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The O bjective

Money affects every aspect of life and yet its im pact on a m acro or micro 

level is not clearly understood. From an individual’s point of view an ef

ficient cash m anagem ent policy could free resources for consum ption which 

otherwise m ay have been wasted on either holding or transaction costs. B ut 

few models analyse a risk-averter’s cash m anagem ent decision and its im pact 

on the  money stock. P a rt of this deficiency can be a ttribu ted  to  the difficul

ties which arise from the non-linearities inherent in concave u tility  functions.

The sheer com plexity of modelling the dynam ic evolution of variables which 

influence the cash m anagem ent decision, and, the interaction between them  

has been another factor.

The history of research into the dem and for money is vast and has been an 1

im portan t feature in the evolution of macroeconomic theory. Numerous m od

elling approaches have been utilised to study the  many properties of money,
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varying from general equilibrium  analysis to  micro-based models in which 

the  agent behaves like a private optimiser.

Im portan t contributions have been m ade by em inent economists on how the 

money stock behaves. F isher’s quantity  theory identity M V  =  P Y ;  M  is the 

nom inal stock of money, V  is the velocity of circulation, P  is the  price level, 

and Y  is the  volume of transactions or real income, which was developed in 

1911 still features prom inently in economic analysis. The velocity of circu

lation is assumed to be determ ined by an exogenous paym ents mechanism 

and therefore constant. Hence any change to the money stock yields neutral 

effects over the long run. Pigou (1917) changes this to include the consumer 

allocation problem , interest rates and wealth, which subsequently comes to  

form the basis of the Cam bridge equation. These models set the tone for the 

litera tu re  which later followed from the various Classical schools arguing in 

favour of a passive m onetary policy.

Keynes in his General Theory of  Employment^ Interest and Money  (1936) 

radically challenges this view by arguing th a t velocity was not constant, but 

varied w ith the price level and income, which, therefore, required an in ter

ventionist m onetary authority. He divides the money stock into three com

ponents proposing th a t agents hold money for three very different reasons. 

The first he concludes is the transactions m otive where agents hold money to 

satisfy planned expenditure. The second is the precautionary motive where
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money is held as a buffer stock to  absorb any unanticipated expenditure

shocks. The th ird  is the  speculative m otive where agents hold money because 

it is an asset. At the tim e Keynes wrote his general theory real appreciations 

in the value of the nom inal money stock were not uncommon. Therefore the 

role of money as a speculative asset was more im portant then, than  it is now.

Baum ol (1952) and Tobin (1956) formalise the transactions m otive by placing 

it w ithin a dual asset optim isation framework. Agents in these models opti

mally determ ine their money stock by minimising the associated opportunity  

costs. Miller and Orr (1966) develop this further by introducing uncertain ty  

through a discrete steady state  random  walk. By lim iting the type of agent 

considered to be risk neutral, they effectively model the problem  as a dual as

set m anagem ent exercise in which the agent optimises his u tility  of his wealth, 

sim ilar to Tobin (1958). Constantinides and Richard (1978) model the cash

m anagem ent decision as a net present value problem. Increasing the tim e 

.horizon reduces the frequency of transactions in which agents switch from 

cash to the interest earning asset or vice versa but increases their m agni

tude. Sm ith (1989) expands on this by allowing for interest ra te  uncertainty. 

A critical review of the current literature on the transactions money dem and 

for money is presented in C hapter 3.

The original objective of this thesis was to expand on Sm ith (1989) by devel

oping a model th a t studied a risk-averter’s cash m anagem ent decision which

7
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included genuine aspects of risk and a discretely varying stochastic interest 

rate. The motive behind this was to study the im pact of increased risk sen

sitivity on an agent’s money dem and function and also capture the discrete 

jum ps which interest rates exhibit in the real world.

T he Thesis

The standard  approach to modelling a stochastically varying cash inventory 

assumes th a t net disbursem ents follow a W iener process. This assum ption is 

also m ade here ensuring th a t the new results presented here are not driven by 

prescribing a different evolution of the state. This reduces the m anagem ent 

problem  to one of optim al “im pulse” control. The standard  m ethodology for 

obtaining a solution requires

1 . constructing the cost function,

2 . expanding it in a Taylor series using Ito ’s lemma to obtain the Hamilton- 

Jacobi-Bellm en (H JB) equation and

3. determ ining the optim al targets and thresholds using the “sm ooth past

ing” and “value m atching” conditions.

In other areas of economics the “sm ooth pasting” condition has also been 

used as an auxiliary condition to satisfy perceived economic assum ptions.
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However, within the stochastic optimal control literature the use this condition 

has not been observed.

Increased risk sensitivity is introduced through a Von Neumann-M orgenstern 

u tility  function. For risk averse individuals these are assumed to be concave 

and give rise to a non-linear relationship between interest rates and money 

holdings in the  inhomogeneous te rm  of the HJB equation. Thus requiring 

the problem  to be num erically solved. The algorithm  involves

1. solving the  HJB equation using the  natura l boundary conditions, and,

2 . optim ising it w ith respect to the targets and thresholds.

On the other hand, applications of ‘̂smooth pasting’’ only requires gradient 

conditions to be imposed with respect to the initial state. This strange fea

tu re  along w ith unexpected numerical results led me to explore bo th  the Ito 

stochastic differential equation and the  Chapman-Kolmogorov equation in 

m ore detail. This led to  the discovery of the natural boundary conditions 

which are presented in C hapter 1 .

C hapter 2  analyses their im pact on the simple menu cost model in Dixit 

(1991a). The results obtained highlight some lim itations of the  “sm ooth 

pasting” condition. A lthough the economic intuition does not differ from 

w hat is suggested in D ixit (1991a), situations could be envisaged where it 

could.
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Chapters 3 and 4 re tu rn  to the original objective of this thesis. C hapter 

3 critically analyses the key contributions on the transactions dem and for 

money. Their strengths and weaknesses are highlighted. Some models which 

were previously assumed to be robust, under the detailed scrutiny of this 

chapter, appear to be logically inconsistent. Chapter 4 solves the problem  

which was initially outlined. The results present a different image of agent 

behaviour to w hat existed before. The optim al targets and thresholds do not 

appear to be as obvious as perviously believed.

■a

The R esults

This thesis makes four unique contributions to the current literature. These 

are dealt w ith in the four core chapters.

C hapter 1 dem onstrates th a t “sm ooth pasting” fails to quantify the costs 

faced by agent in a more general class of problem. Questions are raised about 

its validity as a first-order optim isation condition. The natura l boundary con

ditions for optim al “im pulse” controlled problems are derived and are shown 

to  be the  “value m atching” conditions. Thus, enabling “im pulse” control 

problem s to solve in a way which is consistent with the principles of optim al 

control. However, it does not seek to detract from its im mense value as a 

heuristic tool. In simple problems like Dixit(1991a) it yields the  same answer

6



as the more rigorous approach. Also, from a non-scientific view it provides 

fundam ental insights into how agents determ ine their optim al exercise ta r

gets for American option type models.

C hapter 2 provides a solution to the Dixit menu cost model using the rigor

ous form ulation of an im pulse control problem. The richer solutions obtained 

yield insights into agent behaviour which were previously unobservable. Also 

various properties which were assumed are now proven. An analytical equa

tion specifying relationship between the discount rate  and the zone of inertia

7
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is derived. Formerly this could be only deduced by making an em pirical link.

A critical review of the current literatu re  on the transactions dem and for

money is provided in C hapter 3. The strengths and weaknesses of the “sem- 

.inal” contributions are highlighted. Also a contrast between the results pre-
:

sented in these models and the  em pirical literatu re  is provided.

C hapter 4 returns to the original objective of this thesis. The sim ilarity be

tween liquidity preference and transaction money dem and models is briefly 

illustrated  in section 4.2, The results clearly show th a t the dem and for money 

is not well behaved as the existing literatu re  predicts. In fact they demon

s tra te  the  existence of m ultiple optim a which point to  a sequence of u tility  

maximising strategies. Unlike m ost rational expectations models, the exis

tence all bu t one optim um  cannot be dismissed through partia l equilibrium  

argum ents.



A brief sum m ary of the results is offered in the final chapter.

3

-

.:.<7

A:

"i;

I
:

I



il

List o f  Sym bols

e Elem ent of

[.,.) Open Interval

E\.] Expectation O perator

inf Infimum

max M aximum

/ Integral

E Sum m ation

In N atural log

lim Moving Towards the Limit

A Second Order Differential O perator

sin sine

COS cosine

arcos Inverse cosine

sinh. Hyperbolic sine

cosh Hyperbolic cosine

tanli Hyperbolic tangent

n-dimensional space

Lip^{D) Lipschitz continuous

ii ' i i Norm

G'(x) Differentiable To The Order i in a;

%

i

I
3



A cknow ledgem ents

This undertaking would not have been possible if not for the  unwavering 

support of my parents. For this and providing me with the opportunity  to 

purse this thesis through their generous financial support I shall be eternally 

grateful.

I wish to thank Stan H um  and A nton M uscatelli for supervising thorough 

out my studies. Their advise and patien t tutoring, from the m om ent the first 

ideas crossed my m ind till they finally crystallised has been invaluable.

In April 1995 I had the privilege of m eeting Ken Lindsay, the cleverest m an 

th a t I have m et. W hat is presented here is entirely due to  his guidance, 

encouragem ent and close supervision th a t I enjoyed over the past two years. 

For this and and all the help he has given me I am deeply indebted to  him.

I grateful to Terry Moody and Dan Muldoom, my internal and external ex

am iners, who gave m e valuable insights into my work which I had overlooked. 

Their help on presentational m atters is also appreciated.

10

II:
Î
.7

I



I am thankful to  members of the  D epartm ent of Economics, who in various 

seminars provided me w ith helpful com ments and Professors Alain Bensous-

8 tan t ini des for confirming the  validity of the boundary and first-order opti

m isation conditions described in C hapter 1 .

views expressed here reflect those of the University of Glasgow or any person 

m entioned here.

5

' .X '

fi

san, Wendell Fleming, Jean Lepeltier, Ulrich Haussman and George Con-

.........................................................................
All errors and omissions in this thesis are entirely mine and none of the

11



C ontents

1 A R e-E valuation of th e  “Sm ooth  P astin g” C ondition in Prob

lem s of “Im pulse C ontrol” 16

1.1 In tro d u c tio n .............................................................................................  16

1.2 The “Smooth Pasting” C o n d it io n ...................................................  18

1 .2 .1  The O ptim al Stopping Problem  And “Smooth Pasting” 18

1.2.2 Smooth Pasting and Impulse c o n t r o l ..................................... 2 1

1.2.3 The Critique .................................................................................. 29

1.3 Impulse C o n tro l ...........................................................................................34

1.4 The M artingale Form ulation of the Bellman Value Function . 36

1.5 C om putation of the Value F u n c t io n ................................................  39

1.5.1 Derivation of the transitional P D F .........................................41

1.5.2 Calculation of the value function ............................................ 42

1.6 “Smooth Pasting vs. Stochastic O ptim al Control ........................... 44

1.6.1 O ptim al Stopping and the Choice of C o n t r o l s .....................46

1.7 Concluding R e m a r k s .................................................................................47

12



2 Control R egim es, Transaction C osts and B usiness C ycles 49

2.1 In tro d u c tio n ................................................................................................. 49

2.2 The zero threshold p o licy .........................................................................55

2.3 O ptim al boundary v a lu e s .........................................................................57

2.4 The O ptim al Price A djustm ent Policy ..........................................  62

2.5 R e s u lts ............................................................................................................66

2.5.1 Comparison of the zero threshold policy and existing 

w o r k .............................................................................................. 67

2.5.2 The O ptim al Price A djustm ent P o l i c y .................................. 69

2.6 Concluding R e m a r k s ............................................................................ 70

3 Transactions D em and for M oney: A Critical R eview  74

3.2 Early Transaction Money D em and M o d e ls ........................................75

3.3 The Discrete Stochastic Cash Flow M o d e ls ........................................ 77

3.4 The Continuous Stochastic Cash Flow M o d e ls ................................. 81

3.4.1 Steady S tate M o d e l s ................................................................ 81

3.4.2 Net Present Value Cost M inim isation Models ................... 83

3.5 Em pirical E v id e n c e ..................................................................................... 8 8

3.5.1 An Em pirical S u r v e y ................................................................ 8 8

3.5.2 Aggregation Bias  ......................................................... 91

3.6 Concluding R e m a r k s ..................................................................................92

13

I

'■7

IA
-"X"
x:

3.1 In tro d u c tio n .............................................................................................. 74



4 O ptim al M oney H oldings 94

4.1 In tro d u c tio n ................................................................................................. 94

4.2 Risk Aversion Models vs. Stochastic Transaction Money De

m and M o d e l s  96

4.3 The Money Dem and Model ................................................................ 100

4.4 The Initial Value P r o b le m ....................................................................102

4.5 Numerical S o lu tions ..................................................................................108

4.6 R e s u lts ..........................................................................................................110

4.7 Concluding R e m a r k s .............................................................................. 120

5 C onclusions 122

5.1 C hapter 1 ................................................................................................... 123

5.2 C hapter 2 ................................................................................................... 124

5.3 C hapter 3 ................................................................................................... 124

5.4 C hapter 4 ....................................................................................................125

A ppendix A ................................................................................................ 127

Appendix B ................................................................................................ 128

Appendix C ................................................................................................ 131

A ppendix D ................................................................................................ 133

Appendix E ................................................................................................ 133

A ppendix F ................................................................................................ 134

A ppendix G ................................................................................................ 137

14



Appendix H ................................................................................................ 140

Appendix I ................................................................................................ 141

Appendix J ................................................................................................ 142

A ppendix K ................................................................................................ 143

Appendix L ................................................................................................ 143

Technical Annex 1-BFGS M ethod for U nconstrained M inimi

sation  ................................................................................................ 144

Technical Annex 2-Simpson’s Rule ...................................................153

Technical Annex 3-Runge-K utta Order F o u r ..................................155

Technical Annex 4-Ghebyshev P o ly n o m ia ls ..................................... 157

Technical Annex 5-The Source Code C hapter 2   163

Technical Annex 6 -The Source Code Chapter 4  182

i

15



' ■

C hapter 1

A R e-Evaluation o f the

“Sm ooth P asting” C ondition in

Problem s of “Im pulse Control

1.1 Introduction

Stochastic optim al control has become increasingly popular in economics and 

finance as a tool for modelling optim ising behaviour w ithin an environm ent of 

ongoing uncertainty. Its applications have been numerous, ranging from op-
:3

tion pricing theory to target zone and menu cost models, e.g. Pindyck (1988), 7

K rugm an (1988), Dixit (1991a), and, Dixit and Pindyck (1994). Under costs
'x;'

of ad justm ent, or any other form of friction these models dem onstrate the

7;3
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existence of inertial responses where it is optim al for an agent to wait before 

acting. The boundaries of the optim al zone of inertia are derived through 

heuristically m otivated boundary and first-order conditions, commonly re

ferred to as the  “value m atching” and “smooth pasting” conditions.

This chapter considers the stochastic optim al control of a W iener process in 

the presence of any cost of adjustm ent including “im pulse” control. Ana

lytical boundary conditions are derived for the problem explicitly from the 

m artingale or optim al stopping framework and do not rely on any heuris

tic m otivation. A lthough the results yield a condition similar to  the “value 

m atching” condition, the “sm ooth pasting” condition, which is also used in 

many applications of stochastic optim al control, does not feature in any way.

The chapter is structured as follows. Section 1.2 provides a general overview 

of the “sm ooth pasting” condition, highlighting some of its perceived strengths 

and weaknesses and the need for a strict analytical solution to the boundary 

value problem. Section 1.3 uses a general example to describe the problem  of 

im pulse control. The Bellman value function (value function) is form ulated 

in Sections 1.4 and 1.5 and the boundary conditions are derived. The ideas 

are expounded in one dimension, although the methodology extends na tu 

rally to any dimension. In addition, the analysis is restricted to  the case with 

constant coefficients but a variety of problems with non-constant coefficients 

can be dealt w ith in a similar way.

17



more complex problems, or, situations in which only the value function needs

1.2.1 T he O ptim al S topping P rob lem  A nd “S m ooth  

P astin g”

The u tility  of “sm ooth pasting” and its applicability to a wide range of 

problem s w ithin an environm ent of ongoing uncertainty is best illustrated 

through the simple optim al stopping problem  provided in Dixit and Pindyck

18

I

1.2 The ‘̂̂ Smooth P asting” Condition

“Sm ooth pasting” is a useful heuristic first-order optim isation condition for 

fram ing m any target-threshold type models and helps convey the economic 

in tu ition  behind numerous situations in a way th a t is easily understood. 

Indeed, C hapter 2  confirms th a t both  “sm ooth pasting” and the rigorously 

fram ed optim al stopping strategy yield algebraically equivalent answers. B ut, 

the  critique offered la ter in this section and an analysis of the necessary con

ditions for optim a in Section 1.6 suggests why this need not be the  case for

to  be ascertained such as option valuation.

The argum ents for and against “sm ooth pasting” are outlined in detail, in

cluding reasons as to why it is absent from a rigorous form ulation of the 

m ethod of impulse control. However, it m ust be emphasised th a t, in the ab

sence of any contradictory results to the stochastic optim al control approach 

to  solving a problem, it still remains a valuable first-order condition.

X-
iii-
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(1994). Consider an entry-exit decision in where a firm is faced w ith a simple 

binary choice at every instant. It can either wait and accrue a profit or 

exercise an option at an endogenously determ ined barrier for a term ination 

payoff. Both the  profit earned and the term ination payoff will functions of 

sta te  and tim e. Assume th a t the sta te  follows a W iener process

dxi =  fi{x, t)dt  +  cf{x,t)dzt.  (1 .1 )

p being the discount rate. In an entry decision 7 (0:, t) — p \ ( x ,  t) has to increase 

as X increases. If x  is large. For an exit decision this expression m ust decrease

19
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In an exit decision a firm chooses to stop production and sell its equipm ent 

for scrap value. E ntry  decisions can be framed in a similar way. The value 

accrued during the waiting period is zero. E ntry implies investm ent. The 

associated term ination payoff is the expected net present value of fu ture 

profits less investm ent costs.

Self evidently there exists a critical value of the state X  at each point in tim e

.for which x < X  would im ply continuation will be optim al and x > X  for 

which stopping will be optim al. Therefore, there m ust exist some condition 

which helps us determ ine X .  Let 'y{x, t) denote the flow profits and X(x, t)  

be the term ination payoff. The payoff facing a firm at each instan t can be 

characterised as being

1



in a:. To illustrate the link between optim al stopping and “sm ooth pasting” 

I shall only consider the  former.

It is obvious th a t X  m ust divide s ta te  and tim e space into two regions, where 

continuation and term ination are optim al. Of course, an a priori knowledge 

of X  is not possible. Instead it m ust be endogenously determ ined.

The Bellman value function for this optim al stopping problem takes the form

E \V {x  +  dx, t +  dt)\xo = a;]V { x , t )  =  max A(.T,q,7(a;,q +
1 4- pdt

In the bounded region in which the s ta te  moves this can be expanded in a 

stochastic Taylor series expansion through I to ’s lemma to yield

a ( x , t y
Vxx{s:,t) 4- p{x, t)Va:(x, t)  4- Vt{x, t)  -  p V ( x , t )  +  j { x , t )  = 0.

In the stopping region clearly V { x , t )  = A(æ,t), therefore

y (x ,q  = A(x,t) vt.

This is referred to  as the  value m atching condition since it equates values of 

the yet to  be solved value function V { x , t )  to  the  already established term ina

tion payoff X{X, i). D eterm ination of X  requires another auxiliary condition. 

This is the “smooth pasting” condition and it requires th a t 'j{x, t) and A(æ, t) 

to  m eet tangentially at X .  T hat is

= Xo,{x,t) y t .

20



K(x,t)=l(x,t) V 
“smooth pasting” tx,t)

Mx,t)

X

Figure 1.1: “Smooth Pasting” Gradients

Therefore the optim al stopping tim e or the zone is exactly determ ined. On 

the face of it this sounds a perfectly acceptable argum ent. Indeed, it provides 

valuable insights into how “sm ooth pasting” optim ally evaluates the stopping 

tim es at which control is exercised.

1.2 .2  S m ooth  P astin g  and Im pulse control

The m ethod of “im pulse” control has its genesis in the famous Scarf (1960) 

inventory control model in which the agent is tasked with optim ally m an

aging the stock of a com m odity for retail sale in the presence of a random  

flow of sales and lump sum  purchasing costs. If the stock falls below a

21
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critical lower barrier a the quantity  (I — a) is ordered, where I is the  point of 

replenishm ent. The purchasing cost has the effect of reducing the frequency 

and increasing the size of the orders. Dynamic cash m anagem ent models 

increase the dimension of this problem by adding a similar policy at the top 

end. Stochastic income flows are assumed to add to the inventory Zt, while 

planned and unplanned expenditure requirem ents are assumed to  deplete it. 

If holding costs are continuously incurred a t a ra te  proportional to the money 

stock, and transaction costs are assumed to be linear, the agent’s decision is 

to choose not only how much cash to w ithdraw  (/ — a), bu t also how much to 

convert into another asset (b — u), where h is the upper barrier and u is the 

point to which Zt is restored (see Constantinides and Richard (1978), and 

Sm ith (1989)). The optim al m agnitudes of a, 6 , I and u are determ ined by 

applying the so called flrst-order “sm ooth pasting” condition which is also 

widely used in other areas of economics. The following two sections consider 

its use in the literature on irreversible investm ent and exchange ra te  target

zones.

Irreversible Investm ent

Irreversible investm ent and option pricing models use an “im pulse” control 

framework to  dem onstrate how the  optim al investment decision of a firm 

could differ from the standard  M arshallian investm ent criterion (see Pindyck 

(1988), Pindyck (1991), Dixit (1992) and Pindyck and Dixit (1994)). If firms

22



face uncertain  dem and or costs, new capital can be purchased at a random  

or fixed price and the  cost of investm ent is linear; it can be shown th a t 

firms invest until the  m arginal revenue product equals its full cost. The 

la tte r includes both the  cost of purchase and installation and the  cost of 

keeping the option to invest alive. Pindyck (1988) shows th a t this involves 

optim ally regulating the  associated costs and revenues at an upper barrier. 

Similarly Dixit (1992) dem onstrates th a t disinvestm ent entails the regulation 

of operating losses at a lower barrier.

Consider a competitive market  in which a firm has the capacity to  produce 

one unit of ou tpu t by incurring a sunk cost I. Assume th a t variable costs are 

zero and firms which have incurred a sunk cost will want to produce a t its 

capacity level. If the m arket in which the firm operates suffers from industry  

wide dem and shocks th a t follow a continuous stochastic process, the  price of 

a single unit of ou tpu t can be expressed as

f  =  %/D(g).

P  is the price level, y is the industry wide shock, q is the  current level of 

o u tpu t and D{q) is the determ inistic downward sloping com ponent of the 

dem and curve. Let y  follow a geom etric W iener process given by

dy = ayds  +  cydzsy

where a  is the tim e gradient and a  is the standard  deviation of the  W iener 

increm ent. Of course, w ithin an infinitesimally small tim e interval ds no new

23



entry will take place. Therefore q will be fixed and P  will be proportional to  

j/, giving rise to the relationship

, dP = a P d s  +  crPdzs. (1.2)

The net present value of a firm ’s expected profits II will depend on the current 

price P  and also the expected future price level. If the dynam ic evolution 

of the price level is specified by ( 1 .2 ), then the expected future price level 

will only depend on P.  Therefore II will exclusively be a function of P , i.e.

n(P).

A firm waiting to enter will observe the price level and use a high price 

as a trigger to invest. Therefore at some upper barrier P  a new firm will 

enter, causing q to  increase and P  to  decrease, making P  a reflecting upper 

boundary. If a reflecting boundary did not exist at P , then the value of the  

firm will be

n(P) =

where 5 = r — a,  i.e. the difference between the risk free ra te  r  and the m ean 

ra te  of growth of the price level. However, the reflecting barrier P  reduces 

some of the upside to  potential profits and prices. Hence H (P ) <  P/S.

If P  <  P , then over the  infinitesimally small interval ds H (P ) can be ex

panded using a Taylor series through Ito ’s lem m a to  yield the  second order
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differential equation

2  n " (P )  +  ( r -  ^ )P W (P ) -  rH (P ) +  P  =  0. (1.3)

This can be solved to obtain

TliP) = BPO + J ,  (1.4)

where B  is an arb itrary  constant and (3 is the positive root of the charac

teristic  equation of (1.3). The value of B  can be determ ined by elim inating 

the possibility of sure arbitrage profits. To do this the gradient of II(.) at P  

needs to  be zero, i.e.

n '( P )  =  /3 S P ' ’- '  +  1  =  0 .

Solving for B  and substitu ting the resulting expression into (1.4) yields

n ( P )  = y  -  (1.5)

Firm s make zero profits in a com petitive dynam ic equilibrium. At P  firms 

will be indifferent between entering the m arket and staying out. The net 

present value accrued as a result of entering the  m arket m ust equal the  entry 

cost I . Using this relationship in (1.5) yields

If / ( . )  is the value of the firm ’s option to enter, it can be shown th a t it is a 

function of P  and takes the form

/ ( P )  =  AP».
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(see Dixit and Pindyck (1994)), A  is an arbitrary  constant whose value 

needs to be determ ined by the first-order “smooth pasting” condition. If a 

firm enters at a price level P , it incurs a sunk cost I  and receives an income 

n(P). At the optim al entry trigger P*, / ( . )  needs to satisfy the “value 

m atching” condition

/ ( P 3  =  n ( P 3  -  (1 .6 )

and th e  “sm ooth pasting” condition

f ( p * )  =  n% p*). (1.7)

Solving (1.6) and (1.7) simultaneously yields

which is the same as P . Also A =  0, which implies th a t / ( P )  =  0. Pindyck

and Dixit (1994) use this property to argue th a t a firm contem plating entry

into a com petitive m arket faces a zero value of waiting, and conclude th a t 

the

prices”

see Figure 1 .2 . A model of disinvestm ent entails a similar argum ent at the 

lower boundary.

1

SC

“... value of waiting is negative for most of its price range, and 

only climbs to zero at the upper end of the range of possible

^Dixit and Pindyck (1994) p. 259
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Figure 1 .2 : The Option of W aiting 

E x c h a n g e  R a te  T a rg e t  Z ones

The literatu re  on target zones introduces the m ethod of “im pulse” control 

as a means by which a m onetary authority  could lim it the volatility of its 

exchange rate. An exchange ra te  target zone is a hybrid mechanism by which 

the exchange ra te  is allowed to freely float, bu t w ithin a clearly defined region. 

The m onetary authority  regulates the exchange rate  by selling the currency 

at an upper barrier and by buying it a t a lower barrier, thus keeping the 

currency w ithin a fixed band. In models of infinitesimal intervention, the 

exchange rate  is restored to a point which is ju st within the target zone. In 

the case of discrete intervention an im pulse is exercised on the  boundary to 

restore the  exchange ra te  well w ithin the  target zone. In K rugm an (1991)

27
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this gives rise to a A-shaped movement of the exchange rate  w ithin the band 

which is tangential to its boundaries a and 6 , ruling out expectations of 

unbounded exchange ra te  appreciations or depreciations.

Consider a flexible exchange ra te  which follows the K rugm an law of motion, 

i.e.

l{s) == k{s) +  a > 0 .  (1.8)

l{s) is the natura l log of the exchange rate, 7  is the Cagan interest ra te  semi

elasticity and the  expectation operator E[.] is conditioned on the current 

inform ation set. Of course, only inform ation on the independent variable k 

is relevant, k is assumed to reflect the rates of change in the value of foreign 

currencies, the domestic money supply, real Income levels and expectations of 

money dem and shocks. Thus k can be controlled by the m onetary authority, 

specifically to keep the exchange rate  w ithin a desired band l\ < I < E.  Let 

fc, absent control, follow a W iener process of the type

dk ~  ipds T adz  s.

The coefficients tjj> and a  are assumed to  be constants. Using this specification 

of k^ K rugm an (1991) explicitly develops a functional form of the exchange 

ra te  solution, I = m{k).  Flood and G arber (1991) argue th a t m (k)  is a 

solution to  l{s) and expand it using I to ’s lem m a to obtain

^  =  0 m'(Â:) +  ~ m ' \ k ) .  (1 .9 )
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This is solved to yield

I = m{k)  ”  +  7 ^  +  (1 .1 0 )

where Ai and Ag are the roots of the characteristic equation of (1.9). The

values of A  and B  are determ ined by the “smooth pasting” condition which

requires th a t the exchange ra te  be tangential to G and h, i.e.

m%A;%) =  0  and m'{kf)  ~  0

see Figure 1 .2 . D iscrete intervention requires the additional conditions

m{ku) ~  m{Q)  m{ki) — q.

1.2 .3  T he C ritique

29
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The first-order condition which determ ines the  optim al barriers and thresh

olds in “im pulse” control models is the “sm ooth pasting” condition. In in- 

.vestm ent and option pricing models it ‘equates the value of waiting with

the value of the investm ent trigger h or the  disinvestment trigger a \  The

intuition  behind this is th a t the first derivative of the option price m ust be

the same value before and after an option is exercised. In the target zone 

.litera tu re  it provides the justification through arbitrage for the tangential 

relationship between the exchange ra te  and the upper and lower barriers a



Q L* ku k

Figure 1.3: A Model of Exchange R ate Target Zones

and 6 , In inventory theoretic money dem and models it is used to pin down 

the boundaries and thresholds a, I, u and 6 , equating the m arginal cost of 

being on a boundary with the m arginal transaction cost.

These applications of the “sm ooth pasting” condition would suggest th a t the 

controls a, /, u and b are chosen to  either optimise the value functions or sat

isfy some economic argum ent. But in reality this is not the case. In problem s 

where the “sm ooth pasting” condition is used as a first-order optim isation 

condition, it is derived by equating the derivative of the value function, w ith 

respect to the initial s ta te  and the gradient of the cost of adjustm ent on the 

boundary (see Dixit (1994, ppl29-130), D ixit (1991b, 667-668), Constan

tinides and Richard (1977), and Sm ith (1989)). Although the value function
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1

olds are im plicit in their construction and not variable. For a certain choice 

of param eters the gradient conditions on the  initial sta te  num erically fix 

the values of a, /, u and 6 . A nother facet of this simplification is manifest 

through the apparent inability of the current model of im pulse control to 

quantify the extent to which a prescribed strategy deviates from th a t which 

is optim al. For instance behaviour of an agent who initially lies outside the 

‘op tim al’ boundaries (i.e. outside the interval (a, 5)) cannot be com pared 

w ith one who initially lies w ithin these bounds. Constantinides and Richard 

(1978), and Sm ith (1989) provide solutions for the value function outside the

31

is a function of both  the initial state and the set of admissible controls, the 

principle of O ptim al Control requires the value function to be optim ised only 

w ith respect to the set of admissible controls (see Bensoussan and Lions 

(1975a), (1975b), and Richard (1977)). It is only by choosing the controls 

a, I, u and h to optimise the value function that the marginal payoff which 

jïows from controlling a system is set equal to the associated marginal cost.

The initial s ta te  is merely an inheritance from a previous unknown history 

and is not a control variable. Its functional relationship w ith the  value func

tion is fundamentally different to th a t of a, /, u, and b. Of course, the initial 

s ta te  m ay influence the choice of boundaries particularly under high discount j;

rates, ;■
'■ÿ'

Furtherm ore, the num erical values of these ‘optim al’ boundaries and thresh- y
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.“optim al” boundaries, bu t these do not satisfy the Ham ilton-Jacobi-Bellm an 

equation (H JB) they obtain. Here a functional form for the value function 

is derived from which the costs associated with a sub-optim al choice of a, /, 

u, and h can be evaluated. Flem ing and Rishel (1976, Appendix E), Ben

soussan and Lions (1975a), (1975b) and Richard (1977) show th a t the HJB 

has convex solutions and therefore has only one control vector, whereas the 

“sm ooth pasting” strategy does not seem to  suggest any.

In the  litera tu re  where “sm ooth pasting” is used to make a model satisfy cer

ta in  economic argum ents, such as the target zone models on exchange rates

32

or the zero profit condition in the model of irreversible investm ent described 

.earlier, reflecting boundary conditions need to be imposed on the forward 

sta te  of the W iener process; not on the initial sta te  as it is currently done. 

This would ensure th a t when the exchange ra te  hit an upper or a lower bar

rier, it would be instantly  restored into the interior of the target zone by 

either an infinitesimally small am ount or a discrete quantity. However, im 

posing boundary conditions on the  forward state is a non-trivial task and 

would require the dynam ic evolution of the exchange rate  to be com puted 

through the transition  density function. Since the Ito stochastic differential 

equation has not been adapted to capture boundary conditions on the for

ward state, it is not suitable for use in problems of this type.

In dynam ic program m ing involving infinite horizons the value function is

f



considered a function of the  initial state, despite the fact th a t it is the for

ward sta te  which experiences the impulse control. This m ade possible due 

to  the Markov property which enables the evolution of a stochastic process 

to  be described in term s of its initial sta te  and time. For models in which 

the sta te  is given by a W iener process this can be done through either Ito ’s 

lem m a or the backward Chapman-Kolmogorov equation (see G ihm an and 

Skorohod (1972)). The initial state plays no other explicit role in an infinite 

horizon impulse control problem (see Flem ing and Rishel (1975) chapter VI, 

Bensoussan and Lions (1975a), (1975b) and Richard (1977)).

These argum ents, though robust, do not explain the algebraically equiva

lent results obtained using both  the “sm ooth pasting” and optim al control 

strategies in C hapter 2 . Indeed, this may point to the existence of some 

undiscovered properties of the HJB equation and the value function. On the 

other hand, it may be a feature restricted to  the Dixit menu cost model due 

to its unique nature. However, w ithout further evidence which dem onstrates 

th a t “sm ooth pasting” and the stochastic optim al control strategy yield dif

fering results, it still rem ains useful as an approxim ation of the necessary 

first-order condition for optim a.
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1.3 Im pulse Control

Let the  s ta te  follow a W iener process with the corresponding stochastic dif

ferential equation

dxs =  pds  -f crdzs s G [0 , oo) Xq — æ,

over the continuation region (a, 6 ), and, let Tq ^  Ti ^  T2 ^  ^  ^  ■

be the  series of stopping times; i.e. the series of points in tim e at which the 

process being controlled exits the continuation region and a “ju m p ” control 

is exercised to  restore the process to  an interior point.

The m ethod of “im pulse” control requires the existence of a feedback control 

law u which optimises a performance criterion subject to  some initial datum  

and boundary conditions and is described at tim e s by

Ib — u if rcs =  6 , 

a — I if == a,

where u and I are respectively the interior points to which the process is 

restored to when the upper boundary b or the lower boundary a is encroached. 

Clearly a ^  a  ^  6 .

Let the instantaneous holding cost be given by the real function M{xg),  

s G [0, oo), and assume a constant discount ra te  of p. The object, therefore, 

will be to  arrive at a policy

P =  { ri,U i;T 2 ,U 2 ; • • - • • •},
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of a series of stopping tim es and controls which minimise the  value function

y(a;, u) ~  E
in f u Lao

e-^’ M i x . )  ds + Y i ,  e->"'R(u)
i =0

where R{u)  is the cost of adjustm ent defined by

i?(u)
B{b^ u) if Xs — 6 ,

D{a, I) if Xs = a.

It is now dem onstrated th a t this value function satisfies the HJB equation.

By using Ito ’s Lemma and expanding (1.11) in a Taylor series, it follows th a t

A V {x ,  u ) — pV{x ,  u) +  M(æ) =  0, (1.12)

where

A  = T ■d (1.13)
dx  2  dx'^

Equation (1.12) is referred to  as the HJB equation. In particular, the for

m ulation of (1 .1 2 ) depends on the boundary conditions at a and 6 . Solving 

this equation subject to the correct boundary conditions yields the dynam ic 

program m ing equation, which is also the performance criterion y (( r ,u ) . Its 

infimum with respect to the control law u , is E(æ ,u*). Equally u* can be 

obtained by minimising (1.12). The existence of an optim al feedback con

trol law for this equation has been dem onstrated by Bensoussan and Lions 

(1975a) and Richard (1977).
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1.4 The M artingale Form ulation of the B ell

man Value Function

The m artingale form ulation of the value function divides into two compo

nents. The first measures the  net present value of holding costs accrued until 

the first stopping decision while the second computes the net present value 

of all costs, i.e. holding costs and costs of adjustm ent, which follow from this
u :

decision. It can be shown easily th a t this construction of the value function
'

also satisfies I to ’s Lemma.

Consider the W iener process introduced in the last section. W hen Xs is 

on the boundary, th a t is — <2 , or Xs = 6 , the process enters a stopping 

zone and is absorbed. For convenience let the forward state  Xs be denoted 

by y. Hence the transition  density function for this process, /(y ,s |æ ,0 ) ,  

m ust satisfy the boundary conditions / ( 6 , s |a ;,0 ) ~  0 , and / ( a , s |a ; , 0 ) =  0 , 

along with the initial condition /(y ,0 |a ;,0 )  — 5{y — x). It is common knowl

edge th a t f ( y , s \x ,Q )  satisfies the forward Chapman-Kolmogorov equation 

(Fokker-Planck equation)

f s {y , s \x ,  0) =  - p f y { y , s \ x ,  0) -h y /y y ( j / ,  s|a), 0), (1.14)

Define a distribution function E (y ,s |a :,0 ) w ith the property th a t

Fy(t/,0 |æ ,0 ) =  f { y , s \ x ,0 ) ,

":3-



It is also clear th a t probability mass through the upper and lower boundaries 

will be respectively

Fs(b,s\x ,0) ,  (1.16)

and

Fs{a,s\x,0) .  (1.17)

Expressions (1.16) and (1.17) define the probability th a t the  process will en

te r the  zone through the  upper and lower boundaries at tim e s, respectively. 

Thus, the  first costs of adjustm ent at the upper and lower boundaries, S ( 6 , u)

and Z)(a, /), will be incurred at rates given by (1.16) and (1.17) respectively.

Hence the value function, constructed in term s of an optim al stopping prob

lem is

'6poo pb
V (z ,u )  =  / / M {y) f{ y , s \x , { ) )d y

Jo iJa
ds

poo

F  e ^^[77(5, a ) - |- y ( u ,  u)]Es(6 , s|a;, 0 ) ds (1.18) 
Jo

poo

+  / e -^ '[D (a , /) -P V (/, u )]Fs(f  6 k ,  0 ) ds.
Jo

The derivation of this is straightforward. The first integral on the right- 

hand side is the net present value of the holding costs accrued until the first

37

. 1 if a: =  %/, T
E ( j / , s k , 0 ) =

0  if X ^  y.

Thus, F (^ , s|æ, 0 ) m ust satisfy the backward Chapman-Kolmogorov equation 

Fs{y, s\x,  0 ) =  pF f fy ,  s|æ, 0 ) ■+■ s\x,  0 ). (1.15)
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stopping decision. The second and th ird  integrals evaluate the net present 

value of the  sum of the first cost of adjustm ent, B{b,u)  and and all

holding costs and costs of adjustm ent which accrue from this decision, i.e. 

y ( u , .) and y ( / , .).

The application of an “im pulse” control on the upper boundary a t tim e s, 

instan tly  changes the sta te  from b to u. Given th a t y(. , .) is a functional of a 

Markov process which contains the net present value of all holding costs and 

costs of adjustm ent, this defines a new Markov function w ith an initial sta te  

u  over the tim e horizon [s, oo) which contains all holding costs and costs of 

adjustm ent th a t accrue from tim e s onwards, i.e. V{u, .) ,  The m ultiplier 

discounts to net present value. The same holds for V{1, .). Since y  ( a , .) 

and y( / , .) contain both  holding costs and costs of adjustm ent which accrue 

as a result of the first stopping decision. It is therefore clear th a t the  above 

sum yields the expected net present value of a policy of “im pulse” control at 

the upper and lower boundaries.

Integrating (1.18) w ith respect to tim e it is clear tha t

y(a;,u) [  M { i j ) f { y , s \ x , 0) d y  
-da

d s

F[B{b,u)  +  y(n,u)] 

F[D[ aR)  + y(/,u)]

poo
I — p e“ ^^E(6 , s k ,  0 ) 

Jo
poo

1 — p  e “ ^®jP(a, s|a;, 0)
Jo

d s

ds . ( 1.19)

Î
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It is now dem onstrated th a t the constructed y ((c ,u ) satisfies the H JB equa

tion.

Applying the differential operator in (1.13) to (1.19) and use the Chapm an- 

Kolmogorov equations (1.14) and (1.15), it is clear tha t

e“^V(y,6k,0)  dsA V { x , n ) = p  M{y) dy ~  M {x)

p(X>

—p{B{b^u) — V{u,u)] 1 — p ê ®A’(6 , s k ,  0) ds
L Jo .

poo

- p [ D { a J ) - V { l , n ) ]  l - p  eP^F{a,s\x,0)ds  .(1.20)
L Jo J

See Appendix A for the derivation of A (a;)y(a;,u). E lem entary calculation 

now reveals th a t

A V { x ,  u ) -  pV{x,  u) +  M{x)  = 0, (1.21)

which is the H JB equation. Minimising this w ith respect to u  will yield the 

optim al “im pulse” control policy. It is also obvious th a t we could use Ito ’s 

lem m a and expand (1.19) in a Taylor series to  also obtain (1.21). Therefore, 

the optim al stopping framework used to set up V (æ ,u) is also self consistent.

1.5 C om putation of the Value Function

The probability density function of the absorption process is first calculated. 

This function is then used in the constructive definition of the  value function 

y(.T ,u) in (1.18) for general B{b,u),  D ( a J )  and M{y).

To ease the com putation of the value function in (1.18), it is convenient to
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introduce the non-dimensional variables

. y — a X — a aih — a)

/3 = - d - ^ ,  and < =  ( 1 ,2 2 )

W ith  this change of variables the partia l differential equation satisfied by 

/ ( y , s k , 0 ) becomes

m  %  + 2  d ë — ’  ̂  ̂ ^

where / ( ^ ,  0 ) satisfies the  boundary conditions /(1 ,7 k ,  0 ) — 0 , / ( 0 ,7 k , 0 ) :

0 and the  initial condition /(&  Ok; 0) — d(^ — g). The distribution function 

F (^ , s k ,  0) in (1.15) now satisfies

c>F(C%0) d F{ U\ g , 0 )  , l d ^ F { i , s \ g , 0 )
dg ^ 2  dg-‘ '  ̂ ’

The value function now becomes

[ h - a ]
y(5^,u) =  [

^0
*oo

dt
a"

dt

f  M ( e / ( C i |s ' , 0 ) ( 6 - a ) d e  
Jo

poo  _

+ /  e=#-[B(l,«) +  y(t*,u)]C,(l,t|s,0)
Jo

poo

+ /  6 2 [B(o, 0 + y(z, u)]f,(o, (|g, 0)
Jo

Hence the expressions for the  non-dimensional y(æ , u ), 7?(6, n) and D {a J )  

become

l> =  ^ ,  5  =  and £ )=
{ b - a f ’ { b - a f ’ ( b - a ) ^ '
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1.5.1 D erivation  o f th e transitional P D F

Using the m ethod of separation of variables, it can be verified th a t

is a solution to  (1.23) satisfying its boundary conditions for all integers n. 

Using Fourier m ethods it can be further proved tha t

OO

/ ( / ,  7k , 0 ) =  2  sin(nîT^) sin(nTr^)
n = l

is the  com plete solution of (1.23) satisfying the boundary and initial condi

tions. The details of this calculation appear in Appendix B.

The probability flux, or the probability mass exiting through the upper and 

lower boundaries is respectively

and

This effectively defines the probability distribution function of the process 

entering the stopping zone. Here / ( I ,  s k ,  0 ) =  /(O, s k ,  0 ) — 0 , and, therefore

the flux on upper and lower boundaries b and a are ( l / 2 )jft , and, (1 / 2 )/^

respectively, i.e.

1
%/(  ̂ =  7 r ^ n s i n ( n 7 r ( l - ^ ) ) (

n=l
oo

7T n sin(n 7T^)e" Q'(7-Ua;̂ +n̂ 7r̂ )t

n = l

It is im m ediately obvious th a t

F ,( l ,7 k ,0 )  =  - / ( and F f(0 ,7k ,0 ) =  

41

(1.25)

(1.26)



It can further be shown th a t

HÊ1e 2 E^(0,7k, 0)d7 =  e

f i - , ) Sinhxff 
sinh X ’

s in h x ( l -  S')
s inhx

(1.27)

where % =  -\J(3 F ex?- See Appendix B for the evaluation of the infinite 

integrals in (1.27).

1.5 .2  C alculation o f th e  value function

The expressions in (1.27) can be used to com pute the net present value of all 

costs which accrue from the first stopping decision at the upper and lower 

boundary. It remains to evaluate, tp(^), the net present value of the holding 

costs accrued until the first stopping decision which is defined by

‘1

M ( 0

dt

d t (1.28)

Using integration by parts it can be shown th a t

j: =  -  coshx7
X sinh X

where w =  1 — k  — / |  and q =  1 — ^ See Appendix B for in term ediate 

steps.

H istorically linear and quadratic holding cost functions have been used for 

M{y)  (see Dixit (1991a), Constantinides and Richard (1978) and Sm ith
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(1989)). However T (^) can be evaluated for a general holding cost func

tion. Suppose th a t M (/)  has a half range cosine Fourier series

h^ cos(i7r/),
j = i

then standard  Fourier analysis yields

bj =  2 [  M(/)cos(j7T^)d/, j  = 0,l,2,---.
Jo

Using this representation of the holding cost function, the net present value 

of holding costs accrued until the first stopping decision is

®(<7) = X siiihx
-ag

- oo ^1

6 j  I  c o s ( j 7 r C ® ' * ^ [ ™ s h x t u  — coshxTl d fy . (1.29)

This integral can be evaluated using integration by parts resulting in the 

form

H 3 )
i - 0

i=o i=o
, (1.30)

where

( q . 2  „  ^ 2  „  COs(j!7r%)

[ j V  +  ( a  -  x ) ^ ] [ f  7T^ F {a +  x ) f t l

In view of (1.29) and (1.30), the value function finally simplifies to 

y (ff ,u )  =  [ s ( i ,u )  +  y (u ,u ) ]e “(‘- » ) ^ g ^

+[£>(o,/) +  y(;,u)]e
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+2
J= 0

j - O  j=zO

The derivation of the boundary conditions is straight forward. W hen x =

^ — 1. Hence

y ( 6 ,u )  -  B { b , u ) F V { u , u ) .  (1.31)

On the  other hand when x = then g = 0 and

y ( a ,u )  =  D (n ,/) +  V (/,u ). (1.32)

It is now obvious th a t (1.31) and (1.32) define the behaviour of the value 

function on the  boundaries and, therefore, are the boundary conditions to  an 

“im pulse” control problem. Solving (1 .1 2 ) subject to (1.31) and (1.32) will 

yield y(æ ; u). The optim al values of a, 6 , /, and u are obtained through the  

first order conditions

and ^ 1 ^  =  01.33)da ob ol ou

1.6 “Sm ooth Pasting vs. Stochastic O ptim al 

Control

U ndoubtedly the most significant conclusion from this analysis is the conspic

uous absence of anything resembling the “sm ooth pasting” condition which
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suggests the ‘optim ality’ conditions 

dV{a) dD {aJ)
da da

dy(7) d D (a J )
and

dV(b) _  dB{b,u)  
db db ’

dV{u) dB{b,u)
(1.34)

dl dl du du

It is not exactly clear w hat these derivative conditions imply. It is stated  th a t 

they are obtained by differentiating the “value m atching” conditions in (1.31) 

and (1.32), and claim to show th a t the marginal cost of being on a boundary 

m ust equal the marginal cost of adjustm ent. However, this is clearly not 

true. Let us consider an agent who initially is on the upper boundary, i.e 

X  = b. From (1.31) it can be seen th a t his marginal costs are given by

(9V(æ,u)ay (æ , u)
da

ay(a;, u)
db

ay (æ , u)
dl

a y  (a;, u)
du

x~b da
^ H (6 , a) d V ( x , u )

+db 
ÔV(a),u)

db

37~b dl
(1.35)

dB{b ,u)  5 y (æ ,u )  
T

x —b du du

The left hand side gives the marginal costs of initially being on the boundary 

b w ith respect to  the choice of controls a, 6 , I and u. The right hand side gives 

the  m arginal costs of transacting down to u w ith respect to these controls. 

The choice of a barrier 6 affects the choice of a, / and u. This is not the case 

w ith the “smooth pasting” condition. The first-order conditions described 

in (1.34) evaluate a, /, u, and b independently of each other by equating the 

gradient of the  value function w ith respect to  the initial sta te  to  th e  gradient
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This analysis shows th a t the marginal costs of being on a boundary m ust

46

of transaction costs on boundaries and thresholds. Intuitively this cannot 

be correct. The choice of one boundary m ust clearly affect the probability 

of h itting  the other boundary or being restored to a threshold. Hence both  

boundaries and thresholds m ust be selected simultaneously to optim ise the 

value function, not independently of each other. Costs are at a m inim um  

only when (1.33) is satisfied concurrently by a, /, u and b.

1.6.1 O ptim al S topping and th e  C hoice o f  C ontrols

Since a, /, u and b determ ine continuation region, it m ust follow th a t they 

also select the stopping zone outside (a, 6 ). In stochastic calculus the ex

pected tim e at taken for a Weiner process starting at an initial s ta te  x  to 

exit {a, b) into the stopping zone can be easily evaluated using the backward 

Chapman-Kolmogorov equation of, the distribution function F{.). Therefore 

choosing u, and b optim ally ensures th a t the stopping tim es t i ,  T2 , ... are 

also chosen optimally. It is not obvious th a t choosing stopping tim es using 

(1.34) ensures optim ality. Indeed, in complex problems it is likely th a t the 

process will be stopped prem aturely because any costs which flow from mov

ing down to u are ignored. However, in the Dixit menu cost model C hapter 

2 clearly dem onstrates th a t both  (1.34) and (1.33) yield algebraically equiv

alent answers.

j
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1.7 Concluding Rem arks
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equal the marginal costs of  transacting which includes the m arginal costs of

adjustm ent on th a t boundary, not exclusively the marginal costs of adjust-

.m ent as the “smooth pasting” conditions suggests.

In this chapter the boundary conditions for an optim al policy of “im pulse” 

control have been derived by constructing a system from first principles us

ing stochastic calculus. It shows th a t the value of stopping at a s ta te  and 

exercising an “im pulse” control m ust equal the net present value of holding

costs accrued up to th a t state. This also sounds intuitively correct, if the

.to tal value of exercising a stopping decision exceeded the net present value 

of holding costs accrued until this decision was made, it would clearly be 

sub-optim al to stop. Conversely if the net present value of holding costs 

exceeded the net present value of the stopping decision, it would im ply th a t 

the stopping decision should have been taken earlier. By approaching the 

jum p control problem  from a different perspective, the natu ra l m athem atical 

boundary conditions for the HJB equation has been m otivated in a non

heuristic way. The solution technique exemplified here enables a new class 

of model to be constructed in economics and finance. These should provide 

revealing and accurate insights into optim ising behaviour w ithin an environ-



m ent of ongoing uncertainty.
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Chapter 2

Control R egim es, Transaction  

C osts and B usiness Cycles

2.1 Introduction

49
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Menu cost models have evolved significantly since they were first developed 

. . .in the  m id eighties (see Akerlof and Yellen (1985), Mankiw (1985) and Blan

chard and Kiyotaki (1987)). Earlier models analysed the im plications of nom

inal rigidities and sub-optim al welfare outcomes caused by dem and shocks 

w ithin a static  environm ent. Later models expanded on these by ascribing to 

the firm  the net present value of the losses accrued from these shocks within 

an environm ent of ongoing uncertainty. The contrast in results between the 

two approaches is significant. W hen firms are forced to minimise costs over
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a much longer tim e horizon with discounting, the zone of inertia and the 

strategies adopted change dramatically. In the Dixit model the range of in

action is two orders larger than  the Akerlof-Yellen model (see Dixit (1991a)).

The Akerlof-Yellen, Blanchard-Kiyotaki and Dixit models study the behaviour

of firms functioning as private optimisers in a monopolistically com petitive

m arket. It is obvious from  the assum ptions which underpin Cham berlinian

monopolistic com petition th a t each of these firms will practice horizontal

price differentiation. This will create a gap between the price set by each

.firm and the m arket price. W ith  a downward sloping dem and curve, it can 

be shown th a t this gap will give rise to  a holding cost, m easured in lost prof

its. These models prove th a t, if a cost is attached  to closing this gap, there 

exists a zone of inertia in which it will be beneficial for each firm to  sustain 

costs ra ther than  elim inate them  through price adjustm ent. Im plicit here is 

th a t each firm will face its own unique cost function.

One im portan t feature these models rely on is the pecuniary externality  which 

can be observed in a general equilibrium  models involving m onopolistic com

petition. If a firm reduces its price level slightly it increases the dem and 

for its goods. It also increases real money balances, increasing dem and for 

other firms ou tpu t as well. In monopolistic com petition, since ou tpu t is ini

tially not equal to the social optim um , the increase in real balances has a 

positive effect on welfare. Of course, the opposite situation could hold as
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well. This implies th a t money, at least in the short run, is non-neutral and 

therefore would require the regular intervention of the m onetary authority. If 

the m onetary authority  has access to new inform ation on exogenous shocks, 

after firms have set their prices, system atic feedback rules could stabilise 

ou tpu t. If the m onetary authority  fails to react to these nom inal changes, 

em ployment levels and output would experience the negative im pact forecast 

by these models.

In labour m arkets inertial responses in price setting behaviour induces a 

change in the real wage, the direction of which will depend on both  the mag

nitude and tim ing of the change in price. The m agnitude of the wage change 

will depend on the elasticity of the labour supply curve. Large fluctuations 

in em ployment will result from small menu costs, only with an elastic labour 

supply curve. In a model such as Blanchard and Kiyotaki (1987) in which 

price setters do not want to change relative prices to each other and the cost 

of not adjusting wages is not large, it is not clear why wage setters; w hether 

they be unions, firms or even workers, would settle for large changes In em

ploym ent for relatively small changes in output.

The appeal of menu cost models is th a t they predict welfare losses, result

ing from inertial responses, which are much larger th a t the actual cost of 

adjustm ent. In the Akerlof-Yellen model not to react instantly  to any price 

change results in a second order loss to the firm. However, the welfare losses
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are of first order m agnitude. In the Dixit model the waiting tim e between 

changes in aggregate dem and and firms adjusting prices is two orders larger 

than  Akerlof-Yellen. The infinite planning horizon punishes firms m ore than  

the preceding static  models. This has the effect of reducing the frequency 

and increasing the size of adjustm ents. As a result nominal rigidity becomes 

more entrenched, causing much larger output and welfare distortions. By 

incorporating uncertainty and a tim e horizon into the existing m enu cost lit

eratu re Dixit (1991a) reveals a more accurate picture of the effects of nominal 

friction.

The instantaneous holding cost in the Dixit model is an increasing function 

of the difference between the price set by firms and the m arket price. Hence, 

it is to  be expected th a t the initial cost and the costs accrued in the first few 

tim e periods will contribute more towards the  value of the cost function than

those in la ter periods, especially if the discount rate is high. However, this
'

is not the case. The results illustrated in Dixit (1991a) show th a t the zone 

of inertia  is only determ ined by the exogenous param eters driving the cost 

function and is independent of the initial cost. Of course, this is im plicit in 

the specification of the heuristically m otivated first order “sm ooth pasting” 

condition used to evaluate the  optim al zone of inaction. The initial cost is 

excluded from the solution technique. Here it is shown under an optim al 

stochastic control framework th a t, even when the initial cost does feature
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in the  evaluation of the  optim al zone, it plays no role in determ ining the 

optim al zone of inaction. However, this probably has more to do with the 

type of costs faced by the firm.

The “sm ooth pasting” condition also excludes the set of admissible controls 

and the link which exists between them  (see C hapter 1 ) in the com putation of 

the optim al zone of inertia. For a given set of param eters, the gradient con

ditions w ith respect to the initial sta te  fix the values of the ‘op tim al’ bounds. 

This is evident through the Dixit m odel’s apparent inability to quantify the 

extent to which a prescribed strategy deviates from th a t which is optim al. 

Thus the  Dixit model fails to capture the  price adjustm ent behaviour of any

firm whose initial price gap m ay lie outside the narrow optim al zone of in-
.

ertia. Here, the costs faced by such firms along with their prescribed price 

adjustm ent strategy is derived.

The assum ption th a t the zone of inertia  is symmetrically disposed about the 

m arket price is an im portan t feature of models in the current literature. In 

s ta tic  models this is self evident because both  holding costs and the costs of 

adjustm ent are assumed to be sym m etric about the m arket price. However, 

there exists no a priori reason for this to be the case in net present value 

models w ithin an environm ent of ongoing uncertainty. Nevertheless, these 

models make this assum ption in deriving the optim al range of inaction. Here 

it is proved th a t, w ithin the Dixit model, the optim al zone of inertia  will



■f

ï

always be sym m etric, if firms adjust prices to completely elim inate the price 

gap between their price and the m arket price, i.e. follow a zero threshold 

policy. A nalytical expressions which link the behaviour of the boundaries 

of the optim al zone of inaction to all the exogenous param eters driving the 

cost function are also derived for this policy. It is difficult to exam ine the

im pact of the intertem poral discount ra te  of each firm on the optim al range
..............................

of inaction in D ixit (1991a).

54

However, com plete price adjustm ent, or the zero threshold policy, is only a 

lim ited form of the general optim al control policy for such a problem. If firms 

are allowed the flexibility to  choose the m agnitude of their price adjustm ent 

in an optim al way, it is not obvious th a t they would opt for a zero thresh

old policy. The results obtained here confirm th a t firms always opt for a 

zero threshold policy even if they are offered this flexibility. Effectively, this 

chapter confirms the results obtained in Dixit (1991a) through an optim al 

stochastic control framework and provides a solution technique th a t allows a 

more general type of problem  to be solved, quantifying the extent to  which 

a specified price setting policy deviates from th a t which is optim al in a non

heuristic way.

In Section 2, the Dixit m enu cost function is com puted using the form ulation 

in Chapter 1 for models of “im pulse” control rather than the “sm ooth past

ing” condition. In Section 3, it is proved th a t the zone of inertia  is indeed

%
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sym m etric about the m arket price, and analytic expressions are provided 

linking the exogenous factors driving the net present value cost function and 

the zone of inertia. In Section 4, the  optim al price adjustm ent policy is 

derived and results are illustrated  in Section 5.

V’(æ) ™ min E
poo ^

J  dt +  æ(0) =  x

where Tj denotes the discrete tim es at which a “jum p” control is exercised 

to restore the process to zero.

The standard  technique of stochastic calculus reveals th a t V{x)  satisfies

-V ' \x )  -  pV{x)  +  kx'^ = 0.
2
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2.2 T he zero threshold policy

Let the sta te  variable x  be the natural logarithm  of the difference between 

the firm price and the m arket price and follow a driftless W iener process

dxt — crdzt, € ( a , 6 ),

where dz is the W iener increm ent, where a ^  0 and 6 ^ 0 .  Let the in

stantaneous holding cost function be given by kx'^. Furtherm ore, let the 

transaction cost g be incurred at each instan t the process exits continuation 

region (a, b) and is restored to  zero. Then the net present value of holding 

and transactions costs will be given by the value function



where A  and B  are arb itrary  constants.

For a policy of com plete price reconciliation, in which restoration to zero is 

forced upon the process exiting the continuation region, the value function 

F(aj) m ust satisfy

y(6) -  y(o) = 6̂, y(a) -  y(o) = (2.2)

on the  top and bottom  boundaries respectively. Note th a t the “sm ooth 

pasting” condition is not necessary for the evaluation of the the constants 

A  and B  (see chapter 2). To ease the  trea tm ent of (2.1) let us define the

7  sinh z

The interm ediate steps in the  derivation of (2.3) are provided in Appendix C.

56

I

w ith solution

y  (a:) =  A cosh(o:a;) +  H sinh(aa;) -|--------- 1 —, a  ^  y  (2 .1 )

non-dimensional variable w  and param eters y, z, and 7  by
'

a x  aa ab gp^^  =  _  .  =  _  y =  _  ^  =  _ .  (2.3)

In view of (2.2) and (2.3), equation (2.1) has solution

^ ,z )  =  ^  +  l +  , (2.4)
7  7  smh(y — z)

where

• m  ^

i*



2.3 O ptim al boundary values

Simplifying (2.6) and (2.7), it is clear th a t y and z satisfy the conditions

f {y )  -  y(z) cosh(y - z ) -  f { z )  sinh(î/ -  z) =  0 , (2 .8 )

f { y )  sinh(î/ -  z) -  f {y )  cosh(y -  z) +  f { z )  = 0. (2.9)
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The cost function in (2.3) m ust now be minimised with respect to  the choice 

of boundaries on which firms adjust prices for a given initial position. The 

“sm ooth pasting” condition in Dixit (1991a) would require the  first-order 

condition

^  =  0. (2.5)

Stochastic optim al control requires

d V{ w] y , z )  __ [ f { y )  sinh(y -  z) -  f ( y )  cosh(y -  z) +  f {z)]  cosh(2w -  z)
dy  sinh^(y — z)

=  0. (2.6)

and

d V{ w] y , z )  _  [f{y)  -  f { z )  cosh(y -  z) -  f ( z )  sinh(^ -  z)] cosh(2w -  y)
dz  sinh^(y — z)

=  0. (2.7)

E quation (2.6) and (2.7) pin the values of a and b so th a t V(.) is minimised. 

It is not clear what (2.5) does. The cost function seems to  be optim ised with 

respect to th e  initial state. B ut in stochastic optim al control the initial state 

is only a param eter of the  problem, an inheritance from an unknown past. 

Not  a control variable.



2 z
f ( y )  sinh z +  / ( z )  sinh(y — 2 z) H sinh(y — z) =  0 . (2 .1 0 )

Similarly substitu ting  for f ' {y)  in (2.9) and m ultiplying through by s'lnhy 

gives

sinh(i/ — z) -  f { y )  sinh(2 ?/ — z) +  / ( z )  sinh y =  0 . (2 .1 1 )
7

[tanh(y -  z) ~  (y “  z)](z +  y) =  0  (2 .1 2 )

1

I
It is now obvious th a t the optim al boundaries as provided by the values y 

and z are independent of the initial s ta te  x,  and, hence, the optim al solu

tions of the two boundaries will only depend on the exogenous param eters of
'

the process. These results im ply th a t the zero threshold policy compels all

.firms whose initial positions lie outside these optim al boundaries to transact 

instan tly  and adjust their price level to m atch the m arket price. This na tu 

rally follows from the optim al stochastic control framework used here due to  

the unique costs faced by the firm. In applications of the “sm ooth pasting” 

condition this is implicit in its construction, irrespective of the in itial price 

gap and the costs faced by the firm.

Equation (2.8) and (2.9) are now solved for y and z. Substitu ting for f ' {z)  

in (2 .8 ) and m ultiplying the resulting expression by sinhz yields

Subtracting (2.11) from (2.10), dividing resulting expression by 2 cosh(^ — z) 

and then substitu ting for f {y )  and / ( z )  yields
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Its clear th a t (2.12) has two possible solutions

z +  y =  0 , and tanh(y  — z) — (y — z) =  0 .

log 7  =  2  log p +  log g — log k — 2 log S,

a n d ,so

d j  2 7  d'y 7  ^ 7  — 7  d'y —2'y
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The la tte r condition is only satisfied when z =  y, i.e. a ~  b. However, the 

boundaries were initially defined as being a ^  0 and 6 ^ 0 .  Hence z — y 

cannot be a solution. This leaves z +  y =  0, which is true  when b =  —a. 

Therefore firms operating a zero threshold policy under a sym m etric holding 

and transaction cost regime will find their optim al zone of inaction sym m et

rically disposed around the m arket price. This result is not unexpected and 

sounds intuitively correct since both  costs are sym m etric about the  m arket 

price. However, Dixit (1991a) assumed this property. I
Now th a t z +  y =  0 it can be shown th a t z and y m ust satisfy

y — tanh(y) — — =  0 . (2.13)y
Appendix D contains the interm ediate steps in the derivation of this equation.

Differentiating y with respect to 7 , yields
'I

*  =  y ( 2 141
d-/ 7  +  y2 tanh*(y)' ' ’

It is now clear th a t y is an increasing function of 7 . Furtherm ore

7



Since y =  ab/2  and then

l e

Î
#

b = a y ^ j ^ .  (2.15)

m V;:,

It is clear from this expression for b th a t for economically realistic values of 

the param eters, the range of inertia  defined by the optim al boundaries could 

be either small or large depending on how the sta te  is scaled. It is now clear 

th a t 6  is a decreasing function of k and an increasing function of g. This 

shows th a t firms will wait longer before adjusting their prices as menu costs 

increase. But will wait less if the  ra te  a t which losses are accrued increases.

The behaviour w ith respect to  tJ and p is less obvious. From the  definition 

of b it follows th a t

I db 1 /Y /  dy d ' j \
h d ^  -  k V A

_  y tanh^(y) -  7  

cr[7  +  y tan h ^(y )]‘

From (2.13) it is obvious th a t 7  =  — y tan h (y ) and so

y^ tanh^(y) -  7  =  y^ tanh^(y) -  i f  -\-y tanh^(y)

=  y tanh(y) -  y^sech^(y)

=  ysech^ [cosh(y) sinh(y) — 2 y]

=  yseciy(y)[sinh(2 y) -  2 y)] >  0 .

Hence b is an increasing function of a. T hat is, the variance of the  process and 

the zone of inertia move in the same direction. This reinforces the intuitively
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appealing idea th a t, as uncertainty increases, firms will delay action to  avoid 

the downside of transacting too frequently while trying realise the  potential 

upside of X decreasing. The value of waiting clearly increases w ith increased 

uncertainty.

By differentiation of (2.15) with respect to p, it can be shown th a t

i!

Î
p ^  ^  3 7  -  tanh^(y)
b dp  2 ( 7  +  tan iy  (y))

See A ppendix E. Clearly 2 ( 7  T y^ tanh^(y )) >  0. It is also obvious th a t when

y =  0 ,

3 7  — y^ tanh^(y) =  0 . (2.16)

If (2.16) is an increasing function of y, then it naturally follows th a t db/ dp  ^  

0. D ifferentiating (2.16) w ith respect to y yields

y — tanh(y) >  0 .

Therefore

db

From this it is apparent th a t the zone of inertia  and the constant discount 

ra te  are proportional to  each other. It dem onstrates th a t firms will accumu

la te  losses if these losses decrease in value over time. Clearly current losses 

decrease in value rapidly over tim e under high discount rates. Therefore as 

p increases, it becomes relatively cheaper for firms to increase their waiting 

tim e because in real term s, as tim e evolves, the value of holding costs being
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accrued will decrease relative to  the  cost of adjustm ent. A lthough this rela

tionship is intuitive it cannot be deduced from the Dixit model. The discount 

ra te  vanishes in simplifying Taylor series expansion used to obtain a simpli

fying approxim ation of b. It is only by making an em pirical link between p 

and <ĵ  th a t the effect of p on 6  can be analysed.

2.4 The O ptim al Price A djustm ent P olicy

It can also be easily dem onstrated th a t when the zero threshold policy is 

abandoned in favour of an optim al price adjustm ent policy, V{x)  m ust satisfy

=  y  y w - y ( Q  =  y ,  ( 2 . 1 7 )

where b and a are the upper and lower boundaries respectively, and, u  and 

I are the upper and lower thresholds respectively (see chapter 2). To ease 

the  trea tm en t of (2 .1 ) let us introduce the non-dimensional variables and 

param eters

qp^ a(b — u) a ( 6 - fu )  a(a — l) « ( a - f  0

(2 .18)

Substitu ting (2.17) into (2,1) and solving the resulting sim ultaneous equa

tions yields

V { v , w , x , y , z )  =  ^  +  1  +  -  u r f ( Ï -  2 . ) ’
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where

- f  - y z

sinh y cosh(z — 2v)

See Appendix F for interm ediate steps in the derivation of (2.19).

For an optim a a necessary condition is

= y^[  — l ^ + 7  =  0 . (2 .2 0 )
dV( v ; z u , x , y ,  z) / ta n h y

It is clear th a t

tanh(y)
^  1 Vy.

y

Since k, p, and g are positive quantises, it m ust follow from (2.20) th a t

- 7 > 0.
tanh  y — y

Hence >  P,  and therefore |a| >  |/|. Another necessary condition for 

op tim a is

d V ( v \ w , x , y ,  z)  / ta n h
— =  wx  '

dw

Using the  same argum ent, it can be dem onstrated th a t |6 | >  luj.

In addition to these two conditions, the condition x G (a, h) such th a t a ^  

l , u  ^  b m ust also m ust be satisfied. This implies th a t a ^  0 and 6 ^ 0 .

It is difficult to obtain analytical expressions for the optim al solution in this 

four dim ensional problem. Therefore the problem  is reparam eterised in term s 

of four different param eters to  obtain the optim al values for boundaries and 

thresholds using num erical m ethods.
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Let

I =  a +  Cl Cl ^  0 (2.22)

b  ~  U  + C2  C2 ^  0.

From this it trivially follows th a t 6 ^  a +  ci and also 6 ^  a +  C2 . The initial 

price gap x  was defined to satisfy the condition a  ^  x ^  b .  Therefore a  and 

b  can be expressed as

This implies th a t

C3 + C4 §  max(ci,C2),

and

C3 +  C4 =  m ax(ci, Cg) +  C5 C5 ^  0 . 

A lternatively we have

I

■tr

a  =  X ^  C3 C3 ^  0 (2.23)

b  =  X  ^  C4  C4 ^  0 .

Given th e  definition of the boundaries and thresholds, (2 .2 2 ) and (2.23) need 

to satisfy

z 4 - C4 ^  z — C3 d- Cl and C2 +  æ — C3 ^  æ T C4 .

Therefore

C4 ^  Cl — C3 and C4 ^  C2 — C3 .

■

, î

C3 +  C4 ^  Cl ^  0  and C3 +  C4 ^  C2 ^  0 . 
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a  =  X  —  C3 ,

b = a; +  C4,

I =  a  -f- A,’iC3 T  k\C4

— (K +  A:iC4 T  (fci — l ) c 3 ,

u — 6 — C2

— â  T  C4 — A)2C3 — /C2C4 

=  a: — ( 1  — k \ ) c 4  —  k 2 C 3 .

The BFGS m ethod for unconstrained m inim isation (a quasi-Newton algo

rithm ) is used to perform  the four dimensional optim isation. Details of this 

are available in Technical Annex 1 and Bulirsch and Stoer (1980).
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Now we can write

Cl =  k i { c s  4- C4) 0 ̂  ^  1

and

C2 =  ^^2(03 +  C 4 ) , 0 ̂  ^2 ~  1-

Thus the entire problem can now be reparam eterised in term s of four con

stants ki ,  ^2 , C3 , and C4 such th a t

0 g  /ci g  1 0 g  A:2 g  1,

and

C3 ^  0  C4 ^  0 .

.Now we can derive new expressions for a, 6 , I and u. T hat is:

I
'K .
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2.5 R esults

Results are provided in two parts. Table 1 provides a comparison of the 

values obtained from the m enu cost function under a zero threshold policy 

w ith those presented in Dixit(1991a). The punitive costs associated with fol

lowing a sub-optim al pricing strategy are quantified by V{w) .  Firm s which 

initially lie outside the optim al zone of inaction and do not instantly  transact 

down to zero face huge costs. Firm s which transact down to zero confront 

only a fraction of these costs. Thus providing firms with a clear incentive to 

transac t downwards. These observations are in contrast to the Dixit model 

in which these losses cannot be measured.

Table 2 provides an illustration of the results of the general price adjustm ent 

model given. The optim al zone of inertia  remains the same, bu t the  values 

of y (u )  are clearly different to  the values of y (tc) for similar values of x.  

A lthough not applicable in this problem, these results indicate th a t the more 

general optim ising strategy could be relevant in circumstances when the type 

of costs faced by firms change. A discussion of how the results obtained here 

could change when some the assum ptions dealing with costs are relaxed is 

also provided. For the source code used to generate these functions see Tech

nical Annexure 4.
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2.5 .1  C om parison o f th e  zero threshold  policy  and ex 

isting work

Vbixit(a^) =   r - r j -T T C O sh ia x )  +  h —— ,

p asm li(ah)  p p^

where h is the so called optim al sym m etric boundary value, to  the optim al 

values given in Section 3. The value of h is the first positive root of the 

equation

y — tanh(y) — — =  0. (2.24)

hbixit(^) increases w ith respect to  x for only a sym m etric interval of a; G 

(—0.3,0.3). For x  ^ (—0.3,0.3) the “sm ooth pasting” strategy suggests th a t 

firms should instantly  incur cost g and elim inate their price gap, reducing 

(increasing) their to ta l costs to y T  F ( 0 ), w ithout evaluating the potential 

costs (or benefits) of following this strategy. In Table 1 V( w)  quantifies these 

costs, providing firms w ith clear incentive to change x to zero if they initially
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The values of the cost function derived here, which does not contain the 

heuristically m otivated “sm ooth pasting” condition, highlights a pa tte rn  

of optim ising behaviour th a t previously was not observable. To provide a 

comparison, the same values are chosen for the exogenous param eters as in 

Dixit(1991a), i.e. a = 0.1, p =  0.05, g =  0.1 and k ~  0.5. Table 1 com

pares the optim al values derived for the cost function in section 2 with D ixit 

(1991a) given by

Ï

. . y .

—2kh  . , , kx'^ kcr"̂



lie in this outer region.

The findings here are interesting. They confirm what Dixit (1991a) suggests. 

They show th a t if firms adopt a zero threshold policy, then the  optim al zone 

of inertia  will be constrained by the exogenous param eters driving the cost 

function. Firm s, behaving as private optim isers, initially lying outside this 

zone will instantly  adjust their prices, at tim e zero, to m atch the m arket 

price and bring themselves inside it, incurring an adjustm ent cost of g. This 

effectively implies th a t no firm will set its initial price so th a t its initial price 

gap lies outside this zone. Firm s with x  G (—0.3, 0.3) will be faced w ith a 

cost of y(æ ). Firm s with x ^  (—0.3,0.3) will confront a cost of g +  y (0 ).

This analysis clearly dem onstrates th a t the costs associated w ith letting 

prices diffuse outside optim al zone of inertia  are large. Firm s make a sig

nificant cost saving by adjusting x  down to zero. Therefore firms will only 

to lerate small deviations in their price from the m arket price, because, large 

price gaps are too costly. However, the resulting narrow zone of inaction re

quires elastic dem and curves in output m arkets and supply curves in labour 

m arkets to cause large welfare fluctuations. This is a strong assum ption to 

impose on m arkets.
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2.5 .2  T he O ptim al P rice A djustm ent P olicy

The zero threshold policy compels all firms when adjusting their prices to 

m atch the  m arket price. It is silent on the  behaviour of firms who may other

wise choose to let their prices to deviate significantly from the  m arket price. 

This is because the zero threshold policy is only a lim ited form of the general 

optim al control policy for dealing w ith such problems. It allows firms no 

flexibility in optim ally determ ining the m agnitude of price adjustm ent. In 

essence, it imposes synthetic constraints on the  zone of inaction.

The results for the  optim al price adjustm ent policy are remarkable. It cap

tures the behaviour of firms functioning as complete optimisers. As can be 

seen from Table 2, firms will always opt for a zero threshold framework, 

even if their initial price difference is sufficiently large. This is because the 

potential downside associated with waiting exceeds the upside of m atching 

the  m arket price, albeit by a small am ount. But clearly for x  ^  (—0.3, 0.3), 

V{v)  < y(ru). This is because firms now have the flexibility of partially  ad

justing  their prices. Although, this policy does not yield any further insights 

here due to the unique costs faced by the firm, these results suggest th a t a 

strategy based on firms partially  adjusting their prices may yield in terest

ing results in situations where holding costs and discount rates dynam ically 

evolve, ra ther then being held constant, and the cost of adjustm ent Is changed 

to include a proportional element.
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2.6 C oncluding Rem arks

This chapter utilises an optim al stochastic control framework to  confirm the 

results obtained in D ixit (1991a). By adopting a non-heuristic approach it

,1

If the cost attached to adjusting a positive price gap is different to th a t of 

adjusting a negative price gap, it is unlikely th a t the zone of inertia  will 

be sym m etrically disposed about the m arket price. Changing costs of ad

ju stm en t to  include a proportional element is likely to result in some firms 

adjusting prices to reduce rather than  elim inate the price gap. Discount 

rates and holding costs which dynam ically evolve could also have varying 

effects. In some instances the results m ay not change from those forecasted 

by the model derived here. In other cases firms may only partially  close the 

price gap, the optim al zone of inertia could be asym m etric or both. The key 

feature driving firm behaviour would be the equation of m otion governing 

discount rates and holding costs. Under these circumstances making an a 

priori decision on the type of adjustm ent policy to follow, such as the zero 

threshold policy in the  Dixit model, would be to abstract too much from the 

true  natu re  of costs faced by firms. The zone of inaction forecasted by a 

Dixit type price adjustm ent policy would clearly be at odds with how firms 

priced their output in the real world. Only the partial price adjustm ent 

policy described here will accurately evaluate how firms tru ly  behave.
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quantifies the  potential costs to firms in areas which previously were un

observable due to the “sm ooth pasting” condition. As a result it becomes 

clear why firms opt for a zero threshold policy. Earlier models such as the 

Mankiw or Dixit models use various heuristic arguments to make this an 

a priori feature. Also analytical expressions are derived describing optim al 

agent behaviour as the underlying param eters change. Obviously, by relax

ing some of the assum ptions m ade in the Dixit model on adjustm ent costs, 

holding costs, or the discount rate  m any of the results could be expanded on. 

However, the aim of this chapter is also to dem onstrate some of the ex ante 

restrictions placed on the solution by the heuristically m otivated “sm ooth 

pasting” condition. In order to do this best, it was considered helpful to 

confine the analyses to an established model so th a t all its lim itations could 

be easily observed.
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X y (w ) a b h

-2 . 0 0 0 0 0 0 5.815624 -2 .0 1 0 0 0 0 0 .0 1 0 0 0 0 0.434207 0.340147
-1.900000 5.685384 -1.910000 0 .0 1 0 0 0 0 0.434207 0.340147
-1.800000 5.556160 -1.810000 0 .0 1 0 0 0 0 0.434207 0.340147
-1.700000 5.427494 -1.710000 0 .0 1 0 0 0 0 0.434207 0.340147
-1.600000 5.299132 -1.610000 0 .0 1 0 0 0 0 0.434207 0.340147
-1.500000 5.171162 -1.510000 0 . 0 1 0 0 0 0 0.434207 0.340147
-1.400000 5.044232 -1.410000 0 . 0 1 0 0 0 0 0.434207 0.340147
-1.300000 4.919831 -1.310000 0 .0 1 0 0 0 0 0.434207 0.340147
- 1 . 2 0 0 0 0 0 4.800695 - 1 .2 1 0 0 0 0 0 .0 1 0 0 0 0 0.434207 0.340147
- 1 . 1 0 0 0 0 0 4.691372 - 1 .1 1 0 0 0 0 0 . 0 1 0 0 0 0 0.434207 0.340147
- 1 . 0 0 0 0 0 0 4.599035 - 1 .0 1 0 0 0 0 0 .0 1 0 0 0 0 0.434207 0.340147
-0.900000 4.534703 -0.910000 0.421127 0.434207 0.340147
-0.800000 4.515216 -0.810000 0.403579 0.434207 0.340147
-0.700000 4.566686 -0.710000 0.385571 0.434207 0.340147
-0.600000 3.816582 -0.610000 0.368207 0.434207 0.340147
-0.500000 3.466724 -0.510000 0.353139 0.434207 0.340147
-0.400000 0.456546 -0.410000 0.342751 0.434207 0.340147
-0.300000 0.434207 -0.340147 0.340147 0.434207 0.340147
-0 .2 0 0 0 0 0 0.395923 -0.340147 0.340147 0.395923 0.340147
-0 .1 0 0 0 0 0 0.355556 -0.340147 0.340147 0.355556 0.340147
0 . 0 0 0 0 0 0 0.339286 -0.340147 0.340147 0.339286 0.340147
0 . 1 0 0 0 0 0 0.355556 -0.340147 0.340147 0.355556 0.340147
0 . 2 0 0 0 0 0 0.395923 -0.340147 0.340147 0.395923 0.340147
0.300000 0.434207 -0.340147 0.340147 0.434207 0.340147
0.400000 0.456546 -0.342751 0.410000 0.434207 0.340147
0.500000 3.466724 -0.353139 0.510000 0.434207 0.340147
0.600000 3.816582 -0.368207 0.610000 0.434207 0.340147
0.700000 4.566686 -0.385571 0.710000 0.434207 0.340147
0.800000 4.515216 -0.403579 0.810000 0.434207 0.340147
0.900000 4.534703 -0.421127 0.910000 0.434207 0.340147
1 .0 0 0 0 0 0 4.599035 -0 . 0 1 0 0 0 0 1 .0 1 0 0 0 0 0.434207 0.340147
1 .1 0 0 0 0 0 4.691372 -0 .0 1 0 0 0 0 1 .1 1 0 0 0 0 0.434207 0.340147
1 .2 0 0 0 0 0 4.800695 -0 .0 1 0 0 0 0 1 .2 1 0 0 0 0 0.434207 0.340147
1.300000 4.919831 -0 . 0 1 0 0 0 0 1.310000 0.434207 0.340147
1.400000 6T44232 -0 . 0 1 0 0 0 0 1.410000 0.434207 0.340147
1.500000 5.171162 -0 . 0 1 0 0 0 0 1.510000 0.434207 0.340147
1.600000 5.299132 -0 . 0 1 0 0 0 0 1.610000 0.434207 0.340147
1.700000 5.427494 -0 .0 1 0 0 0 0 1.710000 0.434207 0.340147
1.800000 5.556160 -0 .0 1 0 0 0 0 1.810000 0.434207 0.340147
1.900000 5.685384 -0 .0 1 0 0 0 0 1.910000 0.434207 0.340147
2 .0 0 0 0 0 0 5.815624 -0 .0 1 0 0 0 0 2 .0 1 0 0 0 0 0.434207 0.340147
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X F (u ) a I u 6

-2 . 0 0 0 0 0 0 2.059944 -2 . 0 1 0 0 0 0 0.191338 0.191338 0.461514
-1.900000 1.944792 -1.910000 0.188907 0.188907 0.459699
-1.800000 1.832973 -1.810000 0.185915 0.185915 0.457472
-1.700000 1.723971 -1.710000 0.182246 0T82246 0.454752
-1.600000 1.617223 -1.610000 0.177767 0.177767 0.451447
-1.500000 1.512131 -1.510000 0.172325 0.172324 0.447459
-1.400000 1.408090 -1.410000 0.165743 0.165743 0.442661
-1.300000 1.304525 -1.310000 0.157823 0.157823 0.436946
- 1 .2 0 0 0 0 0 1.200951 -1 .2 1 0 0 0 0 0.148344 0.148344 0.430187
-1 .1 0 0 0 0 0 1.097061 - 1 .1 1 0 0 0 0 0.137069 0.137069 0.422267
- 1 .0 0 0 0 0 0 0.992916 - 1 .0 1 0 0 0 0 0.121611 0.119480 0.416121
-0.900000 0.888780 -0.910000 0.107210 0.105323 0.405815
-0.800000 0.785938 -0.810000 0.088047 0.085194 0.393846
-0.700000 0.686441 -0.710000 0.068057 0.063766 0.382879
-0.600000 0.593698 -0.610000 0.046432 0.043729 0.367149
-0.500000 0.513858 -0.510000 0.021980 0.015662 0.355389
-0.400000 0.456470 -0.410000 0.004171 0.000762 0.344190
-0.300000 0.434207 -0.340147 0 . 0 0 0 0 0 0 0 .0 0 0 0 0 0 0.340147
-0 .2 0 0 0 0 0 0.395923 -0.340147 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0.340147
-0 . 1 0 0 0 0 0 0.355556 -0.340147 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0.340147
0 . 0 0 0 0 0 0 0.339286 -0.340147 0 . 0 0 0 0 0 0 0 .0 0 0 0 0 0 0.340147
0 . 1 0 0 0 0 0 0.355556 -0.340147 0 . 0 0 0 0 0 0 0 .0 0 0 0 0 0 0.340147
0 .2 0 0 0 0 0 0.395923 -0.340147 0 .0 0 0 0 0 0 0 . 0 0 0 0 0 0 0.340147
0.300000 0.434207 -0.340147 0 .0 0 0 0 0 0 0 . 0 0 0 0 0 0 0.340147
0.400000 0.456470 -0.344190 -0.000762 -0.004171 0.410000
0.500000 0.513858 41355389 -0.015662 -0.021980 0.510000
0.600000 0.593698 -0.367149 -0.043729 -0.046432 0.610000
0.700000 0.686441 -0.382879 -0.063766 -0.068057 0.710000
0.800000 0.785938 -0.393847 41085193 -0.088046 0.810000
0.900000 0.888756 -0.404789 -0.106189 -0.107472 0.910000
1 . 0 0 0 0 0 0 0.992916 -0.416121 -0.119480 -0.121611 1 .0 1 0 0 0 0
1 . 1 0 0 0 0 0 1.097061 -0.422267 -0.137069 -0.137069 1 .1 1 0 0 0 0
1 . 2 0 0 0 0 0 1.200951 -0.430187 -0.148344 -0.148344 1 .2 1 0 0 0 0
1.300000 1.304525 -0.436946 -0.157823 -0.157823 1.310000
1.400000 1.408090 -0.442661 -0.165743 -0.165743 1.410000
1.500000 1.512131 -0.447459 -0.172324 -0.172325 1.510000
1.600000 1.617223 -0.451447 -0.177767 -0.177767 1.610000
1.700000 1.723971 -0.454752 -0T82246 -0.182246 1.710000
1.800000 1.832973 -0.457474 -0.185914 -0.185915 1.810000
1.900000 1.944792 -0.459699 -0.188907 -0.188907 1.910000
2 .0 0 0 0 0 0 2.059944 -0.461514 -0.191338 -0.191338 2 . 0 1 0 0 0 0
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Keynes (1936) identifies three reasons for holding money. The first is the 

transactions motive, where agents select an optim al cash balance by m inimis

ing the costs associated with m anaging a portfolio of cash and an interest 

earning illiquid asset. The second is the speculative motive, where money is 

held as a component of a portfolio of assets optim ally selected to maximise 

re tu rn  while minimising risk. The th ird  is the precautionary motive, where 

money is held as a buffer stock to absorb any unplanned expenditure shocks. 

These ideas were subsequently formalised in models which incorporated ei

ther one or two of these motives. This chapter looks at how the literatu re  

on the  transactions dem and for money has evolved, highlighting some of its 

perceived strengths a weaknesses.
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Chapter 3 

Transactions D em and for 

M oney; A Critical R eview

3.1 Introduction



The early contributions are discussed in Section 2. Subsequent developments 

are analysed in Section 3 highlighting the a ttem p t to synthesise bo th  the 

transactions and the precautionary motives. The most recent literatu re  is 

reviewed in Section 4, looking at how valuable inform ation could have been 

discarded by authors when obtaining analytic solutions. Finally the bene

fits of combining the inventory theoretic approach with the various portfolio 

models, which exam ine both  the speculative and precautionary motive, are 

discussed. When referring to money or cash here, it is not strictly in the 

sense o f  MO, but assets with cash like attributes

3,2 Early Transaction M oney D em and Mod» 

els

M odern transactions money dem and models have their genesis in Baumol 

(1952) and Tobin (1956) (Baumol-Tobin) which look at money holdings from 

a micro basis. Transactions are assumed to occur at a constant ra te  and are 

perfectly foreseen, and agents seek to optim ise a portfolio consisting of cash 

and an illiquid interest earning asset.

Take an agent who spends TC7 at a uniform rate. To do this he m ust either 

borrow or draw on his savings and incur an opportunity  cost in the form 

of forgone interest income, say 7  per period. All withdrawals are m ade in 

fixed quantities of £ M  and with each withdrawal a lum p sum transaction 

cost of (3 is incurred. Thus any M  ^  C  will perm it the agent to m eet 

expenses if a sufficient num ber of withdrawals are made. Hence a m inim um  

of C JM  w ithdrawals will be required costing £f 3C/ M.  If  £ M  is expended
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at a constant rate, then average money holdings will be £ M / 2 .  If interest is 

earned every C / M  periods then the interest opportunity cost will be j M j 2 .  

The to ta l cost of holding money will be

M inimising this costs w ith respect to  M  and making M  the subject yields

V 7

which is the  expression for the optim um  level of money holdings. It is obvi

ous from  this th a t, if (7 =  P Y  where P  is the price level and Y  is the  level of 

real income, the income elasticity of money will be 1/2. However, numerous 

em pirical studies have shown this not to  be the  case. Narrow money has 

been dem onstrated to have a short run income elasticity of close to zero and 

a long run income elasticity of close to  unity.

M any explanations can be forwarded as to  why these models fail to m atch 

em pirical findings. F irstly  they are determ inistic and therefore do not ac

count for precautionary balances. The interest ra te  is held constant. Hence 

any change in the level of expected money holdings will not reflect any in

ertial responses which occur due to interest ra te  uncertainty. Because the 

model is static  it also fails to capture the true intertem poral opportunity  

cost of holding money. Also, it takes a lim ited view of agent optim ising be

haviour. Unlike most portfolio based models, where agents seek to  m aximise 

wealth by holding a portfolio of assets, of which money may be one, in an 

environm ent of ongoing uncertainty, these models assume a world of perfect 

foresight. Given these lim itations it is not surprising th a t the Baumol-Tobin 

approach does not reflect em pirical findings. However, the model also yields
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some useful insights. It captures th e  long run directional sensitivity of the 

money stock to  changes in key macro variables, serving as an approxim ation 

of the equilibrium  behaviour of transactions money balances.

3.3 The D iscrete Stochastic Cash Flow M od

els

i

- j .

I
The criticism  levelled at Baumol-Tobin in the literature th a t im m ediately 

followed it was th a t it failed to  reflect the money holdings of firms both  from 

positive and norm ative points of view. Miller and Orr (1966), (M iller-Orr) 

argue th a t the  typical p a tte rn  of money holdings is not as simple as the 

determ inistic view in Baumol-Tobin, bu t th a t they typically follow a ran

dom walk. This assum ption instantly  changes the dimension of the problem. 

Firm s not only have to decide on how much to  withdraw when cash holdings 

h it a m inim um  level, bu t also how much surplus cash to switch into the  in ter

est earning asset. Transfer costs like Baumol-Tobin are assumed to be lum p 

sum, say £(3. All transfers between the two accounts occur instantaneously. 

Also the cash balance is not allowed to  fall below a m inim um  level. Firm s 

seek to minimise the long run average cost of managing their money stock by 

using a two param eter control policy. The two param eters being the  upper 

lim it of cash holdings h and a threshold of z.

Given these assum ptions, the cost of managing a firm ’s cash inventory over 

a finite horizon of say T  days will be

E[C] = f ) ^  + vE[M] ,
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where E[N] is the expected num ber of cash transfers over tim e horizon T , j3 

is the marginal cost of each transfer, E[M] is the expected daily cash balance, 

and ^  is the  interest earnings per day. Obviously the firm ’s objective will be 

to minimise E[C\ w ith respect to h and z.

To solve this problem Miller and Orr express E [ N ] /T  in term s of the control 

variables A, and z. If the tim e span between transfers into and out of the  

cash account are given by xq, 3:2 , - -, which are independent random  variables 

from a population w ith a well defined probability distribution with a m ean 

D  and a finite variance, then

E[ x \  +  X2 +  ’ ' • 5 4-3;ft] ^  r  <  E[ x i  T  X2 T  ' ' ' ,  -fXn+i],

or

D .E {N )  g  T  <  D.E[N]  +  D,

since E[xi  +  X2 +  ■ ■ • =  D.E[N].  From the above equation it can be

im plied th a t
1 1 E[N] . 1----------- <■ —L—i <  „
D T  T  = D

It is obvious th a t if T  grows unboundedly, then E [ N ] /T  will tend towards

1/D .

For a sym m etric random  walk the m ean first passage tim e out of the contin

uation region (0,h), D {z ,h )  is given by Feller (1957) to be

D(z,  h) =  {z){h — z).

M iller-Orr convert this value into the expected duration between cash trans

fers per day letting z'  =  z .m  and h' = h .m  to arrive at

(/)(h ^  -
rrPt
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Next they express E[M]  in term s of z and h. The probability th a t the  cash 

balance will contain precisely x  units is

f { x )  = p f { x - I )  Y  x ^ z ,

which m ust satisfy the boundary conditions

/ ( ^ )  =  P[f{^ ~  1) +  f { h  -  1)] +  q[f{z +  1) +  / ( I ) ] ,  (3.1)

and,

m  = 0, f{h) ^  0,

and the distribution condition

è / ( - u = i -
æ=0

Solving these equations yield a solution of the form

f { x )  =  +  B i x  0 < X < z, (3.2)

and

/(x )  =  Ag -f F^(& — x) z < X < /i. (3.3)

The linearity of (3.2) and (3.3) gives rise to a m ean of the distribution they 

form of (h +  z)/3 . Further letting  Z  — h — z the cost function to  be minimised 

will now be

This is nothing more than  the gam bler’s ruin problem  which is described in 

Feller (1957). M inimising this expression it is clear th a t the  optim al threshold 

z is
0(3rrPt 

4q
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and the optim al size of the upper boundary h will be

h ~  3z.

:S"
By substitu ting  the optim al level of z into the above equation it can be easily 

seen th a t a firms steady sta te  average cash balance M* Is given by

If m  =  P Y  it is clear th a t the income elasticity of average steady sta te  money 

holdings will be 2/3.

Here again like Baumol-Tobin the model deviates from what has been em 

pirically observed. A lthough M iller-Orr introduce uncertainty to expand on 

the determ inistic nature of Baumol-Tobin, the model still rem ains discrete, 

failing to  take account of the continuous process by which cash flows occur. 

Interest rates are assumed to be constant. By leaping to the steady state, 

the m odel is constrained to being essentially static. Also, in reality it could 

be argued th a t costs faced by agents are not in fact lum p sum  but linear and 

asym m etric. By assuming th a t agents do not borrow, the effect of debt and 

the asym m etric responses which this gives rise to are also excluded.

However, M iller-Orr breaks new ground on m any fronts. It marries the trans

actions and precautionary motives for holding money. Cash balances are a 

risky asset whose value is stochastic and given by a random  walk. If interest

revenue from the illiquid asset is normalised to zero, then the risky asset cash
.will generate an income of retu rn  —ip. The agent effectively maximises the 

expected value of the payoff from holding the risky asset by optim ally decid

ing w hether to go long or short on cash in the  form of the interior threshold, 

in the presence of fixed hedging costs. W hen cash balances h it zero, the
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agent buys an optim al quantity  of cash at a fixed cost to restore him self to 

the interior point. If balances h it some upper boundary, the agent sells cash 

due to  its punitive return  at a fixed cost. This effectively, makes M iller-Orr 

an expected utility maximisation problem. W ith all the risky and risk free 

retu rn  transferred to cash, it is clear from the m athem atical properties of 

linear u tility  functions, th a t u tility  m axim isation by a risk neutral firm will 

yield the  same optim al targets and thresholds as a cost m inim isation exercise. 

Effectively, agents maximise the payoff of playing a fair game. The appealing 

idea of this approach is th a t money balances are only adjusted when they 

hit only an upper or lower boundary. Tem porary and short-term  changes in 

the  in the money stock are voluntarily held.

3.4 The Continuous Stochastic Cash Flow M od

els

3.4.1 S teady S tate  M odels

M ilbourne, Buckholtz and Wasan (1983) (MBW) try  expand on M iller-Orr 

by introducing continuous cash flows in the form of a W iener process. The 

results obtained are identical to  M iller-Orr. Frenkel and Jovanovic (1980) 

allow for continuous cash flows as well, bu t opt for a single param eter con

trol policy like Baumol-Tobin, which yields a short run income elasticity of 

money holdings of less than  a half.

The robustness of these models lie in the modelling techniques utilised. 

Frenkel and Jovanovic (1980) impose an upper boundary which is unbounded.
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7t(x) =
z < r < hh[ h - z )  ^  ^

lim
t-+oo dx

Firstly

C l, and lim _ 
a;= 0  t-^oo ox

(T̂  d 7t{x )

x= h

2

does not exist, since the  second derivative of 7t (x ) does not exist. Thus the 

d istribution of net cash holdings is th a t of a purely determ inistic process,
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Î
This forces the agent to incur holding costs which are punitive, w ith a prob

ability th a t is non-trivial, when cash balances diffuse upwards. No action is

available to m itigate these losses. Therefore, it is not surprising th a t despite 
.introducing uncertainty they obtain an income elasticity smaller than  the 

purely determ inistic perfect foresight model described by Baumol-Tobin. A 

finite upper boundary which is chosen optim ally like M iller-Orr will serve to 

make this model realistic and also yield a smaller income elasticity.

MBW  should yield similar results to M iller-Orr, but not identical since they 

use a continuous tim e framework. Agents restore balances to  an interior point 

z if cash balances h it an upper lim it h or a lower lim it of zero. M BW  obtain 

a steady sta te  differential equation for the distribution of cash holdings of 

the type

where x denotes the stock of money and its variance. They solve (3.4) to 

obtain  a cash distribution

i

Cl  and C2 are defined to be

C o .  Î



som ething like Baumol-Tobin. Secondly 7t(x) does not satisfy (3.4). Also for

(3.4) to  hold C\ m ust equal C2 . In other words

t-^ oo  O X  I a7=0 t-4-oo Ox

or

hz  h{z  — h)

This obviously cannot be true unless h = 0. But h was initially defined to be 

not equal to zero. Thus the solution th a t MBW provide for the d istribution 

of cash holdings does not satisfy the differential equation from which it is

Clearly the logical foundations of both models are suspect. From an eco

nomic standpoint they do not significantly add to the insights provided by 

Baumol-Tobin and M iller-Orr. The cost m inim isation criterion used to de

term ine the optim al boundaries and thresholds allow for only the optim al 

cash m anagem ent decision of risk-neutral agents to be analysed. And, like 

the preceding models the so called solutions are only valid for a steady state 

view of the world.

3.4 .2  N et P resen t Value C ost M inim isation  M od els

Constantinides and Richard (1978) ascribe to  the agent the net present value 

of a cost m inim isation problem , where net cash disbursements dxt follow a 

W iener process, i.e

dXt = (idt -V (TosdZa;.

fjL is the m ean fiow of net cash disbursem ents, (Jx is the standard  deviation 

of net cash flows and dz^ is a W iener increm ent. The net present value of
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holding costs are given by

P O O  ^

V(m,r;u)  = E / e~'’*C{x,)<H+ Y^e~'‘'̂‘B(<Pi)
m / u  L Jo  ; = 1

Holding costs C{x)  are assumed to be

C{x)
hx  X ^  0 

- p x  0 ^  X.

p  is the  discount rate, and the transfer costs are given by

K+  +  (n -  U)k+ X ^ u

K+ +  (D -d )fc +  d ' ^ x .  

Expanding (3.5) using a stochastic Taylor series expansion yields

cr
p U (x )  +  / / y ' ( x )  -  y M a ; )  -  C (x )  =  0.

(3.5)

(3.6)

Solving (3.6) with respect to the “sm ooth pasting” and “value m atching” 

conditions given by

V'{D) + k+ = 0 V'{U)  -  fc- -  0,

and

V{d) =  V{D )  +  K + +  k+{u -  U) V{u)  =  V{U)  +  K '  + k - { D -  d).

respectively, yields a solution of the form

y ( x )  =  ^

y (n )  +  (x — u)k~,  

h x / p  T  hp/p^^ +  0  ^  x ^  n

—p x /p  — p p /p  +  +  C4 e^2'̂ , d ^  X ^  0

y(d,r) -b (d — x)A)+, X ^  d.

1
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Cl, C2 , C3 and C4 are constants. Note th a t the overdraft ra te  only affects U (x), 

i f f  in itial cash holdings x  are less than  zero. Otherwise it has no effect, de

spite the fact th a t it m ay still apply when cash holdings drop below zero.

The results generated differ significantly com pared to preceding models. Con

stantinides and Richard (1978), by looking at the net present value of costs 

associated with managing a cash inventory increase the tim e horizon over 

which costs are generated. Discounting ensures th a t transfer costs are pun

ished more than  in the steady state  literature. Clearly the zone of inertia  

increases. This is im portant, because it points to a longer adjustm ent lag and 

a higher long run income elasticity than  predicted by steady s ta te  models. 

Proportional costs are continuously incurred at a rate  proportional to the 

storage level of money, and costs accrue at a much faster ra te  than  the finite 

horizon considered in steady sta te  models. This has the effect of reducing 

the frequency and increasing the size of withdrawals and deposits. Of course 

some of this increased inertia  could be partly  due to assuming th a t transfer 

costs are linear in the size of the transaction. The modification of these costs 

to  reflect the asym m etric costs encountered when depositing and withdraw

ing cash yield the asym m etric targets and thresholds encountered in reality. 

The overdraft ra te  of —p  could also contribute towards this.

The weakness in this model lies in its use of the “smooth pasting” condition 

as an optim isation tool. This is a heuristically m otivated condition which 

cannot be reconciled w ith the optim al stochastic control theoretic framework 

used. Effectively, gradient conditions are imposed on the cost function with 

respect to the initial level of money holdings. A critique of this condition 

is provided in C hapter 1, where the natu ra l conditions for this problem  are
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derived. It is also clear th a t the solution to  the cost function in the re

gions u ^  X and x ^  d do not satisfy (3.6). Due to these inconsistencies 

the  forecasted behaviour of this model could detract from the underlying 

assum ptions of the model.

Sm ith (1989) tries to develop Constantinides and Richard (1978) further by 

introducing a m ean reverting stochastic process to model interest rates. This 

yields a significant breakthrough allowing the optim al targets and thresholds 

to capture not ju s t cash flow uncertainty, bu t also interest ra te  uncertainty. 

From an economic standpoint, the assum ption of mean reversion is question

able. It is only a long run observation. To confirm this in most economies 

would require da ta  sets spanning a long tim e period. Given th a t structural 

and institu tional regimes influencing the prices and rates of re tu rn  on al

ternative assets to money have experienced numerous changes w ithin each 

decade, it is unlikely th a t m atching interest rates over a lengthy tim e span 

would reflect the same opportunity  cost of holding money. In fact it would 

be more realistic to assume th a t interest rates follow a Poissonian type pro

cess in which the interest ra te  experiences discrete jum ps at discrete tim e 

intervals.

Sm ith (1989) models the m ean reverting interest ra te  as an Ornstien-Uhlenbeck 

process

dr =  q: ( 7  — r)dt  +  a,.dzr a  ^  0

where r  is the interest rate. The coefficient 0 1 (7  —r) captures the m ean revert

ing effect, and dz,. is a standard  W iener increment. Applying a stochastic 

Taylor series expansion on the resulting cost function with respect to the

II
I
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initial sta te  yields a partia l differential equation of the type

p V { x , r )  -  pVx{x ,r)  -  a ( j  -  r ) y .( x ,r )  (3.7)
(Jff

2  r) ^x,rYxr (x, t )  g (x ,r )  =  (7 (x ,r).

This is solved using the  “smooth pasting” and “value m atching” conditions 

to  obtain  the cost function

V { u , r ) { x  — u ) k ~ , u ^ x

{p -j- q:)~^[x7’ +  a j x / p  +  (p +  a)~^pr  

y (x , r) =  + ^ 7 a ( l  +  p(p +  a)"^)/p^  +  0-3,^/^] +  O ^ x ^ u

—p x j p  — pp /p  + d ^  X ^  0

V (d ,r) +  (d — x)k^, x ^  d.

The above solutions to (3.7) do not necessarily correspond to the assum p

tions m ade in Sm ith (1989). Consider the solution for the region 0  ^  x ^  a. 

This is only valid if e,- — 0, i G. if the  stochastic component of interest rates 

is removed. But this would imply th a t interest rates are determ inistic. In 

fact a meaningful solution to (3.7) can only be obtained if « (q  — r) < 0. If 

a ( j  — r) >  0 , then the anti diffusion effect of this coefficient would cause 

extrem e instabilities. This effectively implies as t -> 0 0  interest rates will 

be unbounded and negative. Consider the solutions for V (x ,r)  in the re

gions X ^  d, and u ^  x. These like Constantinides and Richard (1978) do 

not satisfy the differential equation (3.7). Hence V(u,?^) +  (x — u)k~ and 

V (d ,r)  ff (d — x)&+ cannot be solutions to (3.7).

These inconsistencies along w ith the heuristically m otivated “sm ooth past

ing” condition may explain why Sm ith (1989) does not yield any significantly 

different results to Constantinides and Richard (1978). If interest rates over
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3.5 .1  A n Em pirical Survey

Artis and Lewis (1976) estim ate a first order partial adjustm ent model, and 

look at the stability of the estim ated coefficients for the period 1963(2) to

.'4
.::r

#
4
4:.

tim e become negative and grow unboundedly, agents after a finite period of 

tim e will hold all their wealth in cash. This effectively reduces the tim e hori

zon under consideration to be a finite one. Assuming th a t cry =  0 elim inates 

any inertial responses th a t may occur due to  interest ra te  uncertain ty  from 

the model, effectively reducing the model to a type similar to Constantinides 

and R ichard (1978). Therefore it is not surprising th a t Sm ith (1989), like 

previous models, concludes th a t the dynam ic process governing aggregate 

money dem and is a product of the “chattering” of cash balances between the 

targets and thresholds.

i|
■a:

3.5 Em pirical E vidence

Inventory theoretic money dem and models suggest a stable money dem and 

function and a lagged adjustm ent in the money stock to exogenous expen

d iture shocks. Here the em pirical evidence is discussed. The literatu re in 

this area is vast. Therefore rather than  provide an exhaustive account of all 

the research done, certain illustrative examples of the most recent work shall 

be discussed. The literatu re  is discussed w ithout any recourse to  problems 

which arise from aggregation bias. However, this issue shall be dealt with in 

the subsection which follows the em pirical survey.



,::K,

1973(1). The rate  of retu rn  on broad money is measured as the difference 

between the own rate  of money and gilts. Risk in all equations is incorpo

rated  through introducing the variance of bond prices in all equations. They 

find th a t all equations fail the Chow test for the period 1971(1)-1973(1). For 

broad money this instability extends over a much longer period. A rtis and

Lewis (1976) argue th a t these instabilities are caused by disequilibrium  in the
_

money m arket. Hendry (1979,1985) studies the dem and for transactions bal

ances in the non-bank private sector. It is assumed th a t the long run dem and 

for M l is determ ined by real income and an opportunity  cost which is consid

ered to be the 3 m onth local authority  rate. The findings suggest a short run 

income elasticity of less than  0.5. The error-correction component has a one 

to one relationship between the money stock, prices and income indicating a 

long run income elasticity of money of unity. An interesting finding is th a t 

velocity is negatively correlated to real money balances, suggesting a smaller 

a zone of inertia  w ith increased velocity. Evidence of a lagged adjustm ent in 

the money stock is also found. M ilbourne (1983), and Cuthbertson (1986) ef

fectively confirm these findings. C uthbertson and Taylor (1991) suggest th a t 

the the dem and for M l seems to  experience structural changes in the late 

eighties, and also find some instability  in the period 1968(4)-1983(4). Using 

a longer da ta  set Artis and Lewis (1981) show th a t M2 has a long run elas

ticity  of unity. Hendry and Erricson (1988), examining da ta  for the period 

1867-1975 for broad money, using the Engle-Granger two step cointegrating

technique, obtain a long run income elasticity of unity. M uscatelli (1989)
.dem onstrates th a t whilst M3 has a unitary  long run elasticity M l does not.

The cointegrating vector for M l only appears in the dem and for money equa

4
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tion, im plying short run divergences from the equilibrium dem and equation. 

It dem onstrated  th a t the M3 equilibrium  error exists in the price, income 

and interest ra te  equations highlighting a more complex adjustm ent pattern . 

H um  and Muscatelli (1991a,b) also find evidence of a small short run income 

elasticity for MG and M4 and a long run elasticity of close to unity.

In the USA most models dem onstrate instabilities in the post 1973 period. 

Goldfeld (1976) finds a stable money dem and function with a low short run 

income elasticity for the periods 1952(2)-1973(4), but in dynam ic simulations 

the model over predicts money balances for the period 1979-1982 (see C uth

bertson (1985)). Laidler (1980) finds th a t M2 is much less stable than  M l, 

which is interesting because in this period the targeted aggregate was M l. 

Gordon (1984) uses an ADL-ECM approach to model the dem and for narrow 

money, bu t finds considerable instability  in the estim ated equations. A com

prehensive account for narrow money is provided by B aba et al. (1988) for 

the periods 1960(2)-1984(2). They find a short run income elasticity which is 

0.34 and a long run elasticity of 0.5, the interesting aspect about this study 

are the  various measures of opportunity  costs used.

The em pirical evidence is clearly mixed. The perceived stability  or instability 

of the money stock clearly depends on the specification of the money dem and 

equation and the kind of statistical techniques used, for exam ple GLS, ADL- 

ECM or the Engle-Granger two step technique. There exists clear evidence 

of lagged adjustm ent, however, a significant m inority of the surveyed litera

tu re  seems to find an unstable money dem and function. W hilst the former is 

consistent w ith agents using a target threshold inventory m anagem ent tech

nique, the la tte r does not support this view. Theoretical models need to
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account for these two differing views on how the money stock behaves in 

order to be consistent w ith the em pirical evidence.

3.5 .2  A ggregation  Bias

The previous section draws conclusions on the  validity of micro money de

m and models based on the results derived from macro aggregate em pirical 

models. However, there exist a num ber of problems associated with recon

ciling both  these approaches. A large body of the theoretical econom etric 

literatu re  addresses the issue of aggregation bias, which is defined as being 

the deviation of macro param eters from the average of the corresponding 

micro param eters, in detail highlighting some of the im portant issues which 

need to  be dealt with. See Pesaran, Pierse and K um ar (1989), and, Lee, 

Pesaran and Pierse (1990).

Consider the following disaggregated model

F/a : yi =  X il?i-f Ui i =  1,2, • • • , ?n. (3.8)

yi is a n X 1 vector of the dependent variable, Xi is a x A: m atrix  of 

observations on the regressors in (3.8) and /?i is a A; x 1 vector of coefficients

and Ui is the associated disturbance term . The aggregate equation, which 

satisfies the K lien-N ataf consistency condition is

Hb. : ya =  X aba +  Va- (3.9)

'4
and

m m
y .  = Z , Y i  Xa =  X ;X i .

1=1 i=l
1
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ba is a A: X 1 vector of aggregate coefficients. The basic test of aggregation 

concerns itself w ith the problem  of

m
74 : )/j = y]X iA -X aba = 0.

The test statistic  J) is assumed to be a Gaussian variable. There exist many 

reasons for the null hypothesis H,p being rejected most of which result from 

the micro dynamics of the variables concerned. Structural breaks in the micro 

d a ta  for specific dependent variables yi may lead to the null hypothesis being 

rejected. Misspecification of either the aggregate or disaggregate models 

could be another im portant factor. Furtherm ore, there exists a large array of 

micro based estim ation issues which could lead to either a significant upward 

or downward bias in the com puted values of both the long and short run 

elasticities of the real money stock with respect to the interest ra te  or income. 

Aggregation bias could also enter when one moves from a narrow m easure 

of money to a broader measure. The inferences drawn from the  em pirical 

literatu re  m ust consider this problem before accepting or rejecting hypothesis 

based on the results derived in the current micro based theoretical literature.

3.6 C oncluding Rem arks

The inventory theoretic approach generates targets and thresholds using a 

dual asset m anagem ent framework for only risk-neutral agents. The effects 

of changes in macroeconomic variables only affect the money stock through 

the associated opportunity  costs of holding money. Although this approach 

yields significant insights into how the transactions motive affects the aggre

gate money stock and captures the precautionary motive for holding money
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in cases of risk neutrality; it does not analyse the effects of risk. This may 

explain why some of the results described above may not necessarily be com

pelling as alternative approaches, or be consistent with the em pirical evi

dence. Clearly the contentious issue of instability in the em pirical literatu re 

needs to be dealt w ith in models of the target threshold type described in 

this chapter if these models are to  cover the gam ut of accum ulated evidence.

One direction in which the theoretical literatu re could develop is to consider 

a different type of agent such as a risk aver ter. The non-linearities caused by 

a concave utility  function could significantly alter the ‘n ea t’ results obtained 

in existing models. Liquidity preference models developed by M arkowitz 

(1952), (1959), Tobin (1958) Feldstein (1969) and Courakis (1988), and also 

expected utility  theory would be the natu ra l starting  point here. The Lu

cas critique offers some promise in this direction. A sound m athem atical 

approach to  solving these problems may also yield differing results to the 

current heuristically m otivated techniques used.



Chapter 4

O ptim al M oney Holdings

4.1 Introduction

Transaction money dem and models explain the sensitivity of money balances 

to interest rates, and, the lagged adjustm ent of m onetary aggregates to exoge

nous changes in macroeconomic variables through a dual asset optim isation 

approach. The agent, usually assumed to be a risk neutral firm, optim ally 

selects a portfolio consisting of an interest earning illiquid asset and cash in 

the presence of transaction costs and an exogenously specified stream  of cash 

flows. On the other hand, risk aversion models represent money holdings as 

a com ponent of a portfolio of assets, optim ally selected by an agent to m ax

imise his u tility  of wealth, trading off risk and return. This chapter links these 

two ideas to determ ine the optim al portfolio choice of a risk averter in the 

presence of stochastic shocks to  asset prices and an equilibrium  net income 

stream . Numerical solutions are obtained for the optim al zone of inaction 

using a utility  m axim isation framework. The results do not yield the well 

behaved inertial responses derived in conventional cost m inim isation prob
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lems. The m ultiple optim a observed dem onstrates th a t the optim al value of 

waiting for going long or short on cash discretely varies despite holding the 

underlying param eters and risk preferences constant. This clearly indicates 

th a t a one off change in a key macroeconomic variable will result in several 

discrete adjustm ents being m ade to the money stock over a long period of 

tim e. This is also confirmed by the intuition behind the popular General 

To Specific (GTS) em pirical modelling technique. The use of flexible lags 

in form ulating the money dem and equation in the presence of a m ultiplicity 

of accessible long run equilibrium  relationships allows for the possibility of 

an exogenous shock forcing the economy onto a new equilibrium. Of course, 

the  GTS m ethod a priori allows for only a unique long run equilibrium  re

lationship, thus discounting the existence of m ultiple optim ising strategies. 

However, the use of some kind of spectral estim ation technique will overcome 

this lim itation. Based on the varying lags of the error correction mechanism 

found in the current em pirical literature, there exists strong evidence to  be

lieve in the presence of more than  a single long run equilibrium  relationship.

Section 2  provides a brief illustration of risk aversion models and highlights 

their sim ilarity to transactions money dem and models of the M iller-Orr type. 

A simple exam ple is also provided. Section 3 sets out the model, and the 

underlying assumptions. The initial value problem is solved in Section 4. Al

though this deals w ith a very special case, its values are necessary to obtain 

a numerical solution to the general problem. Finally, numerical solutions 

obtained by solving the model are presented in Section 5. All the technical 

detail is relegated to the Appendices and Technical Annexures.
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4.2 R isk Aversion M odels vs. Stochastic Trans

action M oney D em and M odels

Risk aversion liquidity preference models analyse the optim al portfolio choice 

of a risk averter. Given a risk preference, an initial level of wealth and 

a wealth constraint, the agent is faced w ith the problem of allocating his 

w ealth among a portfolio of assets which maximises his u tility  (of wealth) 

over a given tim e horizon. This allocation is made among both  risky and 

risk free assets. Holding assets with a higher risk may increase his return , 

b u t at the same tim e increase the possibility of a capital loss. Money on the 

other hand does not yield a retu rn  but is also risk free and thus may prove to 

be a ttrac tive  as a component of the portfolio (see M arkowitz (1952), (1959), 

Tobin (1958), Feldstein (1969), Dalai (1983)). Herein lies the justification for 

agents holding money as a component of a portfolio of assets. It is explicitly 

dem onstrated here th a t risk aversion and th e  initial level of wealth plays an 

im portan t role in determ ining the optim al choice of cash and the interest 

earning asset.

In m any ways risk aversion and transaction money dem and models overlap. 

An optim al portfolio selection exercise equates the loss in m arginal utility  

to an agent as a result holding a portfolio of a risk free and a risky in

terest earning asset to the gain in marginal u tility  arising from both  these 

assets. A risk averter attaches a dim inishing marginal u tility  to each unit 

of additional wealth. A change in u tility  resulting from a change in wealth 

specifically depends on the level of wealth itself. Hence wealth needs to be 

explicitly included in an optimal portfolio selection exercise for a risk averter

96



Also assume th a t at the end of the current period cash flows can cause the 

stock of cash to be in one of three states, i.e. m i with probability p, m 2 w ith 

probability q and m 3 w ith probability 1 —p — q. The states have the ordering 

m 3 < m 2 <  mo <  m i. Then the expected wealth of the agent a t the end of 

period can be characterised as

P w (l +  r) +  m i +  g w (l +  ?') +  m 2 {1 — p — q) u j(l +  r) +  msj

5'

I
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I
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like Tobin (1958) does. On the other hand, risk neutral agents a ttach  a con

stan t m arginal u tility  to increasing levels of wealth. Thus norm alising the 

w ealth level and the interest income earned with it to zero will not change 

the  optim al portfolio decision of the agent. This is what M iller-Orr and sub

sequent stochastic transaction money dem and models do. The introduction 

of a stochastic interest ra te  in Sm ith (1989) allows for a price varying asset.

In fact M iller-Orr explicitly conclude th a t the closed form solutions obtained 

are analogous to a dual asset portfolio selection exercise for firms w ith risk 

neutral preferences.

Consider a simple exam ple in which an agent who is initially endowed with 

an interest earning asset of am ount w and a stock of cash mo. Assume th a t w  

earns a ra te  of return  r  per tim e period, payable on its outstanding balance 

at the end of each period after all portfolio adjustm ents have been made.

I

The distribution of probabilities in this example implies th a t only one state 

above and two below the current sta te  are accessible. Suppose th a t the agent 

can only hold a quantity  of money th a t is either less than  m i, or greater than 

m 3 . If the agent has a cash level of ?tii at the end of the period he will need 

to  convert money into the interest earning asset. On the other hand if he has 

m 3 he will need to convert some of the illiquid asset into cash. If the agent
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has m 2 he m ay or may not wish to draw on his illiquid asset. B ut clearly he 

faces an increased chance of h itting  m 3 in the following tim e period.

Let the agent convert a quantity  of money into the illiquid asset in sta te  

1, and in states 2 and 3 w ithdraw am ounts m^ and m̂ , respectively. The 

expected cost of these transfers are given by the function C{ma,mb,mc)  

where C{.) is an increasing function of its arguments. The agent’s expected 

payoff will be

P {w +  m a)(l +  r) +  (m i -  m„) -  C(m a, m^, m^)

+ g {w — m i){ l  +  r) +  (m 2 T  m&) -  C(m^, m^, m^)

+ (1  - p - q )  {w ~  m c)(l -f r) +  (m 3 +  m j  -  C{ma,  m&, m j  

If the agent wishes to maximise his expected utility, he faces the problem  

m ax p U (  (u; T m a)(1 +  r) +  (m i -  ?72a) — ^(m fl, 7726, me) )
771a,mj, ,me \ L  J /

-\rqu(^ {w -  mb ) { l  ~\r r ) { m2 +  mb) ~  C { m a , m b , m c )  )

T(1 - p  -  q)U  ̂  (w -  m j ( l  +  r) +  (m 3 +  m^) -  C(m a, mb, m^) ^ .

If the  re tu rn  on the illiquid asset r  is normalised to  zero, the problem  becomes

m ax p U l  {w-h ma) + {mi — ma){l -  r) ~  C{ma,mb,mc)  ) 
m a , m h , mc  \ l  J /

-\-qlI {w ~  mb) +  (mg +  m 6)(l -  r) -  C(ma, m^, m^)  ̂

+ ( l - p - ç ) t / ^  (u; — me) +  (m 3 +  m c)(l -  r) -  (7(ma,îu&,mc)

If the agent is risk neutral, it can be easily be seen th a t the first order 

conditions for maximising the above equation with respect to m^, mb and me 

will be same as those obtained from

I

:#

m ax p(rm a) -  q{rmb) -  (1  -  p -  ç ) ( r m j  -  (7(ma,mj,, m^),
ma,tnb,mc



or

m in -p{rm a)  +  q{riJib) +  (1 -  p -  q){rmc) +  (7(ma, me).

This is a straight forward cost m inim isation exercise, similar to the M artin

gale framework utilised by Miller-Orr. However, if the agent is a risk-averter, 

then it is easily seen th a t w explicitly enters into the first-order optim ising 

condition similar to  liquidity preference models. In fact the only difference 

between this exam ple and the liquidity preference models discussed earlier, 

o ther than  the obvious simplification, is th a t the risky asset here is cash. In 

the liquidity preference models the interest earning illiquid asset is the risky 

asset.

U ndoubtedly this analysis dem onstrates th a t cost m inim isation stochastic 

transaction money dem and models not only analyse the effects of cash shocks, 

bu t also im plicitly derive the optim al portfolio choice of risk neutral agents. 

They also contain a wealth constraint, which enters through the  specification 

of the interest ra te  and the shocks to cash. Effectively transaction  money 

dem and models of the M iller-Orr type and the  liquidity preference models 

pioneered by Tobin (1958) are two sides of the  same coin. The first difference 

lies in the  transfer of risk from the illiquid interest earning asset in liquidity 

preference models to cash in Miller-Orr. The second is th a t the la tte r looks 

at risk neutral agents, whereas the former considers risk-aversion.
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4.3 The M oney D em and M odel

=  \{rt  -  l )Pr- i{ t)  -  (A (n) +  +  7 (n  +  l)Prt+i{t)- (4.1)

Î
S

I
!
»

Each agent is assumed to be endowed with an initial level of wealth, which 

consists of an illiquid asset w and cash m. w earns a retu rn  in the form of

interest, which could be negative, whereas m  does not. The objective of the 

agent is to  maximise
P O O

/ e {gPr t)H{-~mt) ] )d t ,
Jo

where U{.) is an increasing and strictly  concave Von Neum ann-M orgenstern 

u tility  function satisfying the conditions V(0) =  0, and f7'(oo) =  0. rt is 

the in terest ra te , g is the constant overdraft prem ium , and i J ( —m*) is a 

Heavy si de step function which helps capture the overdraft charges.

In terest rates are assumed to follow a Poissonlan B irth-D eath type process 

whose probabilistic evolution is given by

.
This implies th a t at tim e t  if the interest ra te  is n  (n  ~  . . . ,1 ,2 ,. . .) ,  then 

the probability of transition  —> Tf -T 1 in the inhnitesim ally small tim e 

interval {t +  di) is given by X(rt)dt +  o (a ) ,  where o{dt) contains higher order 

term s of dt. Similarly, if at tim e t the interest rate is n  (rj =  ..., 1 ,2 ,...) , the 

probability of the transition  rt n —1 in the interval (t-i-dt) is 'y{rt)dt-\-o[dt). 

The probability of a transition  to any other sta te  other than  a neighbouring 

sta te  is o{dt). The probability of interest rates rem aining constant is 1 — 

{A(r^) +  7 (r^)}dt -f- o{dt). It follows th a t if the evolution of the transition  

density function for interest rates is given by (4.1), it can be shown th a t 

expected interest rates evolve according to the law

^  \{rt)  -  q (n )  To =  r. (4.2)
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The assum ption of non-constant coefficient is driven by the feature th a t net 

cash flows at each point in tim e are dependent on the level of wealth [ m tp w t)  

agents hold. The inconvenience losses which arise from cash asset transfers 

are
-f A;+u if u  ^  0 

I<- +  k " n  if u  g  0,
B{n)

where

u

See G ardiner (1985. pp. 237-238) for a derivation of (4.2).

Net cash flows follow a W iener process w ith non-constant coefficients, i.e.

d m t  —  +  W t ) d t  -f- a { 7Ti t  +  W t ) d z t  mo — m  E { a ,  6). (4.3)

b  — u [Î Xt — b ,  

a  —  I i f  X t  =  a .

The vectors (6 — u) and (a — I) are the size of cash transfers at the upper and 

lower boundaries respectively, and K ~ , k~ are constants. The loss in 

u tility  arising from these transfers is U{B{u))  since B (u )  is an unrecoverable 

outflow of wealth. Obviously if ^  0 agents will hold all their wealth as m  

to avoid incurring unrecoverable transfer costs. It can be seen easily seen th a t 

in this case (4.3) reduces to a geom etric W iener process. It is obvious th a t w 

will im plicitly depend on the control vector and the sta te  variable. However, 

it only enters the HJB equation through its inhomogeneous term , th a t is 

the instantaneous u tility  function U. Equation (4.3) has been form ulated to 

elim inate the possibility th a t the to ta l wealth of agents will be negative since 

a negative wealth level is precluded by some utility  functions. In others it 

yields economically unacceptable solutions.
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The objective of the agent is to arrive at a policy

P =  {Ti,Ui;r2,U2; • • ■ • • •},

of a series of stopping tim es and transfers which maximise his infinite horizon 

u tility  subject to cash transfers u, i.e.

y ( m , r ; u )  =  E
supu

■ POO

. Jo
dt

(4.4)+  Y ,e~'"‘U{B{ui)) m,r,0
î=0

where p is the ra te  of tim e preference, or the subjective discount ra te  which 

is assumed to be strictly  positive.

It can be shown using I to ’s Lemma th a t (4.4) m ust satisfy the Ham ilton- 

Bellm an-Jacobi equation

(w -}- 777.)̂
pV {m ,r ;  u ) ------------------- u) -  p{w  -f m )W i(m ,r; u) (4.5)

—(A(r) — 'y{r))Vr{m,7- u) — U{w -f 7u[l — (p +  r ) i7 (—m)]) =  0.

In obtaining (4.5) it is assumed, as w ith any other stochastic control prob

lem, th a t the  probability transacting in the first inhnitesim ally small tim e 

interval [0,dt] is zero. Hence the absence of any transactions costs in the 

inhomogeneous term  U{w +  7u[l — (p T r ) H { —7n)]).

4.4 The Initial Value Problem

Equation (4.5) is a parabolic partial differential equation. To solve it, the 

behaviour of V"(.) needs to be explicitly specified when r  =  0. O btaining 

a profile of f/( .)  when r  =  0 is referred to as the initial value problem . Of

102



V { M)  = E M ,0 (4.7)

Equation (4.7) gives the  expected utility  over an infinite horizon when cash 

(wealth) flows are specified by (4.6). N aturally (4.7) ceases to be a control 

problem  because both  opportunity  and transfer costs vanish.

Expanding (4.7) in a Taylor series using Ito ’s Lemma yields

p V [ M )  -  Ç m ^Vm m {M)  -  i x M V (M )  -  U{ M)  =  0. (4.8)

Solving (4.8) will give the profile of V ( M )  when r  — 0.

Equation (4.8) is a differential equation of the Cauchy-Euler type and can

be shown to have a solution of the  form

course, this profile will be independent of the dynamics of the  problem  and 

will only be given by economic argum ents.

As sta ted  earlier, if the ra te  of return  on w  is either zero or less, agents will 

store all wealth in m to  avoid unrecoverable wealth outflows in the form of 

transaction costs, and negative rates of re tu rn  on w. Since u; — 0, r  will 

cease to  influence V(.). Obtaining this y ( .)  will provide the solution to the 

initial value problem.

The W iener process governing net cash flows now becomes

dMt = f iMtdt  4-  aMtdzi  Mq = M  Mt G [0 , o o ) ,  (4.6)

where M  = w m.  The infinite horizon u tility  function will be

1

cr^{a2 -  Oil) Jo 
1 r°^
 r  /  dæ,

cr^{a2 -  a i )  J m
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See Appendix G for the derivation of (4.9).

Critical to  this problem is the behaviour at V ( M )  . It is obvious th a t
M - O

U( M)  =  0 by the defining property of a utility  function. Since the 
M = o

evolution of M  is given by a geometric Weiner process, if initially M  =  0,

then Mt  =  0. As a result it is clear th a t V (M ) \  = 0. Effectively if an
\ M —0

agent is endowed w ith a wealth level of zero, the geometric W iener process 

constrains bo th  his wealth and utility  over the infinite horizon to  be zero. 

Equation (4.9) needs to have this property to  be economically consistent.

It can be dem onstrated th a t 

and

lim   dx — 0.
m - 4 0  cr^{a2 -  a i )  J m

Since U{ M)  =  0, then provided th a t A =  0 it is clear th a t 
M = o

lim y (M ) =  0.
M-^0+

See Appendix H for the proof. As a result (4.9) now becomes

9M«2
- V ( M )  =  ----------- r U ( y ) y - ‘-^+“^ U y  (4.10)

a^[a2 -  CKi) Jo
P O O

J m(J^{a2 — Oil) JM

In order for V { M)  to be congruous with the assumed attribu tes  of U{M) ,  it 

m ust also satisfy the condition limM-^oo V \ M )  — 0, i.e. if an agent is initially 

endowed with infinite wealth, then his m arginal infinite horizon utility  w ith 

respect to his initial endowment m ust be zero. This intuitively follows from 

the property th a t limM- -̂oo U'{M) = 0.
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Differentiating (4.10) w ith respect to M  it is clear th a t

—y '(M )  =  T ------------- r I  dy
a \ a 2  -  ai)  J q

See Appendix I for interm ediate steps. It can be dem onstrated th a t

>M
^ « 2 -1  /

M —>00

and

pM
lim M “=-‘ /  C ( y ) r < ‘+“=* dy =  0,W-+00 do

'O O

lim  /  {7(p)y"f^+"i) dy = 0.
M -J-oo J M

See A ppendix J  for in term ediate steps. Hence

lim  V '{M )  =  B a i  lim
M —j-oo M - aoo

Setting B  ~  Q will yield

lim  V '{M )  = 0.
M ~ a o o

This satisfies the m arginal u tility  condition imposed on the u tility  function. 

Thus

n  r p M
- V ( M )  =  — -------------   M«2 /

(jffag -  CKi)

Now let « 2  — « 1  =  —2(7. Then the solution to (4.8) satisfying the properties

p M  p o o

./o J m

V { M )  = 0  and limM-j-oo W (M ) =  0 will be

1

M = 0

M

y (M )
PlVl

Jo

(4.11)

0-2(7

/  U(y)y-(^+«^) dy
JM

For (4.11) to be consistent w ith the conditions imposed on U{M)^  it also 

needs to  have the  property limM-).oo F (M ) =  oo. This follows from the
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choice theoretic assum ption limM-^ooU(M) =  oo. It requires th a t, if an 

agent is endowed w ith an infinite quantity  of wealth his instantaneous u tility  

at tim e zero will be unbounded. Since an infinite wealth level cannot ever be 

exhausted to a finite quantity, even over an infinite tim e horizon, it follows 

th a t the infinite horizon u tility  function m ust also be unbounded. It can 

be shown th a t (4.11) satisfies this condition, and is therefore the com plete 

solution (4.8). See Appendix K for the proof of limM-)-oo V { M )  =  oo.

E quation (4.11) can be further simplified into a form th a t will make it 

am enable to numerical evaluation. Let y = M x  m  both integrals of (4.11). 

Then V ( M )  simplifies to 

1
V { M )  =

Jo
p o o

•1  p o o1
a^C

Clearly

dx
—U {M x)x

0:2
■U{M) M

«2

œ

4 I U '{M x)x  dx.
« 2  Jo

It is also obvious th a t

«1
U(M) M

OO po o

dx

4- —  / U '(M x )x  dx. 
a i  0:1 Ji

Hence, V { M )  can be further reduced to

1
V ( M )  -

U (M ) M 1------
02 02

[  U'{Mx)t  
Jo

-Û!2 dx
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+ K  r  U ' ( M x ) x - ‘"  dx
O tl  CXi 7i

In the  la tte r integral on the the R.H.S., setting x = I j z  yields

j: '0
U '(M x )x  dx = U

L

M ■dz
z /  \ z

dz.
z  J

It is also clear th a t

_!____ l_
Oi 02

02 — Ol 
O1O2 

Co-2

Therefore V { M )  can expressed as

V { M )  =
1 U {M )C a^  , M  p

+  ■
O2 Jo

U '{M x)x  dx~\-
M
Ol Jo

«1—2U' dz

Letting v = M / z  it can be shown th a t

rM  I z  
Jo

y
Ol

See Appendix L for in term ediate steps. Therefore the reduced form of the 

solution to the initial value problem  becomes

V { M )
U{M)  1 
-----------r

Jo

M
0 2

dx

Equation (4.12) is the exact expression to com pute the profile for the  infinite 

horizon utility  function for specific u tility  functions for given levels of M  

when r  — 0.
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4.5 N um erical Solutions

Many functional forms could be substitu ted  for U{M).  Here it assumed th a t

t/(M ) =  ln (l +  M ), (4.13)

where ln (l +  M ) is a constant relative risk aversion u tility  function. Now, 

from (4.13) it is clear th a t

vU'

Hence

Therefore

(vU 'b

I  V

(1 + vy

(  j  u'{Mx)x-'̂  ̂d x + y  j  z'=‘̂ -yvu'(vy dz

7o y r r w

Jo 1 H

1
a 2 Jo 1 +  M x  ' a l  Jq z^(l +

1 x~^^ , 1
0 2  Jo 1 +  M x  ^ a j  Jo {M  +  z Y

Substitu ting this into (4.12) will yield the solution to the initial value prob

lem for a logarithm ic u tility  function.

A nalytical solutions of the  type described in the literature would necessitate 

the  discarding of valuable inform ation in both  (4.5) and (4.12). Usually such 

solutions also require the use of strong assum ptions which could detract from 

reality. To overcome these lim itations (4.5) and (4.12) shall be solved num er

ically. The num erical algorithm  used here requires a detailed knowledge of

spectral m ethods, integration rules, and optim isation techniques. Therefore
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The integration technique used to obtain a solution to (4.5) requires the 

com putation of the infinite horizon utility  function V { m ,r ,  u) and its partial 

derivatives Vm{'m,r,u.) and Kn.nx(m, r, u) as Chebyshev polynomials. This 

requires the interval m  G (a,b) to  be m apped into 0 G (—1,1), and is done 

through the transform ation

2(m -  a)
0 = —  r 1, 0 = arccos(a^).

(6 -  a)
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all technical detail will be relegated to the Technical Annexures.

A description of how (4.5) is solved is as follows. An agent is endowed with 

some level of illiquid assets w, and cash m  G (u, 6), and follows a control 

policy of the type

f  6  I Î  X t  =  b ,  

y a II Xt = a.

The analysis is restricted to a zero threshold policy because la ter results 

confirm th a t a more general four param eter control policy described in the 

current literatu re  is unlikely to  yield any further insights. Also, the  four 

param eter control policy forms the envelope of the zero threshold policy. 

Therefore a detailed analysis of y ( .)  under a zero threshold policy will also 

reveal the  im portant properties of V(.) under the more general four param eter 

control policy.

The initial endowments enable the com putation of a solution to (4.12) over 

the interval (Ma, Mf,) where = w a, and Mb = w b. Since (4.12) 

is in the form of an integral, its numerical solution is evaluated through a 

Simpson’s rule adaptive integrator. See Technical Annex 2 and the source 

code in Technical Annex 6 for details of this.



Next, the derivatives Vm {M)  and Vm m (M)  are com puted from the  numerical 

solution to (4.12) through collocation differentiation. Once this is done, and 

the probabilistic evolution of interest rates has been specified, i.e.

A(r) -  7 (r) =

> 0 

=  0 

< 0.

the solution to y ( m ,r ,  u ) can be com puted through a fourth order Runge- 

K u tta  integration scheme for r  >  0 utilising the boundary conditions derived 

in C hapter 2. For details on the  R unge-K utta scheme and Chebyshev’s poly

nomials see Technical Annexures 3,4 and 6. Here a Chebyshev polynomial 

of order twenty is used to estim ate V { in , r ,u ) .  If the com puted solution 

of y ( m ,r ,  u) proves to  be a hill w ith a single m axim a with respect to  the 

boundary values (or controls) a and 6, then this m axim a and the corre

sponding values of a and b can be deduced by an optim isation routine such 

as BFGS.

4.6 R esults

The results highlight some very interesting properties. Risk averse agents 

w ith identical risk preferences do not have homogenous money dem and func

tions. The optim al exercise prices at which cash is bought and sold vary by 

discrete am ounts, even if th e  underlying param eters driving asset prices are 

the same. As a result any one off change in a macroeconomic variable will 

result in several discrete adjustm ents being m ade to the money stock over a 

long period of time.
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then the reflecting properties described by the two conditions above ensure an 

equilibrium  interest ra te  of 5 percent per year, i.e. when cos(57rr) =  sin(57rr). 

This also corresponds to the long term  equilibrium interest ra te  observed in 

em pirical studies. The properties of the coefficients are such th a t the further 

away r* is from the equilibrium, the more rapidly it converges to  the equi

librium , which is also consistent w ith reality. The overdraft prem ium  is set 

a t 2 percent annually. To ensure th a t distortions are not caused by differing 

m arginal rates of substitu tion and transform ation (exclusive of transaction 

costs), p is also set to five percent. The m ean cash flow in each tim e period 

is assumed to be zero, i.e. p = 0.0. This is analogous to assuming th a t the 

agent’s income stream  and consum ption path  are in a long term  equilibrium  

situation, and, any changes to the level of cash is caused by exogenous shocks. 

The standard  deviation a  of the process governing net cash flows is assumed 

to be normalised to 0.05.

Transaction costs are assumed to be linear and asymm etric. The cost of 

selling cash and buying the illiquid asset is assumed to be less than  the cost

111

Let A(r) — q (r) , be given dynamically for all r  and assume th a t r is reflected 

upwards when r  =  0, effectively ensuring th a t r  ^  0. This requires th a t

A(0 ) =  1 , and 7 (0 ) — 0 .

Furtherm ore, let r  be reflected downwards when r  =  R, where R  is the upper 

bound of r. Thus

X[R) = 0 , and 7 (R) =  1-

If

A(r) ~  cos(5?rr), and 7 (r) =  sin(57rr),
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Figure 4.1: A(r) — 7 (r) Dynamically Given

of selling the illiquid asset and buying cash, which is in line w ith what is 

observed in the  real world where the cost of buying cash is much higher than 

the  costs of selling cash. The proportional cost of selling nit for and the 

cost of selling wt into mt  are assumed to be 1 and 3 percent of the size of 

the transaction respectively. The fixed cost component of transaction costs 

is assumed to  be sym m etric and is set at 0.001 percent of the value of the 

initial portfolio. This is a relative quantity  based on the fact th a t w  has been 

norm alised to be 1.0. It also corresponds to reality where the fixed costs of 

adjusting a portfolio of assets are very small indeed. Initial cash holdings m 

are assum ed to  be zero. These endowments are given exogenously and there

fore can be arbitrarily  specified. In Figure 4.1 a cross section of the value 

function 1/(77%, r, u) is taken at a =  —0.02 and is plotted against values for 

b G [0.001,0.04]. Clearly I/(77%,r, u ) is undulating, and an optim ising routine

I:'
f
I

I
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rs,|'

could converge to  any of the local optim a. Significantly these optim a are not

lum ped together in a localised region, bu t are spread out. The im portant

feature driving this is the constant natu re of cash deposits and withdrawals.

Many param eters such as the size of the withdrawals, p and r  also contribute

towards this. If h is only slightly larger than  the initial cash endowment of

zero, then  the agent is likely to h it the upper boundary more frequently and 
.will be forced to endure frequent and irreversible outflows of wealth in the 

form of transaction costs. As h increases these outflows are likely to  dim inish 

and thus conserve the pool of wealth. As b increases even more the  oppor

tu n ity  cost associated w ith tolerating a large zone of inaction will take effect 

penalising the agent.

W hy then  the second, and th ird  hills? The answer to this lies in the differ

ence between the  rate  of tim e preference and the actual ra te  at which wealth 

grows. The key is to understand the intertem poral dynamics of f / (m ,r ,  u).

If the agent is risk neutral, it is easily observed th a t the trade-off between 

the MRS and th e  expected MRT of utility  will be of a linear nature. This fol

lows naturally  from the linearity of a risk neutral utility  function. In Section

4.2 it was dem onstrated th a t u tility  m axim isation by a risk neutral agent is 

equivalent to cost minim isation. This implies th a t the MRT of a risk neutral 

agent will be independent of his level of wealth, and, only depend on the 

ra te  at which costs evolve. In this problem  holding costs accrue at a rate  

proportional to the expected interest rate. Transaction costs accum ulate at 

the ra te  at which the W iener process exits the continuation region through 

the boundaries a and b. Therefore, it intuitively follows th a t a linear trans

form ation of the net present value of the sum of these costs will be m inimised

I
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Îfor a choice of a and b a t the turning point of a convex hull.

However, in situations where the agent is risk averse, the concavity of the u til

ity function imposes a non-linear relationship between the MRS and MRT.

Furtherm ore, it is easily seen th a t the MRT will explicitly depend on wealth 

holdings. As wealth varies the MRT will be either larger, equal to, or, smaller 

than  the  MRS. It is this feature which causes the aperiodic fluctuations in 

V(.). Clearly, if wealth is large, U{.) will also be large. Also, I/(.) will be 

larger when C/(.) is large in earlier tim e periods rather than  in la ter tim e 

periods. This is an obvious effect of the ra te  of tim e preference p. If the 

agent fixes his upper boundary beyond the first optim um  value of 6, then his 

m arginal ra te  of substitu tion (MRS) will be greater than  his m arginal ra te  of 

transform ation (MRT), i.e. M R S  > M R T  (inclusive of transaction  costs). |

This is because the gain in l/( .)  due holding a certain level of illiquid assets 

and excess cash in earlier tim e periods is less than  offset by the gain in u tility  

in la ter periods resulting from the growth in wealth caused by switching some 

of the excess cash into illiquid assets. Effectively, the effect of p dom inates 

th a t of Vt causing R (.) to increase again. The transfer of excess cash into the 

illiquid asset results in unrecoverable losses in the form of transaction costs.

To offset this loss the MRT m ust exceed the MRS. This m ay require a rela

tionship to be specified between the rate  of tim e preference p, the equilibrium  

rate  of interest, and also the nature of transaction costs. B ut, making this 

link is difficult. Even if such a relationship was specified it m ay only serve to 

dam pen the am plitude and change the  period of the infinite horizon utility  

function. For a link to be m ade one would need to model the com plicated 

feedback relationship between transaction costs, Vt and Wt which would re-
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Figure 4.2: A(r) — 7 (r) =  —1.0

suit in a unique optim a, and, then try  and establish some kind of link with 

p. The concavity of U{.) would almost certainly require such a problem  to 

be numerically solved. To simplify the  problem  it is much easier to make 

an em pirical link between the four param eters as has been done here. The 

concave nature of the u tility  function is clearly the m ajor factor driving the 

oscillatory nature of the solution. If state varying controls were used where 

a and b were allowed to dynam ically evolve rather than  being held constant, 

it could be the case th a t these hills vanish. However, again, there is no a 

priori reason to believe this.

In the previous exam ple it was assumed th a t interest rates converged to an 

equilibrium  ra te  of 5 percent per year. Here it is assumed th a t A(r) — 7 (r) — 

— 1.0. As a result expected interest rates follow a downward course, and in
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the long run push the agent towards holding all his wealth in cash w ith a 

profile of V(.) similar to the initial value problem. However, it can be still 

seen th a t V(.) is undulating due to the various points at which the substitu 

tion and transform ation dom inate each other. The peaks observed in Figure

4.2 are also of a smaller am plitude and a larger period than  in the  previous 

example. This is because, the variance associated with the ra te  of return  on 

illiquid assets is much less here, and, therefore does not expose the agent to  

the same degree of wealth volatility as before. It can be clearly seen th a t the 

optim al values of waiting increase as the thresholds increase. This follows 

from the property th a t, as tim e increases, expected interest rates will become 

negative and unbounded. Agents will choose not to  opt for small targets be

cause they will not be able to recover the frequent transfer costs incurred 

through any interest income they may earn. Although this situation is not 

likely, it confirms the validity of the previous set of results and the  underlying 

intuition of the modelling approach used here.

Intuitively it sounds plausible th a t increasing the discount ra te  will front 

load the problem. This would imply th a t, for the same u tility  function, both 

the value of of V{.)  and the am plitude of the aperiodic fluctuations observed 

in the two previous examples m ust decrease. Indeed, this is exactly what 

is observed. To make this feature obvious an annual discount ra te  of 100 

percent was chosen. The dam pening effect of this can be clearly seen in the 

Figure 4.3.

Diminished risk sensitivity should yield an optim al region th a t exhibits less 

volatility. Figure 4.4 plots the profile of V(.) against b for another utility  

function with constant relative risk aversion. U{.) is an exponential of the
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Figure 4.3: p — 1.0

type U(x) = where ^  =  0.9. Risk aversion requires 0 <  *0 <  1. The 

agent exhibits less risk sensitivity as 1. The results clearly confirm

th a t stability  increases w ith decreasing risk aversion. Thus reinforcing the 

validity of the modelling approach used here.

These findings shed a new light on how agents behave. The existence of m ul

tiple optim a clearly dem onstrates th a t the optim al value of waiting for going 

long or short on cash discretely varies, even with homogenous risk preferences 

and constant param eters. It also gives rise to a series discretely varying lags 

between a one off change in a macroeconomic variable and the money stock 

being adjusted. Significantly, the aggregate money dem and function will 

exhibit discreet jum ps over the different triggers at which agents choose to 

exercise their option to  go long or short on cash.
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In m ost rational expectations models the existence of m ultiple equilibria is 

associated with either unstable or saddle point solutions (in higher dim en

sion models). Most of these solutions, for example the divergent dynam ic 

pa th  specified by the  complex roots of an ordinary differential in a standard  

two dim ensional macroeconomic model can be dismissed through a partial 

equilibrium  argum ent. Of course these require extrem ely strong assum p

tions th a t rely on a degree of foresight and rationality  th a t is unobservable 

in practice. In contrast, none of the observed optim a here are unstable, and 

therefore cannot be dismissed through a partia l equilibrium argum ent. W hat 

is exactly the fundamental solution here is not clear since all of them  share 

the unique feature th a t the m arginal u tility  of the infinite horizon utility  

function w ith respect to  a boundary is stationary.
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If agents learn by doing, does this ensure th a t agents converge to the global 

optim um ? R ational expectations models have studied the possibility of 

agents converging to an unstable solution under simple linear learning m od

els. De Canio (1979) and Evans (1985) argue tha t agents use observations 

over a finite period say T  to estim ate the param eters of a system. They then 

use this for another period of duration T  after which they recom pute the 

param eters again. Bray (1982) assumes th a t agents recursively estim ate the 

param eters driving the system  each period through a least squares m ethod. 

The outcome of both these techniques is th a t agents converge to the funda

m ental solution as they continue to  refine their estim ates of the  param eters. 

Of course in this model there is no learning to be done because the exact 

values of the exogenous param eters driving the system are assumed to be 

known w ith perfect foresight.

If the m ultiple equilibria observed here cannot be dismissed through learn

ing or by using stability argum ents, how does an agent converge to a global 

optim a? If all optim a share the same property, th a t is the m arginal u tility  of

the infinite horizon u tility  function with respect to a boundary is stationary,
. . . .even the most advanced optim isation routines such as the Quasi-Newtonian 

BFGS technique will not be capable of distinguishing a global optim um  from 

local optim a. The only way In which one could arrive at the global optim um  

would be to evaluate the infinite horizon u tility  function for all possible val

ues of boundaries, which is clearly unbounded, and then use some kind grid 

search technique. Of course a grid search technique is an ad-hoc m ethod 

by which the value of one optim a is compared with the value of another. If 

the u tility  function is not evaluated for all possible values of boundaries and
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thresholds, it could be the case th a t a grid search m ethod only returns a 

local optim a. A m ultiplicity of optim a in a u tility  function could m ake this a 

very costly technique to use. In fact its ad-hoc non-scientific nature, its high 

cost, and the near impossibility of  pinning down a global optima reinforces 

the notion that agents are most likely to converge to the local optima that is 

most accessible to them.

4.7 Concluding Rem arks

In th is model it has been dem onstrated th a t, under tim e invariant controls, 

the  MRS and MRT effect alternatively dom inate each other over certain 

ranges of the control vector yielding solutions with m ultiple optim a. This 

shows th a t the optim al value of waiting for buying and selling cash discretely 

varies, despite all o ther param eters and risk preferences being held constant. 

The aggregate dem and function for a population of homogenous agents will 

not converge to  the well behaved functional forms hypothesised in the pre

ceding literature. If agents converge to different optim a, the full effect of an 

exogenous shock may not be felt all at once as the current literature sug

gests, due to all agents adjusting their targets simultaneously, but take effect 

slowly a t staggered tim e intervals. Its full effect taking tim e to work through 

the whole economy. This also sounds intuitively correct. In earlier models 

this effect could be only be explained by assuming th a t initial endowments 

were heterogonously d istributed among agents. This model provides an ex

planation of the slow adjustm ent of targets by showing th a t agents, within a
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homogenous framework, may optimally vary the extent to which they hedge 

their risk.

Naturally, the assumptions m ade here could be further expanded by utilising 

sta te  varying controls, bu t in the absence of a theoretical basis providing 

the natu ra l boundary conditions for such a tool, the results obtained here 

could prove to be the most accurate approxim ation of the syntheses between 

the  inventory theoretic approach to modelling the transactions dem and for 

money, and the risk sensitive wealth m axim isation approach to  modelling.
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Chapter 5

C onclusions

I

This thesis presents three im portan t results, and, a critique of the  existing 

inventory theoretic money dem and models which sheds a com pletely different 

light on them . C hapter 1 provides an analysis of the heuristically m otivated 

“sm ooth pasting” condition which is used in stochastic “im pluse” control 

models as an optim isation tool and derives the natural boundary conditions 

for solving such problems. The necessary first-order optim isation conditions 

are also discussed. C hapter 2 deals w ith a simple application of the “sm ooth 

pasting” condition, highlighting some of its shortcomings. Unique insights 

into the Dixit menu cost model are obtained. Also previously assumed prop

erties are proven. Chapter 3 analyses the strengths and weaknesses of the ex

isting body of literatu re  on the transactions dem and for money. Key models 

are dissembled and critically analysed. Some of them  which were previously 

not subject to  the same degree of scrutiny, now do not hold up. In C hapter 

4 a m ore robust and logically sound alternative to the existing approach is 

presented. It tries to reconcile the two different findings of the em pirical 

literature; th a t is the lagged adjustm ent of the money stock to changes in
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5.1 Chapter 1

.A

:

i t

other variables, and, the perceived instability  of the money dem and equation.

Concepts from the existing transaction money dem and models are gelled to

gether w ith those from liquidity preference models to obtain a p a tte rn  of |

optim ising behaviour which goes against the ‘n ea t’ results obtained in the

current literature.

The results in this chapter can be sum m arised as follows. “Sm ooth past- |

ing” condition is a heuristically m otivated condition which is absent from y

the  stochastic optim al control framework for dealing with “im pulse” con- |

tro l problems. This chapter provides a more rigorous approach to  solving 

such problems. However, la ter results in C hapter 2 confirm th a t bo th  tech- v

niques yield the same strategy. The results also confirm the “value m atching” |

condition as being the natural boundary condition for “im pulse” controlled 

problems. It dem onstrates th a t the value of stopping at a sta te  and exercising 

an “im pulse” control m ust equal the net present value of holding costs ac

crued up to th a t state. This also sounds intuitively correct. If the to ta l value 

of exercising a stopping decision exceeded the net present value of holding 

costs accrued until this decision was m ade, it would clearly be sub-optim al 

to stop. Conversely if the net present value of holding costs exceeded the 

net present value of the stopping decision, it would im ply th a t the stopping 

decision should have been taken earlier. O ptim isation with respect to the 

set of admissible controls occurs as w ith any other stochastic optim al control 

problem .

Î
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5.3 Chapter 3

The ‘n ea t’ results which characterise m ost models is also com pared w ith the

124

I

5.2 Chapter 2

A solution to the Dixit m enu cost model is obtained using the “value m atch

ing” and natura l first-order optim isation conditions. Previously assumed 

properties such as symmetricity and the zero threshold policy are now proven 

to be optimal. A link between the intertem poral discount ra te  and the zone 

of inertia  is derived. This could not be deduced from Dixit (1991a) unless 

an em pirical link between variance of the W iener process and the discount 

rate  is specified. Also costs faced by a firm initially lying outside optim al 

zone are quantified, providing firms w ith a clear incentive to transac t down 

to zero. The benefits of following a partial price adjustm ent policy in cases 

where the costs faced by firms are different is also provided. From a technical 

point of view, a more accurate estim ate of the zone of inertia  is obtained. 

The simplifying expansion used in Dixit (1991a) is less accurate.

The key contributions in existing body of literature on the transactions de

m and for money is surveyed in this chapter. Each model is scrutinised in 

detail highlighting its strengths and weaknesses. The logical foundations of 

some models are shown to  be not robust as perceived before. The m ath 

em atical analysis used is clearly questionable. Those models which appear 

to be robust, analyse agent behaviour under restrictive conditions, e.g. the 

determ inistic and steady sta te  model of Baumol-Tobin, or the steady sta te  

model of Miller-Orr.
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em pirical literature. The general consensus is th a t although a m ajority  of 

em pirical models find evidence which supports the current target thresh

old modelling approach, a significant m inority finds th a t the money dem and 

function is unstable. This goes against the stable behaviour forecasted by 

current models. A promising direction in which the the current body of lit- I

erature on the transactions dem and for money could evolve is discussed in 

the final section.

5.4 Chapter 4

125

C hapter 4 returns to  the initial objective of this thesis. The money dem and
.problem  for a risk averter is solved. The m ean reverting diffusion process

;
used to capture interest ra te  variations is replaced w ith a more realistic Poi- a:

sonnian jum p stochastic process. Spectral methods and num erical integra

tions schemes such as Simpson’s rule and Runge K u tta  4 are introduced for 

solving the H JB equation for the first tim e. The findings here significantly 

differ from preceding models. The key conclusion is the existence of m ultiple 

optim a, which has interesting im plications for the money dem and function 

and im plicitly for the  dem and illiquid assets. This is in contrast to  the  static  

liquidity preference models in which in tertem poral effects are not considered.

However, unlike other rational expectations models, these optima cannot be 

dismissed as being bubble solutions. Learning by agents or the use of ad-hoc 

‘global’ optim ising routines also do not discount this possibility.

The m ultiple optim a results from the MRS and MRT effects alternatively 

dom inating each other over alternating ranges of the control vector. This



dem onstrates th a t ceteris paribus the optim al value of waiting for buying 

and selling cash discretely varies. If agents converge to different optim a, the 

full effect of an exogenous shock may not be felt all a t once, bu t take effect 

slowly, at discreetly staggered tim e intervals, as different agents discretely 

adjust their at targets varying points in tim e.

I

I

i
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A ppendices

A ppendix A

By differentiating (1.19) w ith respect to x  it is clear th a t

T4(a;,u) -p s M (æ(s))/a;(æ(s), s |x , 0) dx(s) ds

/'OO

—p[B{b,u) — V{u,u)]  / e“ ^®Fh(6, sla:,0) (A .l)
Jo
poo

—p[D{aJ) — V(l^u)]  /  e"^^Fa;(a, 0) ds.
Jo

Differentiating (A .l) w ith respect to x  yields

IAa;(^) ^ ) — l e dsI M{x{s))f^a:(o:{s),s\x,Q)dx{s)
a

pco
- p [ B { b , u ) - V { u , u ) ]  e-<“F^^{b ,s \x ,0)ds  (A.2)

Jo
poo

—p [ D { a , l ) - V { l , u ) ]  / e~'’̂ Fa;o:{a,s\x,0) ds.
Jo

M ultiplying (A .l) by p  and (A.2) by cr^/2 and adding both  gives

A (æ )y(æ ,u ) — j e  
Jo

M{x(s) )Af{x{s}^  s|.T, 0) dx{s)

poo
—p[F(6, w) — y (u , u)] /  e“ ^^AF(6, s |x , 0) ds

Jo
poo

- p [ D ( a ,0  -  V (;,u )] /  e - '’* A f(a ,s lx ,0 )rfs . 
Jo

I
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d s

Substitu ting the backward Chapman-Kolmogorov equation (1.15) into the 

above expression yields
poo  r  r!)

A V { x , u )  == / I M {x{s ) ) f s {x{s ) , s \x ,0 )  dx{s)
J o  i J a  J

poo

- p [ B { b , u ) - V { u , u ) ]  /  e~'’̂ F,{b, s\x ,0)ds
Jo
poo

—p[D{aJ) — V{l^u)] / e~^®Fs(a,s|æ,0) ds.
Jo

pb  r poo

p I M{x{s ))  j  f [ x { s ) , s \ x ,0 )  ds 
J a l J o

dx(s)  — M {x)

^p[B{b,u) -  V (u,u); 

- p [ D ( a J ) - y ( Z ,u ) ]

poo
l — p e‘̂ ^F{b^s\x^O) ds

J o
poo

l — p  e'’®F(a, s[a;, 0) d 
J o

(A.3)

A ppendix B

Derivation of the solution of the transition density function in the forward 

Kolmogorov equation.

Form (1.23) we have

Using the m ethod of separation of variables we obtain

f { e t \ g , o )  =  T{ t )Q( 0-
Substitu ting this into (1.23) yields

It is clear from this expression th a t the solution to T { t )  and Q{C) are of the 

form

T(t) = Be-^^ \
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where B  is an arb itrary  constant, and

Q (0  =  d) sin[\/A^ —

The boundary condition /(O , 0) =  0 implies th a t Q(0) =  0. This is satis

fied when y  =  0. We also have the other boundary condition / ( I ,  t |p , 0) — 0. 

Setting  ̂ =  1 we obtain a value for A in term s of the param eters of the 

differential equation; i.e.

"e#

A =  +  n̂ TT̂ .

This expression for A gives us an Eigenfunction of the type

sin(n7T^)e‘'^-K « '

which is a solution to (1.23) satisfying its boundary conditions for all integers. 

Therefore, /( ^ ,  t \g,  0) can be expressed as a solution to the forward Chapm an- 

Kolmogorov equation in term s of a Fourier sine series. T hat is

CO

n —l

where gn is a constant. We can now from the initial condition calculate the 

coefficients of the series. We have

gn ^  2 [  S{^ -  g)e~°^^ sm{n7T^)
Jo

=  2e~°‘̂  sm{n7vg).

Thus the Fourier series solution for the transition  density function from the 

forward Chapman-Kolmogorov equation is

oo

/ ( ^ 5  0) =  2 sin(n7T^) s m {m rg)
n ~ l
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The evaluation of  the discounted value of  the fluxes at the upper and lower 

boundaries over the infinite horizon 

We have
poo poo  oo

/  e~ dt — / 7î sin(n7r(l —
-/O '/ o  n = l

_  2n7T sin(n7r(l — g))eA^~^^
/? +  CK̂ +  n̂ TT̂

We know as a fact th a t

^  2n7T sin(n7r(l — gf) _  sinh 
(3 F  P  n̂ TT̂  sinh v

n = l  ^

Therefore we have

f  e -2 ‘F,{l , t \g ,0 )d t  ==
Jo sinh y

Similarly we can com pute the rate at which the first stopping value is accrued 

on the lower boundary. We have

/ oo poo  oo

e~ F t{ 0 , s \g . , 0 )  dt =  J  utt di
n = l

E 2n7T sin(n7T5')e
—^ /?  +  +  n^TT^

n = l

^  „ - „ . s i n h x ( l  - g )  
sinh X

The evaluation of the integral e~^* f((f i \g,{})  dt

We have

f / .  I . , _  4 sin(7%7T̂ ) sin(n7r^)poo  oo

2  e - f 7 ( f ,s |g ,0 ) < is  =  Y i
^  /? +  +  n7T̂

We also know as a fact th a t

2  sin(n7ry) sin(nTr^) cosh \ / f i  F  a^uj — cosh -\//3 + a'^y  ,______  _̂_____
^  +  UTT̂  ->/5"+~02 sinh (3

7

X 1

I
■ %

.7

f
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where to = 1 — \g — and 7  =  1 — ^ Now we can express the above 

integral as r /(f. %, 0) dt =  2 e .K - .) - 'h x w - c o s h x ^
Jo Xsinhx

A ppendix C

I

It is obvious th a t
k(P

y (o ) =  A +  —

substitu ting  this into (2 .1 ) yields

V {x)  = I y (0 ) — y '  I* cosh(aa;) +  F  sinh(o:æ) 4— — +  (C .l)
I P )  P  P

From the boundary condition on the upper boundary in (2.1) it is clear th a t

(C.2)

From the boundary condition in (2,1) for the lower boundary it is clear tha t

(C.3)

y ( 0 ) ------— j( c o s h (a 6 ) — 1 ) +  B s inh (a 6 ) = g ---------- —

ko"  ̂1 koP
y ( 0 ) -----------—  j(cosh(aG ) —  1) +  Bsinh(cKu) =  g  —

M ultiplying (C .2 ) by sinh(a:a) and (C.3) by s inh (a 6 ) and then subtracting 

the la tte r from the former yields 

kcr'^y(o) [sinh(o:a)(cosh(a;6 ) — 1 ) — sinh (a 6 ) (cosh(aa) — 1 )]

9
\ (  k o ? \

) sm h(an) — [ g  sinh(a6).
P J P J

Dividing through by (sinh(o:a) sinh(o:6 )) gives 

ka"^y(o) tanh  ( A l  -  tanh
2 )  V 2 /

k}f i \  1
-

p  J  s inh (a 6 ) 
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I

This equation gives ] / ( 0 ) as a function of the boundary values and the pa

ram eters of the problem. Similarly an expression for B  as a function of the 

boundary values and the param eters of the problem can also be obtained. 

Dividing (C.2) by (cosh(a6 ) -  1 ) and (C.3) by (cosh(aa) — 1 ) and then  sub

trac ting  the la tte r from the former yields

B ( coth coth (?)
kY.

p
ka?

P

\  \ 2  J \  2 /  J  cosh(a6 ) — 1 cosh(aa) — 1 ’

Simplifying the  above two equations further, and substitu ting into (C .l) gives 

an expression for V(â ’), i.e.:

y (^ )
7 2 7 2 (a -  _  (kx^ ka^ \9  p J smh{ab) \   1   _{  —  -------^ p J  s in h (a a )

+

tanh  — tanh 

■ { 9  ~  sinh(aa;) (̂ g — sinh(aa:)‘-

X

cosh(o(6 ) — 1 

tanh  tanh  ^

tanh  — tanh

cosh(act) — 1

k d
+

kcF̂
+

D -^)cosh(a{x-f )) (£f-^)cosh(g(a7-|))
2sinh(Ÿ) 2 s i n h ( ^ )

sinh a (¥ ) )
Dividing this solution for V{x)  by gj2  and substitu ting the non-dimensionalising 

param eters and variables in (2.3) yields

y (w )
2vfi ^  1 ^  j \ y )  cosh(2 w — z) — f { z )  cosh(2 w -  y) 

7  7  sinh(j/ — z)

v1

I
.?

■I

I
?"
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A ppendix D

sinh(2y) -  f { y )  sinh(3î/) -  f ( y )  sinh 7/ =  0
7

Upon further simplification it is clear th a t

Therefore

2v
f{y){sïnh.y  +  sinh3y) +  ~  =  0.

2y
2f{y )  sinh 2y cosh y  sinh(cty) =  0.

Dividing through by (2sinh(<ay)) we obtain

-  +  f { y )  cosh y =  0. 
7

7y — tanh(y) — — =  0.

Appe ndi x  E

3 7  — y^tanh^(y) =  2y^ +  y^sech^(y) — 3y tanh(y).

From this it is obvious the when y =  0, the  above expression is also zero.

I
1

Now th a t 2  +  y =  0, and / ( y )  is an odd function, we also m ust have z and y 

satisfying (8), i.e.

?

Substitu ting for /(y )  and simplifying further gives

■

It is clear tha t
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A ppendix F

The boundary conditions for the general price adjustm ent policy are

A[(cosh(o;6) — cosh(o:u))(sinh(aa) — sinli(aQ)

— (cosh(aa) — cosh(a/))(sinh(a6) — sinh(a'u))]

g  (6  ̂ — (sinh(o;a) — sinh(a/))

g — (sinh(<a6) — sinh (ecu)).

A

j?
.

y(6) -  y(w) =  y and y(a) -  y(/) = y,
■;S

'Iwhere u and I are the upper and lower thresholds respectively, see Sivanan- 

than  and Lindsay (1996). Substitu ting these boundary conditions into (2.1) 

it is clear th a t

k
A (cosh(a6) — cosh(au)) +  B(sinh(o;6) — sinh(au)) 4— (6  ̂ — vf )  — g, (F .l)  

and

k
A (cosh(aa) — cosh(a/)) 4- B(smh{aa)  — sinh(a/)) 4— («^ — C) =  g. (F.2)

M ultiplying the first equation by (sinh(aa) — sinh(aZ)) and the second equa

tion by (sinh(o;6) — sinh(au)) and then subtracting the la tter from the former 

yields

By simplifying the above equation further and making A the subject it can 

be seen th a t

^  ( 9 -  ^(6^ -  ^^)) 2 sinh cosh ( a ( ^ ) )

4A sinh ^ sinh (^a )  sinh j
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(g  -  2 sinh ( “ ( V ) )  cosh ( « ( 4 ^ ) )

4Asinh j  sinh ^inh ( a ( ° + 'y ~ ’*) )

' f i  -  -  - f i  + ( s -  ! ( « ' -  ‘f i »
s i n h ( a ( z 4 i ^ ) )

Similar to how A  was obtained, B  can also be obtained. If (F .l)  is m ultiplied 

by (cosh(o;u)—cosh(a/)) and (F.2) by (cosh(<n6)—cosh( ) )  and then subtract 

the  la tte r from the former, it is obvious th a t

B[(cosh(ao;) — cosh(a/))(sinh(a6) — sinh(ccu))

— (cosh(o;6) — cosh(a'u))(sinh(o;a) — sinh(a^))]

g — —(6  ̂ — w^)^ (cosh(<au) — cosh(o;/))

g  {afi — F ) j  (cosh(ce6) — cosh(au)).

Using the same approach as was used for A, it can be shown th a t

B
[a  -  -  - f i  # #  -  { s  -  -  ‘f i

sinh ( a ( î ± t ^ ) )

Now th a t expressions for the constants A and B  have been obtained, the 

Bellm an value function can be expressed as

V{x)
kx^ ka^

(̂ g — “ (6  ̂ — u^Ÿj (^sinh (*^(““^ ) )  sinh(o:a;)

— cosh ( ^ ( ~ ^ “ ) )  cosh(aa;)^

^ 2  sinh smh ( « ( ^ ) )

(̂ g — ^ (a^ — BŸj  cosh —) )  cosh(o;æ)

— cosh ( ^ ( ™ ^ ) )  smh(aa:)^
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^ 2 sinh  sinh ( « ( A ^ ) )

kx^ ka^ f i s - ‘̂ { a ^ - P ) ) o o s h ( a ( p ^ ' ^ ' ^

a — I'

+
s in h ( a ( ^ ) )

W -  “ (6  ̂ -  u^)) cosh

sinh (^a ̂

s i n h ( a ( ^ ) )  
u  T  /  — 6  —* n

))
Now w rite

I ! ^  T  / — h — u
sinhinh

\ \  /  /[a 3r I -  2x — (b A  u -  2x)]\
)) = ^ )

/  /  a -{-1 — 2x \  \  /  /6 -f-ii — 2x \  \
H  2 )) H ~ —2 ))

- j)  sinh ^a^-

-= sinh

— cosh ^

2 / /  \  \  2
a A  I ~~ 2 x \ .  . , /  /6  +  ri —2 a :\\ 
- ^ - ) ) s m h ( « ( ------ 2 -------) )

Therefore the value function can be expressed as

Now define a function

sinh(g(^))cosh(a(^iŒ jj ^kh(A(^jj

tanh  -  tanh ( a ( ^ ± î ? ^ ) )

(g  -  -  P ) )

sinh ( a ( ï = i ) )  cosh ’

Then the value function will be

# (a , /) — 0(6, u)
V (x )

kx"^ kcr^ 1 
—  H T" +  «

-tanh -  tanh  ( ^ a ^  -

Dividing V (x )  by y /2  and introducing the non-dimensional variables and 

param eters in (2.18) yields

0(y,2r) -  0(w ,a;)2v^ 1
V(v)  =  -f -  -b

where

7  7  ta n h (2; — 2ar) — tanh(a: — 2 u )’

0(u;, z)
J  ~ y z

sinhy  cosh(z — 2v)
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g.2 J  fj2 

It can be seen th a t a  has two solutions a i  and a 2 , i.e.

/i 1

and

Now let

Then

and

Ü _ 1
2

y  =

2[/(M)

+  « .(%  -  1)M “7 +

Grouping similar term s yields

(G .i)

I
;r

.
A ppendix  G

The Homogenous equation V  = M “ is a solution to (4.8) where a  satisfies

y M " a (o f  -  1)M°‘-^ +  p M a M ^ - ^  -  pM ^  = 0.

Simplifying the above expression yields

+  ( 7  -  d «  -  7  =  0.

"7

It can now be easily seen th a t the function ({> satisfies
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2 , 2 p a i  2 p
Cfx,

Therefore (G .I) simplifies to

We know th a t Therefore,

Hence

(G.2)
d M

It can be easily seen th a t

Furtherm ore

2«i + ÿ  -  “> + ÿ - ^  +  ̂+ V ÿ + ( A “ S

“ i +  ÿ - 2  -  ^ A  +  l  +  , y g + ( A _ l )  - 2  +  ^  (G.4)

.^2 2 y cr̂  ^  \ a ^  2

— (1 T  0(2 )•

'"Si-

I

: i
It can be easily shown th a t

Q'l -  on +  - 7 -  -  -y  =  0.

2 a  ̂ p L rzp / p L\^
“ 1 +  ^ - 2  -  +  - 1

=  - ( « 1  +  ! ) •

'if

— a i  — «2 +  1.

And

^ G , / A G 4 - i V
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Substitu ting (G .3) and (G.4) into (G.2) gives

d
d M

Integrating the above equation yields

2 pM
=  J / U{y)y-‘'-+“P dy + A.

^  Jo

Dividing through by generates

cr"

p m

Jo

Integrating the above equation it is clear th a t

poo  o  r ° °  /  ra ; \
/  <{)a:dx------------- - j / U d y  j dx

J m  ^  J m  \ J o  j
poc

+  A /  
J m

This integral has a solution

X Q’2 —CVl COO
U{y)y - ( 14-0:2) dy

M
O r ° o  ^ o i 2 - ~ a i

4--IT /   U{x)x~^^'^‘̂ ^̂  dx
J a^  J m  ^ 2  — « 1

A
0̂ 2 — (̂ 1

,«2 - 0:1

M

Therefore 

4>{oo) — 4> = - —-----------   lim
O' [CX2 — CKi j a:-+oo

2j\.fOi-af2

Jo U (y )y

ct2(o:2 -  ou) do 
2

j.«l—«2

— ( 1 + 0 :2 ) dy

A
,  , C/(æ)æ-<‘+“‘> rfx +

o A a 2 - a i ) J j ^ 4  a i~~a2
0 -
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[  C/(a;)æ-('+“=> dre
J mo-2(o;2 “  a i )  J m  a-2(Q ;2-ai)

It can be easily seen th a t

_ U{x) ^ 
hm  --------— 0,

Cr (̂a'2 — (Xlfi æ-lco

and also 4>{oo) = —B, where B is a constant. Therefore it follows th a t

■V{M) = +  B M ": +  — -----------   /  U{y)y
a^(a2 -  a i )  J q

-(l + «2) dy

cr2(a2 -  a i)

PCX)

/  U{x)x-^^-^^^Ux
J m

is the solution to  (4.8).

We have

U m M » A  C(y)y-(^+»^) dy =

U ( M )M - P + “ 1̂ 
M-.0 —o;2M“ ('+“2)

- 7  lim [/(M )
CK2 M-+0

_ F (0 )
â2
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I

Integrating the first te rm  of the R.H.S of the above equation by parts, it 

reduces to

C(y)y-<‘+-> dy t

A ppendix  H

The following properties naturally  follow from the assum ptions we make
'7':

about u tility  functions.

"7:.

?
:.;,r

?:

3



/ oo

dy

mai

Using these two results and setting A =  0, it is clear th a t

M-+0 <7^o;2(a2 — CKi) a-^û;i(o;2 — a i)
2U(0)

a^aia2
=  0 .

A ppendix  I

Differentiating (4.10) w ith respect to M  it is clear th a t

- W (M ) =  F(y)y-('+ "^)
cr\a2  -  a i )  Jo 

J-— ----- t/(M )M -< ‘+“’

dy

(j2(a2 — CKi)

f7ffa2 -  «1 J m

 ̂ . f/(M)M-<^+“'>.
e (̂cK2 — Oil 

This can be further simplified to  yield

9 rv M " 2 “ 1 c M
- V ' ( M )  =  B a iM “- - ‘ +  — -2----------r /  £/(y)y-<'+““> dy

crffa2 -  a i)  Jo
. / I f O l - l  poo
■----------- /  U{y)y~^^'^‘̂ ^̂  dy.
«2 — «1 J m(7^(a2 —
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Now let X — M y.  Then

poo poo
lim  M “‘ /  dæ =  lim /  17(M y)M -('+“‘>y-<i+“ ')M  dy

^->-0 J m  M-io

/ oo
U (M y)y~7+ai)

*oo fi

I

M



A ppendix J

It is obvious th a t

'M
lim  ̂ /  U(y)y  7 +«2)^^

M-+00 L

If we let y =  Mæ it is also clear th a t

lim M^^-
M —loo

poo

‘ /  U{y)y 
J m

dy

1. I ^ U { y ) y
m S L

U(M)MA^+^2)  
hm  —; -  .  ̂ -̂----

M-ioo (1 -

lim
M - io o  (1 — Œ2) M  

0 .

poo

lim dæ
JmM - lo o

lim I
M -io o

lim
M —loo -CïiM 1

1
+ —  /  da;

a i  Ji

f ! 2 M  + I f
M-loo y a iM  0(1 Ji X dx

It can be easily seen th a t

M - ic o  a i M
0 .

Also

and therefore

lim U \ M x )  — 0,
M^oo  ̂  ̂ ’

1 7°°
lim  —  /  U '(M x )x  dx =  0.

M - lo o  Oil

7 ;

I
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A ppendix K

It is clear th a t

lim AT
M - lo o

pM
/  U{y)y- 

Jo
=  lim r

M - lo o  M “ "

=  lim
M —loo — O 2

Self evidently lim.M-4.00 V { M )  — 0 0  as Af —> 0 0 .

A ppendix L

It is easily see th a t letting  v M

M

ai
■vU\v)

7 m C / '( M )  +  —  [  y ’̂^ - d v U ' M )  dz.
«1 Oil Jo  A /
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Technical A nnexures

Ai
1

i.

I
I

Technical A nnex 1-BFGS M ethod for U n

constrained M inim isation

Here the  multi-dim ensional optim isation technique BFGS which, is used to 

obtain the optim al values for a, /, u and b in C hapter 2, is discussed. F irst 

a simple explanation of m ulti-dim ensional optim isation is provided by dis

cussing fini te-difference derivatives. Then Broy den’s m ethod on which BFGS 

is based is illustrated, and, finally the m ethod of BFGS derived.

Finite-D ifFerence D erivatives

In this section finite-difference approxim ations are derived by using first and 

second partia l derivatives. Also some aspects of efficiency, convergence, nu

merical roundoff and m athem atical accuracy are discussed. From elem entary 

calculus it is clear th a t F  : M.” — > IR”’

Fi{x d  hej) -  Fi{x) dFi{x)
hm  —  r  —  =  - ,/i—lO h ox  j

where ej is the J -th  column of the n x n identity  m atrix. This for obvi

ous reasons is called the forward difference approxim ation and suggests the

144



\ \AjF{xc ,h)  -  J{xa)ej\\ g  -7 |/ i j |

Also i f  II • II is the li vector norm given by ||n ||i — l^il then in the fi

operator norm it is clear that

ll^lli =  1 ]  kû'l"

From this it trivially follows that

| | A f  ( x „ / j )  -  111 g  I t II^IIco-

Proof. The proof is established using the  remainder of a second order 

expansion of the  Taylor series. Define Mfi{xc  +  hjej)  as

M ^ { x c  T  hjCj) — F(xc)  +  J{xc)hjej.

T hat is {xcph je j )  is a  first order Taylor expansion of F[xc-\-hjej)  around 

Xc. Now it is clear th a t

\ \ A j F { x c , h )  -  J ( a ; c ) | |  =  \ h j \ ~ ^ \ \ A j F { x c F  h j C j )  -  F { x c )  -  J { x c ) h j e j \ \

=  +  hjCj) -  M ^ ( x c  +  hjcfiW

â  i + r ‘ ^ 7 i i 7 f  =  ^7171.
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evaluation of the j - th  column of the the Jacobian m atrix  J { x c )  using
I

AjF{xc ,  h) = +  hjCj) -  F{xc)] (T1.5)

for a suitably chosen vector h.

L e m m a  1 Let F  G Lip.y[D), where the coordinates Xc and Xc +  hjCj for  

j  =  1, - • • ,n  are also in D. Furthermore let || • || be the vector norm where 

||ejjj =  1. Then 4



The proof in th e  fi operator norm  trivially follows. Clearly

\ \AF{xcfii) — J{xc)\\i — msiX \ \AjF{xc,h)  -  J{xc)ej\\i

1 1
= m ax ~'y\hj\ =  “ T p lU -

Although the forward difference m ethod of evaluating the gradient is accurate 

enough, the  central difference m ethod m ay be preferable. Here it is defined 

as
r  r /  , s _  /(a^c +  h id )  -  f ( x c  -  hiCi)
àij{Xc, h) — 2 ^  5

and

5f{xc,  h) == [Sif{xc, h), • • •, Snf{xc, h)].

L e m m a  2 Let H  G Lip f iD ) ,  H  being the Hessian matrix, where coordinates 

Xc and Xc +  hjej for j  =  1, • • •, n are also in D. Furthermore let || • || be the 

vector norm where ||ej[| =  1. Then the behaviour of 5if{xc, h) is given by

\^i f{xc,h) -  g

and

\ \Sf {xc ,h)~ g{xc)\\oo ^  ^'y\hi\lo^

where g{xc) — d f{xc) l2dx i .

Proof. Let (•) be the first order Taylor expansion of /(• ) . Then

[ f { x c  +  hi Ci )  -  { x c  +  hi Ci ) ]  -  [ f { x c  -  h i e f i  -

— f ( x c  +  h id )  — f{xc  — hiCi) — 2 h i - ^ -̂ - -.

From the  triangle inequality it is clear th a t

\ f{xc  T  hiei) -  f{xc  -  h id )  -  2 h i ~ ^ \  =  ^ ^ \ h i f .
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;'V

is the Frobenius norm.

L e m m a  3 Let H  G Lip^{D), where the coordinates Xc and Xc +  hjCj for  

j  = 1, • • • are also in D. Furthermore let || ■ jj be the vector norm where

|ej|| =  1. Also let

r ^  1___ f ( y ^ c  “b hjCj -|- /ijCj) f { , ^ c  h i € i ^  y(^c 4" h j € j ^  -f- f ( ^ X c )
L-WcJiJ =  —— hfhj

Then

147

Thus it can be easily seen th a t the central difference gradient is more accu- 

ra te  than  the forward difference gradient, however, it requires 2n evaluations 

ra ther than  the n necessary for the forward difference. Let H{xc)  be the  

second order te rm  of the Taylor series expansion of a function f{xc-\-hiei).  If 

the  gradient of a  function can be derived analytically, bu t the Hessian m atrix  

needs to  be approxim ated, then (T1.5) can be used by applying it to  g{x) 

to  obtain the  approxim ation of Ag{xc, h). This approxim ation, however, will 

not yield a sym m etric m atrix , whereas H{xc)  will. Here a  sensible strategy is 

to  use Be =  \[Ag{xc)  +  Ag{xc)'^] as the approxim ation of the Hessian. This 

is justified by observing th a t the Frobenius norm projection of Ag[xe)  into 

the  subspace of all sym m etric m atrices is Be- Using this property and the 

Pythagorean Theorem  yields

where

;s

...l i



In the Iqo) Frobenius or li operator norm, it follows that

\[Hc]i,j ~~ [H{xc)]ij\ ^  m ax +  3|/ii| +  3jhj| +  2-r~ ^ .
o ' I I I rî  I /

Proof. The proof follows from the previous Lemmas. If Si =  hi,Sj = hj,  and

Sij — Si +  Sj, then

[ f { xe  +  Sjj) -  m ^ { x a  +  Sij)] -  [ f {xc  +  8*) -  {x^ +  Si)j

- [ f ( x c  +  S j )  -  m ^ { x c  +  S j ) ]

=  f { X c  +  -  f { X e  +  S i )  -  f { X c  +  S j )  +  f { X e )  ~  h i h j [ H { X c ) ] i j .

From the triangle inequality it is clear th a t

1
?

.1:

%!
S’

\hihj[Hc\ i j  -  hihj [H{xc)] i j \  g  ;^ 7 [ | |5 i i f  +  +  W^ j f ]

A
Now th a t some useful rules for evaluating derivatives and analysing their 

accuracy have been established, two Theorem s which establish the  ra te  of a 

convergence of finite difference approxim ation shall be stated.

T h e o re m  1 Let F  : M.” — y be C^{x) in an open convex set D, D C. R.  

Let there exist constants r,j3 > 0 fo r  x^ G D, and, J{xc) G Lip.yN{x^,r),  

||7(æ*)|| ^  0,  and F(x^)  = 0. Then there also exists an e > 0 for  each

xq G N(x^ ,e )  in the sequence of  points {%&} generated by the steps 

2&+1 = Xk — J{xk)~^F{xk),  k = 0,1,2,  - ’ • 

which is well defined and converges to x^ and is satisfied by

lla^t+i -  ^  \\xk -  æ*||^.
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^ /a + 1  — ^k J{,^k) F(^Xk) iCjK ~]- J(^Xjfj F(^X^)

=  J{xk)~^[F{xfj  -  F{xk)  -  -  %&)].

This yields

exists and converges to æ*.

1

Proof. It follows trivially th a t Lipschitz continuity implies continuity of 

function. Furtherm ore, the determ inant of a m atrix  is a continuous func

tion of the entries of the  m atrix. Thus it is obvious th a t J (x )  is invert

ible, and also th a t ||J(æ )"^ || ^  2(3, for x G N (x^ , r ) .  If Xk G N[x^ ,e)  for 

e ^  m in{r, (2 /9 7 )“ ^}, æjt+i exists and

lî f̂c+i ^fc|| — II F(̂ Xk) ^A;)]||

g  2^~\ \xk -  x^\{^ ^  (d-yWxk -  x̂ W'^

g  (3^e\\xk -  x^W ^ ~ \ \ x k  -  x^\\.

This establishes both convergence and quadratic convergence and thus con

cludes the proof.
S
;s

T h e o re m  2 I f  F  and x^ obey the hypothesis in the above theorem, then in t

the li operator norm there exists an e,p > 0 for  a sequence {hk} in E "  where 

0 ^  ll/ïTcll =  7 ; and Xq G N { x ^ , c). Also the sequence {2 7 } generated by

J { x k ) c j  U { h k ) j ^ Q

Xk+i — Xk -  B((^F{xk), k ^  0,1,2,  - ‘ ,
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B royd en ’s M eth od

The secant m ethod is an effective m ethod for solving nonlinear equations in 

one dimension. It is a forward difference m ethod in which the step size is 

used to  construct the next itera te  from x+ to  form the difference {xc — 2 4 ,), 

Thus resulting new local derivative will be is

obvious from this th a t no ex tra  function value will be needed to evaluate a 

new local model since F ( 2 + +  /i-|-) =  F{xc).  The secant m ethod assumes th a t 

the first order Taylor expansion of ^ ( 2 + +  d), # + ( 2 + +  d) =  7^(2 +) -f H+d, 

is evaluated by letting  M+{xc) tend towards F{xc). Thus B+ is evaluated by

F(Xc)  =  ikr^(2^ T (2c — 2^)) =  7^(2 + ) +  J5^-(2c — 2^J.

This yields a system of linear equations

B.^Sc — Vc

where yc = F{x.^.) — F{xc),  and Sc =  2 .4. — 2 c.

L e m m a  4 I f  Sc,yc G E ", Sc 7  ̂ 0  and Be x  E", Broyden’s update

{ye -  BeSe)sf
B +  =  B e  F

S i  Sr

m

F
■1

%:r

I

1!&'

I

gives the unique solution of

m in ||B  — Bd| s.t. Bse = yc-

Proof. The proof follows from the Lemmas established for forward differences. 

If Bsc = î/c, then B+ — Be = [B — we have

â  |1 B - B „ | |f -  p i
si Sc 2

g  \ \ B - B c\\f
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for the  interpolation of g{xc), and f{x+).  H{x+)  is sym m etric, how

ever, jB-i- or Be are not. If B+ is sym m etric, it will approxim ate H{x+)  more 

accurately since

3-

B FG S U nconstrained  O ptim isation  Technique

In the earlier section the secant approxim ation technique for choosing the 

Jacobian m atrix  was applied. Now this shall be adapted to the Hessian 

m atrix . The analog of the previous section is simply

B S e  — Pe — g{xPj — g{Xc),

where B  is the approxim ation of the Hessian m atrix , The above

equation uses the second order Taylor expansion

m (2 + F d )  = f{x+)  +  +  l-d'^B+d
2 y.

i [S +  +  B jl  -  H(x+)\\p g  ||B+ -  H { x + ) y .  (T1.6)

..3;"3If a projection of Be on the intersection of m atrices obeying the above equa-
.

tion w ith the subspace of sym m etric m atrices in is taken, is obtained

in the form of the PSB( Powell sym m etric Broyden) update  f

D D BeSe)s^ T  Sc(t/c BeSe) ^c(^c BeSf)ScS^ ■■
=   ( 7 7 ? -------■ 3

It is clear th a t will inherit its sym m etry from Be- This is clearly an 

effective update  bu t has problems w ith poor scaling. Furtherm ore B+ only 

inherits its positive definiteness from Be and th a t too under conditions more 

restrictive than  (T1.6). An obvious condition for B  in (T1.6) to be positive 

definite is v
T T T-i «8g yc — 8̂  Bse  0.
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It is also possible to show th a t a positive definite and sym m etric solution 

exists for B  by constructing the BFGS m ethod due to  Broyden, Fletcher, 

Goldfarb, and Shanno. If Be is assumed to be a positive definite and sym

m etric then it could be expressed by using Cholesky factor. T hat is

Be = LeL l ,

Lc being lower triangular, B ĵ  m ust be positive definite and sym m etric where

Be — , and iI.^J_^Se — 2/c;

for nonsingular. Now let Vc =  such th a t J+Vc — yc- If Ve is known

then using Broyden’s m ethod could be evaluated as

{ye -  LeVe)v'^
VrV

Transposing the above equation and m ultiplying the right and left hand sides 

by Sc it is clear th a t

V vt  Sr J

If y jsc  >  0 the above equation can be further simplified to yield

It is easy to see th a t the above two equations define such th a t

which is the BFGS update. A lternatively the  update could be expressed as

D  ■ O  , y ^ y ' ^  B e S e S f  B e
=  B c F  - f ---------------- 7 - 5 --------- .

y( Se si  BeSe

This is the theoretical basis of the BFGS multi-dim ensional optim isation 

technique. However, there exist problems in its im plem entation. Clearly if
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-b
f ( x )  dx-

b — a
6

/ ( a ) + 4 / (  14-/(5)
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\5

"3a
F
„:Cv

a:,
4
4:

the last evaluation is near the  minim um , then the update  will arrive at it 

w ithout any problem. If, however, it is further away, Sc m ay be sufficiently 

large such th a t it overshoots the minimum . The function evaluation could 

even explode. To elim inate this possibility a line m inim isation routine is 

em bedded within the algorithm  with the  following steps

1. Begin by choosing 2q G and an n x n positive definite m atrix  B q 

where B q ~  I  and set ^(^o). For k ~  0 , 1 , "  • obtain Xkj-i,Bk+i

from Xk, Bk using the  following steps:

2. If gk is zero, then stop; obviously because Xk is a stationary  point. Else

3. com pute Sk := B^^yk-

4. Choose the next coordinate

~  Xk ^kSk 

through the approxim ate m inim isation

F{ x k )  Rs m i n { F { x k  -  Xsk) \ X P  0},

and then set

9 k + l  • —  2& + 1  — X k ,  y k  9 k + l  9 k '

5. com pute Bk+i according to the BFGS update described above.

Technical A nnex 2-Sim pson’s R ule

If a function f { x )  G [o.,b] is C'^{x), then  it can be shown th a t

i:3.
.3'

.till



where
'6

N

such th a t

K  =

It can be shown th a t for functions th a t are C^{x),  Simpson’s rule converges 

to  the  actual value of the function w ith a velocity of N —4 at worst. Here an 

au tom atic Simpson’s integrator is used where the lim its of the integration is

I
.3;

I
5
%

I
?
7

I  [ / (« )  + 4 / ( ^ ) + / ( 5 )

is the Simpson approxim ation. Thus Simpsons’s rule is exact for all polyno

mials of degree three or less. However, Simpson’s rule is m ost often applied

in its com pound form. The interval [a, b] is divided into a num ber of intervals

and Simpson’s rule is applied to  each. Let

Oi — X q X \  ^  . . .  ^  X ‘2 n —' l  ^  X ^ n  — b

be a sequence of points on [a, b] such th a t

Xi+i — Xi = h, 7 =  0, • • •, 2n — 1.

Then the com pound Simpson’s rule yields

f^2n A
/  / ( 2 )  d 2  =  — [ / o + 4 ( / i  H h /2n -l) +  2 ( /2 - f / 4 -i V f2n-2) F  f2n] F  En

J Xq

where En is the rem ainder and is given by

07
E n - = a < i p < b .

Let N  be the even num ber of sub-intervals of [a, 6]. Then N  = 2n and h can 

be expressed as
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provided, along w ith a routine for com puting f { x ) ,  an error tolerance e, and 

an upper bound on the num ber of function evaluations. The source code, 

once compiled then  returns one of (a) the integral has been evaluated to the 

specified tolerance, (b) the interval of Integration has zero length, (c) the 

tolerance is either negative or not achievable, or (d) the error tolerance has 

not been m et w ithin the allowed iterations.

Technical A nnex S-R unge-K utta Order Four

Consider a function f ( t , y )  th a t is Î/) on D = {{ t ,y) \a P  t P b,c P

y  ^  d}. Let G D  such th a t

f { t , y )  =  Pn(t+,y+)  + Rn(t+,y+),

where 

Pnit+i Î/+) f i U , y + )  +  

+

dt du

-f -

j=0

2 +

df^-idy3

and

Rn{t, y) —
1

Q f n + l - ~ j Q y j

where Pn is the Taylor polynom ial resulting from the n th  order Taylor series 

expansion of f { t , y )  around and, Rn is the rem ainder resulting from

this expansion. The R unge-K utta scheme exploits this property to obtain 

a solution to a differential equation. Consider a differential equation of the
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form

A

w ith the initial condition

2/(^o) =  yo-

The R unge-K utta integrator order four integration scheme uses the formula

yo =  y{ t o)

h  =  f { t i , y i )

k2 =  +

h  =  / (u  + 2 jy*‘+  “^ )

^4 =  f{U F h,y{ F hks)

y i + i  =  Vi F  — +  2/t2 +  2^3 +  ^ 4 )

for i =  0 ,1 ,2 , , A  — 1. Here yi is the com puted value of the solution at

ti, where ^̂ 4.1 — U — h. It can be easily seen th a t if f { t , y )  — g{x),  then the 

above scheme reduces to

h
V i + i  =  y i +  g / {ti) F  4 /  ^  F f ( t i  F  h)

This m ethod has a localised truncation error of order four, provided of course 

th a t y{t)  is C^{t). The R unge-K utta scheme used here is a m ore refined 

au tom atic integrator allowing for more efficient forward steps to  taken in the 

integration, based on rounding off errors obtained, w ith sim ilar conditions 

to Simpsons rule. If the integrator is performing function evaluations and 

the specified accuracy is being m et, then the evaluated function values are 

returned. However, if the accuracy is not being m et, then  it could retu rn
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either (a) the actual function values bu t w ith an accompanying warning th a t 

the requested accuracy has not been m et, or (b) more m em ory has been 

allocated than  is necessary. If the integrator fails, then the reason for failure 

is returned. W hich could be one of (c) the range of integration has been set 

to zero, (d) the effective range of integration is zero, (e) there has been a 

mem ory allocation failure, or finally (f) the order of equations has increased 

and m emory needs to be reallocated.

Technical A nnex 4-C hebyshev Polynom ials  

In tegration

Tn{x) =  cos 0 — arccosæ.

T n + l { x )  =  2 x T n { x )  — T n - l { x ) ,  n =  1,2,-

due to the trigonom etric identity

cos(n +  1)^ =  2 cos ri9 cos 9 — cos(n — 1)0.

They are also bounded, i.e.

|Tn(x)| ^  1 and a; G ( -1 ,1 ) ,  
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Chebyshev polynomials, Tn{x) are cosine functions after a change in the 

independent variable, i.e.

Preform ing the transform ation x = cos 9 allows numerous m athem atical and 

spectral relationships to be used in a Chebyshev system. They also satisfy a 

three te rm  recurrence relation



which follows from the fact th a t is a cosine.

It can be also shown th a t they satisfy the orthogonality property

/
Tm{x)Tn{x)

x /ï1 V I — a;'

7F, m ~  n =  0,

0, m

Under m ild conditions on a function f { x ) \  e.g. f { x )  is C^{x), x  G [—1,1], 

f ( x )  can be expressed in a uniformly convergent series of T ’s

f ( x )  = F  aiTi{x)  F  a2T2{x) F  • "

The constant coefficients o* are referred to  as “Fourier-Chebyshev” coeffi

cients and are given by

and

7T j _ i  i / T —

2 p  f ( x ) %( x )
dx r P i .

7T p i  -  X‘

Significantly ao, «i, - - - decay rapidly to  zero. The partial sum |ao+aiT 'i(a:)-t- 

■ ■ ‘ F  anT]\[{x) is polynom ial of degree ^  N ,  which is one of the  m ost accu

ra te  estim ations of f { x )  by a polynomial P n { x ) ,  the approxim ation being 

m easured in the sense of m ax_i<^<i|/(a;) — pAr(a;)|. Although three different 

quadratures could be used the preferred m ethod is the Chebyshev-Gauss- 

Labotto quadrature of the form

TTJ 2ÎV’
X j  = cos —  W i  =

N
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D ifferentiation

The derivative of a function f { x )  can be evaluated by the sum
OO

I

Î
I:

f  (a;) =
n _ 0

where

F  =  E  >“3  (T4.1)
i=«+l>i4-no(id

This is expression is derived from the trigonom etric identity 

2sin(0) cos(n0) =  sin((n +  1)0) — sin((n — 1)0),

i=n+lp4-nocid :
3,

3'

which enables us to express Tn{x)  in the form

(n +  1) n — 1

In spectral space this specifies a relationship between the coefficients of the 

polynom ial of the  form

2nün — ^ i~ l ~  ^n+l5 ^  =  1,

form which (T4.1) follows. This relationship suggests an efficient m ethod by 

which Chebyshev polynomials could be differentiated in spectral space.

It clear by definition th a t Un = 0 îov n P N . Thus one could arrange the 

above equation in a way by which the coefficients of the function derivative 

could be estim ated from the  the  function coefficients through the  recursive 

relationship

F  =  4 + 1  +  2(fc +  l)a„+ i

T he same methodology is applied to derive the A;-th derivative in the form

— <̂1 + 2  +  2(n +  l ) a ^ / \
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f ( x )  = p a „ c o s ( f j p j  n  = 0 , l . . - . , N .  (T4.5)

Assume th a t a transform ation of the  form is required for two sets of real da ta
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The com putational power required to  perform this task could prove to  be 

overpowering. Collocation differentiation offers a more efficient means of 

com puting derivatives, since differentiation implies only a linear operation 

on the  function values in physical space. The significant difference though 

is th a t we now need to use a Fast Fourier Transform (FFT ) which requires

equally spaced da ta  points.

The F F T  is a recursive algorithm  for obtaining a Discrete Fourier Transform, 

such as described above, and its inverse. The F F T  is conventionally expressed 

for the  evaluation of

N - l

ün = /c =  0,1, • • •, A  — 1 (T4.2)

N—1
^ / ( $ j ) e ”V -  A; =  0,1, • • ■, A  -  1, (T4.3)
j=0

where f { x j ) ,  j  ~  0 ,1 , • • • , A  — 1 are a set of complex data. See Cooley and 

Tukey (1965) for a description of the  F F T  algorithm. I

We know form previous sub-section th a t the  Chebyshev transform ation of a 

function, based on a G aus-Labotto quadrature are given by 

N

j=0 \ / 3

where ao and are halved, and :

N  /  \  4



and a^. To do this, first define complex da ta  of the form 

a i  +  m i

X)2N-j

n =  0,1, • ■ •, A  

n =  A  +  1, A  +  2, • • •, 2 A  — 1

Now define Zn, n = 0,1, , A  by (T4.4) and Zn, n  =  0 ,1 , • • •, 2A  — 1 by

(T4.2) w ith A  being replaced by 2A. Then it follows th a t

A ’

and
A T - l  N - l

A , sin ^
-  2 ^  w + 6  ^

j = 0  j = 0

2Trin,i
e ^

See Burden and Faires (1993), Davis and Rabinowitz (1984), and C anute et. 

al. (1988) for details of this. Let qj be defined by

— ^2i +  ip2j+i — Z2j-i) J =  0,1, • • •, A  — 1, 

and estim ate Çn through the coinplex F F T  given by (T4.2). This yields

N - l N - l 27r>re.j
N

j = 0 j = 0

and
N—1

Z 2 j €  JV -  g ( l  -  e  VY )

j=0 j-0

N - l
2 îrtn  V T — \  2i r inj  

N

See Burden and Faires (1993), Davis and Rabinowitz (1984), and C anute et. 

al. (1988) for details of this. As a result

N

J l
A i=o

Z n  —

A
1

+ 9n +
1 1

2 48in(^)y^" ^2 4 s in (^ )
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and

i=o

Based on these evaluations, the derivative coefficients can be evaluated more 

efficiently using the Differentiation m ethods listed above. The resulting col

location m atrix  has the following points for the differentiation m atrix  {Dj^)

( D n ) j n

Cn[xi-Xj
—Xn

2JV^+1
6

2JV̂  +  1 
6

j  P n  

l P l  = j P N  

1 =  j  =  1 

1 = j  = N

where
2 j  =  0, A  

1 i S j g A f - l

See Canuto et, ah (1988) for details of this. These points are obtained by 

differentiating the Lagrange interpolating polynomial 0  in the F F T

-  x^)Tk{x)
C n N ^ { x  -  X j )

-:3

■1?

1
•S:
4;

R:
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*

Technical A nnex 5-The Source Code Chap

ter 2
# in c lu d e  < std io .h >  
# in c lu d e  <math.h>
# in c lu d e  < s td l ib .h >  
# in c lu d e  <nialloc.h>

In d e f in in g  th e  c h a r a c t e r i s t i c  root of th e  ODE, we s e t  SIGMA=0.1 
and RHD™0.05, th e r e fo r e  ALPHA„l=sqrt(2*RH0)/SIGMA=sqrt( 1 0 .0 ) .

■:l
# d ef in e SIGMA 0 . 1
# d e f in e RHG 0.05
# d e f in e ALPHA.1 sqrt(2.0*RH0)/SIGMA
# d e f in e K 0 .5
# d e f in e G 0 . 1
# d e f in e NITER 200
# d e f in e NV 4

double xva l; /*  x va l i n i t i a l  p o s i t io n  of s t a t e  * /

vo id  mainC vo id  )
{

vo id  parms4( double *, double * , double * , double double * );  
vo id  parms2 ( double * , double * , double * );
double va lu e„ fu n ct(d ou b le  * ) ,  min_value, h, d ix i t_ fu n c t (d o u b le  * ) ,  

t o l= 5 .0 e - 1 0 ,  d iag_hess ian [N V ], a, 1 , u, b ; 
double p[NV]“{ 0 .5 ,  0 .5 ,  1 .0 ,  1 .0 } ,

pl[NV]={ 0 .0 1 ,  0 .0 1 ,  0 .0 1 ,  0 .0 1 } ,  p p l [2]={ 0 .0 1 ,  0 .0 1 } ,  
pu[NV]={ 0 ,9 9 ,  0 .9 9 ,  3 .9 9 ,  3 .9 9 } ,  ppu[2]={ 3 .9 9 ,  3 .9 9 } ;  

in t  i t e r ,  i ;
vo id  b f g s ( i n t ,  double *, double *, double double , double *

in t  *, double * , double ( * f u n e ) (double * ) ) ;
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char f i l e n a m e [13];
FILE *OTitput ;

= 'C  
= '3 '
= 'R '
= ^E'
= 'S '
= 'U'
= ' L '
= 'T '
=  ' . '

=  ' D '  

'A'
) p )

/********************Create f i len am e appropriate to  application**=5=***=*=*******/ 
f i l e n a m e [0] 
f i l e n a m e [ 1] 
f i len a m e [2] 
f i l e n a m e [3] 
f i l e n a m e [4] 
f i l e n a m e [5]  ̂
f i l e n a m e [6] • 
f i l e n a m e [7] • 
f i l e n a m e [8] ■ 
f i l e n a m e [9]  ̂
f i l e n a m e [ 10] 
f i l e n a m e [ 11]
p r i n t f ("\nFilename in  %12s", f i l e n a m e ) ; 

f o r  ( h = 1 .0e-5  ; f ( h ) > 0 .0  ; h t= 1 .0e~ 5  );  

i t e r  = NITER;

f o r ( i=0 ; i<=40 ; i++ ) {
o u tp n t= fop en (fi len am e," a" ); 
p r in t f ( " \n  Implementing i t e r a t i o n  %3d", i ) ; 
x va l “ - 2 . 0+0 . 1*((doub le)  i ) ; 
f p r i n t f ( o u t p u t , "\n%10. 6 1 f \ t " , x v a l ) ; 
p [ 0] = 0 .5  
p [ l ]  = 0 .5
p [ 2] = 1 .0
p[3] = 1 .0  
i t e r  = NITER;
b fg s (N V ,p ,p i ,p u , t o i , d ia g .h e s s ia n , & ite r , &min„value, v a lu e . f u n c t ) ;  
parras4( p, &a, &1, &u, &b);
f p r i n t f ( o u t p u t , "%15.Gif %10.61f %10.61f %10.61f %10.61f",
m in .va lu e ,  a, 1 , u, b ) ;
p [ 0] = 1 . 0 ;
p [ l ]  = 1 . 0 ; 
i t e r  = NITER;
b f g s ( 2 , p , p p l , ppu, t o l , d ia g .h e s s ia n , & ite r , &min„value, d i x i t . f u n c t ) ;  
parms2 ( p, &a ,
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3;-

I

-M3

}

f p r i n t f ( o u t p u t , "%16. 61f %10.61f %10.Gif", m in .v a lu e ,  a, b ) ;
f c l o s e ( o u t p u t ) ;

e x i t ( 0 ) ;

;

f  ******************************** ****** ***************;,
The Value Function 4

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ÿ

'I;-
'1;:

double v a lu e _ fu n c t(  double *p)
{

double a n g l,  ang2 , a, 1 , u, b, temp; 
vo id  parms4( double double * , double double double * );

i
parms4( p, &a, &1, &u, &b);

angl = 0 . 5*ALPHA_l*(b+u~2. 0 * x v a l ) ; 
ang2 = 0 . 5*ALPHA_l*(a-l);
temp = (G-(K/RH0)*(pow(a,2)“p o w ( l ,2 ) ) ) * c o s h ( a n g l ) / s in h ( a n g 2 ) ; 
angl = 0 .5*ALPHA„l*(a+l“2 .0 * x v a l ) ; 
ang2 “ 0 .5*ALPHA_l*(b“u ) ;
temp -= (G-(K/RH D)*(pow(b,2)-pow(u,2)))=i'cosh(angl)/sinh(ang2) ; 
angl = 0 . 5*ALPHA_l*(a+l-b-u); 
temp = 0 . 5*temp/sinh(angl)+K*(pow(xval,2)/RHQ+pow(SIGMA/RHG, 2 ) ) ;  4

retu rn  temp;
>

I
j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ,

Parameter convers ion  fu n c t io n
?

k _ l= p [0] k_2=p[l]  c_3=p[2] c_4=p[3]

Ia = x v a l-p  [2]
1 = x v a l+ p [0 ]* p [3 ] - (1 .0 -p [0 ] )* p [2 ]  
u = x v a l + ( l . 0~p [l]  )*p [3] “p [l3*p[2]  
b " x v a l+ p [3]

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y
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'A l

I
I
■'i

vo id  parms4( double *p, double *a, double *1, double *u, double *b)
{

*a = x v a l - p [2] ;
*1 = x v a l+ p [ 0 ] *p[ 3 ] - ( 1 . 0 - p [ 0 ] ) *p[2];
*u = x v a l+ ( l  .0 “p [ l ] ) * p [ 3 ] “p [ l ]* p [2 ]  ;
*b = x v a l+ p [3];

retu rn  ;
}

f ***************************************************************************** y
Parameter convers ion  fu n c t io n

a = x v a l - p [0] b = xval+p [ 1] 4
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y  ::

il
;|i

vo id  parms2 ( double *p , double +a, double *b)
{

*a = ( x v a l - p [0] < - 0 .0 1  ) ? x v a l - p [0] : - 0 . 0 1 ;
*b = ( x v a l+ p [ 1]> 0 .0 1  ) ? x v a l+ p [ 1] : 0 . 0 1 ;

retu rn  ;

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1

I

Our v e r s io n  of D i x i t ' s  s o lu t io n  fo r  th e  ODE ?
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y

double d i x i t . f u n c t ( double *p)
{

vo id  parms2 ( double double * , double * );  
double a , b, temp, a n g l,  ang2 ;

parms2 ( p, &a, &b);
angl = 0 . 5*ALPHA„l*(a-2.0*xval);
ang2 = 0 . 5*ALPHA„l*b;
temp -  (G -(K /R H 0)*p ow (b ,2 ))*cosh (an g l)/s inh (ang2); 
angl = 0 . 5*ALPHA„l*(b-2.0*xval); 
ang2 = 0.5*ALPHA_l*a;
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temp (G -(K /R H G )*pow (a,2))*cosh(angl)/s inh(ang2); 
angl = 0 . 5*ALPHA_l*(b-a);

4

3
=7

/*
** Step 1. . . .  Check parameter ranges on entry  
* /

f o r  ( i =0 ; i<n ; i++ ) {
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retu rn  0.5*temp/sinh(angl)+K*(pow(xval,2)/RH0+pow(SIGMA/RH0,2));
}

■

/*****************************************************************************
BFGS Optimising tech n iq ue  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * y  i;

# d e f in e  ALPHA 1.0e™4 ;;
# d e f in e  STEP.MAX 100.0

v o id  b f g s ( i n t  n, double *x, double * x l ,  double *xu, double t o i ,  double  
* d ia g „ h ess in ,  in t  * i t e r ,  double *y, double (* fu n c )(d ou b le  * ))

{
in t  i t s ,  i ,  j ,  k , i t erra; 
short in t  s t a r t ;
double * s c a le ,  *g, *dg, *xn, * x i ,  * p t r , * * h e ss in ,  **htmp; 
double t o l . g ,  t o l . h ,  t o l . h h ,  t o l _ x ,  amp.x, amp_g, rnderr, stpraax,

s lo p e ,  temp, tem pi, temp2 , f a c ,  fa d ,  f a e ,  sumdg, sumxi, f
h, fp ,  fm, x s t o r e ,  g e t _ s t e p (  double, d ouble);

/*
** D ec la ra t io n  o f  fu n c t io n  p ro to typ es  |
* /

v o id  ru n tim e.error (ch ar  *) ;
vo id  d fcn (  i n t ,  double * ,  double * ,  double, double * , i |

double (* fu nc)(dou b le  * ) ) ;  
short in t  p d . f a i l ( i n t ,  double * , double ++, double **);  
short in t  l in e „ s e a r c h (  i n t ,  double * , double * , double *, double +, 

double * , double *, in t  double, double, double, double * ,  
double ( * f u n e ) (double * ) ) ;  

double grad( i n t ,  double * , double , double (* fu n c )(d ou b le  * ) ) ;  4

::3

;



i f  ( x [ i ] < x l [ i ]  II x [ i ] > x u [ i ]  )
ru n tim e_error(" \n Star tin g  v a lu es  out of ra n g e . . . f a t a l  error  !\ n " ) ;

}

A
I
5

i f  ( * i t e r <=0 )
runt im e .e r r o r ("\nMumber of i t e r a t i o n s  u n s p e c i f i e d . . . f a t a l  error  !\ n " ) ;

/*
** Step 2. . . .  Acquire memory fo r  h o ld in g  v e c t o r ia l  q u a n t i t i e s  
**
** s c a le  -  Holds s c a le  f a c t o r s  o f  o r ig in a l  input
** g -  Gradient o f  su r fa ce  at x [  ]
** xn -  Next e s t im a te  of th e  minimum point
** dg -  I n i t i a l l y  g rad ien t  of su r fa ce  at xnC ] -  l a t t e r l y
** d i f f e r e n c e  in  g ra d ie n ts
** x i  “ Downhill s lo p e  at x [  ]
** htmp -  Temporary sto ra g e  f o r  C holesk i decom position

s c a le  = (double *) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) );  
g = (double *) c a l l o c ( ( s i z e „ t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) );  
xn = (double *) c a l l o c ( ( s i z e „ t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) );
dg = (double *) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) ) ;
x i  = (double *) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) ) ;
h e s s in  = (double **) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s iz e o f (d o u b le  * ) ) ;  
htmp = (double **) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s iz e o f (d o u b le  * ) ) ;  
f o r  ( i =0 ; i<n ; i++ ) {

h e s s i n [ i ]  = (double *) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) );
htmpCi] = (double *) c a l l o c ( ( s i z e . t )  n, ( s i z e . t )  s i z e o f ( d o u b le ) );

}
i f  ( Ihtmp[n-l] ) runtime„error("\nMemory a c q u is i t io n  p rob lem \n" );

/*
** Step 3. . . .  S ca le  v a r ia b le s  based on parameter range 
* /

fo r  ( i =0 ; i<n ; i++ ) { 
s c a le  [ i ]  =

( ( te m p l= fa b s (x u [ i ] ) ) > (temp2= f a b s ( x l [ i ] ) )  ) ? tempi : temp2 ; 
x [ i ]  /=  s c a l e  [ i ]  ; 
x l [ i ]  /=  s c a le  [ i ] ;
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XU Ci] /=  s c a le  [ i ] ;
}

/*
** Step 4 . . . .  Compute rounding error  
* /

rnderr = 1 . 0 ;
w h ile  ( rnderr+1 . 0 !=1.0 ) rnderr *= 0 .5 ;  
rnderr *= 2 . 0 ;

/  *
** Step 5. . . .  I n i t i a l i s e  t e s t  parameters and t o le r a n c e s
* /

t o l . h  = p o w ( to l , 0 . 66 ) ;
t o l . h h  = p o w ( to l ,0 .3 3 ) ;
t o l _ g  = t o l . h ;
t o l . x  “ 4.0=5=tol;
s t a r t  == 1 ;
iterra = -1  ;
i t s  = 0 ;

/*
+* Step 6 . . . .  S ta r t  th e  i t e r a t i o n  phase
* /

w h ile  ( i t s < * i t e r  ) {
i f  ( s t a r t  I 1 p d _ f a i l ( n ,  d ia g .h e s s in ,  h e s s in ,  htmp) ) {

/  *
** C a lcu la te  i n i t i a l i s a t i o n  fu n c t io n  va lue and dow nhill g rad ien t
** I n i t i a l i s e  th e  in v e r se  h e s s ia n  at th e  i d e n t i t y .
** Compute norms f o r  p o s i t io n  x [  ] and grad ien t  g [  ] .
* /

f o r  ( i =0 ; i<n ; i++ ) x [ i ]  *= s c a l e [ i ] ;
*y ™ f u n c ( x ) ;
f o r  ( i =0 ; i<n ; i++ ) x [ i ]  /=  s c a le  [ i ] ;
d fcn (n ,  x ,  g ,  t o l . h ,  s c a l e ,  f u n e ) ;
f o r  ( amp„x=0 . 0 , amp„g=0 . 0 , i “0 ; i  <n ; i++ ) {
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amp.x += x [ i ] * x [ i ] ;  
amp.g += g [ i ] * g [ i ]  ;
f o r  ( j =0 ; j<n ; j++ ) h e s s i n [ i ]  [ j ]  -  0 . 0 ; 
h e s s i n [ i ]  [ i ]  ~ 1 . 0 ; 
x i  [ i ]  = - g [ i ]  ;

}
i f  ( i t e r m != - l  ) x i [ i t e r m ]  -  0 . 0 ; 
amp.x = sq r t (a m p .x ) ; 
amp.g = sq r t (a m p .g ) ;
stpmax = ( (  arap„x>(double )n  ) ? amp.x : (double )n  )=t=STEP„MAX; 
s t a r t  “ 0 ;

}

/*
** Step 7 . . . .  Check e x i t  c o n d it io n  on parameter convergence  
* /

i f  ( s t a r t ==0 ) {
f o r  ( temp-0 . 0 , i ” 0 ; i<n ; i++ ) {

tempi = ( (temp2= f a b s ( x [ i ] ) )  > 1 . 0 ) ?  temp2 : 1 . 0 ; 
i f  ( temp < (temp2= f a b s ( x i [ i ] ) /tem pi) ) temp -  temp2 ;

}
i f  ( temp<=tol_x ) {

* i t e r  = i t s ;
f o r  ( i =0 ; i<n ; i++ ) {

temp = ( t e m p l = f a b s ( x [ i ] - x l [ i ] ) )  <
(temp2= f a b s ( x [ i ] - x u [ i ] ) )  ? tempi : temp2 ; 

i f  ( temp<-1 0 . 0*rnderr ) {
p r i n t f ("\nOptimal parameter v a lu e s  appear 

to  be on the boundary !\ n " ) ;
break ;

>
}

}
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i t s+ + ;
i f  ( amp„g>stpraax )

f o r  ( fac=stpmax/amp_g, i =0 ; i<n ; i++ ) x i [ i ]  *= fa c ;  
fo r  ( s lop e= 0 . 0 , i =0 ; i<n ; i++ ) s lo p e  +- g [ i ] * x i [ i ] ;  
s t a r t  = l in e „ s e a r c h (  n, x ,  x l ,  xu, x i ,  xn, y ,

&iterm, s lo p e ,  rnderr, t o l . x ,  s c a l e ,  f u n e ) ;



/*
** s te p  8 . . . .  C a lcu la te  new g rad ien t  and check g ra d ien t  e x i t  c o n d it io n  
* /

y

p tr  -  dg; 
dg = g; 
g = p tr;
d fcn (n ,  X, g ,  t o l . h ,  s c a l e ,  f u n e ) ; 
tempi = (temp2= fa b s (* y ) ) > 1 . 0 ? temp2 : 1 . 0 ; 
fo r  ( temp=0 . 0 , i =0 ; i<n ; i++ ) { 

i f  ( i!==iterm ) { 
temp2 =

f a b s ( g [ i ] ) * ( f a b s ( x [ i ] ) > 1 . 0 ? f a b s ( x [ i ] ) : 1 . 0 ) /tem pi;  
i f  ( temp<temp2 ) temp = temp2 ;

>
>
i f  ( temp<=tol_g ) {

* i t e r  = i t s ;
f o r  ( i =0 ; i<n ; i++ ) {

temp = ( t e m p l = f a b s ( x [ i ] - x l [ i ] ) )  <
(temp2= f a b s ( x [ i ] - x u [ i ] ) )  ? tempi : temp2 ; 

i f  ( temp<=1 0 . 0 *rnderr ) {
p r i n t f ("\nOptimal parameter v a lu es  appear to  be on 

th e  boundary !\ n " ) ;
break ;

}
}

>

/*
** Step 9. . . .  Mo convergence and so continue w ith  update procedure  
** r e c o g n is in g  th a t  xn[ ] can now be used as temporary
** s to ra g e
* /

u,

fo r  ( i =0 ; i<n ; i++ ) d g [ i ]  = g [ i ]  - d g [ i ]  ;
f o r  ( i =0 ; i<n ; i++ ) {

fo r  ( x n [ i ] = 0 . 0 , j =0 ; j<n ; j++ )
x n [ i ]  += h e s s i n [ i ]  [j]  *dg[j]  ;

}
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/*
** s te p  10. . . .  C a lcu la te  dot products fo r  denominators  
* /

fo r  ( fac=fae~sumdg=suinxi™0 . 0 , i =0 ; i<n ; i++ ) { 
fa c  +~ d g C i ] * x i [ i ] ;  
fa e  += d g [ i ] * x n [ i ] ;  
sumdg += d g [ i ] * d g [ i ] ;  
sumxi += x i [ i ] * x i  [ i ] ;

/*
** Step 11. . . .  Test f a c  fo r  s i z e  -  sk ip  update i f  too  sm all 
* /

i f  ( fac*fac>rnderr*sumdg*sumxi ) { 
fa c  = 1 . 0 / f a c ;  
fad  = 1 . 0 / f a e ;
fo r  ( i =0 ; i<n ; i-t-s* ) d g [ i]  = f a c * x i [ i ] - f a d * x n [ i ] ;
f o r  ( i =0 ; i<n ; i++ ) {

fo r  ( j =0 ; j<n ; j++ ) {
h e s s i n [ i ]  Cj] +~ f a c + x i [ i ] * x i [ j ] -

fad*xn [ i ]  *xn [j ] tfae*d g  [ i ]  *dg Cj ] ;
}

}
}

/»
** Step 12. . . .  Compute next search  d ir e c t io n  
* /

f o r  ( amp_g=0 , i =0 ; i<n ; i++ ) { 
amp„g += g [ i ] * g [ i ]  ;
f o r  ( x i [ i ] = 0 . 0 , j =0 ; j<n ; j+ t  ) x i [ i ]  -= h ess in C i]  [ j ] * g [ j ]  ;

>
amp„g = sqrt(amp_g);

/*
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** s te p  13. . . .  Free temporary v e c to r  memory -  r e s c a l e  to  t r u e  v a lu es  
* /

/  *
** Step 14. . . .  Compute tru e  H essian matrix at minimum 
* /

i f  ( p d _ f a i l (  n , d ia g „ h e s s in ,  htmp, h e s s in )  ) {
fprintf(stderr,"\nWARNIMG -  Irreg u la r  e x i t  from BFGS . . . . " ) ;  
f p r in t f ( s td e r r ," \n T h e  H essian i s  not p o s i t i v e  d e f i n i t e  !\ n “) ; 
f o r  ( i “0 ; i<n ; i++ ) { 

f r e e ( h e s s i n [ i ] );
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f r e e ( g ) ; 
f r e e (d g )  ; 
f r e e (x n )  ; 
f r e e ( x i )  ;
f o r  ( i =0 ; i<n ; i++ ) { 

x [ i ]  *= s c a l e d ] ;  
x l [ i ]  *= s c a l e d ] ;  
x u [ i ]  *= s c a l e d ] ;

}

f o r  ( i =0 ; i<n ; i++ ) {
f o r  ( j =0 ; j<n ; j++ ) {

h = ( (h = to l_ h * fa b s(x C j]) )> to l_ h h  ) ? h : to l_h h ;  
x s to r e  = x [ j ]  ; 
h = g e t „ s t e p ( x s t o r e ,  h) ; 
x [ j ]  = xstore+h;  
fp  = g r a d ( i ,  x ,  to l_ h h ,  f u n e ) ; 
x [ j ]  = x s to r e -h ;
fm = g r a d ( i ,  x ,  to l_ h h ,  f u n c ) ; g
x [ j ]  = x s to r e ;
htm pd] Cj] = 0 . 5 * (fp -fm )/h ;  :s

> :

/*
** Step 15. . . .  T est H essian m atrix f o r  p o s i t i v e  d e f in i t e n e s s  
** and compute in v e r se  when p o s i t i v e  d e f i n i t e
* /

7



i ï

h = ( (h = to l_ ] i+ fab s(x [j]  ) )> to l_ h  ) ? h : to l_ h ;
x s to r e  ™ x [ j ]  ;
h  = g e t „ s t e p ( x s t o r e ,  h );
x [ j ]  = xstore+h;
fp  = f u n c ( x ) ;
x [ j ]  = x s to r e -h ;
fm = f u n c ( x ) ;
x [ j ]  = x s to r e ;

retu rn  0 .5 * ( fp - fm ) /h ;
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f r e e (htmpCi]);
}

} e l s e  {
f o r  ( i=0 ; i<n ; i++ ) {

h ess in C i ]C i ]  -  1 . 0 / d i a g _ h e s s i n C i ] ; 
f o r  ( j=i*M ; j<n ; j++ ) {

f o r  ( temp=0.0,k“ i  ; k<j ; k++ )
temp -= hess inCj]  Ck] *hessinCk] Ci] ; 

h ess in C j]C i]  ” t em p /d ia g „ h es s in C j ] ;
>

}
f o r  ( i=0 ; i<n ; i++ ) {

f o r  ( temp=0.0 ,j=0 ; j< = i  ; j++ ) temp += pow(hess inCi]Cj] ,2)  ; 
diag_hess inCi]  “ sqrt( temp);  
f r e e ( h e s s i n C i ] );  
f r e e (htmp Ci] );

}
>

f r e e ( s c a l e ) ; 
f r e e ( h e s s i n )  ; 
f r e e (htmp); 
return;

double g r a d ( in t  j ,  double *x, double t o l_ h ,  double (* fu n e )(d ou b le  +))  
{

double h, f.p, fm, x s t o r e ,  g e t _ s t e p (  double, dou ble);



■Il

Function to  s ig n a l  run_time errors  and e x i t  to  system .

vo id  ru n tim e.error (ch ar  * err o r_ tex t)
{

fp r in t f (s td e r r ," R u n -t im e  e r r o r . . . \ n " ) ;
fp r in t f ( s t d e r r ," % s \n " ,e r r o r „ t e x t ) ;
f p r i n t f ( s t d e r r , " . . .now e x i t i n g  to  s y s t e m . . . \ n " ) ;

e x i t ( 1) ;
}

y*************:***************************#************************************ 

Function which performs l i n e  m in im isation .

VARIABLES USED IN LINE.SEARCH FUNCTION I
ON ENTRY: 

n
x [  ] 
xlC ] 
xuC ] 
x i  [ ] 
xnC ]
*y
*iterm
s lo p e

rnderr
t o l . x
func(doub le  *)

ON EXIT: 
n
x [  ]

number of  independent parameters
current e s t im a te  o f  parameters at minimum
v e c to r  h o ld in g  lower bounds on parameters
v e c to r  h o ld in g  upper bounds on parameters
s c a le d  dow nhill search d ir e c t io n
co n ta in s  temporary e s t im a te s  o f  x [  ]
current e s t im a te  of minimum ( *y=func(x) )
v a r ia b le  p r e v io u s ly  a g a in s t  boundary
measures c o s in e  o f  angle  between search  d ir e c t io n
and g rad ien t  at p o in t x [  ]
com piler rounding error
to le r a n c e  on components o f  x [  ]
p o in te r  to  a s c a la r  fu n c t io n  of a v ec to r
(u ser  su pp lied )

unchanged on e x i t
new e s t im a te  o f  parameters at minimum
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.

x l [  ] 
xuC ] 
x i [  ] 
xnC ]
*y
*iterm
s lo p e
rnderr
t o l . x

“ unchanged on e x i t
-  unchanged on e x i t
-  unchanged on e x i t
-  con ta in s  a copy of  x [  ]
" new es t im a te  of  minimum ( *y=func(x) ) 
" v a r i a b l e  now ag a in s t  boundary ( i f  any)
-  unchanged on e x i t
-  unchanged on e x i t
-  unchanged on e x i t

short  in t  l i n e „ s e a r c h ( i n t  n,  double *x,  double * x l ,
double *xu, double * x i ,  double *xn, double *y,  
i n t  *i term,  double s l o p e ,  double rnderr ,  
double t o l . x ,  double * s c a l e ,  
double ( * f u n e ) (double * ) )

{

f o r  ( templ=0 . 0 , i =0 ; i<n ; i++ ) {
temp2 = ( te m p = fa b s (x [ i ] ) )  > 1 .0  ? temp : 1 . 0 ;
i f  ( tempi < ( tera p = fa b s(x i[ i ] ) / tem p 2 ) )  tempi = temp;

}
v l .m in  " to l„ x / te m p l;  
vl.m ax = 1 . 0 ;

/  *
** F ix  maximum v l  as th e  sm a ller  o f  u n ity  and a va lu e  determined  
** by th e  upper and lower bounds. Near th e  minimum, v l= 1 .0  
* /

f o r  ( * i t e r m = - l , i =0 ; i<n ; i++ ) {
i f  ( x i [ i ] > 0 . 0  && v l .m a x > ( t e m p = ( x u [ i ] - x [ i ] ) / x i [ i ] )  ) { 

vl.m ax “ temp;
*iterm  = i ;

}
i f  ( x i [ i ] < 0 . 0  M  v l_ m a x > ( t e m p = ( x l [ i ] - x [ i ] ) / x i [ i ] )  ) { 

vl.m ax -- temp;

in t  i ,  j ;
double tempi,  temp2, temp, v l . m in ,  vl .max,  v l , v l l ,  yn,  ynn, a , b,  d i s c ;  
vo id  ru n t im e .error (char  *);
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*iterm  = i ;

i
i f  ( vl„max<=vl_niin) {

fo r  ( i - 0  ; i<n ; i++ ) x [ i ]  += vl„max*xi [ i ] ; I
retu rn  1 ; I

} e l s e  {
v l  = 1 . 0 ; 
v l .m in  /=  vl.max;
fo r  ( i =0 ; i<n ; i++ ) x i [ i ]  =f== vl.max;

}

/*
** Take a Newton s tep  . . .
* /

f o r  ( i - 0  ; i<n ; i++ ) x n [ i ]  " x C i ] + v l * x i [ i ]  ;
f o r  ( j=0 ; j<n ; j++ ) x n [ j ]  *= s ca leC j ] ;
yn = fu n c(xn) ;
f o r  ( j - 0  ; j<n ; j++ ) x n [j ]  /=  s c a le C j] ;  
temp = yn-*y“ALPHA*vl*slope+vl_max; 
w h ile  ( v l>vl„m in k k  yn>*y+ALPHA*vl*slope*vl„max ) { 

i f  ( fa b s(1 .0 -v T )< -r n d er r  ) {
temp = ”0 .5 * s lo p e / ( y n - ^ y - s lo p e ) ;

} e l s e  {
tempi = y n -* y -v l* s lo p e ;  
temp2 = y n n -* y -v l l* s lo p e ;  J;
a -  ( t e m p l / ( v l * v l ) “t e m p 2 / ( v l l * v l l ) ) / ( ( v l “V ll)* p o w (v l_ m a x ,3 )) ;
b = ( - v l l * t e m p l / ( v l* v l ) +

vl*tem p2 / ( v l l * v l l ) ) / ( (v l-v l l )* p o w (v l_ m a x ,2 ) ) ;  
i f  ( fabs(a)<= rnderr  ) { 

temp = - 0 .5 * s lo p e /b ;
} e l s e  {

d i s c  = b *b -3 .0*a*slop e;  
i f  C d is c < 0 . 0  )
runtim e.error(" \nR oundoff problems in  l i n e  sea rch \n " );
temp = (~b+sqrt( d i s c ) ) / ( 3 . 0 * a ) ;
i f  ( temp>(templ=0 . 5*v l)  ) temp = tempi;

>
}
v l l  = v l ;
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ynn = yn;
v l  = ( temp>(templ=0. l * v l )  ) ? temp : tempi;  
f o r  ( i=0 ; i<n ; i++ ) x n [ i ]  = x [ i ] + v l * x i [ i ] ; 
f o r  ( j - 0  ; j<n ; j++ ) x n [ j ]  *= sca leCj]  ; 
yn “ fu n c(xn) ;
f o r  ( j=0 ; j<n ; j++ ) xnCj] / ” s ca le C j ] ;

>
f o r  ( *y=yn, i=0 ; i<n ; i++ ) { 

xCi] = xnCi] ; 
xiC i]  *= v l ;

}

return  0 ;
}

Function c a l c u l a t e s  numerical  grad ie n ts  o f  func(xC ] )  at  xC ] 
******************************+*********************************************+/

vo id  d f c n ( i n t  n, double *x,  double *g,  double t o l . h ,  double * s c a l e ,  
double ( * f u n e ) (double * ))

{
i n t  i ,  j ;
double h, fp ,  fra, x s t o r e ,  g e t „ s t e p (  double,  double) ;

f o r  ( i=0 ; i<n ; i++ ) {
h = ( (h - t o l„ h * f a b s ( x C i ] ) ) > to l „ h  ) ? h : t o l . h ;  
x s t o r e  = xCi] ; 
h = g e t „ s t e p ( x s t o r e ,  h ) ; 
xCi] = xstore+h;
f o r  ( j=0 ; j <n ; j++ ) xCj] *= s c a l e  Cj] ; 
fp  = f u n c ( x ) ;
f o r  ( j=0 ; j<n ; j++ ) xCj] /=  s c a le C j ] ;  
xCi] = x s to r e -h ;
fo r  ( j=0 ; j<n ; j++ ) xCj] *= s c a le C j ] ;  
fra = fu n c (x ) ;
f o r  ( j=0 ; j<n ; j++ ) xCj] /=  sca leCj]  ; 
xCi] = x s to r e ;  
g Ci] = 0 .5 * ( fp - fm ) /h ;

}
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return  ;

Function to  ensure s t e p s i z e  in  gradie nt  i s  machine r e p r e s e n ta b le .  
Provided as a separate  fu n c t io n  to  d ece ive  o p t im is in g  com pilers .

+ j

double g e t . s t e p ( d o u b l e  x ,  double h)
{

double temp; 
temp = x+h;

re turn  temp-x;

Function to  check i f  updated H essian i s  p o s i t i v e  d e f i n i t e .
T r ies  to  perform a C holesk i decom position  on h e s s i n [ ] [ ] . 

*****************************************************************************j

short in t  p d _ f a i l (  in t  n, double *p  ̂ double **hes8 in ,  double **bb )
{

in t  i ,  j ,  k; 
double sigma;

f o r  ( i=0 ; i<n ; i++ ) {
fo r  ( j=0 ; j<n ; j++ ) b b [ i ]  [ j ]  -  h e s s i n [ i ]  [ j]  ;

}
f o r  ( i =0 ; i<n ; i++ ) {

f o r  ( j = i  ; j<n ; j++ ) {
f o r  ( s ig m a = b b [ i ]C j ] ,k = i - l  ; k>=0 ; k— ) 

sigma -= bbCi] Ck]*bbCj] Ck] ; 
i f  ( i==j ) {

i f  ( s igma<=0.0 ) return 1; 
pCi] = sqr t ( s igm a);

} e l s e  {
bbCj]Ci] = sigma/pCi];
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}
>

}

retu rn  0 ;
}

T he source code evaluating D ix it (1991a)’s op tim al li 

and cost function
# in c lu d e  < std io .h >
# in c lu d e  <niath.h>
# in c lu d e  < s td l ib .h >
# in c lu d e  <malloc.h>

/***************************************************************************** 
In d e f in in g  th e  c h a r a c t e r i s t i c  roo t  of th e  ODE, we s e t  SIGMA=0.1 

and RH0=0.05, th e r e fo r e  BETA=sqrt(2*RH0)/SIGMA==sqrt( 1 0 .0 ) .  
*****************************************************************************/

# d e f in e  SIGMA 0 .1
# d e f in e  RHG 0 .05
# d e f in e  BETA s q r t ( 2 . 0*RH0)/SIGMA
# d e f in e  K 0 .5
# d e f in e  G 0 .1
# d e f in e  GAMMA (G*pow(RHO, 2 ) ) / ( 2 . 0*K*pow(SIGMA,2))

double x v a l;  x v a l i n i t i a l  p o s i t io n  of s t a t e  * /

vo id  raain( vo id  )
{

double fu n c (d o u b le ) , d i x i t ( d o u b l e ) , h; 
in t  i  ;

f o r  ( h=1 . 0e - 6  ; fu n c (h )> 0 . 0  ; h + -1 . 0e - 6  ) ;  
f o r (  i=0; i<=3; i+ + ){

x v a l = 0 . 1*((d oub le)  i ) ;
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p r in t f ( " \n  H i s  % 15.61f\t  DIXITS VAL h, d i x i t ( h ) ) ;

1

.1
::k=

e x i t ( 0 ) ;
}

j  ****** He**********************************************************************
Function p rov id in g  th e  'op tim al' va lue  fo r  D ix i t  (1 9 9 1 a ) 's  h 

*****************************************************************************j
t

double func(double  h)
{

return  (G*RH0"K*pow(h,2))*BETA*sinh(BETA*h)+
2 . 0*K*h*(cosh(BETA*h)” l .0 );

} .?

! *****************************************************************************%  
The s o lu t io n  to  th e  HJB(QDE) equation  obtained  D ix i t  (1991a) |

*****************************************************************************yw

I
double d ix i t (d o u b le  h)
{

double temp;

temp = - 2 . 0*K*h/(RHD*BETA*sinh(BETA*h));  
temp *= cosh(BETA*xval); 
temp += K*pow(xval,2)/RHQ; 
temp +“ K*pow((SIGMA/RHO),2 ) ;

retu rn  temp;
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Technical A nnex 6-The Source Code Chap

ter 4
# in c lu d e < std io .h >
^ in c lu de <math.h>
# in c lu d e < s td l ib .h >
# in c lu d e <malloc.h>

# d e f in e N 20 /***No. o f  Modes used in  Chebyshev P o ly n .* * * /
# d e f in e VAR 2 .5 e -3 /***V ariance of Geometric Brownian Motion***/
# d e f in e MU 0 . 0 /***Mean of Geometric Brownian Motion***/
# d e f in e RHG 0.05 /***Constant Continuous Discount R ate***/
# d e f in e WEALTH 1 .0 / * * * I n i t i a l  Level of Wealth***/
# d e f in e G l.O e -3 /***Lump Sum Transaction  C ost***/
# d e f in e OMEGA 0 .0 1 0 /***Prop. Trans. Cost at Upper Boundary***/
# d e f in e DELTA 0.030 /***Prop. Trans. Cost at Lower Boundary***/
# d e f in e ODRATE 2 . 0e - 2 /***O verdraft Premium i s  2%***/

double m val, alpha._p, alpha.,m, tr ig s [N + 1 ][N + 1 ] , d iff [N + 1][M + 1], cash .
p [ 2] ;

m ain(voi
■f

d)

in t j ;
double pi„by_n, f u n c . l (d o u b le  * );  
char f i l e n a m e [13];
FILE ^output ;

/+  Create f i len am e ap prop riate  to  a p p l ic a t io n  * /  
f i l e n a m e [0] ~ 'M' 
f ilenam eC l] -  ’U’ 
f i l e n a m e [2] = 'O' 
f i l e n a m e [3] ™ 'R' 
fi len a m e [4] = 'E' 
f i l e n a m e [5] = 'S'  
f i l e n a m e [6] » 'U'
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f i le n a m e [7 ]  ~ 'L ';  
f i len a m e [8] = ' T ' ; 
f i l e n a m e [9] = 'S ' ;  
f i l e n a m e [ 10] = ' . '  
f i l e n a m e [ l l ]  = 'D' 
f i l e n a m e [12] = 'A' 
f i l e n a m e [13] ” 'T' 
p r i n t f ("\nFilename in  %12s", f i l e n a m e ) ;

p i_ b y .n  = P I /( (d o u b le )  N );

f o r (  j= 0 ; j<=N; j++)
f o r (  i= 0 ; i<=M; i++)

t r i g s [ i ] [ j ]  = co s (p i .b y „ n * ((d o u b le )  i * j ) ) ;

cash = 0 . 0 ;

p [ 0] = - 0 . 0 2 ;
f o r  ( j = l ;  j<~40 ; j+ + ){

ou tp ut= fop en (fi len am e, "a"); 
p [ l ]  = cash+0 . 001*((d oub le)  j ) ;
fp r in tf (o u tp u t ," % 1 0 .G if %10.61f %10.61f\n", f u n c . l ( p ) ,  p [ 0] ,  p [ l ] ) ;  
f c l o s e ( o u t p u t ) ;

}

e x i t ( 0 );

/***************************************************************************** 
Function To Be Optimised Which Also Contains The I n i t i a l  Value Problem 

*****************************************************************************^

double f u n c _ l (  double *pval )
{

s t a t i c  in t  s t a r t  = 1 ;
in t  i f a i l ,  in t e g r a t e (  double, double, double, double *,

double ( * f u n e ) (d o u b le )) ,  i ,  j ;  
double f c n (  d o u b le ) ,  temp, m[M+l], v [M + l] , v a lu e ,  r „ in ,  r„out;
s t a t i c  double t h e t a ,  tm pl, tmp2 , p i .b y .n ,  t o l = 1 . 0e - l l ;  
v o id  fp r im e(d o u b le , double * , double * );
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vo id  coef fsC  i n t ,  double *,  double *);
vo id  f s o l v e ( i n t ,  double ,  double *, double,  double *, vo id  (* fv a lu e )

(double,  double *,  double * ) ) ;

/****Compute Values f o r  a lp ha .p  and alpha.m fo r  th e  I n i t i a l  Value Problem****/ 
i f ( s t a r t  ) {

tmpl = MU/VAR-0.5; 
tmp2 = 2.0*RH0/VAR;
a lp ha .p  = "tmpl+sqrt(tmp2+pow(tmpl,2 ) ) ; 
alpha.m -  - tm p l-sq rt(tm p 2+pow(tmpi,2 ) );  
pi„by„n = P I /( (d o u b le )  N ) ; 
s t a r t  = 0 ;

}
/*******5|c**************Solution o f  I n i t i a l  Value Problem*********************/ 

f o r  ( i - 0  ; i<=N ; i++ ) {
t h e t a  = 0 . 5*pi_by„n*((double) i ) ;
mval -  p[0] + (p[l]-pCO] )*p ow (cos(th eta ) ,2 )  ;
m[i] = mval;
mval += WEALTH;
i f a i l  = in t e g r a t e ( 0 . 0 , 1 . 0 , t o i ,  &value, f e n ) ;  
i f  ( i f a i l  != 0 ) {

p r in t f (" I n te g r a t io n  problem ! \ n \ n " ) ; 
return;

} e l s e  {
temp = mval/(VAR*sqrt(tmp2+pow(tmpl, 2 ) ) ) ;
v [ i ]  = tem p *(va lue+ (1 . 0/pow (alpha„p,2 ) ) / ( l . 0+ m val));
v [ i ]  += log(1.0+mval)/RH0;

>
>
r . i n  = 0 . 0 ; 
r„out = 4 .5 e - 2 ;

/********S o lu tion  Being Obtained To The E ntire  Problem To Be Optimised*******/ 
f s o l v e (  N+1 , t o i ,  (fer.in, r . o u t , v ,  fprim e);  
c o e f f s (  N+1, V ,  m);
va lu e  = 2 . 0* (cash  -  p [ 0] ) / ( p [ l ]  -  p [ 0] )  -  1 . 0 ;

/HcHc**++*******+*Value i s  th e  S p e c tr a l ly  Transformed Value o f  Cash************/ 
f o r (  temp=m[0] , j = l  ; j<=N ; j++) 

temp += m [ j ]* c o s ( j* a c o s (v a lu e ) );

retu rn  temp;
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}
vo id  fp r im e( double r ,  double *v, double *dv)
{

double temp, temp_2, c j , ck, v v [N + l] ,  r a t e ( d o u b le ) ;
in t  k, j ;  I
s t a t i c  in t  s t a r t = l ;
s t a t i c  double p i .b y .n ,  pi_by_2n, c o n . l [ N + l ] ,  con„2[W+l], con„3, |

con_4, f [N + l] ;  
v o id  c o e f f s (  i n t ,  double *, double * );

i f  ( s t a r t  ) {
/**************D elivers Ghebychev-Lobatto d i f f e r e n t i a t i o n  m atrix .************/  

con„3 = RHO; 
con_4 = - 1 .0 ;
pi_by_n = P I /( (d o u b le )  N ) ; 
pi_by_2n = 0 . 5 * P I / ( (double) N ); 
f o r  ( j=0 ; j<=N ; j++ ) {

cj = 1 . 0 ;
i f  ( j ==0 II j==M ) cj = 2 . 0 ; f
f o r  ( k=0 ; k<=N ; k++ ) { 

ck = 1 . 0 ;
i f  ( k==0 I I k==M ) ck = 2 . 0 ; 
i f  ( j !-k  ) {

temp = 2 . 0* s in (p i_ b y _ 2n*((double)  k + j ) )*  
s in (p i„ b y „ 2n*((double) k - j ) ) ;  

d i f f [ j ] [ k ]  = ( c j /c k )* p o w (-1 . 0 , j+k)/tem p;
}  e l s e  i f  ( j ==0 ) {

d i f f [ 0] [ 0] = ( 2 . 0*pow(((double) N) , 2 ) + l . 0 ) / 6 . 0 ;
} e l s e  i f  ( j-=N ) {

diff[M][M] -  " (2 .0*pow (((double)  N) , 2 ) + l . 0 ) / 6 .0;
} e l s e  {

temp = 2 . 0*pi_by_2n*((double) j ) ;  
d i f f [ k ] [ j ]  = " 0 .5 /( ta n (tem p )* s in (tem p ))  ;

>

}
>
s t a r t  = 0 ;

>
/H=H<*****************Treatement of S ta t io n a ry  Condition**********************/ 

f o r  ( j =0 ; j<"N ; j++ ) {

185 a

¥



temp = cos (p i_ b y .n * ( (d o u b le )  j ) ) ;
temp_2 = WEALTH+p[0]+0.5*(p[l]"p[0])*(1.0+temp);
if(WEALTH <= temp_2){

f [ j ]  = con_4* log ( l .0+ tem p „2) ;
} e l s e  {

f [ j ]  = c o n _ 4 * l o g ( l .0+
WEALTH*( 1 . 0 - (ODRATE+r) ) * (p [0 ]+ 0 .5 * ( p [1] - p [ 0 ] ) * ( 1 . 0+terap)) ) ;

}
co n . lC j]  = 0 . 5*VAR*con_4*pow(temp,2); 
con_2[j ]  = MU*con_4*temp;

/*  p r i n t f ( " \ n  A i s  %20.181f\t  C0N.2 i s  %20.181f \ t" ,  p [ 0 ] ,  c o n _ 2 [2 ] ) ;
g e tch a rO  ; * /

i f  ( r a t e ( r )  == 0 .0  ) {
f o r (  j - 0  ; j<=N ; j++ ) dvCj] = 0 . 0;  

retu rn  ;
>

/*******************Application of  Boundary Conditions***#*******************/
i f  ( r  > 0 .0  ) { 

do{
temp = v[0]  ;
c j = V [W] ;
c o e f f s ( N + l , V , v v ) ;
f o r (  ck = vv[0 ] ,  j = i  ; j<=N ; j++)

ck += v v [ k ] * c o s ( j * a c o s ( ( p [ l ] + p C O ] ) / ( p [ 0 ] - p [ l ] ) ) )  ; 
v[0] = ck+log(l .0+G+0MEGA*fabs(p[l])); 
vCN] -  ck-log(1.0+G+DELTA*fabs(p[0]));

} w h i l e (  fab s( tem p" v[0 ] ) > l .O e-12  && f a b s ( c j ~ v [ N ] ) > l .O e -1 2  );
}

f o r (  j=0 ; j<-N ; j++ ) {
f o r (  temp=0.0,k=0 ; k<=M ; k++ ) temp +- d i f f [ j ] C k ] * v [ k ] ; 
v v [ j ]  = temp;

}

f o r  ( j=0 ; j<=N ; j++ ) {
fo r  ( temp=0.0,k=0 ; k<=N ; k++ ) temp += d i f f [ j ] [ k ] * v v [ k ] ; 
d v [j ]  -  ( f  [ j ]+ c o n „ lC j]* tem p + co n „ 2 [j]* v v [j ]+ co n _ 3 * v C j]) / (ra te (r ))  ;

}
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/ *  p r i n t f (" \n  Value of  V(a) i s  %20.181f\t",  v [ 0 ] ) ;  
g e tc h a r O  ; * /
re turn  ;

The Function t o  be in te g r a te d

double f c n (  double x)
{

double tmpl,  tmp2;

tmpl = pow (x , -a lp h a_m )/ ( l .0+ m va l*x ) ; 
tmp2 “ pow(x ,a lpha .p ) /pow (m val+x ,2 ) ;

return  tmpl/alpha_ra+tmp2/pow(alpha.p,2);

Adaptive Simpson’s r u le  i n t e g r a t o r

# d e f in e  MAXSPL 30 
# d e f in e  MINSPL 5 
# d e f in e  RNDERR 5 . e - 1 6

in t  in t e g r a te (d o u b le  a, double b, double eps 
double ( * f u n e ) (double) )

double *quad,

/*
** Return codes

Return 0 . . .  Regular e x i t .
Return -1 . . .  I n te r v a l  of  I n te g r a t io n  has zero le n g th
Return -2  . . .  Tolerance  i s  e i t h e r  n e g a t iv e  or unachievable
Return -3  . . .  Error t o l e r a n c e  has not been met w i th in  th e

al lowed i t e r a t i o n s .

187



3
f

{ ï
double area=0 .0 ,  v a l o l d ~ 0 .0 ,  hnow, t o i ,  t o l e r r ,  v lower,  valnew,  

v a l d i f ,  x [ 5 ] ,  f  [5] , v[MAXSPL] , x s to r e  [3] [MAXSPL] , 
f s t o r e [ 3 ] [MAXSPL]; 

i n t  f i n i s h = l ,  j ,  n s p l i t ;  
long  number;
i f  ( f a b s ( b - a )  <= RNDERR ) re turn  -1;  
i f  ( eps <= RNDERR ) return -2  ; I
number=pow( 2 , MINSPL); 
t o i  -  ( 3 0 . 0 * e p s ) / ( b " a ) ;
*quad = 0 .0 ;  
x[0]  “ a; 
x[2]  = 0 .5*(a+b);  
x[4]  -  b;
f [ 0 ]  ” (*func) (x[0] ) ; ;3
f [ 2 ]  = (*func) (x [2]  ) ; 
f [ 4 ]  = ( t fu nc )  (x[4]  ) ;
f o r  ( n s p l i t = 0  ; nsplit<MINSPL ; n s p l i t + t  ) { 

x [ l ]  = 0 . 5* (x [0 ]+x[2 ]  ) ; 
x[3]  = 0 . 5 * ( x [ 2 ] + x [ 4 ] )  ; 
f [ l ]  = (*func) ( x [ l ]  ) ; 
f [ 3 ]  “ (*func) (x[3]  ) ; 
hnow = ( x [ 4 ] - x [ 0 ] ) / 1 2 . 0 ;  
vlower ” hnow*(f [0 ]+ 4 .0 * f  [ l ] + f  [2 ] ) ;
V [n s p l i t ]  == hnow*(f [2 ]+ 4 .0* f  [3]+f  [4])  ; 
valnew = v l o w e r + v [ n s p l i t ] ; 
v a l d i f  = va lnew -va lo ld;  
area = area+ va ld i f ;  
f o r  ( j=0 ; j<=2 ; j++ ) {

x s t o r e  [j ]  [ n s p l i t ]  = x [ j + 2 ] ;  |
f  s t o r e  [j ]  [ n s p l i t ]  = f [ j + 2 ] ;

} '1 
v a l o l d  = vlower;
x[4] = x[2]  ;
f  [4] = f  [2] ;
x[2]  = x [ l ] ;
f  [2] = f  [1] ;

}
n s p l i t - - ;
w hi le  ( f i n i s h = - l  ) {

J'
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x [ l ]  = 0 . 5 * ( x [ 0 ] + x [ 2 ] )  ; 
f [ l ]  = (*func) (xCl] ) ; 
x[3]  = 0 .5 * (x [2 ]+ x [4 ]  ) ; 
f [ 3 ]  = (*func) (x[3]  ) ; 
hnow = ( x [ 4 ] - x [ 0 ] ) / 1 2 . 0 ;  
vlower = h n o w * ( f [0 ]+ 4 .0 * fC l ]+ f [2 ] ) ;  
v [ n s p l i t + l ]  = hnow* ( f  [2]+4. 0*f [3 ]+f [4] ) ; 
valnew = vlower+v [ n s p l i t + 1 ] ; 
v a l d i f  = va lnew -va lo ld;  
area = a r e a + v a l d i f ; 
t o l e r r  = to l* h n o w * fa b s (a rea ) ; 
t o l e r r  = ( t o l e r r  > t o i )  ? t o l e r r  : t o i ;  
i f  ( (nsplit+l)>=MAXSPL ) { 

return  -3 ;
} e l s e  i f  ( f a b s ( v a l d i f ) < - t o l e r r  ) {

*quad += (v a ln e w + v a ld i f /1 5 ,0 ) ;  
whi le  ( number != ( 2 * (number/2)) ) { 

number -  number/2; 
n s p l i t - - ;

>
number++; 
i f  ( n s p l i t < 0  ) { 

f i n i s h  = 0;
} e l s e  {

v a l o l d  = V [ n s p l i t ] ;
X [0] = X [4] ; 
f  [0] “ f  [4] ;
f o r  ( j=0 ; j<=2 ; j++ ) {

f [ 2 * j ]  = f  s t o r e  [ j ]  [ n s p l i t ]  ; 
x[2 * j ]  = x s to r e  [ j ]  [ n s p l i t ]  ;

}
}

}■ e l s e  {
number *= 2; 
n s p l i t+ + ;
f o r  ( j=0 ; j<=2 ; j++ ) {

x s t o r e  [ j ]  [ n s p l i t ]  = x [ j + 2 ] ;  
f s t o r e [ j ]  [ n s p l i t ]  -  f  [j+2] ;

}
v a lo l d  = vlower;
X [4] = X [2] ;
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f  [4] = f  [2] ; r
x[2] = x [ l ] ;  
f  [2] = f  [1] ;

}

return  0 ;
}

-I

FUNCTION INTEGRATING PDE

vo id  f s o l v e ( i n t  n,  double t o i ,  double * a s t a r t ,  double aend, double *y,  
void  (* f v a lu e ) ( d o u b l e ,  double *,  double *) )

{
double d l ,  hmin, hmax, t o l e r r ,  temp, hnow, range,  errmax, a r r e s t ,  ain;  
double s i z e ( i n t ,  double *) ;  
double rnderr,  **w; 
i n t  reduce ,  f i n i s h = 0 ,  returnval=0;
i n t  o d e i n t ( i n t ,  double *,  double *,  double *,  double **,  double ,  

double,  double,  vo id  ( * f v a lu e ) ( d o u b l e , double *,  double * ) ) ;
vo id  f s o l v e . e r r ( i n t ) ;

w = (double **) m al loc (  7 * s i z e o f ( d o u b le  *) );  
i f  (!w) f s o l v e . e r r ( - 3 ) ;
f o r  ( reduce=0 ; reduce<7 ; reduce++ ) {

w[reduce] = (double *) m a l loc (  n * s iz e o f (d o u b le )  );  
i f  ( !w[r educe] )  f s o l v e „ e r r ( ~ 3 ) ;

}
rnderr  = 1.0;
w hi le  ( rnderr+1 . 0 !=1.0 ) rnderr  *~ 0 .5;  
rnderr *= 2 .0 ;  
range -  a e n d - * a s t a r t ; 
hmax = fa b s (r a n g e ) ;  
i f  ( hmax<=rnderr ) f s o l v e _ e r r ( - l ) ; 
i f  ( t o l “=0.0 ) { 

t o l e r r  = rnderr;
> e l s e  {

t o l e r r  -  t o i ;

190

s



:

,

j:
■1

> :
hmin ~ f a b s ( * a s t a r t ) ; 13
dl = fab s (ae nd );
hmin = (hmin > d l )  ? hmin : d l ;
d l  = (hmin > 1 .0 )  ? hmin : 1.0;
hmin = dl  * pow(rnderr, 0 .3 3 ) ; 1
i f  (hmin >- hmax) f s o l v e . e r r ( - 2 ) ;
d l  = t o i  * s i z e ( n ,  y ) ;
e r r e s t  = (d l  > t o i )  ? d l  : t o i ;
( * f v a l u e ) ( t a s t a r t , y , w [ 0 ] ) ; 1
errmax = s i z e ( n , w [ 0 ] ) ; -3
temp = errmax*pow(hmax,5); 3

hnow = hmax;
i f  ( e r r e s t  < temp) {

;:C,

-
d l  = f a b s ( * a s t a r t ) ;
hnow = (hmax > d l )  ? hmax : d l ; 1
hnow = t o i  * hnow;
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dl = e r r e s t /errmax; 
temp “ p o w ( d l ,0 . 2 ) ;  
hnow “ (hnow > temp) ? hnow : temp;

} Ï
d l  = (range > 0 .0 )  ? 1.0  : - 1 . 0 ;  
hnow *= d l ; 
a in  = * a s ta r t ;  
w hi le  ( ! f i n i s h  ) {

i f  ( (ain+hnow-aend)*range >- 0 .0 )  { 
hnow = aend-ain;  
f i n i s h  = 1;

}
reduce = o d e in t ( n ,  &ain, &hnow, y ,  w, hmin, hmax, t o l e r r ,  f v a l u e ) ; 
i f  ( fabs(hnow)"=hmin ) re tu rn va l  = 1; 
i f  ( ! reduce && f i n i s h  ) {

*a s t a r t  = aend;
} e l s e  {

f i n i s h  = 0;
}

>
i f  ( r e tu r n v a l“=l ) f s o l v e . e r r (1) ;
f o r  ( reduce=0 ; reduce<7 ; reduce++ ) f r e e (w [ r e d u c e ] );  
f r e e ( w ) ;



return;
}

vo id  f s o l v e _ e r r ( i n t  error .c od e )
{

i f  ( error„code>0 ) {
p r i n t f ("\n\nWARMING error  in  f s o l v e " ) ;  
i f  ( error_code==l )

p r i n t f (" \n In teg r a t io n  completed but requested  accuracy not met!");  
i f  ( error„code~=2 )

p r i n t f ("\nMore memory a l l o c a t e d  than i s  n e c e s s a r y !" ) ;

return;
} e l s e  {

p r i n t f ("\n\nFATAL execut ion  error in  f s o l v e " ) ; 
i f  ( e r r o r . c o d e = - - l  )

p r i n t f ("\nZero range of  in t e g r a t i o n !" ) ;  
i f  ( error_code==-2 )

p r i n t f (" \n E f f e c t iv e  range of i n t e g r a t i o n  i s  z e r o !" ) ;  
i f  ( error„code==-3 )

p r i n t f ("\nMemory a l l o c a t i o n  f a i l u r e ! " ) ;  
i f  ( error_code==-4 )

p r i n t f ("\nOrder of  equat ions  increased  -  r e a l l o c a t i o n  memory!");

e x i t (1 ) ;
}

in t  o d e i n t ( i n t  n, double *a, double *h, double *y,  double **w, double hmin,
double hmax, double t o l e r r ,  vo id  ( * f c n ) ( d o u b l e , double *,  double * ) )

{
double d l ,  d2, h v a l ,  t o l e s t ; 
i n t  j , i ;
vo id  r k c k ( i n t ,  double,  double,  double *, double **,  

void  ( * f c n ) (  double ,  double *, double * ) ) ;

rkck(n ,  *a, *h, y , w, f e n ) ;  
t o l e s t  -  0 .0 ;
f o r  (j = 0; j < n; j++ ) {
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}

double s i z e C in t  n,  double *y)
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d l  = f  abs (w [ l ]  [ j]  ) ; 
d2 = f  abs(w[6] Cj] ) ; 
i f  ( d l> 1 .0 )  d2 = d 2 /d l ;  
t o l e s t  = ( t o l e s t  > d2 ) ? t o l e s t  : d2;

>
i f  ( t o l e s t  >= t o l e r r )  {

i f  ( t o l e s t  >== t o l e r r  * 59049.0)  {
*h *“ 0 .1 ;

} e l s e  {
dl  = t o l e s t  /  t o l e r r ;
*h *= 0 .9  /  p o w ( d l ,0 .2 ) ;

>
i f  ( fab s(*h)  <= hmin) {

*a +- *h;
f o r  (j = 0; j < n; j++ ) y [ j ]  -  w[ l]  [ j]  ;
dl  = (*h > 0 .0  ) ? 1 .0  : - 1 . 0 ;
*h = dl*hmin;  
return  0 ;

>

return  1 ;
>
*a += *h;
f o r  (j = 0; j < n; j++ ) y [ j ]  = w[l]  [j]  ;
i f  ( t o l e s t  <= t o l e r r  * 1 .889568e-4)  {

*h 5 .0 ;
} e l s e  {

dl  " t o l e r r  /  t o l e s t ;
*h *= 0 .9  * p o w ( d l ,0 . 2 ) ;

}
d l  = f a b s ( * h ) ;
hval  ~ (hmin > d l )  ? hmin : d l ; 
hval “ (hmax > hval)  ? hval  : hmax; 
dl = (*h > 0 .0 )  ? 1.0  : “ 1.0;
*h -  d l*hval ;

re turn  0 ;



double v s i z e ,  d l ; 
in t  j ;

v s i z e  = f a b s ( y [ 0 ] ) ;  
f o r  (j = 1; j < n; j++ ) { 

dl = fabs  (y [ j ]  ) ;
v s i z e  = ( v s i z e  > d l  ) ? v s i z e  : d l ;

}

return  v s i z e ;
}

vo id  r k c k ( in t  n, double a,  double h,  double *y,  double **w, 
vo id  (* fpr im e)(double ,  double *, double * ) )

{
s t a t i c  double b l = - l l . 0 / 5 4 . 0 , b2=2.5 , b3=-70 .0 / 2 7 . 0 , b4=35.0 / 2 7 . 0 ,

c l= 1 6 3 1 . 0 / 5 5 2 9 6 . 0 , c2=175. 0 / 5 1 2 . 0 , c3=575 .0 /1 3 8 2 4 .0 ,  
c4=44275. 0 / 1 1 0 5 9 2 .0 , c5=253.0 /4 0 9 6 ,0 ,
d l = 3 7 . 0 / 3 7 8 . 0 , d2=250. 0 / 6 2 1 . 0 ,d3=125. 0 / 5 9 4 . 0 , d4=512.0 /1 7 7 1 .0 ,  
e l= " 2 7 7 . 0 / 6 4 5 1 2 . 0 , e2=6925. 0 / 3 7 0 9 4 4 . 0 , e3=-6925 .0 /2 0 2 7 5 2 .0 ,  
e4 = -2 7 7 . 0 / 1 4 3 3 6 . 0 , e5=277.0 /7084 .0  ;

i n t  j ;
double tmpl,  tmp2, tmp3, tmp4, tmp5, tmp6;

( * f p r i m e ) ( a , y , w [ 0 ] );  
tmpl = h*0.2;
f o r  ( j=0 ; j<n ; j++ ) w [ 6 ] [ j ]  “ y[ j ]+w [0]  [j ]*tmpl ;
(* fpr ime)(a+h*0 .2 ,w[6]  , w [ l ] ) ; 
tmpl = 0.075*h;  
tmp2 = 0.225*h;
f o r  ( j=0 ; j<n ; j++ ) w[6] [ j ]  = yCj]+w[0] [j ]*tmpl+w[l]  [j]  *tmp2;
( * fp r im e ) ( a+0. 3*h, w[ 6 ] , w[2] );
tmpl = 0.3*h;
tmp2 = -0 .9*h ;
tmp3 “ 1 . 2*h;
f o r  ( j=0 ; j<n ; j++ ) {

w[6] [ j]  = y [ j ]+w [0][ j ]* tm pl+w [ l ] [ j ]* tm p2+w [2] [ j ]* tm p3;
}
(* fp r im e ) (a + 0 . 6*h , w [ 6 ] , w [3 ] ) ;
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j<n ; j++ ) {
= yCj3+w[0] Cj] *tmpl+w[l] Cj] *tmp2+wC2] Cj] *trap3+wC3] Cj]*trap4;

tmpl “ h*bl;  
tmp2 = h*b2; 
tmp3 = h*b3; 
tmp4 = h*b4; 
for ( j=0 ;

wC6] Cj]
>
(*fprime) (a+h,wC6] ,wC4] ) ; 
tmpl ” h*cl  
tmp2 = h*c2 
tmp3 = h*c3 
tmp4 = h*c4 
tmp5 = h*c5 
for ( j=0 ;

wC6] Cj]
j<n ; j++ ) {
= y Cj] +wCO] Cj] *tmpl+wCl] Cj] *tmp2+wC2] Cj] *tmp3 

+wC3]Cj] *tmp4+w C4]Cj] *tmp5;

(*fprim e)(a+0.875*h,wC6],wC5]);  
tmpl = h*dl 
tmp2 -  h*d2 
tmp3 = h*d3 
tmp4 = h*d4 
for (j = 0

wCl] Cj]
j<n ; j++ ) {

: yCj]+wCO] Cj] *trapl+wC2] Cj] *tmp2+wC3] Cj] *tmp3+wC5] Cj]*tmp4;

tmpl = h*el  
tmp2 “ h*e2 
tmp3 = h*e3 
tmp4 = h*e4  
tmp5 = h*e5  
for (j=0 ; j<n ; j++ ) {

wC6] Cj] = wCO] Cj] *tmpl+wC2] Cj] *tmp2+wC3] Cj] *tmp3+wC4] Cj] *tmp4 
+wC5] Cj] *tmp5;

}

re turn  ;

Sub-Routine e v a l u a t i n g  S p ectra l  C o e f f i c i e n t s
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H e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

vo id  c o e f f s (  in t  n, double *v,  double *v_hat )
{
unsigned k,  j ; 
double sum;
f o r  ( k=0; k<=n; k++ ) {
f o r  ( sum-0.0 ,  j = l ;  j<n; j++ )

sum += v [ j ] * t r i g s C j ]  [k] ; 
sum += 0 . 5 * (v [ 0 ]  + v [n ]*cos (P I* (d ou b le )  k ) ) ;  
v.hatCk] = 2 . 0*sum/((double)  N ) ;

>
v . h a t Co] * - 0 . 5 ;
v.hatCn] * = 0 . 5 ;  / *  we ha lve  th e  nth c o e f f i c i e n t  because we

are us ing  a Gauss-Labboto quadrature * /

return;
}

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I

C o e f f i c i e n t  fu n c t io n  f o r  opportunity  r a t e
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / J

double ra te (d o u b le  r)

/*  return  c o s ( P I * r / 0 . 2 0 ) - s i n ( P I * r / 0 .20);  * /
re turn  - 1 . 0 ;

}
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