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Abstract

The Objective

Money affects every aspect of life and yet its impact on a macro or micro
level is not clearly understood. From an individual’s point of view an ef-
ficient cash management policy could free resources for consumption which
otherwise may have been wasted on either holding or transaction costs. But
[ew models analyse a risk-averter’s cash management decision and its impact
on the money stock. Part of this deficiency can be attributed to the difficul-
ties which arise from the non-linearities inherent in concave utility functions.
The sheer complexity of modelling the dynamic evolution of variables which
inlluence the cash management decision, and, the interaction between them

has been another factor.

The history of research into the demand for money is vast and has been an
important feature in the evolution of macroeconomic itheory. Numerous mod-

elling approaches have been utilised to study the many properties of money,




varying from general equilibrium analysis to micro-based models in which

the agent behaves like a private optimiser.

Important contributions have been made by eminent economists on how the
money stock behaves. Fisher’s quantity theory identity MV = PY; M is the
nominal stock of money, V' is the velocity of circulalion, P is the price level,
and Y is the volume of transactions or real income, which was developed in
1911 still features prominently in economic analysis. The velocity of circu-
lation is assumed to be determined by an exogenous payments mechanisin
and therefore constant. Hence any change to the money stock yields neutral
effects over the long run. Pigou (1917) changes this to include the consumer
allocation problem, interest rates and wealth, which subsequently comes to
form the basis of the Cambridge equation. These models set the tone for the
literatnre which later followed from the various Classical schools argning in

favour of a passive monetary policy.

Keynes in his General Theory of Employment, Inlerest and Money {1936)
radically challenges this view by arguing that velocity was not constant, but
varied with the price level and income, which, therefore, required an inter
ventionist monetary authority. He divides the money stock into thrce com-
poncnts proposing thatl agents hold money for three very different reasons.
The first he concludes is the transactions motive where agents hold money to

satisfy planned expenditure. The second is the precautionary motive where

)
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money is held as a buffer stock to absorb any unanticipated expenditure
shocks. The third is the speculative motive where agents hold money because
1t 1s an asset, At the time Keynes wrote his general theory real appreciations
in the value of the nominal money stock werc not uncoinmon. Therefore the

role of money as a speculative asset was more important then, than it is now,

Baumol (1952) and Tobin (1956} formalise the transactions motive by placing
it within a dual asset optimisation framework. Agents in these models opti-
mally defermine their money stock by minimising the associated opportunity
costs. Miller and Orr (1966) develop this further by introducing uncertainty
1'.h.rm1gh a discrete steady state random walk. By limiting the type of agent
considered to be risk neutral, they effectively model the problem as a dual as-
set management exercise in which the agent optimises his utility of his wealth,
similar to Tobin {1958). Constantinides and Richard (1978) model the cash
management decision as a net present value problem. Increasing the time
horizon reduces the frequency of transactions in which agents switch from
cash to the interest carning asset or vice versa but increases their magni-
tude. Smith (1989) expands ou this by allowing for iuterest rate uncertainty.
A critical review of the current literature on the transactions money dernand

for money is presented in Chapter 3.

The original objective of this thesis was to expand on Smith (1989) by devel-

oping a model that studied a risk-averter’s cash management decision which




included genuine aspects of risk and a discretely varying stochastic inlerest -
rate. The motive behind this was to study the impact of increased risk sen- 3
sitivity on an agent’s money demand function and also capture the discrete

jumps which intcrest rates cxhibit in the real world.

The Thesis

Tbe standard approach to maodelling a stochastically varying cash inventory

assumes that net disbursements follow a Wiener process. This assumption is

also made here ensuring that the new results presented here arc not driven by

prescribing a different evolution of the state. This reduces the management ;1

problem to one of opfimal “impulse” control. The standard methodology for

obtaining a solution requires
. constructing the cost function,

2. expanding it in a Taylor series using Ito’s lemma to obtain the Hamilton-

Jacobi-Bellmen (HJB) equation and

3. determininug the optimal targels and thresholds using the “smooth pasl-

ing” and “valuc matching” conditions.

In other areas of economics the “smooth pasting” condition has also been

used as an auxiliary condition Lo satisfy perceived economic assumptions.

4




However, within the stochastic optimal control literature the use this condition

has not been observed,

Increased risk sensitivity is infroduced through a Vou Neumann-Morgenstern
utility function. For risk averse individuals these are assumed Lo be concave
and give rise to a non-linear relalionship between interest rates and money
heoldings in the inhomogeneous term of the HIB equation. Thus requiring

the problem to be numerically solved. The algorithm involves
1. solving the HIB equation using the natural boundary conditions, and,
2. optimising it with respect to the targels and threshelds.

On the other hand, applications of “smooth pasting” only requires gradient
conditions Lo be tmposed with respect to the initial state. This strange fea-
ture along with unexpected numnerical results led me to explore both the Ito
stochastic dilferential equation and the Chapman-Kolmogorov equation in
more detall. This led to the discovery of the natural boundary conditions

which are presented in Chapter 1.

Chapter 2 analyses their impact on the simple menu cost model in Dixit
(1991a). The results obtained highlight some limitations of the “smooth
pasting” condition. Although the economic intuition does not differ from
what is suggested in Dixit (1991a), situations could be envisaged wlere it

could.

RO W A ST N T S SR TS ST A




Chapters 3 and 4 return to the original objective of this thesis. Chapter
3 critically analyses the key contributions on the transactions demand for
money, Their strengths and weaknesses ave highlighted. Some models which
were previously assurued to be robust, under the detailed scrutiny of this
chapter, appear to be logically inconsistent. Chapter 4 solves the problem
which was initially cutlined. The results present a different image of agent
behaviour to what cxisted before. The optimal targets and thresholds do not

appear to be as obvious as perviously believed.

The Results

‘I'his thesis makes four unique contributions to the current literature, These

are dealt with in the four core chapters.

Chapter 1 demonstrates that “smooth pasting” fails to guantily the costs
faced by agent in a more general class of problem. Questions are raised about
its validity as a first-order optimisation condition. The natural boundary con-
ditions for optimal “impulse” controlled problems are derived and are shown
to be the “value malching” conditions. Thus, enabling “impulse” control
preblems to solve in a way which is consistent with the principles of optimal
control. IHowever, it does not seck to detract from its immense value as a
heuristic tool. In simple problems like Dixit(1991a) it yields the same answer

6




as the more rigorons approach. Also, {rom a non-scientific view il provides
fundamental insights into how agents determine their optimal exercise tar-

gets for American option type models.

Chapter 2 provides a solution to the Dixit menu cost model using the rigor-
ous formulation of an impulse control problem. The richer solutions obtained
yield insights info agent behaviour which were previously unobservable. Also
various properties which were assuined arc now proven. An analytical equa-
tion specifying relationship between the discount rate and the zone of inertia

is derived. Formerly this could be only deduced by making an empirical link.

A critical review of the current literature on the transactions demand for
money is provided in Chapter 3. The strengths and weaknesses of the “sem-
inal” contributions are highlighted. Also a contrast between the resnlts pre-

sented in these models and the empicical terature is provided.

Chapter 4 returns to the original objective of this thesis, The similarily be-
tween liquidity preference and transaction moncy demand models is briefly
Ulustrated in section 4.2, The results clearly show that the demand for money
is not well behaved as the existing literature predicts. In fact they demon-
strale the existence of multiple optima which point to a sequence of utilify
maximising strategies. Unlike most rational expectations models, the exis-
tence all but one optimum cannot be dismissed through partial cquilibrium

arguments.




A bricf summary of the results is offered in the final chapter.
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Chapter 1

A Re-Evaluation of the
“Smooth Pasting” Condition in

Problems of “Impulse Control”

1.1 Introduction

Stochastic optimal confrol has become increasingly popular in economics and

finance as a tool for modelling optimising behaviour within an environment of P
ongoing uncertainty. Its applications have been numerous, ranging from op-
tion pricing theory to target zone and menu cost models, e.g. Pindyck (1988),
Kruginan (1988), Dixit (199)a), and, Dixit and Pindyck (1994). Under costs

of adjustment, or any other form of friction these models demonstrate the

AT I 0 PG ke NN
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existence of inertial responses where it is optimal for an agent to wait before
acting. U'he boundaries of the optlimal sone of inertia are derived through
heuristically motivated boundary and first-order conditions, commenly re-
ferred to as the “value matching” and “smooth pasting” conditions.

This chapter constders the stochastic optimal control of 2 Wiener process in

)

the presence of any cost of adjustment including “impulse” control. Ana-
lytical boundary conditions are derived for the problem explicitly from the
martingale or optimal stopping framework and do not rely on any heuris-
tic motivation. Although the results yield a condition similar to the “value

matching” condition, the “smooth pasting” condition, which is also used in

many applications of stochastic optimal cantrol, does not featurc in any way.

"The chapter is structured as follows. Section 1.2 provides a general overview
of the “smooth pasting” condition, highlighting some of its perceived strengths
and weaknesses and the need for a strict analytical solution to the boundary
value problem. Section 1.3 uscs a general example to describe the problem of
impulse control. The Bellinan value function (value function) is formulated
in Sections 1.4 and 1.5 and the boundary conditions are derived. The ideas
are expounded in one dimension, although the methodology extends natu-
rally to any dimension. In addition, the aualysis is restricled to the case with
constant coefficients but a variety of probleins with non-~constant coelficients

can be dealt with in a similar way.
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1.2 The “Smooth Pasting” Condition

“Smooth pasting” is a useful heuristic first-order optimisation condition for
framing many target-threshold lype models and helps convey the economic
intuition behind numerous situations in a way that is casily understood.
Indeed, Chapler 2 (:()Il'ﬁl-'I‘IlS that both “smooth pasting” and the rigorously
framed optimal stopping strategy yicld algebraically equivalent answers. But,
the critique offered later in this section and an analysis of the ﬁcccssaty con-
ditions for optima in Section 1.6 suggests why this need not be the casc for
more cormnplex problemns, or, situations in which only the value function needs

to be ascertained such as oplion valuation.

The arguments for and against “smooth pasting” are ouflined in detail, in-
cluding reasons as to why it is absent [rom a rigorous formulation of the
method of impulse control. However, it must be emphasised that, in the ab-
sernice of any contradictory results to the stochastic optimal control approach

ta solving a problem, it still remains a valuable first-order condition.

1.2.1 The Optimal Stopping Problemm And “Smooth
Pasting”

The utility of “smooth pasting” and its applicability to a wide range of
problems within an environment of ongoing uncertainty is best illustrated

through the simple optimal stopping problem provided in Dixit and Pindyck

18
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(1994). Consider an entry-exit decision in where a firm is faced with a simple ‘
binary cholce at every iuslant. It can either wail and accrue a profit or
cxcrcise an oplion at an endogenously determined barrier for a termination &
payofl. Both the profit carned and the termination payofl will functions of

state and time. Assume that the state follows a Wiener process

dey = plz, )dl + o(z, )dz,. (1.1)
In an exit decision a firm chooses to stop production and sell its equipment

for scrap valne. Entry decisions can be framed in a similar way. The value
accrued during the waiting period 1s zero. Entry implies investment. The

associated termination payofl is the expected net presenl value of Tuture

profits less investinent costs.

Self evidently there exists a critical value of the state X at each point in time

for which # < X would imply continuation will be optimal and « > X for
which stopping will be optimal. Therefore, there must exist some condition
which helps us determine X. Let v(z,7) denote the flow profits and A(z,¢)
be the terminafion payoff. The payoft facing a firmi at cach instant can be

characterised as being,
pdt
a, Dl + L2 A t),
(e, Ot + L - pdt (@:t)

¢ being the discount rate. In an entry decision y(z,1)—pA(®, ) has to increase

as  increases. If w is large. Tor an exit decigion this expression must decrease

19




in z. To illustrate the link between optimnal stopping and “smooth pasting”

I shall only cousider the former.

It is obvious that X must divide state and time space into two regions, wheire
continuation and termination are optimal. Of course, an a priori knowledge

of X is not possible. Instead it must be endogenously determined.
The Bellman value function for this optimal stopping problem takes the form

I/(‘I _i‘ d'z:ght_+ dt)f.’l,‘() ] (l)]
L+ pdt

Viat) = wax | M, ), 1o, + 2L

In the bounded region in which the state moves this can be expanded in a

stochastic Taylor series expansion through Ito’s lemma to yield

"(““fz’ Yoy b s, Vil 2) - Vi 8) = pV(2,1) (1) = 0.

In the stopping region clearly V(g t) = A(x, ), therefore
V(X,t) = MX,t) Vt.

This is referred to as the value matching condition since it equates values of
the vel Lo be solved value function V(z,1) to the already established termina-
tion pavoll M(X, ). Determination of X requires another auxiliary condition.
This is the “smooth pasting” condition and it requires that {2, ¢} and Az, )

to meet tangentially at X. That is
Yol 1) = Au(2,1) Yt.

20)
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Figure 1.1: *“Smooth Pasting” Gradients

Therefore the optimal stopping time or the zone is exactly determined. On
the face of 1t this sounds a perfectly acceptable argument. Indeed, it provides

valuable insights into how “smooth pasting” optimally evaluates the stopping

¥

times at which control is cxercised.

1.2.2 Smooth Pasting and Impuilse control

The method of “impulse” control has its genesis in the famous Scarf (1960)
inventory control model in which the agent is tasked with optimally man-
aging the stock of a commodity for retail sale in the ptesence of a random

flow of sales and lump sum purchasing costs. If the stock Z; falls below a

21




critical lower barrier a the quantity {{ — a) is ordered, where [ is the point of
replenishment. The purchasing cost has the effect of reducing the frequency
and ncreasing the size of the orders. Dynamic cash management models
increase the dimension of this problem by adding a similar policy at the top
end. dtochastic income flows arc assumed to add to the inventory #;, while
planned and unplanned expenditure requirements are assumed to deplete il.
H holding costs are continuously incwrred at a rate proportional to the money
stock, and transaction costs are assumed to be linear, the agent’s decision is
to choose not only how much cash to withdraw {{ —a), but also how much te
conver§ into another asset (b — u), where b is the upper bartier and u is the
point to which Z is restored (see Constantinides and Richard (1978), and
Smith (1889)). The optimal magnitudes of &, b, { and v are determined by
applying the so called first~order “smooth pasting” condition which is also
widely used in other areas of economics. The following two sections consider
its use in the literature on irreversible investment and exchange rate target

ZOIleSs.

Irreversible Investment

Irreversible investment and option pricing models use an “impulse” control
framework to demonstrate how the optimal investment decision of a firm
conld differ from the standard Marshallian investment criterion (see Pindyck

(1988), Pindyck (1991), Dixit {(1992) and Pindyck and Dixit (1994)). If lrns

22
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[ace uncertain demand or costs, new capital can be purchased at a random
or fixed price and the cost of investment is linear; it can be shown that
firms invest until the marginal revenue product equals its full cost. The
latter includes both the cost of purchase and installation and the cost of
keeping the option to invest alive. Pindyck (1988) shows that this involves
optimally regulating the associated costs and revenues at an upper barrier.
Similarly Dixit (1992) demonstrates that disinvestment entails the regulation

of operating losses at a lower barrier.

Consider a competitive market in which a firm has the capacity to produce
one unit of output by incurring a sunk cost 7. Assuine thal variable costs arc
zero and firms which have incurred a sunk cost will want to produce at its
capacity level. If the market in which the firm operates sullers from industry
wide demand shocks that follow a continuous stochastic process, the price of

a single unit of output can be expressed as

P = yD(g).
P is the price level, y is the iudustry wide shock, g is the current level of
output and D(g) is the deterministic downward sloping component of the
demand curve. Let y follow a geometric Wiener process given by

dy = ayds + oydz,,

where « is the timne gradient and ¢ is the standard deviation of the Wiener
increment,. Of course, within an infinitesimally small tisne interval ds no new

23




entry will take place. Therelore ¢ will be fixed and P will be proportional Lo

Yy, giving rise to the relationship
. dP = aPds + o 1'dz,. (1.2)

The net present value of a firin’s expected profits Il will depend on the current
price P and also the expected future price level. If the dynamic evolution
of the price level is specified by (1.2), then the expected future price level
will only depend on P. Therefore II will exclusively be a function of P, i.e.

(P).

A firm waiting to enter will observe the price level and use a high price
as a trigger to invest. Therefore at some upper barrier P a new firm will
enter, causing g to increase and P to decrease, making Pa reflecting upper
boundary. If a reflecting boundary did not exist at P, then the value of the

firm will be
"[)

ey =+,

where 6 = r — @, i.e. the difference hetween the risk frec rate r and the mean

rate of growth of the price level. However, the reflecting barrier /2 reduces

some of the upside to potential profits and prices. Hence II(P) < P/§.

If P < P, then over the infinitesimally small interval ds II{P) can be ex-

panded using a Vaylor series through Ito’s lemma to yield the second order

24




differential equation

o2 p?
~5—T(P) + (r — §)PII(P) — +II(P) + P = 0. (1.3)

This cau be solved to obtain

IJ
11(P) = BP? + 5 (1.4)

where B is an arbitrary constant and /7 is the positive roat of the charac-
teristic equation of (1.3). The value of B can be determined by eliminating
the possibility of sure arbitrage profits. To do this the gradient of TI{.) at P

needs to be zero, i.e.

o'(P) = gBPI ) i = 0.

Solving for B and substituting the resulting expression into (1.4) yields

T(P) = ? - %Pﬁﬁl--ﬁ. (L.5)

Firms make zero profits in a competitive dynamic cquilibrium. At 77 firms
will be indifferent belween entering the market and staying oul. The net

present value accrued as a resull of entering the markel inust equal the entry

cost I. Using this relationship in (1.5) yields
; B
P = &1,
A —1

If £(.) is the value of Lhe [irin’s oplion to enter, it can be shown that it is a
function of P and takes the [orm
F(P) = AP®,

25




(see Dixit and Pindyck (1994)). A is an arbitrary constant whose value
needs to be determined by the first~order *smooth pasting” condition. If a.
firm enfers at a price level P, it incurs a sunk cost I and receives an income
{P). At the optimal entry trigger P*, f{.) needs to satisfy the “value
maltching” condition

J(P7) =P ~ 1, (1.6)

and the “smooth pasting” condition

F(P) = (P, (1.7)

Salving (1.6) and (1.7) simultaneously yields

.
P m-—_—a_lﬂ,

which is the same as P, Also A =0, which implies that f{P) = 0. Pindyck
and Dixit (1994) use this property to argue that a firm contemplating entry
into a competitive market Taces a zero value of wailing, and conclude that

the

... value of waiting is negative for most of its price rauge, and

only climbs to zero at the upper end of the range of possible

prices” !

sce Figure 1.2, A model of disinvestment entails a similar argument at the

lower boundary.

"Dixit and Pindyck (1994) p. 259

J
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I =0

tigure 1.2: The Option of Waiting
Exchange Ratc Target Zones

The literature on target zones introduces the method of “impulse” control
as a means by which a monetary authority could limit the volatility of its
exchange rate. An exchange rale target zone is a hybrid mechanism by which
the exchange rate is allowed to freely float, but within a clearly defined regjon.
The monetary authority regulates the exchange rate by selling the currency
at an upper barricr and by buying it at a lower barrier, thus keeping the
currency within a fixed band. In models of infinitesimal intervention, the
exchange rate (s restored to a point which is just within the target zone. In
the case of discrete intervention an impulsc is excrcised on the boundary to

restore the exchange rate well withiu the larget sone. In Krugman (1991)
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this gives rise to a S-shaped movement of the exchange rate within the band
which is tangential to its boundaries o and b, ruling out expectations of

unbounded exchange rate appreciations or depreciations.

Consider a flexible exchange rate which follows the Krugman law of motion,

1.8,

Eldi(s)]

i(s) = k(s) 4+~ ¥ a > 0. (1.8)

8
{(s) is the natural log of the exchange rate, v is the Cagan interest rate semi-
elasticity and the expectation operator E[.] is conditioned on the current
information set. Of course, only information on the independent variable &
is relevant. & is assumed to reflect the rates of change in the value of foreign
gurrencies, the domestic inoney supply, real income levels and expectations of
woncy demand shocks, Thus & can bhe controlled by the monetary authority,
specifically to keep the exchange rate within a desired band I; < { < I,. Let

k, absent control, follow a Wiener process of the type
dk — +pds + odz;.

The coeflicients ¥ and ¢ are assumed to be constants. Using this specification
of &, Krugman (1991) explicitly develops a functional form of the exchange
rate solution, { = m(k). Flood and Garber (1991) argue that m(k) is a
solulion fo {{s) and expand it using Ito’s lemma to obiain

d! 5

7 = ' (k) + " (k). (1.9)
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This is solved to yield

!=m(k) =k + v + AeMF 4 Belek, (1.10)

where A; and Ap are the roots of the characteristic equation of (1.9). The
values of A and 83 are determined by the “smooth pasting” condition which

requires that the exchange rate be tangential to I, and {;, i.e.
m'(&)=0 and /(&) =0
sec I'igure 1.2. Discrete intervention requires the additional conditions

m(ky) = m(Q) m(k) = ¢.

1.2.3 The Critique

The first-order condition which determines the optimal barriers and thresh-
olds in “impulse” control models is the “smooth pasting” condition. In in-

vestment and option pricing models it ‘equates the value of waiting with

the value of the investment trigger b or the disinvestment trigger a’. The
intuition behind this is that the first derivative of the option price must be
the same value before and after an option is exercised. In Lhe target zone
literature it provides the justification through arbitrage for the tangential

relationship between the exchange rale and the upper and lower barriers a
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and b. In inventory theoretic money demand models it is used to pin down
the boundarics and thresholds a, {, v and b, cquating the marginal cost of

being on a boundary with the marginal transaction cost.

These applications of the “smooth pasting” condition would suggesft that the
controls @, {, v and b are chosen to either optimise the value functions or sat-
isty some economic argunent. Buf in reality this is not the case. In problems
where the “smooth pasting” condition is used as a first-order optimisation
condition, it is derived by equating the derivative of the value function, with
respect to the initial state and the gradient of the cost of adjustment on the
boundary (see Dixit (1994, ppl29-130), Dixit (1991b, 667-668), Constan-

tinides and Richard (1977), and Smith (1989)). Although the value function
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is a function of both the initial state and the set of admissible controls, the
principle of Optimal Control requires the value function to be optimised only
with respect to the set of admissible controls {see Bensoussan and Lions
(1975a), (1975b), and Richard (1977)). It is only by choosing the controls
a, {, uw and b to optimise the value function that the merginal peyoff which
flows from controlling @ system is set equal to the associated marginal cost.
The initial stale 1s merely an inheritance from a previous unknown history
and is net a control variable. [is funclional relatiouship with the value {unc-
tion is fundamentally different to that of a, {, u, and b. Of course, the initial
state may influence the choice of boundaries particularly under high discount

rates.

Furthermore, the numerical values of these ‘optimal’ boundaries and thresh-
olds are implicit in their construction and not variable. For a certain choice
of paramelers the gradient conditions on the initial state pumerically fix
the values of a, {, v and . Another lacet of this simplilication is manifest
through the apparent inability of the current model of impulse control to
quantify the extent to which a prescribed strategy deviates from that which
is optimal. Tor instance behaviour of an agent who initially lies outside the
‘aptimal’ houndaries (i.e. outside the interval (a,d)) cannot be compared
with onc who initially lies within these bounds. Constantinides and Richard

(1978), and Sinith {1989) provide solutious for the value function outside the
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“optimal” boundaries, but these do not satisfy the Hamilton-Jacobi-Bellman
equation (HJB) they obtain. Here a functional forin for the value function
is derived from which the costs associated with a sub-optimal choice of a, I,
u, and b can be evalnated. Fleming and Rishel (1976, Appendix ), Ben-
soussan and Lions (1975a), (1975h) and Richard (1977) show that the HIB
has convex solutions and therefore has only one control vector, whereas the

“smoolh pasting” strategy does not seem to suggest any.

In the literaturc where “smooth pasting” is used to make a model satisfy cer-
tain economic arguments, such as the target zone models on exchange rates
or the zero profit condition in the model of irreversible investment described
earlier, reflecting boundary conditions need to be imposed on the forward
state of the Wiener process; not on the initial state as it is currently done.
This would cnsure that when the exchange rate hit an upper or a lower bar-
rier, il would be instantly restored inlo the interior of the target zone by
either an infinitestinally small amount or a discrele quantity. However, im-
posing boundary conditions on the forward state is a non-trivial task and
would require the dynamic evolution of the exchange rate to he computed
through the transition density function. Since the lto stochastic differential
equation has not been adapted to capture boundary conditions on the for-

ward state, it is not suitable for use in problems of this type.

In dynamic programming involving infinite horizons the value function is
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considered a function of the initial state, despite the fact that it is the for-
ward state which experiences the impulse control. This made possible due
to the Markov property which enables the evolution of a stochastic process
to he described in terms of its initial state and tiine. TFor models in which
the state is given by a Wiener process this can be done through either [to’s
lemma or the backward Chapman-Kolmogorov equation (see Gihman and
Skorohod {1972)). The initial state plays no other explicit role in an infinite
horizon tmpulse control problem (sce Fleming and Rishel (1975) chapter VI,
Bensoussan and Lions (1975a), (1975b) and Richard {1977)).

1'hese arguinents, though robust, do not explain the algebraically equiva-

lent results obtained using both the ¢

‘smooth pasting” and optimal control
strategies in Chapter 2. Indeed, this may point to the existence of somec
undiscovered properties of the HJB cquation and the value function. On the
other hand, it may be a [ealure restricted to the Dixit menu cost model due
to its unique nature. However, without further evidence which demonstrates
that “smooth pasting” and the stochastic optitnal control strategy vield dif-

fering results, it still remains uscful as an approximation of the necessary

first-order condition for optima.
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1.3 Impulse Control

Let the state follow a Wicner process with the corresponding stochastic dif-

ferential equation
dz, = pds + odz, s € [0, 00) g = 2,

over the continuation region (a,b), and, let p L 7 K 7 € - <7 < -
be the series of stopping times; i.e. the series of points in time at which the
process being controlled exits the continuation region and a “jump” control

is exercised to restorve the process {o an inlerior point.

The method of “impulse” control requires the existence of & feedback control
law u which optimises a performance criterion subject to some initial datum

and boundary conditions and is described at time s by

b—u ifz, =0,
U =
a—1 ifz,=a,
where « and { are respectively the interior points to which the process is

restored to when the upper boundary b or the lower boundary « is encroached.

Clearly a 1, u 2 b.

Let the instantaneous holding cost be given by the real function M(z,),
s € 10, 00), aud assutne a constant discount rate of p. The object, therefore,

will be to arrive at a policy

p o= T, ug T, gy T e e )
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of a series of stopping times and controls which minimise the value function

w,ﬂ], (1.11)

V(z,u) = E[ / e P M(z;)ds + Z e """ R(u)
infu J0 i=U
where R(u) is the cost of adjustment defined by
B(b,u) ifz;=b,
R(u) =
D{a,l) ifz;=a.

It is now demonstrated that this value function satisfies the HJB equation.

By using Ito’s Lemma and expanding (1.11) in a Taylor series, it follows that

AV{(z,u) — pV{z,u) + M{z) =0, (1.12)
where
9 1, 8 .
A = p%—!—gﬁ Fwo (1.13)

Equation (1.12) is referred to as the IHJB equation. In particular, the for-
mulation of (1.12) depends on the boundary conditions al ¢ and 0. Solving
this equation subject to the correet boundary conditions yields the dynamie
prograiuming eqﬁation, which is also the performance criterion V{(z,u). Its
infimum with respect to the control law 1, is V(z,u”). Equally u* can be
obtained by minimising (1.12]. The existence of an optimal feedback con-
trol law for this equalion has been demonstraled by Bensoussan and Lious

(1975a) and Richard (1977).
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1.4 The Martingale Formulation of the Bell-

man Value Function

The martingale formulation of the value function divides into two compo-
nents. The [irst measures the net present value of holding costs accrued until
the first stopping decision while the second computes the net present value
of all costs, i.e. holding costs and costs of adjustment, which follow from this
decision. It can be shown casily that this construction of the value function

also satisfies Tto’s Lemma.,

.Consider the Wiener process iniroduced in the last section. When z, is
on the boundary, that is ¢, = ¢, or z;, = b, the process cnfers a stopping
zone and is absorbed. Fur convenience let the forward state x; be denoted
by y. Hence the transition densily function for this process, f(y,sl|z,0),
must satisfy the boundary conditions f(b,s|2,0) = 0, and f(q,slz,0) = 0,
along with the initial condition f(y,0|x,0) = é(y — «). It is common knowl-
edge that [(y,s|e,0) satisfies the forward Chapman-Kolmogorov equation

(Fokker-Planck equation)
c* | :
fﬁ(y7 Slw’O) = _ﬂ.fy(y? 3|3:1 0) oy 'Q_fw(y: Slm’ 0)? (1'141}
Definc a distribution function #(y, sje,0) with the property that

Fy(y,0|:c, {]) = f(y)"t*l“a D))
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1 fe=y,
F'(y, s, 0) =
0 ifz#y

Thus, F(y, s|,0) must satisfy the backward Chapman-Kolmogorov equalion

3
Fly,s|z,0) = pF.(y,s]z,0) + %-Fm(y, slz, 0). (1.15)

1t is afso clear that probability mass through the upper and lower boundaries

will be respectively

Fy(b, |z, 0), (1.16)
and
F(a, s|z,0). (1.17)

Iixpressions (1.16) and (1.17) define the probability that the process will en-
ter the zone through the upper and lower boundaries at time s, respectively.
Thus, the first costs of adjustment at the upper and lower boundaries, 8(b, u)
and N(a,1), will be incurred at rates given by (1.16) and (1.17) respectively.
Hence the value function, constructed in terms of an optimal stopping prob-

lem is
o 1 .
Vi = [ e [ Mese,ste0 i) o
g vu
+ ] TP B(b,u) + V(W) (b, slz,0)ds  (1.18)
0
[ee]
+ [ e~ D(a,l) + V{1, 0)) Fs(a, slz, ) ds.
Jo
The derivation of this is straightforward. The [irst integral on the right-
hand side is the net present value of (he holding costs accrued until the first
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stopping decision. The second and third integrals evaluate the net present
value of the sum of the first cost of adjustment, B(b, «) and D(a,!), and all
holding costs and costs of adjustment which accrue from this decision, i.e.

V{u,.)and V(I,.).

The application of an “impulse” control on the upper boundary al time s,
instantly changes the state from b to . Given that V{(.,.) is a functional of a
Markov process which contains the net present value of all holding costs and
costs of adjustment, this deflines a new Markov function with an mnitial state
u over the time horizon {s, 0o) which contains all holding costs and costs of
adjustinent that accrue from time s onwards, t.e. V(u,.}). The multiplier
€”#* discounts fo net present valne. The same holds for V{{,.). Since V(u,.)
aud V(Z,.) contain both holding costs and costs of adjustment which accrue
as a result of the first stopping decision. 1t is therefore clear that the above
sum vields the expected net present value of a policy of “impulse” control at

the upper and lower boundaries.

Integrating (1.18) with respect to time it is clear that

o b
V{e,n) = / e_"’s[/ ﬂff(y)f(y,sh:,l]]dy] ds
4 n
+[B(b,u) + V(u,n)} {1_ - p/m e P (b, slx, Q) d.s]
0

+[D(a, 1)+ V(i,u)] [1 —p /Uw &7 F (4, |, 0) a's] (1.19)
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It iz now demonsirated that the constructed V(z, u) satisfies the HIB equa-

PRI 4 T

tion.

Applying the differential operator in (1.13) to (1.19) and use the Chapman- o

Kolmogorov equations (1.14) and (1.15), it is clear that

AV(z,u) =p j{h M(y) [ ‘/:o e " f(y,slx,0) dS} dy — M(z)

—p[B(b,u) — V(u,0)] ['i —p / " e (b, s|z,0) ds]

—p[D{a, ) ~ V{{,u)] [l — pfu ¢ Fla, slz, 0) ds] . (1.20} m

See Appendix A for the derivation of A(z)V(z,u). Llementary calculation
now reveals that
AV(z,u) — pV(z,u) + M(e) = 0, (1.21)

which is the HJB equation. Minimising this with respect to u will yield the
optimal “impulsc” control policy. It is also obvious that we could use Ito’s :
lernma, and expand (1.19) in a Taylor series to also obtain (1.21). Thercfore, 4
the optimal stopping framework used to set up V{a,u) is also self consistent.
1.5 Computation of the Value Function
The probability density function of the absorption process is first calculated.
This function is then used in the constructive definition of the value function
V(z,u) in (1.18) for general B(b,u), D(a,l) and M{y). A

To ease the computation of the value function in (1.18), it is convenicnt to
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mtroduce the non-dimensional variables

Y- _zT=a - p(bo-a)
g_b—a’ I “= T
. 2p(b—a)* sot .
A= o and { = o (1.22)

With this change of variables the partial differential equation satisfied by

fly, siz,0) becomes

0F(&19,0) 01 (5t 0) | 1 97F(E,5l9,0)
ot ¢ 2 9

(1.23)
where f(£,#g,0) satisfies the boundary conditions f(1,¢|g,0) = 0, f(0,]g,0) =
0 and the initial condition j(£,0lg,0)} = 6(¢ — g). The distribution function
F(y, slz,0}) in (1.15) now satisfies

Or(¢,Ug,0) _ OF(¢ tg,0)  10°1(E,slg,0)

8l N dy 2 dg? (1.24)
The value function now becomes
(A " 1 — 2
Vigw = [T [ M@ oo - o
Jo Jo a

4 [ eF[B(L,u) + V(u, w)lF(L, tlg, 0) dt
4]

. / B0, 1) + V(L w0, tg, 0) dt.
40
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1.5.1 Derivation of the transitional PDF

Using the method of separation of variables, it can be verified that

af— %-(rx2+n2 LAY
’

sin(nwé)e
is a solution to (1.23) satisfying its boundary conditions for all integers n.

Using Fourier methods it can be further proved that

f(&,t)g,0) =2 Z &= (P47 7 gin (nef) sin(nrg)

n=1

is the complete solution of (1.23) satisfying the boundary and initial condi-

tions. The details of this calculation appear in Appendix B.

The probability fux, or the probability mass exiting throngh the upper and
lower boundaries is respectively

(25 e

. and [% oo f]

' o

This effectively defines the probability distribution function of the process

entering the stopping zone. Here f(1, slz, 0) = f(0, s|x,0) = 0, and, therefore

the flux on upper and lower boundarics b and ¢ are (1/2) fe K and, (1/2)f¢ )

respectively, i.e.

%ff I = T Z n sin(n:rr(]_ _ g):leﬂ'{j“Q]“%(r}-2+7121r2)3
: 1

n=1

%fﬁ L) = 7 ; n sill(n'rr_qr)r~:_"""’_%("‘2f_'”g”?)ﬁ (1.25)
It is immediately obvious that
1 L
Fi(1,t|g,0) = §fe;‘ \ . and F1(0,1g,0) = —§f£ . (1.26)
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It can further be shown that

&0 —f sy 1 w
f eI (1,t)g,0)dt = e2- X
0

. 3
sitth y

oo ‘_’ h }"—
/ FF(0, g0 dt = emoSmX{—9) (1.27)
A sinh y

where x = /B -+ a?  See Appendix B for the evaluation of the infinite

integrals in (1.27).

1.5.2 Calculation of the value function

The expressions in (1.27) can be used to compute the net presens valne of all
costs which accrue [rom ihe [firsl slopping decision al the upper and lower
boundary. It remains to evaluate, ¥(g), the net present value of the holding

costis accrued until the first stopping decision which is deflined by

wo = [ | [ l MOty 0) |
/ () [t s tan dt] & (1.28)

{Ising integration by parts it can be shown that

- o) E:osh yw — cash Xy

[ e tlo, 0y = 2 -
o ¥ sinh x

where w =1 — jg — {| and v = 1 — ¢ — &. See Appendix B for intermediate
steps.

Historically linear and quadrafic holding cost functions have been used for
M(y) (see Dixit (1991a), Counstanlinides and Richard (1978) and Smith
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(1989)). IHowever ¥(g) can be evaluated for a general holding cost func-

tion. Suppose that M (&) has a half range cosine Fourier series

M(£) = -E;?-Jerjcos(ngj,

i=i

then standard Fourier analysis yields

b.?: :2/{;1M(€)cos(j1r§) dé.: j:[leaza

Using this representation of the holding cost Function, the net present value

of holding costs accrued until the first stopping decision is

{g) =

[Z b; f cos{jmé)e® [cosh xw — cosh x7] df] . (1.29)

¥ sm.h "(

This integral can be evaluated using integration by parts resulting in the

form
W) = 2| “Sifﬂlff Z by (1)
“”hsil(hlx 9) Z:b $;(0) = Zb b g)j| (1.30)
where
bi(5) = (o —x* =g’ )COS(jm)

[ + (e — x)2[5%0® 4 (@ + XD

In view of (1.29} and (1.30), the value function finally simplifies to

hox
Vig,a) = [B(l,u)+ V{u,u)le a(1-g) 5100 Xg
sinh
+ oS X(1 — ¢)
n -V Sl e A L
[2(0,0) + V(i u)]e sinh x
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slnh X
+2 [e sinh x Z; biil

g S X (1 - )
Siﬂl = Zb? 1(0) ~ Lw(g]

The derivation of the boundary condilions is straight forward. When z = b,
g = 1. Hence

Vibu) = Bib,u) + V(u, ). (1.31)

On the other hand when z = a, then ¢ = 0 and
V{a,u) = D(e,l) + V({,u). (1.32)

It is now obvious that (1.31) and (1.32) define the bhehaviour of the value
function on the boundaries and, therefore, are the boundary condilions to an
“impulse” control problerma. Solving (1.12) subject to (1.31) and (1.32) will
yield V{z;u). 'I'he optimal values of a, b, {, and u are obtained through the

first order conditions

IV(z;u) oViz;u) oV (x;u) OV (z;u)
e O FT a0 oand gu 03

1.6 “Smooth Pasting vs. Stochastic Optimal
Control

Undoubtedly the most significant conclusion from this analysis is the conspic-

uous absence of anything resembling the “smooth pasting” condition which
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sugpests the ‘optimality’ conditions

dVia)  dD(a,]) dVb)  dB(b,w)
de ~  da db db
dV{l) dD(a,l) o, dV{u)  dB(b,u) .
d - d and - — == (1.31)

Tt is not exactly clear what these derivative conditions imply. It is stated that
they are obtained by differentiating the “value matching” conditions in (1.31)
and (1.32), and claim to show that the marginal cost of being on a boundary
must equal the marginal cost of adjustment. However, this is clearly not
true. Let us consider an agent who initially is on the upper boundary, i.e

& = b. From (1.31) it can be seen that his marginal costs are given by

8V(.’L‘,U) BV(:E,U.)
T 0 |, 0o |,
Vi, w| 0By | 9V(z,u)
ab | _ ab ab |
BV (z,u) 8V (z, )
Wew) - e (1.35)
aV(z,u) aB(bu) | OV (x,u)
2V - TBu + T

The left hand side gives the marginal costs of initially being on the boundary
b with respect to the choice of controls ¢, b, [ and u. The right hand side gives
the mnarginal costs of transacting down o « with respect to Lthese conlrols.
The choice of a barrier & affects the choice of a, [ and w. This is not the case
with the “smooth pasting” condition. The firsi-order conditions described
in (1.34) evaluate a, I, u, and b independenily of cach other by equating the
eradient of the value function with respect to the Initial state to the gradient
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of transaction costs on boundaries and thresholds. Intuitively this cannot
be corrcct. The choice of one boundary must clearly aflect the probability
of hitting the other boundary or being resfored to a threshold. Hence both
boundaries and thresholds must be selected simultaneously to optimise the
value function, not independently of each other. Cosfs are at a minimum

only when (1.33) is satisfied concurrently by a, !, v and b,

1.6.1 Optimal Stopping and the Choice of Controls

Since a, {, v and b determine continuation region, it must follow that they
also select the stopping zonc outside (a,b). In stochastic calculus the ex-
pected timne alb laken for a Weiner process starting at an initial state z to
exit (@, b) into the stopping zone can be easily evaluated using the backward
Chapman-Kolmogorov equation of. the distribution function #(.). Therefore
choosing a, {, # and b optimally ensures that the stopping times 7, o, ... are
also chosen optimally. It is not obvious that choosing stopping tirnes using
(1.34) ensures optimality. Indeed, in complex problems it 1s likely that the
process will be stopped prematurely because any costs which flow from mov-
ing down to u are ignored. However, in the Dixit menu cost model Chapter
2 clearly demonstrates that both (1.34) and (1.33) yield algebraically equiv-

alent answers.

'I'his analysis shows thal the margiual costs of being on a boundary must

A6




equal the marginal costs of lransacting which includes the marginal costs of
adjustment on that boundary, not exclusively the marginal costs of adjust-

ment as the “smooth pasting” conditions suggests.

1.7 Concluding Remarks

In this chapter the boundary conditions for an optimal policy of “impulse”
control have been derived by constructing a system from first principles us-
ing stochastic calculus. It shows that the value of stopping af a state and
exercising an “impulse” control must equal the net present value of holding
costs accrued up to that state. This also sounds wtuitively correct, if the
total value of exercising a stopping decision exceeded the net present value
of holding costs accrued until this decision was made, it would clearly be
sub-optimal to stop. Conversely if the net present value of holding costs
exceeded the net present value of the stopping decision, it would imply that
the stopping decision should have been taken earlier. By approaching the
jump control problem from a different perspective, the natural mathematical
boundary conditions for the HIJB equation has been motivated in a non-
heuristic way. The solution technique exemplificd here cnables a new class
of model to be constructed in economics and finance. These should provide

revealing and accurate insights into optimising behaviour within an environ-
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ment of ongoing uncertainty.
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Chapter 2

Control Regimes, Transaction

Costs and Business Cycles

2.1 TIntroduction

Menu cost. models have evolved significantly since they were firat developed
in the mid eighties (see Akerlof and Yellen (1935), Mankiw (1985) and Blan-
chard and Kiyotaki (1987)). Earlier models analysed the implications of nom-
inal rigidities and sub-optimal welfare outcomnes caused by demand shocks
within a static environment. Later models expanded on these by ascribing to
the firm the net present value of the losses accrued from these shocks within
an environment of ongoing uncertainty. The contrast in results between the

two approaches is significant. When firms are forced to minimise costs over
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a. much longer time horizon with discounting, the zone of inertia and the
strategies adopted change dramatically. In the Dixit model the range of in-

action is two orders larger than the Akerlof-Yellen model {see Dixil (19%1a)).

The Akerlof-Yellen, Blanchard-Kiyotaki and Dixit models study the behaviour
of firms functioning as private optimisers in a monopolistically competitive
market. It is ohvious from the assumptions which underpin Chamberlinian
monopolistic competition that each of these firms will practice horizontal
price differentiation. This will create a gap between the price set by each
firm and the market price. With a downward sloping demand curve, 1t can
be shown that this gap will give risc to a holding cost, measured u lost prof-
its. These models prove that, if a cost s attached to closing this gap, there
exists a zone of inertia in which it will be beneficial for each firm to sustain
costs rather than eliminate them through price adjustment. Implicit here is

that each firm will face its own unique cost function.

One important feature these models rely on is the pecuniary externality which
can be observed in a general equilibrium models involving monopolistic com-
petilion. If a firm reduces its price level slightly it increases the demand
for its goods. It also increases real money balances, increasing demand for
other firms output as well. In monopolistic competition, since output is im-
tially not equal to the social optimum, the increase in real balances has a

positive effect on welfare. Of course, the opposite situation could hold as




well. This implies that money, at least in the shorl run, is non-ueutral and
therefore would require the regular intervention of the monetary authority. If
the manetary authority has access Lo new information on exogenous shocks,
after firms have set their prices, systematic feedback rules could stabilise
output. If the monetary authority fails fo react to these nominal changes,
employment levels and output would experience the negative impact forecast

by these models.

In labour markets inertial responses in price setting behaviour induces a
clhiange in the real wage, the dircction of which will depend on both the mag-
nitude and timing of the change in price. The magnitude of the wage change
will depend on the clasticity of the labour supply curve. Large fluctuations
i ernployment will result from small menu costs, only with an clastic labour
supply curve. In a model such as: Blanchard and Kiyotaki (1987) in which
price setters do not want to change relative prices to eacli othier and the cost
of not adjusting wages is not large, it is not clear why wage setters; whether
they be unions, firms or even workers, would settle for large changes in em-

ployment for relatively sinall changes in output.

The appcal of menit cost models is that they predict welfare losses, result-
ing from inertial responses, which are much larger that the actual cost of
adjustiment. In the Akerlof-Yellen model not to react instautly to any price

change results in a second order loss to the firm. However, the welfare losses




are of first order magnitude. In the Dixit model the waiting time between
changes in aggregate demand and firms adjusting prices 1s two orders larger
than Akerlof~Yellen. The infinite planning horizon punishes firms more than
the preceding static models. This has the effect of reducing the frequency
and increasing the size of adjustments. As a result nominal rigidity becomes
more entrenched, causing miuch larger output and welfare distortions. By
incorporating uncertainty and a time horizon into the existing menu cost lit-
eraturc Dixit (1991a) reveals a more accurate picture of the effects of nominal

friction.

The instantaneous holding cost in the Dixit model is an increasing function
of the difference between the price set by firms and the macket price. Hence,
it 15 to be expected that the initial cost and the costs accrued in the first few
time periods will contribute more towards the value of the cost function than
those in later periods, especially il the discount rate is high. However, this
is mot the case. The results illustrated in Dixit (1991a) show that the zone
of inertia is only determined by the exogenous parameters driving the cost
function and is indcpendent of the initial cost. Of course, this 1s iruplicit in
the specification of the heuristically motivated first order “smooth pasting”
condition used to evaluate the optimal zone of inaction. The initial cost is
excluded from the solution technique. Here it is shown under an optimal

stochastic control framework that, even when the initial cost does feature
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in the cvaluation of the optimal zone, it plays no role in determining the
optimal zone of inaction. However, this probably has more to do with the

type of costs faced by the firm.

The “smooth pasting” condition also excludes the set of admissible controls
and the link which exists belween them (sce Chapter 1) in the computation of
the optimal zone of inertia. Tor a given set of paramcters, the gradient con-
ditions with respect to the inilial stale ix the values of the ‘optimal’ bounds.
This is evident through the Dixit model’s apparent inability to quantify the
extent (o which a prescribed strategy deviates from that which is optimal.
Thus the Dixit model fails to capture the price adjustment behaviour of any
firm whose initial price gap may lie outside the narrow optimal zone of in-
ertia. Here, the costs faced by such firms along with their prescribed price

adjustment strategy is derived.

The assumption that the zone of inertia is symmetrically disposed about the
market pricc is an important fcature of models in the current literature. Tn
static models this is self evident because both holding costs and the costs of
adjustment are assumed to be symmetric about the markef price. However,
there exists no a priovi reason for this to be the case in net present value
models within an environment of ongoing uncertainty. Nevertheless, these
models malke this assumption in deriving the optimal range of inaction. Here

it is proved that, within the Dixit model, the optimal zone of inertia will
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always be symmetric, if firms adjust prices to complefely eliminate the price
gap between their price and the market price, i.e. follow a zero threshold
policy. Analytical expressions which link the behaviour of the boundaries
of the optimal zonc of inaction to all the exogenous pararoeters driving the
cost function are also derived [or tlus policy. It is diflicull to examine the
impact of the interternporal discount rate of each firm on the optimal range

of inaction in Dixit (1991a).

ITowever, complele price adjustinent, or the zero threshold policy, is only a
limited form of the general optimal control policy for such a problem. Tf firms
are allowed the flexibility to choose the magnitude of their price adjustment
in an optimal way, it is not obvious that they would opt for a zero thresh-
old policy. The results obfained here confirm that firms always opt for a
zero bhreshold policy even if they ave offered this flexibility. Effectively, this
chapter confirms the results obtained in Dixit (1991a) through an optimal
stochastic control [ramework and provides a solution technique that allows a
more general type of problem to be solved, quantifying the extent fo which
a specified price setting policy deviates from that which is optimal in a non-

heuristic way.

In Section 2, the Dixit menu cost function is computed using the formulation
in Chapter 1 for models of “impulse” control rather than the “smooth past-

ing” condition. In Section 3, it is proved that the zone of inertia is indeed
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symmetric about the market price, and analytic expressions are provided
linking the exogenous factors driving the net present value cost function and
the zone of inertia. In Section 4, the optimal price adjustment policy is

derived and results are illustrated in Section 5,

2.2 The zerco threshold policy

Let the state variable 2 be the natural logarithm of the difference between

the firm price and the market price and lollow a driftless Wiener process
daz, = odz, z: € {a,b),

where dz is the Wiener increment, where ¢ £ 0 and b = 0. Tet the in-

stanlaneous holding cost [unction be given by kz?. Furthermore, let the

bransaction cost g be incurred at each instant the process exits continuation

region (a,b) and is restored to zero. Then the net present value of holding

and transactions costs will be given by the value {unction

Vi{z) = min B [/ e hka® di + Z e g
o o

2(0) = 4

where 7; denotes the discrete times at which a “jumnp” control 1s exercised

to restore the process to zero.

The standard technique of stochastic calculus reveals that V() satisfies

o2
?V”(.’L') —pV(z)+ ke? =0,
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with solution

Le?  ka®
V(z) = Acosh(az) -+ Bsinh(az) - B4 iﬁ, o = g% (2.1)
PP o

where A and B arc arbitrary constants.

For a policy of complete price reconciliation, in which restoration to zero is
{orced upon the process exiting the continuation region, the value fuuction

V(z) must satisfy
V) V(O =g Vie)-V(0) =g (22)

on the top and bottom boundarics respectively. Note that the “smooth
pasting” condition is not necessary for the evaluation of the the constants
A and B (see chapter 2). To ease the treatment of (2.1) let us define the

non-dimensional variable w and parameters y, z, and v by

_az L _aa o ab _gpt
w = 9 ~ = 9 Yy = 9 7_2;{:0‘2. (2.3)
In view of (2.2) and (2.3), equation (2.1} has solution
2wt 1 f(y)cosh(2w — z) — f(z) cosh(2w — y)
Viwyy,z) = —+ - 2.4
where
2
. "“.’ —_—2Z
)= ysinh z”

The intermediate steps in the derivation of (2.3} are provided in Appendix C.
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2.3 Optimal boundary values

The cost function in (2.3) must now be minimised with respeet to the choice
of boundaries on which firms adjust prices for a given initial position. The
“stnooth pasting” condition in Dixit (1991a) would require the first-order

condition

dV(z) .
di _o (2.5)

Stochastic optimal control requires

OV(wyy,z)  [f(y)sinh{y — z) — f(y) cosh(y — z) + f(2)! cosh(2w — z)
Ay sinhz(y — z)

= 0. (2.6)

and
OV(w;y.2)  [fly) — f(z)cosh{y — z) — f'(2) sinh(y — #)] cosh(2w — ¥)
0z sinh?(y — 2)
= 0. (2.7)

Equation {2.6) and (2.7) pin the values of ¢ and b so that V(.) Is mintmised.

It is not clear what {2.5) does. The cost function seerns Lo be optimised with

respect to the initial state. Bul in stochastic optimal conlrol the initial stule

is only a parameter of the problem, an inheritance from an unknown past.

Nol v control variable.

Simplifying (2.6) aud (2.7), it is clear that y and 2z satisfy the conditions
F(y) — F(z) cosh(y — =) — /(=) sinh(y — 2) = 0, (25)
£(y) sinh(y — ) — f(y) cosh(y — 2) + f(z) = 0. (2.9)
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It is now obvious that the opiimal boundaries as provided by the values y
and z are independent of the initial state z, and, hence, the optimal solu-
tions of the two boundaries will only depend on the exogenous parameters of
the process. These results imply that the zero threshold policy compels all
firins whose initial positions lie outside these optimal houndaries fo transact
instantly and adjust their price level to match the market price. This natu-
rally follows from the optimal stochastic confrol framework used here due to
the unigue costs faced by the firm. In applications of the “smooth pasting”
condition this is implicit in its construction, irrespective of the initial price

gap and the costs faced by the firm.

Equation (2.8) and (2.9) are now solved for y and 2. Substituting for f'(2)

in (2.8) and multiplying the resulting cxpression by sinh 2 yields
. : 2z
f(y)sinh z + f(z)sinh(y - 22) + o sinh(y — #) = Q. (2.10)

Similarly substituting for f/(y) in (2.9) and multiplying through by sinby

gives
“sz sinh{y — z) — f(y) siuh(2y — 2) + f(#)sinhy = 0. (2.11)

Sublracting (2.11) from (2.10), dividing resulting expression by 2 cosh(y - z)

and then substituting for f(y) and f{z) yields

[tanb(y — z) — (y — 2)](z+y) = 0 (2.12)
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Its clear that (2.12) has iwo possible solutions
z+y =0, and tanh{y — 2) — (y — 2) = 0.

The latter condition is only satisfied when z == ¥, 1.e. @ = b. However, the
houndaries were initially defined as being ¢ = 0 and b 2 0. Hence 2z = y
cannot be a solution. This leaves z + y = 0. which is true when b = —a.
Therefore firms operating a zero threshold policy under a symmetric holding
and transaction cost regime will find their optimal zone of inaction symmet-
rically disposed around the market price. This result is not unexpected and
sounds intuitively correct since both costs are symmetric about the market

price. However, Dixit (1991a) assumed this property.
Now that z -y = 0 it can be shown Llhal z and y must satisfy

y — tanh(y) — Y=o, (2.13)

Y
Appendix D contains the intermediatesteps in the derivation of this equation,

Nifferentiating y with respect to v, yields

d
e _ Y — (2.14)
dy g+ y2tanh®(y)

It is now clear that ¥ is an increasing function of . Furthermore

logy =2log p +logg — logk — 2log §,

and, so

& _ 2%y I _ 7 Oy _ = d 9y _ =2
ap  p’ dg g’ dk " do o

VE

.'.r'\_\:—

S
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Since ¥ = ab/2 and o® = 2p/a* then

2
b oy\/:’. (2.15)

It is clear from this expression for b that for economically realistic values of
the parameters, the range of inertia defined by the optimal boundarics could
be either small or large depending on how the state is scaled. It is now clear
that b is a decreasing function of £ and an incrcasing function of g. This
shows that firms will wait Jonger before adjusling their prices as menu costs

increase. But will wait less if the rate at which losses are accrued increases.

The behaviour with respect to o and p is less obvious, From the delinition
of b it follows that

N T 1.
bdsc  bYp ¥ 08’)’(‘}‘0

ytanh?(y) — «
oly + y tanh®(y)]

From (2.13) it is obvious that v = y* — ytanh(y) and so

y? tanh?®(y) -y = y?tanh®(y) — y* + y tanh®(y)
= gtanh(y) — y?sceh®(y)
= ysech®[cosh(y) sinh{y) — 2y]

= ysech®(y)[sinh(2y) — 2y)] > 0.

Hence b is an increasing function of ¢. That is, the variance of the process and

the zone of inertia move in the same direction. This reinforces the intuitively
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appealing idea thal, as uncertainty increases, firms will delay action to avoid
the downside of transacting too frequently while trying realise the potential
upside of z decreasing. The value of wailing clearly increases with increased

uncertainty.

By differentiation of (2.15) with respect to p, it can be shown that

pob _ 3y —y’tanb’(y)
bOp  2(y -+ ytanh’(y)) T

Sce Appendix E. Clearly 2(y + y* tanh?(y)) > 0. If is also obvious that when
y =0,

3y — y* tanh?*(y) = 0. (2.16)
If (2.16) is an increasing function of y, then it naturally follows that 8b/dp 2
0. Differentiating (2.16) with respect to y yields

y — tanh{y) > 0.

Therefore

|2
I\
(el

From this it is apparent that the zone of inertia and the constant discount
rate arc proportional to each other. It demonstrates that firms will accumu-
late losses if these losses decrease in value over time. Clearly current losses
decrease in value rapidly over time under high discount rates. Therelore as
p increases, it becomes relatively cheaper for firms fo increase their waiting

time because in real tertns, as time evolves, the value of holding costs being
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accrued will decrease relative to the cost of adjustment, Although this rela-
tionship is intuitive it cannot be deduced from the Dixit model. The discount
rate vanishes in simplifying Taylor series expansion used to obtain a simpli-
fying approximation of b, Tt is only by making an empirical link between p

and ¢? that the effect of p on b can be analysed.

2.4 'The Optimal Price Adjustment Policy

Tt can also be casily demonstrated that when the zero threshold policy is

abandoned in favour of an optimal price adjustment policy, V(2) must satisfy
V) -V(w)=g Vie)-V({)=g, (2.17)

where b and a are the upper and lower boundaries respectively, and, « and
[ are the upper and lower thresholds respectively (see chapter 2). To ease

the treatment of (2.1) let us introduce the non-dimensional variables and

parameters
2 . :
_gp _alb—u) Cofb+u) _afa—1) _afa-+)
Tt YT TR T3 ¥=T3 T T

Substituting (2.17) into (2.1) and solving the resulting simultaneous equa-
tions yields

02 1 Oy, z) - O(w, z) _
e =7 4l - : 2.1
Viviw,2,p,2) ¥ + ¥ ) tanh(z — 2z) — tanh(z — 2v)’ (2.19)
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where

- TTHE
o, z) = sinh y cosh{z — 2v)

See Appendix F for intermediate steps in the derivation of (2.19).

For an optima a necessary condition is

OV (v;w, x,y, 2) tanh y _
Wloinmysd) oy Gy
By yz( v Fy=0 (2.20)
It is clear that
tanh(y)
b)) <y,
Y

Since k, p, and g are positive quantises, it must follow from (2.20) that

_r}'

I\
@

Hence a® > [?; and thereforve |a] > }/]. Another necessary condition [or

optima is

OV(vsw,z,y,7) o (ta,nh W

o - 1) oy =0, (2.21)

w
Using the same arguinent, it can be demnonstrated that |b] > |ul.
In addition to these two conditions, the condition & € (a,b) such that a <

I, £ b must also must be satisfied. This implies that @ £ 0 and 6 = 0.

It is difficult to obtain analytical expressions for the optimal solution in this
four dimensional problem. Therefore the problem is reparameterised in terms
of four different parameters to obtain the optimal values for boundaries and

thresholds using numerical methods.
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Let

[ = a+4+¢ 20 (2.22)
b = u+te cq 2 0.
From this it trivially follows that b 2 a 4+ ¢, and also b 2 o + ¢,. The initial
price gap  was defined to satisfy the condition @ 2 # = b. Theretore a and
b can be expressed as
a = x4+ c3 320 (2.23)
b = z4c¢4 eq 2 0.
Given the definition of the boundaries and thresholds, (2.22) and (2.23) need
to satisfy
oy a-- s and G+ T —cs S +es
Therefore
¢4 2 ¢t — €3 and €y 2 Cy — Ca.
This implies that
ez + ¢g 2 max(cy, e2),
and
c3 + g = max(eg, ¢z) 1 g cs = 0.

Alternalively we have

i
=

.
stz =0 and Cs+ ey 20y =
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Now we can write
ey = ky(ea+ c4) 05k <1
and
Cq - kg((i:_:, + 64), 0 g kg g 1.
Thus the entire problem can now be reparameterised in ters of four con-

stants %, ks, ¢3, and ¢4 such that

OSICIS]. [}ékz

fA

1,
and
3 Z 0 Cq ; 0.
Now we can derive new expressions [or a, b, [ and u. FPhat is:

@ = T — Ca,
b = x+c¢y,
I = a+kies+ kics
= a4 ke +{k — Dey,
t = b—cy
= w4y — kocs — kagy
= 2~ (1—lky)ea — kyos.
't'he BFGS method for unconstrained minimisation (a quasi-Newton algo-
rithm) is used to perform the four dimensional optimisation. Details of this
are available in Technical Anrex | and Bulirsch and Stoer (1980).
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2.5 Results

Results are provided in two parts. Table | provides a comparison of the
values obtained from the menu cost funciion under a zero threshold policy
with those presented in Dixit(199]a). The punitive costs associated with fol-
lowing a sub-optimal pricing strategy arve quantified by V(w). Firms which
initially lie outside the optimal zone of inaction and do not instantly transach
down to zero face huge costs. Firms which transact down to zera confront
only a fraction of these costs. Thus providing firms with a clear incentive to
transact downwards. These observations are in cantrast to the Dixit model

in which these losses cannot be measured.

Table 2 provides an illustration of the results of the general price adjustment
model given. The optimal zone of inertia remains the same, but the values
of V(v) are clearly different to the values of V{w) for similar values of z.
Although not applicable in this problem, these results indicate that the more
gencral optimising strategy could be relevant in circumstances when the type
of costs faced by firms change. A discussion of how the results obtained here
could change when some the assuinptions dealing with costs arc rclaxcd is
also provided. For the source code used to generate these functions see Tech-

nical Annexure 4.
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2.5.1 Comparison of the zero threshold policy and ex-

isting work

The values of the cost function derived here, which does not contain the
heuristically motivated “smooth pasting” condition, highlights a pattern
of optimising behaviour that previously was not observable, ‘l'o provide a
comparison, the same values are chosen for the exogenous parameters as in
Bixit(1991a), .e. ¢ = 0.1, p = 0.05, g = 0.1 and & = 0.5. Table 1 com-
pares the optimal values derived for the cost function in section 2 with Dixit

(1991a) given by

—2kh cosh(az) + kax? ; ko?
pa sinh(ah) ' o e’

VDixit'(x) -
where £ 1s the so called optimal symmetric boundary value, to the optimal
values given in Section 3. The value of & is the first positive root of the
equation

y — tanh(y) — % =0. (2.24)

Vhixin(z) Increases with respect to @ for only a symmetric interval of » &
{--0.3,0.3). Tor = ¢ (—0.3,0.3) the “smooth pasting” strategy suggests that
firms should instantly jucur cost g and eliminate their price gap, reducing
(increasing) their total costs to g + V(0), without evaluating the potential
costs {or benelils) of following this strategy. In Table 1 V(w} quantifies these

costs, providing firms with clear incentive to change x to zero if they initially

67




lie in this cuter region.

I'he findings here are interesting. They confirm what Dixit (1991a) suggests.
They show that if firms adopt a zcro threshold policy, then the optimal zone
of inertia will be constrained by the exogenous parameters driving the cost
function. Firrus, behaving as private optimisers, initially lying ontside this
zone will instantly adjust their prices, at time zero, to match the market
price and bring themsclves inside it, incurring an adjustment cost of g. This
effectively implies that no firm will set its initial price so that its initial price
gap lies outside this zone, Firms with o € (—0.3,0.3) will be [aced with a

cost of V(x). Firms with @ ¢ (--0.3,0.3) will confront a cost of g -+ V(0).

‘I'his analysis clearly demonstrates that the costs associated with letting
prices diffuse outside optimal zone of inertia are large. Firms make a sig-
nificant cost saving by adjusting © down to gero. Therelore irms will only
tolerate small deviations in their price from the market price, because, large
price gaps are too costly. However, the resulting narrow zone of inaction re-
quires elastic demand curves in oulpul markets and supply curves in labour
markets to cause large welfare fluctuations. This is a strong assumption to

impose on markets.
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2.5.2 The Optimal Price Adjustment Policy

The zero threshold policy compels all firms when adjusting their prices to
match the market price. It is silent on the behaviour of firms who may other-
wise choose to let their prices to deviate significantly from the market price.
This is because the zero threshold policy is only a limited form of the general
optimal control policy for dealing with such problems. It allows firms ne
flexibility in optimally determining the magnitude of price adjustient. In

essence, it imposes synthetic constraints on the zone of inaction.

The results for the optimal price adjustment policy are remarkable. It cap-
tures the behaviour of firms functioning as complete optimiscrs. As can be
seen from Table 2, firms will always opt for a zero threshold framework,
even il their initial price difference is sufficiently large. This is because the
potential downside associated with waiting cxceeds the upside of matching
the market price, albeit by a small amount. Bul clearly for « ¢ (—0.3,0.3),
V(v) < V(w). This is because firms now have the flexibility of partially ad-
justing their prices. Although, this policy does not yield any further insights
here due to the unique costs faced by the firm, these results sugpest that a
strategy bascd on firms partially adjusting their prices may yield interest-
ing results in situations where holding costs and discount rates dynamically
evolve, rather then being held constanl, and the cost of adjustiment is changed

to include a proportional element.




If the cost atfached to adjusling a positive price gap is different to that of
adjusting a negative price gap, it is unlikely that the zoune of inertia will
be symmetrically disposed about the market price. Changing costs of ad-
justment to include a proportional element is likely to result in some firms
adjusting prices to reduce rather than climinate the price gap. Discount
rates and holding costs which dynamically evolve could also have varyiug
effects. In some instances the results may not change from those forecasted
by the model derived here. In other cases firms may only partially close the
price gap, the optimal zone of inertia could be asyminetric or both. The key
featurc driving firm behaviour would be the equation of motion governing
discount rales and holding costs. Under these circumstances making an a
priori decision on the type of adjustment policy to follow, such as the zero
threshold policy in the Dixit model, would be to abstract too much from the
true nature of costs faced by firms. The zone of inaction forecasted by a
Nixit type price adjustment policy would clearly be at odds wilth how firms
priced their output in the real world. Ouly the partial price adjustment

policy described here will accurately evaluate how firms truly behave.

2.6 Concluding Remarks

This chapter utilises an optimal stochastic control {ramework to confirm the

resulis obtained in Dixit (1991a). By adopting a non-heuristic approach it
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quantifies the potential costs to firms in arcas which previously were un-
observable due to the “smooth pasting” condition. As a result it becomes
clear why firms opt for a zero threshold policy. Farlier models such as the
Mankiw or Dizit models usc various heuristic a-'r'guﬂ1.e';'a£;s to make this an
a priori feature. Also analytical expressions are derived describing optimal
agent behaviour as the underlying parameters change. Obviously, by relax-
ing some of the assumptions made in the Dixit model on adjustment costs,
holding costs, or the discount rate many of the results could be expanded on.
However, the alm of this chapter is also to demonsirate some of the ex ante
restrictions placed on the solution by the beuristically motivated “smooth
pasting” condition. In order to do this best, it was considered helpful fo
confine the analyses to an established model so that all its limitations could

be easily observed.
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R ) | - | ; i T—ry | 7
-2.000000 5.815624 -2.010000 | 0.010000 0.434207 - .340147
-1.900000 5.685384 -1.910000 { 0.010000 0.434207 0.340147
-1.800000 | 5.556160 -1.810000 | 0.010000 0.434207 0.310147
~1.700006) 5.427494 -1.710000 | 0.010000 0.434207 0.340147
~1.600000 5.299132 ~1.610080 | 0.010000 0.434207 0.340147
-1.500000 5.171162 -1.510000 | 0.010000 0.434207 0.340147
~1.400000 5.044232 | -1.410000 | 0.010000 0.434207 0.340147
~1.300000 4.919831 -1.310000 | 0.010000 0.434207 0.340147
-1.200000 4.800695 -1.210000 | 0.010000 0.434207 0.340147
~1.100000 4.691372 -1.110000 | 0.010000 0.434207 0.340147
~1.000000 1.599035 -1.010000 | 0.010000 0.434207 0.340147
-0.900000 4.534703 -0.910000 | 0.421127 0.434207 0.340147
-0.800000 4.515216 -0.810000 | 0.403579 0.134207 0.340147
-0.700000 4.566686 -0.710000 | 0.385571 0.434207 0.340147
-0.600000 3.816582 -0.610000 | 0.368207 0.434207 0.340147
~0.500000 3.466724 -0.510000 | 0.353139 0.434207 0.340147
-0.400000 0.456546 -0.410000 | 0.342751 0.434207 0.340147
~0.300000 0.434207 -0.340147 | 0.340147 0.434207 0.340147
-0.200000 0.395923 -0.340147 | 0.340147 0.305923 0.340147
-0.100000 0.355556 -0.340147 | 0.340147 0.355556 0.340147
0.000000 0.3539286 -0.340147 | 0.340147 0.339286 0.340147
0.100000 0.355556 -0.340147 | 0.340147 0.355536 0.340147
0.200000 0.305923 -0.340147 | 0.310147 0.395923 0.340147
0.300000 0.434207 -0.340147 | ©6.340147 0.434207 0.340147
0.400000 0.456546 0342751 | 0.410000 0.434207 0.340147
0.500000 3.466724 -0.353139 | 0.510000 0.434207 0.340147
0.600000 3.816582 -0.368207 | 0.610000 0.484207 0.340147
0.700000 4.566686 -0.385571 | 0.710000 0.434207 0.340147
0.800000 4.515216 -0.403579 | 0.810000 0.434207 0.340147
0.900000 4.534703 -0.421127 | 0.910000 0.434207 0.340147
1.000000 4.599035 -0.010000 | 1.016000 0.434207 0.340147
1.100000 4.691372 -0.010000 | 1.110000 0.434207 0.340147
1.200000 4.800695 -0.010000 | 1.210000 0.434207 0.340147
1.300000 4.919831 -0.010000 | 1.310000 0.434207 0.340147
1.400000 5.0442382 | -0.010000 | 1.410000 0.434207 0.340147
1.500000 5.171162 -0.010000 | 1.510000 0.434207 0.340147
1.600000 5.299132 -0.010000 | 1.610000 0.434207 0.340147
1.700000 5.427494 -0.010000 | 1.710000 0.434207 0.340147
1.800000 5.556160 -0.010000 | 1.810000 0.434207 0.340147
1.900000 5.685384 -0.010000 | 1.910000 0.434207 0.340147
2.000000 5.815624 -0.010000 | 2.010000 (.454207 0.340147
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T V{w) a { u b —’
[-2.0000060 2.059944 -2.010000 | 0.191338 | 0.191338 | 0.461544
-1.900000 1.944792 -1.910000 | 0.188907 | 0.188907 | 0.450699
-1.800000 1.832973 -1.810000 | 0.185915 | 0.185915 | 0.45747
-1.700000 1.723971 21710000 | 0.182246 | 0.182246 | 0.454752
-1.600000 | 1.617223 -1.610000 | 0.177767 | 0.177767 | 0.451447
~1.500000 1.512131 -1.510000 | 0.172325 | 0.172324 | 0.447459
~1.400000 1,408090 -1.410000 | 0.165743 | 0.165743 | 0.442661
~1.300000 1.304525 -1.310000 | 0.157823 | 0.157823 | 0.486946
-1.200000 1.200051 -1.210000 | 0.148344 | 0.148344 | 0.430187
-1.100000 1.097061 -1.110000 | 0.137069 | ©.137069 | 0.422967
-1.000000 | 0.992916 -1.010000 { 0.121611 | 0.119480 | 0.416121
-0.900000 0.888780 -0.910000 | 0.107210 { 0.105323 | 0.405815
-0.800000 |  0.785938 -0.810000 | 0.088047 | 0.085194 i 0.393846
-0.700000 0.686441 -0.710000 | 0.068057 | 0.063766 | 0.382870
-0.600000 0.593698 -0.610000 | 0.046432 | 0.043729 | 0.367149
-0.500000 | 0.513858 -0.310000 | 0.021980 | 0.015662 | 0.355380
-(.400000 0.456470 -0.410000 | 0.004171 | 0.000762 | 0.344190
~0.300000 (.434207 -0.340147 | 0.000000 { 0.000000 | 0.340147
-0.200000 0.395923 -0.340147 | 0.0000060 | 0.000000 | 0.340147
-0.100000 0.355556 -0.340147 | 0.000000 | 0.000000 | 0.340147
0.000000 0.339286 -0.340147 | 0.000000 | 0.000000 | 0.340147
0.100000 0.355556 -0.340147 | 0.000000 | 0.000000 | 0.340147
0.200000 0.395923 -0.340147 | 0.000000 | 0.000000 | 0.340147
0.360000 0.434207 -0.340147 | 0.000000 | 0.000000 | 0.340147
0.400000 0.456470 -0.344190 | -0.000762 | -0.004171 | 0.410000
0.500000 0.513858 -0.355389 | -0.015662 | -0.021980¢ | 0.510000
0.600000 0.593698 -0.367149 | -0.043729 | -0.046432 | 0.610000
0.700000 0.686441 -0.382879 | -0.063766 | -0.068057 | 0.710000
0.800000 0.785938 -0.393847 | -0.085193 | -0.088046 | 0.810000
0.900000 0.888756 -0.404789 | -0.106189 | -0.107472 | 0.910000
1.000000 0.992916 -0.416121 | -0.119480 | -0.121611 | 1.010000
1.100000 1.097061 -0.422267 | -0.137069 | -0.137069 | 1.110000
1.200000 1.200951 -0.430187 | -0.148344 | -0.148344 | 1.210000
1.300000 1.304525 -0.436946 | -0.157823 | -0.157823 | 1.310000
1.400000 1.408090 -0.442661 | -0.165743 | -0.165743 | 1.410000
1.500000 1.512131 -0.447459 | -0.172324 | -0.172325 | 1.510000
1.600000 1.617223 -0.451447 | -0.177767 | -0.177767 | 1.610000
1.700000 1.723971 -0.454752 | -0.182246 | -0.182246 | 1.710000
1.800000 1.832973 0457474 | -0.185914 | -0.185915 | 1.810000
1.900000 1.944792 -0.159699 | -0.188907 | -0.188907 | 1.910000
2.000000 2.059944 -0.461514 | -0.191338 | -0.191338 | 2.010000

73
Table 2.2: Results From The Optimal Price Adjustment Policy




Chapter 3

Transactions Demand for

Money: A Critical Review

3.1 Introduction

Keynes (1936) identifies three reasons for holding money. The first is the
{iransactions motive, where agents select an optimal cash. balance by minimis-
ing the costs associated with managing a portfolio of cash and an interest
earning illiquid asset. The second is the speculative motive, where money is
held as a component of a portfolio of asscts optinally selected to maximise
return while minimising risk. The third is the precaufionary motive, where
money is held as a buffer stock to absorb any unplanned expenditure shocks.
‘I'hese ideas were subscquently formalised in models which incorporated ci-
ther one or two of these motives. This chapter looks at how the literatuce
on the transactions dernand for money has evolved, highlighting some of its

perceived strengths a weaknesses.
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The early confributions are discussed in Section 2. Subsequent developments
are analysed in Section 3 highlighting the attempt to synthesise both the
transactions and Lhe precaulionary motives. The most recent literature is
reviewed in Section 4, looking at how valuable inforination could have been
discarded by authors when obtaining analytic solutions. Finally the bene-
fits of combining the inventory theoretic approach with the various portfolio
models, which examine both the speculative and precautionary motive, are
discussed. When referring to money or cash here, il is not strictly in the

sense of MO, but assets with cash like attributes

3.2 Early Transaction Money Demand Mod-
els

Modern transactions money demand models have their genesis in Baumol
(1952) and “lobin (1956) (Baumeol-Tobin} which look at money holdings from
a micro basis. Transactions are assumed to occur at a constant rate and ave
perfectly foreseen, and agents seek to optimise a portfolio consisting of cash

and an illiquid interest earning asset.

Take an agent who spends £C at a uniform rale. To do this he must either
borrow or draw on his savings and incur an opportunity cost in the form
of forgone interest income, say + per period. All withdrawals are made in
fixed quantitics of £M and with cach withdrawal a lump sum transaction
cost. of @ is incurred. Thus any M = C will permit the agent to meet
expenses if a suflicient number of withdrawals are made. Hence a minimum

of C/M withdrawals will be required costing £8C/M. I £M is expended
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at a constant rate, then average money holdings will be £M/2. Tf interest is
earned every C'/M periods then the interest opportunity cost will be yM/2.

The total cost of holding money will be

which is the expression [or the optimum level of money holdings. It is obvi-
ous from this that, if ¢ = PY where P is the price level and Y is the level of
real income, the income elasticity of money will be 1/2. However, numerous
empirical studies have shown this not to be the case. Narrow money has
been demonstrated to have a short run income elasticily of close to zero and

a long run income clasticity of close to unity.

Many explanations can be forwarded as to why these models fail to match
empirical findings. Firstly they are deterministic and thercfore do not ac-
count for precautionary balances. The interest rate is held constant. Hence
any change in the level of expected money holdings will not reflect any in-
ertial responses which occur due to interest rate uncertainty. DBecause the
model is static it also fails to capture the truc intertemporal opportunity
cost of holding money. Also, it takes a limited view of agent opltimising be-
haviour. Unlike most portfolio based models, where agents seek to raaximise
wealth by holding a portlolio of assets, of which money may be one, in an
environment of onpoing uncertainty, these rodels assume a world of perlect
foresight. Given these limitations it is not surprising that the Baumol-Tobin

approach does not reflect empirical findings. However, the model also yields
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some useful insights. It captures the long run directional sensitivily of the
money stock Lo changes in key macro variables, serving as an approximalion

of the equilibriuim behaviour of transactions money balances.

3.3 The Discrete Stochastic Cash Flow Mod-
els

T'he criticism levelled at Baumol-Tobin in the literature that immediately
followed it was that it failed to reflect the money holdings of firms both from
positive and normative points of view. Miller and Orr (1966), (Miller-Orr)
argue that the typical pattern of money holdings is not as simple as the
deterministic view in Baumol-Tobin, but that they typically follow a ran-
dom walk. This assuinption instantly changes the dimension of the problem.
Firms not only have to decide on how much to withdraw when cash heldings
hit a minimum level, but also how much surplus cash to switch into the inter-
est earning asset. Transfer costs like Bawmol-Tobin are assumed to be lump
sum, say £3. All transfers between the two accounts occur instantaneously.
Also the cash balance is not allowed to fall below a minimum level. Firms
seck to minimise the long run average cost of managing their money stock by
using a two paramcter control policy. The two parameters being the upper

limit of cash holdings A and a threshold of z.

Given these asswmptions, the cost of managing a firm’s cash inventory over
a {inite horizon of say 7" days will he

BN

B[] = 5

-+ GOE [.!W] 3
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where F{N] is the expected number of cash transfers over time horizon T, /7
is the marginal cost of each transfer, E[M] is the expected daily cash balance,
and i is the interest carnings per day. Obviously the firm’s objective will be

to minimise E[C] with respect to i and z.

To solve this problem Miller and Orr express E[N|/T in tcrms of the control
variables h, and z. If the time span belween transfers into and out of the
cash account are given by z¢, 2, -+ -, which are independent random variables
[romn a peopulation with a well defined probability distribution with a mean

D and a finite variance, then
Eley+ o+ -, +wa ST < Bley + 22+ oy +2ns],

or

D.E(N) ST < D.E|N| + D,

since Blzy + @y + -+, +a,) = D.E[N]. From the above equation it can be
implied that
1 1 _EN]_1

DTS T =D
It is obvious that if 7' grows unboundedly, then E[N]/T will tend towards
1/D.

For a symmetric random walk the mean first passage time out of the contin-

uation region {0,h), D(z, k) is given by Feller (1957) fo be
D(z. k) = (2}{h — 2).
Miller-Orr convert this value into the expected duration between cash trans-

fers per day letting 2’ = z.m and &' = h.m to arrive at

D(z’, h-’) — (z")(gﬂt_f!)_
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Next they express Z[M] in terms of z and . The probability that the cash

balance will contain preciscly = units is

f@)=pflz - 1) +qf(z+1) 22

which must satisfy the boundary conditions

Fo) = plf (= )1 Fh— D] 4 alfe+ D+ FQ), (80)
and,
f0)=0,  Jf{h)=0,

and the distribution condition

Z flz)=1.
=0
Solving these equations yicld a solution of the form
f(z) = Ay + Bz 0<uw <z, (3.2)

and

f('c) = Aq + f)’z(ﬁl - 17) z <z <h. (33)

The linearity of (3.2) and (3.3) gives rise to a mean of the distribution they
form of (4 +2)/3. Further letting 7 = s — z the cost function to be minimsed

will now be

: : m* (74 2%)
nznzn E[C)— g 7 NIpASaa ‘

(o]

This is nothing more than the gambler’s ruin prohlem which is described in

Feller (1957). Minimising this expression it is clear that the optimal threshold

B (3[:177'&%) 3
z= 7
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and the oplimal size of the upper boundary i will be
f = 32,

By substituting the optimal level of z into the above equalion it can he easily

seen that a fixms steady slale average cash balance M* is given by

4 (38m2\ 3
M=o SN
3( 4y )

If m = PY it is clear that the income elasticity of average steady state money

holdings will be 2/3.

Here again like Baumol-Tobin the model deviates from what has heen em-
pirically observed. Although Miller-Orr introduce uncertainty to expand on
the deterministic nature of Baumol-Tobin, the model still remains discrete,
(ailing to take account of the continuous process by which cash flows occur.
Tnterest rates are assumed to be constant. By leaping to the steady state,
the modecl is constrained to being essentially static. Also, in reality it could
be argued that costs faced by agents are not in fact lump sum but linear and
asymmetric. By assuming that agents do not borrow, the effect of debt and

the asymmetric responses which this gives rise to are also excluded.

However, Miller-Orr breaks new ground on many fronts. It marries the trans-
actions and precautionary motives for hwolding money. Cash balances are a
risky asset whose value is stochastic and given by a randomn walk. If interest
revenue {rom the illiquid assel is normalised to zero, then the rsky asset cash
will generate an income of refurn —w. The agent eftectively maximises the
expected value of the payoff from holding the risky asset by optimally decid-
ing whether to go long or short on cash in the form of the interior threshold,

in the presence of fixed hedging costs. When cash balances hit zero, the
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agent buys an optimal quantily of cash at a fixed cost to restore himself to
the interior point. If balances hit some upper boundary, the agent sells cash
due to its punitive return at a fixed cost. This eflectively, makes Miller-Oxr
an expected utility mazimisalion problem. With all the risky and risk free
return transferred to cash, it is clear frorn the mathematical properties of
linear wtility functions, that wiility maximisation by a risk neutral firm will
yield the same optimal targets and thresholds as a cost minimisation exercise.
Effectively, agents maximise the payoff of playing a fair game. The appealing
idea of this approach is that money balances are only adjusted when they
hit only an upper ar lower boundary. Temporary and short-term changes in

the in the money stock are voluntarily held.

3.4 The Continuous Stochastic Cash Flow Mod-

els

3.4.1 Steady State Models

Milbourne, Buckholtz and Wasan (1983) (MBW) try expand on Miller-Orr
by introducing continuous cash flows in the form of a Wiener process. The
results obtained are identical to Miller-Orr. Frenkel and Jovanovic (1980)
allow for continuous cash flows as well, but opt for a single parameter con-
trol policy like Baumol-Tobin, which yields a short run income elasticity of

mouney holdings of less than a half.

The robustness of these models lie in the modelling techniques utilised.

Frenkel and Jovanovic (1980) impose an upper boundary which is unbounded.
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T'his [orces the agent to incur holding costs which arc punitive, with a prob-
ability that is non-trivial, when cash balances diffuse upwards. No action is
available to mitigate these losses, Therefore, it is not surprising that despite
introducing uncertainty they obtain an income clasticity smaller than the
purely deterministic perfect foresight model described by Bawnol-'Tobin., A
finite upper boundary which is chosen opfimally like Miller-Orr will serve to

malke this model realistic and also yield a smaller income clasticity.

MBW should yield similar results to Miller-Orr, but not identical since they
use a continuous time framework. Agents restore balances to an interior point
z if cash balances hit an upper limit f or a lower limit of zero. MBW obtain
a steady state differential equation for the distribuiion of cash holdings of
the type

o Pr(z) o

+ 240 - Ol - 2), (3.4)

U= 55 B

where 2 denoles the stock of money and o? its variance. They solve (3.4) to

obtain a cash distribution

I )ZwSx
n@)=9 |
2nh—x
Mi—z) < S2gh
Cy and (Y4 are defined to be
t x, 1
lim Qf_(_:r,_) = (', and liny 9f(z,t) = (.
taeso Oz 2=0 oo 02 z=h
Firstly
o® §*m(z)
2 Ja?

does nol exist, since the second derivative of n{z) does not exist. Thus the

distribution of net cash holdings is that of a purcly deterministic process,
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sowmething like Baumol-Tobin. Secondly w(2) does not saiisty (3.4). Also for

(3.4) to hold C) must equal C;. lu other words

. Of(z,t) . Of(e, )
l'l-{)I&l;J c')a, =0 B }E;g 0?: | w=h
or
2 2

Rz~ h{z—h)
This obviously caunot be true unless 2 = 0, But /2 was initially defined to be
not equal to zero. Thus the solution that MBW provide for the distribution
of cash holdings docs not satisfy the differential equation from which it is

obtained.

Clearly the logical foundations of both models are suspect. Irom an eco-
nownic standpoint they do not significantly add to the insights provided by
Baumol-Tobin and Miller-Orr. The cost minimisalion criterion used to de-
termine the optimal boundaries and thresholds allow for only Lthe optimal
cash management decision of risk neutral agents to be analysed. And, like
the preceding models the so called solutions are only valid for a steady state

view of Lhe world.

3.4.2 Net Present Value Cost Minimisation Models

Constantinides and Richard (1978) ascribe to the agent the net present value
of a cosl minimisalion problem, where net cash disbursements dxz, follow a
Wiener process, 1.¢

de; = udt + o.dz,.

i is the mean flow of nct cash disbursements, o, 18 the standard deviation

of net cash flows and dz, i3 a Wiener increment. Thc nel present value of
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holding costs are given by

V(m,ru) = E{ [ e " Ca:) dt + Z e B{4:)
J0

infu =1

To = $] (3.5)

Holding costs C'(z) are assumed to be
he 220
Clx) = _
—pz 02z

p is the discount rate, and the transler costs B{¢;) are given by

R(4) Kt4(u-Ut 22w
Blg;) =
K+ +(D—d)k+ d

v

x.

Fxpanding (3.5) using a stochastic Taylor scries expansion yields

2

pV(2) +uV(z) - SV"(w) - Cla) = 0. (3.6)

Solving (3.6) with rcspect to the “smooth pasting” and “value matching”

conditions given by
V(D)+ kT =0 VI(U)~ k™ =0,
and
V(d)=V(D)+ Kt + kT (u—-U) Vi) =V{IU)+ K+ k(D --d),

respectively, yields a solution of the form

;

Viu)+ (=2 —u)k™, use
hafp+hufp? + aeM® +eeh, 0SaSw
V(r) =
—pefp — pp/p + cac® + e, dZ 2 Z0
Vid,r) + (d — z)kt, t 2 d
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c1, €, ¢z and ¢4 are constants. Note that the overdrall rale only affects V(z),
iff initial cash holdings @ are less than zera. Otherwise it has no effect, de-

spite the fact that it may still apply when cash holdings drop below zero.

The results generated differ significantly compared to preceding models. Con-
stanfinides and Richard (1978), by looking at the net presenl value of costs
associated with managing a cash inventory increase the time horizon over
which costs arc generated. Discounting ensures that transfer costs are pun-
ished more than in the steady state literature. Clearly the zone of inerlia
increases. This is important, because it points to a longer adjustment lag and
a higher long run income clasticity than predicted by steady state models.
Proportional costs ave coutinuously incurred at a rate proportional to the
storage level of mouney, and costs accrue at a much faster rate than the finite
horizon considered in steady state models. This has the effect of reducing
the frequency and iucreasing the size of withdrawals and deposits. Of course
some of this increased inertia could be parsly due to assuming that transfer
costs are linear in the size of the transaction. The modification of these costs
to reflect the asymmetric costs encountered when depositing and withdraw
ing cash yield the asymmetric targets and thresholds encountered in reality.

The overdraft rate of —p could also contribute towards this.

The weskness in this model lies in its use of the “smooth pasting” condition
ag an optimisation tool. This is a heuristically motivated condition which
cannol be reconciled with the optimal stochastic control theoretic framework
used. Effectively, gradient conditions are imposed on the cost function with
respecl to the initial level of money holdings. A critique of this condition

is provided in Chapter 1, where the natural conditions for this problem are
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derived. It is also clear that the solution to the cost function in the re-
gions u < 2 and © £ d do not satisfy (3.6). Due to these inconsistencies
the forecasted behaviour of this model could detract from the underlying

assumptions of the model.

Smith (1989) tries to develop Constantinides and Richard (1978) further by
introducing a mean reverting stochastic process to model interest rates. This
vields a significant breakthrough allowing the optinal targets and thresholds
to capture not just cash [low uncertainty, but also interest rate uncertainty.
From an economic standpoint, the assumption of mean reversion is question-
able. 1% is only a long run observation. To confirm this in most economies
would require data sets spanning a long time period. Given thal structural
and institutional regimes influencing the prices and rates of return on al-
ternative assets to money have experienced numerous changes within each
decade, it is unlikely that malching intervest rates over a lengthy time span
would reflect the same opportunity cost of holding money. In fact it would
be more realistic to assume that interest rates [ollow a Poissonian type pro-
cess in which the interest rale experiences discrete jurops at discrete time

intervals.

Smith (1989) models the mean reverting interest rate as an Ornstien-Uhlenbeck
process

.

dr = O:("}' - ?}C# -} O’rdzr o= 0

where » 1s the interest rate. The coefficient a(y —r) captures the mean revert-
g effect, and dz,. is a standard Wiener increment. Applying a stochastic

Taylor series expansion on the resulting cost function with respect to the
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initial state ylelds a partial differential equation of the type

pV(:C, ?‘) - :u'V'r‘(-L': ?') - (.}:(’}/ — ‘l’) V;(g;’ r} (-_
2
%'I/a,g,(x, T‘:] - o-a:‘,r'l";:r(m, T‘) — %M.,.(.’E’ ?") o (;'(1« ?«)_

Wd

)

This is solved using the *smooth pasting” and “value matching” conditions

to obtaln the cost function

¢

Vi{uyr) + (z —w)k™, usz
(p+ ) er+ ayz/p+ (o + @) Tpr
V{e,r) = +uya(l 4 plp+ a) ™)/ p® + 0er/p} + €167 b e, 022 S
—px/p = ppfp + cae’® + c1eM7, d<z<0
V(d,r) + (d — ek, z2d

‘The above solutions to (3.7) do not necessarily correspond to the assump-
tions made in Smith (1989). Consider the solution for the region 0 = z £ u.
This is only valid if o, = 0, i.e. if the stochastic cormponent of interesl rates
is removed. But this would imply thal interest rates are delerministic. In
fact a meaningful solution to (3.7) can only be obtained if oy — r) < 0. If
aly —r) > 0, then the anti diffusion effect of this coeflicient would cause
extreme instabilities. This eftectively implies as ¢ — oo interest rates will
be unbounded and negative. Consider the solutions for V(z,r) in the re-
gions ¢ 2 d, and u £ . These like Constantinides and Richard {1978) do
not satisly the differential equation (3.7). Hence V{(u,r) + (@ — u)k~ and
V(d,r) +{d — z)k" cannot be solutions to (3.7).

These inconsistencies along with the heuristically motivated “smoolh past-
ing” condition may explain why Smith (1989) does vol yield any signilicantly

different results to Constantinides and Richard (1978). If interest rates over
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time become negative and grow unboundedly, agents after a finite peried of
time will hold all their wealth in cash. This effectively reduces the time hori-
zon under consideration to be a {initc one. Assuming that ¢, == 0 eliminates
any inertial responses that may occur due to interest rate uncertainty from
the model, effeclively reducing the model to a type similar to Constantinides
and Richard (1978). Therelore it is not surprising that Smith (1989), like
previous modcls, concludes that the dynamic process governing aggregate
money demand is a product of the “chattering” of cash balances between the

targets and thresholds.

3.5 Empirical Evidence

Inventory theoretic money demand models suggest a stable money demand
function and a lagged adjustment in the money stock to exogenous expen-
diture shocks. Here the empirical evidence is discussed. The literature in
this avea is vast. Therefore rather than provide an exhanstive account of all
the rescarch done, certain illustrative examples of the most recent work shall
be discussed. The literature is discussed without any recourse to problems
which arise from aggregation bias. However, this issue shall be dealt with in

the subsection which follows the empirical survey.

3.5.1 An Empirical Survey

Artis and Lewis (1976) estimate a first order partial adjustment model, and

look at the stability of the estimated coellicients lor the period 1963(2) to
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1973(1). The rate of return on broad money iz measured as the difference
hetween the own rale of money and gilts. Risk in all equations is incorpo-
rated through introducing the variance of boud prices in all equations. They
find that all cquations fajl the Chow test for the period 1971{1)-1973(1). For
broad meoney this instability extends over a much longer period. Artis and
Lewis (1976) argue that these instabilitics are caused by disequilibrium in the
money market. Hendry (1979,1985) studics the demand for transactions bal-
ances in the non-bank private sector. It is assumed that the long run demand
for M1 is determined by real income and an opportunity cost which is consid-
ered to be the 3 month lacal authority rate. The [indings suggest a short run
income elasticity of less than 0.5. The error-correction component has a one
to one relationship between the money stock, prices and income indicating a
long run income elasticity of money of unity, An interesting finding is that
velocity is negatively correlated to real money balances, suggesting a sualler
a zone of inertia with increased velocity. Evidence of a lagged adjustment in
the money stock is also found. Milbourne (1983), and Cuthbertson {1986} ef-
fectively confirm these findings. Cuthbertson and Taylor (1991) suggest that
the the demand for M1 seems to experience structural changes in the late
eighties, and also find some instability in the period 1968(4)-1983(4). Using
a longer data set Artis and Lewis (1981) show that M2 has a long run elas-
ticity of unity. Hendry and Erricson {1988), examining data for the period
1867-1975 for broad money, using the Fngle-Cranger two step cointegrating
technique, obtain a long run income elasticity of unity. Muscatelli (1989)
demonstrates that whilst M3 has a unitary long run elasticity M1 does not.

The cointegraling vector for M1 only appears in the demand for money equa-
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tion, implying short run divergeuces from the equilibrium demand cquation.
It demonsirated that the M3 equilibrium error exists in the price, income
and interest rate equations highlighting a more complex adjustment pattern.
Hurn and Muscatelli (1991a,b) also find evidence of a small short run income

elasticity for MO and M4 and a long run elasticity of close to unity.

In the USA most models demonsirate instabilities in the post 1973 period.
Goldfeld (1976) finds a stable money demand function with a low short run
income elasticity for the periods 1952(2)-1973(4), but in dynamic simulations
the model over predicts money balances for the period 1979-1982 (see Cuth-
bertson (1983})). Laidler {1980) finds that M2 is much less stable than M1,
which is interesting because in this period the targeted aggregate was M.
Gordon (1984} uscs an ADL-TLCM approach to model the demand for narrow
money, but finds considerable instability in the estitnated equations. A cown-
prehensive account for narrow money is provided by Baba et al. (1988) for
the periods 1960(2)-1984(2). They find a short run income elasticity which is
0.34 and a long run elasticity of 0.5, the interesting aspect about this study

are the various measures of opportunity costs used.

The empirical evidence is clearly mixed. The perceived stabilily or instability
of the money stock clearly depends on the specification of the money demand
equation aund the kind of statistical techniques used, for example GLS, ADI.-
I5CM or the Engle-Granger two step technique. T'here exists clear evidence
of lagged adjustment, however, a significant minority of the surveyed litera-
Lure seems to find an unstable money demand function. Whilst the former is
consistent with agents using a target threshold inventory management tech-

nique, the latter does not support this view. Theoretical models need to
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account for these two differing views on how the money stock behaves in

order ta he consistent with the ewmpirical evidence.

3.5.2 Aggregation Bias

The previous section draws conclusions on the validity of micro money de-
mand models based on the results derived from macro aggregale empirical
models. However, there exist a number of problems associated with recon-
ciling both these approaches. A large body of the theoretical cconometric
literature addresses the issue of aggregation bias, which is defined as being
the deviation of macro parameters [xom the average of the corresponding
micro pararneters, in detail highlighting some of the important issues which
need to be dealt with. Scc Pesaran, Pierse and Kumar (1989), and, Lee,

Pesaran and Pierse (1890},

Consider the following disaggrepated model
H,: yi=Xi+y i=1,2,--+,m. (3.8)

vi is a n x 1 vector of the dependent variable, X; is a n x & matrix of
obscrvations on the regressors in (3.8) and /% is a. k X | vector of coeflicients
and vy is the associated disturbance term. The aggregale equation, which

satisfics the Klien-Nataf consistency condition is

Hy: ya=Xaba+ va. {39)
and
=S X3
=1 =1
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b, is a k x 1 vector of aggregate coefficients. The basic test of aggregation
concerns itsell with the problem of

m

H‘y : ’:'Ir’:‘ e inﬁi — Kby = 0.
i=1

The test statistic 9 is assumed to be a Gaussian variable. There exist many
reasons for the null hypothesis Hy being rejected most of which result from
the micro dynamics of the variables concerned. Structural breaks in the micro
data for specific dependent variables y; may lead to the null hypothesis being
rejected. Misspecification of either the aggregate or disaggregate models
could be another important [actor. Furthermore, there exists a large array of
micra baged egtimation issues which could lead to either a significant upward
or downward bias in thce computed values of both the long and short run
elasticities of the real money stock with respect to the interest rate or income.
Agegregation bias conld also enfer when one moves from a narrow measure
of money to a broader measure. The inferences drawn from the empirical
literature mnust consider this problem before accepting or rejecting hypothesis

based on the results derived in the current muicro based theoretical lileralure.

3.6 Concluding Remarks

The inventory theoretic approach generates targets and thresholds using a
dual asset management framework for only risk-neutral agenls. The eflects
of changes in macroeconomic variables only affect the money stock through
the associated opportunity costs of holding monecy. Although this approach
yields significant iusights into how the transactions motive affects the aggre-

gate money stock and captures the precautionary motive for holding money
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inn cases of risk neutrality; it does not analyse the effects of risk. This may
explain why some of the results described above may not necessarily be com-
pelling as alternative approaches, or be consistent with the empirical evi-
dence. Clearly the contentious issue of instability in the empirical literature
needs o be dealt with in models of the target threshold type described in

this chapter if tliese models are to cover the gamut of accumulated cvidence.

One direction in which the theoretical literature could develop is fo consider
a different type of agent such as a risk averter. The non-linearities cansed by
a concave utility function could significantly alter the ‘neat’ results obtained
in existing models. Tiquidity preference models developed by Markowitz
(1952), (1959), Tobin (1958) Feldstein {1969) and Courakis (1988), and also
expected utility theory would be the natural starting point here. The Lu-
cas critique oflers some promise in this direction. A sound mathematical
approach to solving these problems may also yield differing results fo the

current heuristically motivated techniques used.
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Chapter 4

Optimal Money Holdings

4.1 Introduction

Transaction money demand models explain the sensitivity of money balances
to interest rates, and, the lagged adjustment of monetary aggregates to exoge-
nous changes in macroeconomic variables through a dual asset optimisation
approach. The agent, usually assumed to be a risk neutral firm, optimally
selects a portfolio consisting of an interest earning illiquid assct and cash in
the presence of transaction costs and an exogenously specified stream of cash
ffows. On the other hand, risk aversion models represent money holdings as
a compenent of a portfolio of assels, optitnally selected by an agent to max-
imise his utility of wealth, trading off risk and return. This chapter links these
two ideas ta determine the optimal portfolio choice of a risk averter in the
presence ol stochastic shocks to asset prices and an equilibrivm net income
stream. Numerical solutions are oblained for the optimal zone of inaction
using a utility maximisation framework. 'The results do not yield the well

behaved inertial responses derived in conventional cost minimisation prob-
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lerng, The multiple optima obscrved demonstrates that the optimal value of
waiting for going long or short on cash discretely varies despite holding the
underlying parameters and risk preferences constant. This clearly indicates
that a one off change in a key macroeconomic variable will result in several
discrete adjustments being made to the money stock over a long period of
time. This is also coufirmed by the intuition behind the popnlar Ceneral
To Specific (GTS) empirical modelling technique. The use of flexible lags
in formulating the money demand equation in the presence of a multiplicify
of accessible long run equilibrium relationships allows for the possibility of
an exogenous shock forcing the economy onto a new equilibrium. Of cowrse,
the GTS method a prieri allows for only a nnique long run equilibrimun re-
lationship, thus discounting the existence of multiple optimising strategics.
However, the use of some kiud of spectral estimation technique will overcome
¢his limitation. Based on the varying lags of the crror correction mechanism
found in the current empirical literature, there exists strong evidence to be-

lieve in the presence of more than a single long run equilibrium relationship.

Section 2 provides a brief illustration of risk aversion models and highlights
their similarily to lransactions money demand madels of the Miller-Orr type.
A simple example is also provided. Secticn 3 sets oul the wodel, and the
underlying assurnplions. The initial value problem is solved in Section 4. Al-
though this deals with a very special case, its values are necessary to obtain
a numerical sofution to the general problem. Finally, numerical solutions
obtained by solving the model are presented in Section 5. All the technical

detail is relegated to the Appendices and Technical Annexures.
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4.2 Risk Aversion Models vs. Stochastic Trans-

action Money Demand Models

Risk aversion liquidity preference models analyse the optimal portfolio choice
of a risk averter. Given a risk prefcrence, an initial level of wealth and
a wealth constraint, the agent is faced with the problem of allocating his
wealth among a portlolio of assets which maximises his utility (of wealth)
over a given time horizon. This allocation is made among both risky and
risk free assets. Holding assets with a higher risk may increase his return,
but at the same time increase the possibility of a capital loss. Money on the
other hand does not yield a return but is also risk free and thus may prove to
be attractive as a component of the portfolio (sec Markowitz (1952), (1959),
‘Tobin (1958), Feldstein {1969), Dalal (1983}). Hercin lies the justification for
agents holding money as a component, of a portfolio of assets. It is explicitly
demonstrated here that risk aversion and the initial level of wealth plays an
important role in determining the optimal choicc of cash and the interest

earning asset.

In many ways risk aversion and transaction money demand models overlap.
An optimal portfolio selection exercise equates the loss in marginal utility
to an agent as a rcsult holding a portfolio of a risk {ree and a risky in-
terest carning asset to the gain in marginal utility arising from both these
assets. A risk averter attaches a diminishing marginal utility to each unit
of additional wealth. A change in utility resulting from a change in wealth
specifically depends on the level of wealth itself, Hence wealth necds to be

caplicitly included in an optimal portfolio selection exercise for o risk averter
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like Tobin (1958) does. On the other hand, risk neutral agents attach a con-
stant marginal utility to increasing levels of wealth. Thus normalising the
wealth level and the interest income earned with it to zero will not change
the optimal portfolio decision of the agent. This is what Miller-Orr and sub-
sequent stochastic transaction money demand models do. The infroduction
of a stochastic interest rate in Smith (1989} allows for a price varying asset.
In fact Miller-Orr explicitly conclude that the closed [orin solutions obtained
are analogous Lo a dual assel port{olio selection exercise for fivms with risk

ncutral preferences.

Consider a simple example in which an agent who is initially endowed with
an interest earning assct of ammount w and a stock of cash mg. Assume that w
earns a rate of retwrn » per time period, payable on its outstanding balance
at the end of each period after all portfolio adjustments have been made.
Also assnime that at the end of the current period cash flows can cause the
stock of cash to be in one of three states, 1.e. my with probability p, me with
probability ¢ and mg with probabilily 1 —p—g. The states have the ordering
Mgz < Mg < Mo < ;. Then the expected wealth of the agent at the end of

period can be characterised as
plw(l + )+ ml] +4q [w(l )k mg] +{(1-p—gq) ]_uJ(l +7) -+ 'm-aj :

The distribution of probabilities in this example implies that only one state
ahove and two below the current state arc accessible. Suppose that the agent
can only hold a quantity of money that is either less than m,, or greater than
ma. If the agent has a cash level of m; at the end of the period he will need
ta convert money into the interest earning asset. On the other hand if he has

ms he will nced Lo convert some of the illiquid asset into cash. If the agent
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has me he may or may not wish to draw on his illiquid asset. But clearly he |

faces an increased chance of hitting mg3 in the following time period.

15

Let the agent convert a quantity of money m, into the illiquid asset in state \
1, and in states 2 and 3 withdraw amounts rmy and i, respectively. The
expected cost of these transfers are given by the function C'(mg,ma,m.)
where C(.) is an increasing function of its arguments. The agent’s expected
payoll will be
p[(w + ) (1 + 1)+ (my —mng) — Clmg, my, mr)} I
“+q [(w —mg}{1 + )+ (my + m;)) —~ Oy, g, mc)}

+{1—-p—gq) [(w ~m N1+ )+ (ma + me) — Clmg, my, mc)} :

[f the agent wishes to maximise his expected utility, he faces the problem

Ma,MpNe

max pU( [('w +mg) (1 +7) + (my —my) — Clma, my, mc)]) |
-{-qU([(w — (L4 7)) & (g 4 my) -~ Clm,, my, ?71,,:)])

+{1 —p— q)U([('w —m) (14 7r) + (mg + m) — C{mg, my, mc)]).

If the return on the illignid asset r is normalised Lo zevo, the problem becomes

mnax pU([(w + 1) - (1 = m)(1 =) = Cmg,m, mc}])

Wha 1Y, Mg

+qU ([(UJ =) + (m2 +me)(1 — 1) — Clmg, my, mc)]) i+
+(1—p— Q)U([(“’ —me) + (ma +m)(1 —r) — Clmg, ma, mc)_l ) J

If the agent is risk ueutral, it can be casily be seen that the first order l
conditions for mayimising the above equation with respect to m,, np and m.

will be same as those obtained from

max  p(rmg) — g(rms) — (1 = p = g)(rme) — C(mag, my, me),

Meq M, 1o
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or

min  —plrma) + q(rmy) + (1 = p — ¢)(rm.) + Clmyg, mp, m,).

Mg, Mb T e
This is a straight forward cost minimisation exercise, simnilar to the Martin-
gale framework utilised by Miller-Orr. However, if the agent is a risk-averter,
then it is easily seen that w explicitly enters into the first-order optimising
condition similar to liquidity preference models. In fact the only difference
between this example and the liquidity preference models discussed earlier,
other than the obvious simplification, is that the risky asset here is cash. In
the liquidity preference models the interesi earning illiquid asset is the risky

asset.

Undoubtedly this analysis demonstrates that cost minimisation stochastic
{ransaction money demand models not only analyse the effects of cash shocks,
but also implicilly derive the optimal portfolic choice of risk neutral agents.
They also contain a wealth constraint, which enters through the specification
of the interest rate and the shocks to cash. Effectively transaction money
demand models of the Miller-Orr type and the liquidity preference models
pioneered by T'obin (1958) ave two sides of the same coin. The firss difference
lics in the transfer of risk from the illiquid interest earning asset in liguidity
preference models to cash in Miller-Ozr. The secoud is that the latter looks

al risk neutral agents, whereas the former considers risk aversion.
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4.3 The Money Demand Model

Each agent is assumed Lo be endowed with an initial level of wealth, which
congists of an illiquid asset w and cash m. w earns a return in the form of
interest, which could be negative, whereas m does not. The objective of the

agent is to maximisc
/ e U {w; + |l — (g + re) H{—my)]) dt,
0

where U(.) is an increasing and strictly concave Von Neumann-Morgenstern
utility function satisfying the conditions U(0) = 0, and U'(c0) = 0. 7, is
the interest rate, g is the constant overdraft premium, and H(—nz) is a

Heavyside slep function which helps capture the overdralt charges.

Interest rates are assumed to follow a Poissonian Birth-Death type process

whaose probabilistic evolution is given by

L) M= DB oat) D) 90} Bu) 10+ 1) a0 (81)

This implies that at time ¢ il the interest rate is v, (r, = ..., 1,2,...), then
the probability of transition r¢ — v¢ + 1 in the infinitesimally small time
interval (¢ +di) is given by A(r;)d¢ + o(dt), where o(dt) contains higher order
terms of dt. Similarly, if at fime ¢ the interest rate is vy (v = ..., 1,2,...), the
probability of the transition », — r;—1 in the interval (i-+dt) is y(r;)di+o(dt).
The probability of a transition to any other state other than a neighbouring
state 1s o(dt). The probability of interest rates remaining constant is 1 —
{AMre) + v(rs)}di + o(dt). It follows that if the cvolution of the transition
density function for interest rates is given by (4.1}, it can be shown that

expected interest rates evolve according to the law

d‘f_
E?t_ = A(ry) — v(r¢) rg ="T. (4.2)
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See Gardiner (1985, pp. 237-238) for a derivation of (4.2).
Net cash flows follow a Wiener process with non-constant coefficients, i.e,
drey = p(rny + wi)dt + o{my + w,)dz, ™Mp = M my € (a,0).  {(4.3)

The assumption of non-constant coeflicient is driven by the feature that net
cash flows at each point in timme are dependent on the level of wealth (7,4 10;)

agents hold. The inconvenience losses which arise fromn cash asset transfers

are
Kt +ktu ifluz0
B(u) =
K-+ku fuzgo,
where
b—u ifx; =0,
u=

ea—1 ifz =a.
The vectors (6—u) and (a —1) are the size of cash transfers at the upper and
lower boundaries respectively, and K+, K, k%, k= are constants. The loss in
utility arising from these transfers is U(B(u)) since B{u) is an unrecoverable
outflow of wealth. Obviously if E{ry] & 0 agents will hold all their wealth as m
to avoid incurring unrecoverable transfer costs. 1{ can be seen easily seen that
in this case (4.3) reduces to a geometric Wiener process. It is obvious that w
will implicitly depend on the control vector and the state variable. However,
it only enters the HJB equation through its inhomogeneous term, that is
the instantaneous utility function U. Fquation {4.3) has been formulated io
climinale the possibility that the total wealth of agents will be negative since
a negative wealth level is precluded by some utility functions. In others it

yields economically unacceptable solutions.
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The objective of the agent is to arrive at a policy

P o= {7, Wy T, U T W '}1

of a series of stopping times and transters which maximise his infinite horizon
utility subject to cash transfers u, e,

Vim,mu) = K [ /m &P U (wy + my[L — (g + ) H(my)]) dt
JO

supn

+ f: e U (B(w)) ‘m T, {]] ; _ (4.4)

i=0
where p is the rate of time preference, or the subjective discount rate which

is assumed to be strictly positive.

It can be shown using Ito’s Lemma that (4.4) must satisfy the Hamilton-

Bellman-Jacobi equalion

o*(w + m)?

pVim,mu) — 5 Vi (113, 7y 0) — p(w + m) Vo (m,m;u)  (4.5)

—(A(r) —¥(r))Vi(m,ryu) — U(w - m[1 - (g4 r)H{—m)]) = 0.
In obtaining (4.5) it is assumed, as with any other stochastic control prob-
lem, that the probability transacting in the (s infinitesimally small time

interval [0, d!] is zero. Hence the absence of any transactions costs in the

inhomegeneous lerm U{w + m|l — (g + r) H{—m)]).

4.4 The Initial Value Problem

Equation (4.5) is a parabolic partial differential equation. To solve it, the
behaviour of V{.) needs to be explicitly specified when » = 0. Obtaining

a profile of V(.) when » = 0 is referred to as the initial value problem. Of
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course, this profile will be independent of the dynamics of the problem and

will only be given by economic arguments.

As stated earlier, if the rate of return on w is either zero or less, agents will
store all wealth in m to avoid unrecoverable wealth outflows in the form of
transaction costs, and negative rates of return on w. Since w = 0, r will
cease to influence V(.). Obtaining this V(.) will provide the solution to the

initial value problem.
The Wiener process governing net cash flows now becomes

AM, = uMdt + oMydz, Mo=M M, c[0,00), (4.6)
where M = w + m. 'T'he infinite horizon utility function will be

V(M) = E[ fo h e~ U (M) dt

M, o] . (4.7)

Equation (4.7) gives the expected utility over an infinite horizon when cash
(wealth) flows are specified by (4.6). Naturally (4.7} ceases to be a control

problem because both opportunity and transfer costs vanish.
Fixpanding (4.7) in a Taylor series using Ito’s Lemma yields

PV (M) — %iMZVMM-(M) —pMV (M) —-U(M) = 0. (4.8)
Solving (4.8) will give the profile of V(M) when v == 0,
Equation (4.8) is a differential equation of the Cauchy-Euler type and can
be shown to have a solulion of the form

-V(M) = AM**4 BM™

o / " Uly)y~ o) dy (4.9)
0

o2y — o)

(231 ]
_i.ﬂmf U(w}w_(l'i'&l) dm,
oM og — o) Jur ’
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See Appendix G for the derivation of (1.9).

Critical to this problem is the behaviour at V(ﬂaf)lMZO. It is obvious that
U(M) o = 0 by the defining property of a utility function. Since the
cvolution of M is given by a geometric Weiner process, if initially A = 0,
then M; = 0. As a result it is clear that V(M’)lM:O = (. Effectively il au
agent is endowed with a wealth level of zero, the geometric Wiener process

constrains both his wealth and utility over the infinite horizon to be zero.

Equation (4.9) needs to have this property to be economically consistent.

It can be demonstrated that

2M 2 M
. 7 —(1+a2) d -
)\1}}}30 0'2((1’2 - 051) o j{y)y Y U;

éud
QM ™

. _2Mm ‘x’{ . “_.(1-}-0:1}01"’: .
I}:EI'E-—[}IU 0'2(0,’2 - Cl’l) S j['?:)T @ 0

Since U{M) v = 0, then provided that A = 0 it is clear that
=0

;.}?{& V(M) =0.

See Appendix H for the proof. As a result (4.9) now becomes

2Mu3 A ( )
-V(M = BMY4+— 7 ——— Uy~ tez) g 4.10
(M) + o —a) o () y  (4.10)

20 o
I Ul m“{l'l’ﬂ‘l} d:l:,
(o — 1) Sur ( ) '

In order for V(M) to be congruous with the assumed attributes of U(M), it
must also satisfy the condition limpsoes V(M) = 0, i.e. if an agent is initially
endowed with infinite wealth, then his marginal infinite horizon utility with
respect to his initial endowment must be zero. This intuitively follows from

the properly that limare U'(M) = 0.
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Differentiating (4.10) with respect to M it is clear that

Zazﬂlozhl

M
re. —(i+ea2)
S TE—— )/ Uly)y dy
2oy ML [

— U(y )y~ o) dy.
ooy o Jy W)y W

—V(M) = BoyM*'4-

Sec Appendix [ for tntermediate steps. It can be demonstrated Lhat

M
lim M'“'?"lf lf(y)y_(l+““) dy = 0,
0

M=-yo0
and

(z.v]
Jimn Mo T (y)y= e dy = 0.
4700 M

See Appendix J for intermediate steps. Hence
lim V(M) = Ba; lim M™!
M—co M—~yo0

Setting B = 0 will yield
Hm V(M) =10.
Moo

This satisfies the marginal utility condition imposed on the utility function.

Thus

V(M) =
(M) = o
Now let az — ¢y = —2C. Then the solution to (4.8) satisfying the properties

V(M)| =0 and limyoe V(M) = 0 will be

- M
V(M) = %[m*z i Uy)y~0Fea) gy
-i-MOI/ U(y)yy o) d?J (4.11)
L%

For (4.11) to be consistent with the conditions imposed on U(M), it also

needs to Have the property limparoe V(M) = co. This follows from the
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choice lheorelic assumplion limgs e U(M) = oc. Il requires that, if an

agent 1s endowed with an infinite quantity of wealth his instantaneous utility

al time zero will be unbounded. Since an infinite wealth level cannot ever be

exhausted to a finite quantity, even over an infinite time horizon, it follows

that the infinite horizon utility function must also be unbounded. It can

be shown that (4.11) satisfies this condition, and is therefore the complete

solution (4.8). See Appendix K for the proof of limas_yo. V(M) = co.

Equation (41.11) can be further simplified into a form that will make it

amenable to numerical evaluation. Let y = Mz in both integrals of (4.11).

Then V(M) simplifies to

1
V(M) = %[M‘*? /[; U(Maz)M-Ot)g=Cro2) pr gy
—HW“?/ U(jW:E)M_(H“l)93_(”""11“.’{d:c‘}
l .
1 o
= 21—[[ U(:Mm}m“(l'm“’)dm-l-/ U(iwxjrc_(l*'al}dm:'
o o J1
Clearly

' et —a?1 1 ’ a2
[ vt gy o [FOMRT) L [FHU T,
‘ ] 0

Qg o?

—T7 (] M [
_ U(M) + E U'{Maz)a™" dz.

253 Qg Jo

It is also ohvious that

oo (M) ™ © A M)z
/ UMa)a tedde = l[_(_i_)i_ﬂ__] +f ___;‘__(___’f_)_f___dx
i 1 1

o ol
_ UM (M) + E{f U(Mz)ye™™ da.
()‘.']_ 1

&y

Hence, V(M) can be further reduced Lo

- i i I
V(M) = 1 UM) + M U'(Ma)o™ du
052 1]

73 g
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0/ (M)

(243

+

+ -ﬁ—d—f U'(Ma)z— dat].
0:1 i

In the latter integral on the the R.H.S., setting & = 1/z yields

o0 Q - ___
f U'{(Mz)e™ d / U(&{) 2 (—ﬁ)
1 1 2 =
1 .
- f z“‘-‘BU’(ﬁ) dz.
a %

It is also clear that

1 1 Oig — N
) 8] ¥y Qg
Co?
P

Therefore V(M) can expressed as

o?(

r 2 1 ~1
V(M) = - [O(M)O“ -f-»{l’f/ U'(Mx)a=o dm-l-%] z"‘l“ZU’<M> al’z].
Qg Jg at Jo

o
2

0
Letting v = M/z it can be shown that

1 M 1 M ! ¢
M [ Pt i (—) dr = —MU(M)+ = [ 20 (Y)Y dz.
/ - MUon - | (v0'())

~

See Appendix L for intermediate steps. Therefore the reduced form of the

solution to the initial value problem becomes

UM 1 [M o
V(M) = »—-(;—)--I- ch[ag ./g U'(Mz)z™™2 de
MUM) | M ol ‘.
+T g | z (LU(U)) dz|. (4.12)

Equation (4.12) is the exact expression to compute the profile for the infinite
horizon atility function for specific utility functions for given levels of M

when r = 0.
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4.5 Numerical Solutions
Many functional forms could be substituted for U{M). Here it assumed that
U(M) = In(1 + M), (4.13)

where In(l + M) is a constant relative risk aversion utility function. Now,

from (4.13) it is clear that

o= 2
b3} T o
- 1 I
14+

Hence

- ' 1

(vw0'(v)) = T oF

Therefore

1 1 1 1 f

= A2 Y3792 oy L oy =24 r i,

agjc U'{Mz)z™ da + a%[} 2 (v[ (L)) dz
i i L —ag E i oy

x d + | z d
i S SR ST S
ay fo L+ M of Jo 22(1+ M) ?
R e T N
- =capR Ny
o Jo 1+ Mz af Jo (M4 2)?
Substituting this into (4.12) will yield the solution to the initial valuc prob-

lem for a logarithmic utility function.

Analytical solutions of the type described in the literature would necessitate
the discarding of valuable information in both (4.5) and (4.12). Usually such
solutions also require the use of strong assumptions which could detract from
reality. To overcome these limitations (4.5) and (4.12) shall be solved numer-
ically. The mumnerical algorithm used here requires a detailed knowledge of

spectral methods, integration rules, and optimisalion techniques. Therefore
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all technical dctail will be relegated to the Technical Annexures.

A description of how (4.5) 1s solved is as follows. An agent is endowed with
somme level of illiquid assets w, and cash m € (,b), and follows a control
policy of the tvpe

b ifz, =0,

a 1z =a.
The analysis is restricted to a zero threshold policy because later results
confirm that a more general four parameter control policy described in the
current literature is unlikely to yield any further insights. Also, the four
parameter control policy forms the envelope of the zero threshold policy.
Therefore a detailed analysis of V(.) under a zero threshold policy will also
reveal the important properties of V{.) under the more general four parameter

control policy.

The initial endowments enable the computation of a solution to (4.12) over
the intcrval (M,, M) where M, = w + @, and M, = w + b. Since (1.12)
i i the form of an integral, its numerical solution is evaluated through a
Simpson’s rule adaplive integrator. See Technical Annex 2 and the source

code in Technical Annex 6 for details of this.

'I'he integration technique used to obtain a solution to (4.5) requires the
computation of the infinite horizan utility function V{m, r,u) and ifs partial
derivatives Vi, (m,r,u) and Vio,{(m,r,u) as Chebyshev polynomials. This
requires the interval m € (¢,b) to be mapped into § € (—1,1), and is done

through the transformation

Mom —
9 = Am—a) 1, § = arccos(z).

(b—a)
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Next, the derivatives Vi (M) and Vaar(M) are computed from the numerical
solution to (4.12) through collocation differentiation. Once this is done, and

the probabilistic evolution of interest rates has been specified, i.e.

>0
Ar) =4(r) =4 =0

< 0.

the solution to V{m,r,u) can be computed through a fourth order Runge-
Kutta integralion scheme for » > § utilising the boundary conditions derived
in Chapter 2. For details on the Runge-Kutta scheme and Chebyshev'’s poly-
pomials see Technical Annexures 3,4 and 6. Ilere a Chebyshev polynomial
of order twenty is used to estimate V{m,r,u). If the computed solution
of V{m,r,u) proves to be a hill with a single maxima with respect to the
boundary values (or controls) a aud b, then this maxima and the corre-
sponding values of ¢ and & can be deduced by an optimisation routine such

as BFGS.

4.6 Results

The results highlight some very interesting properties. Risk averse agents
with identical risk preferences do not have homogenous money demand func-
tions. The optimal exercise prices at which cash is bought and sold vary by
discrete amounts, even if the underlying paramecters driving asset prices are
the same. As a result any onc off change in a macrocconomic variable will
result in several discrete adjustments being made to the money stock over a

long period of time,
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Let A(r} —~(r), be given dynamically for all » and assume that r is reflected

upwards when r = 0, effectively ensuring that » 2 0. This requires that
A(0) = 1, and  (0)=0.

Furthermore, let r be reflected downwards when r - R, where R is the upper

bound of r. Thus
ME) =10, and YR} = 1.

It
A(r) = cos(bmrr), and  (r) = sin(bwr),

then the reflecting properties described by the two conditions above ensure an
equilibrinm interest rate of 5 percent per year, i.e. when cos(H57r) = sin{57r).
This also corresponds to the long term equilibrium interest rate observed in
empirical studies. The properties of the coeflicients are such that the further
away r; is from the cquilibrium, the more rapidly it converges to the equi-
libriwm, which is also consistent with reality. The overdrafl premiuin is sel
at 2 percent annually. To ensure thal distortions are not caused by diflering
marginal rates of substitution and transformation (exclusive of transaction
costs), p is also sel to [ive percenl. The mean cash flow in each time period
is assumed to be zero, t.e. = 0.0. This is analogous o assuming that the
agent’s income stream and consumption path are in a long term equilibrium
situation, and, any changes to the level of cash 1s caused by exogenous shocks.
I'he standard deviation o of the process governing net cash flows is assumed

to be normalised to 0.05.

Transaction costs are assumed to be linear and asymumetric. The cost of

selliug cash and buying the illiquid asset is assumed to be less than the cost
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Figure 4.1: A(r) — v(r) Dynamically Given

of selling the illiquid asset and buying cash, which is in line with what is
observed in the real world where the cost of buying cash is much higher than
the costs of selling cash. The proportional cost of selling m; for w, and the
cost of selling wy into my are assumed to be 1 and 3 percent of the size of
the transaction respectively. The fixed cost component of transaction costs
i1s assumed to be symmetric and is set at (.001 percent of the value of the
initial portfolio. This is a relative quantity based on the fact that w has been
normalised to be 1.0. It also corresponds fo reality where the fixed costs of
adjusting a porffolio of assets are very small indeed. Initial cash holdings m
are assuinted to be zero. These endowments are given exogenously and there-
fore can bc arbitrarily specified. In Figure 4.1 a cross section of the value
function V(m,r,n) is taken al ¢ = —0.02 and is plotted against values for

b € [0.001,0.04]. Clearly V(rn,r,u) is undulating, and an oplimising routine
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could converge to any of the local optima. Significantly these optima arc not
lumped together in a localised region, but arc spread out. The important
feature driving this is the constant nature of cash deposits and withdrawals.
Many parameters such as the size of the withdrawals, p and r also contribute
towards this. If & is only slightly larger than the initial cash cndowment of
zero, then the agent is likely o hit the npper boundary more frequently and
will be forced to endure frequent and irreversible outflows of wealth in the
form of transaction costs. As b increases these outflows are likely to diminish
and thus conserve the pool of wealth. As b increascs even more the oppor-
tunity cost associated with tolerating a large zone of inaction will take effect

penalising the agent.

Why then the second, and third hills? The answer to this lies in the differ-
ence belween the rate of time prelerence and the actual rate at which wealth

grows. The key is to understand the intertemporal dynamics of V{(im,r, u).

If the agent is risk neutral, it is easily observed that the trade-off between
the MRS and the expected MRT of utility will be of a linear nafure. This fol-
lows naturally from the linearity of a risk neutral utility function. In Scction
4.2 it was demonstrated that utility maximisation by a risk neutral agent is
equivalent to cost minimisation. This implies that the MRT of a risk neutral
agent will be independent of his level of wealth, and, only depend on the
rate at which costs evolve. In this problem holding costs accrue at a rate
proportional to the expected interest rate. Transaction costs accumulate at
the rate at which the Wiener process exits the continuation region through
the boundaries @ and b. Therefore, it intuitively follows that a linear trans-

formation of the net present value of the sum of these costs will be minimised
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for a choice of a and b at the turning point of a convex hull.

However, in situations where the agent is risk averse, the concavity of the util-
ity function imposes a non-linear rclationship between the MRS and MR
Furthermore, it is casily seen that the MRT will explicitly depend on wealth
holdings. As wealth varies the MR will be either larger, equal to, or, smaller
than the MRS. It is this feature which causes the aperiodic fluctuations in
V'(.). Clearly, if wealth is large, U(.) will also be large. Also, V/(.) will be
larger when {/(.) is large in earlier time periods rather than in later time
periods. This is an obvious effect of the rate of time preference p. If the
agent fixes his upper boundary beyond the first optimum value of b, then his
marginal rate of substitution (MRS) will be greater than his marginal rate of
transformation (MRT), i.e. MRS > MRT (inclusive of fransaction costs).
This is because the gain in V{.} due holding a cerfain level of illiquid assets
and excess cash in earlier time periods is less than offset by the gain in utility
in later periods resulting from the growth in wealth caused by switching some
of the excess cash into illiquid assets. Iffectively, the effect of p dominates
that of r; causing V(.) to increase again. The trausler of excess cash iuto the
illiquid asset results in unrecoverable losses in the form of transaction costs.
To offset this loss the MRT must exceed the MRS. This may require a rela-
tionship Lo be specified between the rate of time preference p, the equilibrium
ratc of interest, and also the nature of transaction costs. Bul, muaking this
link is difficult. Even if such a relationship was specified it may only serve to
dampen the amnplitude and change the period of the infinite horizon utility
function. For a link to be made one would need to model the complicated

[eedback relationship between transaction costs, r¢ and w; which would re-
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Figure 4.2: A(r} —y(r) = ~1.0

sult in a unique optima, and, then try and establish some kind of link with
p. The concavity of U(.) would almost certainly require such a problem to
be numerically solved. To suuplily the problem it is much easier to make
an empirical link between the [our parameters as has been done here. The
concave nature of the utility function is clearly the major factor driving the
oscillatory nature of the solution. If state varying controls were used where
a and b were allowed o dynawically evolve rather than being held constant,
it could be the case that these hills vanish. However, again, there is no «

priori reason to believe this.
In the previous example it was assumed thaf interest rates converged to an
cquilibrium rate of 5 percent per year. Here it is assumed that A(r} — y(r) =

—1.0. As a result expected interest rates follow a downward course, and in




the long run push the agent towards holding all his wealth in cash with a
profile of V() similar to the initial value problem. However, it can be still
scen that V(.) is undulating due to the various points at which the substitu-
tion and transformatioe dominate each other. The peaks observed in Figure
4.2 are also of a smaller amplitude and a larger period than in the previous
example. This is because, the variance associated with the rate of return on
illiquid assets is much less here, and, therefore does not expose the agent to
the same degree of wealth volatility as before. It can be clearly scen that the
optimal values of waiting increase as the thresholds increase, This follows
from the property that, as time increases, expected interest rates will become
negative and unbounded. Agents will choose not to opt for small targets be-
canse they will not be able to recover the frequent transfer costs incurred
through any inferest income they may earn. Although this situation is not
Jikely, it confirms the validity of the previous set of results and the underlying

intuition of the modelling approach used here.

Intuitively it sounds plausible that increasing the discount rate will front
load the problem. This would imply that, for the same utility function, both
the value of of ¥{.) and the amplitude of the aperiodic fluctuations ohscrved
in the two previous examnples wnust decrease. Indeed, this is exactly what
is observed, To make this [ealure obvious an annual discount rate ol 100
percent was chosen. 't'he dampening effect of this can be clearly seen in the

Figure 4.3.

Diminished risk sensitivity should yield an optimal region that exhibits less
volatility. Figurc 4.4 plots the profile of V(.) against b for another utility

function with constant relative risk aversion. U(.) is an exponential of the
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type U(z) = a¥, where 1 = 0.9. Risk aversion requires 0 < % < 1. The
agent exhibits less risk sensitivity as ¢ — 1. 'I'he results clearly conlirm
that stability increases with decreasing risk aversion. Thus reinforcing the

validity of the modelling approach used here.

These findings shed a new light on how agents behave. The existence of mul-
tiple oplima clearly demonstrates thal the oplimmal value of waiting for going
long or short on cash discretely varics, even with homogenous risk preferences
and constant parameters, It also gives risc to a series discretely varying lags
Letween a one off change in a macroeconomic variable and the money stock
being adjusted. Significautly, the aggrepate money demand fuuction will
exhibit discreet jumps over the different triggers at which agents choose to

exercise thelr option to go long or short on cash.
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In most rational expectations models the existence of multiple equilibria is
associated with eilher unstable or saddle point solutions {in higher dimen-
sion models). Most of these solutions, for example the divergent dynamic
path specified by the complex roots of an ordinary differential in a standard
two dimensional macroeconomic model can be dismissed through a partial
equilibriuin argument. Of course these require extremely strong assump-
tions that rely on a degree of foresight and rationality that is unobservable
in practice. In contrast, none of the observed optima here are unstable, and
therefore cannot be dismissed through a partial equilibrinm argument. What
is exactly the fundamentel solution here is not clear since all of them share
the unique feature that the marginal utility of the nfinite horizon utility

[unction with respect to a boundary is stationary.
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If agents learn by doing, does this ensure that agents converge to the global
optimum? Rational expectations models have studied the possibility of
agents converging to an unstable solution under simple linear learning mod-
els. De Canio (1979) and Kvans (1985) argue that agents use observations
over a finite period say T' to estimate the parameters of a system. They then
use this for another period of duration T' after which they recompute the
parameters again. Bray (1982) assumes that agents recursively estimate the
paraneters driving the system each period through a least squares method.
The outcome of both these techniques is that agents converge to the funda-
mental solution as they continue to refine their estimates of the parameters.
Of coursc in this model there is no learning to be done because the cxact
values of the exogenous parameters driving the system are assumed to be

known with perfect foresight.

Il the multiple equilibria observed here cannot be dismissed through learn-
ing or by using stability arguments, how does an agent converge to a global
optima? If all optima share the same property, that is the marginal utility of
the infinite horizon utility function with respect to a boundary is stationary,
even Lhe most advanced optimisation routines such as the Quasi-Newtonian
BIFGY technique will not be capable of distinguishing a global optimum from
local optima. The only way in which one could arrive at the global optimum
would be to evaluate the infinite horizon utility function for all possible val-
ues of boundaries, which is ¢leacly unbounded, and then use some kiud grid
secarch technique. Of course a grid search technique is an ad-hoc method
by which the value of one optima is compared with the value of another. If

the utilily function is not evaluated for all possible values of boundaries and
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thresholds, it could be the case that a grid search method only returns a
local optima. A multiplicity of optima in a utility function could make this a
very costly technique to use. In fact its ad-hoc non-scientific nature, its high
cost, and the near tmpossibility of pinning down a global optima reinforces
lhe notion that agents are most likely to converge to the locel oplima that is

most accesstble to them.

4.7 Concluding Remarks

In this model it has been demonstrated that, under time invariant controls,
the MRS and MRT eflect alternatively dominate each other over certain
ranges of the control vector yielding solutions with multiple optima. 'This
shows that the optimal value of waiting lor buying and selling cash discretely
varies, despite all other parameters and risk preferences being held constant.
The aggregate demand function [or a population of homogenous agents will
not converge to the well behaved functional forms hypothesised in the pre-
ceding literature. Tf agents converge to different optima, the full effect of an
exogenous shock may not be felt all at once as the current literature sug-
gests, due to all agents adjusting their targets simultaneously, but take effect
slowly at staggered time intervals. 1ts full effect taking time to work through
the whole economy. This also sounds intuitively correct. In earlier models
this effect could bhe only be_explained by assuming that initial endowiments
were heterogonously distribuled aimnong agents. T'his model provides an ex-

planation of the slow adjustment of targets by showing that agents, within a
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homogenous framework, may eptimally vary the extent to which they hedge

their risk.

Nalurally, the assumptions made here conld be further expanded by utilising
state varying controls, but in the absence of a theorctical basis providing
the natural boundary conditions for such a tovol, the resulls oblained here
could prove to be the most accurate approximation of the syntheses between
the inventory theoretic approach to modelling the transactions demand for

money, and the risk sensitive wealth maximisation approach to modelling.
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Chapter 5

Conclusions

This thesis presents three important results, and, a critique of the existing
inventory theoretic money demand models which sheds a completely different
light on them. Chapter 1 provides an analysis of the heuristically motivated
“smooth pasting” cendition which is used in stochastic “impluse” control
models as an optimisation tool and derives the natural boundary conditions
for solving such problems. The necessary first-order optimisation conditions
are also discussed. Chapter 2 deals with a simple application of the “smooth
pasting” condition, highlighting some of its shorlcomings. Unique insights
into the 1Jixit menu cost model are obtained. Also previously assumed prop-
erties are proven. Chapter 3 analyses the strengths and weaknesses of Lthe ex-
isting body of literature on the fransactions demand for money. Xey models
arc dissembled and critically analysed. Some of them which were previously
nol subject to the same degree of scrutiny, now do not hold up. In Chapter
4 a more robust and logically sound alternative to the existing approach is
presented. It tries to reconcile the two different findings ol the empirical

literature; that is the lagged adjustment of the money stock to changes in
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other variables, and, the perceived instability of the money deinand equalion.

Concepts from the existing transaction money demand models are gelled to-

gether with those from liquidity preference models to obtain a patfern of
optimising behaviour which goes against the ‘neat’ results obtained in the

current literature.

5.1 Chapter 1

The results in this chapter can be summarised as follows. *Smooth past-
ing” condition is a heuristically motivaled condition which is absent from
the stochastic optimal control framework for dealing with “impulsc” con-
trol problems. This chapfer provides a morc rigorous approach to solving
such problems. ITowever, later results in Chapter 2 confirm that both tech-
niques vield the same strategy. ‘I'he resulls also conlirm the “value matching”
condition ag being the natural boundary condition for “impulse” controlled
problems. It demonstrates that the value ol stopping at a state and exercising
an “impulse” control must equal the net present value of holding costs ac-
crued up to that state. This also sounds intuitively correct. If the total value
of exercising a stopping decision exceeded the net present value of holding
costs accrued until this decision was made, it would clearly be sub-optimal
to stop. Conversely if the net present value of holding costs exceeded the
net present value of the stopping decision, it would imply that the stopping
decision should have been taken earlier. Optimisation with respect to the
set, of admissible controls occurs as with any other stochastic optimal control

problem:.
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5.2 Chapter 2

A solution to the Dixit menu cost model is obtained using the “value match-
ing” and natural [irst-order optimisation conditions. Previeusly assumed
properties such as symmetricity and the zero threshold policy are now proven
to be optimal. A link between the intertemporal discount rate and the zone
of inertia is derived. This could not be deduced from Dixit {1991a} unless
an empirical link between variance of the Wiener process and the discount
rate is specified. Also costs faced by a firm initially lying outside optimal
zone are quantified, providing firms with a clear incentive to transact down
to zero. ''he benefits of following a partial price adjustment policy in cases
where the costs faced by firms are different is also provided. From a technical
point of view, a more accurate estimate of the zone ol inertia is obtained.

The simplifying expansion used in Dixit (1991a) is less accurate.

5.3 Chapter 3

The key contributions in existing body of literature on the transactions de-
mand for money is surveyed in this chapter. Each model is scrutinised in
detail highlighting its strengths and weaknesses. The logical foundations of
some models are shown to he not robust as perceived before. The math-
ematical analysis used is clearly questionable. Those models which appear
to be robust, analyse agent behaviour under restrictive conditions, e.g. the
deterministic and steady state model of Baumol-Tobin, or the steady state

model of Miller-Onrr.

The ‘ncat’ results which characterise most models is also compared with the
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empirical literature. The general consensus is that although a majority of
empirical models find evidence which supports the current target thresh-
old modelling approach, a significant minority finds that the money demand
function is unstable. This goes against the stable behaviour forecasted by
current models. A promising direction in which the the current body of lit-
erature on the transactions demand for money could evolve is discussed in

the final section.

5.4 Chapter 4

Chapter 4 returns to the initial objective of this thesis. The money demand
problem for a risk averter is solved. The mean reverting diffusion process
used to capture interest rate variations is replaced with a more realistic Pot-
sonnian jump stochastic process. Spectral methods and numerical integra-
tions schemes such as Simpson’s rule and Runge Kutta 4 are introduced for
solving the HJB equation for the {irst time. The findings here significantly
differ from preceding models. The key conclusion is the existence of multiple
optima, which has interesting implications for the money demand function
and implicitly for the demand illiquid assets. This is in contrast to the static
liquidity preference models in which intertemporal effects are not considered.
ltowever, unlike ollier rational expectations models, these optima cannet be
dismissed as being bubble solutions. Learning by agents or the use of ad-hoc

‘global’ optimising routines also do not discount this possibility.

The multiple optima results from the MRS and MRT effects alternatively

dominating each other over alternating ranges of the control vector. This
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demonstrates that ceteris paribus the optimal value of waiting for buying
and selling cash discretely varies. If agents converge to different optima, the
full effect of an exogenous shock may not be felt all at once, but take effect
slowly, at discreetly staggered time intervals, as different agents discretely

adjust their at Largets varying poiots in time.
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Appendices

Appendix A
By differentiating (1.19) with respect to z it is clear that
Viz,u) = ]ﬂm o Ub M(x(s)) fu ((s), 5|, 0) dw(s)] ds
—p|B(b,u) - V(u,u)] /:0 e P F(b,s]2,0)ds (A.l)
—p[D{a,l) — V({,u)] J{;w e Fy(a, sjz, 0) ds.
Dillerentiatiog (A.1) with respect to ¢ yields
Vee(,u) == /ZDO c"ﬂS{fh M(2(8)) feu(z(8), 8|2, 0) d:z:(s)} ds
—p{B(b,u) — V(u,u)] /:o TP Fp(b, s|z,0) ds {A.2)
—plD(a,l) = V{I,u)] /m e~ F(a, 8|z,0) ds.
0
Multiplying (A.1) by x and (A.2) by 02/2 and adding both gives
A(z)}V(z,u) = /’000 e [fb M{a(s))Af(2(s), sjz,0) d:t:(.s)] ds
e p B, u) - V()] ]:o e " AI'(b, s|z,0) ds

—pD(a, 1) — V({,u)l / e P AF(a,s|z,0) ds.
Jo
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Substituting the backward Chapman-Kolmogorov cquation (1.18) into the

above expression yields

fom e { ] g (2(s)) fs(2(s), s}, 0) c‘iw(s)] ds

a

AV(z,u)

U, = V) [ by o]z, 0) s
(1) = Vit )] /0 " B (a, sl 0) ds.

- ) f ’ M(u(s)) [ /D " e f(a(a), |z, 0) ds} du(s) - M(z)
P Bb,u) — Vi, ) [1 _p fu " e P (b, sl 0) ds}

—p[D(a, ) = V(I w)] [1 3 [D " e F(a, |z, 0) ds] (A3)

Appendix B
Derivation of the solution of the trausition density function in the forward
Kolmogorov equation.
Form (1.23) we have
(6,19, 0) = ~acfe(6, g, 0) + 5 el 119, 0)
Using the method of separation of variables we cbtain
f(&,tlg, 0) = T(1)Q(E).
Substituting this into (1.23) yields

daT)
3 @0 =~

dQ(§) | L. Q)
i T3 Wga

It is clear from this expression that the solution to 7'(2) and Q(€) are of the
form

T(t) = Be™,
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where B is an arbitrary constant, and
Q&) = Dsin[v A2 — a2(£ + tp)]e‘*‘f.

The boundary condition f(0,%|g,0) = 0 implies that Q(0) = 0. This is satis-
fied when ¢ = 0. We also have the other boundary condition f{1,%|g,0) = 0.
Setting £ = 1 we obtain a value for A in terms of the parameters of the

differential equation; i.c.

A = VoI T i,

This expression for A gives us an Eigenfunction of the type
sin(nmg)eé— s (@ nial)t

which is a solutiou to (1.23) satisfying its boundary conditions for all infegers.
Therefore, f(£,t]g,0) can be expressed as a solution to the forward Chapman-
Kolmogorov equation iu terms of a Fourier sine serieg, That is

o0
3 el a? dmln?
,0) = Zgn sin(nmé)e™ g(a?4nin?)t

n=1

fly.s

where g, is a constant. We can now from the initial condilion calculate the

coefficients of the series. We have
1
9o = 2 [ 8(& -~ g Csinnne) de
JO

= 2e ™ sin(nny).

Thus the Iourier series solution for the transition density function from the

forward Chapman-Kolmogorov equation is

oD
f(&,1g,0) =2 Z e (=)L) i () sin(nmg)

LIES |

129




The evaluation of the discounted value of the fluves at the upper and lower
houndaries over the infinite horizon

We have

[ tn, g0 ¢ =:./‘?f§ifwnﬂnwclﬂjn clia) B g
Jo

n=1

Z 2nm sin(nm(l — 9))6‘“(1_5‘)
B+ a? +n2x? '

n—l

We know as a fact that

Z 2w sin(nr(l — g)) c11111;5(9
B+ a4+ nin? sinh y

n=1

Therefore we have

/'Do 2 (1,100} dt = (1_9}3111}1}{5;
0 sinh x

Similarly we can compute the rate at which the first stopping value is accrued

on the lower boundary. We have

ey
_8
/ e 24 Fy = / E nwsin(nrgle” ™ G
n

Z '?’nﬂ' sm(n?rg
B+ a?+n?x?

=1
_ _agSinb x(l —g) )
sinh y
The evaluation of the integral fﬂm e"'g'ff{f,ﬂg, 0)dt

We have

< s o 4sin(nwé) sin(nrg)
2~ 2% f slg, 8) ds = : .
[Tetsesgne = 3 bt

n=]

We also know as a fact that

Z Zsin(nwy) sin(nmé)  cosh /B + a®w — cosh 1/ + oy

— Bia4nn? A/ Bt a?sinh /8 + o?
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where w = 1 — |g— &|, and v = 1 — g — £&. Now we can express the above
integral as

alé—g) cosh xw — cosh xv

/Do e FF(E, g, 0) dt = 2e
/0

x sinh ¥
Appendix C

1t is obvious that

o

V(0) = A+ —.

P

substituting this into (2.1) yields
.Ifﬂ 2 . kz k 2
Viz) = {V(D] — "fé—} cosh{awx) + Bsinh(oax) + }? + »—%—. (C.1)
P

From the boundary condition on the upper boundary in (2.1) it is clear that
o’ kb*

{V(U) - %}(msh(ab) 1)+ Bsinh(eb) =g~ =~ (C2)

From the boundary condition in (2.1) for the lower boundary it is clear that
ko? , . ka®

V(0) — r {(cosh{wa) — 1) + B sinh(we) = g — e (C.3)

Multiplying (C.2) by sinh(aa) and (C.3) by sinh(ed) and then subtracting

the latter from the former yields

{vo

kot
- T

}[sinh(aa.)(cosh(ab) 1) — sinh{ab)(cosh(aa) — 1)]
B P PRV LS P

Dividing through by (sinh{ca) siub(wb)) gives
ko® ab ad

_( _____ kt? ;“( I Y
=¥ p / sinh(ad) g p / sinh{wa)’

i31
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This equation gives V{0) as a function of the boundary values and the pa-
rameters of the problem. Similarly an expression for 5 as a function of the
boundary values and the parameters of the problem can also be obtained.
Dividing (C.2} by {(cosh(ab) 1) and (C.3) by (cosh(xa) — 1) and then sub-
tracting the latter from the former yields

ab aa g — 9—
) —eoth (2) ) = o Vo1
B (COth ( 2 ) e ( 2 )) cosh{ab) —1  cosh{aa) — 1

Simplifying the above two equations further, and substituting into (C.1) gives

an expression for V{x), i.e

) kb"’ coshlaz) Ica"’ cagh[aa)
ka? ko? sioh{ab) sinh{oa)
Vig) = “% 4R

PP tanh (;) — tanh (—9)

N [ (9 - %) sinh(c) (g — _) sinh( m,)]

cosh(ab) —1  cosh(aa) — 1

tanh (22 ) tanh (32)
tanh (%) — tanh ()

X

[(g— ) cosh(oea: ——)) (5% )4 osh(af ?:—-_5))
e e PSS i)
g P

o (5)

Dividing this solution for V() by ¢/2 and substituting the non-dimensionalising

parameters and variables in (2.3) yields

ooy 2wt f(J) cosh(2w — z) - f(z) cosh(2w — y)
Viw) = ~ + "}( sinh{y — 2) '
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Appendix D

Now that z+y =0, and f(y) is an odd [unction, we also must have z and y

satislylng (8), i.e.

_jy sinh(2y) — f(y) sinh(8y) — f(y) sinhy =0

Upon further simplification it is clear that

° - 2
f(y)(ﬁmhy +- sinh 3y) - =Y = .

-~

Therefore

2
2/ (y) sinh 2y cosh y + ::;’- sinh(ay) = 0.

Dividing throngh by (2sinh(ay)}) we obtain

-+ f{y)coshy = 0.

2=

Substituting for fy) and simplifying further gives

y — taoh(y) — =0,
Y

Appendix E
It is clear that
3v — y* tanh®*(y) = 2° + y¥sech®(y) — 3y tanh(y).

From this it is obvious the when y = 0, the above expression is also zero.
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Appendix F
The boundary conditions for the general price adjustment policy are
V) - V() =g and V(a)—V({)=

where ¢ and [ are the upper and lower thresholds respectively, see Sivanan-
than and Lindsay (1996). Substituting these boundary conditious iuto {2.1)
it 15 clear that

A{cosh(ab) — cosh{au)} + B(sinh(ab) - sinh(au)) +- %(62 —u?) = g, (F.1)

and
Afcosh{aa) — cosh(atl)) 4+ B(sinh(eva) — sinh(al)) + %(a2 — =g (F2)

Multiplying the first equation by (sinh(aa) — sinh(ad)) and the sccond equa-
tion by (sinh(eb) —sinh(cu)) and then subtracting the latter from the former

yields
Al(cosh(ab) — cosh{cu))(sinh(aa) - sinh{al))
—{cosh(aa) — cosh{ed))(sinh(cd) — sinh{owu))]
= (g - -’3(1}2 - tc2)> (sinh(aa) — sinh(ad))
B, 0 9 ) . “
m(g - ;(a’ ~ 1 )) (sinh{ab) — sinh{aw)).

By stmplifying the above equation further and making A the subject it can

be seen that

Lo 2 (a() con o(5)

s (o) o (o) o o ()
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(g - %(07,2 — Iz))i!ﬁinh ( (b ")) cosh ( (—t—)) :,I
_-'-I-A sinh (a(‘%ﬂ)) sinh (a(-‘%ﬁ)) sinh (a(“ Iﬁb"u-)) ;
(0 20— S (g - ) ]

sinh{af “+':b“" )

Similar to how A was obtained, B can also be obtained. If (¥.1) is multiplied
by (cosh{ea)—cosh(ald}) and (I'.2) by (cosh{ab}—cosh{au}} and then subtract o
the latter from the former, it is obvious that :
Bl(cosh(aa) — cosh{al)){siub(ab) — sinh{wu))
—(coshi{ab) — cosh(au))(sinh(ea) — sinh{al))]

- (g - g(z{* - 142)) (cosh(aa) - cosh{el))

- (g - g(a2 - 12)) (cosh(ab) — cosh(au)).

Using the same approach as was used Jor A, it can be shown that
Y 3y ) sinh(a %[ 3] 2 oy 2sinh{ca(2E2))
%[(g - %(bz - “?)) sinh(oz((%")) - (g - %(az - H)) siuh(o:(az'—?'-[)} :I

B= sinh ( a( atizbou )) '

Now that expressions for the constants A and B have been obtained, the

Bellman value function can be expressed as
E ko?
, N p’*
+3 [(g - ~—(b2 —u? ) (cmh (o.(a ----- ull )) sinh{cx)
— cosh ( (a +! )) cosh{az) )]
-Z—?.sinh( (a+l ! )Smh( b_u))
_;_.;_ [(q = —(a - Iz)) (co‘%h (a(b ;”)) cosh(az)

— cosh (a(b ) sinh(az) )]
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((——n( (Z(“z 33)
kx?  ko? (g — E(a* — {*)) cos} bolou--2a
e +[ sinh(o(%4))
W(S‘“ %(52 u ))cos‘h( (““ 23‘) ]

sinh(a(*3*))

<+ sinh (0: (@) )
Now write

sinh (a(ﬂ_im_*”)) b (a([“ 122 — (b u~ 23,-)])

2 2

= sinh (ry. (#)) cosh (a(m?;iq:))
—cosh (cz (ﬁ%&) ) sinh (Q(E_-!:_uzw 2%))

Therefore the value function can be expressed as

{ (s—3(="=1%) B (92 (02 —u?)) ]
V(;L) . Fea® + ko? sinh(a( %5 ))cuah((x(ﬁiﬂ]) :siull[nr{b'_Tu)) (:05}!(_0'[""';#]] )
- P Pt tanh ( (v—"'-—--a { 2"‘)) — tanh (a(bim——h“z_zw))

Now deline a function
(9- &~ )
P(u,l) =

sinb (e(557) ) cosh (a(*52) )

Then the value function will be

ka?  ko? 1

Viz) = —

4R { O(a, 1) — (b, u) ]
P* " 2| tanh (a(_,__?_)) — tanh (a (b....uﬁ_zx))
Dividing V{z) by ¢/2 and introducing the non-dimensional variables and

paraineters in {2.18) yields

_ 21}2 1. 1 Q)(J)z) q)(”‘, ’I‘
Vie)= v tanh(z — 2z) — tanb{z — 2v)’
where
‘I’(‘UJ, Z_) o T ‘{j_z_

sinhy cosh(z — 2v)
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Appendix G

"The Homogenous equation V = M is a solution to {4.8) where a satisfies

2
%M%@ — )M pMeM* — pM® = 0.
Simplifying the above expression yields

21t 2
o + (—‘%—Il.)am——%):(},
o o

It can be seen that o has two solutions e; and vy, i.e.

ce1="—<%“l)+ B r(L-2) >0,

2 o? o 2
and
I (TN S £ (_&_1)2 n
Qg = (02 2) \ 72 T b2 g) < 0.
Now let
V=M
Then
| _ 31 ad) ar1—1 ¢
Vg = M M + oy M .
and
7 231 82(/{) I3 ay—1 a(b E o —2
LA{M =M W + Z(YIM W + (11((11 e J.)ﬂ[ G2,
It can now be easily seen that the function ¢ satisfies
W ats] 62(‘5 s rory 41 a{/) - wy
M HW + 20 M 537 +ar{ay — )M ¢+
2p (2 a1 O rer s\ 20 ey, 2U(M)
> (ﬂ[ 537 + o M p MM = e
Grouping similar terms yields
, d2ch 2 dop
oy +2 < - (11+1__
M et (2“1 o )M
2uon 29\ 4 2U0(M .
+((X% — o+ fazl — af—;‘;) MY = — 0('2 ) (G.1)
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It can be easily shown thal

2uo 2
CRULTI N

o2 o

"T'herefore (G.1) simplifics to

d*¢ 20\ 1 dé e +2) 2U (M)
Eﬂ?+@m*ﬁﬁ)ﬁaﬁ“_M “;rq-

We know that ofGa+28)ar — py(etis), Therefore,

MONE ) g 4 (2a-1 + 2—‘:) MEn=E I gy = Rt =D (L’F(S’IJ).
a a
Hence
d

m[@w-ﬁ'ﬂzaﬁ%)] = M(gﬂ'ﬁ%_”(m‘). (G.2)

'l

It can be casily seen that

o 2u ou 1 \/2p wo 1\2
01+;§“ = '“2—}- "T+(—._") —1

Furthermore
24t 20 1 2p 7R R )
2t = at - megty st (5-3) (6-3)

And

| R -1_ /2)0‘”_ = : » ?1
Cl1+o_.2—z = —2‘|‘2|"\/—..+(—.——,—) -2 — ((.x.4)




Substituting {G.3) and (G.4) into ((G.2) gives

ﬁ [,'nmm-ar**J = U(M)0Fes),

Integrating the above equation yields

_ 2 [V
g ML = -5 [ U(y)y~ 0l dy + A.
Jo

Dividing through by M®“1=%*1 generates

pMer—oatl M
op = ————F— U(y)y~0Fon) dy + AME o+l )

Integrating the above equation it is clear that

J/ ppdr = —-—2—2-/ rc“’“"‘”l(/w U(y)y‘“"’““dy) dz
M oI 40

+.A] gzl g

1%

This integral has a solution

Mo~ fa &)

Hoo)— b = —3[

x

f U(y)y~0+e) d:u]

2 n — Y
[e4 (12 X1 0 M
2 o0 ‘,L.ﬂ?,“a]

= U2+ de

0% Jae 2 —

[e5)
_i__'A_ ....... _[waz'—o’l:l
Qg — (¥] M

2 {.ﬁf" U(y)y““*“")}

Therefore

" s — o) A

9 Mo A

2 i o
) / U(:z:).r“(l-km) drx -+ _._._.f,l.___ [{) _ }l,/[o‘2—ﬂ’1] .

o ay — ) Ju Q= Qg

¢loo) —¢ =

xﬂll - Qe

P
v

A
k3

E

- Uly)y o) ay
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Integrating the first term of the R.ILS of the above equation by parts, it

rediices to

2 U(il) (140 2Nz = M
o Hm
0% — ay) wroo (0 — )zl g2y — )

U(y)y~ e gy

2 b AMrerm
+ Ue)e 0 dg — ————.
o}y — i) ./M @) o*(ez - o)

It can be easily seen that

<3} o
2 im U=) o,
%oy — )¢ e—oo TN
and also ¢(00) = — B, where B is a constant. Therefore it follows that
g M
V(M) — AM® 4 BM* | —@"f—— U(y)y~He2) gy
o*az — 1) Jo

['T%{"m/ U (@)z ) gy
(02 — 1) Sy

is the solubion to (4.8).

Appendix H

I'he following properties naturally follow from the assumptions we make
about utility functions,

We have

—(1'+‘Of.a) dy

M (1+a2) fu
Jiro M*® ]ﬁ Uly)y dy = Jim w

UMM~ {I+ea)
=
NI—PO —()"211/{ (1+}2)

= —— hm U(M)
Qg A

_Ef_(P_)

gy
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Now let z = My. Then

. .ﬂ/fal ” (4 < -'(1“"0(1} : — . ] To 2} * '-—(1-{-&1} -—(l+'_‘x1] ]
1\1/}1_:510.. .[u' Ulz)e dz AI/}E;LOM 1 U(My)M Y M dy

= 11[11/ U{(My)y= ) dy
o 1

ni s, o e e . - . LR L e et s . R
I ST B TIPS OSSN 1 S e s TR L ) PN S P S A

AM—=0
= U'([))/ g~ (e} gy,
1
_ U
= 5
Using thesc two results and setting A = 0, it is clear that
o1
lim V(M) = — W0 : v(o)
M0 020‘12(0{2 — Cl‘l) O"z(){l(ﬂ’.g . Or.’l)
24 0)
T o

= 0.

Appendix i

Dilferentiating (4.10) with respect to M it is clear that

_ 2ag Mot (M
VM =  Ba Mol _— q—if [ {y)e~ (e} gy
( ) Qe O'Z(Oég _ Q’l) o (y)J Y
2Moz
. U(M)M~ Ut
(g — an)
2oy M1~ /N L
Ul )y~ G4 ¢
oz — o Ju (w)y Y
2M
- U(M) M el ¥
ooy - o ( (M) ;

This can be further simplilied to yield
Dery M 21

0‘2(0.’2 (}!1)

M
~V'(M) = BaM™ '+ / U(y)y~ e dy
0

ey M1

o0
Iinintt. Sl tURUI U —(14e} du.
1 o2(co — o1y ﬁ/[ (v)y Y
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Appendix J

It 1s ubvious that

M Mot y- ey g,
2 Mm-l/ Uly)y C+dy = lim Jo” Ulvly y
3}

A mboc M ~}oo M1~

, U(ﬂ/f) jw_(l+°‘2} \
= lim el
Mesoo (1 — cp)M—o2 l

U(M)

= = ag) M
= {.
I welet y = Mz it is also clear that 1'?|
: ey =1 = =(14m) - : a1 i T ~at . ~(1+ar) g,
}&ﬁﬁm M fM Uy )y dy w}rﬁnw M /M U{Mz)M ™2 du
= liu / Mm"(l"”"“) da
M—yoo f, M
, U(Ma)x=® ]
= lim —_—
M=o —ay M i

J.—i/ U'(Maz)s™™ dat)
a1 Jy

B . U{(M) 1 [/~ , e
= _&1&1@ ( al_M - o A U (114-'13).’8 db)

It can be easily seen that

U(M)
m om0

Also \
lim U'(Mz) =0, |

Moo
and therefore

lim L/ U'{(Ma)a™ de = 0.
1

M=oo (1)
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Appendix K

It 1s clear that

M—=co M=to0 ﬂ,{_az
UMM ()
= lim
Moo —agM—(1He2)
U(ﬂf]

= lim .
Moo —og

. M _ M opre N (l4az)
lim M"“f Uly)y U2 dy = lim Jo Ulyy dy
0

Self evidently limnps 0o V(M) = 00 as M — .

Appendix L

M
4

1 1
.ﬂ"l/.f/ z“‘_gU{(—ﬂE) dz / o (0)y™ ! dy
n z 0

oy 1 1,01 o
= [y—vff’(v)] —] y—(v{,”('v)) ﬂf dy
0

oy 0 231 -y

It is easily see that letting v =

I

1 . M [ !
- ﬂ;’ o —2 ! 1
— MU (14)+-—-ulj£ v (vU (v)) de.

Yy
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Technical Annexures

Technical Annex 1-BFGS Method for Un-
constrained Minimisation

Here the multi-dimensional optimisation technique BFGS which, is used to
obtain the optimal values for a, {, » and 6 in Chapter 2, is discussed. Pirst
a simple explanation of multi-dimensional optimisation is provided by dis-
cussing finite-difference derivatives. Then Broyden's method on which BFGS

is based is illustrated, and, finally the method of BFGS derived.

Finite-Difference Derivatives

Tn this section finite-difference approximations are derived by using first and
second partial derivatives. Also some aspecis of efficiency, convergence, nu-
merical roundoff and mathematical accuracy are discussed. From elementary
calculus it is clear that # : R* — R”™

lim F,(:r, - he_?-) — Fg(:(?) _ ?3}?;(:::) ,
h-+0 h 85\’33

where ¢; is the j-th column of the n x n identity matrix. This for obvi-

ous reasons 1s called the forward difference approximation and suggests the
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evaluation of the j-th column of the the Jacobian matrix J{z.) using
1
A;F(ze,h) = E—[F(:cc + hje;) — I(z,)] (11.5)
3

for a suitably chosen vector A.
Lemma L Let F' € Lip,(D), where the coordinates z. end z. + hje; for
j=1,-,n are also in D. Furthermore let || - || be the vector norm where
lleslf = 1. Then

|A5F s ) = Tzdesl] £ 5l

Also of || - || is the Iy vector norm given by |lvlly = 370, [v;| then in the I}

operator norm it is clear that

n
— p 1.
Al = 11;}%)5!; |-
From this it trivially follows that
1
|AF (e, k) = Tzl S 571l

Proof. The proof is established using the remainder of a second order

expansion of the Taylor series. Define MY (x. + hje;) as
MN (2, + hje;) = F(x.) + J(zo)h,e;.

That is MY (z.4-h;c;) is a first order Laylor expansion of #'(z.+h;e;) around

2.. Now it is clear that
(A F(ze, ) — J (@)l = | 1A £ (20 + hje;) — F(z) — J(zc)hjes|
= |k A F(ze + hje;) — MY (2o + hiey)|

1 L1
< kgl lgTth‘-Eg = §’Y|hj|-

13
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The proof in the {; operator norm trivially follows. Clearly

AP (2o k) - Tzl = xmax |AF (5, h) - T(zel

VAN

]gjén-

1
max 571@-[ =

Although the forward difference method of evaluating the gradient is accurate

enough, the central difference method may be preferable. Here it is delined

as

(¢ —i—_lf.gei) —f(:z:c — hi€;)

5if(zeh) =1

and

2h;

Sf(ze, h) =101 flze, h), - 0 f (e, R,

Lemma 2 Let H € Lip, (D), H being the Hesstan matriz, where coordinates

z. and . + hje; for j = 1.+ n are also in D. Furthermore let || - || be the

vector norm where ||e;ll = 1. Then the behaviour of §;[(x., h) is given by

af(z.)

uf o ) =

and

16 (e, 2) — g(@e)lleo &

where g(z.) = Of(xc)/20%;.

1
< ""'Ylht'P’

Proof. Let mX(-) be the fivst order Taylor expansion of f(-). Then

(e + hics) — md (2. + hie))] — [flze — hici) — ml — hyey]

= flzs 4 hiet) — flwe — heeg) — 2h;

From the triangle inequality it is clear that
|f(ae + hiei) — flac — hies) —
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et

Thus it can be easily seen that the central dillerence gradient is more accu-

rate than the forward difference gradient, however, it requires 2n evaluations “‘
rather than the » necessary for the forward difference. Let H(z.) be the
second. order term of the Taylor series expansion of a function f(z,+hie;). If ’;
the gradient of a funclion can be derived analytically, bul the Hessian matrix
needs to be approximated, then (T1.5) can be used by applying it to g(z) j

to obtain the approximation of Ag(z, ~). This approximation, however, will
not yield a symumetric matrix, whercas H{z.) will. Here a sensible strategy is

to use B, = 1[Ag(z.) + Ag(z.)"] as the approximation of the Hessian. This

is justified by observing that the Frobenius norm projection of Ag{z.) into b
the subspace of all symmetric matrices is B,. Using this property and the
Pythagorean Theorem yields :

| H(z:) ~ Bellr < || H: — Aglee, b7
where 5,

e = (3 laisl?)’
w3

is the Frobenius norm.

Lemma 3 Let H € Lipy(D), where the coorvdinates . and x, + h;e; for 5
7 =1, n are also in I}, Furthermore let || - || be the vector norm where

=1. Also let

€j

LA f(z: + hiei + hjey) = fxe + hies) — fleo + hje;) + (z.)
iy hi'hj .

Then

ciee t U ER N, AR LT e s R T et

(s = (elis) £ 210 4 s 4 s 4210,

|| ||
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In the lo, Frobenius or 1| operator norm, it follows that

s = LGl < " m (2 s i+ 2580

Proof. The proof follows from the previous Lemmas. If s; == h;, 8; = hj, and
Si; = 8; + s, theu
[fl@e + i) — 0l (2o + 35)] — [f (e + 8) =l (2o + 83)]
—[f(ze 1 85) = ml (wc + 85)]

= fl@e bt si;) = flee +8) ~ flze +5;) + flue) — k[ H{z )5

From the triangle inequality it is clear that

- 1 ,
ois — hihs[H (2] <= g'r[llsz’j||3 + [sill® + lls,11°]
1 -|
s 5’7[(“35” + N1s5I0% + fsil® + [lss11°)
1 . .
< g”/[(”hi” + 125 10* + [fRsll® -+ 125117

Now that some uscful rules for evaluating derivatives and analysing their
accuracy have been established, two ‘I'heorems which establish the rate of a

coiavergence of finite difference approximation shall be stated.

Theorem 1 Let £ : R* — R™ be C'Y{x) in an open convez set D, D C R.

Let there exist constants v, > 0 for 2, € D, and, J(z.) € Lip,N{z.,r),

|J(z )| £ B8, and F(x,) = 0. Then there also ewists an ¢ > 0 for each

@ € N{2.,€) in the sequence of points {xy} generated by the steps
Tpy1 = 2 — J(2g) " Fizn), E=0,1,2,---
which is well defined and converges to z, and is satisfied by
ferpr — @il S ek — w*Hz~
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Proof. Tt follows trivially that Lipschitz continuity umplies continuity of
function. Furthermore, the determinant of a matrix is a continuous func-
tion of the entries of the matrix. Thus it is obvious that J(z) is invert-
ible, and also that |[J(z)7}| £ 283, for z € N{(2., 7). If 2x € N{z.,¢) for

¢ < min{r, (20v)~1}, zp41 exists and

Cppr — 2k = Tk — J(@er) T (ar) — 2 + J{e) T (24)

= J{2p) " [F(z,) — Flzp) — J(ap) (@ — 1))
This yields

1 () HE () — Pwe) — T} — 2]

[ers — @kl =
< ¢ F.Y
S 285 llmk — wll” = Byflen —w|”
, i
= Brelze = o] = glles -2l

This establishes boll convergence and quadratic convergence and thus con-

cludes the proof.

Theorem 2 If I' and x, obey the hypothesis in the above theorem, then in
the 1y operator norm there exists an ¢,n > O for a sequence {hi} in R™ where

0 Z ||hell £ 5, and 2o € N(2x,€). Also the sequence {zx} generated by

e+ (hy e )—F{xp
F(zy ((J’l}k];j) { .k), (hk)j?é{]

J(:t?;,-)ej' L’r(hk)j =0

Bre; =

Thgt = T — Bk_lF{Lt:k), k=10,1,2,---,

exists and converges {o x..
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Broyden’s Method

The secant method is an effective method for solving nonlinear equations in
one dimension. It is a forward difference method in which the step size by is

used to construct the next iterate from wy to form the difference (z, — z4).

Thus resulting new local derivative B, will be [F(”'H‘(s{;:;j]]_lp el 1t s
obvious from this that no extra function value will be needed to evaluate a
new local model since F(z4 4 h4) = F{z.}. The secant mcthod assumes thaft

the first order Taylor expansion of I'(zy. + &), My (x4 + d) = F(z4) 4+ Byd,
is evaluated by letting M, (z.)} tend towards #(wx.). Thus B, is evaluated by

F(zo) = My(zg +(2c — 24)) = Flaq) + Belze — 24).
This yields a system of linear equations
Bys. =y,
where ¥, = F(zy) — I'(z.), and s, = 2} — 2.
Lemma 4 If s.,y. € R? s. # 0 and B, € R™* x R”, Broyden’s update
(ye — Besc)sl

B+=B¢;+ -

858,

gives the unique solulion of
min||B — B.l| 5.t Bs, = y..

Proof. The proof follows from the Lemuinas established for forward differences.

If Bs, = ye, then B, — B, =[B - Bc]f%% we have

T
1By — BeJlr £ ||B—-Bd|r- ” ..........

al's,

2

s 1B - Befir
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BFGS Unconstrained Optimisation Technique

In the earlier section the secant approximation technique for choosing the
Jacobian matrix was applied. Now this shall be adapted to the Hessian

matrix. The analog of the previous section is simply
BSC =Y = g(:r-l-) - g(q-’c)m
where B is the approximation of the Hessian matrix, [/{zy). The above
equation uses the second order laylor expansion
: 7, 1.1
m(wy +d) = fz4) +g(ze) d+ 5d" Byd

for the inierpolation of g(z4), g(ze), and flzy). H(zy) is symmetric, how-
ever, B, or B, are not. Il By is symunetric, it will approximate H{z,.) more

accurately since
1 . < Bl .
I508: + Byl = Hizg)llr = 1By — Hlzy e (T16)

Il o projection of B, on the intersection of matrices obeying the above equa-
tion with the subspace of symmetric matrices in R™*™ is taken, B, is obtained

in the form of the PSB{ Lowell symmetric Broyden) update

(Yo — Bose)sE + (e — Bose)T  so(ye — Buso)sest
515, (s7s.)?

B+ = BC ‘I‘

It is clear that B, will inherit its symmetry from B.. This is clearly an
effective update but has problems with poor scaling. Purthermore By only
inherits its positive definiteness from B, and that too under conditions morc
restrictive than (T1.6). An obvious condition for B in (I'1.6) to be positive
defimte is

s({yc = .35}?35 > 0.
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It is also possible to show thal a positive definite and symmetric solution
exists for B by constructing the BFGS method due to Broyden, Flelcher,
Goldfarb, and Shanno. If B, is assumed to be a positive definite and sym-

metric then it could be expressed by using Cholesky lactor, That is
B.=ILJIT,
L. being lower triangular, By must be positive definite and symmetric where
B.=JyJl, and  JyJTs. =y,

for J, nonsingular. Now let v, = J7 s, such that Jiv. = ye. If v, is known

then using Broyden'’s method Jy could be evaluated as
Jy = L. + (e — Leve,

Transposing the above equation and multiplying the right and left band sides
by s. it is clear that

WTTT
UchSc)

Ye 5o

ve=J" = LYs. + UC(L —
If y%s, > 0 the above equation can be Turther simplified to yield

y-rs 1
c \2yT
Vo == ( = ) Lis,.
N sTB.s. ere

It is easy fo see that the above two equations define Jy. such that J.;J;l_‘ = B,

which is the BFGS update. Alternatively the update could be expressed as

B, = B, + ycyf . BcSCSZ‘Bc
+ © " yls, sTR.s.

This is the theoretical basis of the BFGS multi-dimensional optimisation

technique. However, there exist problems in its implementation. Clearly if
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the last evaluation is near the minimum, then the update will arrive at it
without any problem. If, however, it is further away, s, may be sufficiently
large such that it overshoots the munirnum. The function evaluation could
even explode. To eliminate this possibility a line minimisation routine is

embedded within the algorithm with the following steps

1. Begin by choosing 2o ¢ R and an n X n positive definite matrix By
where By = I and set gy := g(wg). For k= 0,1, obtain z,.1, Briq

from xy, By using the following steps:

2. If gy, is zero, then stop; obviously because z; is a stationary point. Else

O3

. compute sg 1= By
4. Choose the next coordinate
Thy1 = Ty — Ap Sk
through the approximate minimisation
Fzp) = min{ F(z;, — Asi)|A 2 0,
and then set
gr+1 = 9($k+1)1 Sk Tyl — Tk Ye = Gkt+1 — Yk-

5. compute By, according to the BI'GS update described above.

Technical Annex 2-Simpson’s Rule

If a function f(z) € [a,b] is C'(z), then it can be shown that

fab f(2) dm—b-b: u [f(a)Mf(-‘-l—;L—zz) +.f(b)} = “'(—bf;‘egifq(w’ cevsh
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where

[ reraam sty v as (52 + 500

is the Simpson approximation. Thus Simpsons’s rule is exact for all polyno-
mials of degree three or less. However, Simpson’s rule is most often applied
in its compound form. The interval [, b] is divided into a number of intervals

and Simpson’s rule is applied to each. Let

6= < T < oo < Lo < Lop = b
he a sequence of points on [a, b] such that

Tips — Xy = h, 72 0,00-,2n — 1.

Then the compound Simpson’s rule yields
T2 f, ‘ ‘ ‘
f(.’l:) dz = é[fo +4(f1 +-e +f271'—1) + 2(f2 +f4 el j?’n—-?) +f2n] + &,

Jag

where E, is the remainder and is given by
i FiB
Fo=—""pty),  a<y<b

Let N be the even number of sub-intervals of [a, b]. Then NV = 2n and A can

he expressed as
(6-a)

h =
N 7

such thal

TR
b= = gy a<p <o

180nt
It can be shown that for functions that are C*{z), Simpson’s rule converges
to the actual value of the function with a velocity of N—4 at worst. Here an

automatic Simpson’s integrator is used where the limits of the integration is
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provided, along with a routine for computing f(z), an ervor tolerance ¢, and
an upper bound on the number of function cvaluations. The source code,
once compiled then returns one of (a) the integral has been cvaluated to the
specified tolerance, (b) the interval of Integration has zero length, (¢} the
tolerance is either negative or not achievable, or (d) the error tolerance has

not been met within the allowed iterations.

Technical Annex 3-Runge-Kutta Order Four

Consider a function f(¢,y) that is C™(t,y) on D = {{{,y)le £t £ b,c <

y S d}. Let (ty,y,) € I such that

f(ta y) = P“(f_|_, y—i—) + Rn(t+:y+)>

where
adfit Oft., .
Pty = S+ |- 1) 2Ly Dt
n (t—1.)2 3% f(ts, uq) n (v — ya )2 02 f (g, uy) b
2 at? 2 dy?
L \* {n i 0" f(ts,y4)
T _ n—jy _ JI_JNTTIE L
' [?1! %_5 <?> (t t-I-J (y y+) ai.n_jayj
and

- _ 1 . n+1 . nepleg . j8ﬁ+1f({’+1 yl‘)
O Z( L e e

where I, is the Taylor polynomial resulting from the nth order Taylor series
expansion of f{t,y) around (t+,y4), and, R, is the remainder resulting from
this expansion. The Runge-Kutta scheme exploits this property to obtain

a solution to a differential equation. Consider a differential equation of the
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form
dy
= f(¢,
(]H. f( !y)
with the initial condition

y(to)} = yo.

The Runge-Kutta integrator order [our integration scheme uscs the formula

Yo = y(to)
ke = [, u)

} bk

P f(ti+%,yg-i- 5%
k hk

b = flt et )

ki = [f(t:-+ hyyi + hks)

h
Yier = i+ E(kl + 2k; + 2k3 + ky)

fort = 0,1,2,---, N — 1. Here y; 15 the computed value of the solution at
t;, where t;,, —t; = h. It can be casily scen that if f(2,y} = g(z), then the

above scheme reduces to
h h ’
Yitr = ¥i + i Fl)+4fl 6+ 5 + f{t: + h)|-

This method has a localised truncation error of order four, provided of course
that y(¢) is C°(¢). The Runge-Kutta scheme used here is a more refined
automalic integrator allowing for more efficient forward steps to taken in the
integration, based on rounding off errors obtained, with similar conditions
to Simpsons rulc. If the iniegrator 1s performing function evaluations and
the specified accuracy is being met, then the evaluated funclion values are

returned. However, if the accuracy is not being met, then it could return
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either (a) the actual function valucs but with an accompanying warning that
the requested accuracy has not been met, or (b) more memory has heen
allocated than is necessary. If the integrator fails, then the reason for failure
is returned. Which could be one of (c) the range of integration has been set
to zero, (d) the effective range of integration is zevo, (e) theve has been a
memory allocation failure, or finally (f} the order of equations has increased

and memory needs to be reallocated.

Technical Annex 4-Chebyshev Polynomials

Integration

Chebyshev polynomials, T.(x) arc cosine functions after a change in the

independent variable, 1.e.
Tw(2) = cosnd ) = arccosz.

Preforming the transformation z = cos # allows numerous mathematical and
spectral relationships to be used in a. Chebyshev system. They also satisty a

three term recurrence relation
Tar1{z) = 22T, (z) — Thaa(2), no=1,2,
due to the trigonometric identity
cos(n + 1)8 — 2 cos néd cos § -~ cos(n - 1)8.
They are also bounded, i.e.

|Tu(z}} 1 and x e {—1,1),
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which follows from the fact that 13, is a cosine.

It cau be also shown that they satisfy the orthogonality property

P

Tu(@)Tu(z) _ | |

—1 \/1 — x4 2
0,

Under mild conditions on a function f(z}); e.g. f(z) is C*(2), =

mo—=n =20,
m=mn 0,

m # n.

f(z) can be expressed in a uniformly convergent series of T7s

1
f(:v) = '2-(10 + alTl(w) + G;QTQ(ZD) -t

€ [_i! 1}:

The constant coefficients «; are referred to as “Fourier-Chebyshev” coefli-

cieuts and are given hy

and

i, = —

' @)T
-1 V1 —z*

[ L),

r 2 1.

Significantly ap, @1, - - - docay rapidly to zero. The partial sum fao+a;Th(z)+

c+ a,Tin(2) is polynomial of degree < V| which is one of the most, accu-

rate estimations of f(z) by a polynomial py(2), the approximation being

measured in the sense of max_;<.<;|f(2)

-pn()|- Although three different

quadraturcs conld be used the preferred method is the Chebyshev-Gauss-

Labotto quadrature of the form

S

’ﬂ']
"Cj = €08 —

N W

zs

i =0,N

1SS N~1.




Differentiation

The derivative of a function f(z) can be evaluated by the sum

F@) = a0 T0(e),

nz={}

where
o

afl) = Z 7a;. (T4.1)

J=at i+ rodu
This is expression is derived from the trigonometric identity

2sin(#) cos(nd) = sin{(n + 1)8) — sin((n — 1)8),

which enables us to express 7,,(z) in the form

~ Tap(z)  Lha(w)
2Ta(e) = (n+1) n-—1"

n=12---.

In spectral space this specifies a relationship between the coefficients of the

polynomial of the form

— o) (1) ,
an = a,’) —ay]y, n1,

form which (T4.1) follows. This relationship suggests an efficient method by
which Chebyshev polynomials could be differentiated in spectral space.

It clear by definition that w, = 0 for » 2 N. Thus one could arrange the
above equation in a way by which the coefficients of the function derivative

could be estimated from the the function coeflicients through the recursive

relationship
el =al), + 20k + Dappn 0SSN -1
The same methodology is applied to derive the k-th derivative in the form
ol = al)y +2(n + 1)ali7Y.
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The computational power required to perform this task could prove fo be
overpowcering. Collocation differentiation offers a more eflicient means of
computing derivatives, since differentiation implies only a linear operation
on the [unction values in physical space. The significant difference though
is that we now need to use a Fast Fourier Transform {(FET) which requires
cqually spaced data points.

The IFFT is a recursive algorithm for obtaining a Discrete Fourier Transform,
such as described above, and its inverse. The FFT is conventionally expressed

for the evaluation of

N-1 B
an=3 fla)e ™ k=01, N =1 (T4.2)
F=0
N-1 .
ay = Zf(r,:.)e w k=0,1,---, 8§ —1, (14.3)
§::0

where f(z;), j =0,1,--+, N — | are a set of complex data. Sce Cooley and
Tukey (1965) for a description of the FFT algorithm.
We know form previous sub-section that the Chebyshev transformation of a

function, based on a Gaus-Labotto quadrature are given by

X nik
fly, = >_J F(zy) cos N
7=0

where ag and ey are halved, and

N .
L - .frJ;\« - . , .
f(a:):Lancos<N> n==01.-,N, (T4.5)

i=0

) n=0,1.--. N (14.4)

Assume that a transformation of the form is required for two sets of real data
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al and a2. To do this, (irst define complex data of the form

1 P2 __ '
T + Ty, _n 03 -ly e 1N

2y =

VoN—j n=N+4+1N+2,.-- 2N -1

Now define 2,, n = 0,1,---, N by (T4.4) and .7:,,_, noo: 0,1, 28 — 1 by
(T4.2) with N being replaced by 2N. Then it follows that

5 Zn
Zn:'ﬁv TI.:D,}.,"',IV,

and
N-1

N-
J—’:Jl 2ming
E E Zgjpi€ N .

a=

X

See Burden and Faires (1993}, Davis and Rabinowitz {1984), and Canuto et.

al. (1988) for details of this. Let ¢; be defined by
g; = z25 + 22400 — #25-1)  F=0,1,---, N -1,

and estimale ¢, through the complex FFT given by (T4.2). This yields

N-1 N~1
2ring 2mr 2ming
qn—E zg;e N i(l—e N )E e N
3=0 4=0
and
N—-1 ~1
n 21r\:':ng 27 n 2ming
ANk = E Zyg€ N 1 —e N e N
3=0

See Burden and Faires (1993), Davis and Rabmowztz (1984), and Canuto et.

al. (1988) for details of this. As a resull

. 1
Zp = j—v— Z zj,
3=0
oo 1 l+ ] N + i 1 X
= N 2 4811‘1(%) In 2 45111(1;\—?) ON—n
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and
N

N TN
ZN = N L(—-l)fzj.

§=0

Based on these evaluations, the derivative coellicients can be evaluated more
efliciently using the Differentiation methods listed above. The resulting col-

location matrix has the following points for the differentiation matrix (D)

C: (..:}_lfl Jj#Fn

T 1< {=5<N-1

2(3—22
{DN)J'H = ¢ 25\& rl
~t I=j3=1
2N2+1 o
{ 3 i=3=N

where
2 ] - y A;'\'T

I 1578 N-1

C{,C_;; =

Sec Canuto ct. al. (1988) for details of this. These points are obtained by

differentiating the Lagrange interpolating polynomial © in the FI'T

(~1)™1(1 — o?)Th(2)

Bn(e) = N2z — ;)

162

Labdemni sl

N
S
e




Technical Annex 5-The Source Code Chap-

ter 2

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <malloc.h>

/************************************************ﬁ:***********ﬂﬂ****************

In defining the characteristic root of the ODE, we set SIGMA=0.1
and RHO=0.05, therefore ALPHA_i=sqrt(2+RHO)/SIGMA=sqrt(10.0).

s b ook ok okttt sioRoRsk ok ko ke ok ok skl stk sk keskotadeskok skt eicRokoR R Rk ok sk ok bk ok

#define SIGMA 0.1

#define RHO 0.05

#define ALPHA_1 aqrt (2.0*%RHO) /STGMA

#define K 0.5

ftdefine G 0.1

#define NITER 200

#define NV 4

double xval; /* =xval initial position of state xf

void main( void }
£
void parms4( double *, double *, deuble *, double *, double *);
void parms2( double %, double *, double *);
double value_funct{double *), min_value, h, dixit_funct(double *),
t0l=5.0e~10, diag_hessian[NV], a, 1, u, b;
double pMNVvI={ 0.5, 0.5, 1.0, 1.0},
plinvi={ 0.01, 0.01, 0.01, 0.01}, pplf2]={ 0.01, 0.01},
pulNv]={ ¢.99, 0.99, 3.99, 3.99}, ppul2]l={ 3.99, 3.99};
int iter, 1i;
void bfgs(int, double *, double *, double *, double , double *,
int #, double #, double (*func) (double *));
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char filename[13];
FILE *output;

/Roksokdkok ok skt kok kA ok k% Create £ilename appropriatae to applicatiapdkdkioktidktkxk/
filename[0] = ’C°;
filenamell] = '37;
filename[2] = ’R?;
filename[3] = ’E’;
filename{4] = 38’;
filenamel[b] = 'U’;
filename[8] = *L’;
filenamel7] = ’T’;
filename[8] = 7.7,
filenamel9] = 'D’; &
filename{10] = *A’; ‘

filename[11] = 'T’;
printf("\nFilenane in %12s",filename);

for ( h=1.0e-5 ; £(h)>0.0 ; h +=1.0e-5 );

iter = NITER;

for( i=0 ; i<=40 ; i++ ) { 4
output=fopen(filename,"a"); :
printf("\n Implementing iteration %3d",i);
xval = -2.040,1%#((double) i); ;
fprintf (output,"\n%10.61£\t", xval); #
plo]l = 0.5; :
pl1] = 0.5;
pl2] = 1.0; _
p (3] 1.0; g
iter = NITER; .
bfgS(NV’P,Pl,pu,tol,diag_hessian,&iter,&min_value,value_funct); 1

]

1

parns4{( p, &a, &L, &u, &b);

fprintf (output,"%15.61F %10.61€f %10.61f %10.61f ¥%10.61£f",

min_value, a, 1, u, b);

plol = 1.0;

pl1]l = 1.0;

iter = NITER; “
bfgs(2,p.ppl,ppu,tol,diag_hessian,kiter,&min_value,dixit_funct); ﬂ

il

parms2( p, &a , &b);
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fprintf (output,"%156.61f %10.61f %10.61Lf", min_value, a, b);

fclose(output);

3

exit(0);

/************************$***************************************$$*****$*****5

A RSk oK KRR R R SRR S K K s o K R SRR R R R o Rk ok sk o ok e ke ok ol ok sk ok ok

The Value Function

double value_funct{ double *p)

{

double angl, ang2, a, 1, u, b, temp;

void parms4{ double %, double *, double %, double *, double *);

parms4( p, &a, &1, &u, &b);

ang1l
‘ang2
tenp
angl
ang2
temp
angl
temp

H

[

i

return temp;

h

/*************:ﬁ:*********************************ﬁ:*************&*ﬂﬂ*:ﬁ*ﬂﬂk********f:;\.

stk e ke o s st of o ok e s ek ofe S e skl s sk oo bk o ok s sk ok st o koo sk ke s sk o e s R e ke ook sk sk sk sk kst e tokak ok

k_1=p[0]

=

b

Parameter conversicn function

xval-pl[2]

0.5*xALPHA_1%{b+u-2.0%xval);
0.5%ALPHA_1*(a-1);
(G- (K/RHO) * (pow(a,2)-pow(1,2)))*cosh(angl)/sinh{(ang2) ;
0.5*ALPHA_1*(a+1-2.0*xval);

0.5%ALPHA_1#*(b-u);
= (G- (K/RHO)*(pow(b,2)-pow(u,2)))*cosh(angl) /sinh(ang?2) ;
0.5+ALPHA_1%(a+l-b—u) |
0.5*temp/sinh(angl) +K* (pou(xval,2)/RHO+pow (SIGMA/RHEQ,2)) ;

k_2=p[1]

c_3=p[2]

xval+pl0]*p[3]-(1.0-pL0])*p[2]
xval+(1.0-pl1])*p[3]-plil*pl[2]

xval+p{3]
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void parms4( double *p, double *a, double *1, double *u, double *b)
{

*a = xval-pl2];

*] = xval+pl0]l*p[3]-(1.0-p[0])*p[2]; .
*u = xval+(1.0-p[tD)*p[3]-plilxpl2]; i
*b = xval+p[3]; "

return;

[ ek et sk sk o etk sk ok sk sk sl sk KR st R skl Rk s ok R o s s sk s ok ksl kstesk s ksl e ok sk e etk <
Parameter conversion funchion -

a = xval-p[0] b = xval+p[i] i
stk seskskofolofestor ok ok s doRof kol sk s ool sk kot olok kR ook doRsioR ek obkololokolok otk ook dorkok

veid parms2( double *p, double #a, double *b)

{
*a = ( xval-p[0]<-0.01 ) ? xval-pl[0] : -0.0%;
b = ( xval+p[11>0.01 ) 7 zval+p[l]l : 0.01;
return;

}

8ok ok ok sk sk sk ok etk ook ok ok o sk o ke sk e o sk s s o o Sl skole sk R ok s sk sk sk sk et ste st e st o softdok e ek okok ook

Our version of Dixit’s solution for the ODE e
skofe ke sk ok ek ol ek sk ek ko e ok sleskook skt st sl sk sk fok sk s kol ekt stk ok s kot tof ok sk ek ek ok e )

double dixit_funct( double *p)

{
void parms2( double *, double *, double %) ;
double a, b, temp, angl, ang2;

parns2( p, &a, &b);
angl = 0.5%ALPHA_1*(a-2.0*xval);

ang2 = 0.5%ALPHA_1+*b;

temp = (G-(K/RHO)*pow(b,2))*cosh{angl)/sinh(ang2);
angl = 0.5*%ALPHA_1%(b-2.0%xval);

ang?2 = 0.5%xALPHA _1%*a;
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temp —-= (G-(K/RHQ)*pow(a,2))*cosh(angt)/sinh(ang?2);
angl = 0.5%*ALPHA_1*(b-a);

return 0.5%temp/sinh(angl)+K+ (pow(xval,2)/RH0+pow(SIGMA/RHQ,2));

/s e ek st ok s skt ofe e ok sk ke e ok s sk et e e s skt st of s ks kb ot o sk ok e ettt s skt R sk e sl ek ok

BFGBS Optimising technique

s ok ok ot e ok st lefot et s skttt et s stor ol e ststofotesle ettt sttt s ko skt o sk ok sk sk Rk ko )

#define ALPHA 1.0e-4
#define STEP_MAX 100.0

void bfgs(int n, double #*x, double *x1, double *xu, double tol, double
*diag _hessin, int *iter, double *y, double (*func){(double *))

{
int its, i, j, k, iterm;
short int start;
double *scale, *g, *dg, *xn, *xi, *ptr, *xhessin, *khtup;
double tol_ g, tol_h, tol_hh, tol_x, amp_x, amp_g, rnderr, stpmex,
slope, temp, templ, temp2, fac, fad, fae, sumdg, sumxi,
h, fp, fm, xstore, get_step( double, double);
/*
#% Declaration of function prototypes
*/
void runtime_error{char *);
void dfcn{ int, double *, double #, double, double *,
double (#Ffunc) (doublse *));
short int pd_fail( int, double ¥, double #*, double **);
short int line_search( int, double *, double *, double *, double *,
double %, double %, int #, double, double, double, double *,
double (xfunc) (double *));
double grad( int, double ¥, double, double (*func)(double *));
FE
** Step 1. ... Check parameter ranges on entry
*/

for ( i=0 : idn ; i++ ) {
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if ( x[il<x1[i] 1} x[iI»zuldil )

runtime_error("\nStarting values out of range...fatal errori\n");

+

if ( *iter<=0 )

runtime_error{"\nNumber of iterations unspecified...fatal error!\n");

Step 2. ... Acquire memory for holding vectorial quantities

scale - Holds scale factors of original input

g - Gradient of surface at x[ ]

xn ~ Naxt estimate of the minimum point

dg - Initially gradient of surface at xn{ ] - latterly

difference in gradients

xi - Downhill slope at x[ ]

htmp - Temporary storage for Choleski decomposition

scale = (double *) calloc((size_t) n, (size_t) sizeof(double));

g = (double *) calloc((size t) n, (size_ t) sizeof(double});

xn = (double *) calloc{(size_t) n, (size_t) sizeof (double));

dg = (double *) calloc({size_t) n, (size_t) sizeof(double));

xi {double *) calloc({(size_t) n, (size_t) sizeof(double));
hessin = (double **) callec((size_t) n, (size_t) sizeof(double *));
htmp = (double *#) calloc((size_t) n, (size_t) sizeof(double *));
Ffor ( i=0 ; i<n ; i++ ) {

il

hessin[i] = {double *) calleoc{{size:t) n, (size.t) sizeof(double));
htmp{i] = (double *) calloc((size_t) n, (size_t) sizeof(double));

}

if { !'htmp[n-1] ) runtime_error{"\nMemory acquisition problem\n");

Step 3. ... Scale variables based on parameter range

for ( i=0 ; i<n ; i++ ) {
scalel[i] =

( (tempil=fabs(xulil))>(tenp2=fabs(zx1[il)) ) 7 templ : temp2;

x[i] /= scaleli]l; :
x1[i] /= scalelil;
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/*

%%

*/

FE:

*k

/¥
*k

*/

VES
*ok
%k
K%

*/

xuli] /= scaleli];

Step 4. ... Compute rounding error

randerr = 1.0;
while ( rnderr+1.0!'=1.0 ) rnderr *= 0.5;
rnderr #*= 2,0;

Step 5. ... Initialise test parameters and tolerances

tol_h = pow(tecl,0.66);
tol_hh = pow(tol,0.33);
tol_g = tel_ h;

tol_x = 4.0*tol;
start = 1;

iterm = ~1;

its = 0

Step 6. ... Start the iteration phase

while ( its<*iter ) {
if ( start || pd_fail(n, diag_hessin, hessin, htmp) ) {

Calculate initialisation function valne and downhill gradient.
Initialise the inverse hessian at the identity.
Compute normg for position x[ ] and gradient g[ ].

for ( i=0 ; i<n ; is+ ) x[i] *= scaleli];

*y = func(x);

for ( i=0 ; i<m ; i++ ) x[i] /= scale[il;
dfen{n, x, g, tol._h, scals, func);

for ( amp_x=0.0,amp_g=0.0,i=0 ; i <n ; i++ ) {
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amp_x += x[i}#x[i];

anp_g += glil=glil;

for ( j=0 ; j<n ; j++ ) hessin[il[j] = 0.0;
hessin[i][i] = 1.0;

xi[11 = -glid;

¥
1f ( itermi=-1 ) xi[iterm} = 0.0;
amp_x = sqrt(amp_x); 3

amp_g = sqrt(amp_g);
gtprax = (( amp_x>{(double )n ) ? amp.x : (double )n }*STEP_MAX;
start = 0;

}
1ts++;
if ( amp_g>»stpmax ) 3

for ( fac=stpmax/amp_.g,i=0 ; i<n ; i++ ) xi[i] *= fac;
for { slope=0.0,1=0 ; i<n ; i++ ) slope += glil*xil[il;

start = line_search( n, x, x1, xu, xi, xn, vy, E
&iterm, slope, rnderr, tol_x, scale, func); @
/% ;.
** Step 7. ... Check exit condition on parameter convergence é
%/ E
if ( start==0 ) { *
for ( temp=0.0,i=0 ; i<n ; i#++ ) { a
templ = ( (temp2=fabs(x[il)) > 1.0 ) ? temp2 : 1.0; A
if ( temp < {(temp2=fabs(xili])/templ) ) temp = temp2; ¢
¥ g
if ( temp<=tol_x ) {
*iter = its; o
for ( 3=0 ; i<n ; i++ ) { 3
temp = (tempi=fabs(x[i]-x1[i])) < g
(temp2=fabs(x[i]-xulil)) 7 templ : temp2; 5
if ( temp<=10.0%rnderr ) { K
printf("\nOptimal parameter values appear 35
ta be on the boundary!\n); i
break; b/
} 3
}
b by
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/*
#k Step 8. ... Calculate new gradient and check gradient exit condition %
*/ .'-‘:'_
ptr = dg; g
dg = g;
g = ptr; s
dfcn(n, x, g, tol_ h, scale, func); 4
templ = (temp2=fabs{*y)) > 1,0 7 temp2 : 1.0; E
for ( temp=0.0,i=0 ; i<n ; i++ ) { E
if ( it=iterm ) { v
temp2 = &
fabs(g[i])* (fabs(x[i]) > 1.0 ? fabs(x[il) : 1.0)/templ; =
if ( temp<temp2 ) temp = temp2;
¥ &
¥
it ( temp<=tol_g ) { o
*iter = its;
for ( i=0 ; i<n ; i++ ) {
temp = (tempil=fabs(x[il-x1[i])) < -
(temp2=fabs(x{il-xulil)) 7 templ : temp2; o
if ( temp<=10.0*rnderr ) { f
printf ("\nOptimal parameter values appear to be on é
the boundary!\n"); :
break; |
¥
3 ;
} ;
/* o
% Step 9. ... No convergence and so continue with update procedure ?
%% recognising that xn[ ] can now be used as temporary £
Hk storage j
*/ :
for ( i=0 ; i<m ; i++ ) dgli]l = glil-dglil; p
for ( i=0 ; i<m ; i++ ) { B
for ( xnf{il=0.0,3j=0 ; j<n ; j++ ) g
xnl[i] += hessinli][j]=*dgljl; s
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FES
*¥k  Step 10. ... Calculate dot products for denominators

*/

for ( fac=fae=gumdg=sumxi=0.0,i=0 ; i<n ; i++ ) {
fac += dglil#*xilil;
fae += dgli]l+*xzn[i];
sumdg += dglil*dglil;
sumxi += xil[il*xiflil;

/*
**  Step 11. ... Test fac for size - skip update if too small
*/

if ( fac*fac>rnderr*sundgtsumxi ) {
1.0/fac;
fad = 1.0/fae;
for ( i=0 ; i<n ; i++ ) dg[i] = fac*xil[i]-fad*xn[i];
for ( i=0 ; i<km ; i++ ) {
for ( j=0 ; j<n ; j++ ) Ao
hessin{il[j] += fac#xi[ilsxil[jl-

fac

fad*xn[i]*xn[j]l+faexdglil*dgljl;

VES
#k Step 12. ... Compute next search direction

*/

for ( amp_g=0,1i=0 ; i<m ; i++ ) {
amp_g += glil*glil;

for ( xi[i]=0.0,j=0 ; j<n ; j++ ) xi[i] -= hessinl(i] [jl*g[jl; ¢

}
amp_g = sqrt(amp_g);

/*
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*/

Step 13. ... Free temporary vector memory - rescale to true values

free(dg) ;

free(xn);

free(xi);

for ( i=0 ; i<m ; i++ ) o
x[i] *= scale[i];
x1[i] *= scalelil;
xuli] *= scalel[il;

Step 14. ... Compute true Hessian matrix at minimum

for ( i=0 ; i<n ; i++ ) {
for ( j=0 ; j<n ; j++ ) {

h = { (h=tol_h*fabs(x[jl))>tol.hh ) 7 h : tol_hh;
xstore = x{jl;

h = get_step(xstore, h);

x[j]1 = zxstore+h;

fp = grad(i, x, tol_hh, func);

x[j] = xstore-h;

fm = grad(i, x, tol_hh, func);

x[j} = xstore;

htmpli] [j1 = 0.5+ (fp-fm)/h;

Step 16. ... Test Hessian matrix for positive definiteness

and compute inverse when positive definite

if ( pd_fail( n, diag _hessin, htmp, hessin) ) {
fprintf(stderr,”\nWARNING - Irregular exit from BFGS ....");
fprintf(stdery,"\nThe Hessian is not positive definite!\n");
for ( i=0 ; i<n ; i++ ) {

free(hessin[il);
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free(htuplil);
}
} else {
for ( i=0 ; i<n ; i++ ) {
hessinl{il[il = 1.0/diag_hessin[i];
for ( j=i+l ; j<n ; j++ ) A
for ( temp=0.0,k=i ; k<j ; k++ )
temp -= hessin[j] [kl*hessin[k] [1];
hessin{j]l[i] = temp/diag_hessin{j];
¥ )
¥
for ( i=0 ; im ; i++ ) { r;
for ( temp=0.0,j=0 ; j<=i ; j++ ) temp += pow(hessinlil[j]l,2);
diag_hessin[il = sqrt(temp);
free{hessin[il);
free(htmp[il);

}

free(scale);
free(hessin);
free(htmp) ;
return;

double grad(int j, double *x, double tol_h, double {(*func)(double *))
{

double h, fp, fm, xstore, get_step( double, double);

h = ( (h=tol_hxfabs(x[jl1))>tol_h } 7 h : tol_h;
xstore = x[j];

h = get_step(xstore, h);

x{j] = xstore+h;

fp = func(x);

x[j] = xstore-h;

fm = func(x);

x[j] = xstore;

return 0.5%(fp-fm)/h;
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[ etk of o o ok sk s ok o ot sk stk sk ok sk ook s sk koo e ke o i sk se ek ok s ofs s ek ke stk skl sk skofe sk o sk e ek o ek Aok

Function to signal run_time errors and exit to systen.

******************************Ph**7|\=**************************:k***:k******)k*#***f‘n

void runtime_error(char *error_text)

{
fprintf(stderr, "Run-time error...\n");
fprintf(stderr,"s\n",error_text);
fprintf(stderr,”...now exiting to system...\n");
exit(1);

}

74 ot s o o ok ok s R ok kb okl ks o of ok s ok otk b ol ot s e b ok skl o s ks ol ke e ko o ok

Function which performs line minimisation.

VARIABLES USED IN LINE_SEARCH FUNCTION

ON ENTRY:
n
x[ ]
x1[ ]
xul ]
xi[ ]
xn[ ]
*y
*iterm
slope

rnderr
tol_x
func{(double #*)}

ON EXIT:
n

x{ ]

nunber of independent parameters

current estimate of parameters at minimum
vector holding lower bounds on parameters
vector holding upper bounds on parameters
scaled downhill searcl direction

contains temporary estimates of x[ ]
current estimate of minimum ( *y=func(x) )
variable previously against boundary
reasures cosine of angle between search direction
and gradient at point x[ ]

compiler rounding error

tolerance on components of x[ ]

pointer to a scalar function of a vector
(user supplied)

unchanged on exit
new estimate of parameters at minimum
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Y R PR

*x1[ ] - unchanged on exit

xul ] - unchanged on exit

xi[ ] ~ unchanged on exit =
xn[ ] - contains a copy of x[ ] ki
*y - new estimate of minimum ( *y=func(x) ) 3
*iterm - variable now against boundary (if any) L
slope - unchanged on exit ‘
rnderr - unchanged on exit B
tol_x - unchanged on exit .g

sk o e e s ke st o e kg s ot sk e st ok s o sk ok e e ok o o ke e s sl st kol sk skt ok of e sk ok sk okl sk o

ghort int line_search{(int n, double #*x, double *xIl,

1L
ek
ok

*/

double *xu, double *xi, double *xn, double *y,
int #iterm, double slope, double rnderr,
double tol_x, double *gcale,

double (*func) (double %))

int 1, j; 5
double tempi, temp2, temp, vl_min, vl_max, vl, vll, yn, yon, a , b, disc; f
void runtime_error{char *); G

for ( templ=0.0,i=0 ; i<n ; i++ ) {
temp2 = (temp=fabs(x[i])) > 1.0 ? temp : 1.0;
if ( tempi < (temp=fabs(xil[il)/temp2)) templ = tenp;

}
vl_min = tol_x/templ;
vli_max = 1.0;

Fix maximum vl as the smaller of unity and a value determined
by the upper and lower bounds. Near the ninimum, vl=1.0

for ( *iterm=-1,1i=0 ; i<n ; i++ ) {
if ( xi[1]20.0 && vl_max> (temp=(xuli]-x[il)/xi[i]) ) {
vl_max = temp;
*¥iterm i;

}
if ( %xi[i]<0.0 && vi_max>(temp=(x1[il-x[i])/xi{i]) ) {
vl_mex = temp;
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*iterm = 1;

1

}
}
if ( vl_max<=vl_min) {
for ( i=0 ; i<n ; i++ ) x[il += vl_max*xil[i];
return 1;
} else {
vi=1.0;
vl_min /= vl_nmax;
for ( i=0 ; i<kn ; i++ ) xi[i] *= vl _max;

/*

#% Take a Newton step ...

for ( i=0 ; i<n ; i++ ) xnlil = xCid+visxil[i];
for ( j=0 ; j<mn ; j#++ ) xn[jl *= scalelj];
yn = func{xn);
for ( j=0 ; j<n ; j++ ) xnl[jl /= scalelj];
temp = yn-*y-ALPHA*v1l*slope*vl_max;
while ( v1>vl_min &% yn>*y+ALPHA*vlkslopervl max ) {
if ( fabs{(i.0-vl)<=rnderr ) {
temp = ~0.5*slope/(yn-*+y-slope);
} else {
templ = yn—*y-vltslope;
temp2 = ynn-*y-vll*slope;
a = (templ/(vikvl)-temp2/(vllsvll))/((v1-v1l)*pow(vl_max,3));
b = (-vll*templ/(vixvl)+
viktemp2/ (v114v1l))/({(vI-v11)*pow(vl_max,2));
if { fabs(a)<=rnderr ) {
temp =-0.B5*slope/b;
} else {
disc = b*b-3.0%a*slope;
if { disc<0.0 )
runtime_error ("\nRoundoff problems in lins search\n");
temp = (~b+sqrt(disc))/(3.0%a);
if ( temp>(templ=0.5%vl) ) temp = templ;

}
vll = v1;
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yon = yn;

= ( temp>(templ=0.1%vl) ) 7 temp : templ;
for ( i=0 ; i<n ; i++ ) xn[il = x[di]+vl*xi[i];
for ( j=0 ; j<n ; j++ ) xn[j] *= scalelj];
yn = func(xn); 3
for ( j=0 ; j<n ; j++ ) xn[j] /= scale[il;

for ( #y=yn,i=0 ; i<n ; i++ ) {
x[i]) = xnfil:
xi[i] *= vl;

return 0;

SRtk e sk ok o o ket kst skt sk kel sk stk ol sk kol kst etk ot ok bkkek

Function calculates numerical gradients of func(x[ 1) at x[ 3
***********#***********$*****#$**#*******t*************#***#*************#***/

void dfcn(int n, double *x, double *g, double tol_h, double *scale,

double (*func) (double *)) .

{ K
int 1, j;

double h, fp, fm, xstore, get step( double, double);

for ( i=0 } i<n ; i++ ) {

= ( (h=tol_h*fabs{x[i]))>tel_h ) 7 h : tol_h;
xstore = x[i];

= gel_step(zstore, h);
z[i] = xstore+h;
for ( j=0 ; j<n ; j++ ) x[3]
fp = func(x);
tor ( j=0 ; j<m ; j++ ) x[j] /= scaleljl;
x[i] = zstore-h;
for ( j=0 ; j<n ; j++ ) x[j] *= scalel[jl;
fm = func(x);
for ( j=0 ; j<n ; j++ ) x[j] /= scalelj]; i
x[i] = xstore; .é
glil = 0.5+ {fp-fm)/h;

o+

= scalel(j];
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return;

e st ok s ke s ok sk sk ok ok ek st sk o sk sk sk o ok sk ko ok ok o ok ok X ok sk kol sk sk kol de ko ***********#***************:'i_:

Function to ensgure stepsize in gradient is machine representable.
Provided as a separate function to deceive optimising compilers. 3
**************************+**************************************************/

double get_step{double x, double h)

{
double temp;
temp = xth; 4
return temp-x b
}

/345 ok ok ok sk ke o abe e sk ke ot st st e o s kst sk sk St ek o st ok s stesbesfe e sk st e Aok st ok ot s et S s sk kst ok skl kol e o s sk sk stk of sk -
Function to check if updated Hessian is positive definite. “
Tries to perform a Choleski decomposition on hessin[ J[ J. .

**************T**#**************X************************x******************#[

short int pd_fail( int n, double #*p, double %*hessin, double **bb )
{

int 1, j, k;

double sigma;

for { i=0 ; i<m ; i++ ) {
for ( =0 ; j<n ; j++ ) bblillj]l = hessin[i][j];
¥
for ( i=0 ; i<n ; i++ ) {
for ( =i ; j<n ; j++ ) {
for ( sigma=bb[il[j] ,k=i~1 ; k>=0 ; k-- )
sigma == bbli] kixbblj] k] ;
if (i==j ) {
if ( sigma<=0.0 ) return 1;
plil = =sqrt(sigma);
} else {
pb[j1[1i] = sigma/plil;

179




B

return Q;

The source code evalnating Dixit (1991a)’s optinal b

and cost function

finclude <stdioc.h>
#include <math.h>
#tinclude <stdlib.h>
#include <malloc.h>

/s sttt ek sk e ok e 3 e s e ok R KA AR A Ao ol kol e ko ootk s ok
In defining the characteristic root of the 0DE, we set SIGMA=0.1

and RH0=0.05, therefore BETA=sqrt (2*RHD)/SIGMA=sqrt(10.0). 2
******************************************************************r**********/

#define SIGMA 0.1

#define RHO 0.05

#define BETA sqrt (2.0+RHO) /SIGMA 3
#define K 0.5
#define G 0.1 =
#define GAMMA (G*pow(RHO,2))/ (2. 0xK¥pow (SIGMA, 2)) .
double xval; /% xval initial position of state #*/ ]

void nmain{ void )

{
double func{double), dixit(double), h;
int i

for ( h=1.0e-6 ; func(h)>0.0 ; h+=1.0e-6 );
for( i=0; i<=3; i++){
xval = 0.1*({deouble) i);

L3
W
~
i
a:
4
N
-
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printf("\n H is %15.61f\t DIXITS VAL %10.61f\t", h, dixit(h});

exit(0);

[k ek sk e R ko s o sk Ao R A RAOR R AR AR St R R AR s ko ek ook sk

Function providing the ‘optimal’ value for Dixit (1991a)’s h o
st e s sk e s ookt e e sk sk sk ok sk ok Sk skt kbl ok e ok ok koo sk skok kb otk R R sk e otk s ok kb b ke

double func{double h)
{
return (G+RHO-K#pow(h,2))*BETA*sinh(BETA%h)+
2.0%K*h* (cosh (BETA*h)-1.0);
¥

[ okon s ok ok ke ek ol ke kR S R KoK o kR ek ek o ok e R R e o AR R AR ek

The solution to the HIB(ODE) equation obtained Dixit (1991a) ;.
s e e e ook ok ks o ok o ok el o s e e s sk sofe s s e s sl s sk sk s s sk R ok sk e Sk ek sk sk sk stk sk e ok ok sk sk sk ko 3

double dixit{(double h)

{
double temp;
temp = -2.0xKxh/(RHO*BETA*sinh(BETA*h)) ;
temp *= cosh(BETA*xval);
temp += K*pow(xval,2)/RHO;
temp += K+pow( (SIGMA/RHO),2);
return temp;
}
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Technical Annex 6-The Source Code Chap-

ter 4

#include <stdio.h>

#include <math.h>

#include <stdlib.h>
#include <malloc.h>

#tdefine N
#define VAR
#tdefine MU

#define RHO
#define WEALTH
#define G
#define OMEGA
#define DELTA
#define ODRATE

double mval, alpha_p, alpha_m, trigs{N+1][N+1], diff[N+11[N+1], cash,

20
2.5e~3
0.0
0.05
1.0
1.0e-3
0.010
0.030
2.0e-2

/#x*lNo. of Nodes used in Chebyshev Polyn.#*x/
/***¥Variance of Geometric Brownian Motion#*s/
/*¥x¥Mean of Geometric Brownian Motion#k*/
/+**xConstant Continuous Discount Ratesssk/ o
f#¥*Initial Level of Wealthwws/ ’
/#+*¥Lunp Sum Transaction Costsks/ :
/#*+Prop. Trans. Cost at Upper Boundary**/
/*¥*Prop. Trans. Cost at Lower Boundaryk¥/
/*¥*0verdraft Premium is 2§#*x/

|

main(void) 4

{ q
int i, 33 P
double pi_by_n, func_1(double %); ﬁ
char filename[13];

FILE *output;

/* Create filename appropriate to application */

filename[0]
filenamel1]
filenane[2]
filename[3]

H

filenamef4] =

filename[5]
filename[6]

i

JM);
IU);
JOJ;
JRJ;
JE);
)SJ;
JUJ;
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filenawel7] = 'L7;

filename[8] = !T?; 5
filename{9] = ?5°; i
filename[10] = *.7; .
filename[11] = ’D’; 5
filename[12] = *A’; 5

filename[13] = 'T*;
printf("\nFilename in %12s",filename);

pi_by_n = PI/((double) N);

Tor( j=0; j<=N; j++)
Ffor( i=0; i<=N; i++)
trigs[il[j] = cos{pi_by_n*({double) i*j});

cash 0.0;
plo] = ~0.02;
for ( j=1; j<=40 ; j++){
cutput=fopen(filename,"a");
pl1] = cash+0.001%((double) j);
fprintf(output,"%10.61f ¥10.61£f %10.61f\n", func_ 1(p), plol, p[1l);
fclose(output);

. mims T Y S e S T )
L R BRI R S TP SRR ¢ E R R SR FRINE 1%

}

exit(0);

/) etk sk ke etk ook s s e sl sk s e s sl e ok ook o Rk s ok sk sk R s A MR R A R o el ook okokok ok

Function To Be Optimised Which Also Contains The Initial Value Problem ,
sk sk ek e ol otk ottt ot sofe ool el ok koksesth s ke sk g b ol e sk sk sk sk stk oo ok ke b ek Aok skt ok /5

double func_1( double *pval ) %
{

static int start = 1;

int ifail, integrate( double, double, double, double *,
double (*func)(double)), i, j;

double fen( double), temp, m[N+1], v[N+1], value, r_in, r_out;

gtatic double  theta, tmpl, tmp2, pi_by_n, tol=1.0e-11;

void fprime(double, double *, double #*);
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void coeffs( int, double #%, double *); ]
void fsolve(int, double, double *, double, double *, void (¥fvalue) "
(double, double %, double *));

/x#x*¥Compute Values for alpha_p and alpha_m for the Initial Value Problem#*#*/f
if( start ){ &
tmpl = MU/VAB-0.5; =
tmp2 = 2.0+RHO/VAR; ©
alpha_p = -tmpl+sqrt(tmp2+pow (tmpil,2)); W

alpha_m = -tmpl-sqrt(tnp2+pow(tmpl,2));
pi_by_n = PI/((double) N);
start = 0;

¥ :
£ ks e deokskokokok & ok kb ok kSo lution of Initial Value Problem*********************/;ﬁ
for ( i=0 ; i<=N ; i++ )} {
theta = 0.5%pi_by_n*{((double) i);
mval = p[0]+{p[1]~pL0])*pow(cos(theta),2};
mfil = mval;
nval += WEALTH;
ifail = integrate( 0.0, 1.0, tol, &value, fcn);
if ( ifail 1= 0 ) {
printf("Integration problem ! \n\n");
return;
} else {
temp = mval/(VAR*sqrt{(tmp2+tpow(tmpl,2)));
v{il temp* (value+(1.0/pow(alpha_p,2))/(1.0+mval)) ;
v[i] += log(i.0+nval)/RHO;

H

} 4

r_in = 0.0;

r.out = 4.5e-2;
JEaskkskkk3olution Being Obtained To The Entire Problem To Be Uptlmlsed*******/

fsolve( N+1, tol, &r.in, r_out, v, fprime);

coeffs( N+1, v, m};

value = 2.0%{cash - p[ol)/(p{1] - p[0]) ~ 1.0; ¥
[ FdokkrscdokesckkkkrValue is the Spectrally Transformed Value of Cd&h*********v**/

for( temp=m[0], j=1 ; j<=N ; j++)

temp += m[jl*cos(j*acos(value));

return temp;
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}
void fprime( double r, double *v, double *dv)

{
double temp, temp.2, cj, <k, vv[N+1], rate(double);
int k, j;
static int start=1;

static double pi_by._n, pi_by_2n, con_1[N+1], con_2[N+1], con_3,
con_4, f[N+1];
void coaffs( int, double *, double *);

if ( start ) { .
[k pkkskdokxkkDelivers Chebychev-Lobatto differentiation matrix.************if
con_3 = RHO; '
con_4 = ~1.0;
pi_by_n = PI/({double) N);
pi_by.2n = 0.54PI/{(double) N);
for ( j=0 ; j<=N ; j++ ) {
cj = 1.0;

]

if ( j==0 || j==N ) cj = 2.0;

for ( k=0 ; k<=N ; k++ ) {
ck = 1.0
if ( kx==0 || k==N ) ¢k = 2.0; N
if 3=k ) {

temp = 2.0*sin(pi_by_2nx((double) k+j))=*
sin(pi_by_2n%((double) k~3));
diff(jI[k] = (cj/ck)*pow(-1.0,j+k)/tenp;
} else if ( j==0 ) {
dif£l[0]1[0] = (2.0*pow({(double) N),2)+1.0)/6.0;
} else if ( j==N ) {
diff [(N]1[N] = ~(2.0*pow(({double) N),2)+1.0)/6.0;

} else {
temp = 2.0*pi_by_2n*{{doubla) j);
diff [kl [j] = ~0.5/(tan(temp)*sin{tenp));
¥
3
}
start = 0;

b

[ xsoksckopeskekdorrkkkx kTreatement of Stationary Condition**********$***********f;
for ( j=0 ; j<=N ; j++ ) {
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temp = cos(pi_by_n¥((double) j));
temp_2 = WEALTH+p[0]+0.5%(p[1]~-pL0])*(1.0+temp) ;
if (WEALTH <= temp_2){
£{j] = con_4*log(l.0+temp_2);
Yelse {
£13] = con_4*log(1.0+
WEALTH+ (1.0~ (ODRATE+x) ) x(p[0]1+40 .5+ (p[1]-p[01 ) *(1 .0+temp) )) ;
¥
con_1[jl 0.5#VAR*con_4*pow(temp,2) ;
con_2[jl = MU*con_4¥temp;
IE: printf("\n & is %20.181f\t CON_2 is %20.181f\t", p[0], con_2[2]);
getchar(); */

Lis
i
S
4]
u

"
. >
ot
Eng
%
i

K

)

}
if ( rate(xr) == 0.0 ){ E
for( j=0 ; j<=N ; j++ ) dv[jl = 0.0; .
return;
}

/ Fokdk gk kick gk ik kakkApplication of Boundary Conditionsssdcordsiddiiorstiikiorrtk/
if (r>0.0) { :
dof{
temp = v[0];
cj = vN];
coeffs(N+1,v,vv);
for( ck=vv[0], j=1 ; j<=N ; j++)
ck += vvikl¥cos(j*acos((p[1]1+p{0]}/ (p[0]-p[11)));

v[0] = ck+log(l.0+G+OMEGA*fabs(p[11));
v[N] = ck-log(1l.0+G+DELTA*fabs(p[01));

Juhile( fabs(tenmp-v{0]) > 1.0e-12 && fabs(cj~v[N]) > 1.0e-12 );
T

for( j=0 ; j<=N ; j++ ) {
for( temp=0.0,k=0 ; k<=N ; k++ ) temp += diff[j] [kl*vlk];
vwljl = tenp;

}

for ( j=0 ; j<=N ; j++ ) {

for ( temp=0.0,k=0 ; k<=N ; k++ ) temp += diff[j] [k]#*vv[k];
avljl = CE[jl+con_1Ljl*temptcon_2[jl*vv[jl+con_3+v{jl)/(rate(r));
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printf("\n Value of V{a) is %20.181f\t", v[0]);
getchar(); =/
return;

The Functien to be integrated

double fcn( double x)

{
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*************************************************************$****$**********/ﬂ

deuble tmpil, tmp2;

tnpl = pow(x,-alpha_m)/(1.0+mval#*x);
tmp2 = pow(x,alpha_p)/pow(uval+x,2);

return tmpl/alpha_m+tmp2/pow(alpha_p,2);

Adaptive Simpson’s rule integrator

#define MAXSPL 30
#tdefine MINSPL 5
#define RNDERR 5.e-16

int integrate(double a, double b, double eps, double *quad,

/*
*%
ok
ek
*
*¥
*k
o
*%

double (*func)(double))

Return codes

S e e T Ay 2 e

Return 0 ... Regular exit.
Return -1 ... Interval of Integration has zero length
Return -2 ... Tolerance is either negative or unachievable

Return -3 ... Error tolerance has not been met within the
allowed iterations.
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*/

double area=0.0, valold=0.0, hnow, tol, tolerr, vlower, valnew,
valdif, x[6], f[E], v[MAXSPL], xstorel3] [MAXSPL],
fstore[3] [MAXSPL] ;

int finish=1, j, nsplit;

long number;

if ( fabs(b~-a) <= BNDERR ) return -1;

if ( eps <= RNDERR ) return -2;

nunber=pow(2,MINSPL) ;

tol = (30.0%eps)/(b~a);

*quad = 0.0;

x[0] = a;

x[2] = 0.5%{ath);
x[4] = b;

£[0] = (Cxfunc)(z[0]);
(2] = (*func) (x[2]);
fl4] = (#func)(x[4]1);

for ( nsplit=0 ; nsplit<MINSPL ; nsplit++ ) {
z[1] = 0.6x(x[01+x{2]);

x[3] = 0.5%(x[2]+x[4]);
f[1] = (*func) (x(1]);
£[3] = (*func)(x[31);
hnow = (x[4]-x[0]1)/12.0;

vlower = hnowx(f[0]+4.0xf[1]+£[2]);

v[nsplit] = hnows(f[2]+4 . 0%£{3]+£[4]);

valnew = vlower+v[nsplit];

valdif valnew—-valold;

area = areat+valdif;

for { j=0 ; j<=2 ; j+t ) {
xstore[jlInsplit] = x[j+2];
fstore[j] [nsplit] = £Lj+2];

[

}
valold = vlower;
x14] = x[2];
£[4] = £[2];
x[2] = x{1];
£[2] = £[1];

}

asplit—-;

while ( finish==1 ) {
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x[1]

]

0.5%(x[0]+x[2]) ;

f[1] = (xfunc) (x{11);
x[3] = 0.5x(x[2)+x[4]);
£[3] = (*func) (x[3]1);
hnow = (xf4]-x[0])/12.0;

viower = hnow# (£f[0]+4,0%F[1]+£[2]);

vInsplit+1] = hnow*(£[2]1+4, 0%£[31+£[4]);

valnew = vliower+v[nsplit+i];

valdif = valnew-valold;

area = areatvaldif;

tolerr = tol¥hnowkfabs{area);

tolerr (tolerr > tol) 7 tolerr : tol;

i ( (nsplit+1)>=MAXSPL ) {
return -3;

} else if ( fabs(valdif)<=tolerr } {
*quad += (valnew+valdif/15.0);
while ( number != (2% (number/2)) ) {

npumber = number/2;
nsplit-=;

¥

number++;
if ( neplit<0 ) {
finish = 0;

} else {
valold = v[nsplit];
x[0] = x[4];
f[o] = f[4];

for ( =0 ; <=2 ; j++ ) {
f[2%j1 = fstoreljlinsplit];
x[2*j] = xstorel[j] [nsplit];

}
} else {

number *= 2;

nsplit++;

for ( j=0 ; j<=2 ; j++ ) {
xstorelj] (neplit] = x[j+2];
fstorelj] [nusplit] = £[j+2];

}

valold = vliower;

x[4] = x[2];

189




/Aot ekttt e ok skofe o ok e s e se stk e ool o ok o ke o st oKk o ok o e ks s o of ok ok ook o ok sk i ok e ek ok o

*************$***********************************¢*****$*********************/@

£[4] = £021;
x[2] = x[13;
£[2] = £[1];
b
}
return 0;

FUNCTION INTEGRATING PDE

void fsolve(int n, double tol, double *astart, double aend, double *vy,

{

veid (*fvalue) (double, double *, double %) )

double dl, hmin, hmax, tolerr, temp, hnow, range, errmax, errest, ain;

double size(int, double *);

double rnderr, #**w;

int reduce, finish=0, returnval=0;

int odeint(int, double *, double *, double %, double #*, double,
double, double, void (*fvalue) (double, double *, double *));

vaid fselve_err(int);

w = {double **) malloc( 7*sizeof(double #*) );

if (lw) fsolve_err(-3);

for ( reduce=0 ; reduce<7? ; reduce++ ) {
w[reduce] = {(deouble *) malloc( n*sizeof{double} );
if (!w[reduce]) fsolve_err(-3);

}

rnderr = 1.0;

while ( rnderr+1.01=1.0 } rnderr *= 0.5;

randerr = 2,0,

range = aend-*astart;

hmax = fabs(range);

if ( hmax<srnderr ) Tsolve_err(-1);

if ( tol==0.0 ) {
tolerr = rndexr;

} else {
tolerr = tol;
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¥
hmin = fabs{(*astart);
di = fabs{aend);
hmin = (hmin > d1) 7 hmin : &1;
di = (hmin » 1.0) ? hmin : 1.0;
hmin = d1 * pow(rnderr,0.33);
if (hmin »= hmax) fsolve_err{-2);
dl = tol * size(n, y);
errest = {d1 > tol) 7 di : tol;
(+fvalue) (*astart,y,w[0]);
errmax = size(n,w{C]);
temp = errmaxtpow(hmax,5);
hnow = hmax;
if (errest < temp) {
dl = fabs(*astart);
hnow = (hmax > di) 7 hmax : di;
hnow = ‘tol * hnow;
dl = errest/errmax;
temp = pow(d1,0.2);
hnow = (hnow > temp) 7 hnow : temp;

by
d1 = (range > 0.0) 7 1.0 : ~1.0;
hnow *= d1;
ain = *astart;
while ( ifinish ) {
if ((aint+hnow~aend)#*range >= 0.0) {
hnow = aend-ain;
finish = 1;

}

reduce = odeint(n, &ain, &hnow, y, w, hmin, hmazx, tolerr, fvalue);

if ( fabs(hnow)==hmin } returnval = 1;
if ( !‘reduce && finish ) {
*¥astart = aend;
T else {
finish = 0;
}
¥

if ( returnval==1 ) fsolve_err(l);

for { reduce=0 ; reduce<? ; reducet+ ) free(wlreducel);

free(w);
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return;

void fsolve_err(int error_code)

{
if { error._code>0 ) {
printf (*\n\nWARNING ervor in faolve");
if ( error_code==1 )
printf ("\nlntegration completed but requested accuracy not met!");
if { error_code==2 )
printf("\nMore memory allocated than is necessary!");
return;
} else {
printf ("\n\nFATAL execution error in fsolve');
if ( error_code==-1 )
printf (*\nZero range of integration!");
if ( error_code==-2 )
printf ("\nEftective range of integration is zero!");
if ( ervor_code==-3 )
printf ("\nMenory alleocation failure!");
if ( error_cede==-4 ) ;
printf{("\nOrder of equations increased - reallocation memory!"); *
exit (1) ;
}
¥

int odeint(int n, double *a, double *h, double ¥y, double **w, double hmin, .
double hmax, double tolerr, void (*fcn){double, double *, double *}) &

{
double di, d2, hval, tolest; .
int j, i; '
void rkek{int, double, double, double *, double **,

void (*fcn){ double, double *, double ¥));

rkck(n, *a, *h, y, w, fcn);
tolest 0.0;
for (j = 0; j < n; j++ ) {

]
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d1 = fabswl1]1[j1);

d2 = fabs(wi6l[jl);

if ( d1>1.0) 42 = 42/di;

tolest = ( tolest > d2 ) ? tolest : d2;

}
if (tolest >= tolerr) {
if (tolest >= tolerr * 59049.0) {
*h *= 0.1;
} else {
dl = tolest / tolerr;
*h #= 0.9 / pow(d1,0.2);

}
if (fabs(*h) <= hmin) {
*a = kh;
for (j = 0; j < n; j++ ) y[jl = witl[j];
@l = (xh > 0.0 ) 7 1.0 : -1.0;
*h == dixhmin;
return Q;
}
return 1;
}
*a = *kh;

for (j = 0; j < njy j++ ). yljl = w11 [j];
if (tolest <= tolerr * 1.889568e~-4) {
*h *= 5.0;
} else {
dl = tolerr / tolest;
xh *= 0.9 * pow(d1,0.2);

d1l = fabs(*h);

hval = (hmin > di) ? bmin : di;
hval = (hmax > hval) ? hval : hmax;
d1 = (*h > 0.0) ? 1.0 : -1.0;

*h = dixhval;

return 0;

double size{int n, double *y)

193




void rkck(int n, double a, double h, double *y, double **w,

{

double vsize, di;
int j;

vsize = fabs(y[01);
for (5 = 1; j < n; j++ ) {
d1 = fabs(y[j1);
vsize = (vsize > dl1 ) 7 vgize : di;

}

return vsize;

void (¥fprime) (double, double #, double #})

static double bl=-11.0/54.0,b2=2.5,b3=-70.0/27.0,b4=35.0/27.0,
c1=1631.0/55296.0,c2=175,.0/512.0,c3=575.0/13824..0,
c4=44275.0/110592.0,c5=253.0/4086,0, :
d1=37.0/378.0,d2=250.0/621.0,d3=125.0[594.0,d4=512.0/1771.0;{
el1=-277.0/64512.0,e2=6925.0/370944.0,e3=-6925,0/202752.0Q,
ed=-277.0/14336.0,eb=277.0/7084 .0;

int j;

double tmpl, tmp2, tmp3, tmp4, tmp5, tmp6;

(*fprime) (a,y,w[0]);

tmpl = h*0,2;

for ( j=0 ; j<n ; j++ ) wi61[j]

(#¥fprime) (ath*0.2,w[6] ,w[1]);

tmpl = 0,075%h;

tmp2 = 0.225%h;

for ( j=0 ; j<n ; j++ ) wis]l[j]

(*fprime) (a+0.3%h,wls],wl2]);

tmpl = 0.,3%h;

tmp2 = ~0.9%h;

tmp3 = 1.2%h;

for ( j=0 ; j<n ; j++ ) |
w[6]1[j] = y{jl+wl0] [j1*tupl+w[1] [j] +tmp2+w[2] [j]*tmp3;

y[j1+wl01[j1*tmp1;

it

y[i1+w[0] [j1*tmpl+w[1] [j]*tmp2;

}
(#fprime) (a+0.6%h,wl6] ,w(3]);
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tmpl =
tmp2

K

tmp3
tmp4d

]

for ( j=0 ; j<n ; j++ ) {

h*bl;
h*b?2;
h*b3;
h*b4;

wi6l[3] = y[jd+w[0] [j1*tmpi+w 1] [j1*tmp2+w[2] [j]*tmp3+w[3] [j]*tmp4;

}

(¥fprime) (ath,wl6] ,w[4]1);

tmpl =
tmp2 =
tmp3
tmp4:
tmpb

]

for ( j=0 ; j<n ; j++ ) {
w61 [j] = y[31+wl0] [ji*tmpl+w[1] [i]*tmp2+w2] [{]1*tmp3

}

tmpl =
tmp2 =
tmp3
tmpd =
for (j

il

h#*cl:
h*¢c2;
h*c3;
h*c4;
h*chb;

h*di;
h*xd2;
h*d3;
h*d4d;
:0’

+w 3] [j]*tmpd+w (4] [j]1+tmpb;

(+fprime) (a+0.875+h,w [61,w[5]); i

j<n ; j++ ) {

wl1l1 [ = y[j1+wl0] [jl*tmpl+w 2] [jl*tmp2+w([3] [j]*tmp3+w[5] [§]*tmp4;

¥

tmpl
tmp2
tnpd =
tmp4d
tmp5

it

il

= h*el;

h*e2;
h*e3;
h¥*ed;
h*xeb;

for (j=0 ; j<n ; j++ ) {
wl6l [j] = wlol[jl*tmplew (2] [j1+tmp2+w[3] [j]+tmp3+w(4] [j]*tmpsd

return;

+w[5] [j1*tmpS;

i
<
e
o
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Sub-Routine evaluating Spectral Coefficients

=
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void coeffs( int n, double *v, double *v_hat )
{
unsigned k, j;
double sum; A
for ( k=0; k<=n; k44 ){
for ( sum=0.0, j=1; j<n; j++ )
sum += v[jl*trigs{j][k];
sum += 0.64%(v[0] + vinl*cos(PI4*(double) k));

v_hat[k] = 2.0%sum/{(double) N); i
b ;
v_hat[0] *= 0.5; Y
v_hat[n] #*= 0.5; /* we halve the nth coefficient because we E
are using a Gauss-Labbolo quadrature +/ =
return;
¥
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Coefficient Tunction for opportunity rate i)
sk ok o s e oo o st sk e o s s stofe ke otk sl sk st sk stk skeskofesk sttt o s etk sk sk stk ko ok /5

double rate(double r)

{

[ return cog(PI*r/0.20)-sin(PI#r/0.20); */ &
return ~1.0;

}

o
et
ol
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