, that
it was due to chance that 16 of the 22 deaths in the first six months were for women

with unknown ER status.

It is plausibic that the effect of the FR status covariaie changes over time and the
proportional hazards assumption does not hold. That is, ER status has an effect on
outcome immediately after diagnosis and treatment, but this effect is not maintained
over a long time. Miller et al (1994) support this. Collett et al (1998) found that the
effect of ER status on a prognostic index they were deriving was strong in the first five

years, but then weaker after that. They also highlighted a lessening importance of ER
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status on survival with time. However, many other studies have included ER status in
Cox regression models (Gordon et al, 1992; Hawkins et al, 1996; Newman et al, 1997,
Shek & Godolphin, 1988) without reporting any non-proportionality.

In termos of interpreting the results from fitting the 'Clinical Full' model, it is likely that
the hazard ratios for IR status were not overly biased in terms of the order of the
hazards and that the model probably gave a reasonable estimate of the average hazard
ratios. It is possible, however, that it may over-estimate the long term predictions for

the importance of ER status on survival from breast cancer,

(i1) Health Board: This is the other factor where significant interactions of two of the
levels of the factor with time were found. One interpretation of the fact that the Islands
(1) Health Board had a significant interaction with time with a positive parameter
estimate but with the Health Board in the 'Clinical Full' model having a negative
parameter estimate could be that this perhaps implies that these women had sub-optimal
follow-up treatment. Maybe the women chose not to travel to either Glasgow or
Inverness to receive radiotherapy subsequent fo any breast conserving surgery on the

Islands.

In the circumstance of the Forth Valley (V) Health Board interaction with time,
however, the signs of the paramcters probably indicate that the initial treatment was
poorer than that received by women treated in Greater Glasgow (G) Health Board, but

this increased mortality risk decreased over time.

These signilicant interactions could possibly reflect changing patterns of care over time
in the Health Boards, which may have happened at different times in the different
Health Boards, causing the effects on survival over time to change in these Health

Boards.

However, the interactions with the two Health Boards could also be due to chance.
After all, 33 tests in total were conducted and presented in the last section so that it
would be expected that al least one would be significant at the 5% significance level

merely by chance.
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WEAKNESSES
Although the usefulness of the 'Clinical Full' model has been questioned by the findings
from the model checking, several weaknesses of the methods employed should be borne

in mind when interpreting the findings.

Cox-Snell residuals: Firstly, Collett (1994) points out that the use of the Cox-Snell
residuals may not be appropriate if small samples are involved. This is because the
distributional results relating to a unit exponential distribution may not be valid.
However, this is probably not a necessary caveat in this particular situation, except

perhaps for some of the Health Board levels.

The main problem with using the Cox~Snell residuals plots, however, is the informal
nature of them. The interpretation of these plots is entirely subjective and it can be
difficult to judge whether the observations lie within the margin of error expected due to

fitting estimated values.

Kaplan-Meier and log cumulative hazards plots: Similarly, using the plots of the
Kaplan-Meier survival curves and (he log cumulative hazards plots to assess the
proportional hazards assumption presents the same problem of subjectivity. 1t is not foo
difficult to spot survival curves that cross, although it is necessary to remember that the
crossing may just be duc to {itting estimated values. It is slightly more awkward to
decide whether the estimated log cumulative hazard lines are parallel for most of the
time. Although, in theory, the Kaplan-Meier curves would not be expected to cross and
the curves on the log cumulative hazards plot to be parallel, in practice there would be
some deviance from the expected positions because only the estimated values were

being plotted.

Formal time-dependent modelling: Using formal time-dependent modelling has the
benefit in that it can be assessed by formal tests derived using statistical inference. There
are no problems with this method for the simple situations when the covariates are
either continuous or binary. However, it is not entircly clear how to perform the
modelling, or interpret the results, when the covariates are categorical factors with more
than two levels, as there is no unique method in this situation. The use of the dummy

variables seemed 1o be an acceptable method for partially assessing the proportional
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hazards assumption for each of the factors. This mcthod should be powerful if one of

the groups were different from the rest.

DISCUSSION

The validity of predictions made from the "Clinical Full' model may have to be ireated
cautiously, although all of the weaknesses described above should be taken into account
before the soundness of the model is ruled out completely. The 'Clinical Full' model
probably provides acceptable average hazard ratios for the factors in the short term, but

may be more questionable in the longer term.

One disadvantage of fitting a Cox rmodel is that it does not allow the effect of a
covariatc on survival to diminish over time. Instead of fitting a Cox model, non-
proportional hazards models could have been fitted to the data. Unfortunately, due to
time constraints, this was not pursued here. However, Gore ct al (1984) fit various non-
proportional models to a series of nearly 4,000 women with breast cancer referrcd to one
hospital between 1954 and 1964. They found that the hazard functions converged over
time. Schemper (1992) examines, theoretically, violations of the proportional hazards

assumption in a Cox model.

5.4 SURVIVAL ANALYSIS INTERPRETATIONS WITH RESPECT TO
MISSING VAL UES

Whether the missing values in the four main clinical variables were related to the Health
Board of treatment is discussed in the next section. Approaches to handling the missing
values are examincd in Scction 5.4.2 to investigate whether the method influenced the
results and interpretations from the survival analyses. Possible explanations why the
variables age and clinical stage had different results in the models based on all cases and

complete cases only are discussed in Sections 5.4.3 and 5.4.4.
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5.4.1 MISSING YALUES IN THE HEALTH BOARD OF TREATMENT

INTRODUCTION
Here, univariate associations between Health Board of treatment and having missing

values in the clinical factors are examined.

RESULTS

The percentages of cases with complete data in each of four clinical factors are tabulated
for the thirteen Ilealth Boards (Table 5.12). The P values for the y” tests of association
for missingness of data for the clinical factors across Health Boards were all very highly
significant (I’ <0.0001 for all tcsts). Therefore, whether or not the information was

missing for each of the clinical variables depended on which Health Board the woman

had her surgery in.

Health | Y%complete | Yocomplete | Yocomplete | Yocomplete | Y%ocomplete | Namber
Board in C in N in'l in E in all 4 of cases
A 64.3 67.5 75.4 83.3 34.9 126
B 72.7 90.9 81.8 9.1 0.0 22
C 73.8 78.5 79.4 62.6 31.8 107
F 96.7 69.2 81.3 69.2 451 01
G 82.2 76.4 80.5 77.0 47.5 343
H 76.4 79.2 87.5 4.2 2.8 72
I 76.0 64.0 88.0 4.0 4.0 25
L 77.0 67.4 77.8 43.0 23.7 135
N 76.3 82.3 79.0 720 40.3 186
S 97.4 84.7 85.5 88.5 64.7 235
T 72.3 66.9 64.2 35.1 15.5 148
N 69.1 52.9 73.5 1.5 1.5 68
Y 86.9 31.1 91.8 52.5 16.4 61
Overall 80.4 73.1 79.5 61.1 35.7 1619

Table 5.12: Percentages complete in each of the four clinical prognostic factors
separately and in all four of them together by Health Board. Note that C, N, T and E
stand for clinical stage, node status, tumour size and ER status respectively.

To try to simplify the findings, a variable was created to represent those Health Boards
which contain the five Cancer Centres (I4Bs: G, H, N, S and T) as one level (CC) versus
those Health Boards which do not have a Cancer Centre (No CC). The results for the
grouped Health Boards arc given below in Table 5.13.
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% complete | Yocomplete | Yocomplete | Yocomplete | %ocomplete | Number

in C in N in T in E in all 4 of cases

No CC 76.7 65.2 79.5 51.8 25.7 635
CC §2.8 78.3 79.5 67.2 42.2 984
Overall 80.4 73.1 79.5 61.1 35.7 1619

Table 5.13: Percentages complete in each of the four clinical prognostic factors

separately and in all four of them together by whether or not there was a Cancer Centre
(CC). Nole that C, N, T and E stand for clinical stage, node status, tumour size and ER

status respectively.

This table shows that the four main prognostic factors were available more frequently in

the larger Health Boards, containing the Cancer Centres, than the smaller non-Cancer

Centre Health Bourds. Table 5.14 gives the corresponding P values for the y” tests of

association for Cancer Centre Health Board group against having missing values in the

clinical factors.

P Value
CC y/n with C kw or nk 0.002
CC v/n with N kw or nk <0.001
CC y/n with T kw or nk 0.980
CC y/n with E kw or nk <0.001
CC y/n with all four vars kw or nk <0.001

Tahle 5.14: P values for y* tests of association for
Cancer Centre Health Board (CC) with the

Jfour clinical proguostic factors as either mown (kw)

or missing (nk). Note that C, N, T and E stand for
clinical stuge, node status, tumour size and ER stetus
respectively and vars’ for variables.

Thus, it appears that whilst there were differences among the ascertainment of

pathological tumour size for all of the Health Boatds, on average, there were no

differences between the Cancer Centre Health Boards and the non-CC Health Boards.
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5.4.2 MODELS FOR COMPLETE AND ALL CASES DATASETS

INTRODUCTION

One of the main aims of this thesis was to examine the influence of missingness of daia
on the results of the Cox regression analysis reported by Twelves et al (1998a),
performed on the 1619 surgical cases. The model fitted in that paper is referred Lo here
as the ‘Clintcal Full’ or all cases model (ACM). The results of this were summarised in

Section 5.2.2 and will be further discussed here.

The technique used by Twelves et al (1998a) for handling the missing data was to add
extra categories for the unknown values in each factor, The assumption that the missing
data wete missing at random (MAR) was implicitly made when the model was fitted,
although this cannot be tested directly, as discussed in Section 4.3. However,
comparisons of this method with the complete cases method and also fitting the two
partially-complete cases models, suggested in Section 4.4, are examined to investigate

whether the results are consistent or disparate for the different models.

COMPLETE CASES ANALYSIS

Initially, a Cox model was fitted on the 578 cases for which there was known
information for the four main clinical variables: clinical stage, node status, tunour size
and ER status. However, examination of the results showced that the model produced

parameter estimates which were unstable.

Table 5.15 below provides a breakdown of the numbers of cases in each of the Health
Boards in the all cases model and those left when only the cases with complete
information were retained. The percentage remaining for cach Health Board is also

given.
When a model based on the complete cases only was fitted excluding the Health Board

variable, the standard errors obtained for the factots in the modcl were of similar

magnitude to those obtained when the model was fitted on all cases.
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Health Number in all Number (%) with
Board cuses model complete information
A 126 44 (34.9)
B 22 0 (0)
C 107 34 (31.8)
F 91 41 (45.1)
G 343 163 (47.5)
H 72 2 (2.8)
[ 25 1 (4.0)
L 135 32 (23.7)
N 186 75 (40.3)
S 233 152 (64.7)
T 148 23 (15.5)
Vv 68 | (1.5)
Y 61 10 (16.4)
Total 1619 578 (35.7)

Table 5.15: Number of cases in each Health board when all cases

and when only those with complete information were included,

Since the Health Board factor had not been expected to be significant a priori in the all
cases analysis, it was important to try to ascertain whether it was present in that model
only because of the presence of incomplete information in some of the other variables or
because real differences existed among the survival chances of women treated in

different Health Boards.

To try to address this, the four Health Boards (Borders (B), Highland (H), the lstands (I)
and Forth Valley (V)) with only zero, two, one and one case respectively lett with

cormplete information were excluded and another Cox model obtained.

The variables present in the ACM were age, clinical stage, ER status, node status,
tumour size, the interaction between these two variables, and Health Board of treatment.
When the model was derived for the complete cases only, using the technique of
forward stcpwisc sclection, the variables age and clinical stage were not significant (P

values for non entry were .30 and 0.14 respectively).

To allow comparison of the hazard ratios for these two factors between the two modcls,
the factors were forced into the complete cases analysis. It was assumed that the

addition of these non-significant factors into the model would not affect the results for
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the other factors noticeably. This complete cases analysis, with the reduced Health
Board factor, was based on only 574 cases and is henceforth referred to as the complete
cascs modcl (CCM), The P values for ER status, node status, tumour size, their
interaction and 1fealth Board of treatment were all very highly significant (<0.001) in
the CCM.

RESULTS - COMPARISON OF THE ALL CASES AND COMPLETE CASES MODELS

() Hazard Ratios

Table 5.16 below gives the hazard ratios with 95% Cls for the two models. The
estimates for the unknown levels in the all cases model are not presented here as the
objective was to compare the findings with the complete cases model. For the same
reason, no estimates were given for the ACM for the four Health Boards which were

excluded {rom the complete cases analysis. The resulis for the unknown levels for the

ACM have already been detailed in Table 5.6 of Section 5.2.2.
Unfortunately, it was not possible to test formally whether the results were difterent

using a statistical test because the two sets of estimates were not independent, since the

women included in the complete cases model also belonged to the all cases model.
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All Cases Model Complete Cases Model

Variable Hazard 95% CI for Hazard 95% CI for
Ratio T1azard Ratio Ratio Hazard Ratio

Age
<50 1 * 1 *
50-64 1.04 0.84,1.29 0.55 0.67, 1.33
65-79 1.18 0.95,1.47 1.01 0.68, 1.48
> 80 2.01 1.39,2.90 3.25 0.75, 14.09
Clinical Stage
i 1 o 1 *
Il 1.41 1.42,2.78 1.64 0.98, 2.73
IIL 1.98 1.13,2.09 1.66 0.89, 3.09
ER Status
Positive 1 * 1 *
Negative 2.11 1.69, 2.63 3.04 2.23,4.16
Node Status by
Tumour Size
N T<2 3.91 2.62,5.84 4.73 2.72,8.21
N+ T >2 4.37 3.01, 6.35 4.87 2.87,8.27
N- T<2 1 * 1 *
N- T >2 2.72 1.82, 4.07 2.64 1.52, 4.59
Health Board
A 1.52 1.10,2.10 1.20 0.67,2.16
C 1.49 1.06,2.10 2.74 1.56, 4,82
F 1.55 1.05,2.29 2.70 1.57,4.65
G 1 » 1 *
L 1.20 .86, 1.66 0.97 0.51,1.84
N 0.95 (.69, 1.31 1.16 0.70, 1.91
S 0.88 (.65, 1.19 0.87 0.58,1.31
T 1.33 0.94, 1.87 1.87 0.90, 3.89
Y 1.11 0.71, 1.76 0.18 0.02, 1.29

Table 5.16: Hazard ratios (HR) with 95% Cls for the two analyses. Note that N

and T stand for node status and tumour size respectively,

It is possible to obtain an idea about differences between the models by simple
examination of Table 5.16 and Figure 5.15 below. The first observation to note is that
some of the confidence intervals on the hazard ratios are very wide. Thus, qualitatively
the findings appear to be quite similar, with almost the same patterns observable for the

ordering of risk among the levels of the prognostic factors.

Quantitatively, there is a suggestion that there are more extreme hazard ratios in the

complctc cascs analysis. For example, for the clinical factors, cxcept for clinical stage,
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the poorer prognostic levels (ER negative, node positive and large tumour size)
appeared to be more severe for the complete cases model. For example, for ER status,
there was an increased hazard ratio of 3.04 (95% CI 2.23, 4.16) for the CCM compared
to 2.11 (1.69, 2.63) for the ACM for ER negative relative to the baseline ER positive,

although it is unknown whether the two were statistically different.

For the Health Board factor, Ayrshire & Arran Health Board (A) did not have a

statistically significant hazard ratio compared with Greater Glasgow Health Board (G)

in the complele cases model (Figure 5.15).

Comparison of hazard ratios from the all cases and complete cases models

Note that _a represents the results
from the all cases model. The _c
represents the results from the
complete cases model.
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Figure 5.15: Hazard ratios with 95% Cls for the all cases and complete cases models
Jjor the nine Health Boards.
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Examination of the ranks of the hazard ratios (Table 5.17), on the basis of the point
cstimates for the nine Health Boards shows some variation, but the ranks can be split

into two distinct groups, ranks 1-4 and 5-9.

Rank ACM CCM

High hazard 1 F C

2 A F

3 C T
e AT A

5 L N

6 Y G

7 G L

8 N S
Low hazard 9 S Y

Table 5.17: The rvanks of the Health Boards
in the ACM and CCM on the basis of the
hazard ratios compared with Health Board G.

This does not demonsirate that only F, A and C had a statistically significantly higher
risk than G in the all cases model, and in the complete cases model, only F and C were

statistically different from G.

It is pussible that including the four TTealth Boards which were dropped from the CCM
(HBs: B, H, I and V) in the ACM altered the findings for the other variables. Therefore,
another model with unknown valucs included in the prognostic factors was fitted. This
model excluded the women in these four Health Boards, leaving 1432 cases. Table
A6.1 in Appendix 6 gives the hazard ratios with 95% Cls for this model. Although
there were some minor differences between the results for the two models with
unknown values included (based on 1619 and 1432 cases respectively), none were very
striking when compared with Table 5.16 in this section and Table 3.6 in Section 5.2.2.
It appears, therefore, that inctuding the four Health Boards in the ACM did not greatly

influence the results for the ACM, in terms of making comparisons with the CCM.

Whilst the hazard ratio has the benefit of depending only on the parameter estimates
calculated for the model, it can sometimes also be informative for clinicians to see the
eftect of differences in hazards on overall survival, say at a particular point in time, or
on survival for each of the different levels of a factor. Therefore, the 5-year survival

cstimates arc now considered.
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(i) S-year % Survival Estimates

Before the results from the Cox models are presented, univariate Kaplan-Meier analyses
are discussed. These were performed on the 574 women in the complete cases model
and are compared with the results bused on all cases discussed in Section 5.2.1 and by
Twelves et al (1998a). Table A6.2 of Appendix ¢ gives the Kaplan-Meier 5-year %
survival estimates with 95% Cls based on all cases and only on the complete cases,
although only the resuits for the known levels are given for the all cases Kaplan-Meier
analyses. Table 5.18 below gives the P values for the univariate log-rank tests of
equality of the survival curves for the different levels of the different factors from both

the all cases and the complete cases analyses.

The overall Kaplan-Meier survival based on the complete cases was 72.7% (95% CI:
69.0%, 76.3%) compared with 70.9% (68.6%, 73.1%) for all cascs. Thus, there is 4
suggestion that the subgroup with complete prognostic information had a slightly better
survival, but this was probably not significant. Again, it is not possible to formally test

whether they are different as the two groups are not independent.

Factor Pvalue | P value based
based on on complcte
all cases cases

CLINICAL FACTORS

Age <0.0001 0.74
Clinical stage <0.0001 (.0001
Pathological node status <(.0001 <0.0001
Pathological tumour size <0.0001 <0.0001
ER status <0.0001 <(.0001
SERVICE FACTORS
HB of first treatment 0.02 0.14
Deprivation 0.03 0.02
Surgical case load 0.03 0.13
Seen by an oncologist (.25 0.18
TREATMENT FACTORS
Type of surgery 0.01 0.01
Adjuvant radiotherapy 0.49 0.27
Adjuvant chemotherapy 0.02 0.0008
Adjuvant endocrine therapy 0.74 0.003
Adjuvant chemotherapy or endocrine therapy 0.28 0.16

Table 5.18: P values for the overall log-rank tests of equality of the swrvival curves
in univariate analyses.
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Examination of Table 5.18 reveals that there are differences in the sets of factors which
were significant in the two cohorts, one of which is that Health Board was not
significant univariately when based on the complete cases (P=0.14). However, it was
significant in the multivariate Cox model based on complete cases when other factors
had been adjusted for (P=0.0001). Therc was no evidence of differences among the
survival curves for surgeon casc load in the complete cases Kaplan-Meier analysis. This
could be due to surgical case load for all cases having different survival prospects
beeausc the Tecam/30+ group staged their cases more thoroughly and, therefore, had less
unknown information, Thus, the women under their carc may have received more

appropriate treatment.

it is interesting that there were statistical diffcrences in survival for all of the treatment
factors, except use of any adjuvant treatment, in the univariate log-ranks tests of equality
of the complete cases. The differences observed in the complete cases situation
univariatcly may be due to women with complete staging information receiving optimal
treatment. This may mean that somc women were not given treaiment because their
disease had been staged, who may have been given it bad their staging information been
unknown. However, when the treatment factors were added to a Cox model with the
clinical factors, but not Health Board, based on 574 cases, none were significant with P

values ranging from 0.06 for any adjuvant systemic therapy to 0.90 for type of surgery.

In the publication, Twelves et al (1998a), 5-year % survival estimates obtained from the
Cox model were prescnted for each of the factors, by ‘averaging” over the other factors.
These included an ‘average profile’ by Health Board (Section 5.2.2). These estimates
were made up of weighted averages of each of the levels of each of the other factors
{Section 5.2). It would be possible to present similar figures for the nine Health Boards
included in the CCM. However, there would be problems of interpretation due to
differences in the frequency distributions for the factors for the two models {see Tabie
5.19 below). Thus, the ‘average profile’ by Health Board (FIB) for the two models
would not be comparing ‘like” with “like’, because the weighting of the risks in the other
factors would be different in the two models (Eq 5.2_1 in Section 3.2). This could lead
to mis-interpretations of any differences observed between the results for the two

models.




All Cases Model Complete Cases Model
Variable Number of % % when | Number of %
Cases nks Cases
excluded
Agpe
< 50 years 476 29 * 180 31
50 - 64 591 37 ¥ 245 43
65-79 480 30 * 145 25
> 80 years 72 4 * 4 7
Clinical Stage
Stage 1 302 19 23 102 18
11 813 50 62 391 68
111 187 12 14 81 14
Not known 317 20 * * .
ER Status
Pogitive 599 37 61 352 61
Negative 391 24 39 222 39
Not known 629 39 * * *
Node Status by
Tumour Size
Nnk, T £2cm 185 11 * * i
Nnk, T>2 138 9 * * *
N nk, T nk 112 7 # * *
N+, T<2cm 171 11 18 101 18
N+ T>2 312 19 32 183 32
N -+, T nk 100 6 ® N i
N-, T<2cm 269 17 28 157 27
N-1>2 212 13 22 133 23
N -, T nk 120 7 * i *

Table 5.19: Observed frequency distributions for the two analyses. Note that N and T
stand for node status and tumour size respectively. Also, nk stands for not known.

One potential way to avoid comparing ‘average profiles’ by HB was to obtain survival
estimates for particular levels of particular factors. To reduce the number of
combinations (96 possible for the known values) to a more manageable set, the eight
different combinations of ER status, node status and tumour size by Health Board were
presented for age group 50-64 and clinical stage II (the largest levels in both factors) {or
the two models. Therefore, all of the weights for the risks (Eq 5.2_1 in Section 5.2)

were now 1 in each of the eight groups for cach of the 13 Health Boards separately.

When the 5-year % survival estimatcs for the two modcls are compared, it is nccessary

to be aware that any observed difference between the two models for a particular
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combination and a particular Health Board (known here as Health Board, prognostic
groups) could be due to different parameter estimates for the Health Board from the two
models; diflerent values of the linear combinations of the other parameters from the two
models; or simply due to the two models having different baseline survival estimates at

that time point (or a combination of all three possibilities).

The results for the ACM and CCM are given in Tables 5.20a and 5.20b respectively.
The eight prognostic groups given in these tables have been sorted into order of
prognosis, based on the all cases model, from best to worst outcomes. The T and | in
the body of Table 5.20b highlight which Health Board, prognostic group combinations
had estimates of 5-year % survival in the CCM which were at least 10% in absolute
magnitude greater than or smaller than respectively those of the ACM. The standard
errors [oy the survival estimates for the Health Boards for the eight prognostic groups

are not given due to the apparent problem with them using SPSS (Appendix 3).

Scveral comments can be made about Tables 5.20a and 5.20b. Note that all changes of
percentage survival estimates stated below relate to absolute changes in percentages

rather than percentage changes between the two models.

(1) The effect of the node status by tumour size interaction on survival can be observed
clearly for both models. For example, comparing group E 1, N-, T<2 with E+, N-, T>»2
shows roughly a difference of 10% for most Health Boards; whereas E+, N+, T<2 vs
E+, N+, T>2 has a difference of only about 3%. Thus, the large tumour size (poor
prognosis) had more of an effect when naode status was negative (good prognosis) than

when node status was posilive (poor prognosis).

Similarly, looking at group E+, N-, T<2 compared to B+, N+, T<2 demonstrates a
difference of about 25% for most Health Boards. The corresponding difference for
B4, N, '122 vs B+, N+, '1>2 is about 12%. Therefore, being node positive (poor
prognosis) had a larger effect when tumour size was small (good prognosis) than when

it was large (poor prognosis).
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All Cases Model: S-year % survival for age group 50-64 and clinical stage 11

Health | E+,N-| E-,N-| E+,N-)| E+, N+ E+, N+, ¥-,N-,| LE-,N+! E-, N+,
Board T<2 T<2 T>2 T<2 ™2 T>2 T<2 T>2
A 89.9 79.9 74,9 66.0 62.8 54.3 41.6 37.5
C 90.1 80.3 75.3 66.6 63.4 55.0 42 .4 38.3
I 80.7 79.5 74.8 65.4 62.1 53.6 40.8 36.7
G 93.2 86.3 82.7 76.1 73.6 66.9 506.1 524
L 92.0 83.8 79.6 72.1 69.3 61.8 50.1 46.1
N 93.6 86.9 83.5 77.1 74.8 68.3 57.8 542
S 94.0 87.8 84.6 78.6 76.4 70.3 60.2 56.7
T 91.1 82.2 77.7 69.6 66.6 58.7 46.5 42.5
Y 92.5 84.8 80.9 73.7 71.1 63.9 52.6 48.7

Table 5.20a.: For the all cases model: 5-year % survival estimates by Health Board for
the eight groups of the clinical factors. Note that E, N and T stand for ER status, node
status and tumour size respectively. Alsu, note that the Health Boards. Borders,
llighland, Islands and Forth Valley are not presented here as they were not included in
the complete cases model, although they were included in fitting the all cases model.

Complete Cases Model: S-year % survival for age group 50-64 and clinical stage 11T

Health[ E+,N-] E-, N-| E+ N-| I+ N+, E+ N#| E-,N-| E- N+| E-, N+
Board T<2i T<2 T2 T2l T2 12| T2 T2
A 937 82.1 842  73.6] T 729  593] 393 38.2
C 862 | 6371  67.6] L 496/ L 486 L 304 ¢ 119 | 112
F 864 L 642 680/ 1 501 ¢ 491 ¥ 309 I 122 1 115
G 98] 849 867 77.5] 769  64.8] | 460  45.0
L 049 853 87.1 780 775 656 4700 46,0
N 93.0] 827 848 744 737 605 L 406 L 39.6
g 95.4]  86.7] 884 802 796/ 687 510l 500
T 904 735 76.6] 6200  61.1] & 444f 1 233 L 224
Y 99.0 1t 97.1] * 975 T 95.6] 1 954 T 92.6| T 87.1| T 86.7

Table 5.20b: For the complete cases model: S-year % survival estimates by Health
Board for the eight groups of the clinical factors. Note that E, N and T stand for ER
status, node status and tumour size respectively. Also, note that the Health Boards:
Borders, Highland, Islands and Forth Valley are nat presented as they were not
included in this model. The T and ¥ represent an increase and decrease, respectively, of
absolute magnitude greater than 10% when compared with the corresponding cells of
Table 5.20a.

(2) For the best prognostic group (-, N-, T<2) there were very few differences

between the two models. Both models predicted high S-vear survival estimates for all
Health Boards, with range 89.7% to 94.0% for the all cases model and 86.2% to 99.0%

for the complete cases model. This was the only prognostic group where the estimate
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for Dumfries & Galloway (Y) Health Board was not at least 10% greater in absolute
magnitude for the CCM than it was for the ACM (as it was not feasible since the 5-year
% survival estimate lor Y for the ACM was 92.5%).

For the intermediate prognostic groups (E+, N+, T<2 and E+, N+, T>2), there were
several substantial differences between the results obtained for the ACM and for the
CCM. In Health Boards C and F (Argyll & Clyde and Fife), both groups had a much
fower 5-year survival estimate for the complete cases model, with estimates that were
nearly 15% lower, than those for these Health Boards in the all cases model. However,
the estimate for Health Board Y was increased by about 20% for both prognostic groups
when the CCM was compared to the ACM. Also, for E+, N+, T>2, Ayrshire & Arran
(A) Health Board had a [0% higher survival estimate in the CCM than it had in the
ACM.

In the pooiest prognostic group (E-, N+, T>>2), five out of the nine Health Boards had
absolute differences of more than 10% between the two models. Health Board Y was
again at least 10% higher for the CCM than the ACM (in fact, the estimates were 86.7%
and 48.7% respectively). The other four changes were decreases of more than 10% in
the Health Boards C, F, N (Grampian) and T (Tayside). These drops were all about
20% in size when the CCM was compared to the ACM.

(3) The estimates for the CCM appeared to be more extreme than the ACM estimates.
For those Health Boards with either the better or the poorer smrvival figures in the all
cascs model, the complete cases model seemed 1o emphasise them. This finding is
similar to the previous discussion that was given after the hazard ratios for the two

models were compared in Table 5.16.

PARTIAL-COMPLETE CASES ANALYSIS

Suppose rather than limiting the cases to those where there was complete information in
all four variables, the restriction was changed to (i) only being complete for node status
and tumour size and (ii) being complete in the three pathological factors; namely: ER

status, node slatus and {umour size.
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The numbers remaining in each Health Board in these two situations are given below in
Table 5.21.

The percentages relate to the numbers of cases remaining for each Health Board from all
of the 1619 surgical cases. The differences between the percentages kept in cach Health
Board in the two columns were remarkable. The most notable was that when only node
status and tumour sizc nceded to be known, Borders Health Board (B) actually kept the
greatest percentage of cases, with Highland Health Board {H) keeping the third highest
percentage. This was in stark contrast to the percentages remaining in these Health
Boards (0 and 2.5% respectively) when ER status also had be known in order to be kept

in the analysis,

N and T complete E, N and 'I' complete
Health Board | Number | Percentage | Number | Percentage
A 65 51.6 57 452
B 16 72.7 0 0.0
C 66 61.7 45 42.1
F 55 60.4 42 46.2
G 225 65.6 188 54.8
H 51 70.8 2 2.8
[ 14 56.0 1 4.0
L 70 51.9 36 26.7
N 123 66.1 95 51.1
S 167 71.1 156 66.4
T 64 43.2 26 17.6
\4 31 45.6 1 1.5
Y 17 27.9 10 16.4
Total 964 59.5 659 40.7

Table 5.21: Number of cases and percentages in each Health board when

only node status and tumour size, and when all three pathological factors, were
complete. Note that E, N and T stand for ER status, node status and tumour size
respectively.

Due to these differences, the four Ilealth Boards which had to be dropped from the
complete cases analysis (HBs: B, H, T and V) were kept in the first extra analysis but had

to be dropped in the second extra analysis (thus losing four cases). Cox models were

fitted to the 964 and 6535 cases respectively.

For model (i}, age was not statistically significant and for model (i1), neither age nor

clinical stage were significant. These non-significant factors were forced in for
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consistency (as for the CCM) and comparisons were made with the all cases and
complete cases models. When the results from these analyses were examined, it was
found that the hazard ratios for models (i) and (i) were only slightly different from

thosc from the ACM and CCM (sce Table A6.3 in Appendix 6).

5.43 RELATIONSHIF OF AGE WITH MISSING VALUES IN OTHER
COVARIATES

INTRODUCTION

In the last section, it was observed that age was a significant factor in the all cases
model (ACM), but not in the complete cases model (CCM). This section tries to
identify possible reasons [or this difference. One obvious explanation could be a lack of
power in the CCM to detect a rclationship belween age and survival, as the same level
of significance (5%) was used as the cut-off in both situations. Another possible reason
could be that age was related to missingness of data in the other variables. This is

investigated here.

RESULTS

Firstly, when the ACM was fitted, the Wald statistic for age was significant, both
univariately and multivariately. Howcver, it was not significant in either the
multivariate CCM (P=0.30), or when the factor was fitted univariately (P=0.69) based
on only the complete cases. The fact that there appeared to be no differences among the
survival curves for the four levels of age univariately for the complete cases, but there
were differences when all cases were included in a univariate analysis, supports the idea
that there was some sort of association hetween age group, missing values in the other
variables and outcome. Table A6.2 in Appendix 6 gives the Kaplan-Meier estimates at

five years based on all cases and complete cases only.
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To assess this in a simple manner, various tabulations were examined. Firstly, the
simple distributions of age group for the complete and incomplete cases (the cases with

at least one of the four variables missing) arc given in Table 5.22 below.

Complete Incomplete All
Age Group | Number (%) | Number (%) { Number (%)
<50 years 184 (31.8) | 292 (28.0) | 476  (29.4)
50 - 64 245 (424) | 346 (33.2) | 591  (36.5)
65 - 79 145 (25.1) | 335 (32.2) | 480 (29.6)
>80 years 4 (0.7) 68  (6.5) 72 (4.4)
Total 578 (100.0) [ 1041 (100.0) | 1619

Table 5.22: Distributions of age group for the complete, the incomplete

and all cases.

To demonstrate the difference between the two distributions more clearly, the levels of
age group wete merged into two groups representing under 65 and aged 65 and over

(Table 5.23).

Complete Incomplete All
Agc Group | Number (%) | Number (%) | Number (%)
<65 years 429  (74.2) | 638 (61.3) | 1067 (65.9)
>65 years 149  (25.8) | 403 (38.7) | 552 (34.1)
“otal 578 (100.0) { 1041 (100.0) { 1619

Table 5.23: Distributions of cases aged under 65 and 65+ for the complete,
the incomplete and all cases.

There were big differences in the percentages in the two age groups between the
complete cases, the women with incomplete cascs and all cases (comprising the two
groups of women). I'or example, only 25.8% of the 578 complete cases were aged 65 or

over, compared with 38.7% of the 1041 cases with some incomplete information.

The next simple tabulation presented examines whether there was any relationship
between the number of variables with missing information (out of the four clinical
variables with missing information discussed in detail in Section 4.2) and age in two
groups, along with the crude indicator of percentage dead at 31/12/1993. The number of
variables with missing data wete groupcd into none (containing 578 wamen), one or {wo
variables with missing data (896 cascs) and three or all four variables with missing

information (145 cases). Table 5.24 below gives the breakdown of observed numbers in,
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these thrce groups by under or over 65 years with the expected number under a null

hypothesis of independence in each cell along with the observed percentage dead by

31/12/1993.

Complete | 1 or2 vars missing | 3 or 4 vars missing
Obs (Exp) | Obs {(Exp) Obs (xp)
Age <65 years | 429 (380.9) | 556 (590.5) 82 (95.6)
Dead-32.9% | Dead=32.9% Dead=34.1%
Age =65 years | 149 (197.1) | 340 (305.5) 63 (49.4)
Dead=36.2% | Dead=45.3% Dead=44.4%
Tolal 578 896 145
Dead=33.7% | Dead=37.6% Dead=38.6%

Table 5.24: Observed (Obs) and expected (Exp) numbers of cases and the erude
percentages dead in the different age groups for the groups of numbers of variables
(vars) missing (out of the four clinical variables with missing information).

There appeared to be no effect in the <65 group on percentage dead for differing
amounts of missing data in the other clinical variables, There was a difference,
however, in the women aged 65 and over group. The crudc percentages dead were
36.2% for complete cases compared with approximately 45% of cases with some
missing information. Therefore, there was a different relationship between having

missing data and outcome by age.

CONCLUSIONS

Data were maore likely to be missing for the women aged =65 and having any missing
information for these older women was associated with poorer outcome. Thus, when
the unknowns were included in the survival analysis, age affected the outcome, but it
did not when the cohort was limited to those with complete information only. Whilst
there will still be lack of power in the CCM to detect age, it is probable that the effect of
age on survival in thc ACM was partly due to a relationship between age and the

presence ol missing values in other covariates.
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5.4.4 RELATIONSHIP OF CLINICAL STAGE WITH MISSING VALUES

INTRODUCTION
In Section 5.4.2, both age and clinical stage were found to be signilicant in the ail cases
model (ACM), but non-significant in the complete cases model (CCM). An exposition

for the differing findings for clinical stage is given here,

One possible reason why clinical stage was not significant in the CCM could be lack of
power. Another suggested cause could be an association of clinical stage with missing

data in the other clinical variables and the influence on outcome.

RESULTS
Univariately, clinical stage was significant (P=0.0001) in the complcic cases analysis,
but became non-significant in the presence of other variables, with P value (.14 in the

multivariate CCM. This differs {rom the finding for modelling age in the complete

I P S ¥ S

cases situation, discussed in the last section. The P value of the Wald statistic for the

presence of clinical stage with other factors in the ACM was <0.001.

For the complete cases, the fact that clinical stage was significant univariately, but not
when other variables were included in the model, suggests that there must have been
confounding in the multivariate CCM. To examine this and try {o identify which
variables were associated with it, a modified forward selection analysis was performed.
(A simple stepwise selection was of no use because clinical stage never entered the
model in the complete cases analysis.) The forward selection method was slopped as

soon as clinical stage became non-significant upon the addition of a variable.

The analysis was based on the 574 cases with at [east 10 cases remaining in each of the
Health Boards (full details given in Section 5.4.2). The entering variable was selected
on the basis of the Wald statistic for being in the model in the presence of other
variables with the smallest P value for forced entry with clinical stage, and any other
variables in the model. Assessment of the significance of clinical stage was also madc

on the basis of the P value for the Wald statistic. Table 5.25 below reports the Ondings
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of this forward selection. Step 1 gives only the P value for the Wald statistic for clinical
stage as none of the other variables were offered to the model. The P values in Step 2
are those {or the Wald statistic for forced entry with clinical stage, with each of the
variables fitted separately in models with clinical stage. The P value given for clinical
stage is that which was obtained in the model for the variable which was chosen for
entry at Step 2. Similarly in Step 3, P values are for forced entry with clinical stage and

the variable selected in Step 2 for all variables,

Step 1 Step 2 Step 3
¢ e0.0003 a0.0015 a0.1110
A * 0.5357 0.8360
E * e <0.0001  a <0.0001
N * <0.0001 e <0.0001
T * 0.0004 0.0075 :
H * 0.0230 0.0013 |

Table 5,25: Presentation of results firom performing a forward selection on the
variables with clinical stage. Note that ‘e’ indicates which variable entered the model
at that step and that ‘a’ indicates that the variable has already been entered in the
model. The P value for the variables already in the model are those which are obtained
Jrom the model for the new entering variable. The P values represent forced entry for
all of the variables. Clinical stage is given by C, age (4), ER status (E), node status (N),
tumaour size (T) and Health Board (H) respectively.

Thus at Step 2, ER status was fitted with clinical stage. The significance of clinical
stage did not alter upon addition of this variable. However, when either node status or
tumour size were forced in with just clinical stage, the significance of clinical stage was
greatly affected (data not given in Table 5.25). The P values for clinical stage with node
status and tumour size were 0.033 and 0.039 respectively. This suggested that these two
variables were associated with clinical stage. This was observed in Section 4.1 (and

Appendix 4), where it was shown that these variables were not independent.

At Step 3, node status was fitted into a model including clinical stage and ER status.
Clinical stage became non-significant (P=0.11), suggesting that the addition of node
status in the presence of ER status caused clinical stage to lose its significance at the 5%

level in the CCM.

The percentages of women who were dead by 31/12/1993 in the two age groups are

given split by extent of missing data (Table 5.26).
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Complete 1 var missing 2 or 3 vars missing
Obs (Exp) Obs (Exp) Obs (Exp)
Stage I 102 (123) 116 (111) 84 (68)
Dead=18,6% | Dead=22.4% Dead=27.4%
Stage IT 394 (331) 274 (298) 145 (184)
Dead=35.0% | Dead=33.2% Decad=42.8%
Stage III 82 (76) 75 (69) 30 (42)
Dead=46.3% | Dead=61.3% Dead=60.0%
Unknown 81 (129) 129 (116) 107 (72)
Dcad=38.3% | Dead=43.4% Dead=37.4%
Total 659 594 366
Dead=34.3% | Dead=36.9% Dead=39.1%

Table 5.26: Ohserved (Obs) and expected (Exp) numbers of cases and the crude
percentages dead in the different clinical stage groups for the groups of numbers of
variables (vars) missing (out of the other three clinical variables with missing
information).

Thus, for women with stage I disease, there was a progressive increase in death rigsk as
the amount of missing information in the other three variables increased. For stage I
disease, it appearcd that having two or three of the other three variables unknown was a
lot worse in terms of ontcome than having either none or only one other variable with
missing data. Stage III disease appeared to have much higher risk of death if any of the
other variables were missing. No definite pattern was observed for women with

unknown clinical stage.

DISCUSSION

In the complete cases, clinical stage became non-significant in the mode! started with
only that factor i it, once ER status and nede status had also been entered into the
model. This makes some clinical sense because one element of clinical stage is clinical
node status. It is expected, therefore, that clinical node status would agree reasonably
with pathological node status (the node stalus available for analysis here). Thuas, clinical
stage would probably be expected to be partly redundant when pathological node status

was determined and included in the analysis.
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A table of pathological node status vs clinical node status was examined for the

212
complete cases (Table 5.27) and revealed that 36.7% ( 57 8) of the cases were not

classified in the same way. However, it was not important to calculate the sensitivity,

specificity or positive predictive values here because the majority of cases had the same

code.
Clinical
Pasitive  Negative Total
Positive 136 151 287
Pathological Negative 61 230 291
Total 197 381 578

Table 5.27: Numbers of cases in the groups with clinical and pathological
node status, either positive or negative for the complete cases.

One possible rcason that clinical stage was not in the complete cases model could be
that there was enough of an overlap between the known pathological node status and the
known clinical node status element of clinical stage to make clinical stage unnecessary.
Similarly, another element of clinical stage is clinical tumour size, which would be
expected to be similar to the pathological tumour size recorded, thus explaining why the
introduction of known pathological tumowr size in the model with known clinical stage
appeared to affect the significance of clinical stage (as discussed in the paragraph after

Table 5.25).

In contrast, in the all cases model, clinical stage was necessary in the multivariate Cox
model even with these other variables in it. Tt, therefore, appeared that the introduction
of the cxtra categorics for the unknowns and inclusion of the cases with missing valucs
in other variables, as well as clinical stage, allowed the variable for clinical stage to
enter the model. Thus, clinical stage also appeared to be linked to the amount of
missing data and outcome. However, it could also be due to the fact that the clinical

stage variable is not the same in the two models, as the factor has an extra degree of
freedom in the ACM.

The fact that clinical stage was significant on its own in the complete cases situation but

it was not necessary in the presence of other variables with known factor levels (in
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particular ER status and node status), perhaps suggests that clinical stage was in the all
cases model because when it had known clinical stage values, it is acting as a surrogate
for the missing information in the other prognostic factors. For example, there were 435
cases with unknown pathological node status and only 317 cases with missing clinical
stage in the ACM. In Section 4.2.2, it was shown that clinical stage and pathological
node status were independent in the log-linear model fitted relating missing values in
the clinical variables. Thus, it would be expected that some cases with pathological
node status missing would have clinical stage known, thus providing an indication of
the extent of disease for these cases. This reason could explain the presence of clinical
stage in the ACM and the absence of it in the CCM, where the information about the

other prognostic factors is obviously known.

This argument is supported by the fact that in the partial complete cases analysis, also
described in Section 5.4.2, when only node status and tumour size had to be known, but
ER status could be missing, clinical stage was necessary in the model (model (i)).
However, once the analysis was limited to only those cases where all three pathological
factors were complete, clinical stage was again no longer significant in the Cox model

(model (ii).

However, the reason for the absence of clinical stage in the CCM could just be due to
the lack of power fo detect it. This surmise is based on the fact that the P value for this

factor was only marginally non-significant at (.14 for non-entry.

5.4.5 GENLERAL DISCUSSION

The results given in Sections 5.2.1 and 5.2.2 and by Twelves et al (1998a) support the
findings of other relevant studies of breast cancer survival (Section 5.2.3), especially in
relation to the need for management of this disease to be given in the setting of the

multidisciplinary team approach.
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When the ‘Clinical Full” model was examined to assess the adequacy of the fit of the
model (Section 5.3.1) and the assumption of proportional hazards checked (Section
5.3.2), it was found that there was a suggestion of non-proportionality for two of the
levels of ER status. However, it was noted in Section 5.3.3 that there is no unique
approach. to assessing proportional hazards using time-dependent modelling for non-

binary categorical factors.

In Section 5.4.2, the results from fitting the all cases and complete cases model were
compared. One of the main problems with this approach is that it was not possible to
test statistically whether any of the apparent differences were rcal on the basis of any
known tests. All of the obscrvations noted above about differences among the four

analyses were informal.

1t appears that the missing values, added as extra categories, caused some large absolute
differences in the point estimates. These might lead to different interpretations of the
importance of Health Board of treatment on survival, and indced whether there were any
true differences. However, it was consistently shown, by examining the different Health
Board, prognostic groups (Tables 5.20a and 5.20b, Section 5.4.2), that women treated in
some of the Health Boards had poorer outcomes than women treated in other Health

Boards.

Tt is not clear whether using the complete cases technique for dealing with the missing
values would have been more appropriate for the analysis of the Breast Cancer Audit
data, although losing 64% of the cases appears to be wasting a great deal of information
on other variables. Also, whether the data were missing at random cannot be tested and
so it is unknown whether this was a valid implicit assumption to have made. The extent

of any biases in the estimates for both the ACM and the CCM cannot be obtained.

On the basis of these two models, very different conclusions could be drawn in terms of
differences in absolute magnitudes of survival for different Health Boards. These would
perhaps then have different implications in terms of political and organisational
structures of provision of scrvices for breast cancer management in Scotland in the

futlure.
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CHAPTER 6 INVESTIGATIONS OF BIAS IN MODELS WITH
ADDITIONAL CATEGORIES FOR MISSING YALUES

6.1 INTRODUCTION TO THE ABSTRACT PROBLEMS AND SOME
GENERAL THEORY

INTRODUCTION

One method of handling missing values for categorical factors in proportional hazards
models is by creating additional categories to represent the unknown levels. Tn Section
5.2.2, the results of fitting a Cox regression model to the Breast Cancer Audit data using
this method were reported. The assumption of proportional hazards for the chosen

model was investigated in Section 5.3.2.

It is not clear whether, in general, the assumption of proportional hazards for contexts
involving these exira levels is consistent with the same assumption for designs with
complete data (i.e. without these additional levels). This is the focus of this chapter. To
avoid the complexities of the Cox regression model, exponential regression modelling is

performed for the majority of the analyses.

THE ABSTRACT PROBLEMS

The exponential regression model is a very simple model with the proportional hazards
property. 'T'o make the sitﬁa‘tiun as uncomplicated as possible, the exponential
regression maodel is assumed to have either one or two factors which have only two
levels to represent the known values and an additional level to represent the missing
values in each of the factors. Although the outcome is known for the missing values,

the truc levels of the factors are unknown. That is, the observations would have been

149




classified as level 1 or 2 for the factors, had this information been available, Asa
turther simplification, the problem of censored data is ignored and the context where all

subjects are followed until their event time is considered.

Two different situations arc cxamined, Firstly, in Section 6.2, the theoretical situation
is explored where the observations falling in the third levels consist of random mixtures
of two (or more) exponential distributions across the known levels. In Section 6.3,
however, simulation models investigate the effects on bias of making the naive
assumption that the observations falling in the third levels also have exponential

distributions.

The aim of the initial theoretical exercise is to investigate whether or not the assumption
of proportionality holds when the missing values are included as extra levels in a model

which has proportional hazards for the levels for the known values.

GENERAL DISTRIBUTIONAL THEORY

The probability density function (pdf) for an exponential regression model is given by
HOE exp(g"' g) exp[~- yexp(g" ﬁ)l (Eq6.1_1)

and, letting the term exp( gT J_C) be replaced by A, it can easily be shown that the hazard

function is given by

Wy)=i=exp(f'x). (Pq6.12)

which is constant for all values of y.
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6.2 EXPONENTIAL REGRESSION MODEL WITH FACTOR(S) EXTENDED
FROM TWO LLEVELS TO THREE LEVELS BY ASSUMPTION THAT THIRD
LEVEL IS RANDOM MIXTURE OF FIRST TWO LEVELS

In Section 6.2.1, a factor at two Icvels is examined, with outcomes assumed to satisty an
exponential regression model. A third level for missing values in this factor is created
on the basis that the observations arise from a random mixture of the first two levels.
The aim is to derive the hazard function for this third level. It is then of intcrest to
assess whether this hazard function is proportional to the hazard functions for the
observations in the first and second levels. The effects of changing the mixing
parameter for weighling the pdfs of the two levels, and of changing the ratio of the

hazards between the first two levels, arc examined graphically,

The theory for two factors, both originally at two levels, 1s then examined in Section
6.2.2. The missing values are incorporated into the two factors as additional levels of
the factors and are assumed to be random mixtures of the first two levels for both

factors.

6.2.1 THE ONE FACTOR SITUATION

DERIVATION OF THE HAZARD FUNCTION
An exponential regression model for a single factor with two levels has pdf for the

ithievel, from Eq 6.1_1 in Section 6.1, given by

5 (}’) = CXP(CZ;)CXP[—J/CXP(CC, )J fori=1, 2.

Suppose the factor is then extended to three levels to incorporate missing values, where

the observations in this third level are assumed to be a random mixture of data from the
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original two levels. This third level has a pdf, £, (y] , which is a mixture of two
exponential density functions, and is

L) =20)+(1-2140).

The hazard functions for the first iwo levels are

h, (y) = exp(a,) = A and hz(y) = exp(czz) =4,. (gs 6.2.1_1)

The hazard function for the third level can then be shown to be equal to

h(y)= £0) _ exp(—4,) + (1 - 2)4, exp(- 4, )
2 A (y) 1 - Z[l - exp(—- /T,Iy)] ~(1- z)[] - exp(~— 7”2_'1’)]

(Eq6.2.1 2)
e 25)+0- 94, s 1)
el )+ (-Do(- )

Thus, with the exception of the trivial cases z = 0 or 1, this is not proportional to either
I3 (y) or h, (y) , 88 it is not constant for all values of y. This lack of propostionality can

be illustrated graphically.

GRAPHICAIL REPRESENTATION
An arbitrary value was chosen for the hazard function of the first group; namely
h(y)=2,=025.

To choose a sensible range for time, values were sclected to represent time from zero to

the 95" percentile for the exponential distribution of the first level. The range for y
was taken to be [0, ym]. Therefore,

Prob(Y < y,.. ) = 1—exp(- 025y, ) = 095,

which implies that
Vo =11.98 212,
Twenty-five equally-spaced points for y between ¢ and 12 (1.e., at0,0.5, 1, ..., 11,

11.5, 12) were used.
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For simplicity, the hazard ratio for level 3 vs level 1 was considered. This is obtained

fromEqs 6.2.1 1and 6.2.1 2 andis

. h, (y) zexp(— A y) +y(1-2) exp(—~ Y y)
L = s
hy ( y) oz exp(— A y) +(1-z) exp(—- 7, y)
with A, fixed at 0.25, A,replaced by #4,,and z & [0, 1] andy e [0, oo] being varying

quantities.

The values selected to represent the mixing weight(z) of the two pdfs were 0.2, 0.4, 0.7
and 0.9. Values 0.1,0.2,0.3,04,0.5,0.8,1,1.5,2, 2.5, 4, 5 and 10 were chosen [or y,
the value of the hazard ratio for level 2 vs level |. The logarithm of %r,, was then
plotted for each of the combinations of z and y . To illustrate the wide variation
causcd by changing the values of z and ¥ , six of the 48 possible curves werc picked

out and are shown in Figure 6.1 below.

RESULTS
Log (hazard ratlos) of level 3 vs level 1
for various combinations of

250 + z and gamma

200 +

1.50 -

== =i

1,00 |- z=0,2, gamma=4
'-% 050 z=0.9, garnma=4
‘E' S ey z=0.7, gamma=1.5
§ oo PR N ST v Fown bt s ke mloek > S e L TS ST
< L e et T~ U SN v SO > S V> SO T SR 7~ SO T S ST W <« ST S - ST S = BT U oY
= S . AR Lo i ST @ 9 T8 T e
§ 050+ MN? gamma=0.5

2=0.9, gamma=0.1 ——
-1.00 1
-1.50 1 T
e
-2.00 1 T e 7702, ganma0
-250 -
Time (y)

Figure 6.1: Chart showing the log of the hazard ratio for level 3 vs level 1 for six
different combinations of z and y.
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When the scale factor, y , is equal to one, the hazard ratio Az, is constant at 1, and is
represented by the horizontal line through zero. When y is grealer than 1, both level 2
and level 3 have an increased risk relalive to level 1, as the curves fory >1 remain above
zero on the log scale in Figure 6.1. Similarly, the curves with ¥ <1 remain below zero

indicating that y <1 leads to a reduced risk for both levels 2 and 3 compared to level 1.

Figure 6.1 has illustrated graphically the fact that when a third level was assumed to be a
random mixiure of the {irst two levels which do fit an exponential regression model, the
hazard for this third level was not proportional to the hazards for these first two levels

and that the non-proportionality could be quite considerable.

6.2.2 THE TWO FACTORS SITUATION

THE PROBLEM
The design 1s now extended to include two factors. Again, the aim is to derive the
hazard functions for the missing categorics and to check whether or not these hazard

Tunctions are proportional to the hazard functions for the known levels.

DESIGN WITHOUT MISSING VALUES

Suppose there are (wo [actors at two levels with observations arising from a main effects
exponential regression model, with y as the dependent variable. Let #,, denote the
number of observations in cell(,/), where & and / represent the Ievels of factors F1

and ¥2 respectively. Figure 6.2 is a diagrammatical representation of the basic design,

where there are no missing values.
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Figure 6.2; Diagram fo represent the design
without missing values in the two factors.

The pdf for the #n,, observations falling in cell (k,!) is given by

Ja) =2y expl-2,y),  (Bq622.1)
for k=1, 2 and I =1, 2, where

Ay =oxplg; v + 6] (Bq6.22.2)
and the constraints &, =0 and f, = 0 are imposed.

The a; parameters are main effects related to factor F1 and the S, parameters are main

effects related to factor F2.

The hazards for thesc four cells are constant and, therefore, proportional. The hazard
function for cells (1,2), (2,1) and (2,2) can be written, respectively, as

Ay = EXp(ﬁz );“'11 =714y

Ao = 7244

Ay =¥:¥ 22 s (Egs 6.2.2_3)

where A,,is the hazard function for cell (1,1) .

DATA WITH MISSING VALUES

Now suppose that the cases with missing values for F1 and/or F2 are to be included. Let

the mixing parameter for factor F1 be p for level 1 and (1 - p) for level 2. Similarly, let

the mixing parameter for factor F2 be ¢ for level 1 and (1 ~ q) for level 2. It is assumed
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that the mixing operates independently in the rows and columns. Figure 6.3 shows the

structure of the model with missing values.

F2
1 2 3
q 1-g
1 4 npy 73
P
F1
2 Ay, ) Ry,
1-p
3 351 B3y ¥

Figure 6.3: Diagram (o represent the design for the
1wo factors when missing values are included.

The pdfs for the observations falling in the four cells(L,1), (1,2), (2,1} and (2,2) are
given by Eqs 6.2.2 1 and 6.2.2 2 as betore, Using the mixing parameters, pand ¢,

from above, the pdfs for the observations in the missing categories can be written as

mixtures of two (or four) exponential densily functions, as follows. The pdf for the

n,; observations in cell (1,3) s given by

fn(y) = ‘Ifn(y) t (] “q)ﬁZ(}') :

'Lhe pdfs for cells {2,3), (3,1} and (3,2) can be written down in a similar manner, using

the appropriate combination of the mixing parameters.

‘The pdf for cell (3,3) is assumed to be

S (y) = pgf;, {V) T p(l - Q')flz (J’) + Q(l - P)fu (y) + (1 - P)(l - Q)fzz (_‘V)

Concentrating on the pdl for cell (1,3) , The hazard function for the observations falling
in this cell can be calculated using

A (y) _ fls(}’) _ qh, eXP(“;’ql}') + (1 _9)/112 exp(— j'1::}’)
PSS gexp(- A4+ (1= g)exp(=A,y)
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Then, by substitution using Eqgs 6.2.2 3, the hazard function for cell (1,3) can be

rewritten as

i ( ) _ g CXP("/’I11.V)+(1*Q)?/1’1|1 exp(““ }’1/111)’)
N gexp(~ 4, y) +(1-g)exp(- 11 4,,)

Similarly, the hazard functions for the cells (2,3) R (3,1) and (3,2) can be derived.

The hazard function for cell(3,3) can be shown to be equal to

A
hss()") = ‘Z}"a

where

A= pahy exp(- 2,) + p(1- @), A, expl(— 1 4,9) + 41 pYr, 20, exp{= 7, 4,3)
+(1- D)1= g expl- 77, 40,)
and
B = pgexp(~ A, y) + p(1~q) exp(= 7, 4,5) + a1 = p)exp(- 7,4,)
+{1- p)1-g)exp{- 7,7, 4, )

None of the hazard functions for the missing cells are constant for all values of y.
Therefore, they cannot be proportional to any of the hazards defined for the known
values falling in cclls (I,}) to (2,2) , given by Eq 6.2.2_2. Therefore, an additive
exponential regression model would not fit satistactorily for the additional levels created
for the missing values in the factors F1 and F2 since the hazard functions for

observations falling in the five cells are not proportional to the hazard functions for the

observations with known levels for both F1 and F2.

DISCUSSTON

The third level in the one factor exponential regression model did not satisfy the
proportional hazards assumption and similar findings were observed in the two factors
situation. It therefore seems reasonable to assume that the argument would carey
through to the more complex Cox’s proportional hazards model. The implications of

this non-proportionality of the hazards are explored in the remainder of this chapter.
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6.3 EXPONENTIAL REGRESSION MODEL WITH FACTOR(S) EXTENDED
FROM TWQO LEVELS TO THREE LEVELS BY NAIVE ASSUMPTION THAT
THIRD LEVEL IS ALSO EXPONENTIAL

Having just shown that the asswmption of proportionality of hazards for missing dala
categorics can be inconsistent with the true proportional hazards assumption for the
complete data context, the aim now is to investigate whether or not this invalidation of
the assumption matters in practice. Exponential distributions are used to generate the
complete cases data in such a manner that these cases satisfy a main effects additive
exponential regression model. ITere, the observations falling in the extra levels for the
missing values are also naively assumed to have exponential distributions, although
these observations were in reality generated from mixtures of two or four exponential
distributions. Simulations were carried out to investigate whether it is a problem, in
terms of parameter estimate bias, that an incorrect model is fitted and the assumption of

proportional hazatds violated.

6.3.1 SIMPLE THEORY FOR THE ONE FACTOR SITUATION

INTRODUCTION

Hcrce, an exponential regression model on one factor is considered. Missing values are
incorporated by creating an additional level which are obtained to be a random mixture
of observations from the first two levels. The effect of taking the outcomes for the
missing data category to naively be assumed to have an exponential distribution is
investigated. The main interest is whether or not the inclusion of the extra levcl affects

the parameter estimates for the first two levels.
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SOME SIMPLE THEORY
Supposc that the obscrvations in the 7th level of the factor are y,,, with i =1, 2, 3 and
b=k=1, .., n forobservationsinlevel 1; 6 =/=1, ..., #, for observalions in level

2;and b=m=1, ..., n, for observations in level 3 respectively. The pdfis given by

f ( Vi ) = exp(o:,. ) exp[— Vas exp(a, )] :

I expler, ) = A4, then the joint pdf for the three levels is given b
i : p g y

f(‘]—}lfc’xzf’zam;/""’ﬂ?’zﬂ]:f(zm;Zl)'f.(-y-z.';ﬂ?)"f(zam;j?)’

by the independence of the three samples. This can be re-written as

o3

f(;z”{ Vs, @3!”;)1, ) As ,/13) = |:1—:I A exp(-—- ;’1}"’1;&)“:1:[‘12 exp(— }lgyz,)].]: Ay exp(—- /Ljyg’m)

m=1

| S— |

since observations within samples are also independent.

Clearly, in this simple case, the maximum likelihood estimates for A and A4,, and henee
a,and «, , are independent of the outcomes (1, and ¢, respectively) for the missing data

category. They are exactly the same as they would have been had the missing data

category been ignored.

Thus in the onc factor situation, the fact that the hazard function for level 3 was not
proportional lo the hazard functions for levels 1 and 2 (Section 6.2.1) does not influence
the parameter estimates obtained for levels 1 and 2 when an exponential regtession

model is fitted to these data, when it is naively assumed to fit the third level also.
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6.3.2 INTRODUCTION AND STRATEGY FOR DEVELOPING THE
THEORETICAL DATASETS IN THE TWO FACTORS SITUATION

INTRODUCTION

‘I'he remainder of this chapter concentrates on the two Tactors situation. The main aim is
to investigate whethier the non-proportionality of the hazard functions, shown in Section
6.2.2, affccts the estimates of the parameters in the model describing the observations
falling in the known levels when exponential regression models are fitted with two
factors for various designs. It is assumed that both factors have two levels of known
values and an additional level created for missing values. The missing value outcomes
are again assumed to be a random mixtures of outcomes for the two known levels. The
exponential regression model fitted to the data is taken to be additive so that there is no

interaction term present.

Figure 6.4 shows the design with two factors at three levels. The observations with

unknown levels fall into one of the five cells (1,3] , (2,3) , (3,1) , (3,2) and (3,3) .

F2
1 2 3
1 1y, A, 13
F1 2 Ay, 1y, My
3 Fiy, R4y M3,

Figure 6.4: Diagram representing the design for
two factors, both at three levels.

When fitting models to the data, all of the observations falling into the nine cells are

assuined to be exponential and so the assumed pdfs for all nine cells can be denoted by

H i, )= A oxpl= 2y, ) @a632.1)
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where

Ay = explp, +a, + ] (Cq 6.3.2_2)

with k=1, 2, 3 and / =1, 2, 3 and the constraints «, =0 and g, =0 are imposed.

These A, are the hazard functions ftom the assumed model for the nine cclls.

‘The aim here is to derive two sets of normal equations Lo try (o obtain the parameter

estimates for the known levels. Firstly, when only the observations with known factor
levels (i.e. cells {1,1),(1,2), (2,1} and (2,2}) and, secondly, when all of the observations

(i.e. known plus missing) are included in the design. Exponential regression models are

fitted to observations in these contexts and the results are compared.

When the normal equations are obtained, using standard maximum likelihood
techniques, for bath the situations with and without the missing data categories, the
equations cannot be solved analytically (see Appendices 7 and 8 for complete and all
cases designs respectively). Therefore, simulation methods are used to study the

properties of parameter estimates in the presence of missing information in the factors.

To perform these exercises, artificial datasets needed to be generated such that
observations for the four cells with known factor levels arose from an exponcatial
regression modcl with additive contributions from both factors but with no interaction.
The missing values categories were created to have observations from random mixtures
of the four known exponential distributions. The potential bias arising when the third
levels are incorrectly taken to satisfy the exponential regression mode! is examined. All

calculations, including random number generation, were carried oul in SAS.

STRATEGY FOR DATA GENERATION
For The Complete Cases Designs: Tigure 6.5 shows the four cells representing the
known factor levels. These four cells will be referred to as the known cells and the

context will be referred ta as the complete cases design.

161




F2

1 2 3
1 1174 N2
K1 2 Ny 11y
3

Figure 6.5: The known cells.

The observations are generated from four exponential distributions such that r,,

represents the number of observations failing in cell(k,!), where & =1, 2and /=1, 2
and Egs 6.3.2_1 and 6.3.2_2 are satisfied. The ¢, parameters are main effects related to

factor F1 and the §, parameters are main effects related to factor I'2.

The respective hazard functions for the four cells are given by

Ay = exp(;zu) for cell(1,1),
Ay = exp(p“ + ,82) for cell (1,2) ,

Ay = exp(y“ + az) for cell (2,1)
and

Ay =expluy; +o, + ) foreell (2,2).  (Hgs 6.3.23)

For all of the analyses described in the remainder of the chapter, the true values chosen

for the parameters were:

My =125,
o, =03
and S5, =03,

The value for g, was chosen arbitrarily. The values for «, and £, were chosen such
that the hazard ratio for level 2 versus level 1 of F1 was cxp(czz) ~ 1.6 and the hazard

ratio for level 2 versus level 1 of F2 was exp(ﬂz) =~ 1.3. 'lhese are similar in size to

hazard ratios observed in the analysis of the Breast Cancer Audit data.

Thus, observations in cell {1,1) were generated from an Ex(exp(l.25)) distribution and so

the mean of observations in the cell would be exp(—125). Similarly, the exponential
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distributions for the observations in cells {1,2), (2,1} and (2,2) were Ex(exp(l.SS)) ,

Ex(exp(l.?ﬁ)) and Ex(exp(2.05)) respectively.

The SAS procedure Lifereg was used to perform all of the exponential regression
modelling. The purpose of fitting the models to the complete cases only was to test the
SAS program. As all of the four known cells were observations from exponential

distributions, then when the exponential regression model was fitted, the parameter
estimates /i, &,and £, ought to have been very close to the true values sct up for

Hyys pand By

For The All Cases Designs: Figure 6.6 represents the five cells corresponding to the

missing factor level information. These are known as the missing cells.

E2
1 2 3
1 nj3
Fl 2 N3
3 nay 133 N33

Figure 6.6: The missing cells.

Each observation falling in a missing cell was generated from one of the four possible
exponential distributions. A mechanism was needed to decide from which distribution
the observation should be generated. The mixing paramecters for cach of the five cells
were chosen here such that the proportions ol observations generated from the different
exponential distributions in the missing cells were the same as the relative frequencies
of the known cells. Tor example, the r,, observations in ccll (1,3) consist of
observations from a mixture of two exponential distributions with the true mixture pdf
for the n,; observations given by

b iy

Jo=—— —fut_—" /o

g, T,

=rfyy +(1=7) fi
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Similarly, for cell (3 ,2) . the 7, observations were created from a mixture of two
exponential distributions such that the true mixture pdf is

iy fya

fia t I

J1
Fyy ~ Foy Ry + 8y

fo=
=uf, + (I_u)fzz

For cell (3,3) , the n; observations are generated from a mixture of four exponential

distributions such that

) v &)
S = fu+ Jat Ja
My iyt TRy, Ay H Ry 1y E iy Ty Ry Ty gy
m
2
+ S

g 1 1y 1) T 1y,

Full details are given in Appendix 9. Note that these mixing parameters are different
from those used in Section 6.2.2. Clearly this is just one particular structure that could
have been chosen for penerating observations in the (ive missing cells. This process of
using the relative fiequencies was selected because it meant that the distributions of
responses in the missing calegories are weighted with respect to the observed numbers

of subjects in the individual complete data categories.

THE ASSUMED MODEL

All observations are assumed to satisfy the exponential regression model, which is
known 1o be incorrect for the missing values. This is known because the observations
falling in the missing cells have been generated to be rarndom mixinres [rom the two
known levels. Tn Section 6.2.2, it was shown that including third levels which have
observations which are random mixtures of the exponential distribution for the first two
levels produces hazard functions for the third lcvels which are not proportional to thosc

for the first two levels. The primary aim is to investigate whether the parameter

estimates ¢, and f3,, obtained when the missing values are also included in the dataset,

are different from the true values of the parameters.
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If the fitted model were true, then the log hazards for the cells would be those given by

Figure 6.7. The values of i, &,and £, are unimportant here as it is really the values of

&, and 3, that are of interest.

F2
1 2 3
1 iy B iyt
FlL 2 My + & byt + 5 Hy T oy + B
3 Hy + Myt o+ My o+

Figure 0.7: Log hazards for the nine cells when the model is true.

Here the estimated hazard ratio for being in level 2 of F'1 versus level 1 of F1 is given hy

exp(o?2 ) and similarly tor being in level 2 of F2 versus level 1 of T'2, the estimated

A
&

hazard ratio is exp(,[i) . Thus, if the parameter estimates obtained for the complete and

all cases designs are different, then the hazard ratios will also be different, possibly

leading to diffcrent interpretations and conclusions.

6.3.3 RESULTS FOR THE COMPLETE CASES DESIGNS BASED ON

SIMULATED DATA

INTRODUCTION TO THE NINE GROUPS

Nine groups of designs for the complete data cells were created in three types according
to the different numbers in the known levels. The most obvious type was the one with
equal numbers in the known cells. The next two groups formed the second Lype, where
the proportions of observations in level 1 out of the total for factor F2 were created to be
the same for both levels ol factor F1. The remaining six groups fell into the third type,
where there was no definite pattern among the numbers in the known cells. Some of

these six groups were chosen to have some extreme variations in the numbers in the four

known. cells.
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Table 6.1 gives the numbers »,, falling in cell(k,i'] for the complete cases (see Figure

6.5 in Section 6.3.2). Note that all ol the numbers are in units of a 1000. Large sample

sizes were used to oblain biases in an asymptotic situation.

Type and Numbers in known cells

Group njq niy T3¢ 119%)
I--A All 20

11 - B 20 40 50 100
II--C 25 35 50 70
Il --D 10 100 50 40
oI --E 15 75 20 90
I --F 40 5 35 120
Il -- G 2 90 100 8
I --H 20 40 100 40
I -- 1 30 40 60 20

Table 6.1: Numbers in the known cells for the nine groups.

THE COMPLETE CASES DESIGNS
Tixponential regression models were then fitted to these nine groups for the complete

cases. The biases for the three parameters y4,, @, and B, were calculated by
(/2 — 1) (8, ~ ;) and (,Bi, —[)})aud are denoted by {4, ), b((iz) and b(,@)
respectively. The standard errors, derived from the model fits, for the parameter

estimates are given by se( [z“) , se(a?z) and Se(ﬁz) respectively and the results given in :

Table 6.2.

Group b(ﬂ”) Se(ﬁ“ ) b(%) se(o?z ) b(ﬂz) Se('@)
A 0.0040 0.0061 0.0030 | 0.0071 -0.0036 0.0071
B ~0.0025 0.0051 0.0012 | 0.0048 0.0066 0.0046
C -0.0041 0.0050 0.0029 | 0.0050 0.0080 .0048
D ~0.0074 | 0.0060 0.0065 | 0.0052 0.0067 | 0.0057
E 0.0003 | 0.0059 0.0094 | 0.0045 -0.0013 | 0.0059
F 0.0025 | 0.0048 -0.0014 | 0.0065 0.0034 | 0.0056
G -0.0013 | 0.0106 0.0021 | 0.0104 -0.0004 | 0.0103
H -0.0014 | 0.0052 0.0033 | 0.0052 0.0049 ! 0.0049
1 0.0002 | 0.0049 -0.0009 | 0.0055 0.0019 | 0.0056

Table 0.2: Isstimated biases and standard errors for the complete cases designs for
the nine groups.
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All of the estimated biases were compatible with true values of zero bias, except for

b((:?z) for Group E. This was more than 2 standard errors {from zero. IHowever, it is not

surprising to find one result significant at the 5% level, given that 27 tests have been

conducted.

Thus, it appears that the complete cases designs gave the expected results, confirming
that the SAS program generated the observations correctly and the estimation process

worked successfully.

The estimated standard errors for Group G for all parameter estimates were much larger
than those for the rest of the groups, probably because of the relatively smaller sample

sizes in two of the four cells.

THE ALL CASES DESIGNS
For these nine groups with different numbers in the four known cells, a total of 79

different designs were then crcated with differing numbers in the missing cells. The

numbers in thesc cells were chosen to investigate how the biases in @, and 5, changed
depending on the overall percentage missing and the distribution of the missing
observations in the {ive cells. Exponential regression models were then fitted to the 79

designs in the nine groups.

However, before the results of these 79 designs could be examined in detail, it was
necessary to consider the validity of the model based standard errors. This was because ..
the exponential regression model was known to be incorrect, as the hazards were not

proportional (Section 6.2.2), when the missing values were inchuded in this manner and,

therefore, the standard errors obtained from an incorrect medel would probably also be

incorrect. The question, therefore, is by how much are the standard errors incorrect?
To tackle this problem, simulations were used to generate 20 replicates for 19 of the 79

designs. For six of these 19 designs, further iterations were performed to obtain larger

numbers of replicates. The sample standard deviations in the parameter estimates
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obtained from these simulations are compared to the model derived standard errors for

the 19 designs and the results are given in the next section.

6.3.4 SIMULATION STRATEGY AND RESULTS EXAMINING THE
INACCURACIES OF THE MODEL BASED ESTIMATED STANDARD
ERRORS FOR THE ALL CASES DESIGNS

INTRODUCTION
To investigate the validity of the estimated standard errors obtained from these designs,
sumulations were performed to obtain replicates. The numbers (in units of a 1000) in

the nine cells for the 19 designs involved in this analysis are given in Tablc 6.3.

IKnown cells Missing cells
Design Ny 1y oy n2 3 23 131 n3; n33
A2 20 20 20 20 5 10 15 25 35
B4 20 40 50 100 5 10 15 25 35
C1 25 35 50 70 35 25 5 2 50
D5 10 100 50 40 5 3 5 5 S
D6 10 100 50 40 2 5 10 5 2
D7 10 100 50 40 5 2 5 2 5
D9 10 100 50 40 5 2 2 2 5
D10 10 100 50 40 2 2 2 2 2
El 15 75 20 90 150 150 150 150 150
ES 15 75 20 90 20 20 20 20 20
K5 40 5 35 120 10 10 10 10 10
F10 40 3 35 120 10 10 5 2 5
F12 40 5 35 120 5 2 2 10 5
G2 2 90 100 8 100 50 2 2 2
H9 20 40 100 40 10 10 10 10 10
H14 20 40 100 40 10 10 5 5 2
H21 20 40 100 40 2 2 10 2 2
12 30 40 60 20 5 5 5 5 5
I8 30 40 60 20 2 2 2 2 2

Table 6.3: Numbers in the nine cells for the designs where replicates were simulated.

For each of these 19 designs, the 20 replicates were generated to identify any substantial

deviations between the model based standard errors and the sampling standard
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deviations for a particular design. However, since 20 is not a large number of iterations,

further replications wete obtained for six of the designs. This was to try to identify

more subtle differences. The number of additional itcrations was limited by computer

space, due to the size of the seeds filc used to generate the observations and the
sequences of random uniform numbers, and by the time taken to run the simulations,

The larger numbers of replicates used are given in Tablc 6.4.

Design Number of replicates
A2 285
D5 100
D7 100
G2 100
H21 100
12 165

Table 6.4: The larger numbers of replicates

generated for six of the designs.

From Cox & Oakes (1984) and Ford et al (1995), the variance-covariance matrix for the

exponential regression model can be computed solely from the design matrix and does

not depend on the parameter estimates. Therefore, the model based standard errors

obtained for &, and /§2 will be independent of the simulated data given a particular

design.

The aim here was to compare whether this known asymptotic standard error, based on

the assumption that the exponential regression model fitted the data, was similar to the

sampling variability of the parameter estimates, due to the bias introduced by the fact

that the exponential regression model was inappropriate. The values of the theoretical

model based standard errors for &, and ﬁ! obtained from fitting the model once (see

Section 6.3.5) are given for each design, along with the values of the sampling standard

deviation obtained on the 20 parameter estimates. For the six designs where larger

numbers of replicates were obtained, similar values are also given for these analyses,

The standard errors for z, are not given as the main interest was in whether or not the

parameter estimates ¢, and S, were affected by the inclusion of the missing values in the

design. For all of the replicates, the results are piven below in Table 6.5, The sampling




standard deviations from the 20 (or lurger numbers of) parameter estimates provide an

idea about the true samipling variability for the designs.

Design | Parameter | Theoretical | Sampling standard | Sampling standard
standard | deviation obtained | deviation obtained
error from 20 reps from 20 reps

A2 a, 0.0065 0.0052 0.0066

13“2 0.0058 0.0062 0.0060
B4 a, 0.0047 0.0050 *

[jz 0.0042 0.0038 *
C1 a, 0.0043 0.0045 *

’[}2 0.0047 0.0052 *
D5 a, 0.0050 0.0062 0.0052

A 0.0054 0.0056 0.0049
D6 @, 0.0051 0.0062 *

ﬁhz 0.0053 0.0058 *
D7 a, (.0051 0.0060 0.0050

'5}2 (.0055 0.0053 0.0050
D9 a, 0.0051 0.0060 "“‘

‘g; 0.0055 0.0060 *
D10 oA 0.0051 0.0059 *

ﬁhz 0.0056 0.0057 *
El &, 0.0028 0.0028 *

ﬁz 0.0030 0.0027 *
ES a, 0.0041 0.0035 *

/§2 0.0050 0.0035 *
F5 a, 0.0058 0.0059 *

‘5“2 0.0051 0.0051 *
1o a, 0.0059 0.0064 *

ﬁz 0.0053 0.0055 %
F12 a, (.0062 0.0060 ¥

[}2 0.0054 0.0062 *
G2 &, 0.0048 0.0042 0.0051

‘3“2 0.0062 0.0050 0.0061

Table 6.5: Estimated standard errors for each of the designs (Theoretical standard
error) and the sampling standard deviations obtained from the 20 (or larger numbers
of) estimates. Note that “*’ indicates that only 20 replicates were obtained for that

design.
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Design{ Parameter | Theoretical | Sampling standard | Sampling standard
standard | deviation obtained | deviation obtained
error from 20 reps from 20 reps
H9 a, 0.004% 0.0044 *
ﬁz 0.0046 0.0038 N
H14 a, 0.004% 0.0044 *
ﬁhz 0.0047 0.0040 *
H21 &, 0.0051 (.0049 0.0049
ﬁ’; 0.0048 0.0038 0.0046
12 &, 0.0053 0.0045 0.0054
ﬁ’; 0.0054 0.0057 0.0055
I8 &, 0.0054 0.0045 *
ﬁz 0.0055 0.0055 ¥

Table 6.5 cont: FEstimated standard ervors for each of the designs (Theoretical standard
error) and the sampling standard deviations obtained from the 20 (or larger numbers
of) estimates. Note that '*’ indicates that only 20 replicates were obtained for that
design.

The fact that the theoretical standard errors were similar to these sampling standard
deviations, based on the 20 or more replicates, leads to the conclusion that the
theoretical model based standard errors can be taken as being reasonable. Therefore, the
results of fitting exponential regression models to the 79 designs in the nine groups can
be discussed in the next section using the knowledge that the standard errors are

probably acceptable.

6.3.5 EXAMINATION OF THE OBSERVED ESTIMATED BIASES AND
ESTIMATED STANDARD ERRORS FOR THE ALL CASES DESIGNS

INTRODUCTION
The nine groups that were modelled in the complete cases designs were the basis of the
exponential regression model fitted for 79 designs on all cases. ‘l'able 6.6 shows the

numbers in the four known cells. All of the numbers are in units of a 1000.
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Numbers in known cells

Group 1y} 15 131 77
A 20 20 20 20
B 20 40 S50 100
C 25 33 50 70
D 10 100 50 40
E 15 75 20 90
F 40 5 35 120
G 2 90 100 8
H 20 40 100 40
1 30 40 60 20

Table 6.6: Numbers in the known cells for the nine groups.

Having just shown that the standard errors (s.c.) for these designs appeared to be
reasonable even though the model that was fitted was incorrect, it was then possible 1o
test informally whether or not the parameter estimates obtained from these 79 designs

were biased. This was possible by comparing the magnitude of estimated bias with its
approximate estimated standard error. Only the values of @, and ﬁz were examined
and the estimated biases b( &, ) = (c?z —a )and b(ﬁé) = ( B -4 ) are presented along

with the estimatcd standard errors se(o?z) and se(/;‘z) :

The overall pereentage of obscrvations falling into the five cells with missing factor
level information is given by ‘% missing’ for ach model. The results for the ninc

groups in the three types are now presented separately.

TYPEI - GROUP A

This group had complete symmetry with equal numbers in the four known eells (Figure

6.8).

I2
F1 20| 20
20| 20
Figure 6.8: Numbers in the
known cells in Group A.
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Table 6.7 gives the numbers in the missing cells and the overall percentage missing in

both designs in Group A, whilst the estimatcd biases and standard errors for ez, and ﬁ;

for the two designs are given in Table 6.8.

Number in missing cells
Design 113 ny; niy ni; nz; | % missing
Al 20 20 20 20 20 56
A2 5 10 15 25 35 53

Table 6.7: Numbers in the missing cells and % missing in Group A.

Design blh) sl ) b(ﬁ;) Se(é)
Al <0.0001 0.0058 -0.0032 0.0058
A2 0.0024 0.0065 -0.0028 0.0058

Table 6.8: Estimated biases and standard errors for the designs in
Group A.

There appears to be no evidence of bias in the parameter estimates obtained for this

group.

TYPE II -- GROUP B

This group had equal proportions in the numbers in level 1 of factor 2 for both levels

n, By
Ry Ry Ay Hy,

of factor F, with = 0.33. These proportions are the mixing

parameters » and s (Section 6.3.2 and Appendix 9) for weighting the two exponential

distributions used to generate the observations in the missing cells (1,3) and

(2,3] respectively. These proporttions are observed by examining the breakdown of the

numbers in the known cells for this group (Figure 6.9).
F2

F1 20 40

50 100

Figure 6.9 Numbers in the
known cells in Group B,
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'l'able 6.9 gives the numbers in the missing cells for the six designs in Group B.

Nuniber in missing cells
Design ng; o3 N3y nj; n3; | Yo missing
B1 100 5 75 150 2 61
B2 40 40 40 40 40 49
B3 20 20 20 20 20 32
B4 5 10 15 25 35 30
B5 15 13 15 15 15 26
B6 5 3 S 5 5 11

Table 6.9: Numbers in the missing cells and % missing in Group B.

The estimated biases and standard errors for the parameter estimates are given in Table

6.10 for these designs.

Design ’ (az ) se(az ) b ('32 ) se(ﬁ; )

B1 0.0022 0.0045 0.0007 0.0032
B2 0.0007 0.0040 0.0033 0.0039
B3 -(.0007 0.0043 0.0049 0.0042 -
B4 0.0009 0.0047 0.0052 0.0042
B5 <0.0001 0.0044 0.0048 0.0043 !
B6 0.0010 0.0047 0.0059 0.0045 E

Table 6.10: Estimated biases and standard errors for the designs in

Group B.

Again, there was no evidence of biused parameter estimates.

TYPEII -- GROUP C

This is another group in type 1T where there were equal proportions of observations for
level 1 out of the total of factor F2 for both levels of F1 (Figure 6.10).

F2
F1 25 35
50 70
Figure 6.10: Numbers in the
known cells in Group C.
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Table 6.11 gives the numbers in the missing cells and the overall percentages missing.
The biases and model based standard etrors for the parameter estimates are shown in

Table 6.12.

Number in missing cells
Design 3 n2_3 13 nzz nj3z % missing
C1 35 25 5 2 50 39
C2 15 15 15 15 15 29

Table 6.11: Numbers in the missing cells and % missing in Group C.

Design b(az ) be(% ) b('@) sa(ﬁz)
C1 0.0021 0.0043 0.0061 0.0047
C2 0.0013 0.0046 {.0059 0.0044
Table 6.12: Estimated biases and standard ervors for the designs in
Group C.

There was no evidence of bias in the parameter estimates.

It, therefore, appears that for both type [ and type II contexts the parameter estimates

were not biased, despite the fitted model being incorrect. These types have equal

1y 1y,

and s =

proportions in the known cells for » =
fyy 1y By + Ay

;1.e. r=5(see

Section 6.3.2 and Appendix 9). In this situation, the expectations in each cell are
compatible with a proportional hazards model even thaugh the exponential regression

model is not valid.

For example, the expectation for observations in cell {1,3)is
exp(m ,u)[r +{1~r) cxp(— 5 )] and the expectation for observations in cell (l,l) is
exp(— ,u) . Therefore, the ratio of the expectations, and hence the hazards for the

exponential distributions, for cell (1,3) to cell (11)is #+(1-r) exp(w ,F}’l) .

Similarly, the expectation for the observations in ccll (2,3) is

exp(- u- az][s +(1-s)exp(- 4, )] and for cell (2,1), exp(—- f—a,). Therefore, the
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ratio of cell (2,3) to cell (2,1}is s+(1-s)exp(~ 2 )= r +(1-r)exp(-5), since r = s.

The ratio of the expectations for cell (3,3} versus cell (3,1) also has the same ratio.

The expectations have the form they would have had if the observations were from an
additive exponential regression model. Thus, the expectations are proportional even
though the exponential regression model is not appropriate, with the truc hazards not
being proportional. A sufficient statistic for the maximum likelihood estimate (MLE) is
the sets of sums of observations in each of the cells. Henee, a MLE will be based solely
on these quantities and in this case, when the mixing weighis are in correct proportions,
the sums are compatible with an additive exponential model and the estimates would be

asymptotically unbiased.

TYPE HI -- GROUP D

‘The numbers in the known cells for Group D are given in Figure 6,11.

F2
F1 10| 100
50 40
Figure 6.11: Numbers in the
known cells in Group D.

‘Table 6.13 shows the numbers in the missing cells {or the designs in this group.

Number in missing cells
Dcsign ni3 na3 nsy 32 133 % missing
D1 50 50 5 50 5 44
D2 35 25 5 2 50 37
D3 5 10 15 25 35 31
D4 10 10 10 10 10 20
D5 5 5 5 3 5 11
D6 2 S 10 5 2 11
D7 5 2 5 2 5 9
D8 2 5 2 5 2 7
D9 5 2 2 2 5 7
D10 2 2 2 2 2 5

Tuble 6.13: Numbers in the missing cells and % missing in Group D.
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The estimated biases and model based standard crrors for the parameter cstimates are é

presented in Table 6.14. 3
Design ba) seld) b(ﬁz) Se(‘@)
D1 ~0.0663 0.0040 -0.0581 0.0051
D2 -0.0440 .0044 -0.0356 0.0053
D3 -0.0345 0.0049 -0.0622 0.0049
D4 -0.0289 0.0048 -0.0427 0.0052
D5 ~0.0129 0.0050 -0.0199 0.0054
D6 -0.0127 (.0051 -0.0252 0.0053
D7 -0.0073 0.0051 -(.0140 0.0055
D8 -0.0063 0.0051 -0.0097 0.0055
DY -0.0037 0.0051 -0,0069 0.0055
D10 -0.0023 0.0051 -0.0060 0.0056
Table 6.14: Estimated biases and standard ervors for the designs in
Group D.

When there was 7% or less of the total missing, there was no evidence of significant
bias in the parameter estimates. The patameter estimate &, also did not appear to be

biased when there was 9% missing, but the estimate for 4, was.

Note that, as the overall percentage missing increased, the standard errors of @, and f3,

decreased. The total sample size was not controlled and, therefore, as more cases were
added into the missing cclls, the overall total numbers of cases increased for the
particular group design. This led to the standard errors decreasing because the

parameter estimates were being calculated from more data.

In contrast, as the percentage ol missing values increased, so did the magnitude of the
estimated bias of both &, and /}2 . in general. To illustrate this, the magnitudes of the

estimated biases were plotted against the percentage missing for the 10 designs in this

group (Figure 6.12).
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Estimated bias in estimates by overall % missing
Group D
oLy T
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00s +
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% missing

Iiigure 6.12; Plot of the magnitude of the estimated bias against the overall percentage
missing for Group D.

TYPE III -- GROUP E

The numbers in the known cells in this group were very similar to those of type II since

. 1 2
the proportions in level 1 of F2 for levels 1 and 2 of F1 werte — and — respectively,

6 11
with the numbers in the known cells given in Figure 6.13.
F2
F1 15 75
20 90

Figure 6.13: Numbers in the
known cells in Group E.

The numbers in the missing cells are shown in Table 6.15 and the cstimated biases and

standard errors for the parameter estimates from the designs in this group are presented
in Table 6.16.
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Number in missing cclls
Design i3 n%; 31 ns; 33 % missing
El 150 150 150 150 150 79
E2 125 125 125 125 125 76
3 125 150 100 75 150 75
4 100 100 100 100 100 71
| DR 75 75 75 75 75 65
E6 50 50 50 30 50 56
E7 40 40 40 40 40 50
E8 20 20 20 20 20 33
IZY 5 5 3 5 5 11

Table 6.15: Numbers in the missing cells and % missing in Group E.

Design b(a:z2 ) .5(’(053 ) b( 5 ) se(,@)
E1l 0.0005 0.0028 -(0.0123 0.0030
E2 0.0014 0.0030 -0.0126 0.0032
E3 0.0009 0.0029 -0.0099 0.0036
T4 0.0017 (.0032 -0.0114 0.0035
E5 0.0052 0.0034 -0.0086 0.0038
E6 0.0039 0.0037 -(.0080 0.0042
E7 0.0054 0.0038 -0.0074 0.0044
ES 0.0058 0.0041 -0.0053 0.0050
EY 0.0085 0.0044 -0.0027 0.0056
Tuble 6.16: Estimuted biases and standard errors for the designs in
Group E,

Dcspite cxtensive numbers of cases with missing faclor levels (even when there was as
much as 79% of the total missing), there was no evidence of bias in the parameter

| estimate for o, in any of the designs. However, when there was 65% or more of cases

~

missing, f, appeared to be biased, although with 56% or less of the total number of

|
' cases missing, there was no evidence of bias for eithera, or 5, .
L
l

! Figure 6.14 shows a systematic pattern of increasing magnitude of bias for ﬁ; as the

[ percentage of missing values increased. Although there appears to be a decreasing trend

for the magnitude of bias of @, with increasing percentage of missing values, there was

l no evidence that any of the biases for ¢, were different from zero.
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FKigure 6.14: Plot of the magnitude of the estimated bias against the overall percentage
missing for Group L.

TYPE 1l -- GROUP F

The numbers in the known and missing cells for Group F are given in Figure 6.15 and

Table 6.17 respectively.

2
F1 40 5
351 120
Figure 6.15: Numbers in the
known cells in Group F.
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Number in missing cclls

Design n;s no3 n3y niy n3; | % missing
F1 20 40 100 35 20 52
F2 40 40 40 40 40 50
F3 20 20 20 20 20 33
F4 15 13 15 15 15 27
K3 10 10 10 10 10 20
F6 10 10 10 5 5 17
F7 10 10 5 10 5 17
T8 10 10 5 5 10 17
o 10 10 5 5 5 15

F10 10 10 5 2 5 14
F11 5 5 5 5 5 11
F12 5 2 2 10 5 11
F13 10 5 5 2 2 11
F14 2 2 2 2 2 5

Table 6.17; Numnbers in the missing cells and % missing in Group F.

Table 6.18 shows the biases and model based standard errors of ¢, and ﬁz .

Design b(“z ) Se(az ) b (ﬂz ) ‘W’(’Q’)
F1 0.0111 0.0050 0.0956 0.0041
F2 0.0477 0.0046 0.0687 0.0042
K3 0.0247 0.0053 0.0413 0.0047
F4 0.0197 0.0055 0.0322 0.0049
F5 0.0143 0.0058 0.0219 0.0051%
Fo6 0.0201 0.0059 0.0127 0.0052
F7 0.0189 0.0058 0.0114 0.0052
K8 0.0229 0.0059 0.0061 0.0053
F9 0.0228 0.0059 (0.0061 0.0053

F10 0.0282 0.0059 -0.0016 0.0053
F11 0.0068 0.0061 0.0134 0.0053
F12 0.0036 0.0062 0.0096 0.0054
F13 0.0184 0.0061 0.0024 0.0054
Fi4 0.0028 0.0064 0.0062 0.0055

Tuble 6.18: Estimated biases and standard errors for the designs in

Group F.

When there was 20% or more of the total missing, both of the parameter estimates were

biased in all of the designs. With 17% of the observations were missing, designs I'6 and

F7 also had biased parameter estimates, but there was no evidence of bias for 4, for

181




design F8, Thus, it appears that the distribution of the missing values affected the

estimation process.

From Figure 6.16, the magnitude of the bias of ﬁz increased as the percentage of

missing values increased. No obvious relationship was apparent for the bias of ¢, .

Estimated bias in estimates by overall % missing

Group F
01T
0.09 T
0.08 |

0.07 w

0.06 1

' «|B_alp2|
0.05 » X |B_bet2|

magnitude of estiniated bias

X K W
»

=]

o

P-4
eXx K @

0 t + [ — + : .
0 10 20 30 40 50 62

% missing

Figure 6.16: Plot of the magnitude of the estimated bias against the overall percentage
missing for Group F.

TYPEIII -- GROUP G

The numbers in the four known cells in this group are given in Figure 6.17.

F2
F1 2 90
100 8
Figure 6.17: Numbers in the
known cells in Group G.

Table 6.19 provides the numbers in the missing cells for this group, whilst the estimated

biascs and standard errors for ¢, and ,é, are shown in Table 6.20.
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Number in missing cells
Design ng; 3 ns; 132 133 | Yo missing |
Gl 2 2 2 100 100 51
G2 100 50 2 2 2 44
G3 15 15 15 15 15 27
G4 5 5 5 5 5 11
G5 2 2 2 2 2 5
G6 1 1 1 1 1 2

Table 6.19: Numbers in the missing cells and % missing in Group G.

MEEEERIECRED

Gl -0.1040 0.0092 -0.1136 0.0091

G2 -0.2213 0.0048 -0.2084 0.0062

G3 -0.2199 0.0069 -0.2346 0.0068

G4 -0.1221 0.0087 -0,1287 0.0087

G5 -0.0634 0.0096 -0.0680 0.0096

G6 -0.0325 0.0100 -0.0366 0.0100
Table 6.20: Estimated biases and standard errors for the designs in
Group G.

Despite the fact that design G6 had only 2% of the total number of observations

missing, both of the parameter estimates for all of the designs were biased.

A quadratic pattern was secn in the plots of the magnitudes of the biases for the two
parameters against the percenlages missing for the different designs (Figure 6.17), again
suggesting that the distribution of the missing values is important to the estimation

process.
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Estimated hias in estimates by overall % missing
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Figure 6.18: Plot of the magnitude of the estimated bias against the overall percentage
missing for Group G. 5

TYPEIHI -- GROUP H

Figure 6.19 and Table 6.21 gives the numbers in the known and missing cells

respectively.

Fl 20| 40
100 | 40
Figure 6.19: Numbers in the
known cells in Group I1, Fa




Number in missing cells
Design ni3 Iz N3y n3; n33 | % missing
Hi 40 40 40 40 40 50
H2 150 2 5 2 15 47
H3 25 25 25 25 25 38
H4 100 2 5 2 15 33
IS5 100 2 5 2 10 37
Hé 10 2 5 5 50 26
H7 40 10 5 2 10 25
HS8 40 2 5 2 15 24
H9 10 10 10 10 10 20
H10 5 10 10 5 3 15
Hi1 10 5 5 5 10 15
Hi2 2 10 2 10 10 15
H13 10 3 3 2 10 14
H14 10 10 3 5 2 14
H15 10 2 10 5 5 14
H16 10 S 10 2 5 14
HI17 10 5 10 5 2 14
H18 10 10 5 2 2 13
H19 5 5 5 3 5 11
1120 i0 5 5 2 2 11
H21 2 2 10 2 2 8
H22 2 2 2 2 2 5

Table 6.21: Numbers in the missing cells und % missing in Group H,

The table of results showing the estimated biases and model based standard errors for
Group H for the parameter estimates arc given in Table A10.1 in Appendix 10, along
with a plot of the magnitudes of the estimatcd biases against the percentage of missing

values (Figure A10.1 in Appendix 10).

There was no obvious pattern between whether or not the parameter estimaties were
biased and the overall percentage missing. For example, design H2 had 47% missing
and yet therc was no cvidence of hias of [;'; » Whereas designs H14-I1117 had only [4%

missing, but both of the parameters were biased for these four designs.

When the cstimated biases for both parameter estimates were compared when there
were equal numbers in each of the missing cells (designs 1, H3, 9, 1119 and 1122),
the magnitude of the biases of the parameter estimates decreased as the numbers in these

cclls decreased (Table A10.1, Appendix 10),
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TYPE I1H -- GROUPI

The breakdown of the numbers in the four known cells in this group is shown in Tigure

6.20 and Table 6.22 gives the numbers in the missing cells.

F2
F1 30 40
60 20

Figure 6.20: Numbers in the
kmown cells in Group 1.

Number in missing cells
Design ni3 N33 n3 N3 n33 | % missing
It 10 10 10 10 10 25
12 5 5 5 5 5] 14 :
13 5 5 5 5 2] 13
14 5 5 5 2 5 13
15 5 5 5 2 2 11
16 5 2 5 5 2 11
17 2 5 5 5 2] 11 ;
I8 2 2 2 2 2 6

Table 6.22: Numbers in the missing cells and % missing in Group I

The estimated biases and standard crrors for ¢, and ﬁz for these eight designs in Group

I are given in Appendix 10 (Table A10.2). The plot of the magnitudes of the biases
against the overall percentage missing is also presented in Appendix 10 (Figure A10.2).
There was a general trend for increasing magnitude of bias in the two parameters with “‘

increasing overall percentage of missing values.

CONCLUSION
Except Group E designs, which were similar to type II designs (Groups B and C), all of
the type I designs had some combinations of numbcrs in the missing cells that

produced biased parameter estimates when an exponential regression model was fitted

to the design.




6.3.6 APPLICATION IN THE CONTEXT OF THE BREAST CANCER AUDIT
DATA

INTRODUCTION

Following on from the investigation into the effects of varying the numbers in both the
kanown and missing cells using the 79 designs in the nine groups, six new designs were
examined. The new analyses were performed to check the general impressions formed
from the nine groups regarding the parameter estimates remained for datasets with a
similar missingness structure to the Breast Cancer Audit data. The six designs were
based on the distributions of subjects with known and missing information for the
pairwise combinations of the four clinical variables: clinical stage, node status, tumour
size and ER status. The true numbers in the pairwise combinations for the Breast
Cancer Audit are given in Tables A4.5 to A4.10 of Appendix 4. Here, however, to
obtain an estimate of bias in an asymptotic context, the numbers in each of the six new

designs are scaled up by 1000 in each cell.

The same underlying exponential regression model and methods of simulating data were
used as in the previous section. As before, it was assumed there was no censoring and

that the true values of the parameters also remained the same.

THE DESIGNS AND THE RESULTS

The six designs are C_LI (clinical stage by ER stalus); C_N (clinical stage by node
status); C_T (clinical stage by tumour size); T_N (ER status by node status), E_T (ER
status by tumour size) and N_T (node status by tomour size). Table 6.23 shows the

numbers, in units of a 1000, in the known cclls for these designs.

Numbers in known cells
Design njyy nj; ny; 139}
C E 447 278 64 54
C N 363 464 120 28
CT 475 434 30 128
EN 237 244 158 150
ET 267 234 131 186
NT 171 312 269 212

Table 6.23: Numbers in the known cells for the six new designs.
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The estimated biases and model based standard errors for the parameter estimates

obtained from the complete cases models for the six new designs are given in Table
6.24.

besign | &) | odd) | HA) | sdd)
C E 0.0053 0.0031 -0.0007 0.0022
C_N 0.0004 0.0029 -0.0015 0.0021
CT 0.0066 0.0028 -0.0026 0.0020
E N 0.0034 0.0023 0.0016 0.0023
ET 0.0024 0.0023 0.0014 0.0022
N T 0.0025 0.0021 0.0022 0.0021

Table 6.24: Estimated biases and standard ervors for the complete cases
models for the six new designs .

As expected, there was little evidence of bias for the complete cases data with the
possible exception of Clinical stage by Tumour size. Here, the cstimated bias for &, was

2.34 standard crrors.

For the all cases designs, the numbers in the missing cells and the overall percentage
missing are shown in Table 6.25. All of the designs had a high percentage of cases

missing, ranging from 34% o 51%.

Number in missing cells
Design n3 nz3 na ns; n3; | % missing
C E 390 69 88 59 170 48
C N 288 39 100 109 108 40
CT 206 29 120 100 97 34
E N 118 83 188 207 234 51
E T 08 74 227 242 160 49
NT 100 120 185 138 112 40

Table 6.25: Numbers in the missing cells and % missing.

Based on the [inding from the last section, it was anticipated that the model fitted to the

data in design E_N would produce estimates with less bias, if any at all, since the

7 7 . .. .
Y and s = —=— (Appendix 9) were very similar for this
Ay g My +Hy

proportions » =

design (0.49 and 0.51 respectively). The estimated biases and model based standard

errors for the parameter estimates for the all cases models are reported in Table 6.26.
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Design o(d:) seldh) bl4) Se('@)
C E 0.0136 0.0025 0.0010 0.0021
CN 0.0274 0.0026 | -0.0204 | 0.0019
CT 0.0200 0.0026 | 0.0075 0.0018
E N 0.0014 0.0021 | -0.0027 | 0.0018
E T 0.0074 0.0021 0.0184 | 0.0018
N T -0.0147 0.0019 | -0.0272 | 0.0018

Table 6.26: Estimated bigses and standard errors for the six designs in
the all cases analyses.

The cxpeceted result for design E N was observed. For the remaining designs, there was
evidence of bias for both of the paramcter cstimates, except for fl‘z for design C_L.
However, for all designs the estimated biases were very small in magnitude, both
relatively and absolutely. In fact, the magnitude of b(o?z) for the C_N design was the

largest. The value of 0.0274 represents 5.5% of the truc value, 0.5. By conirast, in the

simulated exercise presented in the last section, the largest percentage bias was 78% in

G3 for 5(4 ).

SMALL SAMPLE ANALYSES

The simulations so far, both in this section and previously, have been designed to
investigate bias in a large sample context. The analyses all relied on the large sample
properties of maximum likelihood estimates theory to obtain the standard errors of the
parameter estimates. IMowever, in general, there are not usually 100,000 subjects
available for analysis. It was, therefore, interesting to fit exponential regression models
to the real sample size of the Breast Cancer Aundit, with only 1619 subjects in tolal, to
observe the sizes of the biases and standard errors obtained when a relatively small
sample size was modelled using an incorrect exponential regression model to investigate

the bias due to the proportional hazards assumption being violated.

The results for all these models are based on 20 replicates, with several designs having
either 1,000 or 10,000 replicates. The average biases for the estimates based on the
different numbers of replicates are given in Table 6.27, along with the sampling

standard error for the average biases of the parameter estimates.




Design Average Standard Average Standard
bias of @, | error for the | ping of 4 | error for the
average bias average bias
of &, of A
C E
20 reps. 0.0228 0.0151 -0.0135 0.0146
1000 reps. 0.0159 0.0026 0.0013 0.0020
10,000 reps. 0.0103 0.0008 0.0029 0.0007
C N
20 reps. -0.0363 0.0156 -0.0236 0.0149
10,300 reps. -0.0361 0.0007 -0.0172 0.0006
CT
20 reps. 0.0203 0.0145 0.0063 0.0151
E N
20 reps. -0.0159 0.0168 -0.0082 0.0154
ET
20 reps. -0.0142 0.0183 0.0159 0.0125
1000 reps. 0.0152 0.0018 0.0089 0.0198
10,000 reps. 0.0051 0.0007 0.0197 0.0006
NT
20 reps. -0.0295 0.0115 -0.0366 0.0108
1000 reps. -0.0147 0.0018 -0.0274 0.0018
10,000 reps. -0.0155 0.0006 -0.0272 0.0006

Table 6.27: Average biases for a, and f, with standard errors for these
estimates for the six designs based on the true small sample sizes for varying

numbers of replicales (veps.).

These data show the extent of bias with the unknown pattern observed in the pairs of

clinical factors in the Breast Cancer Audit data assuming that the data were exponential.

As can be seen, there is considerable bias in both parameters when more than 20

replicates are included in the analysis for all of the designs. There is also evidence of

bias for both parameter estimates for design N_T when only 20 replicates are included

in the analysis. For the design C_N, @, appears to be biased from only 20 replicates.
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6.4 RESULTS FROM FITTING COX REGRESSION MODELS TO THE
EXPONENTIAL DATASETS

INTRODUCTION

The parameter estimates obtained from fitting an exponential regression model to data
which did not satisty the proportional hazards assumption in the additive main effects
model situation were biased for some designs (Scetions 6.3.5 and 6.3.6). A main effects
Cox proportional hazards regression model is now fitted to four of the ninc groups
described in Section 6.3.5. The simulated datasets were generaled [rom exponential

distributions as previously and the same true values of the parameters used.

When the Cox regression models were fitted to these designs, it was again assumed that
there was no censoring. The numbers in the known and missing cells for all of the
designs in the four groups remained the same so that, for each design, the results from
fitting a Cox model could be compared to the results obtained from fitting the
exponential regression model. Note that all of the numbers were in units of 1000 so that

the large sample context could be examined.

RESULTS FOR THE COX MODELLING

TYPEIX -- GROUP A

The numbers in this group for the four known cells are given in Figure 6.21.

F2
F1 20 20
20 20
Figure 6.21: Numhers in the
known cells in Group A.

Table 6.28 shows the numbers in the missing cclls and the overall percentage missing in
each design. The estimated biases and estimated standard errors for @, and ﬁz for the

two designs that were fitted are presented in Table 6.29.
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Number in missing cells
Design I3 T3 H31 N3 n3; | %% missing
Al 20 20 20 20 20 56
A2 5 10 15 25 35 53

Table 6.28: Numbers in the missing cells and % missing in Group A.

Design b(&z) se(o?z) b('éz) se(ﬁ;)
Al -0.0116 0.0059 0.0101 0.0058
A2 -0.0123 0.0066 -0.0114 0.0059

Table 6.29: Estimated biases and standard ervors from fitting the Cox
model for the designs in Group A.

There was no evidence of bias in either &, and 8, {or each of the iwo designs.

TYPEII -- GROUP B

The breakdown of the numbers in the known and missing cells for this group are given

in Tligure 6.22 and Table 6.30 respectively.

F2
F1 20 40
S0 | 100

Figure 6.22: Numbers in the
known cells in Group B.

Number in missing cells
Design 113 N2z 1131 1133 n3s % missing
B1 100 5 75 150 2 61
B2 40 40 40 40 40 49
B3 20 20 20 20 20 32
B4 3 10 15 25 35 30
B5 15 15 15 15 15 26
B6 5 5 5 5 5 11

Table 6.30: Numbers in the missing cells and % missing in Group B.
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Table 6.31 provides the estimaled biases and model based standard errors for the

parameter estimates for these six designs.

Design b(% ) se((z2 ) b(ﬂz) se(,@)
B1 -0.0113 0.0046 -0.0071 0.0032
B2 -0.0111 0.0040 -0.0035 0.0039
B3 -0.0092 0.0044 0.0001 0.0042
B4 -0.0094 0.0047 -0.0069 0.0043
B5 -0.0078 0.0045 0.0005 0.0043
B6 -0.0033 0.0048 0.0035 0.0046

Table 6.31: Estimated biases und standard errors from the Cox model
Jfor the designs in Group B,

For design B1, with 61% of the observations falling in the missing factor level
categories, both &, and 3, were biased. ¢, was also biased for designs B2 and B3,

although ,&, was not. There was no evidence of bias for either of the parameter

estimates when there were 30% or fewer of the observations in the missing levels,

TYPEIII -- GROUr D

The numbers in the known cells for this group are given in Figure 6.23.

j
Fl 10| 160
50 40 o
Vigure 6.23: Numbers in the S

known cells in Group D.

The numbers in the missing cells are shown in Table 6.32 and the biases and model

based standard errors for the parameter estimates presented in Table 6.33.
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Number in missing cells
Design ng3 na;3 n3i iy n;3 | % missing
D1 50 50 5 50 5 44
D2 35 25 5 2 50 37
D3 5 10 15 25 35 31
D4 10 10 10 10 10 20
DS 5 5 5 5 5 11
D6 2 5 10 5 2 11
D7 5 2 5 2 5 9
D8 2 5 2 5 2 7
DY 5 2 2 2 5 7
D10 2 2 2 2 2 5

Table 6.32: Numbers in the missing cells and % missing in Group D.

Design b (“2 ) Se(“z ) b (ﬂz ) e (;@ )
D1 -0.0718 0.0041 -0.0611 0.0051
D2 -0.0493 0.0045 -0.0385 0.0053
D3 -0.0409 0.0049 -0.0654 0.0050
D4 -0.0329 0.0049 -0.0448 0.0052
D5 -0.0156 0.0051 -0.0214 0.0054
D6 -0.0156 0.0052 -0.0268 0.0054
D7 -0.0097 0.0052 -0.0152 0.0055
D8 -0.0084 0.0052 -0.0108 0.0056
D9 -(0.0058 (0.0052 -0.0080 0.0056

D10 -0.0040 0.0052 -0.0069 0.0056

Table 6.33: Estimated biases and standard errors from the Cox model

Jor the designs in Group D.

For all of the designs with 11% or more of the observations missing, both of the

parameter estimates were biased. With 9% missing (D7), there was no evidence of bias

for &, , although ﬁz was biased. With only 7% or fewer of observations in the missing

cells, there was no evidence of bias for either of the parameter estimates.

TYPE III -- GROUP G

The numbers in the known and missing cells for this group are given in Figure 6.24 and

Table 6.34 rcspectively.
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Figure 6.24: Numbers in the
known cells in Group G.

Number in missing cells
Design n3 23 N3y ns2 nz; | % missing

Gl 2 2 2 100 100 51

G2 100 50 2 2 2 44
G3 15 15 15 15 15 27
G4 3 S 5 5 5 11
G5 2 2 2 2 2 5
G6 1 I i 1 1 2
Table 6.34: Numbers in the missing cells and % missing in Group G. 5
The estimated biases and estimated standard errors for ¢, and ,éz are shown in ‘Fable ;,
b O.’A se GL’A b 3 Sel 2 ‘j
Design ( 2) ( : ) ('8?) (ﬁ’) =
Gl1 -0.1076 0.0092 -0.1152 0.0091
G2 -0.2222 0.0048 -0.2086 0.0062
G3 -0.2213 0.0069 -0.2348 0.0068
G4 -0.1231 0.0087 -0.1291 0.0087
GS ~0.0638 0.0097 -0.0682 0.0096 !
G6 -0.0327 0.0100 -0.0366 0.0100
Table 6.35: Estimated biases and standard errors from the Cox model i
Jor the designs in Group G. w
All of the parameter eslimates were biased in all situations. ?
COMPARISON OF RESULTS FOR THE COX AND EXPONENTIAL REGRESSION MODELS
An interesting observation 1s that the model based standard errors obtained from fitting >
the Cox models arce virtually identical to those obtained for the exponential regression ~

models (Section 6.3.5) fitted to all of the designs for the four groups. The standard
crrors for the Cox models have been assumed 1o be valid, as no checks have been made.

That is, unlike for the exponential regression models (Section 6.3.4), there have been no




simulations of large numbers of replicates to obtain an estimate of the true sampling

variability for the Cox models.

For Group A, neither of the fits from the exponential regression model nor the Cox
models produced any biases in the parameter estimates that were significantly different
from zero. For Groups B and D, where some of the parameter estimates were biased,
the biases were slightly larger for the Cox models than those for the exponential
regression models, although it is not possible to determine if these are statistically
different. It is interesting that the Cox model produced some evidence of bias in Group
B even though the mixing parameters were equal, i.e. ¥ =5 (Appendix 9). The
parameter estimates were virtually identical for the fits of both the exponential and Cox

models for Group G.

DISCUSSION

The general compatibility of the results for determining the parameter estimates from
fitting an exponential regression model and a Cox model to sets of data which were
generated from exponential distributions is probably because the Cox model is a
generalisation of the exponential regression model, Thus, the hazard ratios obtained
from these parameter estimates are similar for the two regression modcls. The standard
errors from the two models were also very similar. It appears that there was no benefit
gained from fitting the parametric exponential regression model to these data since the
partial likelihood method of Cox, ustng the ranks of the deaths times, gave estimates
that were as c¢fficient at using the information as the maximum likelihood estimate

technique used by the exponential regression model was.

However, this does not guarantee that there would not have been some benefit gained
from fitting an exponential regression model had the survival estimates been examined
instead of simply the parameter estimates. This is because the Cox model only models
the parameter estimates and not the bascline hazard. This is needed to obtain the
survival estimate. A parametric exponential model fitted to data generated from
exponential distributions would prabably estimate the baseline hazard, and hence the

survival estimate, more efficiently.
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It is necessary to remember that these results were for the large sample setting and it was
assumed that there was no censoring. It is not clear whether similar results would have
been observed for a small sample problem or if censoring had been taken into account in

the Cox models.

6.5 GENERAL DISCUSSION

It was shown in Section 6.2.2 that the third level in the two factors exponential
regression model did not satisfy the proportional hazards assumption when the third
levels were assumed to be random mixtures of exponential distributions which were

used to gencratc the observations falling in the known cells.

The general conclasion from Section 6.3.5, when exponential regression models were
fitted to each of the designs, was that the bias of the parameter estimaltes were

influenced by the inclusion of the extra levels for the unknown values.

However, there were several scenarios where there was no cvidence of significant bias

for the parameter estimates based, on the all cases models. These were:

(i) when the relevant proportions of observations in level 1 of factor F2 for both

levels of factor 1 (Appendix 9) were very similar;

(ii) when the munber of missing values as a percentage of the total numbers of
cases was small. This was net true in all circumstances for all of the designs, especially
when the proportions mentioned in (i) were very different (see the results for Group G in

Section 6.3.5);

(iii) the distribution of the numbers of observations lalling in the missing cells

sometimes made a difference as to whether or not the parameter estimates were biased.
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It would appear that differences among the numbers of observations in the four known
cells in the designs, along with the appropriate mixing parameters used to obiain the
observations in the missing cells, greatly influenced the results of the estimation
procedure. For cxample, there was no evidence of bias in the parameter estimates for
Groups A, B and E for any of the designs where the proportions were the same or very
similar. This is in contrast to all of the designs in Group G, which showed evidence of

bias for the parameter estimates.

The results may have been easier to interpret if the total number in the samples had been
controlled, so that the variance was controlled. Alternatively, it may have been easier to
detect patterns if the missing observations had been introduced into only one factor at a

{ime before introducing them into both factors.

It is not clear whether the general conclusions given above based on the large sample
sizes, apply in the small sample size context. The main observation from fitting
exponential regression models to small sample sizes was that there was bias observed

(Scction 6.3.6).

From Section 6.4, it appears that in the simulated context examined in this thesis, the
findings about the effect on the parameter estimates, in terms of bias, based on the
exponential regression model, could be carried through to the Cox model, in general.
Here, the data were created to satisfy the exponential regression model for the complete

data context, but not for the missing cells.

However, there 1s uncertainty whether different results would be obtained from the two
models if the complete data werc generated to be non-expeonential, but still with
proportional hazards, rather than the constant hazards obtained for the exponential
regression models, for the known cells. The uncertainty is because the exponential
regression model assumes a particular parametric form for the baseline hazard function
whereas the Cox model does not assume any distributional form for this and the only

assumption made is that the hazards are proportional between the levels of a factor.
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CHAPTER 7 DISCUSSION AND CONCLUSIONS

7.1 SUMMARY OF KEY FINDINGS

FROM VARIOUS REGISTRY DATASETS

Breast cancer is a major health problem for women throughout the world, with 1 in 12
women getting the disease at some point in their lifetime. The incidence still appears to :
be rising, although there are some suggestions that the mortality in the UK is beginning
to fall. Survival from the discasc appears to be rising only slightly in Scotland, although
the relative survival figures for Scotland are below average when compared to other

European countries,

FROM THE BREAST CANCER AUDIT DATA >

Chapter 4 showed that the presence of missing values in the clinical factors were

associated with each other, with all two-way interactions, except one, present in the best
fitting log-linear model. The conclusion from this mode] was that a woman was more
likely to have a missing valuc in one of the four variables if she also had a missing value
in another of the variables than il she had known information for that variable. The
exception was for conditional independence between clinical stage and pathological
node status, given the presence of FR status and tumour size. The clinical interpretation
of this modc] appeared to imply thai hospitals had agreed protocols, or at least informal

practice agreements, for management of women with breast cancer.

Having discoverced this pattern amongst these unknown values, different methods for

handling missing values in models were discussed. The methods used in survival

analyses of several breast cancer studies were then detailed and it was found that only
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the complete cases and additional calegories methods were employed in the studies

examined.

In Chapter 5, the results of the initial survival analysis reported by Twelves et al (1998a)
were summarised, along with a discussion of the implications of the finding that there
were significant different survival chances depending on which Health Board the
women were treated in, but that there appeared to be no significant differences amongst
the deprivation categories or by surgical case load in the Cox model. These findings are
discussed in relation to other relevant literature. The results of Twelves et al (1998a)
support the findings from other studies for the need for breast cancer to be managed in
the setting of a multidisciplinary team. When it was checked whether any interactions
of the clinical factors with the ITealth Board variable were significant, it was not
possible to conclude that any were necessary and, therefore, none were included in the

model.

Some model checking on the 'Clinical Full' model revealed that the proportional hazards
assumption may be in question for ER status, with the increased hazard of death for
women having ER negative tumours appearing to weaken over time. Howevey, it is not
entirely clear how to carry out the time-dependent modelling when then covariates are
categorical with more than two levels, rather than binary or continuous. No unigue
method exists for this situation and so the results from the modelling performed have to

be interpreted with caution.

The presence of missing values in some of the covariatcs gave rise to the possibility of
drawing different conclusions [rom the resulis from fitting Cox regression models
depending on whether, and how, these missing values were included in the models.
Large absolute differences in survival estimates were observed in some of the tables
presented in Scction 5.4.2 which could considerably influence the interpretation of the

findings.

FROM THE SIMULATION EXERCISE DATA
In Chapter 6, it was shown that including missing values using the additional categories

method in an exponential regression model caused the proportional hazards assumption
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to be violated, when the missing values comprised of a random mixture of observations
from exponential distributions, When this theoretical finding was examined empirically
in simulation exercises, some of the parameter estimates obtained appeared to be biased
due to fitting an incorrect model. Some of the estimated hazard ratios were different
when exponential and Cox regression models were fitted, for the situations with and
without the missing data categorics (results in Sections 6.3.5 and 6.4). This is
analogous to the results observed for the Cox modelling of the Breast Cancer Audit data
(Section 5.4.2). There, it appeared that the hazard ratios for some of the Health Boards
compared to Greater Glasgow Health Board were different for the complete cases and

the all cases models.

7.2 FURTHER RESEARCH I"OSSIBILITIES

There are several areas of work that it would have been interesting to pursue had there

been more time available. These include;

(i) modelling the Breast Cancer Audit data using some of the other methods for

handling the missing values.

It would be interesting to examine the results from using other techniques discussed in
Section 4.3 to find out whether the interpretations from the models were similar to, or
different from, those given by the ‘Clinical Full” model obtained from fitting a Cox

model fo the data using the additional categories method in the initial survival analysis.
(ii) fitting non-proportional hazards models to the Breast Cancer Audit data.

[t would be worthwhile to investigate whether the suggested non-proportional hazards
result for ER status from the time-dependent modclling excreise was reasonable by

fitting some non-proportional hazards models to the data and comparing the results with
the ‘Clinical Full’ model.
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(iti) exploring the exponential regression and Cox modelling simulation exercises in

more detail.

It would be useful to examine the findings of these simulation exercises if cengoring had
been incorporated into the design or if the artificial datasets had been created to have

proportional hazards which were not generated from exponential distributions.

(iv) investigating other structures than the random mixtures assumed in this thesis for

the missing data would also be an interesting exercise to simulate and undertake.

(v) studying a threshold for the amount of missing values acceptable in a Cox model in

terms of clinical significance.

The main message taken from Section 5.4.2 when the all cases (ACM) and the complete
cases (CCM) models were compared was that the interpretations of the results for these
maodeils appeared to be very different, although it was not possible to formally test for
statistical differences between the sets of results, A great deal of fluctuation was
observed amongst the parameter estimates for the Health Boards obtained for the two

cohorts and also for the 5-year % sutvival cstimates for different Health Boards among

different prognostic groups.

Ilere, it was seen that having 64% of cases with some missing information in one of the

four main clinical factors caused differences in results to be clinically significant (when
compared to magnitudes observed in clinical trials for beneficial treatmenis; Section
2.3.2). 1tis not clear, however, exactly how much missing data was needed to observe
these clinically significant results, nor whether the results were mainly affected by the
introduction of missing valucs in only one variable in particular, or in any of them.
[Towever, from the work given in Chapter 6, it was found that the influence on the bias

of the missing values depended on the context, as well as the overall percentage missing

and the distribution of the missing values. In some designs, no bias was observed with

the introduction of missing values.




As an alternative to the simulations given in Chapter 6, it would be interesting to
perform a sensitivity analysis to examine the effect of altering the percentage of missing
values in somc or all of the factors in the ‘Clinical Full’ model for the Breast Cancer
Audit data. [t would be possible to approach this in a couple of ways. The aim in all of
the techniques suggested below would be to identify at what point the differcnces
became clinically non-significant, thus highlighting a threshold whereby the inclusion of
missing values cease to be important. At this point, it would not mattcr whether or not
the missing values were included in the model. The threshold identified could then be
applied to similar data-sets for breast cancer, and the method used applied in survival

analyses ot other eancers. From Chapter 6, this may not be a straightforward exercise.

USING THE COMPLETE CASES COHORT AS THE BASELINE

Initiaily the complete cases model (Section 5.4.2) would be fitted and these results used
as the baseline for all comparisons. One reason for doing this is that the Cox model is
theoretically correct as the proportional hazards assumption holds. Here, it is
unimportant that this is a sub-population of the total cohort as this is being uscd as the

baseline, Various different strategies could be employed.

(a) Adding a proportion of cases with missing values, without being concerned about
which variables are missing. This could be done by random simulation of cases, with
say, 5%, 10%, 25%, 50%, 75% and 100% with missing values in extra cases introduced

with the complete cases.

(b) Another approach would be to start with one variable only, say ER status, and firstly
examine the complete cases analysis parameter estimates; then keep only cases with ER
status known but allow missing values in other variables and examine parameter
estimates; then keep only cases where other variables known but allow ER status to be
missing; and finally the all cases model. This method is similar to the two parttal cases

models [illed in Section 5.4.2.

(¢) An extension of (b), whereby cases which have complete information on a subsct of
variahles are introduced and the effect of altering the combinations of variables with

known and missing informatton compared.
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APPENDICES

APPENDIX 1 VARIABLES COLLECTED IN TIE BREAST CANCER
AUDIT

The data collected at each of these stages of management of breast cancer are
discussed separately. The list given below provides an idca of the information

collected at each stage and is not exhaustive.

Referral Pafterns: These included the date the woman saw her GP, the date the
woman first saw a surgeon, the hospital of initial referral, the date the woman was
first seen by an oncologist and whether the cancer was detected as part of the

Screening Programme,

Initial Staging Information: This was collected at the clinic and invelved collecting
the clinical TNM stage and also the menstrual status of the women. A f{ine needle
aspiration could also be performed in the clinic to help to decide whether the lump

was malignant.

Surgical Procedures: sually some form of surgery was needed to be able to give a
delinitive diagnosis of breast cancer. This could just be a biopsy to investigate
whether the lump was cancerous or could be definilive surgery to remove either just
the tumour, in breast conservalion, or the whole breas(, in a mastectomy. Also given
were details relating to whether surgery was performed on the axilla to remove lymph
nodes and whether the ovaries were surgically removed. The surgeon performing the

operation and at which hospital the operation took place were recorded.

Other Forms of Treatment: Details were given relating to the hormone treatment
administered, including any ovarian suppression, along with any chemotherapy
regimens the woman was started on. The sitc as well as dates were given for any

radiotherapy the women received.
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Pathology Details: This information was normally included as a separate report in
the case notes, having been sent from the pathology laboratory. The size of the
tumour excised was given, when measured in the laboratory, along with details of any
tumour involvement in the margins of the tissue removed. The number of nodes that
were found in the sample or clearance of the axilla was given together with the
number of nodes with tumour involvement. Ilistological grading information was
also reported, as was the ER status which was determined through several different
techniques, whose continuous scores cannot be combined. Thus, either positive or

negative was also given for ER status, as well as the score from the particular assay.

Follow-up and Outcome Information: Dates and sites of the first local, regional and
distant recurrences were recorded. Also given were details of any clinical trials into
which the woman had been entered. The status (alive or dead) was noted, with either

the date of death or the date last scen recorded.
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APPENDIX 2 KLY TO TIIE HEALTH BOARD CODES

Table A2.] gives the codes that are usually given for the Health Boards in most
NHSiS documents. Due to the small numbers of women treated in Orkney, Shetland
and Western Isles, these Health Boards are represented here by the ‘Health Board’,

‘the Islands’, to represent off-mainland ircatment.

Health Health Board
Board Label

Ayrshire & Arran

Borders

Argyll & Clyde

Fife

Gireater Glasgow

Highland

Islands

Lanarkshire

Grampian

Lothian

Tayside

Forth Valley

=i Z ST T QT O (W

Dumfries & Galloway

Table A2.1: Key to the [lealth Boards.
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APPENDIX 3 BREAKDOWNS OF T1IE VARIABLES USED IN THE
ANALYSIS OF THE BREAST CANCER AUDIT

In all of the tables, ‘No.’ stands [or humber.

Clinical Variables:

Agegronp |No. % Clinical stage | No. % ER status { No. %

< 50 years 476 29.4 I 302 18.7 Positive 599 37.0
50-64 591 36.5 11 813 50.2 Negative [ 391 24.2
65-79 480 29.6 111 187 11.6 Not known [ 629 38.9
= 80 years 72 44 Not known 317 19.6

Table A3.1: Numbers and percentages for each of the clinical variables.

Node status | No. % Tumoeursize | No. %

Positive 583 36.0 <2ecm 625 38.6

Negative 601 37.1 >2om 662 409

Not known | 435 20.9 Not known 332 205

Table A3.1 cont: Numbers and percentages for each of the

clinical variables.

Treatment Variables:

Adjuvant [ No. % Adjuvant No. % Adjuvant No. %

endocrine chemotherapy radiotherapy

therapy

Given 1052 65.0 Given 123 7.6 Given 660 40.8
Notgiven | 367 35.0 Not given 1496 92.4 Not given 959 59.2

Table A3.2: Numbers and percentages for each of the treatment variables.

Type of No. % Adjuvant No. %
surgery chemotherapy or

endocrine therapy
Mastectomy | 976 60.3 Given 1138 70.3
Conservation | 643 39.7 Not given 481 29.7

Table 43.2 cont: Numbers and percentages for each of the
treatment variables.
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Service Variables:

Deprivation | No. % Referral [ No. % Surgeon Ne. %
group fo case Joad
oncologist
Least deprived | 404 25.0 No 738 45.6 1 - 9 cases 278 17.2
Intermediatc 982  60.7 Yes 852 52,6 10 - 29 683 42.2
Most deprived | 233 144 Notknown | 29 1.8 Team /304 | 647 40.0
Not known 11 0.7

Table A3.3: Numbers and percentages for each of the service variables. Note that
‘no’ for referral to an oncologist included those women who saw an oncologist after
three months of diagnosis. Note that least deprived is the first quintile, intermediate
deprivation group includes quintiles II, Il and 1V and most deprived is the last
quintile.

Health No. %
Board

A 126 7.8
B 22 1.4
C 107 6.6
F 91 5.6
G 343  21.2
H 72 4.4
I 25 1.5
L 135 8.3
N 18 11.5
S 235 14,5
T 148 9.1
v 68 4.2
Y 61 3.8

Table A3.3 cont: Numbers and
percentages for Health Board.
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APPENDIX 4 CROSS-TABULATIONS OF THE PAIRWISE CLINICAL
VARTABLES AND TRHE CLINICAL VARIABLES BY SURGEON CASE

LOAD

In all of the tables, ‘NK’ stands for unknown.

Cross-tabulations of the pairwise clinical variables.

Cl ClIL CIII CNK | Total | l'otal
* | Number

A <50 252 1498 7.1 17.9 100 476
A 50-64 18.1 51.4 10.8 19.6 100 591
A 65-79 13.3 50.4 16.0 20.2 100 480
A2 80 153 |41.7 16.7 28.4 100 72
Total 18.7 ]502 11.6 19.6 100 1619
Table A4.1: Percentages of clinical stage (C) by age (4).

E -+ E - ENK | Total | Total

Number

A <50 34.5 30.9 34,7 100 476
A 50-64 408 [252 34.0 100 591
A 65-79 36.9 19.4 43.8 100 480
A =80 236 |28 73.6 100 72
Total 37.0 {242 38.9 100 1619
Table A4.2: Percentages of ER status (L) by age (A).

N+ N - NNK | Total | Total

Number
A <50 37.2 43.1 19.7 100 476

A 50-64 39.1 40.1 20.8 100 591
A 65-79 34.0 31.3 34.8 100 480
A =80 16.7 12.5 70.8 100 72
Total 36.0 37.1 26.9 100 1619

Table A4.3. Percentages of node status (N} by age ().
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T<2 |T>2 |[TNK | Total | Total
Number
A <50 39.1 34.2 26.7 100 476
A 50-64 40.1 41.6 18.3 100 591
A 65-79 36.9 45.6 17.5 100 480
A >80 34.7 47.2 18.1 100 72
Total 38.6 40.9 20.5 100 1619

Table A4.4: Percentages of lumour size (T) by age (4).

E~+ E - ENK | Total | Total

Number
Cl 39.1 20.2 40.7 100 302
CII 40.5 26.7 32.8 100 813
cIn 34.2 28.9 36.9 100 187
C NK 27.8 18.6 53.6 100 317
Total 37.0 24.2 38.9 100 1619

Table A4.5: Percentage of ER s

tatus (I5) by clinical stage (C).

N+ N - NNK | Total | Total
Number
Cl 17.2 47.4 35.4 100 302
C1l 38.3 39.5 22.3 100 813
ClIl 64.2 15.0 20.9 100 187
CNK 31.5 34.4 34.1 100 317
Total 36.0 37.1 26.9 100 1619

lable A4.6. Percentages of node status (N) by clinical stage (C).

T<2 [|T>2 |TNK | Total | Total

Number
CI 59.9 17.5 22.5 100 302
ClI 36.2 46.9 17.0 100 813
C It 16.0 68.4 15.5 100 187
CNK 37.9 31.5 30.6 100 317
Total 38.6 40.9 20.5 100 1619

Table A4.7: Percentages of tumour size (T) by clinical stage (C).
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N+ N - NNK | Total | Total
Number
E+ 39.6 | 40.7 19.7 100 599
E - 40.4 38.4 21.2 100 391
E NK 29.9 32.9 37.2 100 629
Total 36.0 37.1 26.9 100 1619

Table A4.8: Percentages of node status (N} by ER status (E).

T<2 |T>»2 JTNK | Total | Total
Number
E+ 44.6 39.1 16.4 100 599
E- 33.5 47.6 18.9 100 301
E NK 36.1 38.5 25.4 100 629
Total 38.6 40.9 20.5 100 1619

Table A4.9: Percentages of tumour size (T) by ER status (E).

T<2 |T>2 TNK | Total | Total
Number
N+ 29.3 53.5 17.2 100 583
N - 44.8 353 20.0 100 601
N NK 42.5 31.7 25.7 100 435
Total 38.6 40.9 20.5 100 1619

Tuble A4.10: Percentages of tumour size (T) by node status (N).

Cross-tabulations of the clinical variables with surgeon case load.

* Note (for Tables A4.11 to A4.15) that for 11 women, the surgeon performing the

operation was not recorded in the case notes. Therefore, the case load of the surgeon

was unknown and not included in all analyses.

A <50 | A50-64 | A 65-79 A >80 | Total
Number
S1-9 28.8 33.8 30.2 7.2 278
S 10-29 23.9 35.1 35.6 5.4 683
S Team /30+ 355 394 22.9 2.2 047
Total 294 36.6 29.5 4.4 1608*

Table A4.11: Percentages of age (4} by surgeon case load (S).
The P value for the fest of association was <0.001.
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CI ClI Cl CNK | Total
Number
S1-9 16.9 46.4 10.4 26.3 278
S$10-29 19.0 45.4 11.9 23.7 683
S Team /304 19.2 57.0 11.7 12.1 647
Total 18.7 50.2 11.6 19.5 1608*

Table A4.12: Percentage of clinical stage (C) by surgeon case load (S).

The P value for the test of ussociation was <0.001,

E+ E - E NK Total
Number
S1-9 25.9 15.8 58.3 278
S 10-29 28.8 22.7 48.5 683
S Tecam /30+ 50.7 29.2 20.1 647
Total 37.1 24.1 38.7 1608*

Table A4.13. Percentages of ER status () by surgeon case load (S).

The P value for the test of association was <0.001.

N + N - N NK Total
Number
S1-9 37.8 32.0 30.2 278
S 10-29 31.5 31.5 37.0 683
S Team /30+ 40.3 45.7 13.9 647
Total 36.1 373 26.6 1608*

Table A4.14: Percentages of node status (N} by surgeon case load (S).

The P value for the test of association was <0.001.

T2 | T>2 T NK Total
Number
S1-9 34,9 42.1 23.0 278
S 10-29 38.7 42.2 19.2 683
S Tcam /30- 40.6 39.3 20.1 647
Total 38.8 41.0 20.2 1608%

{able A4.15: Percentages of tumour size (T) by surgeon case load (8S).

The P value for the test of association was (0.42.
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APPENDIX 5 STANDARD ERROR FOR THE SURVIVAL ESTIMATE
FROM COX REGRESSION USING THE SPSS STATISTICS PACKAGE

This apparent problem was identified using Version 9.0 of the SPSS statistics package
during this research when the standard errors for some of the HB, prognostic factors
combinations were obtained and confidence intervals (CIs) given for the 5-year
survival estimates (Section 5.4.2). The first two examples illustrate why there appears

to be some uncertainty regarding the estimate of the standard error,

Example (i): From Table 5.20b in Scction 5.4.2, the 5-year % survival estimates for
the group E+, N+, T>2 for Health Boards G and T were 76.9% and 61.1%
respectively. The corresponding standard errors were 2.03% and 3.03% respectively.
Thus, the 95% ClIs for survival are for G: (72.9%, 80.9%) and for T: (55.2%, 67.0%).
These CIs do not overlap and so informally it appears that there are significant

differences between these two Health Boards.

However, the hazard ratio for [IB T vs G is 1.87 (95% CI: 0.90, 3.89), which implies
that HB T is not significantly worse than 1B G.

Example (ii): From Table 5.20b, the 3-year % survival estimates for the group E-,
N+, T <2 [or Health Boards G and Y were 46.0% and 87.1% respectively. The
cotresponding standard errors were 3.59% and 1.21% respectively. Thus, the 95%
ClIs arc for G: (39.0%, 53.0%) and for Y: (79.3%, 89.5%). These CIs do not overlap
by a wide margin, and so informally it appears that there ave significant differences

between these two Health Boards.

However, the hazard ratio for HB Y vs G is (.18 (95% CI: 0.02, 1.29), which implies
that HB Y is not significantly worse than HB G.

To investigate this apparent inconsistency, SAS Version 6.12 was used to compare the

results. However, duc to the difficulties of fitting categorical factors in SAS

(especially with HB having 13 levels and an interaction being present in the ‘Clinical
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Full’ model), a much simpler situation was considered where only binaty variables
were modelled in two examples. The product-limit method was used in SAS to
compute the survivor function estimates. The parameter estimates using this method
exactly matched those obtained from SPSS. Thete is only one option available in

SPSS.

Example (iii): The binary variable (Y=1, G=0) compared HB Y with HB G with only

these two Health Boards included in the fit. The corresponding results obtained from

SAS and SPSS were as follows (Table A5.1):

SAS SPSS
Log hazard ratio for Y vs G -1.311103 -1.3111
Standard error for log hazard ratio 1.00937 1.0094
5-yr survival estimate for Y 0.91848 0.9185
Standard error for 5-yr survival for Y 0.07807 0.0121
5-yr survival estimate for G 0.72941 0.7294
Standard error for 5-yr survival for G 0.03456 0.0356

Table A5.1: Resulits for the Cox models fitted by the two statistical packages
Jfor Example (iii).
‘The number of decimal places for each figure reflect those given by default in the

output from the two packages exactly.

Thus, showing very different results for the standard errors for the 5-yr survival

estimates for HB Y between SAS and SPSS. (The values [or G were also different).

For both packages: the hazard ratio for Y vs G was 0.270 with 95% CI (0.037, 1.949)
NOT DIFFERENT

For SAS: the 5-yr survival estimate for Y was 0.9185 with 95% CI (0.7655, 1)
for G was 0.7294 with 95% CI (0.6617, 0.7921)
NOT DIFFERENT

For SPSS: the 5-yr survival estimate for Y was 0.9185 with 95% CI (0.8948, 0.9422)
for G was 0.7294 with 95% CI (0.6596, 0.7992)
DIFFERENT
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Thus, the SAS set of figurcs produced consistent interpretations from the hazard ratio

and the survival estimates, whereas the SPSS figures did not.

Example (iv): The binary variable (8=1, G=0) compared HB S with HB G with only
cases for these two Health Boards included in the fit. The corresponding results
obtained from SAS and SPSS were as follows (Table A5.2):

SAS SPSS
Log hazard ratio for S vs G -0.206406 -0.2064
Standard crror for log hazard ratio 0.20589 0.2059
5-yr survival estimate for S 0.78096 0.7810
Standard error lor 5-yr survival for S 0.03142 0.0222
5-yr survival estimate for G 0.73792 0.7379
Standard error for 5-yr survival for G 0.03276 0.0258

Table A5.2: Resulls for the Cox models fitted by the two statistical packages
Jor Example (iv).
Thus, showing the discrepancies between the two cstimates for the standard errors

from the two packages, but these were not as large as for HB'Y vs HB G.

This finding was discussed with members of the Robertson Centre for Biostatistics
(part of Glasgow University) and, independently, these inconsistencies were replicated

on a different (much larger) dataset.

CONCLUSION
Due to these findings, it was decided not to use the standard errors until the apparent
discrepancies had been resolved. Discussions with SPSS Inc. arc still on-going and

the issue remains uaresolved.
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APPENDIX 6 HAZARD RATIOS AND SURVIVAL ESTIMATES FOR
VARIOUS SURVIVAL ANALYSES

Variahle Hazard Ratio
(95% CI)

Age

< 50 years 1

50 - 64 1.07 (0.85,1.34)

65 -79 129 (1.02, 1.63)

2 80 years 1.91 (1.28,2.84)

Clinical Stage

Stage 1 1

11 1.33 (0.99,1.77)

m 1.90 (1.33,2.71)

Not known 1.34  (0.96, 1.87)

ER Status

Positive 1

Negative 2,14 {(1.72,2.67)

Not known 1.43 (1.13,1.81)

Node Status by

Tumour Size

NNK, T <£2cm 2.55 (1.63,3.99)

NNK, T>2 4,10 (2.61,6.44)
N NK, TNK 3.50 (2.19, 5.62)
N-+ve, T <2cm 428 (2.79,6.57)
N+ve, T>2 445 (2.97, 6.66)
N +ve, T NK 4,92 (3.11,7.78)
N-ve, T<2cm 1

N-ve, T>2 2,82 (1.82,4.37)
N -ve, T NK 1.57 (0.91,2.72)
Health Board

A 1.53 (1.11,2.11)
C 1.50 (1.07,2.12)
I 1.53 (1.04, 2.26)

1

121 (0.87,1.68)

0.89 (0.65, [.21)

135 (0.96, 1.90)

G
L
N 0.95 (0.69, 1.32)
S
T
Y

1.09 (0.69, 1.72)

Table A6.1: Hazard ratios with 95% Cls for the model based

on 1432 cases, with Health Boards: B, H, I, V dropped from

the ACM. Nofte that N and T stand for node status and tumour
size respectively. Also, NK stands for not known, “+ve for positive
and -ve for negative.
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All Cases

Complete Cases

Variable S-year % survival | 5-year % survival
Age

<50 73.3 69.9
50-64 73.8 75.6
65-79 68.1 70.6
> 80 48.6 50.0
Clinical Stage

I 83.8 85.2
11 71.1 71.1
it} 56.7 62.0
Node Status

Positive 58.8 60.6
Negative 84.5 83.7
Tamour Size

Size<2cm 0.2 82.0
Size > 2 em 62.2 64.5
IER Status )

Positive 80.0 82.7
Negative 60.9 56.1

Table A6.2: Kaplan-Meier % survival estimates i five years without
Cls for the two analyses. Note that N and T stand for node status

and tumour size respectively.
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All Cases Complete Cases
Variable S-year % survival | 5-ycar % survival
Health Board
A 63.5 75.0
C 63.9 38.4
F 68.1 56.1
G 73.8 72.8
L 67.4 71.9
N 75.8 73.3
S 78.3 78.3
T 66.2 65.2
Y 68.9 90.0
Deprivation Category
Least deprived 73.8 74.5
Intermediate 70.9 73.5
Most deprived 65.7 64.0
Surgical Case load
1 -9 cases 66.6 61.1
10 - 29 cases 69.1 73.2
Team or > 30 74.7 73.6
Seen by an Oncologist
Yes 70.4 70.6
No 71.5 74.9
Type of Surgery
Mastectomy 68.0 68.2
Conservation 75.1 79.1
Adjuvant Radiothcrapy
Given 70.2 70.0
Not given 71.3 74.3
Adjuvant Chemotherapy
Given 61.0 55.9
Not given 71.7 74.7
Adjuvant Endecrine Therapy
Given 70.4 77.4
Not given 71.6 64.0
Adjuvant Chemotherapy or Endocrine Therapy
Given 69.9 74.5
Not given 73.2 67.0

Tahle A6.2 cont: Kaplan-Meier % survival estimates at five years without
Cls for the two analyses.
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(i) Node status and tumour| (ii) Three pathological
size known factors known

Variable Hazard 95% CI for Hazard 95% CI for

Ratio Hazard Ratio Ratio Hazard Ratio
Age
<50 1 * 1 *
50-64 1.05 (0.80, 1.37) 0.93 (0.67,1.28)
{65-79 1.05 (0.78, 1.40) 1.00 (0.70,1.43)
>80 2.20 (1.23, 3.95) 2.10 (0.50, 8.78)
Clinical Stage
I 1 * 1 *
il 1.64 (1.09,2.48) | 1.68 (1.01, 2.78)
I 2.08 (1.28, 3.38) 1.80 (0.98, 3.30)
ER Status
Positive 1 * 1 *
Negative 2.51 (1.91, 3.31) 2.72 (2.05, 3.62)
Node Status by
Tumowur Size
N-1<2 3.95 (2.63,5.91) 4.62 (2.82,7.57)
N+ T >2 4.52 (3.08, 6.61) 4.40 (2.74, 7.07)
N- T<2 1 * 1 *
N- T >2 2.72 (1.81, 4.09) 2.82 (1.70, 4.65)
Health Board
A 1.13 (0.70, 1.81) 1.24 (0.75, 2.05)
C 1.91 (1.24, 2.94) 2.33 (1.40, 3.86)
¥ 2.04 (1.27,3.28) 2.50 (1.47, 4.25)
G 1 * 1 %
L 1.11 0.71, 1.75) 0.99 (0.54, 1.81)
N 1.18 (0.80, 1.73) 1.21 (0.77, 1.88)
S (.83 (0.57, 1.20) 0.84 (0.56, 1.24)
5 1.30 (0.78,2.17) 1.97 (1.02, 3.82)
Y 0.34 (0.11, 1.08) 0.18 (0.02, 1.29)

Table 46.3: Hazard ratios (HR) with 95% CIs for the further two analyses. Nofe

that N and T stand for node stafus and tumour size respectively.
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APPENDIX 7 DERIVATION OF THE NORMAL EQUATIONS FOR TWO
FACTORS IN AN EXPONENTIAL REGRESSION MODEL WITH
COMPLETE CASES ONLY

DESIGN WITHOUT MISSING VALUES

Here, the two factors have only two levels with observations which are taken to satisfy
an exponential regression model. It is assumed that there is no interaction between

the factors in an additive model. Suppose there are n, observations falling in

cell (k,l), where k=1, 2and [ =1, 2 represent the levels of factors F1 and F2

respectively. Let these ny, observations be denoted by y,,, with m, =1, ..., r,.

Then the basic design can be represented by Figure A7.1,

F2
1 2
1 My Ry
F1
2 By Ry,

Figure A7.1: Diagram to represent the design
without missing values in the two factors.

The pdf for the »,, observations falling in cell (k,l ) is given by

J '(J’ iy ) =y GXP("‘ 2y Ky ) ’

for £=1,2 and [ =1, 2, where
Ay = exp[,u“ toy + 48{]
and the constraints &, = 0 and f = 0 arc imposed.

The ¢, parameters are main effects related to factor F1 and the 5, parameters are

main effects related to factor F2.
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By the independence assumed between observations falling in each of the separate
cells, the joint pdf for the #,, observations falling in cell (k,!] is given by
H f(yk!m_w ) v

gy =1

By the independence between the cells, the overall joint pdf for the four cells is

therefore given by
felpa)= l;[[(ﬁm )" exp[— A 23’)]

for k=12, I=1L2and m, =1, ., n

&
The subscript C on . ( »; i) is given here to demonstrate that only the complete cases

(i.e. the known values) are included.

The likelihood function can be obtained from the joint pdf and taking logs gives the

log-likelihood function as

I (:‘1;] = ;”‘M log 4, + ;[_ /’kaz::yr’d"w) +d,

where 4 does not depend on 4.
‘The aim here is to obtain the parameter estimates 4, &, and ;% . Therefore, the
A, are replaced by their values given above. Thus, the log-likelihood function

becomes

ZC(&)ZHH(FH)F]'”IZ(!UH +)82)+”21(!”1| +a‘2)+n22(,u” +a, 4+ -62)

1,

—[exp(ﬂ”)]i;l:y“m” ”{ex[)(cull +ﬁ2}]2y12mu

- [BXP(#U ta, )]i Yot ~ [exp(,u“ + o +ﬂz)]iy22mn +d




The three normal equations obtained are:

o1(2 i YIS i+ AN
£ (‘) = 1), + 1y, + 1y, Ry, ~[exp(zu“)]2 Y, — [GXP(MI + :@)]; Y12,

dih,
- [9?(1‘(,&11 + O-'Az )]i Yo, — [exp(ﬁn + &2 + ﬁz )]Z Yoamy,
=0
a1 .(A N . LU . . L
;;:g_) =Hy thy “[GXP(:”n + @, )]Z Yavu, — [exl’(#n +a, + )]Z Yo2un,
oo, [ -
=0
A1 . n PR R N . ~ i
o ;‘éﬂ) =Hy, t Ry — [CXP(HH + 5 )]Z,.,Vlzm,2 - [exp(#n +a, + f )]Z]:yn,,,n .

=0
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APPENDIX 8 DERIVATION OF THE NORMAL EQUATIONS FOR TWO
FACTORS IN AN EXPONENTIAL REGRESSION MODEL FOR ALL CASES

DESIGN WITH MISSING VALUES

When the missing values are also included in the exponential regression model, with
the missing values being incorreclly taken to satisfy the model, the derivation ol the
normal equations proceeds in the same manner as for the context without the missing
values (Appendix 7). The assumption of independence in an additive model is again

made. Here there are now n,, observations falling in cell (k, 1.') ,where k=1, 2, 3 and

I =1, 2, 3. The new design can be represented diagrammatically by Figure AS.1.

F2
1 2 3
1 1, By s
Il 2 Ry flyy a3
3 7y 3y Ry

Figure A8.1: Diagram to represent the design for the
two factors when missing values are included.

Since the observations falling into cells (1,3) ,(2,3] , (3,]) , (3,2) and (3,3) are taken

here to be exponential then the pdfs for all nine cells is given by

/ '(y g ) = Ay CXP(_ /ILHJ’M:...H ) >

for £=1,2,3uand /=1, 2, 3, where

Ay = Cxp[ﬂn +ta, + :6:']

and A4, represent the hazard functions for the nine cells with the constraints a; =0

and £ =0 still imposed.
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Again, by independence assumed between observations falling in the same cell, the
joint pdf for the n,, observations in celt(k,?) is still given by

]._.[f (y "1'"»!)'

=1

Therefore, by independence between observations in different cells, the overall joint

pdf for the nine cells is given by

fa (Z »Z&) = 1;[ !:('Qw )n“ exp(— A "i ykému]] »

nry =1
with k=1, 2,3, I=1,2,3 and my =1, ..., n,.
The subscript A here is given to show that all of the cases (i.e. known and missing
values) have now been includcd. This is in contrast to the C used before for the

complete cases in Appendix 7.

Therefore, the log-likelihood function for all cases is given by

Ly (11) = ;”w log 4, + ;(_ ’q'k!Zyklth +c,

where e docs not depend on 4,

To obtain the normal equations, it is necessary to replace the A, by the linear
combinations of the parameter estimates of interest. Differentiation of /,(4) with
respect to the parameter cstimates #,,, &,, ﬂ; , @, and ,4’3’3 yields five normal
equations which need to be solved simultaneously once they are all set equal to zcro.

The five normal equations for the design with missing values in the two factors case

arc.
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21,(2)

i =Ry Ty TRy Ry R Ry, Ry TRy, R — [exp(ﬁn)]zyu;n,,
)
- eXP(ﬂu +192)]Z Y1z, [cxp(,un +}63)]Zy13n,3
- _cxp(;"ill + aAZ )]Z yZlml, [exp(aull + a2 + ﬁZ)}Z y22» iyy
- ‘exp(l}ll + &2 + [Aii ]Z ny!ml1 - [cxp ﬁll + &3 )]Z y31m3,
N3 Haa
[ ”11 + as +181)]Zy32mu {CXP(M\ + as + ﬂz ]thn .
=0
71,4 &
é_—l =1y tHy iy _[eXP My + az Z:J’um [exp(y” +dy + ﬁz ]Z}’zz "
- exp(aﬂll + &2 + 183)]2 y23n:23
= ()
V7 {A ( /’L) UiF) Lr7)

5;(;’ = Hyy tHy, tHy, {eXp(ﬂn + 182 ]Z Yizm, — [exp(,u“ +d, + ﬁz)]z Yo,
3

Hyp

[exp lllll + (z’l + IBZ ]Z y32m-|,

a 1A . . 31 (7]
""j&gf) =) byl [eXp(,u,“ + aa)]Z}’almﬂ [GXP(-”U + 0+ ﬁz)]z Yazm,
3

figy

[cxp(u,, + o, + ﬁs)]z Visma,

=0
and

o1,(2 LS
0’\;13“(——) =Ayy + 1y Py _[exp(ﬂll + 5 )]Z Vg, ~ [eXp(,u o ﬂ‘)]zym”’
[

Na3
[cxp #ll + Of3 + ;BJ ]Z y.‘v‘.!m 1



APPENDIX 9 DETERMINING THE MIXING PARAMETERS FOR
GENERATING THE MISSING VALUES FOR THE TWO FACTORS DESIGN

A sequence of randomly generated uniform numbers was utilised to decide which
exponential distribution to use to generate the observations falling in the missing cclis,
The appropriate probabilities were chosen based on the relative frequencies of the
cases in the known levels. The missing value was then generated from the appropriate

exponential distribution.

The following probabilities for the five missing cells are:

L

For cell{1,3), the mixing parameter was r =
1y, iy,

. with an observation coming

from an Ex(exp( iy )) dislribution when the attached random uniform number had a

value <r ; otherwise the obscrvation was generated from an Ex(exp( tHy + ,@))

n
distribution, Similarly, for cell (2,3) , the mixing parameter was s = + , with
1y Ty

a similar use made of the attached uniform numbers. For cells (3,1) and(3,2), the cut-

fat’ hy
and ¥ =

ny +ny Ry, +Hy

offs were £ = respeciively, again with similar use of the

attached uniform random numbers.

Tor cell (3,3) , however, three probabilities were needed. These were at

LT 4y +n12
a = ! , b= and ¢ =
Ry + 1, 1) iy, M+ Ry, TRy iy, I OV s (TR R 7Y

ytn iy,

. The

observations in this cell were generated from the four possible distributions depending

on the values of the uniform random numbers attached to each observation. Fora

uniform number of value <a, the observation in cell (3,3) was generated from an
.Ex(exp(,tq, )) distribution. When the number lay in the interval (a,b] or (b,c],the

distribution used was an Ex(exp( M+ /32)) or Ex(exp(,z.q,1 + e )) respectively.
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Otherwise, the observation was generated from an Ex(exp( o, + ))

distribution.
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APPENDIX 10 FURTHER RESULTS FROM FITTING AN EXPONENTIAL
REGRESSION MODEL TO DIFFERENT DESIGNS WITH TWO FACTORS
AND MISSING VALUES PRESENT

From Section 6.3.5:

GROUP H

Table A10.1 gives the estimated biases and standard errors for the parameter estimates

for Group H.

Design b(“Z) Se(az) b(ﬁz) Se(ﬁz)
H1 -0.0519 0.0041 -0.0631 0,0040
H2 -0.0160 0.0049 -0.0088 0.0048
113 -0.0373 0.0044 -0.0431 0.0042
H4 -0.0158 0.0049 -0.0087 0.0048
HS -0.0145 0.0049 -0.0082 0.0048
Hé6 -0.0114 0.0050 -0.0080 0.0047
"7 -0.0317 0.0046 -0.0136 0.0047
HS8 -0.0148 0.0049 -0.0083 0.0048
119 -0.0179 0.0049 ~0,0199 0.0046

H10 -0.0145 0.0050 -0.0127 0.0047
Hi11 -0.0090 0.0050 -0.0134 0.0047
Hi2 -0.0098 0.0051 -0.0091 0.0047
H13 -0.0155 0.005C -0.0082 0.0048
H1i4 -0.0197 0.0049 -0.0117 0.0047
H15 -0.0116 0.0050 -0.0119 0.0047
Hi6 -0.0162 0.0049 -0.0101 0.0047
H17 -0.0162 0.0050 -0.0133 0.0047
HI18 -0.0137 0.0049 -0.0073 0.0048
H19 -0.0082 0.0050 -0.0081 0.0047
H20 ~0.0102 0.0050 -0.0062 0.0048
H21 -(0.0048 0.0051 -0.0058 0.0048
1122 -0.0020 0.0051 -0.0016 0.0048

Table A10.1: Estimated biases and standard errors for the designs in
Group A
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Nao clear pattern could be determined from a plot of magnitude of bias and percentage

of missing values (Figurc A10.1).

Estiinatad bias in estimates by overall % missing

group H
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Figure A10.1: Plot of the magnitude of the estimated bias against the overall
perceniuge missing for Group H.

GROUP 1

Table A10.2 gives the cstimated biases and standard errors for the parameter estimates

for Group L

Design bé, ) Se(az ) b(ﬂz) Se(ﬂz)
T1 -0.0202 0.0051 -0.0261 0.0052
12 -0.0116 0.0053 -0.0129 0.0054
13 -0.0116 0.0053 -0.0128 0.0054
14 -0.0106 0.0053 -0.0095 0.0054
IS -0.0106 0.0053 -0.0095 0.0054
16 -0.0076 0.0053 -0.0115 0.0054
17 -0.0103 0.0053 -0.0125 0.0054
18 -(.0060 0.0054 -0.0060 0.0055
Table A10.2: Estimated biases and standard errors for the designs in
Group I
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The amount of missing values secemed to affect whether or not the parameter estimates
were biased, with 14% or more missing leading to biased estimates (Figure A10.2).
Models 13 and 14 both had 13% missing with model I3 having biased parameter
estimates, whereas there was no evidence of bias of ,32 for model 14, akthough 0?2 was

biased.

Estimated bias in estimates by overall % missing
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Iigure AIN.2: Plot of the magnitude of the estimated bias against the overall
percentage missing for Group 1.
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