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Summary

The original objectives of the project were to clone the cDNAs for the first 

three enzymes of histidine biosynthesis fi-om Arabidopsis and subsequently overexpress 

and characterise at least one of the enzymes. The cDNA for the second enzyme of the 

pathway, the bifunctional HisEE was the only cDNA for which viable clones were 

obtained. The cDNA for the Arabidopsis hisBE clone contained a chloroplastic 

targeting sequence which was removed in order to allow expression of the active 

domains of the HisIE protein. A construct which allowed overexpression of the HisIE 

protein to approximately 30% total cell protein was generated and the protein was 

subsequently purified to homogeneity using three chromatographic steps (ion exchange 

on DEAE, Phenyl Sepharose and gel filtration). The substrate PR-ATP was generated 

by biotransformation from ATP and PRPP using a purified HisG extract from E. coli 

and was purified by a new method using ion exchange chromatography and a volatile 

buffer system. This gave the first homogeneous sample of PR-ATP and allowed the 

kinetic characterisation of the enzyme. Optimal assay conditions for the Arabidopsis 

HisIE enzyme were established and basic kinetic parameters including the K,n and kcat 

of the purified enzyme were determined. Chemical modification experiments with the 

histidine modifying reagent DEPC resulted in the rapid loss of enzyme activity even at 

very low concentrations. This suggested that a histidine residue might be involved in 

enzyme activity. To test this hypothesis site directed mutagenesis of the two conserved 

histidine residues within the protein was carried out and the mutant proteins 

overexpressed and purified. Subsequent characterisation of the mutant proteins and 

comparison of the Km and k^t with the wild type values indicated that neither of these 

histidine residues was catalytically important but suggested that one of the residues 

(HI 46) might be important for the quaternary structure of the HisIE enzyme and the 

other (H245) might sterically hinder the active site.
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Chapter 1 

Introduction



Chapter 1

1.1 General Introduction

1.1.1 Why study amino acid biosynthesis?

As modem farming techniques concentrate on gaining the maximum yield 

from the smallest possible area, the use of herbicides is constantly on the increase. The 

herbicide industry is now a multi-million pound industry and many more millions are 

being pumped into herbicide research in the quest for a more effective, more efficient 

and cheaper alternative. An ideal herbicide should be effective at killing the weed but 

not the crop plant, should have low application rates, be environmentally friendly and 

be relatively non toxic to wildlife etc. (Cole, 1994). It should also be relatively 

inexpensive and there should also be a very low tendency for resistance to emerge. |

In recent years the amino acid biosynthetic pathways which are present in |

plants, bacteria and fungi, have been investigated not only because of the intrinsic 

scientific interest in how these key biological building blocks are synthesised but also 

with a view to developing inhibitors of these pathways as potential antibacterial or
t

herbicidal agents (Mousdale and Coggins, 1991). The pathway intermediates and the 

fiinctional enzyme domains are highly conserved between bacteria and plants. Two 

amino acid biosynthetic pathways, the shikimate pathway and the pathway leading to 

the branched chain amino acids, have already proved to be excellent targets for 

herbicides (La Rossa and Falco, 1984, Kishore and Shah, 1988).

The shikimate pathway which is used by both plants and bacteria to generate 

the aromatic compounds including the amino acids tyrosine, phenylalanine and 

tryptophan has proved useful as a target for herbicidal action. The herbicide 

Glyphosate'T^ (N-phosphonomethyl glycine) is one such inhibitor of this pathway 

(Mousdale and Coggins, 1991). It has been available for over twenty years but it was 

only in 1980 that the site of action was determined as 5-enol-pyruvyl shikimic acid 3-
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phosphate synthase (EPSPS; EC 2.5.1.19), which is the sixth enzyme of this pathway 

(Steinrucken and Amrhein, 1980).

Acetolactate synthase (ALS EC 4.1.3.18) a key enzyme in the synthesis of the 

branched chain amino acids, leucine, isoleucine and valine, is the target for the 

sulphonylurea (LaRossa and Schloss, 1984), imidazolinone (Shanner et a l,l9M )  and 

triazolopyrimidine sulfonamides (Kleschick and Gerwick, 1989). The sulphonylureas 

and the imidazolinones appear to interact rather differently with ALS which has proved 

to be a very useful target for herbicide action (Pillmoor et al, 1995).

The underlying rationale behind the work described in this thesis was to 

investigate whether the early enzymes of histidine biosynthesis might also be a good 

target for herbicide development. There were indications that this pathway might be a 

good target since the compound Amitrole™, which inhibits Imidazoleglycerol 

phosphate dehydratase (IGPD), the sixth enzyme of the histidine biosynthetic pathway, 

(Hilton et a l, 1965) has herbicidal effects. More recently some triazole phosphonates 

have also been shown to inhibit IGPD; these compounds, which have a similar potency 

to Glyphosate™, may be useful as herbicides (Cox et a l, 1997).

Certain Brassica species such as the metal hyperaccumulator Alyssum have 

been found to accumulate heavy metals like nickel and zinc and appear to be tolerant 

of such metals. These plants have been found to contain increased levels of free 

histidine within the cytoplasm (Kramer et a l, 1996). It may be possible to use plants 

which have the potential to produce more free histidine in order to remove heavy 

metals from contaminated land.

Because of its potential as a target for herbicides and because of the interest in 

overproducing histidine as a means of developing metal tolerant plants, a detailed study
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of the enzymes of the pathway and their regulation in plants was a worthwhile 

objective.

1.1.2 Histidine Biosynthesis- General introduction

To date the histidine pathway has been studied well in Escherichia coli (Winkler,

1988) and in several other bacteria. In both E, coli and Salmonella typhimurium the 

pathway consists of a series of ten reactions which are carried out by eight enzymes 

(three are bifunctional), all of which, at least in the case of E. coli, have been cloned 

and sequenced (Table 1.1). In bacterial systems the genes of the pathway are organised 

in an operon and precise details of the ordering of the genes has been worked out for 

E. coli and also S. typhimurium (Carlomagno et aL, 1988). In contrast to this very 

little work has been done on the pathway in plants. Until 1990 the only evidence of the 

existence of a histidine biosynthetic pathway in plants was limited to the work of 

Wiater (1971). He demonstrated the presence of activities for phosphoribosyl-ATP 

transferase, imidazoleglycerol phosphate dehydratase and histidinol phosphate 

phosphatase in shoot extracts of barley, oats and peas. In plants the pathway enzymes 

occur in the chloroplast although they are nuclear encoded and possess a targeting 

sequence to direct them to the chloroplast (Nagai et al, 1992“^ ‘̂ ’", Tada et al., 1995). 

From studies on the published sequence in the databases, the Arabidopsis genes for 

histidine biosynthesis do not appear to be organised in an operon and are encoded by 

individual genes on different chromosomes. When I began to investigate the early 

enzymes of histidine biosynthesis only two plant genes from the histidine pathway had 

been cloned. The cloned genes encoded two of the later enzymes, namely
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imidazoleglycerol phosphate dehydratase from Arabidopsis thaliana and wheat (Tada 

et a l, 1994, 1995) and histidinol dehydrogenase from cabbage, Brassica oleracea 

(Nagai et al., 1992*̂ ). Since I began this work there have been a number of papers 

published detailing the cloning and genetic analysis of several of the early histidine 

biosynthetic genes from Arabidopsis by a group in Japan. This would indicate that 

there is substantial interest in gaining knowledge about the genes and enzymes 

involved in histidine biosynthesis.

In order to investigate the possibility of using this pathway as a herbicidal 

target the genes for the individual steps of the pathway need to be isolated and the 

enzymes overexpressed and characterised.

1.1.3 The Histidine Biosynthetic Pathway

The initial substrates of the histidine pathway are 5-phosphoribosyl 

pyrophosphate (PRPP) and ATP (Figure 1.1). In plants ribose-5-phosphate is 

produced via the Calvin cycle and converted to PRPP by the action of ribose-5- 

phosphate pyiophosphotransferase (PRPP synthetase) (Gross et aL, 1983). The ATP 

that is used in the pathway is derived either photosynthetically or from the glycolytic 

pathway. Histidine biosynthesis is a metabolically demanding process and requires 

large amounts of energy. It has been calculated that 41 molecules of ATP are utilised 

for each histidine molecule synthesised (Brenner and Ames, 1971). The histidine 

pathway branches after the fourth enzyme; the main branch cairies on to produce 

histidine and the side branch leads to purine biosynthesis, thus the substr ates for 

histidine biosynthesis are the same as those used for purine biosynthesis.

The intermediates of the histidine biosynthetic pathway appear to be conserved 

between all species, however the structure and organisation of the genes and the
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corresponding proteins seems to vary (Fani et a l, 1995, Alifano et aL,\996). In 

bacteria such as E. coli all 8 genes are organised in an operon, whereas in 

Saccharomyces cerevisiae the seven genes encoding the histidine biosynthetic 

enzymes are distributed over 6 chromosomes (Fani et aL, 1995). The number of genes 

and hence the structure of the gene products varies between organisms (Table 1,1). In 

E. coli there are 3 bifunctional enzymes HisIE, HisB and HisD. In S. cerevisiae and 

Neurospora crassa several genes are linked together to form a multifimctional protein 

containing the HisIE and HisD activities (Fani et a l, 1995).

In some organisms an enzyme can be monofunctional but in other organisms it 

is bifunctional in nature. The best example of this is the hisB gene product IGPD. In S. 

cerevisiae the IGPD enzyme is a monofunctional protein (Mano et a l, 1993) but in E. 

coli it is a bifunctional enzyme which also encodes histidinol phosphate phosphatase 

(Chiarotti et a l, 1986).

Histidine biosynthesis plays an important role in cellular metabolism since it is 

connected with both de novo purine biosynthesis and nitrogen metabolism. It has been 

suggested that the histidine biosynthetic pathway was already part of the metabolic 

abilities of the common ancestor of all cellular organisms (Lazcano et al, 1992). 

Histidine may be a molecular remnant of a catalytic ribonucleotide from an early 

biochemical stage in which RNA played a role in catalysis (White, 1976). Studies on 

the evolution of this pathway indicate that a gene duplication from a common ancestor 

gave rise to his A and hisF (Fani et a l, 1994, 1997). Elongation, gene fusion and 

duplication events can be identified to show the evolution of the histidine biosynthetic 

pathway fi'om an ancient pathway to the complex but well refined pathway observed 

in modem organisms (Fani et a l, 1995).
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1.2 Individual enzymes involved in Histidine Biosynthesis

1.2.1 HisG (Phosphoribosyl-ATP transferase)

The initial substrates of the histidine pathway are 5-phosphoribosyl 

pyrophosphate (PRPP) and ATP (Figure 1.2). HisG (N’-5’-phosphoribosyl-ATP

transferase) is the first enzyme of this pathway and joins the two substrates together
■I

displacing pyrophosphate (Martin, 1963). This enzyme is feedback inhibited in

bacterial systems by histidine which provides a way of regulating the pathway.

Feedback inhibition of HisG provides a rapid response to fluctuations in the histidine 

pool while repression control of the enzyme provides long term control of histidine 

levels (Martin, 1963, Bell et al., 1974).

Most of the information about the structure and regulation of the activity of the 

transferase comes from studies on the homologous enzymes from E. coli and S. 

typhimurium. In both organisms the purified enzyme is a hexamer composed of
■‘Î

identical subunits of 34kDa (Voll et al., 1967, Parsons and Koshland, 1974%

Klungsoyr and Kryvi, 1971). Various aggregation states of the molecule have been 'S-

observed under different conditions. The dimer is the basic oligomeric unit (Parsons 

and Koshland, 1974*̂ ) and is the most active species of the enzyme isolated from E. 

coli (Dall-Larson, 1988). Histidine and AMP shift the equilibrium of the subunits 

towards the hexameric state or inactive state (Dall-Larson and Klungsoyr, 1976). PR- 

ATP, the product of the enzyme, is known to be the most powerfiil ligand for shifting 

the protein into the hexameric form. The different aggregation states of the molecule 

appear to play a role in the regulation of enzyme activity. The E. coli enzyme for 

example upon binding one of the substrates PRPP, dissociates from the hexameric 

form to form three active dimers (Tebar et a/.,1973, 1975), PR-ATP and other ligands

.Î
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PRPP -p — IATP
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ATP-phosphoribosyl transferase
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P

OH OH
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Figure 1.2 Reaction of HisG enzyme combining ATP and PRPP to form PR-ATP

that stabilise the hexameric form play a role in inhibition of enzyme activity (Dall- 

Larson, 1988). This appears to be connected to the mechanism of feedback inhibition 

observed with this enzyme. Feedback control of the HisG enzyme was first shown in 

1961 by Ames et al who found that the E. coli enzyme was only sensitive to histidine 

in the presence o f the reaction product PR-ATP.

Evidence also suggests that the HisG enzyme is involved in the repression of 

the histidine operon and may also be involved in regulation of the levels o f Histidyl 

tRNA synthetase. Histidyl tRNA synthetase is thought to play a key role in the 

regulation of the operon (Ames et al., 1983). tRNA synthetases are thought to be 

involved in the regulation of the biosynthetic opérons for tryptophan and branch chain 

amino acids (Landick et al., 1996, Umbarger, 1987). Recent evidence suggests that an 

aminoacyl tRNA synthetase like molecule has a direct involvement with and forms an

10
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essential subunit of phosphoribosyl-ATP transferase (Sissler et a l, 1999). These 

associated proteins have been called HisZ and are based on the catalytic core of the 

class II histidyl tRNA synthetase but they lack aminoacylation activity. They appear to 

play a key role in regulation of histidine biosynthesis (Sissler et a l, 1999).

1.2.2 HisIE

HisIE (Phosphoribosyl-ATP pyrophosphohydrolase, phosphoribosyl-AMP 

cyclohydrolase) is the second enzyme of the pathway. It carries out the next two steps. 

Firstly it hydrolyses the two phosphates linked to the ATP part of the molecule and 

then the second stage of the reaction is to open the purine ring (Smith and Ames,

1965) (Figure 1.3). It was originally thought that the HisI and HisE activities were 

encoded by two separate genes but it is now known that they are bifunctional. There 

are however a few exceptions. In the archaebacterium Methanococcus vannielii 

(Beckler and Reeve, 1986, Bult et al., 1996) and the gram negative organism 

Azospirillium brasilense (Fani et al., 1993) the two enzyme activities appear to be on 

two different proteins which are encoded by two different genes. Also in Rhodobacter 

sphaeroides it appears that the hisi gene is mono functional and is not linked to the 

hisE gene in any way (Oriol et al, 1996). In the bacterial genes it appears that the 

amino terminal domain encoding the Hisi activity is responsible for the third step of 

the pathway (cyclohydrolase activity) and that the carboxyl terminal domain encodes 

the HisE activity and is responsible for the second step of the pathway (the 

pyrophosphate hydrolase activity) (Donahue et a l, 1982). In some organisms such as 

the fungal species S. cerevisiae ( Donahue et al., 1982) and Pichiapastoris (Crane and 

Gould, 1994) the enzyme is multifunctional encoding three enzyme activities, Hisi, 

HisE and HisD (Donahue et a l, 1982). This multifunctional activity is also observed

11
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in the his3 gene of Neurospora crassa (Legeiton and Yanofsky, 1985). In simple 

terms it appears as though in the fungal species the enzyme is multifunctional 

encoding three enzyme activities, in the archaebacterium the activities are present 

individually and in bacteria and plants it appears that the enzyme activities are present 

as a bifunctional unit (Fani et al., 1995).

The hisIE gene from Arabidopsis has been cloned independently of this project 

by a group in Japan led by Ko Fujimori and they published details of some cloning 

and genetic analysis of this gene in September 1998. They identified the hisIE gene as 

a single copy in the Arabidopsis genome and the product was identified as a 

bifunctional enzyme (Fujimori and Ohta, 1998^). The hisIE gene is composed of five 

exons and four introns. The splice sites between the intron exon boundaries follow the 

normal GU-AG rules observed in most eukaryotes including higher plants. Exon 1
■I

encodes the transit peptide, exons 2 and 3 encode the Hisi domain and exons 4 and 5
t
y

encode the HisE domain (Fujimori and Ohta, 1998“).
;

There has been little done in the way of characterisation of the Arabidopsis
.

enzyme activity and no details of kinetic parameters have been published so far.

The monofunctional Hisi enzyme from M vannielii has been overexpressed 

and characterised (D’Ordine et al., 1999). The enzyme is a dimer and has associated 

with it one equivalent of zinc per subunit that can only be removed by extensive 

dialysis with the zinc chelating agent 1,10-phenanthroline. The Zn^  ̂is essential for 

enzyme activity. Both Mg^  ̂and Zn̂ "̂  are required by PR-AMP cyclohydrolase for the 

hydrolysis of PR-AMP (D’Ordine et a l, 1999).

12
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Figure 1.3 Reaction of the HisIE enzyme

1.2.3 HisA

HisA (N’-[(5’-phosphoribosyl)-formimino]-5-aminoimidazole-4-carboxamide 

ribonucleotide isomerase) is the third enzyme of the pathway and catalyses the opening 

of the PRPP ring (Smith and Ames, 1964) (Figure 1.4). The reaction catalyses the 

conversion of N ’ - [(5 ’ -phosphoribosyl)-formimino] -5 -aminoimidazole-4-carboxamide- 

ribonucleotide (BBMII or Pro-FAR) to N ’-[(5’phosphoribulosyl)-formimino]-5- 

aminoimidazole-4-carboxamide ribonucleotide (BBMIII or PRFAR) (Margolis and 

Goldberger, 1966, 1967). This is an internal redox reaction known as an Amadori 

rearrangement and involves the isomérisation of the aminoaldose 5’Pro-

13



Chapter 1

o
H2N 

CH2 o
HN-

//
•CH

H2NHisA
OH OH phosphoribosylformino- 

Pro-FAR 5-amino-1-phosphoribosyl-
4-imidazolecarboxamide isomerase

//
H N  CH

H------- C-----H

c = o

H------- C-----OH

H------- C----- OH

H 2C— O ------ P

P R F A R

Figure 1.4 Reaction of the HisA Enzyme

FAR to the amino ketose 5’ PRFAR (Smith and Ames, 1964). Little research has been 

done on this enzyme although recently the Japanese group led by Fujimori has cloned 

the cDNA encoding HisA from Arabidopsis^ by means of complementation of an E. 

coli auxotrophic mutant. The isolated cDNA encodes a polypeptide containing 304 

amino acids and has a calculated molecular weight of 33,363 Da (Fujimori et at.,

1998). Sequence homology with the His6 protein of yeast revealed the presence of an 

N terminal extension of 40 amino acids which appears to be the targeting sequence for 

the chloroplast. The primary structure of the mature protein was 50% identical to the 

Schizosaccharomyces pombe protein and 42% identical to the S. cerevisiae protein. 

They also identified it as a single copy gene in the Arabidopsis genome (Fujimori et al., 

1998).

14
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A number of hisA homologues from other organisms have been isolated 

including those from Lactococcus lactis (Delorme et al., 1992) dxià Azospirillium 

brasilense (Fani et a l, 1993), by complementation of the E. coli hisA mutant. HisA 

protein from the thermostable organism Thermatoga maritima has recently been 

purified and crystallised. Four different crystal forms have been isolated and will be 

used for further structure determination (Thoma et al., 1999).

1.2.4 HisHF

The HisH (Glutamine amidotransferase) and HisF (cyclase) enzymes catalyse 

the fifth and sixth steps of the pathway converting glutamine and PRFAR to AICAR, 

IGP (imidazole glycerol phosphate) and glutamate (Smith and Ames, 1964) (Figure 

1.5). The two enzyme activities work together as a holoenzyme complex to carry out 

these two reactions. The HisF protein has an ammonia dependent activity and is 

responsible for the conversion of PRFAR to AICAR and IGP while the HisH protein 

has no detectable activity (Klem and Davisson, 1993).They form a stable one to one 

complex that constitutes the IGP synthase enzyme (Klem and Davisson, 1993). The 

individual proteins are not capable of functioning individually to convert nucleotide 

substrate to free metabolic intermediates. The bacterial systems appear to contain 

separate genes for the two enzyme activities whereas in the plant system a bifunctional 

cDNA containing both enzyme activities has been cloned from Arabidopsis (Fujimori 

and Ohta, 1998*̂ ). The N and C terminal domains of the bifunctional protein show 

homology to the glutamine amidotransferase and cyclase of micro-organisms, 

respectively. This is similar to the S. cerevisiae enzyme where one gene encodes both 

activities (Kuenzler et al., 1993).

15
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The HisF domain from T. maritima has been purified and crystallised and is 

known to diffract to 1 A° resolution. Precise details o f the crystal structure are still to 

be published (Thoma et al., 1999).

The two main products of the HisHF reaction are AICAR and IGP. The 

glutamine which is reduced to glutamate during the reaction is the third product. The 

AICAR formed in the reaction branches off into the pathway concerned with purine 

biosynthesis. It was suspected for a long time that there was an interdependence of the 

histidine and purine biosynthetic pathways in microbial systems. The identification of 

AICAR as a precursor of purine biosynthesis and a by-product of histidine biosynthesis 

confirmed the theory that the two pathways were closely connected (Shedlovsky and 

Magasanik, 1962). Therefore interrupting these early stages of the pathway would not 

only affect essential amino acid biosynthesis but also synthesis of purines.

o

N

G lu ta m in e "V
G lu tam ate i ,  h— c — h

V
H  C  OH

N Glutamine am idotransferase I
H :N  V, M fj  /  ^  ,  H------ Ç ------OH

F /  cyclase |
W /  HzC------- O -----P

NH

H— c — OH P R F A R

H c — OH
To purine I

biosynthesis ° ^

IGP

Figure 1.5 Reaction of the HisHF enzyme
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1.2.5 HisB

The hisB gene encodes the bifunctional enzyme IGPD and histidinol- 

phosphate-phosphatase which catalyses the sixth and eighth steps of the pathway 

(Figures 1.6 and 1.8). In certain species such as the bacteria E. coli and S. 

typhimurium the enzymes are bifunctional and are encoded by a single gene. In plants 

and certain other bacterial species the two enzyme activities appear to be 

monofunctional and are encoded by different genes, while in S. cerevisiae the 

activities are encoded by two separate genes. The IGPD activity isolated from 

Arabidopsis and wheat is monofimctional (Mano et al., 1993, Tada et a l, 1994).

IGPD at least in bacterial systems occurs as the C terminal domain of the hisB 

gene product. IGPD (EC 4.2.1.19) is the sixth enzyme of the pathway and catalyses 

the dehydration of IGP to lAP (imidazole-acetoFphosphate) (Ames and Mitchell, 

1955). (Figure 1.6). The mechanism by which the dehydration occurs is unclear. In 

most cases dehydration would occur as a p-elimination where the hydrogen to be 

removed is relatively acidic due to the presence of an adjacent carbonyl or imine 

functional group. In this case the hydrogen which is removed is relatively non acidic 

and therefore the mechanism may not be a straight forward (3-elimination. It has 

proved useful as a novel herbicide target in recent years (Mori et al, 1995). Triazole 

phosphonates are effective inhibitors of IGPD and act as herbicides in vivo with a 

similar potency to Glyphosate™ (Hawkes et al., 1993).

Digests and southern blot analysis appears to indicate the possibility of two 

IGPD genes in Arabidopsis (Tada et al, 1994). These studies have also revealed 

potential targeting sequences. It is presumed that the first 30-70 amino acids of the 

plant protein sequences are the chloroplast targeting sequences. This further supports 

the idea that histidine biosynthesis takes place in the chloroplast within plant tissues.

17
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Figure 1.6 First Reaction of the HisB enzyme

1.2.6 HisC

The seventh step of the pathway is carried out by the product of the hisC gene 

lAP aminotransferase or histidinol phosphate amino transferase. This reaction involves 

the reversible transamination of 1AP and a nitrogen atom from glutamate leading to the 

production of a-ketoglutarate and L-histidinol-phosphate (Figure 1.7). This enzyme is 

pyridoxyl-phosphate dependent (Brenner and Ames, 1971).

The gene has been recently cloned from Nicotiana tabacum by 

complementation of an E. coli auxotroph (El Malki et al., 1998). In yeast this enzyme 

is under the process o f general amino acid control (Hinnesbusch, 1988). General amino 

acid control is a mechanism which allows the expression of a complex set of genes or a 

group of pathways to be controlled via a small subset of proteins. The N. tabacum 

enzyme appears to possess a chloroplast targeting sequence (El Malki et al., 1998). 

Frequent database searching has failed to yield a corresponding gene for histidine 

phosphate amino transferase in Arabidopsis.
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In S. typhimurium histidinol phosphate amino transferase has been extensively 

characterised (Martin, 1970, Albritton and Levin, 1970). The enzyme is a homodimer 

with a native molecular weight of 59kDa. Both E. coli and N. tabacum have molecular 

weights of around 40kDa and comparison of amino acid sequences show convincing 

evidence for homology despite a low degree of amino acid identity (El Malki et al., 

1998).

A
/  H is C /  k

CH2----------------- --Ç—o
H — Ç ^NH3+ phosphate ^ izc  o  p

Hzc— — p aminotransfesase
lAP

HP

Figure 1.7 Reaction of the HisC enzyme

1.2.7 HisB enzyme (Histidinol phosphate phosphatase)

The histidinol phosphate is converted to L-histidinol by the phosphatase 

activity of the N terminal region of the bacterial HisB gene product (Figure 1.8). In E. 

coli and S. typhimurium the histidinol phosphate phosphatase activity is associated 

with the N terminus of the HisB bifunctional enzyme (Carlomagno et al., 1988, 

Chiarotti et al., 1986). The histidinol phosphate phosphatase activity from S. cerevisiae 

has been characterised at the genetic and biochemical levels (Millay and Houston,

1973) but the sequence has no similarity to the E. coli enzyme (Malone et al., 1994).
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Recently the gQWQytvP encoding a histidinol phosphate phosphatase activity 

has been identified in Bacillus suhtilis (Le Coq et a l, 1999). This completes the 

pathway in B. subtilis.

V N H

HisBH — C N H j o
 NH

ÇI-I2

II— C NH3^

H iC  OH

HOL

Figure 1.8 Second reaction of the HisB gene product 

1.2.8 HisD enzyme (Histidinol dehydrogenase)

Histidinol dehydrogenase catalyses the oxidation of L-Histidinol to the amino 

acid L-Histidine (Adams, 1954). The reaction proceeds via the unstable amino 

aldehyde L-Histidinal which is not found as a free intermediate (Adams, 1954, Gorisch 

and Holke 1985). (Figure 1.9). The bifunctional enzyme Histidinol dehydrogenase is a 

NAD linked dehydrogenase (Bürger and Gorisch, 1981, Kirschner and Bisswanger, 

1976) which in the case of the S. typhimurium enzyme is a homodimeric zinc 

metalloenzyme. In fungal species such as S. cerevisiae and N. crassa the HisD enzyme 

activity forms part of a multifunctional enzyme product containing the HisIE activity 

which is encoded by the Bis4 gene (Fani el a l,  1994). A cDNA encoding histidinol 

dehydrogenase has been isolated from cabbage {Brassica oleracea) and the protein has 

been overexpressed and partially characterised (Nagai et a l,  1992^). The histidinol
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dehydrogenase activity was detected in chloroplasts isolated from the leaves. This 

gives further support to the idea that the histidine biosynthetic pathway occurs in the 

chloroplasts (Nagai et al., 1992 ̂ ).
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V— NH

Ç — NH 

CH2
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HC=0
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Dehydrogenase

COQ-

L -H istid in e

Figure 1.9 Reaction of the HisD enzyme

1.3 The aims of the project

The aim of this project was to clone the genes or cDNAs for the first three 

enzymes of histidine biosynthesis from Arabidopsis and subsequently overexpress and 

purify at least one of these enzymes. It transpired that the most successful results were 

obtained with the clones o f the second enzyme HisIE. Therefore this enzyme was 

overexpressed and purified. Many of the intermediates and substrates required by the 

enzymes of this pathway are not commercially available and so in order to characterise
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the HisIE enzyme and determine the kinetic parameters it was necessary to produce 

the substrate for the enzyme. This became a key part of the project and was achieved 

by biotransformation from PRPP and ATP using a purified extract of HisG fr om E. 

coli. Once there was a suitable supply of substrate the final third of the project was to 

determine the kinetic parameters of the enzyme and to use chemical modification v/ith 

substrate protection and site directed mutagenesis to identify essential residues in the 

active site.
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2.1 Materials and Methods

2.1.1 Chemicals

Chemicals and biochemicals were generally Analar grade or else the highest 

grade available. Unless otherwise stated all chemicals were purchased from the Sigma 

Aldrich Company Ltd, England or Fisher Scientific, UK. Bacto-tryptone, bacto-yeast 

extract and bacto-agar were obtained from Difco Laboratories, Detroit, USA Agarose 

and low melting point agarose were obtained from GIBCO BRL Life Technologies, 

Scotland. Complete™ EDTA fi-ee Protease inhibitor cocktail tablets were obtained 

from Boehringer Mannheim, UK.

2.1.2 Proteins and Enzymes

Restriction enzymes and their buffers were obtained either from New England 

Biolabs. Incorporated, England; Promega Corporation, England or Boehringer 

Mannheim, UK.

Vent DNA polymerase was obtained from New England Biolabs.

Bacteriophage T4 DNA ligase and Calf Intestinal Alkaline Phosphatase (CIAP), were 

obtained from Promega Corporation.

Phosphoribosyl ATP Transferase was purified to homogeneity by Mr J. Greene 

from an overexpressing strain of E. coli according to the method of Elwell and 

Coggins (Unpublished results, see Appendix VII).

2.1.3 Oligonucleotides

Oligonucleotides for use both in the polymerase chain reaction and for DNA 

sequencing were purchased from Cruachem Ltd, Glasgow or from Genosys 

Biotechnologies Inc., England.
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2.1.4 Chromatography media

DEAE Sephacel, Phenyl Sepharose, Q-Sepharose, Sephacel S-200 and 

Sephadex G15 were obtained from Pharmacia Biotech, England. Reactive Red 120 

agarose resin was purchased fr om Sigma Aldrich Company Ltd, England.

2.1.5 Pre-packed media

Pre-packed Mono Q, Resource Q, and Superdex Peptide columns, were 

purchased from Pharmacia Biotech. These columns were used on a Pharmacia FPLC 

system or a Shimadzu EC-10 HPLC system. Partisil 0DS3 columns were purchased 

from Phenomenex, England and a Supelcosil LC-18-T column was purchased from 

Supelco Inc. These columns were used on the Shimadzu HPLC system.

2.2 Media and supplements

2.2.1 Media for bacterial growth

E. coli strains BL21(DE3)pLysS and DH5a were routinely cultured in Luria- 

Bertani medium (LB). Solid media was obtained by adding 1.5% bacto agar (Difco, 

USA) to the liquid LB (Table 2.1).

2.2.2 Minimal media

The histidine mutants were grown in a minimal media prepared as in 

Goldschmidt et al, (1970). The following was added to an autoclaved solution of 

900ml of distilled water and 1% agar: 100ml lOX salt solution (Table 2.2), 2ml of a 

125mg/ml thiamine stock and 4ml of a 50% glucose solution. Additional requirements 

were met with the following final concentrations of supplements: histidine, lOOpg/ml;
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arginine, 20p.g/mi; leucine, 20p.g/mi; methionine, 20p,g/ml Antibiotics were added as 

required at the concentrations listed below.

2.2.3 Antibiotics

Antibiotics were used at the following final concentrations in all experiments 

Ampicillin 50-100pg/ml 

Tetracycline 12.5pg/ml 

Chloramphenicol 25pg/ml

a) Ampicillin

A 25mg/ml stock solution of ampicillin dissolved in distilled water was 

sterilised by filtration thiough a 0.22pm filter. 1ml aliquots were stored at -20°C. The 

growth medium was allowed to cool to 50-5 5°C before the addition of ampicillin to a 

final concentration of 50-100pg/ml.

b) Tetracycline

A stock solution of 12.5mg/ml dissolved in 50% ethanol was stored at -20°C 

in the dark. Filter sterilisation was not required. Medium was allowed to cool to 50- 

55°C before the addition of antibiotic at 12.5pg/ml final concentration.

c) Chloramphenicol

A stock solution of 25mg/ml was dissolved in 100% ethanol and stored at 

-20°C. Filter sterilisation was not required. Media was allowed to cool to 50-55°C 

before the addition of antibiotic at a final concentration of 25pg/ml,

All media and plates containing antibiotics were stored at 4°C and used within 

4 weeks.
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Media Composition per litre Comments

LB (Luria-Bertani broth)
lOg bacto-tryptone 

5g yeast extract 

lOgNaCl

Sterilised by autoclaving at 

15psi for 30 minutes

LB agar LB plus 15g bacto agar Sterilised by autoclaving at 

15psi for 30 minutes

Minimal media 100ml lOX salt solution 

(See Table 2.2)

2ml thiamine (125mg/ml) 

4ml 50% glucose solution 

15g bacto agai'

Additional requirements 

histidine lOOpg/ml 

arginine 20pg/ml 

leucine 20pg/ml 

methionine 20pg/ml.

Table 2.1 Growth media
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2.2.4 Isopropyî“P-D“thiogalactopyranoside (IPTG)

A IM stock solution was made by dissolving 2g of IPTG in a final volume of 

10ml. The solution was filter sterilised tlirough a 0.22pm filter and stored as 1ml 

aliquots at -20°C.

2.3 General methods 

2.3.1 General laboratory methods

General molecular biological techniques were carried out as described in 

Sambrook et ai, (1989). General laboratory methods for handling proteins and 

enzymes were as described in (Deutscher, 1990).

2.3.2 French pressure cell

Cells were broken by two passages through an automatic French pressure cell 

at 950psi. The pressure cell was pre-cooled on ice before use.

2.3.3 pH measurement

pH measurements were made with a Radiometer Model 26 pH meter 

(Copenhagen, Denmark), calibrated at room temperature,

2.3.4 Conductivity measurements

Conductivity measurements were made at 4°C with a Radiometer Model 

CDM2e conductivity meter.
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2.3.5 Protein estimation

Protein concentrations were estimated by the method of Bradford (1976), with 

BSA as a standard.

2.3.6 Lyopliilization

Substrate solutions were either collected into polypropylene tubes (small 

samples <lml) or into 25-100ml glass round bottomed flasks (larger samples) and the 

contents shell frozen in a diy ice/ethanol mixture before lyophilization on an FTS 

Systems (Stone Ridge, New York, USA) Flexi-Dry freeze diyer.

2.3.7 Spectrophotometric measurement of nucleic acids

Nucleic acid concentrations were deteimined spectrophotometrically at 260nm 

(Sambrook et ai, 1989) in a Hewlett Packard 8453 UV-Visible Spectrophotometer 

using Quartz cuvettes. In a 1cm path length cuvette an absorbance of 1.0 corresponds 

to 50pg/ml for double stranded DNA and 20pg/ml for single stranded 

oligonucleotides.

2.4 Bacterial strains and cloning vectors

2.4.1 Storage of Bacterial Strains

Bacterial strains were stored as glycerol stocks. These were made by the 

addition of 80% (v/v) glycerol/water to growing bacterial cultures to a final glycerol 

concentr ation of 50% (v/v). Duplicate collections of stock cultures were stored at- 

20°C and -80°C. Some cultures were temporarily stored by streaking onto agar plates 

and maintaining at 4°C for up to 4 weeks.
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2.4.2 Bacterial strains

The bacterial strains and plasmids used in this project are listed in Tables 2.3 

and 2.4.

2.4.3 Escherichia coil Histidine auxotrophic mutants

E. coll iCAW [leuB6, fhuA2, lacYl, supE44, gal-6, X, hisGl, rfbDll, 

galP632. argG6, rpsL104, malTl xyl-7, mtl-2, metBl], UTH903 [ara-14, galK2, 

X, hisI903, rpsL145, malTlQ^), xyl-5, mtl-1] and Hfi’G6 [hisA323,1 ] were provided 

by Barbara Bachmann of the Coli Genetics Stock Centre, Dept, of Biology, Yale 

University, New Haven, CT, USA. These strains were confirmed to be auxotrophic 

for histidine as they only grew on minimal media which was supplemented with 

histidine.

2.4.4 Storage of mutant strains

Working stocks of the mutant strains were stored at -20°C in LB in 50% (v/v) 

glycerol (see 2.4.1). Working cultures were obtained by sti'eaking from the stock 

cultures onto LB-agar. Single colonies of the mutant strains were stabbed into 3ml 

LB-agar in bijouets. These “stabs” were stored in the dark at room temperature. 

Mutants were streaked onto minimal media plates plus and minus histidine before use 

in the complementation experiments to ensure that they were still auxotrophic for 

histidine.
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Bacterial strain Genotype Reference

Escherichia coli DH5a F“ (|)80d/<3<7ZAM15 recAl endAl 

gyrA96 thi-1 hsdRl7{x\7m\t) supE44 

relA I deoR à{lacZYA-argF)lJ 169

Flanahan, 1985

Escherichia coli 

BL21(DE3)pLysS

F- ompT hsdSB I'a ,mB' dcm gal À.DE3 

pLysS Cm^

Studier and 

Moffatt, 1986

Escherichia coli Y1090 A(/acUI69)proA^' !Y(lon) araD\3>9 

strA supF {trpC22\\Tn\0{tQf)'\ 

(pMC9) hsdR (I'KmK’*')

Huynh era/., 1985

Escherichia coli JC411 

(HisG mutant)

leuB6, fhuA2, lacYl, supE44, gal-6, X' 

, hisGl, rft)D17, galP637. ArgG6, 

rpsL104, malTl (X,̂ ), xyl~7, mtl-2, 

metBl

Low; 1968 

Claxk et al., 1969

Escherichia coli UTH903 

{HisI mutant)

ara-14, galK2, X, hisI903, rpsL145, 

malTlQ^), xyl~5, mtl-1

Goldschmidt et al., j 
1970

Escherichia coli HfrG6 

{HisA mutant)

hisA323, X' Mainly et al., 1964

Table 2.3 Bacterial Strains used for general cloning purposes.
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Plasmid Antibiotic resistance Reference

pTB 361 tetracycline resistance T7 expression plasmid 

Brockbank and Barth, 1993

pGEM® -5Zf(+/-) ampicillin resistance 17 cloning vector 

Promega Corporation

pUC19 ampicillin resistance General cloning vector 

Yanish and Peron, 1982

pLysS chloramphenicol

resistance

T7 lysozyme plasmid 

Moffatt and Studier, 1987

pSACIE25 tetracycline resistance HisIE expression plasmid 

containing trimcated HisIE 

construct (this study)

pSACIEB tetracycline resistance Full length HisIE construct 

(this study)

pSACIEHi46A tetracycline resistance Histidine 146 to alanine mutant 

of truncated HisIE construct

pSACrEH245A tetracycline resistance Histidine 245 to alanine mutant 

of truncated HisIE construct

Table 2.4 Plasmids used for Molecular cloning
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2.4.5 cDNA libraries

The AYES cDNA library was prepared as in Elledge et a l (1991). mRNA was 

prepared from stem and leaf tissue of Arahidopsis thaliana plants. The cloning vector 

rpSE937 (GenBank accession number U02436) is the plasmid released from AYES-P, 

and is 7798bp in length. The sequence begins with the restriction sites EcoRl, Xhol, 

EcoRl adjoining each other. The cDNAs were inserted into the Xhol site and could be 

excised by digestion with EcoRl. This library was a kind gift from Dr Nigel Urwin, 

Division of Biochemistry and Molecular Biology, University of Glasgow.

Two APRL libraries, one from wheat and the other from Arahidopsis, where 

obtained from Dr Danielle Werck, Strasbourg. These libraries are generated in a 

AZIPLOX expression vector which allows the cloning and screening of cDNAs by 

conventional nucleic acid screening techniques (D’Alessio et al., 1992), but also 

permits the excision of the cDNA as a self replicating plasmid for easier manipulation 

QJmetal, 1992).

2.4.6 Growth of Plasmid containing E. coli

Growth of plasmid-containing E. coli cells was achieved on LB or minimal 

medium containing the appropriate antibiotic. For pUC19 and AYES ampicillin was 

added to the medium at a final concentration of 50pg/mi. Isopropyl p-D- 

thiogalactoside (IPTG) was added to the medium at a final concentration of 120p.g/ml 

to induce expression of the cDNA in the AYES vector. For growth of pTB361 and 

derivatives such as the overexpression construct pSACIE25 tetracycline was added to 

the media.
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2.4.7 Growth of ceils and Isolation of plasmids

This was earned out using standard tecliniques of inoculating a 100ml overnight 

culture of LB (containing appropriate antibiotics), with a single colony of the correct 

strain. These were then grown overnight in a shaking incubator at 37°C. Plasmid 

isolation was done using a Qiagen Midi plasmid preparation kit (Qiagen Ltd. See 

Appendix V) as described in the manufacturers instmctions, and the resulting plasmid 

DNA resuspended in ISOpl of sterile water.

Plasmid minipreps were performed either by Wizar d Mini preps from a 3ml 

overnight culture, (See Appendix II) or by lysis of cells grown in a 1 ml overnight 

culture of LB (containing appropriate antibiotics), by a lysozyme/boiling method 

(Holmes and Quigley, 1981).

2.4.8 Production of competent cells

A single colony of an E. coli strain was grown overnight at 37“C in 10ml of 

LB. 2ml of this overnight culture was then used to inoculate 100ml LB in a 250ml 

flask. The cells were grown at 37°C on a microbiological shaker at 200rpm until they 

reached mid log phase (A55o=0.35<0.5). The cells were chilled on ice and kept at a 

maximum of 4°C throughout the rest of the procedure. The culture was transferred to 

chilled centrifuge pots and centrifuged at 2500rpm in a Beckman Model J-6B for 

5mins to pellet the cells. The pellet was resuspended in 10.5ml of ice cold TFBl 

(Table 2,2). The cells were then incubated on ice for 90 minutes and re-pelleted. The 

pellet was resuspended in 2.8ml of TFB2 (Table 2.2). Cells were aiiquoted into lOOpl 

or 200pi aliquots and were snap frozen in a diy-ice/ ethanol bath and stored at 

-80°C,
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Competent cells can be stored at -80^C for an indefinite period without 

showing any significant reduction in transformation efficiency. The transformation 

efficiency of the competent cells was measured by transforming 200pl aliquots of 

cells with Ipg pUC19 and plating onto medium containing the appropriate antibiotics 

and other additives.

2.4.9 Transformation protocol

An aliquot of frozen cells was allowed to thaw on ice for 30 minutes prior to 

use. DNA was added to the cells and following gentle mixing the cells were incubated 

on ice for 30minutes. The cells were heat shocked at 37°C for 60 seconds before 

being returned to ice for a further 30 minutes. 1ml of LB was added to the cells and 

they were then incubated at 37°C for 40-60 minutes to aid recovery. The cells were 

pelleted for 30 seconds at high speed and resuspended in lOOpl of either LB or 

minimal medium and then plated out onto selective media.

2.4.10 cDNA Library Screen

A 2ml aliquot of competent mutant strain cells was thawed and incubated with 

lOpg cDNA library on ice for 20mins. The cells were given a heat shock of 42°C for 

90secs and then returned to ice for 2 mins; LB was added to a final volume of 10ml 

and the cells shaken at 150rpm and 37°C for Ihr before being pelleted for 10 mins at 

2500rpm in a Beckman Model J-6B centrifuge. The pellet was resuspended in 1ml 

minimal media. Aliquots of 50 pi cells were spread on plates of selective media and 

grown in a 37°C incubator overnight.
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Competent cells were plated on selective media with and without histidine 

supplementation in order to show that the cells had no capacity for antibiotic resistance 

before being transformed with the plasmid. Also, transformed cells were grown on 

selective media with histidine supplementation to allow all the cells carrying antibiotic 

resistance to grow. This was also the method used to measure the efficiency of 

transformation. Plating known dilutions of transformed cells on his  ̂selective media 

showed how many transformants were derived from adding Ipg of plasmid DNA to 

200pi of cells,

2.5 Manipulations of DNA

2.5.1 Plasmid extraction

Bacterial colonies growing on his" selective media were grown in 5 ml LB 

containing ampicillin and plasmid isolated by Wizard Mini Preps or in 100ml LB 

(ampicillin) for Qiagen™ midi plasmid extraction. (See Appendix V).

2.5.2 Gel electrophoresis

Gel electrophoresis of DNA samples was performed using a 1% agarose gel in 

IX TBE (Table 2.2) containing 0.5pg/ml ethidium bromide. Samples were loaded in a 

4:1 volume ratio with agarose gel sample loading buffer (Table 2,2). A standard Ikb 

ladder (Gibco-BRL) was used on all gels as a marker to identify the size of the 

separated bands. The gels were run at lOOV and room temperature until the 

bromophenol blue neared the end of the gels; DNA bands were located by viewing 

under UV light. Photographs were taken where appropriate.
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2.5.3 Restriction digests

Digests contained 3-5pg of DNA with 1-2 units of each enzyme along with the 

appropriate reaction buffer. Digests were carried out at 3TC  for one hour. In the case 

of the Ndel, BamHI double digests, since Ndel is particularly unstable, this enzyme 

was added 30 mins prior to the addition of BamHI; the total time for the digest was 

therefore one hour 30 mins.

The cDNA insert in AYES vector is flanked by EcoRI sites. Plasmid DNA was 

digested with EcoRI in Buffer H (Promega) at 37°C for 2hrs.

2.5.4 Gel purification of DNA fragments

The restricted plasmid or DNA fragment was separated on a low melting point 

agarose gel and the band excised. An equal volume of TE buffer (Table 2.2) was 

added along with an equal volume of TE saturated phenol and incubated at 65 °C for 5 

minutes. This was vortexed and spun at high speed for 5 mins. The aqueous layer was 

removed quickly and transfen'ed to a fresh tube. Further extractions of the aqueous 

layer with phenol, TE saturated phenol/chlorofonn, and TE saturated chloroform were 

performed. The DNA was precipitated by adding 1 volume of isopropanol and 0.1 

volumes of IM NaCl and then vortexing briefly before centrifuging at flill speed in a 

microfuge for 15 minutes. The pellet was air dried and then resuspended in a small 

volume of sterile water.

Alternatively the gel fragment was purified using the Wizard PCR Cleanup kit. 

(See Appendix IV).
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2.5.5 Use of Alkaline Phosphatase to dephosphorylate DNA

Alkaline phosphatase (Promega) was used to dephosphorylate restricted plasmid 

DNA. Ipl calf intestinal alkaline phosphatase (CIAP) (lOU/pl) and lOpl of CIAP 

buffer (Promega) were added to the plasmid digest and the volume made up to 100 pi 

with sterile water. The reaction was incubated for 40 minutes at 37°C to allow 

dephosphorylation of the restricted plasmid.

2.5.6 DNA purification

DNA digests of both plasmid and insert DNA were purified using a Wizard™ 

DNA Clean-Up System (Promega), in order to remove traces of restriction enzymes 

and other contaminating enzymes such as alkaline phosphatase (See Appendix III).

The DNA was eluted with 50 pi of sterile water.

2.5.7 DNA ligation

Prior to ligation, concentrations of DNA were measured either 

spectrophotometrically or following gel electrophoresis by comparison with a known 

amount of molecular weight marker. Several ratios of vector to insert DNA [1:3, 3:1 

(w/w)] were used in separate ligations. Approximately 400ng of DNA was used per 

ligation reaction. DNA ligation reactions were carried out using Ipl T4 DNA ligase 

and Ipl of the appropriate buffer along with plasmid and/or insert DNA. All ligations 

were carried out for 16 hours at 4°C in a final volume of lOpl.
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2.6 Cloning by PCR

2.6.1 Primers for PCR

PCR primers were designed to incorporate two restriction sites that would 

facilitate easier cloning of the insert DNA into the new vector system; the included 

sites were for the enzymes Ndel and BamHI. The Ndel site is extremely useful as it 

incorporates the ATG start codon and ensiues that the DNA is inserted in the correct 

reading frame (Table 2.5).

2.6.2 PCR reactions

PCR reactions were carried out using Vent DNA polymerase along with 

appropriate buffers and salts. 1-2 units of enzyme were added per reaction along with 

lOpl of lOX Vent reaction buffer, lOpl of lOX dNTP mix (lOmM stock), lOOpmoI of 

each primer, lOOng of DNA and also MgS0 4  in varying concentrations from l-5mM 

(final). lOOpl reactions were set up in 0.2ml PCR tubes.

The following temperature profile was used for 30 cycles in a Biorad Gene 

Cycler;

3 min C (initial dénaturation)

1 min @ 94° C 

1 min @ 55° C 

1 min 30 @ 72° C

A final elongation step of 5 minutes at 72°C was performed at tlie end of the 

amplification reaction to ensure that all amplified material was full length.
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2.6.3 DNA purification methods

DNA from PCR reactions was purified and separated from contaminating 

products such as primer-dimers and amplification primers using a Wizard™ PCR Preps 

DNA purification system. (See Appendix IV). The purified DNA was eluted with 50p,l 

of sterile water for use in further cloning procedures.

2.6.4 DNA Sequencing

Double-stranded plasmid DNA was sequenced using the Perkin Elmer ABI 

Prism™ Dye Terminator Cycle Sequencing Core Kit with AmpIitaq®DNA 

Polymerase, FS. The samples were loaded and run by the DNA sequencing service run 

by Dr Veer Math in the Molecular Biology Support Unit, IBLS, University of 

Glasgow. Sequencing of overexpression and mutant constructs was carried out by 

Genome Express, Grenoble, France. Plasmid DNA for sequencing was prepared using 

a Qiagen DNA isolation kit. (See Appendix V).

The initial cycling reaction was performed on a DNA Thermal Cycler Model 

480 with 0.5pg plasmid DNA and 3.2pmoles primer in a total reaction volume of 20pi. 

The reaction involved 25 cycles of 96°C for 30secs, 50°C for 15secs and 60°C for 

4mins with a rapid thermal ramp at all steps.

The results were analysed on ABTs Sequence Navigator computer program 

and GCG with Wisconsin Package 8.1-Unix.
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2.7 Overexpression analysis

2.7.1 Overexpression studies

A 10ml overnight culture inoculated in LB was grown overnight at 30°C. A 

100ml culture was inoculated with 5mi of this overnight culture. This was then grown 

to an Aôoo of 0.6 before inducing expression with the addition of IPTG to a final 

concentration of 0.4mM. Samples were removed at various time points and the Aôoo 

measured and plotted, 1ml samples were pelleted and the cells resuspended in lOpl of 

sample buffer for each 0.1 A unit. These were then subjected to SDS PAGE analysis to 

look for a band of overexpressed protein.

2.7.2 SDS- polyacrylamide gel electrophoresis ( SDS-FAGE)

SDS-polyaciylamide gel electrophoresis was perfonned by the method of 

Laemmli (1970), with a 5% stacking gel and a 15% mmiing gel. The ratio of 

acrylamide to bisacrylamide in all PAGE experiments was 30: 0.8 and polymerisation 

was induced by the addition of 0.03% (v/v) TEMED and 0.05% (w/v) ammonium 

persulphate. Samples were denatured by boiling for 5 minutes after dilution in SDS- 

PAGE sample buffer (Table 2.2). After electrophoresis the gels were stained for 

protein by the Coomassie method.

2.7.3 Staining for protein

Gels were stained for protein with Coomassie blue for 40 minutes at 40°C. The 

Coomassie reagent consisted of 0.1% (w/v) Coomassie brilliant blue G250 in 50% 

(v/v) methanol, 10% glacial acetic acid; destaining was carried out in 10%
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Buffer Constituents

Buffer A 50inMTris-HClpH 7.5 

0.4mM DTT 

1 protease inhibitor tablet 

per litre of buffer

Resuspension Buffer (for 

breaking cells)

Buffer A plus 1 protease 

inhibitor tablet per 50ml

Table 2.7 Buffers for use in the purification of the HisIE protein
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methanol (v/v), 10% glacial acetic acid at 40°C until the background was fully 

destained and the bands visible.

2.8 Purification of HisIE protein

2.8.1 Growth of cells for protein purification

The E. coli overexpression construct BL21(DE3)pLysS-pSACIE25 was 

inoculated fr om a plate into LB containing tetracycline and chloramphenicol and 

grown overnight at 30°C. The following morning nine flasks each containing 500ml 

of LB plus antibiotics were inoculated with 40ml of this overnight culture and growth 

continued at 30°C to an Â oo of 0.5-0.6. The cells were then induced by adding IPTG 

to a final concentration of 0.4mM and grown for a further 4-5 hours before harvesting 

in a MSE 2L centrifuge. The cell pellet was stored at -20°C until required.

2.8.2 Protein purification

Cells of E. coli stmin BL21(DE3)pLysS-pSACIE25 (I3.5g wet weight) were 

thawed slowly on ice and resuspended in 20ml Resuspension buffer. The cell paste 

was subjected to two passes through the French Press at lOOOpsi and then diluted to 

50ml with Resuspension buffer. 0.5mg of DNAsel was added and the extract stirred 

at 4°C for 30 minutes before centrifuging at 18,000rpm for 1 hour at 4°C.

A 150ml DEAE Sephacel column (4.5 x 10cm) was pre-equilibrated with at 

least 5 column volumes of Buffer A prior to loading the protein. The column was 

loaded at 25ml per hour and then washed for 4 hours before eluting with a 700ml 

linear gradient of 0-500mM KCl in Buffer A; 10ml fractions were collected.
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A 70ml Phenyl Sepharose column (2.7 x 12cm) was equilibrated with Buffer 

A containing IM ammonium sulphate. The pooled HisIE activity from the DEAE 

Sephacel column was made to IM in ammonium sulphate by the slow addition of 

finely powdered solid and the resulting solution stirred gently for an hour at 4°C and 

then loaded onto the pre-equilibrated Phenyl Sepharose column at 50ml per hour. The 

column was washed for at least 4 hours before eluting with a 500ml linear gradient of 

IM to OM ammonium sulphate in Buffer A; 10ml fractions were collected.

The pooled HisIE activity from the Phenyl Sepharose column was dialysed 

overnight against three changes of Buffer A containing lOOmM KCl It was then 

concentrated to approximately 2nil in an ultrafiltration cell using a lOK filter.

Concentrated protein was applied to a S-200 column (2 x 150cm) that had been pre- 

equilibrated with buffer A containing 500mM KCl. The column was run at 10ml per 

hour and 5ml fractions were collected.

The HisIE activity from the S-200 column was pooled and dialysed for two «

days into Buffer A containing 50%(v/v) glycerol and finally stored at -20°C.

2,9 Generation of enzyme substrate

2.9.1 Generation of Phosphoribosyl ATP

Phosphoribosyl ATP (PR-ATP) was generated enzymatically using a purified 

HisG extract from E. coli. The starting materials for the biotransformation were the 

two substi’ates for the HisG enzyme PRPP and ATP. 244mg PRPP (0.5mmoles;

Sigma 80% pure, formula weight 390.1) and 276mg of ATP (Sigma, disodium salt 

formula weight 551.1) were dissolved in 280ml of water and IM Tris-HCl pH8.5 and 

IM MgCb added to give a final concentration of lOOmM Tris-HCl, lOmM MgCE in 

330ml. The reaction was initiated by the addition of 100pg of inorganic
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pyrophosphatase (Sigma) and 5 units of the HisG enzyme. The pH was adjusted to 8.5 

with 0. IM NaOH and the reaction was stirred at 37°C for one hour. The progress of 

the reaction was monitored in a spectrophotometer at 290nm. The biotransformation 

mixture was adjusted to pH 6.5 at the end of the reaction with IM HCl and the 

solution was then frozen and stored at -20°C.

2.9.2 Chromatography of PR-ATP,

A Q-sepharose column (4.5 x 12cm) was equilibrated with 5 column volumes 

of Buffer 1 (50mM Triethylamine bicarbonate pH 7.4). The frozen biotransformation 

reaction was thawed on ice and diluted to the same conductivity as the equilibrating 

buffer by the addition of approximately 20 volumes of Buffer 1. This was then loaded 

onto the Q-sepharose column and eluted with a 1 litre linear gradient of 0.05-lM 

Triethylamine bicarbonate pH 7.4; 10ml fractions were collected. The fractions which 

had absorbance at 290nm were pooled and lyophilized overnight.

2.9.3 NMR spectroscopy

Samples of the PR-ATP at different stages of the purification were analysed by 

NMR spectroscopy. This work was carried out by Dr David Rycrofr, Department of 

Chemistry, Glasgow University. Lyophilized material from the chromatography steps 

was resuspended in D2O and re-lyophilized in order to minimise the water peak present 

in the proton NMR spectrum. Approximately 2-5mg of material was used for the NMR 

analysis. The samples were run on a Bruker A300 NMR spectrometer.
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2.10 Enzyme assay

2.10.1 E. coii Phosphoribosyl ATP transferase (HisG)

The enzyme activity was determined by monitoring, in a 1 cm pathlength 

cuvette, the increase in absorbance at 290nm at 37°C. (PR-ATP s= 3600 M"' cm'*) 

(Smith and Ames, 1964). The assay mixture contained 150mM KCl, lOOmM Tris-HCl 

pH 8.5, lOmM MgCb, 5mM ATP and 0.5mM PRPP. The enzyme assay was carried 

out in a final volume of 1ml.

2.10.2 HisIE enzyme activity

The activity of the Arahidopsis thaliana HisIE enzyme was monitored by 

measuring the increase in absorbance at 290nm and 25°C in a 1ml cuvette. This 

corresponds to the formation of Pro-FAR (BBMII) 8= 8000 M'* cm'* (Martin et al., 

1971). The assay mixture contained 50mM Tris-HCl pH 8.5, lOmM MgCb and 50- 

lOOpM PR-ATP (final concentrations).

2.11 Chemical modification experiments

2.11.1 Inactivation of HisIE enzyme with diethylpyrocarbonate (DEFC).

Inactivation was carried out by incubating the HisIE enzyme with DEPC in 

lOmM potassium phosphate buffer pH 7.2 at 25°C. A 50mM solution of DEPC was 

freshly prepared before each experiment by diluting the stock reagent with ice cold 

absolute ethanol. The inactivation reaction was terminated by the addition of 0.5M 

imidazole hydrochloride pH 7 to a final concentration of 0.5mM.
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2.11.2 Inactivation with trinitrobenzenesuifonic acid (TNBS).

Inactivation with TNBS was carried out in the dark at 25°C. The enzyme was 

incubated in the presence of lOmM potassium phosphate buffer pH 7.2. TNBS was 

added to a final concentration of 0.1-ImM. The reaction was terminated by the 

addition of 0.5M lysine to a final concentration of ImM.
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Appendix I Names and Addresses of Suppliers

Boehi'inger Mannheim/ Roche Diagnostics, Lewes, East Sussex, UK.

Cruachem Ltd, West of Scotland Science Park, Glasgow, Scotland.

Difco Laboratories, Detroit, Michigan, USA.

E. coli Genetic Stock Centi'e, Dept, of Biology, Yale University, New Haven, CT, 

USA

Fisher Scientific, Loughborough, Leicestershire, UK.

Genome Express, Zone Astec, Cedex, F37000, Grenoble, France.

Genosys Biotedinologics Inc., Cambridge Science Park, Cambridge, England 

Gibco BRL Life Teclmologics, Inchinnan Business Park, Paisley, Scotland.

Hewlett Packard Ltd, Cheadle Heath, Stockport, Cheshire, UK.

New England Biolabs Inc., Hitchin, Hertfordshire, UK.

Pharmacia Biotech, St Albans, Hertfordshire, England UK.

Phenomenex, Macclesfield, Cheshire, UK.

Promega Corporation, Southampton, UK.

Qiagen Ltd, Crawley, West Sussex, UK.

Sigma Aldrich Company Ltd, Poole, Dorset, UK.

Shimadzu Corporation, Japan.

Supelco Inc, Supelco UK (Sigma Aldiich Company Ltd), Poole, Dorset, UK.

Dr Danielle Werck, IBMP-CNBS, UPR 406, 28 Rue Goethe, F-67000, Strasbourg, 

France.
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Appendix II W izard DNA Mini Preps Kit (Promega)

This kit allows the rapid isolation of plasmid DNA by an alkaline lysis 

method. The DNA is bound to a silica based resin in the presence of high salt and 

following washing to remove contaminants can be eluted in low salt buffer. There is 

no need for organic solvent extractions and the DNA is of suitable quality for use in 

DNA sequencing and other molecular biological applications.

Step 1 Pellet 1 -5ml of an overnight culture

Step 2 Resuspend cells in resuspension buffer

Step 3 Add cell lysis solution and mix until a clear lysate is formed

Step 4 Neutralise by adding potassium acetate

Step 5 Spin to pellet insoluble material for 5 minutes at full speed in a microfuge 

Step 6 Add 1ml of the Wizard DNA Purification Resin® to the syringe barrel/column 

Step 7 Load supernatant onto Wizard mini column

Step 8 Draw the material into the column, and wash with 2ml of wash buffer 

Step 9 Spin the column in a microfuge to remove any residual buffer and elute DNA 

with 50pl of water

Cell Lysis Solution 0.2N NaOH

1% SDS

Cell Resuspension Solution 50mM Tris-HCl pH 7.5

lOmM EDTA 

lOOpg/ml RNase A

Column Wash Solution 190mM Potassium acetate

20mM Tris-HCl pH 7.5 

ImM EDTA

Solution is diluted with 95% ethanol before use. Final ethanol concentration 55%. 

Neutralisation Solution 1.32M potassium acetate pH 4.8
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Appendix III W izard DNA Cleanup kit (Promega)

This kit can be used as an alternative to organic solvent extractions and ethanol 

precipitations for the purification of DNA from contaminating restriction enzymes or 

phosphatases.

The DNA is bound to a silica based resin in the presence of high salt and is eluted in 

low salt buffer in a similar manner to the previous protocol.

Step 1 Take restriction digest and add 1ml of Wizard DNA Cleanup Resin.

Step 2 Mix gently by inversion and load onto the syringe barrel /column 

Step 3 Wash with 2ml of 80% isopropanol 

Step 4 Spin column dry and then elute with 50 pi of water
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Appendix IV Wizard PCR Preps DNA purification system

Allows the purification of double stranded PCR amplified DNA from 

contaminating nucleotides, enzymes and primer dimers etc. The direct purification 

method can be used when there is only a single PCR product in the reaction. The 

presence of other amplification products requires gel purification of the band of 

interest.

Purification of PCR product fiom an agarose gel

Step 1 Separate PCR products by electrophoresis on a TAB low melting point agarose

gel and excise the relevant band

Step 2 Incubate the sample at 70°C to melt the agarose

Step 3 Add I ml of the DNA Purification Resin to the sample and mix thoroughly for 

20 seconds

Step 4 Add the resin to the syringe barrel /column and draw thiough 

Step 5 Wash with 2ml of 80% isopropanol and spin in a microfuge to dry 

Step 6 Elute the DNA in 50pl of water

If purifying the DNA direct from the PCR reaction steps 1 -3 are replaced with the 

following;

Step la  For each PCR reaction transfer the aqueous layer to a fresh tube 

Step 2a Add lOOpl of Dhect Purification Buffer and vortex briefly to mix 

Step 3 a Add 1ml of resin and vortex briefly 3 times over the period of 1 minute

Direct Purification Buffer 50mM KCl

lOmM Tris-HCl (pH 8.8 at 25°C)

1.5mMMgCl2 

0.1% Triton® X-100
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Appendix V Qiagen Midi kit

This protocol is again based on an alkaline lysis method and using a silica 

based column to bind the plasmid DNA and allow separation from contaminants. #

Step 1 Pellet 20-100ml of an overnight culture 

Step 2 Resuspend pellet in buffer PI (Resuspension buffer)

Step 3 Add buffer P2 (Lysis buffer) and mix gently by inversion 

Step 4 Add buffer P3 ( Neutralisation buffer), mix gently and incubate on ice for 15 

minutes

Step 5 Centrifuge at 15,000rpm for 30 minutes to clear lysate 

Step 6 Equilibrate the Qiagen tip and add the cleared supernatant and allow to flow by 

gravity

Step 7 Wash the Qiagen tip with buffer QC 

Step 8 Elute DNA with buffer QF

Step 9 Precipitate DNA with 0.7 volumes of isopropanol and centrifuge for 30 

minutes at 4®C

Step 10 Wash DNA with cold 70% ethanol and air dry for 5 minutes and resuspend in 

water
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Appendix VI The IMPACT™ T7 One Step Purification System-lntein system

(New England Biolabs Inc)

Impact™ (Intein Mediated Purification with an Affinity Chitin binding Tag) is 

a new method for obtaining pure protein in a single chromatographic step in 24 hours. 

This system involves a protein splicing element called an intein which has been 

isolated fiom Saecharomyces cerevisiae (Perler et al, 1994, Kane et al, 1990)). The 

element is modified so that it can undergo self cleavage at the N terminus in the 

presence of thiols e.g. DTT (Chong et al., 1996,1997). The protein of interest is 

inserted as an in frame fusion with the intein which has itself been linked to a chitin 

binding tag. The protein is produced as a fusion protein which is linked to this tag.

The cell extract is passed through a chitin column and the protein of interest should be 

the only one to bind. All other contaminants are washed through the column. The 

column is incubated overnight with DTT at 4°C which stimulates the intein mediated 

self cleavage to release the tai’get protein.
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Cloning and overexpression of the hisIE cDNA
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3.1 Introduction

The technique of cloning by complementation is a well established technique 

for the cloning of cDNAs from cDNA libraries providing that a suitable mutant is 

available. The mutant allows for the selection of positive clones that have been rescued 

and are able to grow on selective media. Genes that are involved in essential metabolic 

pathways are by far some of the easier targets to isolate. Here we can deprive the cells 

of the end product of the pathway, for example by removing an amino acid such as 

methionine from the medium and, providing the mutants have acquired the missing 

gene by complementation, and are able to express that gene, they should be able to 

produce methionine and thus survive in the presence of the minimal media. E. coli and 

Saecharomyces cerevisiae have proved to be useful model organisms for 

complementation studies (Delorme et al, 1992). There are now extensive collections of 

mutants available for both organisms. There are auxotrophic mutants available for the 

histidine biosynthetic genes for both E. coli and Saecharomyces cerevisiae. We 

obtained auxotrophic mutants for each of the genes involved in histidine biosynthesis 

from the Coli Genetic Stock Centre.

In order to isolate the cDNAs for the plant enzymes, we attempted to 

complement E. coli auxotrophic mutants for the individual genes with cDNA libraries 

generated from Arabidopsis and wheat This process had been used previously to 

isolate and express the Lactococcus lactis hisG gene in E. coli (Delorme et al, 1992). 

Of the three libraries screened, the A,YES libraiy was the most extensively screened. 

The A,YES library is a Yeast E. coli Shuttle vector (Elledge, 1991) containing 

Arabidopsis cDNA inserts. This vector system allows expression of the cDNA inserts 

in both species and is dependant on the orientation of the insert in relation to both
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promoters. This library was provided by Dr Nigel Urwin from the Division of 

Biochemistry and Molecular Biology, Glasgow University. The library was constructed 

from stems and leaves of Arabidopsis plants at various stages of growth.

The other libraries used for complementation of the mutants were ZPRL 

libraries, one from Arabidopsis and another from wheat. Both of these libraries were 

provided by Dr Danielle Werck, IBMP-CNBS, Strasbourg, France. The A.PRL libraries 

are A,ZEPLOX derivatives (A, expression vectors), that allow excision of plasmid DNA 

containing cDNA inserts (Lin et al., 1992). The E. coli mutants were screened for 

complementing cDNAs using plasmid DNA.

3.2 Library screening

3.2.1 Initial screening

Initial work to screen the A.YES cDNA library was carried out by Miss Edith 

Gould who established initial screening conditions and isolated a number of potential 

clones. Initial screening was performed as described in the materials and methods 

section. The aim was to screen for cDNAs for the first three enzymes of the pathway. 

These were all performed simultaneously using the three mutants which were 

transformed individually and then selected for on selective minimal media plates. 

Multiple attempts at complementation were carried out with varying degrees of 

success.

A critical discovery was made when I attempted to repeat the complementation 

experiments with the plasmid DNA isolated by Miss Gould which may have influenced 

some of the results she interpreted as positive results. Following transformation she
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was resuspending the E. coli in LB before plating onto minimal media plates. This was 

providing a highly nutritious background on which the mutants were able to grow.

This may explain the number of positive colonies that Edith obtained especially when 

retransforming with isolated plasmid. From this point on all mutant E. coli were 

resuspended in IX Salt solution and then plated onto minimal media.

Because of this observation the A,YES library was rescreened using the 

modified protocol.

3.2.2 Initial transformation results

Each of the mutants was plated from a glycerol stock onto selective minimal 

media in the presence and absence of histidine to ensure that each was auxotrophic for 

histidine i.e. they were only able to grow in the presence of histidine. Competent cells 

were then prepared as described in section 2.4.8. These cells were then transformed 

with small aliquots of one of the plasmid cDNA libraries. All the plasmids contained a 

gene for antibiotic resistance (ampicillin) as a marker which was also used to aid 

selection.

Following transformation with the libraries the cells were plated onto minimal 

media in the presence and absence of histidine, and ampicillin was added to select for 

those cells containing the plasmid. The plates were placed at 37°C overnight but no 

growth was observed after 20 hours incubation. The plates were therefore returned to 

the incubator for a further 24 hours. After approximately 40 hours incubation at 37°C 

colonies were observed on a few of the plates. The colonies, that grew on minimal
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media in the absence of histidine, were assumed to contain DNA which was able to 

complement the missing gene in that mutant.

3.2.3 Isolation of plasmids

Colonies were isolated from the minimal media plates and plasmid DNA was 

prepared. The DNA was then analysed by restriction analysis for the presence of an 

appropriately sized insert. The DNA was digested with the restriction enzyme EcoRI 

revealing insert fragments of approximately 1-1.1Kb in length (Table 3.1).

3.2.4 Retransformation

To confirm that the isolated clones were able to complement the mutants a 

second round of screening was carried out. This involved re-transforming the mutants 

with the isolated plasmid and then subsequent selection on minimal media containing 

ampicillin in the presence and absence of histidine. Those clones which were able to 

produce a significant number of colonies on the plates lacking histidine were deemed to 

be viable in that they were able to complement the auxotrophy.

Clones complementing the hisIE mutant were isolated as well as some clones 

for hisG and hisA, Plasmid DNA was isolated from the complemented clones and was 

re-transformed into the appropriate mutant. Those plasmids which appeared to be able 

to complement were sequenced. This revealed something strange. The inserts in the 

plasmid DNA isolated from the hisG and hisA clones had the same sequence as the 

insert obtained from the hisIE clones (Table 3.1). One initial theory to explain this was 

that the hisIE cDNA encoded all three enzyme activities. This theory was dismissed 

however once the entire hisEE clone had been sequenced, since it was homologous only 

to the microbial hisIE genes and contained no additional DNA homologous to the
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microbial hisG and hisA genes. A second theory was that the HisIE protein was able to 

provide a way to rescue these mutants by other means. Both the hisG and hisA 

mutants are point mutations that have not been characterised at the DNA level. It is 

possible that there is some association of the enzyme activities in vivo and that the 

presence of extra HisIE protein can “repair” the deficiency for one of these activities.

In the case of hisG there would need to be a restoration of the ability to make 

PR-ATP, while in the case of hisA the activity required is a sugar isomerase activity. It 

is possible that the HisIE protein which has a binding site for PR-ATP might be able to 

bind PRPP and ATP at adjacent sites and catalyse their slow condensation. The 

reaction catalysed by the HisA protein is an Amadori rearrangement (an isomérisation); 

this reaction does proceed very slowly in the absence of enzyme. The presence of extra 

HisIE protein would cause greater than normal levels of substrate for HisA to 

accumulate and this might allow sufficient spontaneous reaction to occur and result in 

sufficient flux through the pathway to allow for some bacterial growth and hence the 

observation of complementation.

3.2.5 Sequencing of the hisBE done

The clone for hisIE was fully sequenced by automated thermal cycle 

sequencing. The clones were sequenced using the oligonucleotides listed in Table 2.4. 

The DNA sequence of the forward strand of the clone is presented in Figure 3.1. A 

translation of this sequence revealed a protein of 281 amino acids in length. This was 

compared to other known sequences for hisIE gene products and appears to line up 

very well. (Figure 3.2). Many of the highly conserved residues across all species are
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sequence predicted from the longest open reading frame
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1 AGCTACGTCCGGGGCCACTTTTCGTTTCTCGTAGCGTTAAAATGGCGGTATCGTACAATG

M A V S Y N A  7 

6 1  CATTAGCTCAGTCTTTAGCGAGAAGTAGCTGCTTCATCCCCAAACCTTATTCCTTTAGAG

L A Q S L A R S S C F I P K P Y S F R D  2 7  

1 2 1  ATACTAAGCTGAGAAGCAGATCCAATGTCGTATTCGCGTGCAATGATAATAAGAACATTG

T K L R S R S N V V F A C N D N K N I A  4 7  

1 8 1  CTCTTCAAGCTAAGGTAGATAACTTGTTGGACCGCATTAAATGGGATGACAAAGGATTAG

L Q A K V D N L L D R I K W D D K G L A  67 

2 4 1  CTGTGGCAATAGCACAA7VACGTTGATACGGGAGCAGTATTGATGCAAGGCTTTGTTAATA

V A I A Q N V D T G A V L M Q G F V N R  87 

3 0 1  GGGAGGCCCTCTCCACAACCATCAGTTCTCGGAAAGCTACATTCTTTAGTCGATCAAGAT

E A L S T T I S S R K A T F F S R S R S  1 0 7  

3 6 1  CTACCTTATGGACTAAGGGAGAGACATCCAATAACTTCATCAATATTCTTGATGTGTATG

T L W T K G E T S N N F I N I L D V Y V  1 2 7  

4 2 1  TTGATTGTGATCGTGATTCGATTATTTACCTTGGAACACCTGATGGACCTACCTGTCACA

D C D R D S I I Y L G T P D G P T C H T  1 4 7  

4 8 1  CAGGGGAAGAGACTTGTTACTACACATCGGTTTTTGATCAATTAAACAATGATGAGGCTT

G E E T C Y Y T S V F D Q L N N D E A S  1 6 7  

5 4 1  CAGGAAACAAGCTAGCAT TAACAACAT TGTACT C GCTAGAAT CAAT CATTT CCAAGCGGA

G N K L A L T T L Y S L E S I I S K R K  1 8 7  

6 0 1  AAGAAGAATCAACAGTTCCTCAAGAAGGTAAACCATCATGGACTCGACGGTTGTTGACGG

E E S T V P Q E G K P S W T R R L L T D  2 0 7  

6 6 1  ATGACGCTCTGCTTTGCTCAAAGATCAGGGAAGAAGCTGACGAGTTATGCAGAACACTGG

D A L L C S K I R E E A D E L C R T L E  2 2 7  

7 2 1  AGGATAATGAGGAAGTTTCAAGAACACCATCAGAGATGGCTGATGTTTTATACCACGCAA

D N E E V S R T P  S E M A D V L Y H A M  2 4 7  

7 8 1  TGGTGCTTCTATCTAAAAGGGGTGTGAAGATGGAAGATGTTCTTGAAGTTCTTAGGAAAC

V L L S K R G V K M E D V L E V L R K R  2 6 7  

8 4 1  GCTTCTCTCAATCTGGAATCGAGGAGAAGCAAAACCGTACAAAGTAACCATTTTCTTCGA

F S Q S G I E E K Q N R T K *  2 8 1

9 01  TTGTCTGTTTAGTATTTGCGAGAATTTTTTTAGTTACTCGGAACTTATACTGTTGTTCAT
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Figure 3.2 Alignment of known HisIE protein sequences including the predicted 

HisIE protein isolated from Arabidopsis,

Red- Highly conserved. Blue- Moderately conserved

ARAB Arabidopsis thaliana

SALTY Salmonella typhimurium

ECOLI Escherichia coli

SHIFL Shigella flexnieri

KLEPN Klebsiella pneumoniae

HAEIN Haemophilus influenzae

BACSU Bacillus subtilis

LACLA Lactococcus lactis

AQUAE Aquifex aeolicus

SYNY3 Synechocystis sp. Strain PCC6803

YEAST Saecharomyces cerevisiae

SACBA Saecharomyces bayanus

KLULA Kluyveromyces lactis

NEUCR Neurospora crassa

PICPA Pichia pastoris

RHOSH Rhodobacter sphaeoides

METTH Methanococcus thermoautotrophicum

ARCFU Archaeoglobus fulgidus

MYCTU Mycobacterium tuberculosis

RHOCA Rhodobacter capsulatus

AZOCH Azotobacter chroococcum

SULSO Sulfolobus solfataricus

MYCLE Mycobacterium leprae
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also highly conserved in the Arabidopsis enzyme. The sequence showed 70% identity 

and similarity between the plant and the bacterial sequences and 50% between the plant 

and the fungal species. Comparison of the sequence with the sequences of the 

monofunctional proteins from Rhodobacter sphaeroid.es (Oriol et al., 1996) and 

Methanococcus jannaschii (Bult et al., 1996) suggests that the Arabidopsis enzyme 

had two functional domains one containing the HisI and the other the HisE activities. 

There is also an N-terminal extension not seen in the bacterial proteins suggesting the 

presence of a chloroplastic targeting sequence. This correlates with the theory that the 

enzymes of histidine biosynthesis are found in the chloroplast. The sequence 

represented here was subsequently confirmed by the work of Fujimori et al, (1998).

3.2.6 Chloroplast targeting sequences

There appears to be no standard amino acid sequence for a chloroplastic 

targeting sequence. It is believed that the transit peptide, as it is often called, is 

composed of three regions. An amino terminal region that is devoid of proline, glycine 

or charged residues followed by a central region containing several hydroxylated and 

basic residues and finally a C-terminal region which is predicted as (3 sheet (Filho et a l , 

1996). From the sequence a pattern similar to this can be seen within the first fifty 

amino acids which is believed to be the targeting sequence (Figure 3.4). A secondary 

structure prediction for this protein (produced by Dr A. Lapthorn using the PHD 

[Profile fed neural network systems from HeiDelberg] program, EMBL, Heidelberg, 

Germany) (Rost and Sander, 1993 "̂ )̂ has also revealed a probable (3 sheet within the 

C-terminal portion of the first fifty amino acids (Figures. 3). It can be obseiwed from 

this secondary structure prediction that the HisI domain contains a mixture of
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Figure 3.3 Secondary structure prediction of the deduced amino acid sequence of 

the Arabidopsis thaliana HisIE protein

Secondary structure prediction generated using PHD program EMBL, Heidelberg, 

Germany.

AA~ amino acid, prH- probability of helix, prE- probability of extended helix, prL- 

probability of loop
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N-terminus C-terminus

Chloroplast targeting HisI domain 
sequence

HisE domain

a) Simple block diagram showing the three regions that make up the HisIE protein 

from Arabidopsis thaliana

N terminus C terminus

Region devoid of proline, Hydroxylated and Predicted as p sheet
glycine and charged residues basic residues

b) Expansion of the region containing the proposed chloroplast targeting sequence of 

the HisIE protein, and details o f its component parts

Figure 3.4 Schematic structure of Arabidopsis thaliana HisIE protein and an 

expanded view of the components of the proposed tai^eting sequence
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a-helix and P-sheet whereas the HisE domain is predicted to be mainly a~heiical 

(Figures 3.3 and 3.4).

A major aim of this project was to overexpress the Arabidopsis thaliana HisIE 

protein in E, coli so that sufficient protein would be available for kinetic 

characterisation and also for structural and mechanistic studies. Removal of the 

targeting sequence may well prove to be important for the successffil overexpression of 

this protein in E, coli, since the enzymes normally found within the chloroplast to 

remove the targeting sequence are not present in bacteria. Failure to remove this 

sequence may result in either incorrect folding of the protein or instability when it is 

produced in E. coli.

3.3 Generation of overexpression constructs

3.3.1 T7 expression vectors

T7 expression systems allow the efficient overexpression of a protein in a 

controlled manner. The cloning vector has a promoter for a T7 RNA polymerase which 

is located upstream from the multiple cloning site used to clone the insert DNA. T7 

RNA polymerase is able to transcribe DNA five times faster than E. coli RNA 

polymerase and as it is specific for T7 promoters it results in induction of high level 

expression from such promoters (Chamberlin and Ring, 1973, Golomb and Chamberlin 

1974). This allows the specific expression of the gene product of interest. The bacterial 

strains used for expression purposes can contain a gene for T7 lysozyme which binds 

to and inhibits T7 RNA polymerase (Moffatt and Studier, 1987). This is used as a 

means of controlling basal levels of protein expression prior to induction with EPTG. 

This is particularly important if the protein is toxic to the bacterial strain. The gene for 

the T7 lysozyme is present on the pLysS plasmid (Studier and Moffatt, 1986), which
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also contains a chloramphenicol resistance gene which is transformed separately into 

the expression host.

J
3.3.2 Cloning into pGEM expression vector

To facilitate expression of the Arabidopsis enzyme in E.coli the insert from the
;

A,YES clone was inserted into a simple pGEM vector. This vector is a T7 based vector 

and since there were suitable restriction sites this allowed the digestion of the A.YES 

plasmid to release the insert for direct ligation into the pGEM vector. The cloning was 

very successful and produced a number of clones which were able to complement the 

mutant E. coli. Small scale expression experiments failed to show bands of the coiTect 

molecular weight on SDS-PAGE corresponding to the overexpressed protein. This

failure to achieve overexpression in the bacterial system may be due to the presence of 

the targeting sequence which would be naturally removed upon entering the 

chloroplast. The presence of this sequence might interfere with the proper folding of 

the protein and make it susceptible to proteolysis. An alternative explanation may 

involve the ability of bacterial systems to express a eukaryotic protein. Prokaryotes 

including E. coli use a purine rich Shine Delgarno sequence to recognise the 

appropriate initiation site for translation on the mRNA. Eukaryotes, however use the 

AUG codon nearest the 5’ end of the mRNA as the start sequence for translation 

(Stryer, 1988). It may be the case that the E. coli machinery required for translation is 

unable to recognise the appropriate start site for translation on the hisIE mRNA and as 

a result fails to produce protein of the appropriate size. Starting transcription from the 

plasmid promoter may add a Shine Delgarno sequence to the mRNA, it may however 

lie too far from the initiation codon of the hisIE mRNA to allow translation to start.
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reading frame as well as to ensure it is in the correct position to obtain maximum 

overexpression.

3.3.4 Cloning into pTB361

Cloning into the expression vector pTB361 required the generation of 

restriction sites within the hisIE cDNA to facilitate cloning in the correct orientation 

and reading frame. The Ndel site was used as the 5 prime site and BamHI was used for 

cloning the 3 prime end. These two sites were generated by PGR mutagenesis using 

primers containing the appropriate mutations (Table 3.2).

3.3.5 Generation of two constructs

Since initial experiments failed to show a band of overexpressed protein 

attempts were made to remove the targeting sequence. Two separate constructs were 

made one containing the complete open reading frame for the Arabidopsis HisIE 

protein (long construct) and the other containing a shorter sequence lacking the 

majority of the targeting sequence, but still containing the complete sequence of the
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Clearly in order to achieve overexpression alternative constructs would have to be 

made.

3.3.3 pTB361 plasmid

The expression plasmid used for the purpose of these experiments is pTB361 

which was obtained courtesy of Dr M Horsburgh, University of Glasgow. The T7 

promoter is located immediately upstream of the multiple cloning site and the 

restriction site Ndel is used to clone the 5 prime end. The Ndel site incorporates the 

AT G start codon of the protein to ensure that the protein is inserted in the correct

.
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presumed enzyme domains (short construct). The shorter construct required the 

generation of a new start codon in front of the N terminal sequence NIAL of the 

protein (Figure 3.5). Both constructs were made using a PCR-based strategy. The 

question as to whether or not the targeting sequence has been removed in the correct 

place will only be established later once the native plant enzyme has been isolated and 

it’s N-terminal sequence determined.

The A,YES vector containing the hisIE cDNA insert was used as the template 

for the PCR reactions. The primers used to engineer the Ndel and BamHI sites are 

given in Table 3.2.

The PCR reaction was carried out as described in section 2.6.2 and a clean 

single band was obseiwed on a 1% agarose gel in IX TBE. A fragment of 

approximately 850bp was observed for the full length “long” construct and a fragment 

of approximately 700bp was seen for the “short construct” (Figure 3.6).

Oligonucleotide Sequence

Nde 1 GTT TCT CGT AGC GTT CAT ATG GCG GTA TCG

Nde 2 GTA TTC GCG TGC AAT GAT CAT ATG AAC ATT G

BamHI CAA TGA ACA ACA GGA TCC GTT CCG AG ^

Table 3.2 Oligonucleotides used for introduction of restriction sites for the 

cloning of hisIE cDNA into pTB361

The restriction sites used for cloning purposes have been underlined.
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PCR primer for introducing Ndel site into the “long” construct

^'TTTTCGTTTC TCGTAGCGT TAAi\AT GGCGGTATCGTACA
GTTTCTCGTAGCGTTCATATGGCGGTATCG^'

Ndel
M A V S

PCR Primer for introducing a new start codon into the “short” construct

GTATTCGCGTGCAATGATAATAAGAACATTGCT
 ̂' GTAT TCGCGTGCAATGATCATATGAACATTG^ '

Ndel

M N I A

Figure 3.5 PCR primers for the generation of the 5’ end of the two HisIE 

expression constructs
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3.3.7 Initial Cloning results

Following transformation of DH5a, a number of colonies were observed on 

each plate. Individual colonies were picked and plasmid DNA prepared from them. The 

DNA was then analysed by restriction analysis for the presence of an insert of the 

appropriate size. The results are summarised in Table 3.3.

The clones identified as having inserts of the appropriate size were then 

transformed into the hisIE E. coU to ensure that they could express a functional 

protein and thus rescue the mutant. The constructs were also sequenced to check that 

the DNA was in the correct reading frame and that no errors had been incorporated 

during the PCR process. One of the clones for the short construct minus

Chapter 3

3.3.6 Cloning of the HisIE fragments

The PCR products were purified using the Wizard PCR cleanup kit (Appendix 

IV) and were digested with both restriction enzymes. Ndel was added first and the 

digest allowed to proceed for 30 minutes before the addition of BamHI. The DNA 

was then digested for a further hour. The digestion of the vector pTB361 was carried 

out in exactly the same way. The plasmid DNA was then dephosphorylated for 40 

minutes with CIAP. Both the vector and insert DNA were purified using the Wizard 4

DNA cleanup system (Appendix III) and the resulting material was used to set up 

ligation reactions which were left overnight at 4°C.

The following morning the ligation reactions were transformed into E. coli 

DH5a cells and plated onto LB-Agar plates containing tetracycline. The plates were 

grown overnight at 37°C and the number of colonies noted.
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1 2 345  6

Figure 3.6 Agarose gel of the PCR reaction products for the HisIE expression 

constructs

Markers (sizes are given in bp)

Lane 1 full length hisIE 2mM Mĝ  ̂ band at 850bp

Lane 2 full length hisIE 3mM Mĝ  ̂ band at 850bp

Lane 3 full length hisIE 4mM Mg '̂ band at 850bp

Lane 4 hisIE minus targeting sequence 2mM Mĝ ^

Lane 5 hisIE minus targeting sequence 3mM Mĝ  ̂ band at 700bp

Lane 6 hisIE minus targeting sequence 4mM Mĝ  ̂ band at 700bp

1% agarose gel in TBE buffer containing 0.5pg/ml ethidium bromide.
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" t

Name Construct

type

insert size Complementation Sequence

check

Expression

pSACIEll long 850bp no no no

pSACfE 12 long none no no no

pSACIE 13 long 850bp yes yes no?

pSACIE 14 long 850bp yes no no

pSACIE 15 long 850bp yes yes no?

pSACIE 21 short none no no no

pSACIE 22 short none no no no

pSACIE 23 short 700bp yes single

mutation

yes

pSACIE 24 short none no no no

pSACIE 25 short 700bp yes yes yes

.. ::

'

:V

'>1

.r ,i

:r

Table 3.3 Generation of both constructs in pTB361 

Summary of the clones obtained
1
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the targeting sequence pSACIE23 was found to contain a mutation at position 151 

(See Figure 3.1). The other short clone pSACIE25 was found to be perfect. This was 

the construct that was used in all further stages of work.

3.3.8 Overexpression analysis

The E. coli strain BL21(DE3)pLysS was used for the expression of the hisIE 

constructs. Both the long and the short constructs were subjected to overexpression 

analysis. Initial experiments growing strains harbouring the selected recombinant 

plasmids at 37°C proved to be frustrating, in that they failed to grow at this 

temperature. The cells did not grow at 37°C and decreasing the concentrations of the 

antibiotics tetracycline and chloramphenicol did not have any effect. When the 

temperature was dropped to 30^C it was found that the recombinant strains grew 

normally. This temperature dependency may be a result of using the BamHI site within 

the vector. This site lies next to the cer gene on the plasmid which is thought to have a 

role in plasmid stability. As a result of the insert being so close to this gene it may have 

an effect on the pTB361 plasmid making it less stable at higher temperatures.

3.3.9 Expression

Small scale induction time courses were monitored by removing samples on an 

hourly basis from a growing culture, harvesting the cells, resuspending in SDS-PAGE 

sample buffer (2.7.1) and storing frozen at -20°C for future analysis by SDS-PAGE. 

This was carried out for both the full length and the short construct. The short 

construct, lacking the targeting sequence, gives rise to a protein species of 

approximately 31kDa on SDS PAGE, which increases to approximately 30% total cell
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Gel A

45

31 '«««Mw

21.5"-*Wè»

M  % r » 2tu. 3ht  4 hf „ Shr. M

Gel B

97.4
66.2

45

31

21.5

14.4 g
M Ohr 2hr 3hr 4hr 5hr M

Figure 3.7 SDS PAGE gels showing the overexpression of hisIE constructs at 

30°C

Protein expression was induced by the addition o f 0.4mM IPTG to a growing culture and samples 

were removed at various time points 1ml samples were pelleted and the cells resuspended in lOgl o f  

sample buffer for each 0.1A unit 5|o.l o f this material was then analysed on a 15% acrylamide gel. 

Gel A Long construct showing no evidence o f overexpression 

Gel B Short construct shows presence o f  a band o f overexpressed protein at 3 IkDa 

Overexpression studies were carried out as described in sections 2.7.1 and 3.3.9. Gels were run and 

stained as described in sections 2.7.2 and 2.7.3.
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protein after 4 hours (Figure 3.7 B). The full length construct, containing the targeting 

sequence, shows no real evidence of overexpression (Figure 3 .7 A). This would 

indicate that the targeting sequence does interfere with the overexpression of the 

protein.

As this targeting sequence would naturally be removed it seemed obvious to 

use the shorter construct which gave high levels of expression of active enzyme 

suitable for purification and characterisation studies. Therefore all future work relating 

to protein purification was performed using this short construct, pSACIE25.

3.4 Cloning into a tagged vector system

In order to simplify the purification protocol for the HisIE enzyme an attempt 

was made to clone the hisIE cDNA into the Impact™T7 cloning system (Appendix 

VI). This vector system expresses the protein as a fusion protein containing an affinity 

tag which aids purification. A one step affinity column and a specific cleavage of the 

fusion protein means that the target protein is purified to homogeneity in a one step 

process. The aim of this piece of work was to clone the DNA encoding the individual 

domains of the protein into this vector to simplify the purification of the domains. This 

was primarily because there may have been problems expressing and purifying the 

domains from the regular T7 system. It was doubtful if the domains would have folded 

independently to produce active protein that could be used for characterisation of the 

domains. The intention was to use this system to generate pure HisIE bifimctional 

protein for both crystallography trials and also for the generation of antibodies.

Unfortunately this cloning was unsuccessful and it was not possible to obtain 

clones containing inserts from these experiments.
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3.5 Attempts to clone the hisG and his A cDNA’s

3.5.1 Consensus PCR approach

As there was no success in cloning the hisG and hisA cDNAs by 

complementation of the E, coli mutants a PCR based strategy was attempted. Taking 

known HisG and HisA protein sequences, regions of high homology were determined. 

To these regions of high homology degenerate oligonucleotides were designed using 

the codon usage table from Arabidopsis as a guide. The oligonucleotides were then 

used to PCR fragments of the cDNA from the library. This approach yielded a few 

possible fragments of varying lengths. When these fragments were sequenced however 

they showed no homology to either a HisA or HisG sequence. All libraries were 

investigated but with little success.

3.6 Publication of cloning of HisIE by Ko Fujimori

Approximately 18 months into my PhD after I had cloned, overexpressed and 

purified the HisIE enzyme a group fiom Japan led by Ko Fujimori published details of 

the cloning of a number of genes involved in histidine biosynthesis from Arabidopsis. 

This included details of the hisIE cDNA and genomic sequences. The published data 

confirmed the DNA and predicted protein sequences for my overexpression clones as 

well as the presence of a targeting sequence within the first 50 amino acids.

The published data contained details of the intron /exon structure of the gene 

which is composed of five exons and four introns. The first exon encodes the targeting 

sequence. Exons two and three then code for the HisI domain and exons four and five 

code for the HisE domain. From the intron /exon stmcture the predicted junction for
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the targeting sequence is six amino acid residues in front of the cleavage site that I 

engineered into my constructs.

The Japanese workers expressed a number of different constructs and managed 

to determine which domains were involved in the individual steps of the reaction 

(Fujimori and Ohta, 1998“). Analysis o ïArabidopsis genomic DNA by Southern 

blotting revealed that the hisIE gene is present as a single copy gene within the 

Arabidopsis genome (Fujimori and Ohta, 1998“).
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Purification of the HisIE enzyme
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4.1 Purification of the HisIE enzyme

4.1.1 Development of the purification protocol

The purification of this enzyme proved to be difficult and a number of 

different methods of purification were attempted before the final purification protocol 

was established. Even though the starting material was a crude extract containing 

substantial amounts of over-expressed protein several chromatographic steps were 

required and for some time it proved difficult to remove all traces of other proteins 

until a final gel filtration step was introduced.

4.2 Large scale growth

Following the success of the overexpression experiments a large scale growth 

of the E. coli expression strain BL21 (DE3 )pLysS pSACIE25 was carried out to 

provide material for protein purification. The cells were grown as described in section 

2.8.1. From a 4.5 litre growth the average yield of cells was around 15 grams (wet 

weight). These cells were stored at -20'^C until needed.

4.3 Problems with purification

The lack of available substrate for the HisIE enzyme complicated the 

development of a purification strategy for the enzyme. Initially the only way of 

monitoring the enzyme activity during the purification was to perform a coupled assay 

with the first enzyme of the pathway HisG. Both substrates for HisG are commercially 

available. The problem with the coupled assay was that although it provided an 

indication of the presence of HisIE activity it was not suitable for determining the 

number of units and specific activity at each stage. A particular* problem of the
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coupled assay was that the products of both the HisG and HisIE enzymes absorb at 

290nm.

The success of the assay was also highly dependent on the concentrations of 

salts which made it difficult to use on fractions from the ion exchange columns. Often 

the simplest way to monitor the protein purification was to run SDS PAGE gels at 

each stage of the purification to identify the fractions containing the 30kDa HisIE 

protein band. The lack of a simple assay also meant that it was difficult to determine 

the stability of the enzyme during the purification procedure and also during storage.

One method, which was developed at a later stage in this work, for providing 

substrate for the HisIE enzyme was to use a partially purified biotransformation

product as the substrate. This was produced by using what was effectively a large 

scale enzyme assay for HisG. This was incubated until the A290 had reached a steady 

level and then the reaction mix was passed through a lOK filter to remove the HisG 

enzyme. This allowed the direct monitoring of the activity of HisIE since a constant 

amount of substrate could be added to each assay.

4.4 Protein Purification

4.4.1 Ion exchange chromatography

The initial step to purify the HisIE enzyme was to use ion exchange 

chromatography. The resin chosen for chromatography was DEAE-Sephacel. This is a 

positively charged ion exchange resin. The E. coli BL21(DE3)pLysS pSACIE25 cells 

were slowly thawed on ice before resuspending in Resuspension buffer (Buffer A plus 

one protease inhibitor tablet per 50ml of buffer). Buffer A (50mMTris-HCl pH 7.5, 

0.4mM DTT, and one protease inhibitor tablet per litre of buffer).
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Purification of HisIE protein on DEAE Sephacel column
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Figure 4.1 Elution profile from the DEAE Sephacel column.

The HisIE protein is eluted approximately half way through the gradient at around 

250mM KCl. A 700ml linear gradient of 0-500mM KCl was applied to the DEAE 

Sephacel column (4.5 x 10cm), at a flow rate of 40ml per hour; 10ml fractions were 

collected. The A280 and the enzyme activity are plotted and appear to correlate well. 

Although the HisIE enzyme is always eluted at the same position in the gradient, minor 

discrepancies in the enzyme activity profile are sometimes present which are not 

reproducible. The HisIE enzyme is assayed as described in 2.10.2.
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20ml of Resuspension buffer was added to about 7-lOg of cells and the cells were 

mixed until a smooth paste was formed. This paste was then French pressed twice at 

950psi. The extract was diluted to 50ml with the addition of Resuspension buffer. 

0.5mg of DNasel was added and the suspension incubated with stirring at 4°C for 30 

minutes before centrifuging at 18,000rpm for 1 hour at 4°C. The supernatant was 

decanted off and loaded onto a pre-equilibrated DEAE column. The column had been 

pre-equilibrated with 8 colunm volumes of Buffer A. The cell extract was loaded onto 

the column at 25ml per hour. Following loading the column was washed with 3-4 

column volumes of Buffer A to remove unbound material etc. A gradient of 0-500mM 

KCl was applied overnight and 10ml fractions were collected. The gradient consisted 

of 350ml of Buffer A1 (50mM Tris-HCl pH 7,5, 0.4mM DTT and one protease 

inhibitor tablet) and 350ml of Buffer A2 (Buffer A1 with 500mM KCl).

The following morning the absorbance at 280nm for each fraction was 

measured and plotted. This revealed a number of protein peaks but the main enzyme 

activity was concentrated in the large peak that came off approximately half way 

through the gradient at around 250mM KCl (Figure 4.1). The fractions were assayed 

for the presence of enzyme activity. The enzyme activity was plotted on the same 

graph and correlated well with the main protein peak.

The fractions containing enzyme activity were then pooled and the volume, 

protein concentration and enzyme activity were measured. The extract was then made 

to IM Ammonium sulphate by the slow addition of ground solid. This was added 

slowing with stirring at 4°C.
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4,4.2 Hydrophobic interaction chromatography

The next chromatographic method employed was hydrophobic interaction 

chromatography on Phenyl Sepharose which separates proteins by virtue of their 

differing hydrophobicities. A 70ml Phenyl Sepharose column was pre-equilibrated with 

5-10 column volumes of Buffer B(50mM Tris-HCl pH 7.5, IM (NH4)2 §0 4 , 0.4mM 

DTT and one protease inhibitor tablet per litre). The pooled fractions from the DEAE 

column that had been made to IM (NH4)2 S0 4  were loaded onto the column at 40ml 

per hour. The column was washed with several column volumes or for at least four 

hours before applying a gradient of IM-OM (NH4)2 S0 4  overnight. The gradient 

consisted of 250ml Buffer B1 (50mM Tris-HCl pH 7.5, IM Ammonium sulphate, 

0.4mM DTT and one protease inhibitor tablet per litre) and 250ml of Buffer B2 

(50mM Tris-HCl pH 7.5, 0.4mM DTT and one protease inhibitor tablet per litre). 10ml 

fractions were collected.

The A280 and the activity of the fractions were measured the following morning 

and the results plotted on a graph. The peak containing the HisIE enzyme activity was 

found at the beginning of the gradient. It appeared to elute from the column at around 

780mM (NH4)2 S0 4 .

After two chromatography steps the HisIE protein was approximately 75-80% 

pure. The remaining purification to get homogeneous protein proved to be difficult and 

a number of different chromatographic methods were attempted.

4.5 Gel filtration chromatography

The third chromatographic method used to separate the HisIE protein from the 

remaining contaminants was gel filtration chromatography which separates proteins
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Purification of HisIE protein on Phenyl Sepharose column
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Figure 4.2 Elution profile from the Phenyl Sepharose column

Only the first part o f the gradient is represented in this graph. The HisIE protein starts 

to elute at around 780mM (NH4)2S0 4  and is off the colunm by the 500mM point in the 

gradient. A linear gradient of IM-OM (NH4)2S0 4  was applied to the Phenyl Sepharose 

column (2.7 x 12cm) at a flow rate of 25ml per hour; 10ml fractions were collected. 

The A280 and the enzyme activity are plotted and appear to correlate well. Although the 

HisIE enzyme is always eluted at the same position in the gradient, minor discrepancies 

in the enzyme activity profile are sometimes present which are not reproducible. The 

HisIE enzyme is assayed as described in 2.10.2.
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on the basis of size. The resin used for this work was Sepharose S-200 which '
'I

separates proteins in the molecular weight range 5,000- 250,000. The fractions 

containing HisIE activity from the phenyl sepharose column were pooled and dialysed 

overnight against three changes of Buffer C (50mM Tris-HCl pH7.5, 0.4mM DTT and 

lOOmM KCl) in order to remove the (NH4)2 S0 4 . The dialysed protein was then 

concenti'ated in an Amicon concentrator through a lOK cut off membrane. This was to 

reduce the volume of the sample to around 2ml for loading onto the S-200 column. |

The protein was retained by the membrane while the buffer and other solutes were 

forced through by the pressure of the nitrogen gas. The column was pre-equilibrated 

for 2 days with Buffer D (50mM Tris-HCl pH 7.5, 0.4mM DTT, and SOOmM KCl).

The concentrated protein was applied to the column which was mn at a speed of 10ml 

per hour. 5ml fractions were collected during the 48 hours required for 

chi'omatography.

The A280 of the fractions was monitored and this was plotted on a graph 

(Figure 4.3). The peaks were then assayed for HisIE activity. The fractions were also 

analysed by SDS-PAGE in order to determine if the protein was homogeneous.

The fractions containing HisIE activity from the S-200 column were pooled 

and dialysed for two days into storage buffer (50% Glycerol, 50mM Tris-HCl pH 7.5,

0,4mM DTT) and finally stored at -20°C.

The SDS-PAGE indicated that the protein still contained a number of faint 

contaminants which were significantly different in subunit molecular weight and 

should have been separated on the S-200 column from the 3 IkDa HisIE protein 

(Figure 4.4). There was in particular a band in line with the 96kDa marker which is 

likely to be a trimer of the HisIE protein which has somehow become cross linked



Figure 4.3a and 4.3b Show the elution profiles of the HisIE protein from the S- 

200 gel filtration column under differing conditions.

Figure 4.3a) shows the elution profile from the column when the protein has been 

concentrated in the absence of salt. Figure 4.3b) shows the elution profile when the 

protein had been concentrated in the presence of lOOmM KCl. The Sephacel S-200 

column (2 x 150cm) was run in Buffer D (50mM Tris-HCl pH 7.5, 0.4mM DTT and 

SOOmM KCl) at a flow rate of 10ml per hour. 5ml fractions were collected.
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such that the presence of SDS and mercaptoethanol are unable to separate the 

subunits. Increasing the concentration of both SDS and mercaptoethanol in the gels 

and in the sample buffer did show a reduction in the amount of protein present in the 

band at 96kDa, but it did not eliminate it. The presence of the other proteins in the 

sample was a little disturbing as by this time and stage of purification the protein 

should have been homogeneous. Best estimates are that the protein is 95% pure at this 

stage.

4.6 The key discovery

A simple procedure was the key to unlocking the secret of obtaining pure 

protein. It became evident that concentrating the sample before applying it to the S- 

200 column was causing the protein to form an aggregate of some sort. This aggregate 

was then stable despite the presence of 500mM KCl in the S-200 column. This 

aggregated protein ran on the column as a higher molecuW weight entity. It was clear 

from the elution position that the protein was running at a molecular weight 

considerably greater than the 3 IkDa predicted molecular weight of the monomeric 

form of the protein. To avoid this aggregation lOOmM salt was added to the protein 

before concentrating it. This addition of salt prevented the formation of the 

aggregates, so much so that the elution position of the HisIE protein was noticeably 

shifted. The protein now emerged from the column later indicating that it was running 

as a lower molecular weight species, predicted to be the dimer. When analysed by 

SDS-PAGE there was now one major band at 3 IkDa with two faint bands present 

below that (Figure 4.5).These two lower molecular weight bands are believed to be 

degr adation products of the full length protein.

- I
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4.7 Ammonium sulphate precipitation

The first two columns appeared to be the most successflil in removing the buUc 

of the contaminating proteins fr om the HisIE. The hydrophobic interaction step which 

was used as the second column appeared to be a vital step in the purification process. I 

decided to try use the phenyl sephar ose column first to investigate if this gave a more 

efficient purification step. This step was combined with another means of purification, 

salt fiactionation using armnonium sulphate which is a classical method of protein 

purification that allows the fractionation of proteins depending on their solubility.

After the cells had been fractionated using the French pressure cell and the 

extract clarified by centrifugation, varying amounts of solid (NH4)2S0 4  were added to 

bring the concentration of the solution to a known percentage of (NH4)2S0 4 . The first 

fr action was a 0-30% cut. This precipitated much of the DNA and a few other 

proteins. Cuts of 30-40%, 40-50%, 50-60% and 60-70% were carried out. The various 

pellets and supernatants were then examined for the presence of HisIE activity. Due to 

the difficulties of carrying out the coupled assay in such high salt concentrations, the 

fractions were analysed by SDS-PAGE. The HisIE protein was not confined to one 

fraction but appeared to be split between the 40-50 and the 50-60% fractions.

These fractions were then diluted and applied to the phenyl sepharose column 

which had been previously equilibrated with buffer B. A gradient of 1-OM (NH4)2 S0 4  

was applied overnight. The pooled fractions were dialysed overnight against buffer A 

to remove the (NH4 )2S0 4  . The following day the protein was applied to the DEAE 

Sephacel ion exchange column and chromatographed as described previously. When 

the fractions containing HisIE protein were analysed by SDS-PAGE the protein 

appeared to be of similar purity to the fractions obtained after chromatography on a 

DEAE column followed by a phenyl sepharose column (Figure 4.4). Following gel
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filtration on the S-200 column the protein did not appear to be more pure than on

previous occasions. (The gel filtration had been carried without the lOOmM KCl 

present during concenti ating.) All future preparations of enzyme were carried out

using the DEAE Sephacel column followed by the Phenyl Sepharose column as this 

was a shorter protocol.

4.8 Dye binding columns

Many dyes are known to mimic certain molecules found in nature such as 

certain nucleotides. The HisIE protein binds a nucleotide, PR-ATP, which it then 

hydrolyses to produce PR-AMP and finally ProFAR. The idea that perhaps one of the 

dye resins may mimic the substrate of HisIE and therefore would allow an affinity 

type interaction with the protein was investigated. A test kit purchased from Sigma, 

which contained a number of different dye resins, was used to identify a suitable dye 

resin for the purification. In order to test the resins a small amount of resin was 

removed into an eppendorf tube. The resin was washed several times with 50mM Tris- 

HCl pH 7.5 buffer. This was performed by shaking the resin with the buffer and then 

pelleting the resin, removing the supernatant and repeating. A solution of partially 

purified protein was then applied to the pelleted resin and agitated gently for 20 

minutes. The resin was re-pelleted and the supernatant was removed and stored for 

assaying for HisIE activity. SOOmM KCl was added and again the resin was agitated 

for 20 minutes. The resin was again pelleted and the supernatant was stored for assays.

Several resins appeared to bind the HisIE enzyme with slightly different 

efficiencies. The percentage of activity that bound to the resin was calculated and the
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total recoveiy was calculated. The Reactive Red 120 resin was chosen as it bound the 

protein very well and we also had a stock of this material which could be used to 

prepare a preparative column. When this was tried as a large scale enzyme preparation 

the protein did bind to the column and was eluted with a 0~500mM KCl gradient.

When the fractions were analysed on SDS-PAGE the HisIE protein was not 

homogeneous (Figure 4.4). The Reactive Red 120 column offered no significant 

advantage over the anion exchange and hydrophobic columns.

4.9 Determination of the purity of the HisIE enzyme

Samples of the protein at various stages of the purification were subjected to 

SDS-PAGE analysis to illustrate the progress of the purification and to establish the
I

purity of the final material. Samples from the crude extract, DEAE column, Phenyl 

Sepharose column and finally the S-200 column were run on a 15% Acrylamide |
c

running gel with a 5% stacker (Figure 4.5). The protein was judged to be pure by 

SDS-PAGE analysis.
j.

4.10 Calibration of the S-200 column in high salt conditions and determination of 

the subunit molecular weight of the HisIE protein

A number of proteins of known molecular weight were used as molecular 

weight markers to calibrate the S-200 column. This was to allow the determination of 

the molecular weight of the HisIE protein as it was eluted from the column. The 

following molecular weight markers were used; Blue Dextran 2000kDa, Alcohol 

dehydrogenase ISOkDa, Albumin 66kDa, Carbonic anhydrase, 29kDa and 

Cytochrome C 12.5kDa. Measurement of the A280 absorbance of the samples revealed 

the elution profile from the column. All measurements relating to the elution volume
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21.5

14.4 mtm  ̂ ^

Figure 4.4 Composite SDS PAGE gel showing samples of HislE protein after 

various failed attempts to obtain pure protein.

Markers

Lane 1 Following DEAE column

Lane 2 DEAE column followed by Phenyl Sepharose column 

Lane 3 Ammonium Sulphate precipitation and Phenyl Sepharose column followed by 

DEAE column

Lane 4 Following chromatography on dye binding column

Lane 5 Protein sample from S-200 column following concentration in the absence of 

salt.

A 15% Acrylamide ruiming gel was used in all cases along with a 5% stacking gel. Following 

electrophoresis at room temperature the gel was stained with Coomassie Blue (section 2.7.3). 

Lanes 2 and 3 show that there is little difference between the protein following either DEAE/ 

Phenyl Sepharose or Ammonium sulphate/ Phenyl Sepharose/ DEAE treatment. Lanes 4 and 5 

show that the HisIE protein is not homogeneous following either the dye binding column or gel 

filtration.
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M 1

66.2 'Is:,

4 5

31 ##&m #  Ê #  # #  #»

21.5

14.4

Figure 4.5 Analysis of protein purification by SDS PAGE

Markers (molecular weights are given alongside the gel photograph in kDa)

Lane 1 Crude extract (15pg total protein)

Lane 2 DEAE pool (lOpg total protein)

Lane 3 Phenyl Sepharose pool (lOpg total protein)

Lane 4 S-200 pool (5pg total protein)

Lane 5 S-200 pool (5pg total protein)

A 15% Acrylamide running gel was used along with a 5% stacking gel. Following 

electrophoresis at room temperature the gel was stained with Coomassie Blue (section 2.7.3). 

A faint band running with the 97kDa marker is present in all samples and is believed to be a 

trimer o f the HisIE protein.
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98

were taken from the summit of the peaks in the elution profile. The results were then 

plotted as elution volume versus log molecular weight. A standard curve was drawn 

and used to determine the molecular weight of the HisIE protein (Figure 4.6). The 

HisIE protein which had been concentrated in the absence of salt, forming a large 

aggregate, has a high molecular weight which is excluded or almost excluded from the 

column i.e. greater than 250kDa. In comparison the protein concentrated in the 

presence of lOOmM KCl has a calculated molecular weight of 63kDa which would 

indicate that the HisIE protein is running as a dimer, despite the presence of 500mM 

KCl in the gel filtration column.

4.11 Determination of the molecular weight of the HisIE protein under native gel 

filtration conditions

The same S-200 gel filtration column was then purged with low salt buffer 

containing 50mM Tris-HCl pH 7.5 and 0.4mM DTT. The column was calibrated 

using the following molecular weight markers; Blue Dextran 2000kDa, |3 Amylase 

200kDa , Albumin 66kDa, Carbonic anhydrase, 29kDa and Cytochrome C 12,51cDa. A 

standard curve was drawn and used to determine the native molecular weight of the 

protein (Figure 4.7). 5mg of purified protein at a concentration of lOmg/ml was 

applied to the column. Under low salt conditions the elution position of the HisIE 

protein indicates the molecular weight to be around 61 kDa. This suggests that the 

protein is a dimer under these conditions and at this protein concentration. It is likely 

that under physiological conditions within the cell the HisIE protein would be present 

as a dimer.
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Figure 4.6 Calibration curve for S-200 column in the presence of SOOmM KCl

Standard curve plotting WJVq against log molecular weight. The following molecular 

weight markers were used; Blue Dextran 2000kDa, Alcohol dehydrogenase ISOkDa, 

Albumin 66kDa, Carbonic anhydrase, 29kDa and Cytochrome C 12.5kDa. The S-200 

column (2 x 150cm) was run in high salt buffer (50mM Tris-HCl pH 7.5, 0.4mM DTT 

and 500mM KCl) at a constant flow rate of 10ml per hour. HisIE protein concentrated 

in the absence of salt has a calculated molecular weight greater than 250kDa (Black 

line). HisIE protein concentrated in the presence of lOOmM KCl has a calculated 

molecular weight of 63kDa which would indicate that the HisIE protein is running as a 

dimer (Red line).
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2.4
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Figure 4.7 Calibration curve for S-200 column under low salt conditions

Standard curve plotting Y /V q against log molecular weight. The following molecular 

weight markers were used; Blue Dextran 2000kDa, (3 Amylase 200kDa, Albumin 

66kDa, Carbonic anhydrase, 29kDa and Cytochrome C 12.5kDa. The S-200 column 

(2 X 150cm) was run in low salt buffer (50mM Tris-HCl pH 7.5 and 0.4mM DTT) at a 

constant flow rate of 10ml per hour. Under low salt conditions the Cytochrome C 

protein bound to the resin and only the presence of high salt allowed it to move 

through the column. Purified HisIE protein has a calculated molecular weight of 

63kDa under native conditions which would indicate that the HisIE protein is a dimer.
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4.12 Mass spectrometry analysis of the HisIE protein

Electrospray mass spectrometry of the purified HisIE protein was carried out 

by Dr K. Lilley, University of Leicester. Preliminary results indicate that the protein has 

a mass in the correct range for the predicted molecular weight of 26,859Da. The exact |

value obtained was 26,874; this discrepancy is almost certainly due to a failure to 

calibrate the instrument properly. A further mass analysis will be carried out.
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5.1 General introduction

Phosphoribosyl ATP (PR-ATP, Figure 5.1) is the product of the first enzyme 

of the histidine biosynthetic pathway and is formed by the condensation of PRPP and 

ATP by the formation of an N-glycosyl linkage between the C-1 of the phosphoribosyl 

group and the N-1 of the purine of ATP. This reaction is catalysed by the enzyme 

ATP-phosphoribosyl transferase (B.C. 2.4.2.17) the product of the hisG gene. The 

reaction produces inorganic pyrophosphate from the PRPP moiety and PR-ATP. The 

formation of the PR-ATP can be monitored by measuring the increase in absorbance at 

290nm (Martin, 1963).

ATP-phosphoribosyl transferase has been well studied from both bacterial and 

fungal species (Martin et al, 1971, Winkler, 1988) and a strain which overproduces 

the E. coli enzyme has been constructed by Mr A. Elwell (unpublished results). Much 

less is known about the plant enzyme. In this work we have used the purified E. coli 

ATP-phosphoribosyl transferase to generate PR-ATP.

To characterise the bifunctional HisIE enzyme a supply of the substrate PR- 

ATP was essential. The most convenient means of generating PR-ATP is by 

biotransformation from PRPP and ATP (which are both commercially available) using 

ATP-phosphoribosyl transferase.

5.2 Enzymatic synthesis of PR-ATP

Since PRPP is relatively expensive and unstable (it must be stored at -80°C) the 

possibility of generating it enzymatically was also considered. However, because of the 

added complexity of having a second biotransformation step, the direct route was used 

to generate PR-ATP.
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N- CH
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Figure 5,1 Structure of PR-ATP
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Figure 5.2 a) Generation of PR-ATP direct from PRPP and ATP
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Figure 5.2 b) Generation of PR-ATP from Ribose-5- phosphate
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5.3 Initial attempts at generating PR-ATP

The original biotransformation as described in Martin et aL, (1971) consisted of

1.5mM PRPP, 5mM ATP, lOmM MgCb, lOOmM Tris pH 8.5, inorganic 

pyrophosphatase and a crude extract from Salmonella typhimurium containing ATP- 

phosphoribosyl transferase. Our initial experiments to produce the substrate used this 

method to generate PR-ATP except that purified E. coli enzyme was used instead of 

the bacterial extract.

The 330ml reaction mixture was incubated at 37°C and the progress of the 

reaction monitored by removing a 1ml aliquot and observing the UV spectrum 

continuously for 4 hours (Figure 5.3). The maximum A290 was observed after 40 

minutes and in subsequent preparations the pH of the bulk reaction mixture was 

adjusted at this stage to 6  with IM HCl and the resulting solution frozen and stored at 

-20°C.

Continuous monitoring of the 1ml aliquot of the reaction mixture for 4 hours 

showed that the maximum A290 absorbance occurred after 40 minutes and began to 

decline after 60 minutes, gradually decreasing until after about 1 2 0  minutes the A290 

had fallen almost to zero (Figure 5.3). This suggests that the reaction product PR-ATP 

was unstable under these conditions, perhaps due to the high pH (8.5) of the buffer 

conditions or to the temperature (37°C).

5.3.1 Chromatography of the PR-ATP

The crude PR-ATP solution was split into two equal batches and each was 

chromatographed separately. A Q-Sepharose column was pre-equilibrated with lOmM
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Figure 5.3 Biotransformation reaction showing the profile observed during 

Biotransformation to produce PR-ATP.

Spectrophotometer traces showing the changes in absorbance with time during the 

enzymatic synthesis of PR-ATP. The absorbance changes at both 290nm (black line) 

and 260nm (red line) were monitored for a 1ml aliquot of the 330ml biotransformation 

mixture used to generate PR-ATP. Reaction was produced as described in section 5.3 

using the method of Martin et al., (1971). The pH of the bulk reaction was adjusted to 

6 after 40 minutes, although the reaction was monitored for several more hours using 

the 1ml aliquot.
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Separation of PR-ATP on a Q-Sepharose column using a gradient
of LiCI

0.7

0.62.5

0.5 %
ScI
I

- 0.2  >0.5 --

0.1
6D40 50302010

-0.5
Fraction number

S ubs tra te  activity

Figure 5.4 Separation of PR-ATP by Q-Sepharose ion exchange chromatography 

with LiCl as eluent.

Ion exchange chromatography of PR-ATP on a Q-Sepharose (Pharmacia Biotech) 

column (4.5 x 12cm) at 4°C. A 1 litre linear gradient of 50-400mM LiCl / lOmM 

Imidazole pH 6.5 was run at a constant flow rate of 50ml per hour. 10ml fractions 

were collected. The A290 and A260 absorbances o f the fractions were measured, and the 

presence of PR-ATP was established by assaying fractions in the presence of HisIE 

enzyme. The split peak o f substrate activity is not clearly understood but the presence 

of large quantities of ATP in the second peak is believed to contribute to the difference 

in activity. See discussion in section 5.3.2.
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imidazole buffer pH 6.5 containing 50mM LiCl The PR-ATP solution was diluted 

with this buffer until the conductivity of the solution was the same as the eluate from 

the column. This meant an approximately 15-fold dilution of the original sample to a 

total volume of almost 2 litres. The original Martin e/ a/., (1971) method used a DEAE 

cellulose resin for the chromatography and a gradient of 100-140mM LiCl to elute the 

material from the column. The Q-Sepharose resin is a stronger anion exchange resin 

and thus a gradient of 50 to 400mM LiCl was used to ensure that PR-ATP was eluted 

from the column. The absorbance of the fractions was measured at both 260 and 

290nm. (Figure 5.4).

5.3.2 Preliminary characterisation of PR-ATP as a substrate for the HisIE 

enzyme

Assaying the fractions eluted from the Q-Sepharose with the HisIE enzyme, 

identified those fractions containing PR-ATP. The absorbance profile from the column 

shows a broad peak of material absorbing in the UV at both 260 and 290nm. The 

fractions were assayed in the presence of identical amounts of HisIE enzyme and the 

initial rate of A290 increase, observed for each fraction was plotted as a means of 

determining the presence and relative quantities of active substrate. The fractions in the 

first part of the peak show the normal profile observed during the HisIE enzyme assay 

(Figure 6.1), with both an increase in the absorbance at 290nm as well as a decrease in 

the absorbance at 260nm, The second part of the peak was also assayed and found to 

contain PR-ATP. There was however a key difference in the assay profile. The 

previously observed steady decrease in A260 did not occur; instead the A260 readings 

fluctuated. The increase in A290 was still observed. This different behaviour in the 

assays indicates that the later fractions differ from those at the beginning. It was
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suspected that these later fractions were contaminated with residual ATP that had not 

been successfully resolved on the colunm. In order to test this theory the first fractions 

containing PR-ATP were spiked with lOOpM ATP and re-assayed. The A260 decrease 

that had been previously observed was lost and replaced by a random fluctuation in the 

A260 as seen in the assay of the later fractions. This was consistent with the proposal 

that the later fractions were contaminated with ATP which was later confirmed by 

HPLC analysis of the freeze dried fractions. The fractions containing PR-ATP were 

divided into two pools. The first fractions, showing both absorbance changes, were 

designated as pool A and the later fractions, showing only the A 2 9 0  change, as pool B.

The lyophilized pools of PR-ATP were washed three times with cold absolute 

ethanol (Analar Grade) to remove the LiCl and imidazole since both lithium chloride 

and imidazole are soluble in ethanol whereas the lithium salts of the histidine pathway 

intermediates are much less soluble in ethanol (Martin et al., 1971). 20ml of ethanol 

was used for each wash and the solution mixed thoroughly by vortexing. The solution 

was then centrifuged at 17,000rpm to pellet the insoluble PR-ATP. After three washes, 

the resulting precipitates were dried exhaustively on the freeze drier to remove all 

traces of solvent ethanol. The freeze dried samples were then analysed by HPLC and 

NMR.

5.3.3 HPLC analysis

5.3.3.1 Supelcosil LC-18-S

Supelcosil LC-18-S (4.6mmIDX150mm) is a modified C18 reverse phase 

column from Supelco which has a special surface treatment along with an 

octadecylsilane bonded phase, and has been developed specifically for the efficient 

separation of nucleotides. This column was run with a gradient of Buffer A (O.IM-
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Figure 5.5 HPLC analysis of PR-ATP pools showing the different amounts of 

ATP contamination

Profile observed during reverse phase chromatography of PR-ATP samples from 

pools A and B using a Supelcosil LC-18-S column. PR-ATP has a retention time of

11.8 minutes and ATP has a retention time of 14.2 minutes. The ATP peak at 14.2 

minutes is larger in pool B confirming that this sample contained increased amounts 

ofATP.

The gradient was run as follows.

Time (min) %B

0 0

2.5 0

5 30

10 60

13 100

18 100

20 0

25 0

The flow rate was 1.5ml per minute and the temperature was 25°C.
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Figure 5.6 HPLC analysis of ATP, ADP and AMP on the Supelcosil LC-18-S 

column.

AMP, 9.2 minutes, ADP, 12.2 minutes and ATP, 13.9 minutes 

The gradient was run as follows,

Time (min) 

0

2.5

5

10

13

18

20

25

%B

0

0

30

60

100

100

0

0

The flow rate was 1.5ml per minute and the temperature maintained at 25°C. (Buffer A O.IM 

potassium phosphate buffer pH 6.0, 4mM-tetrabutylammonium hydrogen sulphate) and Buffer B (A: 

methanol (70:30) pH 7.2).
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potassium phosphate buffer pH 6.0, 4mM"tetrabutylammomum hydrogen sulphate) and 

Buffer B (A: methanol (70:30) pH 7.2).

S.3.3.2 Results of the chromatography

The samples for analysis were made up at a concentration of 5mg/ml in distilled 

water. Standard solutions of ATP, ADP, AMP were made up at a concentration of 

lOmM to calibrate the column and to aid identification of the peaks. Standard solutions 

were run both individually and as mixtures to determine the retention times. The 

column resolved all three adenine nucleotides and they could be seen as distinct peaks 

that eluted from the column in the order AMP, ADP, ATP with retention times of 9.2 

minutes, 12.2 minutes and 13.9 minutes respectively (Figure 5.6). The samples of PR- 

ATP from the Q-Sepharose column showed the presence of significant quantities of 

ATP as well as ADP. The peak corresponding to the PR-ATP came off at 11.8 

minutes, ahead of both ADP and ATP. The LC-18-S column thus proved to be very 

useful as an analytical column since it allowed the identification of several of the 

expected contaminants in the partially purified PR-ATP pools. Analysis of pools A and 

B confirmed that pool B was particularly highly contaminated with ATP (Figure 5.5). 

As ATP appears to interfere with the assay of the HisIE enzyme it is essential to 

remove this contaminant from the PR-ATP. This column however is only useful as an 

analytical column since it requires the presence of an ion pairing agent 

tetrabutylammonium hydrogen sulphate. A preparative chromatographic procedure 

using volatile buffers had now to be developed to produce samples of pure PR-ATP.
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Figure 5.7 400MHz Proton NMR spectrum of partially purified PR-ATP sample 

still containing imidazole

Imidazole peaks are present at 7.3 and 8.5 ppm.
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5.3.4 NMR Analysis

The TOOmHz NMR spectrum of the sample isolated from pool A is shown in

Figure 5.7. The spectrum revealed the presence of large quantities of imidazole that

had not been removed by the ethanol washes. The imidazole appeared as two large

peaks in the region 7.3 and 8.5 ppm on the NMR trace. While the spectrum contained

peaks consistent with the presence of PR-ATP, detailed assignment was not possible at 

.this stage because of the high levels imidazole and the presence of some contaminating 

ATP.
"ii

To establish that the crude PR-ATP sample was stable for 24 hours at room 

temperature, approximately 11-14°C, the NMR was repeated after 24 hours. The two 

spectra were identical indicating that there is no significant degradation occurring over 

this time scale.

5.3.5 Development of a simpler chromatographic method for the analysis of PR- 

ATP using a Partisil ODS3 column (Phenomenex)

This is a C l8 reverse phase column which has a 10.5% carbon load, is end 

capped and has a particle size of 10p.m. A number of different solvents and gradients 

were investigated. Initial attempts at separation used a potassium phosphate buffer 

containing 4mM tetrabutylammonium hydrogen sulphate to aid the separation. This 

resulted in a clean and rapid separation of the PR-ATP from the contaminants such as 

ATP (within 5 minutes) but still required an ion pairing agent and was therefore not
i

promising as a potential preparative method.

A simple isocratic separation was achieved on this column using 25mM 

potassium phosphate pH 6. The PR-ATP was resolved from the residual ATP within a
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Figure 5,8 HPLC analysis of PR-ATP pool B using the Partisil ODS3 column and 

25mM potassium phosphate buffer

PR-ATP has a retention time of 1.8 minutes and ATP has a retention time of 2.8

minutes.

Time (min) %B

0 0

8 0

9 100

14 100

15 0

20 0

20 stop

Buffer A is 25niM Potassium phosphate pH 6 and the flow rate was 2ml per minute. Buffer B 

is 100% methanol and is used to remove residual material bound to the column
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few minutes (Figure 5.8). Using the analytical column (4.6mm x 250mm) the PR-ATP 

eluted at 1.8 minutes and ATP eluted at 2.8 minutes. The column does retain some UV 

absorbing material if used for a significant time without a washing step with 100% 

methanol. A washing step was therefore included whenever this method was used 

(Figure 5.8). This method was used for all subsequent analysis of PR-ATP samples to 

determine if they were pure following initial chromatography and to identify the extent 

of any contamination with ATP. Due to the presence of 25mM potassium phosphate in 

the buffer this method is not satisfactory for preparative use.

5.4 Simplifying the biotransformation to reduce ATP contamination in the 

purified product

The major problem with the production of pure PR-ATP by the method 

developed here from the Martin et al. procedure is the significant quantities of 

contaminating ATP that have to be removed. Reducing the amount of excess ATP in 

the reaction would simplify the purification. Therefore the effect of using different 

amounts of ATP in the biotransformation was investigated. It was found that a 1:1 

ratio of PRPP: ATP was sufficient to allow the reaction to proceed to a satisfactory 

extent. The presence of excess ATP does not make a great deal of difference to the 

amount of PR-ATP formed in the biotransformation reaction. The reaction with a 2:1 

ratio of ATP PRPP does progress more rapidly but levels off at the same final 

absorbance value as the 1:1 reaction implying that the amount of product formed is 

similar in both cases.
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5.5 A simplified procedure for generating Phosphoribosyl ATP

The biotransformation was carried out as described in section 2.9.1. and the 

reaction mixture contained equal molar amounts of the two starting materials at a final 

concentration of 0.5mM. The course of the reaction was monitored at 290nm and was 

observed to be complete within 1 hour reaching a final A290 of 1.2 (Figure 5.9). Using 

the known extinction coefficient of PR-ATP (3600; Ames et a l, 1961) the reaction 

should have gone to a final A290 of 1.8; the observed A290 of 1.2 represents a 

conversion of 66% of the material. The molecular weight of PR-ATP is 719 and on a 

scale of O.SmM this represents a yield of 216mg of PR-ATP.

5.5.1 Preparative chromatography of PRATP.

A Q-sepharose column (4.5 x 12cm) was equilibrated with 5 column volumes 

of Buffer A (50mM Triethylamine formate pH 6). This buffer was chosen as it was a 

volatile buffer which was able to buffer in the pH range required for the stability and 

purification of PR-ATP (around 4-7) (Perrin and Dempsey, 1974). The frozen 

biotransformation reaction was thawed on ice and was diluted to the same 

conductivity as the equilibrating buffer. The pH was measured to ensure that the pH of 

the sample was the same as that of the buffer coming off the column. It was found that 

no adjustment was necessary. The biotransformation reaction was diluted almost 20 

fold with Buffer A and then loaded onto the Q-sepharose column. A 1 litre linear 

gradient of 50mM to IM Triethylamine formate was applied and 10ml fractions 

collected.

Samples were analysed spectrophotometrically for the presence of material 

absorbing at 290nm (Figure 5.10). Only one peak has significant 290 absorbance and is 

eluted from the column between 750-800mM triethylamine. The fractions
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Figure 5.9 Biotransformation reaction

This figure shows the progress of the biotransformation reaction used to 

produce PR-ATP. The reaction is observed to have gone to completion within 50 

minutes as no further increase in 290 absorbance is measured. The final A290 is 1.25,
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associated with this peak were demonstrated to contain PR-ATP by assaying for 

HisIE activity and were then pooled and lyophilized overnight. Two peaks containing 

material which absorbed at 260nm were observed (Figure 5.10) one before and one 

following the PR-ATP peak. One is believed to be the unreacted ATP.

5.5.2 Lyophilization of PR-ATP samples in Triethylamine formate.

Although Triethylamine formate buffer is a volatile buffer system it was very 

difficult to remove during freeze drying. A brown, syrupy residue remained in the flask 

despite repeated freeze drying. Triethylammonium formate is a light brown syrup 

material which is very soluble in water ( Merck Index, 9*̂' Edition). The material in the 

flask was assumed to be the Triethylamine salt of PR-ATP. The pH of the material 

after redissolving in water was 3.8; this was adjusted to 6.5 by the addition of a small 

amount of 5M NaOH. An ammoniacal odour was observed from the flask indicating 

the displacement of the triethylamine. This material was then freeze dried overnight. A 

dry, white, flufty solid was observed in the flask. Unfortunately much of this material 

was sodium formate. NMR analysis identified the relative amounts of both PR-ATP 

and sodium formate. This salty material was not ideal for kinetic analysis and therefore 

methods to remove the salt from the sample were investigated.

The problem observed during repeated freeze drying attempts is that the 

substrate breaks down to produce phosphoribose and ATP. This breakdown can be 

monitored by comparing samples at different stages of the drying process. The more 

the freeze drying process is repeated the more extensive the breakdown appears to be.
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Separation of PR-ATP on the Q-sepharose column

4.5 j- 
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Figure 5.10 Elution profile of PR-ATP from Q-Sepharose column using the 

Triethylamine formate buffer pH 6

Separation on the Q-sepharose column requires a gradient to IM Triethylamine 

formate. The peak containing the PR-ATP is the only peak on the elution profile 

containing significant A290 absorbance. There are two other peaks both absorbing in the 

A260 which are presumed to be unreacted ATP and a breakdown product of PR-ATP. 

There is also the possibility that the small peak before the PR-ATP could be ADP or 

AMP ( these may be breakdown products of ATP)
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5.5.3 Gel filtration of substrate

The lyophilized material containing sodium formate was resuspended in a small 

volume of distilled water. This was loaded onto a Sephadex G15 column ( 2  x 80cm) 

which had been previously equilibrated with distilled water. The column was attached 

to a Shimadzu LCIO HPLC system and run at a flow rate of 2ml per minute. The 

material coming off the column was monitored for A290 absorbance, collected and 

lyophilised overnight. This desalting step was successful in removing the sodium 

formate (and also LiCl, imidazole) and NMR analysis showed the material was pure 

PR-ATP.

5.5.4 NMR analysis of gel filtered PR-ATP

NMR analysis of the purified PR-ATP samples was carried out by Dr D.

Rycrofl, Dept, of Chemistry, Glasgow University. Samples of purified PR-ATP were 

spiked with a known quantity of sodium formate. The formate gave a signal in the 

region 8.4ppm (Figure 5.11). Integration of this peak and comparison with the signals 

for PR-ATP allowed the calculation of the amount of PR-ATP present in the sample. 

This sample was shown to contain only PR-ATP with no other salts present. The 

important signals for the PR-ATP molecule are as follows;

6 .0 ppm

6 .1 ppm

8 .6 ppm

8.7ppm

These four key signals appear to be characteristic for PR-ATP and allow its 

identification by NMR analysis. The other peaks present in the NMR trace are
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associated with the ribose sugar moieties in both the ATP part of the molecule as well 

as the phosphoribose part. This region of the spectrum is highly complex and difficult 

to interpret.

5.5.5 Analysis by mass spectrometry

A mass spectrum of the purified PR-ATP was obtained using a Shimadzu Class 

8000 LC-Mass spectrometer. This machine was used in negative ion mode. A 

molecular ion of 718, corresponding exactly to the mass of PR-ATP \  was observed 

along with molecular ions for the mono, di and tri sodium forms of the substrate. 

(Figure 5.12). The purified PR-ATP had therefore been purified as the sodium salt.

The masses of a number of standards including ADP and ATP were determined. A 

molecular ion a 506 was observed in small amounts in the PR-ATP sample and 

corresponds to the molecular ion for ATP. This is believed to have arisen from the 

fragmentation of the PR-ATP molecule in the chamber of the mass spectrometer.

The sample was analysed by direct injection into the mass spectrometer and 

also by injection through a Partisil column. One clean peak was observed by this 

combined LC-MS technique.

5.6 Search for a more volatile buffer system

In order to simplify the chromatography attempts were made to find a more 

volatile buffer. There are few volatile buffers which have the capacity to buffer within 

the pH boundaries of these experiments. Although it was slightly outwith the desired 

pH range for the PR-ATP molecule (pH 4 to 7) Triethylamine bicarbonate was 

chosen. This buffer can buffer in the pH range 7 to 10 (Perrin and Dempsey, 1974) but 

when adjusting the pH of a IM solution with solid carbon dioxide it is only
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Figure 5,11 400mHz Proton NMR spectrum of purified PR-ATP

The key signals for the PR-ATP molecular are as follows;

6.0ppm

6.1ppm

8.6ppm

8.7ppm

The complex region of the spectrum around 4.5ppm is due to the ribose sugar moiety 

and is very difficult to interpret.
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Figure 5.12 Enlargement of the 400mHz Proton NMR spectrum of purified PR- 

ATP showing the key peaks

The important signals for the PR-ATP molecule are as follows;

6.0ppm

6.1 ppm 

8.6ppm 

8.7ppm
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Figure 5.13 Mass spectrum of PR-ATP

Mass spectrum obtained from a purified extract of PR-ATP. The molecular ion at 718 

corresponds to the PR-ATP molecule. The mono-sodium form can be seen at 740, the 

di-sodium at 762 and the tri-sodium form at 784.
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ao

10

50

Figure 5,14 HPLC analysis of pure PR-ATP using the Partisil ODS3 column and 

25mM potassium phosphate buffer

PR-ATP has a retention time of 1.8 minutes. The small amount of A260 absorbing 

material is due to the natural breakdown of PR-ATP to ATP and phosphoribose.

Time (min) %B

0 0

8 0

9 1 0 0

14 1 0 0

15 0

2 0 0

2 0 stop

Buffer A is 25mM Potassium phosphate pH 6 and the flow rate was 2ml per minute. Buffer B 

is 100% methanol and is used to remove residual material bound to the column
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possible to titrate the pH of the solution to 7.3. This pH is slightly high, but the 

compound appears to be relatively stable in these conditions. This buffer was used for 

the ion exchange chromatography on Q-Sepharose. The column was equilibrated with 

50mM triethylamine bicarbonate pH 7.3. The biotransformation reaction mixture was 

diluted 2 0  fold with triethylamine buffer until it had the same conductivity as the 

equilibrating buffer. This was applied to the column and was eluted with a 1 litre linear 

gradient of 50mM to IM triethylamine bicarbonate. 10ml fractions were collected. The 

PR-ATP eluted around 800mM triethylamine bicarbonate. This material was 

lyophilised overnight after which a white fluffy residue observed on the walls of the 

flask. This material became brown and sticky upon exposure to the moisture in the air. 

The buffer was almost completely removed during the first overnight drying. 

Subsequent drying was kept to a minimum to prevent breakdown of the PR-ATP. 

Analysis by NMR and HPLC showed the sample to be pure (Figure 5.13).
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Characterisation of the HisIE enzyme
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6.1 Enzyme assay of HisIE

The Arabidopsis HisIE enzyme is a bifunctional enzyme which converts PR- 

ATP to Pro-FAR. The two reactions performed by the enzyme are the hydrolysis of 

the pyrophosphate group attached to the ATP part of the molecule and secondly the 

hydrolysis of the purine ring. When the enzyme was assayed as described in section 

2 .1 0 . 2  using a diode array spectrophotometer several changes were seen to occur 

during the course of the assay. The expected increase in absorbance at 290mn was 

observed and is due to the formation of the product Pro-FAR. A simultaneous 

decrease in the absorbance at 260nm is observed which occurs at the same rate as the 

increase in A2 9 0 . The hypothesis is that the decrease in A260 corresponds to the second 

step of the reaction which catalyses the hydrolysis of the purine ring. It should 

therefore be possible to monitor the two steps of the reaction by characterising these 

two changes independently. A third change is observed at 235nm, The increase in 

absorbance at 235nm may be due to the release of pyrophosphate by the 

pyrophosphatase activity of the enzyme. A typical profile from an enzyme assay is 

shown in Figure 6 .1 . The presence of similar spectral changes was reported by 

Davisson et a l, (1994). The paper from Davisson’s laboratory is concerned with the 

synthesis and pmification of Pro-FAR, which was generated from PRPP and ATP 

using a partially pui ified mixture of enzymes. This procedure was in effect a multiply 

coupled enzyme assay and was used to monitor the progress of the reaction over the 

course of 1.5 hours. In contrast, our objective was to develop a direct enzyme assay 

for the HisIE enzyme using purified PR-ATP as the substrate.
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Figure 6.1 Profile observed during assay of the HisIE enzyme

The enzyme was assayed using a Hewlett Packard UV-visible spectrophotometer as 

described in section 2.10.2. This figure represents the normal pattern of absorbance 

changes that occur during the course of the enzyme assay. There are three changes 

occurring simultaneously. The increase at 290nm is due to the formation of the 

enzyme product Pro-FAR. The two other changes that occur are the decrease in the 

A260 and the increase in the A235. The change in the A260 is thought to be due to the 

hydrolysis of the purine ring of PR-ATP, the third step of the pathway which is 

carried out by the N terminal domain of the bifunctional HisIE enzyme. The increase 

in absorbance at 235nm is presumed to correspond to the release of the pyrophosphate 

group due to the action of the C terminal region of the HisIE enzyme.
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6.2 Characterisation of the HisIE enzyme

Following initial observations of enzymatic activity, a more detailed 

investigation of the kinetic and biochemical properties of this enzyme was necessary. 

The initial attempts to assay the HisEE enzyme used the same conditions as previously 

used for the phosphoribosyl ATP transferase enzyme. Certain parameters, such as pH 

and salt concentration were investigated in an attempt to find the most suitable assay 

conditions.

6.2.1 Investigation of the effect of pH on the activity of the HisIE enzyme

The enzyme was assayed in Tris buffer at a number of different pHs. The pH 

of the buffer solutions ranged from pH 6 to pH 9 in 0.5 increments. All other 

conditions in the assay were kept constant and the rate observed during the assay was 

plotted against pH (Figure 6.2). The results indicate that the enzyme prefers slightly 

alkaline conditions and in particular pH 8.5 seemed most favourable. Above pH 8.5 

there is a decrease in the rate of enzyme activity and below pH 7 there is no 

detectable enzymatic activity. This lack of activity below pH 7 could be due to a 

histidine residue becoming protonated under acidic conditions. A deprotonated 

histidine residue may therefore be required for enzymatic activity. The histidine may 

accept a proton from a water molecule thereby generating a hydroxyl group which 

can then either hydrolyse the phosphodiester linkage to release pyrophosphate or 

hydrolyse the purine ring opening. The decrease in activity above pH 8.5 could be the 

result of the deprotonation of a cysteine, or a tyrosine or even the amino group of the 

N-terminal amino acid resulting in the loss of a crucial hydrogen bonding function in 

the active site.
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Figure 6.2 Variation in the activity of the Arabidopsis HisIE enzyme with pH

Assays were carried out in the presence of lOOmM Tris HCl at a number of different 

pHs. Also present in the assay buffer were lOmM MgCh and 150mM KCl. Assays 

were carried out in a final volume of 1ml and at 25°C. The enzyme activity was 

measured and plotted against pH. Below pH 7 it was not possible to detect any 

enzyme activity. The highest activity was observed at pH 8.5 and as the pH was 

further increased the activity began to decrease. Future assays were carried out at pH 

8.5.
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Figure 6.3 Activity o ïArabidopsis HisIE enzyme plotted against magnesium 

concentration

The enzyme was assayed in the presence of lOOmM Tris HCl pH 8.5 and 150mM KCl 

at 25°C in a final volume of 1ml. The concentration of MgCla in the assay varied 

from 0-25mM. A plot of enzyme activity versus concentration indicates a 

requirement for free Mg^^ for enzyme activity. Enzyme activity increases with 

increasing Mg^^ concentration until 15mM , further increases in Mg^  ̂

concentration appear to be inhibitory causing a decrease in enzyme activity. lOmM 

MgCl% was chosen for all subsequent assays.
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6.2.2 Investigating the importance of Magnesium in the assay

It was assumed that the HisIE enzyme would require the presence of a divalent 

cation such as magnesium to aid binding of the substrate PR-ATP. The amount of 

magnesium required for enzymatic activity was investigated using concentrations of 

ranging from 0~25mM. In the absence of Mg "̂ some residual enzyme activity was 

detected. This maybe the result of Mĝ '̂  already associated with the active site of the 

enzyme. The presence of increasing amounts ofMg^ " resulted in an increase in 

enzymatic activity until around 15mM, further increases in Mg^  ̂concentration did not 

present any significant advantage to increasing enzyme activity. At higher Mg^  ̂

concentrations the observed enzyme rate was seen to decrease. The presence of Mg^  ̂

is therefore essential for the catalytic activity of the enzyme. A Mg^^concentration of 

between 10 and 15mM gave the most consistent rates and therefore a concentration of 

lOmM MgCb was chosen for all subsequent assays (Figure 6.3).

6.2.3 Requirement of the Arabidopsis HisIE enzyme for Zinc

Following publication of the paper by D’Ordine et al., (1999) which identified 

that the monofimctional HisI enzyme from M  vannielli was a zinc containing métallo- 

enzyme, the enzyme requirement for zinc was investigated. The enzyme was dialysed 

against a buffer solution containing lOmM 1,10-phenanthroline (a zinc chelating 

agent), 50mM Tris HCl pH 7.5 and 0.4mM DTT. Samples of enzyme were removed at 

time points and assayed for the presence of enzyme activity. The enzyme activity 

decreased to less than 10% of the starting activity following dialysis for 60 minutes in 

the presence of 1, 10-phenantholine. Efforts were made to add zinc back to the enzyme 

with the hope of recovering some of the lost activity. It was not possible to recover 

enzyme activity by addition of zinc either in the assay buffer or by direct addition of
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ZnCb to the enzyme sample. It would appear that the Arabidopsis bifunctional HisIE 

enzyme is a zinc containing enzyme in the same manner as the monofunctional HisI 

enzyme from M. vannielli. The requirement for Zn̂  ̂ in the enzyme assay was 

investigated but it was found that addition of Zn̂  ̂to the assay buffer was inhibitory to 

the enzyme even at low levels. This was consistent with the data presented in the paper 

by D’Ordine et al., (1999) where the presence of 3-5pM free zinc strongly inhibited 

the enzyme. The conclusion was drawn that there was enough endogenous zinc 

associated with the enzyme itself or present as a contaminant within the existing assay 

buffer to supply the Zn^  ̂requirement for the enzyme.

6.2.4 Investigating the concentration of salt present in the enzyme assay.

The assay for phosphoribosyl ATP transferase had been used as a model for the 

development of an assay for the HisIE enzyme. The assay for phosphoribosyl ATP 

transferase contained 150mM KCl. In order to investigate if the HisIE enzyme required 

the presence of such high quantities of salt the enzyme activity was determined in the 

presence of salt concentrations ranging from 0-150mM KCl in the presence of lOmM 

MgCb. The presence of KCl had a small but significant effect on the assay. The 

presence of increasing concentrations of KCl led to a decrease in the activity of the 

enzyme. The highest activity was detected in the absence of KCl (Figure 6.4). All 

subsequent assays were carried out in the absence of KCl.

6.2.5 Investigation of the buffer concentration required for enzyme activity

The optimal buffer concentration for the enzyme assay was investigated using 

concentrations of Tris-HCl buffer pH 8.5 varying from O-lOOmM. In the absence of 

buffer no enzyme activity was detected. Enzyme activity increased sharply up to a
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Figure 6.4 Investigation of the effect of increasing concentrations of KCl in the 

HisIE enzyme assay

The enzyme was assayed in the presence of lOOmM Tris HCl pH 8.5 and lOmM 

MgClz at 25°C in a final volume of 1ml. The KCl concentration was varied from 0- 

ISOmM KCl. The highest enzyme activity was observed in the absence of KCl in the 

assay buffer. Increasing concentrations of KCl appeared to have a slight inhibitory 

effect on the activity of the enzyme as the rate of activity decreased with increasing salt 

concentration. The enzyme was therefore assayed in the absence of KCl.
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Figure 6.5 Determination of the concentration of buffer required for enzyme 

activity

The concentration of buffer in the experiment varied from O-lOOmM Tris HCl pH 8.5. 

lOmM MgCl] was present in all assays which were carried out in a final volume of 

1ml at 25°C. No activity was detected in the absence of buffer. Activity increased 

sharply until a concentration of 50mM Tris HCl pH 8.5. Further increases in buffer 

concentration did not cause further increases in enzyme activity. A concentration of 

50mM Tris HCl pH 8.5 was chosen for all subsequent experiments.
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concentration of 50inM Tris, further increases in buffer concentration did not 

produce an increase in the rate of enzyme activity. Therefore all subsequent assays 

were carried out in the presence of 50mM Tris HCl pH 8.5 (Figure 6.5).

6.2.6 Final assay conditions

The assay buffer used to detect the presence of HisIE activity was:

50mM Tris HCl pH 8.5, lOmM MgCl2 , PR-ATP was added to give the desired final 

substrate concentration.

The assays were carried out in a final volume of 1ml at 25°C.

6.3 Determining the K„, and of the Arabidopsis HisIE enzyme

6.3.1 Determining the

The Kin (Michaelis constant) for the Arabidopsis HisIE enzyme was 

determined using the assay described above, using three concentrations of enzyme 

and concentrations of PR-ATP in the range lO-lOOpM. The of an enzyme is 

equivalent to the substrate concentration at which half of the active sites contain 

substrate i.e. the rate of the enzyme catalysed reaction is half its maximal value 

(Stryer, 1988). The Km for the Arabidopsis HisIE enzyme wasl5p.M at pH 8.5 and 

25°C (Figure 6.6).

6.3.2 Determining kĉ t

The kcat (turnover number) for the Arabidopsis HisIE enzyme is calculated 

using the following equation;

V m ax k g  [ E t ]
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Figure 6.6 Determination of the of the Arabidopsis HisIE enzyme at pH 8.5

Double reciprocal plots of initial velocity versus [PR-ATP] at three concentrations of 

enzyme

All velocity measurements relate to the change in absorbance at 290nm and are plotted 

as the change in absorbance per minute. Substrate concentration ranged from 12.5- 

lOOpM

To calculate rate constants the change in absorbance was converted to concentrations 

using the difference in the extinction coefficient between substrate and product 

(4400Mr's ’) see page 49.
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where, V^ax is the maximum velocity, k] (kcat) the turnover number and [E^j the 

concentration of active sites. The enzyme concentration was determined using the 

Lowry method (Lowry et a/., 1951) and was carried out by Mr J. Greene. The turnover 

number is the number of substrate molecules converted into product by an enzyme 

molecule in a unit time where the enzyme is fully saturated with substrate (Stryer, 

1988). The kcat for the Arabidopsis enzyme was found to be 1.244 per second.

6.3.3 kcat / Km (catalytic efficiency)

The value for kcat / was 8.29 xlO^ s"̂

6.4 Determination of the Km in the presence of ATP

The set of enzyme assays used to determine the Km of the HisIE enzyme were 

repeated in the presence of varying concentrations of ATP to determine if ATP had an 

inhibitory affect on the enzyme. Concentrations of 0-lmM ATP were used (Figure 

6.7). The presence of ATP slightly altered the Km of the HisIE enzyme. It appeared to 

be a weak inhibitor of the enzyme. The result was not as dramatic as would have been 

predicted considering that the enzyme substrate PR-ATP contains an ATP molecule 

as a significant part of its structure. It would be useful to repeat this experiment to 

double check the results of this experiment. The presence of ImM ATP raised the Km 

of the enzyme from 15 to 22 pM.

6.4.1 Calculation of Kj for ATP

Ki was determined from a secondary plot of the gradients of each line in the 

presence of varying concentrations of inhibitor and was calculated as 1.65mM.
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OmM ATP 
0.25mM ATP 
0.5mM ATP 
1mM ATP

2 0 -

1 5 -

5 -

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

1/[S] (nM)

Figure 6.7 Determining the effect of ATP on the activity of the HisIE enzyme

Double reciprocal plot of initial velocity versus [PR-ATP] in the presence of differing 

concentrations of ATP

All velocity measurements relate to the change in absorbance at 290nm per minute. 

6pg of HisIE enzyme was present in all assays. Substrate concentration in the enzyme 

assays ranged from 12.5 to SOpM PR-ATP.
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6.5 Chemical modification of HisIE enzyme

Chemical modification is a technique used to identify residues of functional 

importance within a protein. There are a number of reagents which target specific 

groups or side chains of amino acids. Treatment of a protein with these reagents may 

result in the loss of enzymatic activity if the modified residue is involved in catalysis 

or binding. The loss of enzymatic activity may not always be due to modification of a 

residue involved with the active site, it is possible that steric hindrance of the active 

site may occur by the modification of a surface residue or through a conformational 

change brought about through the covalent attachment of the modifying group. Thus 

chemical modification can be used as a tool to identify residues which may be of 

potential importance within a protein. In order to fuither identify the function of a 

modified residue it is essential to use other techniques such as site directed 

mutagenesis to confirm the function of the residue.

6.5.1 Chemical modification with diethylpyrocarbonate (DEPC)

DEPC is reagent used for the selective modification of histidine residues 

(Lundblad and Noyes, 1984), The reaction between DEPC and histidine residues 

yields N-carbethoxyhistidine through the reaction with one of the imidazole nitrogens 

of histidine. The reaction can be reversed by the addition of hydroxylamine which 

results in the recovery of the histidine. The formation of carbethoxyhistidine can be 

monitored by the increase in absorbance at 237-242nm. The number of residues 

which have been modified can be calculated using the molar absorption difference 

(Ab240 = 3200M‘‘ cm"'; Miles, 1977),

One difficulty with using DEPC is the instability of the reagent in aqueous 

solution. The half life of DEPC under the normal assay conditions for the HisIE
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enzyme is very short, such that within a matter of minutes the DEPC would be almost 

destroyed. In the presence of Tris-chloride at 25°C and pH 8.2 DEPC has a half life of 

0.37 minutes. The half life of DEPC in 60mM sodium phosphate buffer pH 6 at 25°C 

is 24 minutes (Miles, 1977). The stability of the reagent DEPC is highly variable 

depending on the type of buffer as well as pH.

6.6 Treatment of the HisDE protein with DEPC

In order to investigate the effect of DEPC on the HisIE protein it was first 

essential to find a new buffer which could be used to assay the enzyme. The HisIE 

enzyme is normally assayed in the presence of Tris buffer. Unfortunately because of 

the reactivity of the primary amino group Tris buffers are not suitable for studying 

reactions involving DEPC. Therefore a number of different buffers were investigated 

to find a buffer which was compatible with the HisIE enzyme. The following buffers 

were investigated; lOmM potassium acetate pH 6.2, lOmM potassium phosphate pH

7.2 and lOmM sodium borate pH 8.5. The enzyme was incubated at 25°C in the 

presence of each buffer and the activity was monitored by removing aliquots of 

enzyme and assaying over a 10 minute period. A control containing the normal assay 

conditions for the HisIE enzyme was used for comparison. The potassium phosphate 

buffer produced a profile which was similar to that of the Tris buffer. The enzyme 

was inactivated more rapidly in the presence of potassium acetate buffer and very 

rapidly in the presence of the sodium borate buffer. All chemical modification 

experiments were therefore carried out using the following assay buffer; 

lOmM potassium phosphate pH 7.2, lOmM MgCb, PR-ATP 

Assays were carried out in a final volume of 1ml at 25°C.
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6.6.1 Kinetics of DEPC inactivation of the HisIE enzyme

Incubation of the HisIE enzyme with DEPC results in the rapid loss of 

enzymatic activity. The fraction of activity remaining was calculated as the 

percentage of activity remaining (A/Ao, where A is the activity at a specific time and 

Ao is the initial activity). The percentage activity remaining was plotted against time 

(Figure 6 .8 ). This was carried out for a number of different concentrations of DEPC. 

Concentrations as low as 50|LiM DEPC resulted in a 40% loss of activity within 4 

minutes. The inactivation with DEPC shows pseudo first order kinetics over the first 

few minutes of the time course. The rate of enzyme inactivation is dependent on the 

DEPC concentration. It was possible to estimate the half time of inactivation at a 

number of different concentrations from the pseudo first order plot (Figure 6 .8 ) see 

Table 6.1. The half life of inactivation is the time at which the enzyme activity has 

decreased to half the initial value. Thus;

t i/j = ln2 / kobs

The pseudo first order rate constant for inactivation (kobs) can be calculated as 

follows;

kobs "0.693/1 14

The second order rate constant of inactivation can be calculated by plotting 

the first order rate constant (kobs/min) against concentration of DEPC [DEPC]. (Figure 

6.9). The gradient of the plot is the second order rate constant. The second order rate 

constant of inactivation is 2500M'^min‘\
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[DEPC] pM t % (min) kobs/min

25 10.75 0.064

50 5.5 0.126

75 4.25 0.163

100 1.75 0.396

Table 6.1 Half life (t %) and first-order inactivation rate constant (kobs) for the 

inactivation of Arabidopsis HisIE at varying concentrations of DEPC
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Figure 6.8 Inactivation of HisIE with DEPC

HisIE enzyme (13.4|iM) was incubated with increasing concentrations of DEPC in 

lOmM potassium phosphate buffer pH 7.2 at 25°C. Aliquots were removed at various 

time points and the activity determined. The activity, adjusted for the observed activity 

changes in the control, is plotted as the percentage of A290 activity remaining on a 

logarithmic scale. The concentrations of DEPC used were,

•  25pM DEPC, A  50pM DEPC, ♦  75pM DEPC, *  lOOpM DEPC

The same profile of inactivation is observed if the A260 values are plotted.

147



Chapter 6

0.4 -
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80 100600 20 40
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Figure 6.9 Determination of the second order rate constant of inactivation

The gradient of this line, calculated to be 2500M"  ̂min'^ is the second order rate 

constant (k) of inactivation.

The reaction in the presence of lOOpM DEPC is very fast and it is difficult to 

determine the slope and the half life of the reaction, and so this data point cannot be 

plotted with the other data.

148



Chapter 6

100

O)

0 2 4 6 8 10

time (min)

Figure 6.10 Substrate protection of HisIE against inactivation by DEPC- pseudo 

first order plot

HisIE enzyme (13.4pM) was incubated with lOO^M DEPC and increasing 

concentrations of substrate to determine if protection against inactivation could be 

achieved. Enzyme was incubated in lOmM potassium phosphate buffer pH 7.2 at 

25°C. Aliquots were removed at various time points and the activity determined. The 

activity, adjusted for the observed activity changes in the control, is plotted as the 

percentage of A290 activity remaining on a logarithmic scale. The concentrations of 

substrate used were,

■  400pM PR-ATP, •  200pM PR-ATP, A  lOOpM PR-ATP, ▼ 50pM PR-ATP,

♦  OpM PR-ATP

A similar profile of inactivation is observed if the A260 values are plotted.
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6.7 Substrate protection against DEPC inactivation

The presence of enzyme substrate may provide a means of protecting an 

enzyme from inactivation. If inactivation is the result of modification of an active site 

residue, the presence of substrate in the active site may prevent or slow this 

inactivation. As DEPC proved to be a very good reagent for inactivation the 

experiments were repeated in the presence of varying concentrations of PR-ATP to 

test if substrate was able to provide protection. The substrate concentrations used in 

protection experiments ranged from 50-400|LiM PR-ATP; the concentration of DEPC 

used in each case was lOOpM (Figure 6.10). The presence of PR-ATP did provide 

some protection against inactivation but only in the presence of relatively high 

amounts. The percentage protection offered by the presence of substrate was 

calculated and is shown in Table 6.2. The K* value was determined as 175pM at pH

7.2 (Figure 6.11). The Kg is approximately 10 times the for the enzyme and may 

be the result of hydrolysis of substrate to product, allowing the product to provide 

protection.

[Substrate] pM ti/2 (min) kobs/nain % protection

0 1.75 0.396 none

50 1.75 0.396 none

100 4.4 0.1575 60

200 5.6 0.123 69

400 8.1 0.0855 78.4

Table 6.2 Effect of substrate concentration on Inactivation of HisIE by DEPC
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[PR-ATP] nM 

Figure 6.11 Determination of for PR-ATP

The half life of the enzyme as calculated in Figure 6.10 was plotted against the 

concentration of PR-ATP. From the intercept the K, value is 175pM.

The Kg value is 10 times the calculated of the enzyme. The hydrolysis of substrate 

to product may be occurring and it is the available product which is providing 

protection against inactivation.
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6.8 Identification of the modified histidine residues

There are two histidine residues in the Arabidopsis HisIE protein. This work 

demonstrates that the histidine-directed reagent DEPC inactivates the enzyme rapidly 

and suggests that, because substrate affords some protection against inactivation, one 

or both of the histidines may have a role in the enzyme activity. The difference 

spectrum of DEPC modified HisIE and untreated enzyme shows an absorbtion 

maximum at 239nm, which is characteristic of the carbéthoxylation of histidine 

residues (Miles, 1977). Due to the rapid inactivation (more than 10 times that observed 

for the type I dehydroquinases, Deka et al., 1992, Moore et a l, 1993) it was difficult 

to establish the stochiometry of the reaction by direct observation of the change in

absorbance at 240nm. Indications are that one molecule of DEPC reacts with one 

molecule of protein as calculated using the extinction coefficient for the reaction 

(Ae240 = 3200MT^cm' ;̂ Miles, 1977). It was also not possible to use mass 

spectrometry to determine whether one or both histidine residues were being modified 

because the bond between DEPC and histidine residues is very labile and as a result it 

is not possible to determine the sites of modification after proteolytic cleavage. It has 

also been shown that modification with DEPC is not completely specific for histidine 

residues for example Krell et a l, 1998 showed that DEPC modification of Shikimate 

dehydrogenase resulted in more modified species than there were histidine residues in 

the protein. Both residues are well conserved across a number of different species. 

Histidine 146 in domain 1 (the HisI domain) is absolutely conserved across all species. 

Histidine 245 in domain 2 (the HisE domain) is conserved apart from a few of the 

fungal species, where in this case this residue is substituted with a phenylalanine 

residue (refer to Figure 3.2). To confirm whether the histidine residues were essential 

for activity site directed mutagenesis was carried out (see Chapter 7).
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6.9 Chemical modification of the HisIE protein with TNBS

TNBS is a reagent used for the selective modification of lysine residues 

(Lundblad and Noyes, 1984). Modification with TNBS can be followed by spectral 

analysis at 420 or 367nm (Lundblad and Noyes, 1984).

6.9.1 Treatment of the HisIE enzyme with TNBS

The HisIE enzyme was incubated in the presence of 1 OmM potassium 

phosphate pH 7.2 , lOmM MgCb and PR-ATP in a final volume of 1ml at 25°C for the 

modification experiments with TNBS.

6.9.2 Kinetics of TNBS inactivation of the HisIE enzyme

The incubation of the HisIE enzyme with TNBS resulted in the rapid loss of 

enzymatic activity. The concentration of TNBS used in the experiments ranged from 

0.1-lmM.The percentage activity remaining was calculated and was plotted against 

time (Figure 6.12). Incubation with 0.5mM TNBS resulted in the loss of 50% of the 

starting activity within 6.5 minutes. The inactivation with TNBS shows pseudo first 

order kinetics over the first few minutes of the time course. The rate of inactivation 

was dependent on the TNBS concentration (Figure 6.12)and the half times of 

inactivation at a number of different concentrations were estimated from the pseudo 

first order plot (Figure 6.12, Table 6.3). The second order rate constant was calculated 

by plotting the first order rate constant (kobs/min) against concentration of TNBS. A 

value of 210M'Wn'^ was obtained.
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Figure 6.12 Inactivation of HisIE with TNBS

HisIE enzyme was incubated with increasing concentrations o f TNBS in lOmM 

potassium phosphate buffer pH 7.2 at 25C. Aliquots were removed at various time 

points and the activity determined. The activity is plotted as the percentage activity 

remaining on a logarithmic scale. The concentrations of TNBS used in the experiments

were.

O.lmM TNBS, •  O.SmM TNBS, A ImM TNBS.

The lines have been corrected for the observed activity changes in the control.
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[TNBSJmM ti/2 (min) kobs/min -

0.1 10.4 0.066

0.5 6.5 0.11

1 3.3 0.21 :

:

Table 6.3 Half life (ti/2) and first order inactivation rate constant kobs/min for the 

inactivation of the Arabidopsis HisDE enzyme at varying concentrations of TNBS
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[TNBS]

Figure 6.13 Determination of the second order rate constant of inactivation

The gradient of this line, calculated to be 210M"^min  ̂ is the second order rate constant 

(k) of inactivation.
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6.9.3 Substrate protection against TNBS inactivation

The TNBS modification experiments were repeated in the presence of varying 

concentrations of PR-ATP to test if substrate was able to provide protection against 

inactivation. The substrate concentrations in the protection experiments ranged from 

0-400pM PR-ATP; the concentration of TNBS in each case was ImM. The presence 

of PR-ATP did provide protection against inactivation. It was observed however that 

increasing the concentration of PR-ATP in the incubation mixture resulted in a more 

rapid inactivation of the HisIE enzyme (Figure 6.14). The implication of this result is 

that substrate binding makes the reactive side chains on the enzyme more susceptible 

to chemical modification. Also that the key site of modification that leads to 

inactivation is not within the substrate binding pocket.

6.9.4 AMP protection against TNBS inactivation

Since PR-ATP was able to provide protection against inactivation but only at 

lower concentrations, attempts were made to identify other molecules which might 

protect the enzyme from inactivation. The product of the HisIE enzyme is not 

commercially available and it was not an objective of this project to synthesise and 

purify this molecule. The product of the HisIE enzyme contains an AMP molecule as 

part of its structure, therefore it seemed logical to test if AMP was able to provide 

protection against inactivation. The concentrations of AMP in the experiments ranged 

from 0-2mM. TNBS was used at a concentration of ImM for all experiments (Figure 

6.15) The presence of AMP was able to provide protection against inactivation with 

TNBS. The percentage protection offered by the presence of AMP was calculated and 

is shown in Table 6.4. The Ks value for AMP was determined as 0.37mM at pH 7.2 

and 25°C (Figure 6.16)
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Figure 6.14 Substrate protection of HisIE against inactivation by TNBS

HisIE enzyme was incubated with ImM TNBS and increasing concentrations of PR- 

ATP to determine if protection against inactivation could be achieved. The enzyme 

was incubated in lOmM potassium phosphate buffer pH 7.2 at 25°C. Aliquots were 

removed at various time points and the activity determined. The activity is plotted as 

percentage of activity remaining on a logarithmic scale. The concentrations of PR-ATP 

used were,

■  OpM PR-ATP, e  200pM PR-ATP, A 400pM PR-ATP 

Adjusted for the observed activity changes in the control.
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Figure 6,15 AMP protection of HisIE against inactivation by TNBS

HisIE enzyme was incubated with ImM TNBS and increasing concentrations of AMP 

to determine if protection against inactivation could be achieved. The enzyme was 

incubated in lOmM potassium phosphate buffer pH 7.2 at 25°C. Aliquots were 

removed at various time points and the activity determined. The activity is plotted as 

percentage of activity remaining on a logarithmic scale. The concentrations of AMP 

used were,

■  2mM AMP, e  ImM AMP, ▲ O.SmM AMP, T OmM AMP 

Adjusted for the observed activity changes in the control.
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[AMP] tl/2 kobs/min % protection

0 3.3 0.21 none -

1
0.5 7.8 0.089 58 -

1 12.4 0.056 73
,

2 31 0.022 90

Table 6.4 Effect of AMP concentration on inactivation of HisIE by TNBS
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Figure 6.16 Determination of K* for AMP

The half life of the enzyme as calculated in Figure 6.15 was plotted against the 

concentration of AMP. From the intercept the K* value is 0,37mM,
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Site directed mutagenesis of two conserved histidine 

residues and kinetic analysis of both mutants
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7.1 Introduction

The work described in Chapter 6 indicated that one or more histidine residues 

may be involved in the catalytic activity of the HisIE enzyme. There are two histidine 

residues within the Arabidopsis HisDE protein. Histidine 146 and Histidine 245 

(numbered according to the full len^h. Arabidopsis hisDE sequence, Figure 3.1).

His 146 is absolutely conserved across all known species, whereas His245 is conserved 

in most species with the exception of a few of the fungal species. At the time of 

carrying out the chemical modification experiments it was impossible to determine 

which histidine residue was modified by DEPC. A site directed mutagenesis strategy 

was applied in order to mutate each of these residues to allow the two histidine 

residues to be studied independently and to identify the key residue involved in enzyme 

activity.

7.2 Site directed mutagenesis strategy

A PCR based approach was used to engineer the mutations into the hisEE 

cDNA. Oligonucleotides were designed containing the desired codon changes to allow 

the substitution of an alanine residue for both histidine residues. The oligonucleotides 

used for mutagenesis are given in Table 7.1. The PCR strategy was performed in two 

steps. The first step was to generate two fragments of the hisfE cDNA each containing 

the mutation. The second step of the PCR strategy was to join these two fragments 

together to generate a fijll length cDNA (Figure 7.1).

7.2.1 First round of PCR

Using the oligonucleotides described in Table 7.1 the first round of PCR was 

carried out as described in section 2.6.2. Both mutants were made independently at
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Figure 7.1 Strategy for site directed mutagenesis of hislE cDNA.

a) First round of PCR generates 2 fragments containing the desired mutation

b) Use of the two smaller PCR fragments as the template for the second round of PCR

c) Second round of PCR generating full length PCR product containing the required 

mutation
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1.200
1.000

Figure 7.2 Agarose gel showing the analysis of DNA fragments produced from 

the first round of site directed mutagenesis

Markers (Fragment sizes are given in bp)

Lane 1 HI46A 5’ fragment 

Lane 2 HI46A 3’ fragment 

Lane 3 H245A 5’ fragment 

Lane 4 H245A 3’ fragment 

Lane 5 Control (short HisIE construct)

1% agarose gel in TBE buffer containing O.Spg/ml ethidium bromide
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Figure 7.3 Agarose gel showing the fragments of DNA produced during the

second round of PCR

Markers (Fragment sizes are given in bp)

Lane 1 HI46A 5’ and 3’ fragments 

Lane 2 HI46A 5’ and 3’ fragments 

Lane 3 H245A 5’ and 3’ fragments 

Lane 4 H245A 5’ and 3’ fragments 

Lane 5 Control (short HisIE construct)

Lane 6 Control fragment from first round of PCR

1% agaorose gel in TBE buffer containing 0.5g/ml ethidium bromide.
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the same time. The products from the PCR reaction were analysed on a 1% agarose 

gel (containing ethidium bromide). Fragments of the appropriate size were visible 

when viewed under UV light (Figure 7.2). The two smaller fragments for each mutant 

were purified and used as the template for the second round of PCR.

7.2.2 Second round of PCR

The second round of PCR was again carried out as described in section 2.6.2 

using the two smaller fragments as templates. Again the PCR products were analysed 

by gel electrophoresis and bands of the appropriate size were observed under UV light 

(Figure 7.3). Each full length PCR product was purified using the Wizard'^^ PCR 

clean kit (sections 2.6.3 and Chapter2, Appendix IV). The purified DNA was then 

ligated into an expression vector.

7.3 Cloning of the mutant hisIE cDNAs

The mutant cDNAs were cloned using the strategy described in Chapter 3 for 

the cloning of the wild type cDNA. The fragments of DNA were cloned into the T7 

expression vector pTB361 (Brockbank & Barth, 1993), Following transformation of 

competent cells with the ligation reactions a number of colonies were observed on the 

plates. Plasmid DNA was prepared from several of these clones and was subjected to 

restriction analysis to identify the presence of an insert of the appropriate size. Several 

clones were found to contain an insert of the appropriate size. The data from the 

cloning experiments is described in Table 7.2. Those clones containing an insert of 

the appropriate size were sequenced to ensure that the required mutations had been 

incorporated and to ensure that no other mutations had been incorporated during the 

PCR mutagenesis.
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Clone Insert Complements Expression Sequence

Hisl-4 yes yes yes yes- OK

Hisl-5 yes

Hisl-6 yes no yes no

Hisl-7 yes

Hisl-8 yes

His 1-9 yes yes yes no-frameshift

Hisl-11 yes yes yes no-frameshifl

His2-3 yes yes yes no

His2-4 no

His2-5 yes yes yes no-ffameshift

His2-6 yes yes yes

His2-7 no

His2-8 yes yes yes yes-OK

His2-9 yes

His2-10 yes

Table 7.2 hisIE mutant clones

The clones His 1-4 and His2-8 were used for all future experiments and from now on 

will be referred to as H I46A and H245A.
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on an S-200 column.

'

7.4 Overexpression studies of HisIE mutants

Those clones containing an insert were transformed into the expression host 

BL21(DE3)pLysS (Moffatt & Studier, 1987) to determine if they were able to express 

a mutant protein. The small scale expression analysis was carried out as described in 

section 2.7.1. Analysis by SDS-PAGE revealed that all of the chosen mutants were 

able to express a band of protein of the appropriate size when induced with IPTG.

Although there was approximately 30% expression of the wild type construct in this 

host strain, the mutants did not overexpress the mutant protein to the same extent as 

the wild type. Best estimates are that the protein has been overexpressed to between 

15 and 20% of total cell protein. Samples were removed for further analysis by SDS 

PAGE and for assays to determine if there was HisIE activity present. It was not 

possible to express either of the mutants in the E. coli hisIE mutant strain UTH903 

(Goldschmidt et al; 1970) since it did not contain a natural T7 RNA polymerase. It 

was not possible to introduce the T7 gene using a bacteriophage vector as the mutant 

strain failed to express the maltose binding receptor thus making the strain A, resistant.

For this reason and in order to ensure continuity between the mutants and the wild 

type both mutants were expressed and purified from E. coli BL21(DE3)pLysS.

7.5 Purification of the HisIE mutant proteins

Both mutants were purified as described in Chapter 4 using the DEAE
■'i

Sephacel column followed by a Phenyl Sepharose column and finally by gel filtration
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M
97.4 

66.2

I * » ' " ' »    ........ .

45
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21.5

14.4

. ,. ,.i

Figure 7.4 SDS Page gel showing the purification of the HisIE H146A mutant 

protein

Markers (molecular weights are given alongside the gel photograph in kDa)

Lane 1 Crude extract (20 pg total protein)

Lane 2 DEAE pool (lOpg total protein)

Lane 3 Phenyl Sepharose pool (5pg total protein)

Lane 4 S-200 pool (5pg total protein)

The faint bands present below the main band at 31 kDa are believed to be degradation/ 

proteolytic fragments o f the HisIE protein.

A 15% acrylamide gel was run at room temperature and stained with Coomassie blue 

(section 2.7.3).
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7,6 Characterisation of the HisIE mutant proteins

Following purification of the mutant HisIE proteins the Km and the kcai of each 

mutant was determined. These are detailed in Table 7.5.

1
Î

Enzyme Km(pM) kcat (per second) k,„,/K„,(M*'s')

Wild type 15 1.24 8.3 X 10"

H I46A mutant 7.69 0.43 5.59 X  10"

H245A mutant 15 2.75 1.83x10^

Table 7.5 Comparison of kcat and Km of wild type and histidine to alanine 

mutants of the Arabidopsis HisIE protein

7.6.1 Comparison of the H146A mutant with wild type enzyme

The Km of the mutant enzyme, HI 46 A, is approximately half that of the wild 

type enzyme (Figure 7.5, Table 7.5). This would indicate that the mutant enzyme has a 

stronger affinity for the substrate PR-ATP than the wild type enzyme. The mutation of 

the His 146 to Alanine may have removed some sort of steric hindrance that now 

enables the PR-ATP to fit more tightly into the active site. The kcat of the H146A 

mutant enzyme is approximately 3 fold lower than the wild type enzyme indicating that 

the efficiency of catalysis has been impaired. Since the effect on kcat of removing the 

imidazole side chain of HI 46 is relatively small it is very unlikely that this residue is 

directly involved in the catalytic mechanism. More likely H I46 may have a role in
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Figure 7.5 Determination of the K„, of the H146A mutant of the HisIE protein

Double reciprocal plot of initial velocity versus [PR-ATP] at three concentrations o f 

enzyme

All measurements relate to the change in absorbance at 290nm. Velocity is plotted as 

change in absorbance per minute. Substrate concentration in the enzyme assays ranged 

from 5 to 50pM
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Figure 7.6 Determination of the Kn, of the H245A mutant of the HisIE protein

Double reciprocal plot of initial velocity versus [PR-ATP] at three concentrations of 

enzyme

All measurements relate to the change in absorbance at 290nm. Velocity is plotted as 

change in absorbance per minute. Substrate concentration in the enzyme assays ranged 

from 12.5 to 100fj.M PR-ATP.
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maintaining the structural integrity of the active site, for example through the 

formation of a hydrogen bond.

7.6.2 Comparison of the H245A mutant with wild type enzyme

The Km of the mutant enzyme, H245A, is the same as the wild type enzyme 

while the kcat is twice that of the wild type enzyme (Figure 7.6, Table 7.5). Thus the 

catalytic activity of the HisIE enzyme has been slightly improved by removing His245 

and substituting it with an alanine residue. This residue is present within the second 

domain of the HisIE protein. This domain is responsible for the hydrolysis of the 

pyrophosphate moiety. H245 is not absolutely conserved, for example in fungal species

it is substituted by a phenylalanine residue. These data strongly suggest that H245 is 

not essential for the catalytic activity of the enzyme.

One possible explanation for the increase in activity of the H245 mutant is that 

H245 is in some way blocking the active site and by substituting it with a smaller 

residue such as alanine this steric hindrance is reduced and the substrate can enter the 

active site more readily. The fact that this residue is clearly conserved across most 

species indicates that it must have a role of some sort perhaps an ancient fonction 

which has now become obsolete.

One theory is that the histidine residue may have a role in controlling access to 

the active site. Experiments to test if ATP acted in a competitive manner against both 

mutants indicated that the ATP is a stronger competitive inhibitor for the H245A 

mutant than for the wild type enzyme. The Km of the H245A mutant in the presence of 

ImM ATP is 38pM compared to 22pM for the wild type enzyme. The H245 may 

partially block the active site of the enzyme restricting access by the substrate but also 

reducing access to nucleotides such as ATP. A mechanism such as this could prove to

:l
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be important due to the relatively high concentrations of nucleotides within the cell. 

As the metabolic substrates for the histidine biosynthetic enzymes such as HisIE are 

relatively scarce the enzyme has to maximise the potential of substrate binding and
..i

prevent blocking of the active site with ATP etc. This explanation is also consistent 

with the chemical modification results. Addition of a DEPC group to the histidine 

side chain would very substantially block the active site of the enzyme. This steric 

effect, rather than the modification of the catalytic properties of the histidine side
1

chain, may account for the inactivation observed with DEPC.

7.7 Determination of the molecular weight of the H I46A and H245A mutants 

under native and high salt conditions

The molecular weight of both mutants was determined under low and high salt 

conditions using the S-200 gel filtration column. The H245A mutant was present as a 

dimer under both low and high salt conditions with a calculated molecular weight of 

63kDa. The HI46A was present as a dimer under native low salt conditions and as a 

monomer under high salt conditions suggesting that H146 is involved in the 

interaction of the two subunits.

7.8 Mass spectroscopy analysis of HisIE mutant proteins

Electrospray mass spectrometry of the purified HI46A and H245A proteins 

was carried out by Dr K. Lilley, University of Leicester. Both mutant enzymes had 

molecular weights lower than the wild type enzyme (see plOl). The predicted 

molecular weight was 26,792 and the observed molecular weights were 26,814 

(H146A) and 26815 (H245A). As with the measurements on the wild type enzyme
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there were difficulties with the instrument calibration and further experiments will be 

necessary to confirm the molecular weight.
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8.1 Discussion of Results

The cDNA encoding the bifunctional second enzyme of histidine biosynthesis 

was the only cDNA which was cloned by complementation of the E. coli auxotrophic 

mutants (Chapter 3). Although complementation of the hisG and hisA mutants was 

observed on the first round of screening, subsequent investigation of the isolated 

plasmid DNA revealed that the insert in these clones contained the identical sequence 

to that isolated for the hisEE cDNA. One possible explanation is that since the histidine 

auxotrophic mutants have not been fully characterised, the possibility remains that both 

the hisG and hisA mutants are hisIE mutants. This may be the reason why 

complementation was so readily achieved with the hisIE cDNA. It was only possible to 

show that the E. coli mutants were auxotrophic for histidine by growing on minimal 

media in the presence or absence of histidine. If the other intermediates in the pathway 

had been available it may have been possible to confirm the auxotrophy for each of the 

mutants by growing in the presence or absence of these compounds. Once the other 

intermediates of the pathway have been isolated it would be sensible to characterise the 

auxotrophy of each E. coli mutant. The cDNA for the third enzyme of the pathway 

was isolated by complementation of the hisA mutant by Fujimori et al., (1998) which 

suggests that this was a valid method for isolation and cloning of cDNA’s from 

Arabidopsis and that the hisA mutant was auxotrophic for the correct gene.

Analysis of the hisIE cDNA from this work (Chapter 3) as well as the work of 

Fujimori and Ohta, (1998"*) suggests that the HisIE protein is a bifunctional protein, 

containing two separate domains which are responsible for catalysing the second and 

third steps of histidine biosynthesis. The presence of an N-terminal chloroplastic 

targeting sequence indicates that the pathway takes place within the chloroplast. This is 

in agreement with studies on other liistidine biosynthetic enzymes isolated from plants
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of 1.244 per second. Previous experiments on the histidinol dehydrogenase from 

cabbage determined a Km of llpM  for histidinol (Nagai et al 1992^). These Km values

which suggest that the enzymes are also targeted to the chloroplast (Tada et a l, 1994,

Nagai et a l, 1992 ,̂ El Maliki et ah, 1998).

An overexpression construct expressing a truncated HisIE protein fr’om which 

the chloroplast targeting sequence had been removed was generated and permitted the 

overexpression of active HisIE protein to approximately 30% total cell protein. This 

provided large quantities of material for the purification of homogeneous HisIE 

protein by a novel method (Chapter 4), Homogeneous protein was obtained using 

three chromatographic steps (ion exchange, hydrophobic interaction and gel filtration 

chromatography).

In order to characterise the bifrmctional plant enzyme, a key part of this project 

was the generation of the enzyme substrate PR-ATF (Chapter 5). The chemical nature 

of the PR-ATP molecule provided a challenge for the generation and purification of 

material suitable for kinetic analysis. The molecule is intimsically unstable under 

certain conditions. Extreme conditions such as temperature or pH cause the molecule 

to breakdown to phosphoribose and ATP. This presented a significant problem when 

attempting to isolate pure material for kinetic analysis. Establishing the correct buffer 

conditions for chromatography and freeze diying was essential for keeping the 

procedure for generating PR-ATP as short as possible in order to minimise any 

breakdown. A simplified protocol for the generation and purification of PR-ATP has 

been developed. Significant quantities of PR-ATP can be purified using an ion 

exchange step followed by freeze drying to remove the residual buffer leaving behind 

pure PR-ATP.

Initial characterisation of the HisIE enzyme revealed a Km of ISpM and a kcat I

i:
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are typical of low abundance biosynthetic enzymes. The substrates for biosynthetic 

enzymes are likely to be present in tiny amounts within the cell and therefore the 

enzymes need to be highly efficient at binding any available substrate. ATP acts as a 

weak inhibitor of the HisIE enzyme which is surprising, considering that ATP forms a 

large part of the substrate molecule. The K, for ATP was calculated as 1.65mM. The 

ratio of ATP to PR-ATP within the plant cell will be very high and it would be logical 

to suggest that the enzyme must have a way of reducing the inhibitory effect of ATP in 

order that it can bind any available PR-ATP. Inactivation experiments with DEPC 

suggested that a histidine residue was important for enzyme activity. Enzyme activity 

was lost very rapidly in the presence of micromolar concentrations of DEPC. Analysis 

of the change in absorbance at 240nm suggests that one DEPC molecule is 

incorporated per molecule of protein although it is not possible to determine which 

residue is modified. The presence of relatively high concentrations of PR-ATP was 

able to provide some protection against inactivation which suggested that the 

modification was affecting the active site or the surrounding area (binding pocket). Site 

directed mutagenesis of the two highly conserved histidine residues present within the 

HisIE protein was carried out and the mutant proteins overexpressed and purified in 

the same manner as for the wild type enzyme (Chapter 7). Characterisation of the two 

mutant proteins and comparison of the K,n and kcat values (Table 7.5) would suggest 

that neither of the histidine residues are catalytic. There is only a two or three fold 

difference in the values for K,n and kcat for the wild type and mutant proteins. If a key 

catalytic residue had been affected we would expect a difference in kcat of greater than 

a thousand fold. Clearly these residues are important to the activity of the HisIE 

protein due to their high degree of conservation across a number of species as well as 

the effect they have on enzyme activity when they are substituted by another residue.
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The histidine residues may have role in maintaining the structural integrity of the #

protein molecule by forming a key interaction such as a salt bridge or hydrogen bond.

Evidence to substantiate this could be the lack of enzyme activity observed below pH 

7 (section 6.2.1 and Figure 6.2) which may be the result of a histidine residue 

becoming protonated under acidic conditions thus resulting in the loss of hydrogen 

bonding potential and the destruction of a key hydrogen bond.

The HisIE mutant H245A has a kcat which is two fold higher than the wild 

type. This would indicate that the enzyme is more active and one reason for this is 

that by substituting histidine with alanine, we have removed steric hindrance around 

the active site allowing the substrate greater access. This data correlates with the 

DEPC modification experiments in which the rapid loss of enzyme activity may be 

the result of DEPC modifying a histidine residue close to the active site and merely 

obstructing the active site rather than affecting a catalytic residue. Experiments to 

determine if ATP was acting in a competitive manner against both histidine mutant 

proteins, indicated that ATP is a stronger inhibitor of the H245A mutant compared to 

the wild type enzyme. The presence of H245 at the entrance to the active site may be 

a mechanism for preventing ATP and other nucleotide molecules from binding to the 

active site. The HisIE enzyme has to maximise the binding of the relatively scarce 

substrate PR-ATP and prevent blocking of the active site with ATP etc. This would be 

a very important mechanism due to the high concentration of ATP within the 

chloroplast.

The molecular weights of the wild type and mutant proteins were determined 

by gel filtration chromatography on an S-200 column. The wild type HisIE protein 

appears to be a dimer under both native and high salt conditions, suggesting that there 

is a strong interaction between the two subunits. This correlates with work by
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D’Ordine et a l, (1999) on the monofunctional HisI protein fromM vannielU which 

indicates that this protein is also a dimer. The H245 mutant HisIE protein is also a 

dimer under native and high salt conditions. The H I46 mutant protein however is a 

dimer under native gel filtration conditions but is present as a monomer in the presence 

of high salt. This would suggest that HI 46 is involved in the interaction of the two 

subunits.

8.2 Further work on the Arabidopsis HisIE enzyme

Following initial characterisation of the enzyme, there are a number of other 

experiments which are essential to furthering the knowledge of this enzyme. The 

chemical modification experiments with TNBS appear to indicate that a lysine or a 

cysteine residue may be important for the activity of the enzyme, most probably at a 

structural level rather than a mechanistic one. There are 15 lysines and 5 cysteine 

residues within the HisIE protein, with 3 cysteines and 3 lysines conserved across all 

species. Further experiments to identify which residue is modified would be a good 

idea before starting site directed mutagenesis in order to limit the number of mutants to 

be made and characterised. Identification of active site residues will be important, in 

order to determine the mechanism of the enzyme.

As the enzyme is bifunctional, this may pose a few problems in determining the 

mechanism of the enzyme. The first step will be to determine which reaction occurs 

first; removal of the pyrophosphate group or the hydrolysis of the purine ring. It may 

be possible to use rapid reaction techniques to study the enzyme but it is likely that the 

generation of protein that has either activity completely knocked out, will be required 

for this process. This requires identification of key residues involved in the mechanism 

which could then be mutated or expression of the two individual protein domains.

185



Chapter 8

A key step towards identifying the important catalytic residues is the 

determination of the crystal structure of the enzyme. Small crystals of the HisIE 

enzyme have been obtained by Mr B. Lohkamp, Division of Biochemistry and 

Molecular Biology, Glasgow University. Further work will be required in order to 

obtain larger crystals that can be used for X-ray diffraction and data collection. A 

crystal structure would allow identification of key residues which are likely to be 

involved in substrate binding as well as those residues that are likely to be involved in 

catalysis. This will aid the full characterisation of the enzyme and ultimately 

determination of the mechanism.

By using structure based drug design, it may be possible to synthesise potential 

inhibitors of this enzyme which may act as herbicides/ antibiotics.

186

8.3 Future Research

A key area of importance for future research will be to understand how the 

expression of the genes for the histidine biosynthetic enzymes is regulated. In bacterial 

systems, the genes encoding the enzymes are present in an operon which can be 

regulated by a number of different factors including the concentration of histidyl tRNA 

synthetase. In yeast and other fungal systems, the genes for the enzymes of histidine 

biosynthesis are known to be regulated by a process called general control. This 

general control is brought about by a number of different proteins, the most well 

characterised being the GCN4 protein. This is a transcriptional activator (Hinnesbusch, 

1997) and a member of a family of DNA binding proteins that contain the b-ZIP (basic 

region leucine zipper) DNA binding motif (Vinson et al., 1989). This protein binds to 

a common hexanucleotide motif present in one or more copies in the 5' non-coding 

region of all genes subject to general control (Vogt et al., 1987, Bohmann et al..
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1987). In S. cerevisiae in response to amino acid starvation, the de-repression of the 

GCN4 protein leads to the increased expression of more than 30 different genes in at 

least 10 different pathways. These elements are found upstream of a number of 

different genes involved in several different amino acid biosynthetic pathways.

Although the majority of work has been carried out in S, cerevisiae, a number of other 

fungi appear to show a GCN4 type response. Nenrospora crassa (Paluk et al., 1988) 

and Candida albicans (Pereira and Livi, 1995) are two other organisms which 

experience general control. The CPC-1 protein from Neurospora crassa has been 

identified as a homologue of GCN4 (Paluk et a l, 1988) and has been shown to bind to 

the same DNA sequence as the GCN4 protein from S. cerevisiae (Ebbole, 1991).

There is evidence of a GCN4 homologue in Aspergillus nidulans which may be 

involved in the process of general control (Piotrowska, 1980).

In plants there is gathering evidence for the presence of a general control 

mechanism analogous to that in yeast. In Arabidopsis thaliana, blocking histidine 

biosynthesis by inhibition of IGPD resulted in the increased expression of eight genes 

involved in the biosynthesis of histidine, lysine and purines (Guyer et a l, 1995). 

Addition of histidine terminated the gene regulating effects of the inhibitor, 

demonstrating that the changes in gene expression resulted from the inhibition of 

histidine biosynthesis. It provides some evidence that plants are capable of cross 

pathway regulation/ general control (Guyer et al, 1995).

Investigation of the published sequence data in the Arabidopsis data-base has 

allowed the identification of the chromosomes on which the histidine biosynthetic 

genes are found. The hisG gene has been identified on chromosome 1, hisA can be 

mapped to chromosome 2, hisHF to chromosome 4, hisB to chromosomes 3 and 4 

(evidence fi'om Tada et a l, 1994 indicates that there are two copies of this gene in the
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Arabidopsis genome) and hisD can be mapped to chromosome 5. Despite recent 

searches of the genome sequence data, it has not been possible to assign the hisIE and 

hisC genes to a specific chromosome. It is not clear if the hisC gene is present within 

the Arabidopsis genome although it has been isolated from Nicotiana tabacum (El 

Malki et a l, 1998) and therefore one would assume that it will be present.

Clearly, as these genes are scattered throughout the genome of Arabidopsis, a 

mechanism for the co-ordinated expression of these genes would be required. A GCN4 

type element has been identified upstream of the Arabidopsis hisIE gene (Fujimori and 

Ohta., 1998®) and Xh& Arabidopsis aspartate kinase homoserine dehydrogenase 

(Ghislain et a l, 1994). From analysis of the region of chromosome 1 encoding the 

hisG gene, a GCN4 element can be observed upstream of the hisG gene. It has also 

been observed upstream of the hisB gene from Arabidopsis.

An Arabidopsis nucleoside diphosphate kinase (NDPK la) has recently been 

isolated by complementation of a yeast gcn4 mutant with an Arabidopsis cDNA library 

(Zimmermann et a l, 1999). The NDPK la is responsive to UV light and induces genes 

involved in histidine biosynthesis in a similar manner to the natural GCN4 protein 

(Zimmermann et al., 1999). Although NDPK la acts as a transcriptional activator in 

yeast it not known which plant genes are the target of NDPK la. It is possible that this 

protein may target the genes for amino acid biosynthesis, particularly the genes for 

histidine biosynthesis. Expression of NDPK la m Arabidopsis seedlings is strongly 

expressed by UV irradiation firrther suggesting that there is strong evidence for 

analogous systems in yeast and plants (Zimmermann et a l, 1999).

There is a great deal of interest in understanding more about the amino acid 

biosynthetic pathways as interesting targets for herbicides and antimicrobials. For this 

reason, ongoing work to isolate and characterise the enzymes of these pathways is
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essential. Understanding how these pathways are regulated may provide an insight into 

how plants can be manipulated for various purposes. The use of plants, in which we 

can express higher concentrations of histidine, which are tolerant to heavy metals could 

be used as a method of decontaminating toxic waste land. Plants designed to be 

tolerant to heavy metals would provide an inexpensive method of decontaminating 

waste land (Salt et al.  ̂ 1998).

The improvement of the nutritional quality of food for both human and animal 

consumption would be a significant step forward to improving the quality of life 

especially in the third world. Many of the basic crop plants which are used as the staple 

food sources in many diets are relatively poor in some of the more essential amino 

acids. If it were possible to manipulate the levels of amino acids produced in plants it 

could reduce the need for supplementation of the diet with expensive animal produce.

This also has application for farming in the first world as it would provide an 

alternative to substituting herbivore feed with animal material.
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Appendix VII

Appendix VU Purification of E, coli Phosphoribosyl ATP transferase

The overexpressing strain E. coli B834 (DE3)pLysS-EpHisG2 (constructed by 

Andrew Elwell) is grown overnight at 37‘̂ C in 500ml LB containing chloramphenicol 

and tetracycline. The following morning nine 500ml flasks containing both antibiotics 

are inoculated with 25ml of the overnight culture. Cells are grown to an Aeoo of 0.6 

before inducing with 0.4mM BPTG. Cells are grown for a further 4 hours before 

harvesting and storing at -20°C until required.

The cells are broken by two passages through the French Press at lOOOpsi. The 

extract is clarified by centrifirging for one hour at 4°C and 18,000rpm. The extract is 

then loaded onto a DEAE Sephacel column which has been pre-equilibrated with 

Buffer A (50mM Tris-HCl pH 7.5, 0.4mM DTT and 1 protease inhibitor tablet per litre 

of buffer). The protein is eluted from the column with a linear gradient of 0-500mM 

NaCl, at approximately 350mM salt. The fractions are assayed for activity as described 

in section 2.10.1. Active fractions are pooled and dialysed against Buffer A overnight. 

The dialysed protein is loaded onto a Reactive Green 19 column (Sigma), which has 

been pre-equilibrated with Buffer A. The protein is washed for several hours with 

Buffer A before eluting with 200mM KCl in Buflfer A. Again the fractions are assayed 

for enzyme activity and are dialysed overnight against Buffer A. The dialysed protein is 

then concentrated in an Amicon concentrator to approximately 2ml and is loaded onto 

a Sephacel S-200 column pre-equilibrated in Buffer B (SOOmM KCl, 50mM Tris-HCl 

pH 7.5, 0.4mM DTT). The column is run at 10ml per hour and 5ml fractions are 

collected. The fractions containing enzyme activity are determined and are pooled and 

the protein dialysed into Buffer C ( 50% glycerol, 50mM Tris-HCl pH 7.5, 0.4mM 

DTT) and is then stored at -20^C.
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