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Summary

The p-adrenoceptors are located in a number of different tissues, from vital 

organs such as the heart (primarily a p i-adrenoceptor population) and lung 

(mainly p2 -adrenoceptors) to adipose tissue (largely pg-adrenoceptors), and are 

involved in a variety of regulatory processes. They are stimulated by the 

endogenous agonists adrenaline and noradrenaline, resulting in a range of 

effects on the body via the sympathetic nervous system; these include smooth 

muscle relaxation (p2 -adrenoceptors) and alterations in heart rate (pi- 

adrenoceptors). The p3 -adrenoceptor effects thermogenesis and lipolysis, thus 

offering potential opportunities for p3 -agonists to be developed as anti-obesity 

and anti-diabetic drugs.

In this study, my first aim was to investigate agonist-induced regulation of the 

P~adrenoceptors, especially at the level of G-protein down-regulation. This 

included investigations into a number of the desensitization processes, including 

sequestration, G-protein down-regulation, and G-protein mRNA level changes 

(Chapter 3). Some areas of receptor desensitization have been researched a 

great deal, while other areas, such as at the level of the G-protein, have been 

less thoroughly investigated. In these studies I found that G-protein down- 

regulation occurred upon agonist occupancy of all three p-adrenoceptor 

subtypes (after expression in CHO cells). This was surprising in the case of the 

P3 -adrenoceptor, as the receptor itself has previously been shown to be

refractory to down-regulation (Chambers e/fz/, 1994, Thomas et al, 1992). 

This, therefore, showed that co-down-regulation of the receptor and associated 

G-protein, previously thought to occur extensively, is not inextricably linked.

There has been a growing awareness in recent years of the vital importance to 

account for the effect of receptor density in tissues or cells under investigation,

XXI



ï
on the potency and/or efficacy of agonists at receptors. In Chapter 4 ,1 assessed 

the effects of receptor density of the P2 ~adrenoceptor expressed in NCB20 

cells, on the potency and efficacy of agonists such as isoprenaline, salbutamol, 

ephedrine and adrenaline. It was clear from my data that as receptor levels 

increased in the three cell lines assessed, the efficacy of the individual agonist 

increased also. It was also possible to observe that on increasing receptor 

levels, the EC5 0  value for each agonist at that cell line decreased, or that the 

potency was increased.

In my final results Chapter, I studied the molecular basis of pharmacological 

differences previously observed between the rat and human pg-adrenoceptor. 

Chimeric constructs of the human p3 -adrenoceptor were produced enabling 

evaluation of each transmembrane region of the receptor separately. Assays 

employed were two different functional assays, a cAMP accumulation assay 

and the microphysiometer, which detected minute pH changes in cells attached 

to a silicon sensor in response to receptor activation. Through the two assays, I 

was able to produce a thorough assessment of the role of each transmembrane 

region in the overall pharmacological response to agonist stimulation. The 

region which appeared to shift the pharmacology of the receptor from that of the 

human P3 -adrenoceptor to that of the rat P3 -adrenoceptor was transmembrane 

region 2. Further investigations employing computer modelling of the P3 - 

adrenoceptor indicated that this region was not involved in agonist binding, but 

agonist stimulation must somehow activate TM2 to cause alterations in a 

number of other transmembrane regions, thus producing an overall 

conformational change in the receptor.
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CHAPTER 1.
INTRODUCTION



1.1. SIGNALLING

The interest and research into signal transduction in cells has been 

developing rapidly over the past couple of decades. A rapid form of 

communication between cells is essential for responses to environmental 

stimuli. It is vital for the cell to develop some form of communication 

for the rapid propagation of intercellular signals. In the case of 

hormones and other chemical messengers acting on cell-surface 

receptors, it is essential for the cell to interpret the presence of the 

agonist. It is then able to trigger another messenger to propagate the 

signal through the intracellular environment.

At first, it was believed that the cell surface receptors were able to 

facilitate a response or effect to chemical messengers within a cell, thus 

producing an effect. Over the last few decades though, intermediary 

proteins have been discovered, important for their roles in transducing 

the effect of neurotransmitter or hormone stimulation on receptors 

through the cell. For example, it was in the 1950 s that it was first 

observed by Rail and Sutherland (1957) that adenylyl eyclase was 

allosterically activated by hormones at a subtype of the adrenoceptor 

family, the p-adrenoceptor. Once the link between the 

pharmacologically well characterised p-adrenoceptors and the well 

defined biochemical reaction was demonstrated, an intensive effort was 

begun to define the molecular components of hormone-dependent 

adenylyl cyclase and the mode of interaction between receptors and 

adenylyl cyclase. It was found that an intermediary protein which was 

guanine-nucleotide dependent, hence its name as a G-protein, was

allosterically connected to the receptor. Upon stimulation of the
.

receptor, the a  subunit of the G-protein became separated from the 

receptor and activated adenylyl cyclase into production of cyclic AMP.



This acts as an allosteric effector which in turn activates a protein 

kinase, protein kinase A, which then produces the desired effect. It is 

therefore now known that, in the case of the adrenoceptors at least, that 

production of a response is not a 'one-step' reaction but is a chain of 

ev ents involving a diverse set of components, receptors, G-proteins (in 

this case Gg, the stimulatory G-protein), adenylyl cyclase, cyclic AMP 

and protein kinase A. Each of these distinct proteins and their role in 

signal transduction will be discussed separately, beginning at the level 

of the receptor.

There are a number of different classes of cell surface receptors. For 

example, there are growth factor receptors, with intrinsic tyrosine kinase 

activity, but by far the largest class are those which interact with and 

activate G-proteins. In the case of my research, the G-protein linked 

receptors to be studied in detail are the family of p-adrenoceptors. This 

family has been sub-classified according to agonist potencies into the 

p r , P2 ", Ps", and perhaps pq-adrenoceptor subtypes. My work 

investigated some of the biochemical mechanisms employed by the first 

three subtypes of p-adrenoceptors. In this introductory Chapter, I will 

detail some of the research already performed on this family, mentioning 

the second messengers involved, and also discuss regulation of these 

receptors upon stimulation by agonists. It is also vital to relate such 

work to a human perspective and relate alterations in function of the 

p-adrenoceptors to disease states in man. This will be discussed 

towards the end of this Chapter.

This introductory Chapter will outline the important components of the 

signalling cascade, beginning in descending order from the receptor, G- 

protein, through to adenylyl cyclase. After these components have been



individually discussed, the important processes of desensitization will 

be detailed.
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1.2. THE 6-ADRENOCEPTOR FAMILY

1.2.1. INTRODUCTION

p-adrenoceptors effect their responses via the sympathetic nervous 

system. This system is an important regulator of the activities of organs 

such as the heart and peripheral vasculature, especially in responses to 

stress. The ultimate effects of sympathetic stimulation are mediated by 

release of noradrenaline from nerve tenninals which serves to activate 

the adrenoceptors on postsynaptic sites.

Ahlquist, in 1948, first identified that catechol amines acted via two 

principal receptors. These receptors were at that stage only termed a  

and p-adrenoceptors, a-adrenoceptors were classified as those which 

exhibit the potencies noradrenaline > adrenaline > isoprenaline. 

p-adrenoceptors have a differing potency series isoprenaline > 

adrenaline > noradrenaline. Ahiquist's hypothesis was dramatically 

proved correct by the development of drugs that selectively antagonize 

p-adrenoceptors but not the a-adrenoceptors, p-adrenoceptors were 

subsequently divided into pi- and p2 -adrenoceptors on the basis of the 

rank order of potencies of catecholamines acting on tissues producing 

different responses, pi (isoprenaline > noradrenaline > adrenaline) and 

P2  (isoprenaline > adrenaline > noradrenaline). This was confirmed by 

the development of selective agonists dobiitamine (Pi), salbutamol (P2 ) 

and antagonists CGP20712A (Pi) and ICI 118551 (P2 ). In recent years 

a third p-adrenoceptor subtype was found, known for a number of 

years as the 'atypical' adrenoceptor, but now re-named the 

p3 -adrenoceptor. This adrenoceptor shows lower affinity for the 

classical p-agonists with the rank order of potency being 

noradrenaline > isoprenaline > adrenaline and low affinity for known 

p-antagonists. No selective antagonists have yet been discovered for



the P3 -adrenoceptor, which causes difficulty in investigations into this 

adrenoceptor. Adrenoceptors are located at the plasma membrane and 

exert their effects through an interaction with guanine nucleotide binding 

proteins (G-proteins). The three p-adrenoceptors are single polypeptide 

chain glycoproteins embedded in the plasma membrane with their 

binding domain facing extracellularly. Hydrophobicity profiles for the 

receptors have shown seven hydrophobic regions, which are membrane 

spanning. The presence of these seven transmembrane domains typify 

the G-protein coupled receptors (GPCRs), and are connected by 

intracellular and extracellular loops of variable lengths. An N-terminus 

is located extracellularly and contains glycosylation sites while the 

positioning of the C-terminus is intracellular. The C-termini are of 

differing lengths in the three different molecularly identified 

P-adrenoceptors. For example, the p i-adrenoceptor has a C-terminal 

tail length of 85 amino acids, the p2 -adrenoceptor a tail length of 73 

amino acids, while the p3 -adrenergic receptor has the shortest 

C-terminus of 40 residues.

1.2.2. MOLECULAR CLONING OF THE THREE SUBTYPES 

Three distinct mammalian p-adrenoceptor cDNAs pi, (Frielle et al, 

1987) p2 , (Dixon etal, 1986) and p3 (Emorine el a/, 1989) have been 

isolated in recent years. Two distinct splice variants of the 

P3 -adrenoceptor have been isolated, varying only by the presence or 

absence of six C-tei*minal amino acids. Genomic clones of both the p2 - 

and Pi-adrenoceptors predict that both arise from intronless genes, thus 

defining that neither subtype can generate diversity by differential 

splicing of pre-mRNA. The human p3 -adrenoceptor (Granneman et al, 

1992a), however, consists of two exons and a single intron and the rat



p3 adrenoceptor gene has three exons and two introns (Bensaid et al, 

1993), giving scope for multiple forms of the p3 -adrenoceptor.

1.2.3. TISSUE LOCALIZATION OF THE 6-ADRENOCEPTORS 

The original subclassification and localization of p-adrenoceptors into 

pi"adrenoceptors in the heart (where noradrenaline and adrenaline are 

equally potent) and p2 ~ adrenoceptors in vascular and bronchial smooth 

muscles (where adrenaline is about 10- to 30-fold more potent than 

noradrenaline) presumes a high degree of organ specificity of the 

P-adrenoceptor subtypes. This hypothesis has now evolved, mainly 

due to data from radioligand binding studies, into the concept that in a 

variety of organs, including the heart, both pi- and p2 -adrenoceptors 

co-exist, although often one subtype dominates over the other (Carlss'on 

etal, 1972, Brodde etal, 1991). This ratio can be altered in diseased 

tissue, as will be mentioned later in this Chapter.
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1.2.4. THE 6 î-ADRENOCEPTOR

The mammalian Pi-adrenoceptor is coupled through the stimulatory 

G-protein, Gg to the activation of adenylyl cyclase. It is the production 

of cAMP by adenylyl cyclase activation which is important in the 

regulation of heart rate and contractility (Brodde et al, 1993), lipolysis 

by adipose tissue (Amer etal, 1991), and blood pressure homeostasis 

(Kopp etal, 1983), among other vital functions. The cAMP activates 

protein kinase A which in turn alters the phosphorylation status within 

the cell and the activity of key enzymes which control processes such as 

lipolysis and contractility. Heart rate and force can be increased by 

noradrenaline and adrenaline through an interaction with both 

Pi-adrenoceptors and p2 -adrenoceptors (Kaumann etal, 1991, Brodde

et al, 1993). Several ionic currents can flow upon p-adrenoceptor 

activation; calcium (through e ith e r Pi-adrenoceptors or 

P2 " adrenoceptors) ̂  sodium^ potassium and chloride ions. Calcium 

currents can be increased directly by the Ug unit of the GTP binding 

protein, Gg, or by coupling of Gg to adenylyl cyclase with subsequent
■'

formation of cyclic AMP, release of the catalytic unit of cyclic 

AMP-dependent protein kinase, and phosphorylation of calcium 

channels and other proteins. Catecholamines reduce the cardiac 

efficiency and can also cause disturbance of the cardiac rhythm, 

culminating in ventricular fibrillation. In normal hearts the dose
......

required to cause marked dysrhythmia is greater than that which 

produces the chronotropic and inotropic effects, but in ischaemic 

conditions dysrhythmias are produced more readily.

Like many Gg-coupled receptors the Pi-adrenoceptor demonstrates 

receptor-specific or homologous desensitization (Arner el al, 1991); 

persistent or repetitive stimulation which decreases the receptor's ability

I
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to activate adenylyl cyclase (Freedman etal, 1995). Chronic exposure 

(days or months) but not acute exposure (hours) to a catecholamine

down-regulates human heart Pi-adrenoceptors. Acute desensitization 

partially uncouples human heart p-adrenoceptor from the adenylyl 

cyclase. Both acute and chronic desensitization reduce positive 

inotropic responses to catecholamines.

The hypothesis that agonist-induced desensitization of the 

Pi-adrenoceptor involves phosphorylation of the receptor itself has 

recently been investigated by Freedman et al (1995). The 

P2 -adrenoceptor is regulated by cAMP-dependent protein kinase 

{Bouvier etal, 1987) and the p-adrenoceptor kinase (pARICl) or other 

G-protein coupled receptor kinases (GRKs). Freedman e /a /  (1995) 

have shown that both Chinese Hamster Fibroblasts and human 

embryonic kidney 293 cells transfected to express pi-adrenoceptors 

demonstrate receptor-specific desensitization of the pi-adrenoceptor 

within 3-5 minutes. These two cell types also express pARICl and the 

aèociated inliibitory proteins p-arrestin- 1 and p-anestin-2. They have 

been able to quantify the agonist-induced pi-adrenoceptor 

phosphorylation, which seems to be derived equally from protein 

kinase A and GRK activity. Desensitization was reduced by 50% when 

protein kinase A inhibitors were added to the cells. Consistent with a 

GRK m echanism , receptor-specific desensitization of the 

pi-adrenoceptor was enhanced by overexpression of p-arrestin- 1 and - 2  

in transfected 293 cells. From these studies, it was concluded that, like 

the p 2 -adrenoceptor, the pi-adrenoceptor appears to bind either
‘

P-arrestin-1 or -2 and phosphorylated by pARICl, PARK2, and GRIC5.



1.2.5. THE ADRENOCEPTOR

p2 -adrenoceptors cause smooth muscle relaxation in many organs. This 

can therefore be a very useful therapeutic effect, and so considerable 

effort has been made to find selective p2 -agonists. These would have 

the ability to relax smooth muscle without affecting the large population 

of p i-adrenoceptors in the heart, as the activation of p-adrenoceptors in 

the heart leads to increased rate, which is not a desired effect. It is 

important to realise however, that the selectivity of such drugs is likely 

to always be relative rather than absolute.

Bronchial smooth muscle is strongly dilated by activation of 

p2 -adrenoceptors, and selective p2 -agonists are important in the 

treatment for asthma. Isoprenaline, given sub-lingually, or as an 

aerosol, produces a rapid effect, but is liable to cause tachycardia or 

ventricular dysrhythmias due to its pj-adrenoceptor actions. Salbutamol 

does not have these drawbacks, and is probably the most widely used 

anti-asthmatic drug. Polymorphisms of the P2 -adrenoceptor have been 

found in the last few years and an over£epresentation of these have been 

found in asthmatic patients when compared to the normal population 

{Oaeetal, 1995, Turki etal, 1995). These will be mentioned in greater 

detail later.

Uterine smooth muscle also responds to activation of p2 -adrenoceptors, 

and P2 ~agonists are used to delay premature labour. Myométrial cells 

respond to a-adrenoceptor agonists with contraction and to 

p-adrenoceptor agonists with relaxation. During pregnancy the 

P2 -adrenoceptors become dominant and sympathetic nerve stimulation 

produces relaxation (whereas in the non-pregnant uterus it may elicit 

relaxation or a biphasic response). Many p-agonists are used clinically

1 0



as uterine relaxants, Salbutamol is the one used most recently; while 

fenoterol and orciprenaline are amongst the most potent relaxants.

Antagonists of P2 -adrenoceptors may cause increased uterine activity by 

blocking the relaxant effects of endogenous p-adrenoceptor agonists.

Skeletal muscle is affected by adrenaline, acting on P2 -adrenoceptors, 

though the effect is far less dramatic than that on the heart. The twitch 

tension of fast-contracting fibres, white muscle, is increased by 

adrenaline, particularly if the muscle is fatigued, whereas the twitch of 

slow, or red muscle is reduced.

The process of receptor desensitization has been particularly well 

studied in the P2 -adrenoceptor/Gg/adenylyl cyclase system (Bouvier et 

d, 1987, 1988, 1989, Hausdorff e td , 1989, Lohsec/fl/, 1989). Two 

types of rapid alteration in the function and disposition of 

p2 -adrenoceptors are induced by agonists, i.e. functional uncoupling of 

the receptors from Gg in the membrane and sequestration of the 

receptors to internal sites in the cells. Evidence suggests that functional 

uncoupling from Gg is triggered by phosphorylation of the receptors 

either by protein kinase A or by one of the two isoforms of pARK.

Whereas phosphorylation of p2 -adrenoceptors by protein kinase A can 

directly lead to uncoupling of the receptors from Gg (Sibley et d , 1986), 

phosphorylation by PARK serves to enhance the affinity of the 

receptors for an inhibitory protein, p-arrestin, which appears to bind to 

the pARK-phosphorylated receptors and thereby causes uncoupling.

Along with functional uncoupling between receptors and Gg (Sibley et
■;

d , 1986), there also appears to be spatial uncoupling, caused by 

internalization of the receptors, a process usually termed receptor 

sequestration (Yu e/fl/, 1993, Pippig etal, 1995).
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1.2.6. THE 0^-ADRENOCEPTOR

The primary classification of the p-adrenoceptors into p r  and 

P2 -adrenoceptor subtypes was soon proved insufficient to account for 

the non-Pi- and non-p2 -adrenergic responses of rat brown and white 

adipose tissues. Studies in the rat adipose tissue first led investigators 

to believe in the existence of a third p-adrenoceptor (Arch et al, 1984, 

Zaagsma et al, 1990, Muzzin et al, 1991). This 'atypical' 

Pg-adrenoceptor was capable of activating lipolysis when activated by 

P-agonists (Arch et al , 1984). This atypical p-adrenoceptor showed 

striking dissimilarities in its pharmacology to the pi- and 

P2 -adrenoceptor subtypes. It showed a strongly reduced binding 

affinity for classical Pi- and p2 -adrenoceptor antagonists (Arch et al ,

1993). Secondly, it was activated by certain pi- and p2 ~adrenoceptor

antagonists such as CGP12177 and was selectively stimulated by a 

series of novel agonists, notably BRL37344 (Arch e ta l , 1984).

The rat adipose tissue p-adrenoceptor was able to be selectively 

stimulated by a series of compounds developed by SmithKlineBeecham 

Pharmaceuticals (Arch etal, 1984). Activation by these compounds led 

to fat cell lipolysis. Brown adipose tissue is the main effector of cold- 

and diet-induced thermogenesis in rodents, which can result in major 

energy expenditure, thus forming an important role in overall energy 

balance. Because brown adipose tissue has been demonstrated in 

humans of all ages and is often atrophied and quiescent in obese 

animals, much interest has been directed towards it. These receptors 

have therefore gained attention as potential therapeutic targets of specific 

agonists that might provide anti-diabetic, thermoregulatory, or 

anti-obesity properties. So far, anti-obesity drugs, which in animals 

seem to act selectively on adipose tissue pg-adrenoceptors, are less

12



efficient in humans, where they display Pi- and p2 -adrenoceptor 

mediated side-effects.

atypical p-adrenoceptor from human (Emorine et al, 1989) and mouse 

(Nahmias etal, 1991) genomic libraries, as well as a rat brown adipose 

tissue cDNA library (Granneman etal, 1991, Muzzin et al, 1991). A 

bovine Ps-adrenoceptor has also been investigated pharmacologically 

and recently cloned (Pietri-Rouxel c/ al, 1995), showing high similarity 

to the human pg-adrenoceptor. Mouse and rat p^-adrenoceptors were 

found to be expressed to significant levels only in brown and white 

adipose tissue, suggesting that the Ps-adrenoceptor might be a fat cell 

specific p-adrenoceptor. Controversy has remained regarding the 

distribution of p^-adrenoceptor mRNA and protein in human tissues. 

Initially, Northern blot analysis by Emorine et al (1989) demonstrated 

the presence of pg-adrenoceptor mRNA in rat adipocytes, liver, skeletal 

muscle, and ileum. Ensuing reports using polymerase chain reaction 

(PGR) technology provided conflicting evidence regarding 

p3 -adrenoceptor mRNA distribution in human tissues. A recent report 

by Berkowitz e ta l (1995) has extended the range of human tissues 

containing p3 -adrenoceptor mRNA. It has now been identified in an 

extensive range of human tissues: cerebral cortex, cerebellum, liver, gall

muscle, several white fat tissues, left atrium, left ventricle, lung, 

kidney, prostate, and corpus cavernosa.

•1
This work led to the characterization and cloning of a gene encoding an

bladder, pancreas, stomach, small intestine, white and red skeletal

In 1994, Zhang etal cloned a gene refened to as the obese gene {ob), 

whose mutation is believed to be responsible for the phenotype of the 

hereditary obese {ob/ob) mouse. The ob gene codes for a protein
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which presumably controls the size of the body fat mass by acting on 

the ventromedial nucleus of the hypothalamus to inhibit food intake 

and/or to stimulate energy expenditure via activation of the sympathetic 

nervous system. To date, the ob gene expression has been 

demonstrated in white adipose tissue, and also detected in brown 

adipose tissue. Experiments by Moinat etal (1995) have shown that 

fasting (36 h) or semi-starvation (10 days) decreased the ob gene 

mRNA level in both brown and white adipose tissue. Acute 

administration of the p3 -adrenergic agonist Ro 16-8714 decreased the ob 

gene mRNA level in brown and white adipose tissue of lean Zucker 

rats. This new gene is regulated by activation of the P3 -adrenoceptor 

and is therefore of interest to investigators in this area. The product of 

the ob gene is a protein called leptin (Greek leptos = thin) It plays an 

important role in regulating body weight. Addition of this to mice has 

caused a reduction in weight of up to 30%. It has been postulated that 

iheob protein is secreted in a graded fashion from adipocytes into the 

circulation, where it acts as a hormone to control adipose tissue mass. 

Using polyclonal antibodies to recombinant ob protein, it is established 

that the ob protein circulates in mouse, rat and human plasma. The 

circulating form has a similar molecular weight to the 145 amino acid 

open reading frame predicted by the nucleotide sequence without the

signal sequence, suggesting that in vivo the protein is not processed
-

after cleavage of the signal sequence. The protein circulates as a 

monomer in human serum, and as a monomer and disulphide linked 

dimer in mouse serum. It is hoped to develop leptin as a therapy for 

obesity in humans, although with a short half-life, leptin will have to be 

genetically manipulated first to extend this.
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Recently, Clement g/nZ (1995) have discovered a genetic variation in 

the p3 -adrenoceptor, which has been suggested to lead to an increased 

capacity to gain weight in patients with morbid obesity. This condition 

is defined as a body-mass index (the weight in kilograms divided by the 

square of the height in metres) which is greater than 40. Morbid obesity
.

is believed to have a particularly strong genetic component. The 

functional deficiency of the p3 -adrenoceptor in genetically obese mice 

(Collins g/u/, 1994, Arbeeny etal, 1994), and the results of studies in 

which the gene for the receptor has been disrupted in mice (Susulic et al,

1994), led Clement et al (1995) to investigate the role of the 

P3 -adrenoceptor in patients with morbid obesity. Genomic DMA was 

extracted from leukocytes, and from this DNA a polymorphism 

resulting in the replacement of tryptophan by arginine at position 64 was 

detected. The frequency of this Trp64Arg' allele was similar in the 

morbidly obese patients and the normal subjects. However, the patients 

with morbid obesity who were heterozygous for the Trp64Arg 

polymorphism had an increased capacity to gain weight. The role of 

this polymorphism in the pathogenesis of obesity may be conjectural but 

may be related to a lowering of the resting metabolic rate, which is 

genetically determined.

Another study released at the same time (Widen et al , 1995) showed 

that this Tip64Arg allele of the p3 -adrenoceptor is associated with 

abdominal obesity and a resistance to insulin, which may contribute to 

the early onset of non-insulin-dependent diabetes mellitus (NIDDM). 

Another group in the United States performed a similar study (Walston 

etal, 1995) on the Pima Indians, a group with a very high prevalence of 

NIDDM. Pima subjects homozygous for the Trp64Arg mutation had an 

earlier onset of NIDDM and tended to have a lower resting metabolic



î
rate. This polymorphism may therefore accelerate the onset of NIDDM 

by altering the balance of energy metabolism in visceral adipose tissue.

chromosomal linkage group that is conserved between species. 

Together, this structural data strongly suggests that the human, bovine, 

mouse and rat genes do not encode distinct (3-adrenoceptor subtypes, 

but are species homologues of the pg-adrenoeeptor gene.

The degree of amino acid sequence identity between human, bovine, 

mouse and rat p3 -adrenoceptors is 80-90%. This is much higher than 

that existing between different p-adrenoceptor subtypes (40-50%) and 

of the same order as that observed for a given receptor subtype across 

species. Several residues located in the functional domains of the

receptor are shared specifically by the human, bovine, murine and rat 

p3 -adrenoceptor, and are not found in the Pi- and p2 -adrenoceptor 

sequences. The human, bovine, mouse and rat p3 -adrenoceptor genes 

have a similar genomic organization, with an intron interrupting the 3' 

end of the coding sequence (Granneman etal, 1992a, Bensaid et al, 

1993), whereas the other p-adrenoceptor subtypes are intronless.

Moreover, the human and mouse genes have been assigned to a I

Although high sequence homology has been observed between the 

human, bovine, murine and rodent Ps-adrenoceptor, species differences 

in their pharmacology have been shown to exist. For example, Liggett 

etal (1992), have noted the increased efficacy of BRL37344 at the rat 

P3 -adrenoceptor, when compared with the human p3 -adrenoceptor. 

Liggett (1992) have also shown the higher efficacy of CGP12177 

for the human p3 -adrenoceptor over the rat p3 -adrenoceptor. These 

species differences between the rat and human P3 -adrenoceptor are used 

to classically define the two receptors.
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Because Ps-adrenoeeptor agonists are being developed as potential 

therapies for obesity and diabetes (Arch etal, 1984), regulation of the 

receptor is an important consideration. It is already well established that 

acute adrenergic stimulation of Pi~ and P2 ” adrenoceptors leads to loss 

of responsiveness or desensitization. As noted earlier, desensitization 

of the p2 ~adrenoceptor has been particularly well characterized and is 

thought to result from the phosphorylation of multiple serine and 

threonine residues in the third cytoplasmic loop and carboxyl terminal 

tail of the receptor by regulatory kinases which impairs the ability of the 

p2 -adrenoceptor to couple to Gg. In contrast to the pi" and 

p2 “adrenoceptors, the pg-adrenoceptor has fewer potential 

phosphorylation sites and thus would be expected to be resistant to 

agonist-induced desensitization. This prediction was first confirmed in 

isolated rat adipocytes where acute adrenergic stimulation was shown to 

desensitize p 1-adrenoceptors, but not P3 -adrenoceptors (Granneman et 

al, 1992c), The lack of p3 -adrenoceptor desensitization has since been 

shown in Chinese Hamster Fibroblasts and murine Ltk" cells that have 

been transfected to express the recombinant human Ps-adrenoceptor 

(Mantel 6 / a/, 1993, Liggett etal, 1993). Resistance to desensitization, 

however, may not be an intrinsic property of the P3 -adrenoceptor.

There is also strong evidence that the mRNA encoding p-adrenoceptor 

subtypes are differentially regulated by agonist exposure. Thus, 

sympathetic denervation of rat brown fat up-regulates P3 " adrenoceptor

mRNA whereas cold exposure, increasing neural stimulation, 

dramatically down-regulates P3 -adrenoceptor transcripts (Granneman et 

al, 1992b). Treatment with exogenous p-adrenoceptor agonists in vivo 

also down-regulates the p3 -adrenoceptor mRNA.

1 7
f



::l1.2.7. THE dé-ADRENOCEPTOR

Evidence for a fourth p-adrenoceptor, designated the pt-adrenoceptor, 

has emerged from work looking at another 'atypical' adrenoceptor in 

turkey erythrocytes, showing different properties to the other three 

p-adrenoceptors {Rooney etal, 1991,Vaziri etal, 1992). It was initially 

classified as the turkey homologue of the mammalian Pi-adrenoceptor 

based on its approximately equal affinities for adrenaline and 

noradrenaline. The gene for the Pradrenoceptor has been cloned from a 

foetal turkey blood cDNA library, and its deduced amino acid sequence 

is between 38-59% homologous to the sequences of the mammalian 

p-adrenoceptor subtypes (Chen et al, 1994). The Pt-adrenoceptor 

displays highest homology (59%) to the mammalian Pi-adrenoceptor, 

but apparently does not represent an avian homologue of the 

pi-adrenoceptor. The Pt-adrenoceptor has been noted to interact with a 

G-protein other than Gg. It has also been observed that the 

Pt-adrenoceptor does not internalize upon agonist stimulation and 

displays only a low affinity agonist binding state insensitive to guanine 

nucleotides (Hertel et al, 1990, Minneman et al, 1980). Agonist 

occupation of this receptor results in stimulation of a phosphoinositidase 

C in addition to activation of adenylyl cyclase. This turkey adrenoceptor 

may perhaps play an important role in avian physiology. It was not, 

however, studied in my investigations, and I will refer only to the three 

major adrenoceptor subtypes.

Î
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1.3. G-PROTEINS

1.3.1. INTRODUCTION

Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) 

function as molecular switches in a diverse set of pathways by coupling 

seven-transmembrane-helix receptors to specific intracellular effectors. 

In order to do so they associate with the cytoplasmic face of the plasma 

membrane. This association may be partly mediated by the py subunits.
-

but the N-terminus of the a-subunits also seems to be involved. The 

transduction of signals depends on the ability of the a-subunits to cycle 

between the resting (GDP-bound) conformation primed for interaction 

with agonist-stimulated receptors and an active (GTP-bound) 

conformation capable of activating or inhibiting a variety of downstream 

effectors including enzymes as well as ion channels.

1.3.2. G-PROTEIN SUBUNITS

All of the G-proteins identified so far contain three subunits (a , p, and 

Y). In mammals, G-protein a , p and y subunits are encoded by at least 

16, 4, and 7 genes, respectively. The a-subunits are the largest in size 

(Mr = 39 kDa - 52 kDa), contain the binding site for guanine nucleotides 

and are the most diverse. The a-subunits also contain the sites for 

modification by bacterial toxins. The p-subunits are less diverse (Mr =

36 kDa and 35 kDa) and are believed to be common to the different G- 

proteins. While there are multiple y-subunits, they are the least 

investigated subunit. The py component fonns a single functional unit, 

as native p and y do not dissociate, py subunit complexes, alone or in 

co-operation with a  subunits, regulate effectors such as adenylyl 

cyclase, phospholipase C and ion channels. These subunits can vary in 

hydrophobicity from very hydrophobic to hydrophilic.
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G-protein activation is a multi-stage, magnesium dependent process. 

The inactive form of the G-protein contains bound GDP. Exchange of 

this GDP for GTP results in activation of the G-protein. The a  subunits 

bind and hydrolyze this GTP. When GTP enters the empty nucleotide 

binding site of Ga> the a-G TP complex takes on a new active 

conformation, which causes it to rapidly dissociate from the receptor 

and from the Py unit. a-GTP has a high affinity for binding to and 

activating the appropriate effectors, such as adenylyl cyclase and 

phosphoinositidase C. Hydrolysis of the bound GTP terminates 

regulation of the effector, returning G« to its inactive GDP-bound state.

In the past year the crystal structure of the G-protein heterotrimer 

(Gotpy) was finally achieved (Lambright etal, 1996). From studies on 

this crystal structure of G^py (Lambright etal, 1996) and mutagenesis, 

it would seem that the whole signalling complex is not a set of 

bimolecular reactions, as originally believed and described above, but 

that it is a 'nanomachine', in that the receptor is acting as a lever 

activating a switch (Gq,) and a propeller, (Gpy). Lambright etal ( 1996) 

have identified two major contact sites between the Ga and Gp subunit. 

The first is a tethered prow of G«, which is the myristoylated or 

palmitoylated amino terminus. The larger and more important site is the 

interface between the G« switch regions and one of the Gp subunit's 

electronegative faces. The apposition of the two subunits in this region 

shields this vital domain, protecting the G^ face until the cationic lever 

of the receptor 'flips' the switch domain and triggers the conformational 

change in G«. After the receptor catalyses the magnesium dependent 

replacement of GDP by GTP in the Got helical/Goc GTPase domain 

cleft, the Got switch region springs shut. The now active, compacted 

and presumably free Got thus exposes itself and the freed, but

2 0



unchanged Gpy, to interactions with effector molecules (Clapham, 

1996).

L3.3. MEMBRANE ASSOCIATION OF G-PROTEINS 

Membrane association of the G-protein a  subunit is achieved via lipid 

modification with either myristate and/or palmitate (Wedegaertner et al, 

1994, Milligan et al, 1995). Membrane association is critical for 

ensuring high surfaee concentrations of signal-transduction components 

and proper relative orientation. Palmitoylation has been suggested to 

provide a membrane anchorage point. The a-subunits of some, but not 

all, G-proteins have been shown to contain co-translationally attached 

myristic acid (Jones e /«/, 1990, Mumby etal, 1990). For example, 

while the Go polypeptide is myristoylated, Gg is not. Agonist regulation 

of the palmitoylation status of the a-subunit of Gs is likely to alter the 

interactions between the subunits of the G-protein heterotrimer and may 

result in a physical release of the a-subunit from the plasma membrane.

Other investigators (Neubig, 1994) have not only been interested in how 

the G-protein is held in the plasma membrane, but also whether the 

G-protein is freely mobile or restricted in the plasma membrane. 

Neubig (1994) looked at the evidence known showing receptors, 

G-proteins and effectors to be less mobile in the plasma membrane than 

previously thought. He believes that signal transduction events in intact 

cells are actually more complex than in reconstituted systems. The 

specificity of signalling by G-proteins and receptors in intact cells 

(Kleuss etal, 1992) appears to be greater than that seen in reconstitution 

systems (Rubenstein et d , 1991). Recently, direct demonstrations of 

G-protein-cytoskeleton interactions and limited mobility of receptors and 

G-proteins are becoming common. Laboratories have gained data
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1.3A. G-PROTEIN STOICHIOMETRY

Some groups have studied the quantitative stoichiometry of the 

G-protein and its receptor (Kim etal, 1994a). While a large amount of 

information is available on receptor number due to the availability of

showing association of G« or Gpy subunits with tubulin or other 

cytoskeletal proteins (Rasenick e? zz/, 1988, 1990, Wang g/ zz/, 1991). 

Other possible methods of limiting G-protein movement in membranes 

have been unearthed by the discovery of several types of G-protein in 

Triton X-100 insoluble membranes with characteristics of noncoated 

pits or caveolae (Sargiacomo ez d , 1993). Caveolae ('small caves'), 

which contain the protein caveolin, are flask-shaped invaginations of the 

plasma membrane, and are a prominent feature of many mammalian 

cells (Severs, 1988). p-adrenergic receptors have been shown to 

accumulate in such noncoated pits (Raposo etal, 1989) and to co-purify 

with caveolin (Dupree etal, 1993) when cross-linked with antibodies. 

Caveolae may therefore represent sites of assembly of a signal 

transdueing complex that could include receptors, G-proteins, effectors, 

and even the intracellular tar gets of the second messengers generated.

Î

radiolabelled drugs, the same is not true for G-proteins and effectors. 

However, Kim e ta l (1994a) found that in NG108-15 cells it was 

possible to estimate the copies per cell of each member of the signalling 

cascade, such as Ggu and adenylyl cyclase. Kim e ta l (1994a) found 

that while there were as many as 100,000 copies per cell of the IP

.«I

prostanoid receptor, there were even more copies per cell of GgU 

(1,250,000), but only 17,500 copies/cell of the effector adenylyl 

cyclase. These results suggest that quantitatively, it is the adenylyl 

cyclase member of the cascade which is the least highly expressed I
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It was not known until recently if these long and short splice variants of 

Gga interacted differently with either receptors or with adenylyl cyclase.

2 3
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component and implies that a lot of the cellular GgU may not have access 

to adenylyl cyclase.

1.3.5, THE STIMULATORY G-PROTEIN G,

Gg is the G-protein that activates adenylyl cyclase; its a  subunit is 

predominantly responsible for this effect, although Py appears to act 

synergistically with certain forms of adenylyl cyclase. Gg can be 

covalently modified by a cholera toxin produced by the bacterium V/izr/o 

cholera. The toxin is an enzyme which transfers ADP-ribose from 

NAD+ to a specific arginine residue of Ggot.

'
Most cells contain two forms of the a  subunit of Gg; their apparent 

molecular weights are 45 and 42 kDa on SDS-polyacrylamide gels 

(Northup etal, 1980). Although most tissues contain both forms of the 

polypeptide, their relative amounts vary. In heart, for example, the 42 

kDa protein predominates, while in brain and adrenal medulla the 45 

kDa foim is the major species (Mumby etal, 1986). The two distinct 

GgCt subunits represent differentially spliced forms of Ggoc. The 

isolation and characterization of the human GgU chromosomal gene was 

completed by Kosazaeî a/ in 1988. They found the gene to be a split 

gene, having 13 exons and 12 introns spanning about 20 kilobases of 

genomic DNA.

Findings by Y agami ( 1995) show that a p -adrenoceptor agonist/receptor 

complex catalyzes the exchange from GDP to GTP on Gga-L but not on 

Gga-S. Y agami (1995) was studying the glucagon receptors and 

p-adrenoceptors in the liver, using partially hepatectomized male rat

I
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livers to understand whether glucagon receptors shared the common 

Gs-l with the p-adrenoceptors or have their own independent pathway 

through Gg_g. Using a newly developed tryptic digestion method,

Y agami (1995) proved that glucagon receptors do share Gs_l with the 

P-adrenoceptors but are also coupled to Gg-s-

s
t
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1.4.2. STRUCTURE

1.4. ADENYLYL CYCLASE

1.4.1. INTRODUCTION

Adenyiyl cyclase converts Mg ATP into 3',5'-cycIic AMP (cAMP) and 

pyrophosphate. The cAMP then acts as an intracellular messenger to 

activate the cAMP-dependent protein kinase A. Current findings show 

that the adenyiyl cyclase enzymes comprise a heterogeneous multigene 

family. Members of the adenyiyl cyclase family are variously regulated 

by the a  and (3y subunits of G-proteins. There are now eight known 

isoforms of adenyiyl cyclase. Adenyiyl cyclase activity has been 

localized to the plasma membranes of most mammalian tissues where it 

produces intracellular cAMP in response to agonist occupancy of 

receptor for numerous hormones, neurotransmitters, and autocrine and 

paracrine factors. The cAMP then activates protein kinase A, which 

phosphorylates cellular substrates such as enzymes or channels which 

then directly produce or set in motion the cascade that eventually leads 

to the production of the desired biochemical or physiological response to 

the hormonal signal.

The adenyiyl cyclase structure bears a remarkable resemblance to certain 

membrane transporters. They have a common double motif, each with 

six membrane-spanning domains, and two large cytoplasmic segments.

The loop between the first and second transmembrane domains is some 

350 amino acids in length, while there is a 250-300 amino acid tail 

following the second membrane domain. Both the N- and the C-termini 

are predicted to be cytoplasmic, while the membrane-spanning domains 

are not highly conserved in the isoforms. The two cytosolic segments 

are the most highly conserved regions in adenyiyl cyclase structure (up 

to 92% similarity) and are likely to represent the catalytic and regulatory

2 5
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domains. Based on sequence similarities, the isoforms have been 

classified into three subfamilies: the type I-like group (I, III and VIII); 

the type Il-like group (types II, IV and VII); and the type V-like group 

(types V and VI). The overall similarity between the various 

mammalian adenyiyl cyclases is about 50%. Functional properties are 

shared within these sub-families, although individual isoforms display 

unique responses.

% 

I
As well as the complex structure of the adenyiyl cyclase family, they are 

all multiply regulated. Each adenyiyl cyclase can be regulated by ot

subunits of G-proteins, although type I, in particular, is quite refractory 

to stimulation by Gga and the type-II-like group is refractory to 

inhibition by G{a. However, apart from idiosyncratic responses to GgO 

subunits, individual isoforms show a diverse range of responses to

I

factors such as calcium, protein kinase C and py subunits of G-proteins.

Types I and VIII adenyiyl cyclase appear to be brain-specific species, 

while type II is detected in both brain and lung. mRNA for type IV is 

widely distributed in a variety of tissues, while type VII is found in S49 

lymphoma cells and rat brain and heait. Type III enzyme has only been 

found in significant levels in the olfactory tissue and bulb while both 

type V and VI mRNAs are found at high levels in brain, heart, and 

lower levels in several other tissues, including kidney, liver, lung and 

testes.

#
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1.4.3. ACTIVATION & REGULATION OF ADENYLYL CYCLASE 

Most mammalian adenyiyl cyclases are stimulated by forskolin, a 

diterpine isolated from Coleus roots (Seamon et al, 1981). This 

stimulation results from the direct interaction of forskolin with adenyiyl 

cyclase. The construction of forskolin-agarose represented a 

breakthrough that led to the isolation and purification of mammalian 

adenyiyl cyclases (Pfeuffer and Metzger, 1982). Although forskolin 

stimulation of adenyiyl cyclase does not require Gg, it appears that only 

Gg-stimulated adenyiyl cyclases are regulated by forskolin. Forskolin 

greatly synergizes Gg stimulation of the enzyme (Clark etal, 1982), and 

Gg increases the binding affinity of forskolin on adenyiyl cyclase 

(Nelson and Seamon, 1986).



1.5. DESENSITIZATION

1.5.1. INTRODUCTION

The phenomenon by which cells and tissues develop reduced sensitivity 

over time to the maintained presence of a stimulus of constant intensity

1.5.2. G-PROTEIN COUPLED RECEPTO R KIN ASES & 

3-ARRESTIN

2 8

is termed desensitization (Lefkowitz c/a/, 1980). This can be sub­

divided into homologous and heterologous effects, where homologous 

desensitization is when agonist treatment leads to reduced sensitivity to 

the agonist, but not to a reduction in sensitivity to other signals that work 

through distinct receptors. Often a more general desensitization occurs,
'

such that reduced sensitivity to several distinct agonists develops. This 

is termed heterologous desensitization.

The rapid desensitization mechanisms affect receptor function. 

Phosphorylation of the receptors is a critical step in these mechanisms 

(Strasser etal, 1986). The most rapid and quantitatively most important 

mechanism is triggered by phosphorylation of the receptors by the 

group of kinases known as the (3-adrenoceptor kinases, pARK (Lohse 

etal, 1990, Benovicc?a/, 1988). These kinases phosphorylate only 

agonist-oecupied, active receptors.

(3 ARK is a member of a growing family of G-protein coupled receptor
■

kinases (GRKs). PARK activation occurs following interaction of the 

kinase with the agonist-occupied form of the receptor and G-protein Py 

subunits. A 50-70% loss of receptor function is observed in intact cells 

due to phosphorylation by pARK. The binding of pARK to Py 

subunits is shown to be mediated by a stretch of amino acids near the C- 

terminal of the kinase, including sequences in and extending beyond the

_



Two possible mechanisms could explain the enhanced phosphorylation 

of the activated form of the receptor by kinases of the GRK family. 

First, receptor occupancy may induce a conformational change exposing 

potential phosphorylation sites previously sequestered from the kinase. 

Alternatively, interaction of the kinase with the agonist-bound form of 

the receptor could result in enhanced catalytic activity of the kinase.

While pARK modulates receptor-mediated production of second 

messengers, the likely existence of a feedback loop by which second

2 9

most C-tenninal region of the pleckstrin homology domain (Touhara et 

al, 1994). PARK phosphorylates the agonist-occupied form of the 

receptor, enabling the binding of the co-factor p-arrestin to the receptor, 

resulting in the uncoupling of receptor from G-proteins and hence 

effector second messenger systems.

;u .

I

To date, six mammalian members of the G-protein-coupled receptor 

kinase family have been cloned. They have been named GRKl- 6  due to 

the apparently unique functional association of such kinases with this 

receptor family. Two isoforms of PARK are known so far. They are 

now re-named thus: rhodopsin kinase corresponds to GRKl, pARKl 

to GRK2, and PARK2 to GRK3. The pARKl gene spans 

approximately 23 kilobases and is composed of 21 exons interrupted by 

20 introns. The common structural features of G-protein-coupled 

receptor kinases include a centrally localized catalytic domain of 

approximately 240 amino acids that shares significant identity 

(46-95%), an N-terminal domain of 184-188 amino acids (except 

GRK-2) and a variable length C-terminal domain of 100-263 amino 

acids (Inglesec/a/, 1993).

■
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messengers and/or their downstream components impinge on pARK to 

modulate its activity remains an intriguing question. Results have 

shown that pARIC activity can be increased through phosphorylation by 

protein kinase C, thus indicating that pARK can be pre-conditioned to 

modulate the subsequent cellular responsiveness to receptor activation, 

providing the cell with a mechanism by which homologous 

desensitization can be regulated heterologously.

ITwo isoforms also exist for p-arrestin. In addition, there appear to exist 

splice variants of the p-arrestins, containing or not a stretch of eight 

amino acids which conespond to exon 13 in retinal arrestin (Yamaki et 

al, 1990). Among the two isoforms of the kinases, pARKl is about 

twice as active at P2 -adrenoceptors than is pARK2, and the two 

isoforms of p-arrestin have identical effects on p2 -adrenoceptors.

The phosphorylation sites of the P2 -adrenoceptor have been shown to

reside in the C-terminus (Thompson etal, 1984). So far, an accurate

mapping of the individual phosphorylated residues has not been

accomplished. The presence of acidic amino acids located 2 or 3

positions N-terminal to a serine or threonine seems to be required for
.

phosphorylation by pARK, but there is no strict consensus sequence 

(Onorato etal, 1991). The most likely reason for this lack of a small 

consensus sequence is that pARK recognizes the active conformation 

of the receptor and, probably, therefore, has several attachment points. 

The hypothesis of such attachment sites is supported by the finding that 

a peptide corresponding to the first intracellular loop of the 

p2 -adrenoceptor is an inhibitor of pARK and can impair 

p ARK-dependent receptor desensitization (Lohse et al, 1989).



It has been suggested that the ability of protein kinase A to desensitize 

the p2 -adrenoceptor does not depend on receptor occupancy by agonist 

and therefore mediates heterologous desensitization (Hausdorff et al.

1.5.3. EFFECTOR KINASES

1990). In contrast, phosphorylation of the p2 -adrenoceptor by pARK 

depends on receptor occupancy and occurs only in the presence of p- 

adrenoceptor agonists (Strasser et al, 1986). Thus, in contrast to 

protein kinase A, pARK-mediated phosphorylation is generally thought 

to be critical for homologous desensitization of the p2 -adrenoceptor. 

Recent studies using mutations have also demonstrated a role for 

pARK-mediated phosphorylation in facilitating p2 -adrenoceptor 

sequestration (Ferguson etal, 1995), a desensitization process to be 

described later in this Chapter.

In addition to phosphorylation by their specific kinases,

P-adrenoceptors are also phosphorylated by their effector kinases, such 

as protein kinase A and protein kinase C (Lohse, 1993). This provides 

a direct negative feedback loop, whereby the effector enzyme shuts off 

its own stimulation. At the same time, this pathway allows a 

generalized, non receptor-specific form of desensitization, termed 

heterologous desensitization. Direct phosphorylation of the
■■■:

p2 -adrenoceptor by protein kinase A has been shown in a reconstituted 

system (Benovic etal, 1985). There are two consensus sites for protein 

kinase A-mediated phosphorylation in the P2 -adrenoceptor sequence 

(Bouvier etal, 1989), one in the third intracellular loop, in a region 

essential for coupling to Gg, the other at the N-terminal region of the C- 

terminus, which also appears to play a role in receptor-Gg coupling 

(O'Dowd etal, 1988).
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Protein kinase C can also phosphorylate the p 2 -adrenoceptor, probably 

at the same sites utilized by protein kinase A, again with a clear 

preference for the site in the C-terminus of the third intracellular loop 

(Bouvier era/, 1987). The effects of protein kinase C-mediated receptor 

phosphorylation are, therefore, similar to those described for the protein 

kinase A-mediated process (Bouvier etal, 1991).

Under optimal conditions the extent of protein kinase A-mediated

desensitization of p2 -adrenoceptors appears compaiable in extent to that 

mediated by the pARK/p-arrestin mechanism, i.e., a loss of 40-50% of 

receptor function compared to 50-70% for the pARK-mediated effect. 

There are two important differences however: agonist-induced protein 

kinase A-mediated desensitization is considerably slower than the 

pARK-mediated process (ti/2  of 2 minutes vs. 15 seconds), but is much 

more sensitive to agonist concentrations, probably because of the 

amplification of signalling from receptor occupancy to protein kinase A 

activation.

1.5.4. SEQUESTRATION

Apart from functional uncoupling of p-adrenoceptors from Gĝ  agonists 

can also cause rapid physical uncoupling, which is effected by 

translocation of the receptors to intracellular sites such that they can no 

longer interact either with their hydrophilic agonists or with Gg.

The exact localization of the sequestered receptors is still not clear.

Some researchers believe that receptors are internalized into intracellular 

endosomes (Perkins et al, 1984). This hypothesis is based on the

following observations: that sequestered receptors are inaccessible to 

hydrophilic ligands, but remain accessible to hydrophobic ligands
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(Wang et al, 1989); sequestered receptors have been found in a 

membrane fraction that is lighter than the plasma membrane fraction 

(Harden etal, 1980); and agents that disrupt internalization into clathrin- 

coated vesicles also disrupt sequestration of P2 -adrenoceptors (Hertel et 

al, 1986). The best evidence to date for a true intracellular location of 

the sequestered receptors was obtained by immunofluorescence confocai 

microscopy (Von Zastrow 1992), which showed p-adrenoceptor 

immunoreactivity associated with intracellular vesicles and co-localized 

with transferrin receptors. In this study, the intracellular receptors were 

detected not only with antibodies against the receptors themselves, but 

also with antibodies that specifically recognized an epitope that had been 

added to recombinant expressed receptors. It was not certain whether 

G-proteins co-localize with the adrenoceptor intracellularly. Balch 

(1989) showed, however, that 'low molecular weight' G-proteins (i.e. 

Mr < 20,000 kDa) are essential components in the transport, at least, of 

receptors between secretory compartments.

Sequestration was originally thought to be a mechanism of receptor 

desensitization, as it was observed that the light membrane fraction 

containing the sequestered receptors did not contain Gg, so that coupling 

could not occur (Waldo era/, 1983). Since then, several findings have 

disagreed with this role: firstly, in most systems receptor sequestration 

is slow compared to the rapid phosphorylation and uncoupling 

processes described above, and, hence, sequestered receptors will 

already have an impaired function (Roth et al, 1991). Second, in most, 

but not all cell systems the extent of receptor sequestration is too small 

to account for the observed extent of desensitization (Lohse et d , 1990). 

An alternative hypothesis is that sequestration may be a mechanism for 

receptor resensitization (Pippig etal, 1995). It was thought that upon
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1.5.5. DOWN-REGULATION
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removal of agonist, receptors were recycled to the cell surface in a fully
'

functional state (Hertel et al, 1983). It has also been observed.

however, that following agonist-induced stimulation, sequestered Ç>2~ 

adrenoceptors are less phosphorylated than those still residing in the 

plasma membrane (Sibley et al, 1986). Furthermore, inhibition of 

p2 -adrenoceptor sequestration by various means prevents the 

resensitization of the receptors after removal of the agonist (Yu etal, 

1993). Sequestration may serve to enable dephosphorylation of 

receptors and subsequent recycling to the cell surface, where the 

receptors become reintegrated and fully active once more.

Other groups (Barak etal, 1994, 1995, Strader etal, 1987, Cheung et 

al, 1989) have produced mutants of the p2 -adrenoceptor to localize the 

critical residues for sequestration. Barak c /a / (1994) found that a 

highly conserved tyrosine residue was required for agonist-mediated

p2 "adrenoceptor sequestration. Two other groups (Strader c/a/, 1987, 

Cheung et al, 1989) have also investigated regions of the 

P2 ~adrenoceptor by production of mutants. They postulated a causal 

relationship between receptor-G-protein coupling and sequestration, 

suggesting that the regions of the p2 -adrenoceptor responsible for 

functional coupling with Gg are identical to those mediating receptor 

sequestration. Receptor subtypes within a family may show different 

sequestration behaviour. For example, the P2-adrenoceptor shows 

marked sequestration, while the p r  and p3 -adrenoceptors do not 

(Mantel cr a/, 1993, Suzuki etal, 1992).

Another set of mechanisms which can lead to desensitization via a 

decrease in the number of receptors is often termed down-regulation.

3 4
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This is a much slower process compared to the alteration of receptor 

function mentioned above: it usually occurs over hours, and can take up 

to 24 hours to reach maximal effect from continuous agonist exposure 

(Lohse etal, 1993). It is effected by two sets of mechanisms: enhanced 

degradation of the receptors, or decreased synthesis (Bouvier et al,

1989, Collins etal, 1989). As the basal turnover of G-protein-coupled 

receptors is generally very slow, half-lives in the region of many days 

have been reported. Decreases in receptor synthesis probably take even 

longer than 24 hours to affect receptor numbers.

Down-regulation has been studied extensively for the p2 -adrenoceptor 

(Bouvier et al, 1989, Collins et al, 1989, Kobilka et al, 1987).

Degradation of this receptor may have two components: one which can 

only be initiated by agonists, and another which is protein kinase 

A-mediated (Bouvier et al, 1989). The agonist-dependent, protein 

kinase A-independent component is documented by the fact that cells 

defective in post-receptor components Gg, adenyiyl cyclase (Shear et al,

1976) or protein kinase A, can still show agonist-induced receptor 

down-regulation. However, receptor-Gg coupling may still be required 

since defects of this coupling have been found to result in impaired 

receptor down-regulation (Shear et al, 1976, Hadcock et al, 1989).

These findings suggest that either a Gg-mediated but protein kinase 

A-independent signal is required for degradation, or that receptor-Gg 

complexes are preferentially degraded. Protein kinase A-dependent 

phosphorylation of |3 2 -adrenergic receptors appears to enhance their 

degradation, as receptor mutants lacking the phosphorylation sites are 

down-regulated slower than wild-type receptors (Bouvier et al, 1989).

^ARK-dependent receptor phosphorylation, does not however, seem to 

play a role in this respect, as several studies have shown that receptor
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1.5.6. R E G U LA TIO N  OF G PR O TEIN  FU N C TIO N  
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mutants lacking phosphorylation sites for pARK down-regulate 

normally (Cheung e/a/, 1989). Down-regulation of (3 2 -adrenoceptors 

can be also mediated via reduction of the receptor mRNA (Hadcock et 

al, 1988, 1989). This is due to destabilization of the mRNA. It is not 

clear whether this is agonist-specific, or protein kinase A-mediated. •t:

The three |3-adrenoceptor subtypes show different degrees of 

down-regulation: p2 ~adrenoceptors show marked, (3r modest and 

Ps-adrenoceptors little or no down-regulation (Nantel et al, 1993,

Suzuki c?a/, 1992^Thomas c/a/, 1992). 1

While regulation at the receptor level appears to be the predominant site 

of desensitization of G-protein coupled receptors, recent data indicate 

that such regulation may exist at post-receptor levels, most notably at the 

level of G-proteins. It is a complex set of events, involving alterations 

in receptor function, intracellular localization and expression, as well as 

alterations in the function and expression of G-protein a  subunits. 

G-protein elimination has been observed to occur in response to 

agonists at receptors which regulate a variety of transmembrane 

signalling cascades including stimulation and inhibition of adenyiyl 

cyclase and stimulation of phosphoinositidase C activity.

Agonist-induced loss of Ggcx has been demonstrated to be independent 

of regulation of levels of Gga mRNA and to be unaffected by the 

presence of the protein synthesis inhibitor cycloheximide. These 

observations indicate that a substantial role for either transcriptional or 

translational control is unlikely. It was thought at first that
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down-regulation of the G-protein always occurred at the same time as 

the receptor. This has proved not to be the case with the 

P3 -adrenoceptor, as the receptor is refractory to down-regulation but Gg 

is not. It does remain possible, however, that there is an initial 

co-sequestration of the two polypeptides followed by separate sorting 

processes.

i
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1.6. DISEASES CAUSED BY ALTERATION IN 

(3-AD RENO CEPTO R EXPRESSIO N , REGULATION 

AND FUNCTION 

1.6.1 INTRODUCTION

The p-adrenoceptors play an important role in modulating a variety of 

target cell responses to catecholamines. There has therefore been much 

speculation as to whether alterations in these receptors contribute to 

disease states characterized by alterations in catecholamine response. 

Disease states with possible alterations in p-adrenoceptors are 

numerous, including atopic disorders, cardiac disorders, hypertension, 

diabetes mellitus, thyroid disorders, and neurologic and psychiatric 

disorders. These major diseases and the effects of the p-adrenoceptor 

group on their development will be described below.

1.6.2. ATOPIC DISORDERS

It is thought that a defective p-adrenoceptor system or an imbalance 

between a- and p-adrenoceptors could be responsible for asthma and 

other so-called atopic ("allergic") disorders. This concept is based 

primarily on clinical observations. The hypothesis implies that 

individuals with atopic disorders develop (or are genetically susceptible) 

with target cells whose p-adrenoceptors are unable to maintain normal 

function of the tissues responsible for expressing atopic systems (e.g. 

respiratory tract, nasal mucosa, etc), p-adrenoceptor agonists are 

assumed to induce airway smooth muscle relaxation through the 

cAMP-protein kinase A phosphorylation cascade. For over thirty years, 

p-adrenoceptor agonists have been used routinely in the treatment of 

bronchial asthma. The therapeutic use of these compounds is derived 

from their ability to prevent and reverse bronchoconstriction. A major 

theoretical advantage of the p-adrenoceptor agonists is that they act as

3 8



1.6.3. CARDIAC DISORDERS

p-adrenoceptors are widely recognised as playing an important role in 

enhancement of cardiac function- in particular of rate (chronotropy) and 

force (inotropy) of cardiac contraction and in contributing to the genesis 

of cardiac arrhythmias. Although adrenergic agonists are sometimes 

employed to elicit such effects, more commonly p-adrenoceptor

with cardiac disorders, p-adrenoceptors, aside from their usefulness as 

therapeutic targets, are involved in contributing to the pathophysiology

3 9

functional antagonists to produce bronchorelaxation regardless of the
■

contractile agonist used to induce tone. This universal activity is 

important since it is likely that the bronchoconstriction associated with

asthma is produced by the concerted actions of several mediators acting 

through distinct classes of receptors. Recently, a number of groups 

have investigated a possible genetic basis for reported differences in 

p2 -adrenoceptor expression in atopic subjects (Ohe etal, 1995, Turki et 

al, 1995). A two allele polymorphism of this receptor gene has been 

identified in Caucasian people. Ohe etal (1995) found that a restriction 

fragment length polymorphism of the p2 -adrenoceptor gene had some 

association with the responses of airways to p2 -agonists, and the 

incidence of bronchial asthma. Similarly, Turki et ol (1995) studied 

nocturnal asthma, where the P2 -adrenoceptors down-regulate at night.

They found an over/epresentation of a G ly l6  allele of the L

p2 -adrenoceptor in these patients. A glycine at position 16 imparted an
'

accelerated agonist-promoted downregulation of the p2 -adrenoceptor as 

compared to arginine at this position. It was therefore concluded from 

this study that the G lyl6  polymorphism may be an important genetic 

factor in the expression of this asthmatic phenotype.

■■■

antagonists are used to block one or more of these actions in patients

-Î



of cardiac disease. Figure 1.1. shows the |3-adrenoceptor distribution in 

the normal and compromised hearts.

4 0
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Figure 1.1. p-adrenoceptor distribution in the normal and 

compromised human heart.
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1.6.4. HYPERTENSION

4 2
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Adrenergic neurotransmitters are important regulators of blood pressure.

Whereas a-adrenoceptor stimulation increases blood vessel contraction 

and peripheral resistance, j3-adrenoceptor stimulation causes vessel 

relaxation and decreased resistance. Considerable evidence has
-

suggested that alterations in the sympathetic nervous system contribute 

to the development and/or maintenance of systemic hypertension. In 

addition, sympatholytic drugs, in particular p-adrenoceptor blocking 

drugs, are important in the management of hypertensive patients. The 

precise mechanism by which p-blockers lower blood pressure has not 

yet been resolved, but p-adrenoceptors are known to contribute to the 

regulation of blood pressure through effects at several target sites, 

including the central nervous system, adrenergic nerve teminals, blood 

vessels, heart and kidney.

..f;

1.6.5. DIABETES MELLITUS

Changes in p-adrenoceptors can be associated with the absolute or 

relative deficiency of insulin that characterizes the diabetic state. An 

agonist of the P3 -adrenoceptor would have potential as an anti-type II 

diabetic therapy. Type II diabetes, or insulin independent diabetes, is 

caused by the inability of the insulin receptor to be activated by insulin, 

or loss of the receptor from the cell surface, which leads to reduced 

uptake of glucose by cells. Glucose levels in the blood therefore rise

I

rj;..

until an equilibrium is reached between its production and uptake. This 

leads to very high circulating glucose levels of up to 1200 mg/dl. At 

this concentration of glucose, the reabsorption process in the kidney is 

overloaded and as a result glucose is exereted. Due to osmotic effects, 

water and salts are also excreted, and the frequent urination that occurs 

can lead to dehydration. At high glucose concentration, non-enzymatic

_
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glycosylation of proteins, including haemoglobin and collagen may 

occur, which can lead to long term tissue damage in the kidney, retina, 

nerves and cardiovascular system. Glucose can also be converted to 

other sugars, e.g.sorbitol which causes the lens of the eye to swell, 

leading to blurred vision and cataracts. An agonist to Pg-adrenoceptors 

would be of use for the fact that it stimulates the uptake of glucose by 

cells.

1.6.6. NEUROLOGICAL DISORDERS

activity.

1.6.7. PSYCHIATRIC DISORDERS

4 3
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Neurological disorders that are characterized by dysfunction of the 

autonomic nervous system may be associated with alterations in 

P-adrenoceptors. These disorders include primary neurological diseases 

as well as diseases, such as diabetes mellitus,mentioned above, that may 

secondarily manifest abnormalities in autonomic nervous system

Noradrenaline in the brain has been implicated as an important regulator 

of several functions, including mood, memory, neuroendocrine control, 

and stimulation of the autonomic nervous system. Several of these 

functional responses are thought to be controlled by p-adrenoceptors in 

the central nervous system.



CHAPTER 2

MATERIALS AND METHODS
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Fi sons Scientific Equipment, Loughborough, U.K.

Acrylamide, EOT A, glucose, glycine, HEPES, magnesium chloride, 

sodium hydroxide, di-sodium hydrogen orthophosphate, SDS.

I
2.1. MATERIALS

..

All reagents employed were of the highest quality available and were 

obtained from the following suppliers:

2.1.1. GENERAL REAGENTS 

B.R.L., Paisley. U.K.

Pre-stained molecular weight markers.

i:,

Boehringer (U.K.) Ltd. Lewes, East Sussex, U.K.

GTPyS, Gpp(NH)p, GDP, creatine phosphate, creatine kinase

'5:

RBL Natick, MA, U.S.A. 

Bromoacetyl alprenolol menthane

I
Sigma Chemical Co., Poole, Dorset, U.K.

Agarose, N,N'-methylenebisacrylamide, cholera toxin, bovine serum 

albumin, gelatin, TEMED, trypsin, o-dianisidine hydrochloride, ATP 

disodium salt, cAMP sodium salt, thimerisol, Dowex AG50W-X4, 

alumina, imidazole, forskolin, sodium acetate, deoxycholic acid. 

Ponceau S, nonidet-P40.

I
45
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Spey wood Ltd, Berkshire, U.K.

Pertussis toxin.

Whatman International Ltd. Maidstone,U.K 

GF/C Glassfibre filters.

All other reagents were obtained from Merck Ltd, Poole, Dorset, U.K.

2.1.2. TISSUE CULTURE PLASTICWARE

Costar, 205 Broadway, Cambridge, MA., U.S.A.

Biofreeze vials, 12-chamber microphysiometer plates, nitrocellulose.

Molecular Devices, Sunnyvale, CA , USA

Microphysiometer disposables: plungers, capsule cups, blue spacers, 

sterilant.

Nunc, Denmark.

75 cm^ tissue culture flasks, 25 cm^ tissue culture flasks, tissue culture 

plates, 96-well plates, 24-well plates.
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1 -[propyl-2,3-^HjdihydroalprenoloL 

Specific activity =64 Ci/mmol

[125i]„iow specific activity cyanopindolol. 

Specific activity =300 Ci/mmol

4 7

3%

2.1.3. CELL CULTURE MEDIA 

Gibco Life Technologies. Paisley, U.K.

Dulbecco's modification of Eagle's medium (10 x), glutamine 

(200mM), sodium bicarbonate, 50 x HAT (hypoxanthine, aminopterin, 

thymidine), penicillin ( 1 0 0  I.U./ml) and 100 x streptomycin (100 

mg/ml), nutrient mixture Ham's F12, Alpha modified Eagle's medium 

(without ribonucleosides, deoxyribonucleosides), foetal bovine serum, 

newborn bovine serum, phosphate buffered saline, versene.

2.1.4. RADIOCHEMICALS

Amersham pic, Amersham, Buckinghamshire 

£8 -^H]adenosine 3', 5', cyclic phosphate, ammonium salt. 

Specific activity =24 Ci/mmol

I

Adenosine 5'-[a-^^P]triphosphate, triethylammonium salt.

Specific activity =400 Ci/mmol

: 
-4

NEN DuPont, Boston, MA 

[12-^H]forskolin. Specific activity=31 Ci/mmol

[^^^I]cAMP flashplate assay containing cAMP [^^^IJTracer (Succinyl 

cAMP Tyrosine methyl ester

_



Parental, non-transfected CHO cells were grown in Ham's F12 nutrient 

medium containing 10% FBS (heat inactivated as above). CHO cells

All cells were grown in a humidified atmosphere of 5% 0 0 2 /9 5 % air.

2.2. METHODS

2.2.1. CELL CULTURE 

al CELL GROWTH

Chinese Hamster Ovary (CHO) cells transfected with the human 

P-adrenoceptors (pi, p2 , and p3 -adrenoceptors) were grown in 75 cm^ 

tissue culture flasks in 0.04% (w/v) sodium bicarbonate buffered a-
:

modified Eagle's medium (aMEM), containing 10% (v/v) foetal bovine 

serum (FBS) which had been heat inactivated at 56°C for 90 minutes.

The medium was supplemented with glutamine, penicillin and 

streptomycin at final concentrations of 2 mM, 1000 units/ml and 100 

><g/ml, respectively.

•I.
transfected with the rat Pg-adrenoceptor were grown in Ham's F I2

nutrient medium with 10% FBS and G418 (geneticin) at a concentration 

of 50 /fg/ml.

Murine neuroblastoma x embryonic Chinese hamster brain NCB20 cells 

were grown in DMEM with 0.04% (w/v) sodium bicarbonate and 10%

FCS, The medium was supplemented with glutamine, penicillin and 

streptomycin at final concentrations of 2 mM, 1000 units/ml and 100 

^g/ml, respectively. They were maintained in the presence of gene(&in / 

sulphate (800 jWg/ml).

■K:

I

j

.
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b) CELL SUBCULTURE

Confluent cells were passaged using a sterile trypsin solution containing 

0.1% (w/v) trypsin, 0.67 mM EDTA and 10 mM glucose in PBS (0.27 

mM potassium chloride, 14 mM sodium chloride, 0.15 mM potassium 

dihydrogen orthophosphate, 0.8 mM disodium hydrogen 

orthophosphate, heptahydrate, pH 7,4.). Growth media was removed 

from the cells and 2 ml of trypsin solution added. When the cells were 

removed from the surface of the flask, trypsinization was stopped by the 

addition of growth medium. This cell suspension was centrifuged at 

800 X g in a MSE centaur centrifuge for five minutes to pellet the cells. 

The cell pellet was resuspended in growth medium and split to fresh

c) CELL MAINTENANCE

Confluent cells were removed from the surface of the flask by 

trypsinization as described above and the cells resuspended in freezing

Centaur centrifuge for five minutes to pellet the cells. The cell pellet

49

flasks as required.

Cells to be placed on the microphysiometer from transient transfections 

were lifted gently with versene (0 . 2  g/1 isotonic buffered saline), then 

spun down and the pellet seeded into capsules for use on the 

microphysiometer the following day.
i'V:?

£

medium, which consisted of 70% FBS, 20% growth medium and 10% 

dimethyl sulphoxide for both CHO cells and NCB20 cells. The

suspension was aliquoted into 0.5 ml volumes in Biofreeze vials, frozen 

overnight packed in cotton wool at -80°C, and then transferred the 

following day to liquid nitrogen for storage. Cells to be brought up 

from liquid nitrogen storage were thawed rapidly at 37“C, resuspended

in appropriate growth medium and centrifuged at 800 x g in a MSE

i



2.2.2. PRODUCTION OF CRUDE PLASMA MEMBRANE 

FRACTIONS

5 0

I
i
I
ivy

3'

was resuspended in growth medium and plated out in a final volume of 

10 ml per 75 cm^ flask.

d) CELL HARVESTING  

When confluent, growth medium was removed from the cell culture 

flask and 10 ml of ice-cold PBS (0.27 mM potassium chloride, 14 niM 

sodium chloride, 0.15 mM potassium dihydrogen orthophosphate, 0.8 

mM disodium hydrogen orthophosphate, heptahydrate, pH 7.4) added. 

Cells were gently washed from the surface of the flask, collected in a 50 

ml conical tube and centrifuged at 800 xg in a Beckmann TJ6  centrifuge 

for 10 minutes. The resulting cell pellet was washed with ice-cold PBS 

and re-centrifuged. The final pellet was stored at -80°C until use.

Membranes were produced according to Koski and Klee (1981).

Frozen cell pellets were thawed and suspended in 5 volumes of ice-cold 

10 mM Tris-HCl, 0.1 mM EDTA pH 7.5, then homogenised with 20- 

25 strokes of a ground glass on teflon homogeniser. The homogenate 

was centrifuged at 500 x g for 10 minutes in a Beckmann L5-50B 

centrifuge with a Ti50 rotor, to remove unbroken cells and nuclei.

Plasma membranes were collected by further centrifugation of the
I' ■■ ■■

supernatant at 48,000 x g for 10 minutes, washed in 10 volumes of the 

same buffer and after a second centrifugation at the same speed, were 

resuspended in the same buffer to a final protein concentration of 

between 0.5-3 mg/ml. These samples were aliquoted and stored at 

-80°C until required.

_



2.2.3. PROTEIN DETERMINATION

The method used is based on that of Lowry etal, 1951. Stock solutions

to be used were 2% (w/v) sodium carbonate in 0.1 M sodium

hydroxide, 1 % (w/v) copper sulphate, 2% (w/v) sodium potassium 

tartrate. Just prior to use, these stock solutions were mixed in the 

following ratio: one hundred parts sodium carbonate in sodium 

hydroxide to one part copper sulphate plus one part sodium potassium 

tartrate. Protein standards were prepared using 1 mg/ml BSA, and a 

standard curve constructed with a maximum of 30 pig of protein per

sample. Unknown samples were usually assayed in 1, 3 and 5 ja \ 

volumes in duplicate. Samples were made up to a constant volume with

Tris-EDTA buffer ( 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.5). 1 ml of 

the mixed solution was added to each sample, mixed and left to stand 

for 15 minutes. 100 pi\ of Folin and Ciocalteau's phenol reagent diluted 

1 :1  with water was added to each sample, mixed and allowed to stand

3

for a further 20 minutes. The absorbance of light by each sample was 

assessed spectrophotometrically at 750 nm in a Shimadzu model of 

spectrophotometer.

2.2.4. ANTISERUM PRODUCTION

All antisera used were generated against synthetic peptides, essentially 

as described by Goldsmith and colleagues (Goldsmith et al, 1988).

This section is for information only, as I did not perform the techniques 

myself. 3 mg of the appropriate peptide and 10 mg of keyhole limpet
-

haemocyanin were dissolved slowly in 1 ml of 0.1 M phosphate buffer 

pH 7.0. 0.5 ml of 21 mM glutaraldehyde (also in 0.1 M phosphate 

buffer, pH 7.0) was then added dropwise with stirring and the 

combined 1.5 ml incubated overnight at room temperature. The 1.5 ml 

solution was mixed with an equal volume of complete Freund's

5 1



adjuvant and briefly sonicated with a Branson model 'soniprobe'. 1 ml 

aliquots of the resulting emulsion were injected in multiple subcutaneous 

sites in New Zealand white rabbits. Four weeks later each animal 

received a booster immunization with material identically prepared, 

except one half as much keyhole limpet haemocyanin and peptide were 

injected in incomplete Freund's adjuvant. Bleeds were performed 

monthly with approximately 15 ml taken from the ear artery and 

collected into a glass universal. Blood was left to clot overnight at 4°C 

and the plasma removed and centrifuged at 1000 x g in a Beckman TJ 6  

centrifuge for 10 minutes to pellet any remains of the clot. The 

supernatants thus produced were aliquoted into 250 pil volumes and 

stored at -80“C until use. The antibody named CS which I used to 

identify Gg was constructed from the C-terminal peptide sequence 

RMHLRQYELLof Gga at positions 385-394. Anti serum SG was 

produced in a similar fashion against the C-terminal decapeptide of the a  

subunit of rod transducin (KENLKDCGLF) This anti serum identifies 

both G ila  and Gi2a. Antiserum CQ was generated against a synthetic 

peptide (QLNLKEYNLV) which represents the C-terminal decapeptide 

which is conserved between Gcp and G n a.

2.2.5. GEL ELECTROPHORESIS 

al SAMPLE PREPARATION

Samples were prepared for gel electrophoresis by sodium deoxycholate/ 

trichloroacetic acid precipitation; 1 0  pi\ of 2 % (w/v) sodium 

deoxycholate was added to each sample, followed by 750 pi\ of water, 

then 250 pil of 24% (w/v) trichloroacetic acid. Samples were placed in a 

microfuge for 2 0  minutes at 1 2 , 0 0 0  x g , after which the supernatants 

were removed. The pellets were then dissolved in 20 /̂ 1 of IM Tris 

base followed by 20 pil of Laemmli buffer, which consisted of 5 M

5 2
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urea, 0.17 M SDS, 0.4 M dithiothreitol, 50 mM Tris-HCl (pH 8.0), and

b) LOWER RESOLVING GEL:10% (w/v) SDS-PAGE 

Gel electrophoresis was carried out according to the discontinuous 

system described by Laemmli (1970). The gel plates were 180 mm by 

160 mm with spacers of 1.5 mm. The slabs were run as a part of a Bio- 

Rad Protean I electrophoresis apparatus (Bio-Rad Laboratories Ltd, 

Watford, Herts.). Separating gels contained 10% (w/v) acrylamide and 

0.27% (w/v) bisacrylamide with 0.375 M Tris (pH 8 .8 ), 0.1% (w/v) 

SDS, 0.033% (v/v) glycerol, 0.0003% (v/v) TEMED and 0.0004%

5 3
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:

0 .0 1 % bromophenol blue.

I
f
•Ï.

I
(w/v) ammonium persulphate. The final volume was 24 ml with the 1.5

■

mm spacers and 36 ml with the 2,5 mm spacers. The solution was

immediately mixed and poured into a Biorad protean I gel casting 

apparatus. The gel was layered with 0.1% (w/v) SDS to exclude air, 

and left to set at room temperature for approximately 2  hours.

c) UPPER STACKING GEL

The upper stacking gels contained 3% (w/v) acrylamide and 0.08%

(w/v) bisacrylamide with 0.125 M Tris (pH 6 .8 ), 0.1% (w/v) SDS,

0.0005% (v/v) TEMED and 0.001% (w/v) ammonium persulphate.

These were left to set around a 15 well teflon comb for at least 30 

minutes. The solution was mixed, layered on top of the resolving gel 

and allowed to polymerize.

d) ELECTROPHORESIS

The running buffer contained 25 mM Tris (pH 8.5), 0.192 M glycine

and 0.1% (w/v) SDS. Samples were loaded onto the gels described
.

above using a Hamilton syringe (Hamilton Co., Reno, Nevada).
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2.2.6. WESTERN BLOTTING

ÿ

Molecular mass determinations were based on prestained SDS molecular 

weight markers (Sigma). Electrophoresis was performed overnight at 

50 V (Bio-Rad system). Electrophoresis was towards the anode at 25 

mA per slab until the bromophenol blue dye front was 0.5 cm from the 

bottom.

3
3"

e) GEL PROTEIN STA1NÎNG

After electrophoresis, the gel was placed in a tray and covered in stain 

solution of Ponceau S for five minutes or until proteins were apparent 

on the gel as discrete bands. The Ponceau S was completely removed 

with PBS (0.27 mM potassium chloride, 14 mM sodium chloride, 0.15 

mM potassium dihydrogen orthophosphate, 0.8 mM disodium 

hydrogen orthophosphate, heptahydrate, pH 7.4.) .

Proteins were separated under appropriate resolving conditions on SDS- 

polyacrylamide gels overnight at 50 V, 25 mA. The proteins were 

transferred to a nitrocellulose sheet for 2 hours at 1.5 mA in an LKB 

transblot apparatus. Blotting buffer consisted of 0.192 M glycine, 25 

mM Tris and 20% (w/v) methanol. After immunoblotting, the 

nitrocellulose was placed in a tray and covered in stain solution of 

Ponceau S for five minutes or until proteins were apparent on the gel as 

discrete bands. Once protein loading was confirmed as being accurate, 

the Ponceau S was completely removed with PBS. The sheet was then 

"blocked" for 2 hours at 37°C in 5% (w/v) gelatin in PBS, containing 

0.0004% (w/v) thimerisol as an anti-bacterial agent. After this time 

gelatin was washed off with large amounts of distilled water, and the 

nitrocellulose sheet incubated overnight at 37°C with the appropriate 

dilution of antiserum in 1% (w/v) gelatin in PBS. This antiserum was

5 4



the specific anti-G-protein antiserum. On the following day, the 

anti serum was removed and the nitrocellulose sheet subjected to a series 

of washes in water to remove all the unbound antiserum, then PBS plus 

0.2% (v/v) NP-40 for 10 minutes each, finally followed by a series of 

PBS washes. The blot was then incubated with a secondary antibody 

(horseradish peroxidase conjugated goat anti-rabbit IgG) for 2 hours at 

37°C. The second antibody was then removed and the nitrocellulose 

sheet subjected to the same series of washes as before. The blot was 

then developed in 50 ml PBS plus 1% o-dianisidine as substrate. 

Development of the blot was begun by addition of 10 /<1 of hydrogen 

peroxide, and stopped by immersion of the blot in 1% (w/v) sodium 

azide. The blot was finally removed to water, before being dried on 

blotting paper. Both first and second antibodies could be reused up to 

four times, and were stored at 4“C containing 0.004% (w/v) thimerisol. 

Immunoblots were quantified by densitometric scanning using a Bio- 

Rad imaging densitometer which was linked up to a software package 

called 'Molecular Analyst' on a Macintosh Quadra 800 computer.

2.2.7. RADIOLIGAND BINDING ASSAYS

Binding assays were performed by the rapid filtration method as 

described by Pert and Snyder (1973) using a binding buffer (unless 

otherwise stated) of ice-cold 10 mMTris HCl, 50 mM sucrose, 20 mM 

magnesium chloride pH 7.5. 10-50 pig of membrane protein was used 

plus the appropriate radiolabelled ligand to a final volume of 250 pil. 

Non-specific binding was assessed in parallel tubes containing the 

appropriate drug at saturating concentrations. Blank values were 

determined by replacement of membrane protein with buffer.

5 5



incubated at 30°C for 30 minutes.

The assay was initiated by transferral of tubes to the appropriate
-

incubation temperature. For example, for the dihydroalprenolol

binding, tubes were incubated at 30°C for 30 minutes. After this period 

of time the tubes were rapidly filtered through Whatman glassfibre 

(GF/C) filters which had been pre^oaked in binding buffer, followed by ^

three 5 ml washes of the filter with ice-cold binding buffer. Filters were 

soaked overnight in Ecoscint scintillation fluid prior to being counted in 

a Rackbeta scintillation counter.

a) pHldihydroalprenolol (DHA) binding

25 pi\ pH] DHA (64 Ci/mmol) was added at a final concentration of 2 

nM to 50 jul membranes (5 pig per assay), with or without the presence 

of 100 jwM propranolol to define non-specific binding. The tubes were 

made up to a final volume of 250 pil with binding buffer. Tubes were

b) PHlforskolin binding
-

50 pil of pHjforskolin (31 Ci/mmol) was added at a final concentration 

of 10 nM to assays with or without 50 pil of appropriate agonist, 300 pii 

of whole cells (1-2 xlO^ /ml) in DMEM/HEPES (DMEM + 20 mM 

HEPES pH 7.4 at 4°C) and in the presence or absence of 50 jwl 100 piM

forskolin to define nonspecific binding. Samples were made up to a 

final volume of 500 pil with DMEM/HEPES and were incubated at 4°C

for 90 minutes.
i
:

c) P ^^llcvanopindolol (ICYP) binding

Low specific activity (300 Ci/mmol) ICYP was added at a range of 

concentrations for the determination of Bmax values of the 

- adrenoceptors. A volume of 25 pil [^^^I]-CYP was added to the 50

5 6
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pi\ homogenate ( 2 0  pig membrane protein), with or without the addition 

of 100 piM (S)- propranolol to define non-specific binding. This was 

made up to a total volume of 125 pi\ with an assay buffer consisting of 

5 0 mMTris pH 7.7, 12.5 mM MgCh, 2 mM EDTA, pH 7.4 at 37°C. 

Assays were incubated for 60 minutes at 37°C.

2.2.8. ADENYLYL CYCLASE ASSAY 

This is essentially the method of Salomon (1979) except that the amount 

of ap^PJATP was reduced to 1 piCi per sample.This assay monitors the 

production of p^P]cAMP from the substrate ap^P]ATP. The cAMP 

thus produced is separated from unreacted ap^P]ATP by a two-step 

column method.

al SAMPLE PREPARATION

Reaction mixtures of 50 piX were prepared containing: 5 mM creatine 

phosphate, 100 mM sodium chloride, 100 U/ml creatine 

phosphokinase, 25 mM Tris acetate pH 7.0, 0.5 mM ATP pH 7.0, 0.05 

mM cAMP,10 mM GTP pH 7.0, 10 mM MgCh , ap2p]ATP (1  x 1 0  ̂

c.p.m.). These mixtures also contained between 10 to 20 pig of 

membrane protein, together with the ligand(s) of interest. Reaction 

tubes were kept on ice at all times and the reaction started by removal to 

a 30°C water-bath. After 15 minutes the reaction was stopped by 

removal to ice and the addition of 1 0 0  pil of stopper solution containing 

2% (w/v) SDS, 45 mM ATP, 1.3 mM 3'5’cAMP. Prior to boiling for 

15 minutes, 50 pil of [8-^H]3'-5'cAMP (approximately 10,000 c.p.m.) 

was added to each tube. To each sample 750 pil of water was added and 

the pHJcAMP and p^P]cAMP content of each tube determined.

5 7
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M PREPARATION OF DOWEX AND ALUMINA COLUMNS 

The method used to quantitate the amount of cAMP produced by each 

sample was identical to that of Salomon (1979) and involves the 

separation of cAMP from other nucleotides by Dowex and then alumina

cl DETERMINATION OF COLUMN ELUTION PROFILES 

Prior to sample chromatography, the nucleotide elution profiles for each 

column were determined. This was performed by applying a mixture of 

pHjcAMP and p^P]ATP to the column and determining the elution 

volume. Stock pHJcAMP was diluted with water to give approximately 

10,000 c.p.m. in 50 pi\. p^P]ATP was diluted from stock of 1 mCi/ml 

to give approximately 2,000 c.p.m. in 50 pi\. 50 }a\ of each of the 

cAMP and ATP solutions were added to 900 pi\ of water and the mixture 

applied to a Dowex column. The ATP and cAMP were eluted from the 

column by successive washes of the column with 0.5 ml of water. 

Fractions were collected in a vial with 15 ml of Ecoscint and 

radioactivity determined by scintillation counting using a dual label 

programme. The elution volumes required to elute the cAMP from the

5 8

chromatography. Dowex H+ 50 x 4 (200-400) was washed in twice its 

packed volume with 1 M HCl and then with the same volume of water 

four times. The Dowex was mixed with water to a slurry (1:1 w/v 

ratio), 3 ml removed and added to glass wool stoppered columns. The 

water was allowed to drain out the columns and washed with 2  ml of 1 

M HCl . Prior to use, the columns were washed with 1 ml of 1 M HCl 

followed by 20 ml of water. The alumina columns were prepared by the 

addition of 0 . 6  g of dry neutral alumina to glass wool stoppered 

columns and the columns washed with 15 ml of 0.1 M imidazole. On 

the day of use, each column was washed with 8  ml of 0.1 M imidazole, 

pH 7.3.



Dowex columns were then determined graphically. Typical recovery 

from the Dowex columns was greater than 80%. The elution volume 

required to elute the cAMP from the alumina columns was determined 

as for the Dowex columns except that only pH]cAMP was used, and 

the eluting buffer was 0.1 M imidazole. Recoveries were similar to that 

obtained for the Dowex columns.

5 9



d) DETERMINATION OF cAMP PRODUCED BY MEMBRANE 

FRACTIONS

Samples (total volume 950 pÂ) were added to prepared Dowex columns 

and the ATP eluted with 1.8 ml of water. 3.5 ml of water was then 

added to the Dowex columns and this eluate allowed to run directly onto 

the alumina columns. The cAMP fraction was eluted into vials 

containing 15 ml of Ecoscint, with 6  ml of 0.1 M imidazole, pH 7.3. 

The recovery of cAMP from the columns was routinely greater than 

80% and when the column recovery fell below 60%, columns were 

discarded and fresh columns prepared. This gave a column life of 

approximately 6  months. The cAMP fractions obtained were counted 

on a dual label scintillation counting programme which automatically 

corrected for 'spillover' from each channel. The amount of cAMP 

produced by each sample was calculated by taking into account the 

recovery from each column, based on the recovery of the pHJcAMP 

internal standard. Data was thus calculable in pmoles of cAMP 

produced per minute per milligram of membrane protein (pmol/min/mg), 

and the assay was sensitive to approximately 5 pmoles/min/mg.
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The basic principle of this method to assess cAMP production is the 

competition between a radioactive and a non-radioactive antigen 

(sample) for a fixed number of antibody binding sites. In the

(cAMP[l^^I]tracer) and the plates left overnight at 4°C before being

6 1
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2.2.9. cAMPFLASHPLATE ASSAY

.*

[i25j]cAMP flashplate, the antibody is fixed to scintillant-coated 

microplate wells and the counting of the bound fraction is dependent 

upon the distance of the material to the walls of the wells. Separation of 

the bound from the free antigen is not necessary to quantitate the bound 

tracer.
%

al TREATMENT OF 96-WELL PLATES

Cells were seeded into 96-well plates and grown until confluency in 100 %

pti of growth medium per well. Plates were then treated at room 

temperature, with 10 ]a \ 0.5 mM isobutyl methylxanthine (IBMX) per 

well for 10 minutes, before treatment with agonists for 30 minutes. The 

reaction was stopped with IQ pil 5% perchloric acid (PCA), mixed, then 

placed at 4“C overnight. The following day the plates were neutralised 

with 100 pil of 50 mM potassium hydroxide in 250 niM sodium acetate 

per well. Wells were then ready to be assayed for cAMP production.

b) FLASHPLATE PROCEDURE

From a total reaction volume after neutralisation of 2 0 0  pil, 30 pil of 

sample was added to the flashplate, along with 70 pil of cAMP assay 

buffer. The remaining amount was stored at 4°C in case the assay 

needed to be repeated. For comparison a standard curve was set up in 

parallel, preferably on the same plate, with a range of cAMP levels from 

1 to 50 pmol/ml. To all samples 100 pil of working tracer is added



counted on a 'TopPlate' counter (Packard). Unknown levels of cAMP 

from samples could be calculated directly from the standard cuiwe.

S
2.2.10. MICROPHYSIOMETER EXPERIMENTAL PROCEDURE

The Cytosensor® Microphysiometer (Molecular Devices) detects 

cellular responses to a wide variety of specific and nonspecific stimuli 

by measuring the rate of excretion of acidic metabolites with a silicon 

sensor that functions as an extremely rapid and sensitive extracellular 

pH meter.

Cells were sandwiched between two porous polycarbonate membranes 

inside disposable cell capsules, on which they were seeded at 300,000 

cells per capsule the day prior to placing on the microphysiometer. On 

the day of the experiment capsules were placed on the microphysiometer 

into the silicon sensor chambers. A plunger created a microvolume 

cavity, 100 pim deep and 6  mm in diameter, to contain the cells. The 

cells were supplied with a controlled flow of nutrients, with or without 

the effector of interest. This supply of nutrients consisted of a pot of 

powdered DMEM (without salts) dissolved in 1 1 of deionised water,

6 . 6  ml of 4.0 M NaCl at pH 7.4. This medium lacked bicarbonate so

that it has a low buffering capacity. 1 mg/ml bovine serum albumin ^

(BSA) was added to 800 ml of this; which was fed through the tubes to ^
: £

the silicon chambers. These chambers containing the cells were rinsed
.

at the start of each experiment with medium lacking BSA. BSA was 

included to prevent drugs sticking to the tubes of the microphysiometer, 

although is probably not vital in the case of such ligands as isoprenaline.

Acidification rates were determined in microvolts per second during 

periods of flow cessation ( 1  jwV/sec =1 millipH/min) called 'off-rates'.

6 2



How was interrupted for an interval of 30 s, during which the rate of 

acidification was measured and recorded. The flow was then resumed 

and the next cycle begun. The rates were recorded and plotted as a 

function of time. Data was exported into appropriate database and 

graphic programs for further processing, such as the computation of the 

percentage change in acidification rates.

After experiments were completed, the microphysiometer was washed 

through with a sterilant solution obtained from Molecular Devices to 

avoid the formation and build-up of Mycoplasmae between use. Pumps 

were continuously kept running when the microphysiometer was not in 

use.

2.2.11. MOLECULAR BIOLOGY TECHNIQUES

2.2.11.1. CONSTRUCTION OF CHIMERIC -ADRENOCEPTORS 

Eight human/rat p3 -adrenoceptor chimeras were constructed using 

oligonucleotide-directed in vitro mutagenesis. Chimeras were 

generated by a method based on the work of Kunkel et ai ( 1985), using 

a Muta-Gene® phagemid in vitro mutagenesis kit (Bio-Rad). The native 

human ^3 -adrenoceptor gene, was subcloned from the in-house CNOD 

vector (SB Pharmaceuticals) into the pRc/CMV vector (Invitrogen). 

This vector contained the f l origin required for generating single 

stranded uracil containing DNA to which the mutagenic oligonucleotide 

anneals prior to acting as a primer for synthesis of the complementary 

strand by T7 DNA polymerase. E.coli MV1190 was transformed with 

the resulting dsDNA, whereupon replication of the plasmid, the uracil- 

containing, non-mutant strand was selected against. The frequency of 

mutants was therefore increased allowing identification directly by DNA 

sequencing.
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Oligonucleotides were designed to independently mutate each 

transmembrane domain from the human to the rat amino acid sequence. 

There is no TM3 chimera as transmembrane 3 is identical in both human 

and rat pg-adrenoceptors and additionally, a double TM mutant 

consisting of both the TMl and TM7 mutations was constructed. The 

oligonucleotides, ranging in length from 35 to 82 nucleotides, were 

synthesised by R&D Systems Europe Ltd. A single mutagenic 

oligonucleotide was designed for each transmembrane domain 

introducing up to five mutations simultaneously.

2.2.11.2. EXPRESSION OF THE 6 3 -ADRENOCEPTOR IN CHO

CELLS

were then left in the incubator for about 30 minutes before washing

.1:W:

al TRANSIENT TRANSFECTIONS

Day 1: CHO cells were seeded in an 80 cm^ plate such that cells will be 

70-90% confluent the following day. Cell density on the day of

transfection is a crucial factor for successful transfection.
,

Day 2: For each flask of cells to be transfected, 36 pg  of plasmid DNA 

was made up in 1.8 ml of serum free growth medium (SFGM) and 108 

]a\ of lipofectAMINE in 1.8 ml of SFGM. The lipofectAMINE and 

plasmid solutions were thoroughly mixed in a 2 0  ml universal tube and 

allowed to stand for 45 minutes. Meanwhile the cells were washed 

gently four times with 10 ml of wami SFGM to remove serum. They

■•5

twice more. After standing for 45 minutes, the transfection reaction

volume per flask was brought to 18 ml with SFGM (i.e. 14.4 ml SFGM 

+3.6 ml of reaction mixture). The SFGM was aspirated from the cells 

and 18 ml of the diluted reaction mixture added to each flask. These 

were incubated at 37°C/5% CO2  for five hours. After five hours 18 ml
.

'i
3'
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of growth medium containing twice the normal strength of serum was 

added to each flask. This quenched the transfection.

Day 3'. The medium was gently aspirated and carefully replaced with 36 

ml of fresh medium containing normal levels of serum.

Day 4 : Medium was aspirated from the cells and replaced with 5 ml of 

warm EDTA (200 mg/1). This was left for 1-2 minutes then removed 

and added to a universal tube. A further 5 ml of EDTA was added to the 

cells and the step repeated. This step was repeated once more and the 

EDTA left on the flasks until all cells had been lifted off. The cells were 

collected in the universal tube and spun down. The resulting cell pellet 

was resuspended and either plated onto microphysiometer capsules or 

onto 96-well plates for use in the Flashplate cAMP accumulation assay 

the following day,

b) MASS CULTURE PRODUCTION

For the production of mass cultures the transient transfection steps 

above were followed but instead of lifting cells with EDTA, cells were 

left to grow in normal medium until confluency, then split to new flasks 

and left to settle down for a number of weeks.

2.2.11.3. RNA ISOLATION BY THE RNAZOL^METHOD 

al HOMOGENIZATION

Cells were scraped from the flask wall into the growth medium to obtain 

a cell suspension. 750 ptl of RNAzole B was added to the flask and 

cells lysed by mixing with a Pasteur pipette. RNA was solubilised by 

passsing the lysate several times through the Pasteur pipette. Cells were 

then placed on ice for 30 minutes.

b) EXTRACTION
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After 30 minutes on ice 100 jaI of chloroform was added per 2 ml of 

homogenate formed. The tube was covered tightly and shaken 

vigorously for 15 seconds, after which it was placed on ice for 5 

minutes. The suspension was then centrifuged at 12,000 x g for 15 

minutes at 4°C. After centrifugation, the upper aqueous phase 

containing RNA was obtained by carefully avoiding the lower phase of 

phenol-chiorofoiTn containing the DNA and protein.

c) PRECIPITATION 

To this tube an equal volume of isopropanol was added and placed on 

ice for 15 minutes. This sample was then spun at 12,000 x g for 15 

minutes to produce a small white pellet of RNA at the base of the tube.

d) WASHING

The supernatant was removed and the pellet washed with 75% ethanol 

by vortexing and mixing. This was then spun at 7,500 x g for 8 

minutes, followed by drying. The RNA was then dissolved in 0.5%

SDS and the RNA concentration measured by taking 5 ]a \ RNA diluted 

to 1 ml with sterile water and recording the optical density at 260 and 

280 nm.

I
2.2.11.4. REVERSE TRANSCRIPTION (RT)

I
5 pig obtained from the RNAzole method above was added to a sterile

>1
tube and diluted with diethylpyrocarbonate (DEPC) treated water to 20 

pi\. The RNA solution was then heated to 65°C for 10 minutes, chilled 

on ice and spun down for 5 seconds. From a Pharmacia kit, a cDNA 

reaction mix was gently pipetted to obtain a uniform suspension. 11 ^1 

of this mix was added to a tube , plus 1 pi\ DTT, 1 pi\ oligo dT and the
i V

heat denatured RNA. This was mixed thoroughly and incubated at 37°C
"...

for 1 hour. The completed first strand cDNA reaction product was now

I:
3
m:
;
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I
ready for immediate second strand synthesis, PCR amplification or 

could be frozen down.

2.2.11.5. POLYMERASE CHAIN REACTION (PCR)

The completed first strand reaction was heated for 5 minutes at 90°C, 

then chilled on ice. This denatured the RNA-cDNA duplex and 

inactivated the reverse transcriptase. A PCR mix for 5 tubes was made 

up consisting of 25 /<1 10 x PCR buffer, 15 ul of 15 mM MgCU, 5 pi of 

25 mM dNTPs and 2.5 pi of Taq polymerase, Tubes containing 5 pi of 

the cDNA reaction, 9 .5 ^  PCR mix, 1 pi of oligo A, 1 pi oligo B were A-f

made up to 50 pi with water. For the prevention of sample evaporation 

50 pi of mineral oil was placed over the sample. Positive and negative

I

controls were included, and samples placed into the thermocycler for 

appproximately 30 cycles. One cycle consisted of 42 s of dénaturation 

at 95°C, then 1 minute of primer annealing at 54°C, followed by 5 

minutes of polymerization at 72°C. At the end of the PCR reaction, 

tubes were removed and the DNA extracted carefully from below the 

mineral oil layer.

2.2.11.6. AGAROSE GELS

An agarose gel of 1.25% was used, onto which the negative and 

positive controls were loaded alongside 5 pi of sample. The 

electrophoresis buffer used was prepared as a 50 x stock solution of 40 

mM Tris-acetate, 1 mM EDTA buffer, pH 8, and then diluted on the day 

of use with H2 O to give a 1 x stock. The gel was stained with ethidium 

bromide for 25 minutes, rinsed twice in water and visualized under 

ultraviolet light. Verification of the desired PCR product was obtained 

by comparison of the sample size with markers and the positive control.

6 7



2.2.12. STATISTICAL ANALYSIS

The data were analysed by the use of Student’s t test. Probability 

values (?) < 0.05 determined the validity or otherwise of the 

hypothesis.
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3.1. METHODS OF DESENSITIZATION

INTRODUCTION

To investigate the desensitization of the three (3-adrenoceptor subtypes, 

a number of groups have gathered large amounts of evidence by the

7 0

i

■i
During continuous agonist exposure, it has been observed that a number 

of G-protein coupled receptors, including the p-adrenoceptors, undergo 

certain regulatory processes to effect a reduction of their function 

despite the continued presence of ligand (Liggett etal, 1993, Dohlman et. 

al, 1987, Hausdorff etal, 1990). This waning of the cellular response.

known as desensitization, has been particularly well studied for the
,

p-adrenoceptors. In the case of the p-adrenoceptors, desensitization

may serve to limit cellular responsiveness during continuous neural 

firing or where there are persistent levels of catecholamines in 

circulation. This may be the condition in many types of heart disease, 

where there are raised levels of catecholamines. Desensitization may 

also contribute to limiting the clinical effectiveness of therapeutic agents.

It is therefore important to build up a clear picture of the underlying 

processes and how they are controlled.

7
S

The three subtypes of p-adrenoceptors desensitize via a number of 

different processes. These include such varied processes as 

downregulation, sequestration, phosphorylation, and G-protein 

downregulation. The degree of involvement of each of these different 

methods in the overall process of desensitization varies between the 

three different subtypes, depending on such properties as their 

molecular structure and physiological importance, tissue localization and 

function in the body.
7



production of chimeric constructs (Strader et al 1987, Mantel et al, 

1993). Mantel etal (1993) investigated the rapid desensitization of the 

p2 “Udrenoceptor compared with the resistance to rapid desensitization of 

the p3 -adrenoceptor. While a thirty minute exposure to isoprenaline led 

to a significant desensitization of p2 -adrenoceptor-stimulated adenylyl 

cyclase activity, it only produced a marginal effect on p3 -adrenoceptor 

responsiveness. However, following addition of p2 -adrenoceptor 

phosphorylation sites to the sequence of the p3 ~adrenoceptor, by 

substitution of the third cytoplasmic loop and the carboxyl-terminal tail 

of the p3 -adrenoceptor with the corresponding regions of the 

P2 -adrenoceptor, desensitization of the chimera was partially, but not 

completely restored. This data implies that other molecular determinants 

are also involved in the development of agonist-promoted 

desensitization, but confinns the importance of the cytoplasmic tail of 

receptors, rich in serine and threonine residues.

From receptor binding studies, groups have assessed the levels of 

P-adrenoceptor desensitization upon agonist stimulation (Thomas et al, 

1992, Chambers etal, 1994). For example, Chambers e ta l  (1994) 

studied the rate of desensitization of the p2 - and P3 -adrenoceptors 

transfected into CHO cells after treatment with isoprenaline ( 100 /dvi) 

for varying times (Figure 3.1.1). While a steady reduction in levels of 

the p2-adrenoceptor population in membranes derived from P2 - 

adrenoceptor transfected CHO cells was noted, reaching some 80% 

following exposure to the agonist for 24 hours, no reduction in levels of 

the p3 ~adrenoceptor was recorded, as assessed by specific binding of 

[^25i]ctP. In fact, a slight increase in p3 -adrenoceptor levels occurred 

over 24 hours treatment. This was in agreement with observations by

Thomas etal {1992).

I
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Figure 3.1.1. Time course of p-adrenoeeptor down­

regulation in P2 - and Pg-adrenoceptor expressing CHO 

ce lls . P2- and P3 -adrenoceptorexpressing CHO cells were exposed to 

isoprenaline (100 /<M) for varying times and membranes prepared. 

Levels of either the P2 - (open squares) or P3 -(closed circles) 

adrenoceptor were then measured using the specific binding of 

[125i]cYP. The graph is taken from Chambers etal ( 1994).
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In this Chapter I set out to investigate the possible methods of G-protein 

down-reguiation and its effect on p-adrenoceptor function. I also 

attempted to clarify the methods of sequestration and recovery of Gg in 

response to activation of different j3-adrenoceptors.

It had already been confirmed that the and p^-adrenoceptors down- 

regulate extensively following sustained exposure to agonists, but 

whether their G-proteins co-down-regulate was unknown. While it was 

known that the p3 -adrenoceptor was particularly resistant to down- 

reguiation, and in fact on some occasions up-regulates upon agonist 

stimulation (Thomas a/, 1993, Chambers etal, 1994), it could be a 

possibility that the G-protein down-regulates alone. Although a great 

deal of work has been perfoimed by different groups on the three 

p-adrenoceptors, very little is known of their regulation at the G-protein 

level.

My first set of investigations was to assess how the p-adrenoceptors 

regulate their activity upon agonist activation. A number of agonists are 

available for the study of the p-adrenoceptors, such as the physiological 

agonist adrenaline, but for my studies I selected the agonist 

isoprenaline.

For the investigation of p-adrenoceptor desensitization and down- 

reguiation of the G-protein, Gg, associated with it, a number of different 

experiments were performed. The functional assay used for estimation 

of the level of p-adrenoceptor desensitization was the already 

well-established Johnson and Salomon (1991) adenylyl cyclase assay. 

Separation of radiolabelled cyclic AMP and ATP was achieved using the 

double column method described by Johnson and Salomon (1991).

7 3



cell lines represent Pg-adrenoceptor expressing CHO cell lines of 

different receptor densities. These receptor densities were calculated

7 4

In parallel with these adenylyl cyclase assays, SDS-PAGE and western 

blotting was performed for identification of alterations in levels of Gg. 

An antiserum produced to the C-terminal of Gg (named CS) was used 

for Gg identification, following which blots were scanned on a 

densitometer linked to a Macintosh Quadra 800 using a 'Molecular 

Analyst' software package. The specificity of antiserum CS for GgO 

had previously been demonstrated (Milligan and Unson, 1989). 

Antiserum SG was produced against the C-tenninal decapeptide of the a  

subunit of rod transducin (KENLKDCGLF), and was used here to 

identify Gi2a. Antiserum CQ was generated against a synthetie peptide 

(QLNLKEYNLV) which represents the C-terminal decapeptide which is 

conserved between Gqa and G n a  .

I

Assays were also performed to investigate the loss of Gg from the 

plasma membrane into the cytosol, and also whether recovery occured 

with the transferral of Gg back to the plasma membrane. These were 

also performed by the use of SDS-PAGE (10% acrylamide) and western 

blotting techniques.

RT-PCR was performed on mRNA extracted from the pi-adrenoceptor 

expressing CHO cells, (chosen because it showed the associated Gg 

polypeptide to down-regulate most rapidly in response to agonist 

occupancy of the three p-adrenoceptors) in order to assess the role of 

alterations in Gg mRNA levels in the overall desensitization process.

:
Receptor levels of the three different subtypes investigated in these 

experiments are shown in Table 3.1.1.below, where the D43 and C15



from pHJDHA binding perfomied by the Department of Biotechnology 

at SmithKline Beecham.

Table 3.1.1. p-adrenoeeptor expression in the different 

CHO cell lines.

CHO cell lines receptor levels

(fmol/mg membrane

protein)

p 1-adrenoceptor 7130 ± 258

P2 -adrenoceptor 2300 ± 120

Pg-adrenoceptor (D43) 3000 ± 400

Pg-adrenoceptor (C15) 390 ± 83

I ,
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3.2. RESULTS

treatment with 1 jaM  isoprenaline, Gg ' levels were veiy low 

suggesting almost complete down-reguiation of the G-protein. This 

experiment was repeated at least three times and the results produced

'1

s
INVESTIGATION OF MECHANISMS OF AGONlST-MEDIArED  

Gs DOWN-REGULATION B Y  -ADRENOCEPTOR EXPRESSING  

CHO CELLS.

SDS-PAGE (10% acrylamide) and western blotting were performed on 

membranes produced from the harvesting of pi-adrenoceptor 

transfected CHO cells. These cells had previously been treated for 16 

hours with concentrations of isoprenaline ranging from 1 piM to 0.01 

nM. Figure 3.2.l.b shows the curve produced from values obtained 

after a densitometer scan of the nitrocellulose blot (Figure 3.2.1.a). 

Western blotting techniques detect mainly the 45 kDa form of GgCt, 

previously identified as Gga-long. Half-maximal reduction in Gg was 

produced by 2.66 ± 0.88 nM isoprenaline, while the maximal effect was 

achieved at concentrations greater than 10 nM. After 16 hours of

were similai'.
.s

For an investigation into the time course of down-reguiation of Gg upon 

p 1-adrenoceptor stimulation, pi-adrenoceptor expressing CHO cells 

were treated with a maximal concentration of isoprenaline (100 }aM), for 

time periods ranging from 60 minutes to 4 hours, at which time points 

the cells were then harvested (Figure 3.2.2.a & b). Figure 3.2.2.b. 

shows the quantitative analysis of immunologically detectable levels of 

Gg, and after 60 ± 4 minutes, loss of Ggcc (L) was 50% of original 

levels. Maximal down-reguiation occured after approximately 200 

minutes. Equivalent immunoblots to detect Gqa and G|2a,

76



demonstrated that there were no significant differences in these 

polypeptides between untreated and isoprenaline-treated 

pl-adrenoceptor transfected CHO cells (Figure 3.2.2 c).

Cholera toxin-catalysed p^PjADP-ribosylation of pi-adrenoceptor 

expressing CHO cell membranes following treatment with 100 piM 

isoprenaline for different time points produced similar time courses to 

the immunoblots (Figure 3.2.3.). Half-maximal down-reguiation was 

once again achieved in approximately 60 minutes. Cholera toxin 

catalyses the p^P]ADP-ribosylation of the a  subunit of Gg,confirming 

once again the disappearance of the G-protein from the plasma 

membrane.

■■■;■
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Figure 3.2.1.a. GgOc down-reguiation in pi-adrenoceptor 

transfected CHO cells: a typical immunoblot. Concentration- 

response to isoprenaline in pi-adrenoceptor expressing CHO cells 

treated with agonist for 16 hours. Membranes from CHO cells were 

loaded onto a 10% polyacrylamide gel and Gga detected using the CS 

antiserum, previously described. The concentrations of isoprenaline 

treatment of p i-adrenoceptor expressing CHO cells were as follows: 

Control (Lane 1), 0.01 nM isoprenaline (Lane 2), 0.1 nM isoprenaline 

(Lane 3), 0.5 nM isoprenaline (Lane 4), 1 nM isoprenaline (Lane 5), 50 

nM isoprenaline (Lane 6), 100 nM isoprenaline (Lane 7), 1 piM. 

isoprenaline (Lane 8).

Figure 3.2.1 b. Q uantitative analysis of a typical 

immunoblot showing Gga down-reguiation: concentration- 

response to isoprenaline. Concentration response to isoprenaline 

in pi-adrenoceptor expressing CHO cells for 16 hours.
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Figure 3.2.2.a. Time course of GgOt down-reguiation in

p i-adrenoceptor expressing CHO cells: a ty p ica l

immunoblot. Lanes show membranes of p i-adrenoceptor expressing 

CHO cells treated for the following lengths of time with 100 

isoprenaline: Control (Lane 1), 15 minutes (Lane 2), 30 minutes (Lane 

3), 45 minutes (Lane 4), 60 minutes (Lane 5), 75 minutes (Lane 6), 90 

minutes (Lane 7), 120 minutes (Lane 8), 180 minutes (Lane 9), 240 

minutes (Lane 10).

Figure 3.2.2.b . Q uantitative analysis of a typical 

immunoblot showing Gga down-reguiation during a time 

course to isoprenaline in Pi-adrenoceptor expressing CHO 

cells.

Figure 3.2.2.C. Immunoblots of Gga, Gj2a and Gqa 

down-reguiation in pi- and p2 -adrenoceptor expressing 

CHO cells treated for 16 hours with isoprenaline (100

/eM).Part i shows levels of Gga in the Pi-adrenoceptor expressing 

CHO cells (Lanes 1 and 2) and P2 -adrenoceptor expressing CHO cells 

(Lanes 3 and 4), with (Lanes 2 and 4) and without (Lanes 1 and 3) 

isoprenaline treatment. Part ii shows levels of Gqa in the Pi- 

adrenoceptor expr essing CHO cells (Lanes 5 and 6) and 

p2 -adrenoceptor expressing CHO cells (Lanes 7 and 8), with (Lanes 6 

and 8) and without (Lanes 5 and 7) isoprenaline treatment. Part iii 

shows levels of Gi2a in the pi-adrenoceptor expr essing CHO cells 

(Lanes 9 and 10) and p2 -adrenoceptor expressing CHO cells (Lanes 11 

and 12), with (Lanes .10 and 12) and without (Lanes 9 and 11) 

isoprenaline treatment.
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Figure 3 .2 .3 . Choiera tox in -cata lysed  [^^P] ADP 

ribosyiation of membranes from p i-adrenoceptor expressing  

CHO cells following exposure to isoprenaline: time course.
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Figure 3.2.3.
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Adenylyl cyclase assays (Johnson and Salomon, 1991) were carried out 

concunently with western blots on the same membranes from treated 

pi-adrenoceptor expressing CHO cells. Concentration-responses to 

isoprenaline treatment for 16 hours were performed and results are 

shown in Figure 3.2.4. Samples were stimulated during the assay with 

100 jiM  isoprenaline. Cyclase activity was measured in units of 

pmol/min/mg protein. An EC5 0  value for isoprenaline of 1.3 ± 0.9 nM 

was estimated from concentration-effect curves. This value, an 

indication of the desensitization of the functional response to agonist, 

was similar to the EC5 0  value of Gga down-reguiation (2 . 6 6  ± 0 . 8 8  

nM) obtained from western blots, and suggests that Ggct 

down-reguiation is an important component of the overall 

desensitization process of the pi-adrenoceptor.

Adenylyl cyclase assays were also performed on membranes from 

pi-adrenoceptor expressing CHO cells treated for different times with 

100 isoprenaline. These samples were also treated in the assay with 

a maximal concentration (100 iaM) of isoprenaline. These produced 

half-lives for receptor desensitization by isoprenaline of 42.5 ± 3.2 

minutes. This value, showing the rate of desensitization of the Pi- 

adrenoceptor, was similar to the values obtained (60 ± 4

minutes) using the western blotting technique, indicating once again that 

loss of Gg(% may be indicative of receptor desensitization. Figure 3.2.5. 

shows a typical cyclase assay concentration-response for 

Pi-adrenoceptor expressing CHO cell membranes treated with 100 ;<M 

isoprenaline for varying lengths of time. Experiments were performed 

more than three times.
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Figure 3.2.4. Desensitization of p%-adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with isoprenaline. Pi-adrenoceptor expressing CHO cells.were

treated with isoprenaline at varying concentrations for 16 hours. 

Samples were also stimulated again during the assay with 100 piM 

isoprenaline. Two further experiments produced similar results.

8 2



Figure 3.2.4.
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Figure 3.2.5. Desensitization of pi-adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with isoprenaline (100 } iM)  for different times. Samples were 

also stimulated again during the assay with 100 isoprenaline. Two 

further experiments produced similar results.
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3.3. RESULTS

INVESTIGATIONS OF MECHANISMS OF AGONIST-MEDIATED 

Qs DOWN REGULATION IN  RESPONSE TO ACTIVATION OF 

Bo-ADRENOCEPTOR EXPRESSING CHO CELLS.

Ï
:S;

For direct comparison of EC5 0  values and ti /2  for the three p- 

adrenoceptors in CHO cells, SDS-PAGE (10% acrylamide) and western 

blotting techniques were then performed on membranes obtained from 

p2 ‘-adrenoceptor expressing CHO cells. These CHO cells were pre­

treated for 16 hours with a range of concentrations of isoprenaline (1  

inM to 0.1 nM). Figure 3.3. l.b shows the curve which was constructed 

from values obtained from a densitometer scan (Figure 3.3. La) of the 

nitrocellulose blot and comparison to the control, untreated membranes 

where basal levels of GgO in the CHO cells are present. A half-maximal 

reduction in Gga (L) levels (representing the EC5 0  value) in the 

P2 -adrenoceptor CHO cells was achieved by treatment with 39 ± 25 nM 

isoprenaline. This EC5 0  value, when compared with the 2.66 ± 0 . 8 8  

nM value for the pi-adrenoceptor is quite surprising, as most groups 

have found isoprenaline to be more potent at the P2 -adrenoceptor (Green 

etal, 1992). Green etal (1992) found a 4-fold greater potency for the 

p2 “adrenoceptor than the Pi-adrenoceptor. Suzuki et al (1992), 

however, found no differences in potency of isoprenaline between the 

Pi- and p2 -adrenoceptor, using adenylyl cyclase assays. Results of my 

investigations, however, could be affected by the differences in receptor 

density of the three cell lines (pi-adrenoceptor expressing CHO cells 

containing much more Pi-adrenoceptors than there are p2 -adrenoceptors 

in the P2 -adrenoceptor expressing CHO cells). This phenomenon is 

discussed in greater detail in Chapter 4.
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After chrome treatment (16 h) with a high concentration of isoprenaline 

(10 piM), Gga levels were very low, implying near complete 

down-reguiation of the polypeptide. This experiment was repeated on 

different sets of treated CHO cells at least three times, each producing 

similar results.

These results were quite similar to those reported by Chambers et al 

(1994), with an EC5 0  value for isoprenaline-induced Ggu down- 

reguiation in P2 -adrenoceptor expressing CHO cells of 9 ± 4 nM. The 

curve from the Chambers etal (1994) study of Ggo down-reguiation is 

shown in Figure 3.3.I.e. alongside the curve of Gga down-reguiation 

for the Ps-adrenoceptor. To assess the rapidity of the down-reguiation 

of Gg upon p2 -adrenoceptor stimulation, p2 -adrenoceptor expressing 

CHO cells were treated with a maximal concentration of isoprenaline 

(100 ptM), for times ranging from 60 minutes to 24 hours (Figure 

3.3.2). Figure 3.3.2. shows a pattern of Gga(L) down-reguiation 

much slower than the Pi-adrenoceptor expressing CHO cells. Only 

after approximately 6 hours (247 ± 35 minutes) was half-maximal loss 

of Gg achieved in the p2 -adrenoceptor expressing CHO cells. Maximal 

Gg down-reguiation, leaving less than 20% of original levels, only 

occured after approximately 20 hours. This difference between the half- 

maximal loss of Gg(% in the Pi- and p2-adrenoceptor expressing CHO 

cells, approximately 1 hour compared with 6 hours, can probably be 

explained by the differences in receptor expression between the 

p 1-adrenoceptor (7130 ± 258 fmol/mg membrane protein) and p2 - 

adrenoceptor (2300 ± 120 fmol/mg membrane protein). This has been 

shown to result in less rapid down-reguiation, depending on the levels 

of receptor present. This phenomenon is shown with the comparison of

8 5



two P3 -adrenoceptor CHO cell lines containing different receptor levels 

(Figure 3.4.5).

Equivalent immunoblots for detection of Gqa and Gi2a on the same 

membranes demonstrated that there were no detectable differences in 

levels of these polypeptides between untreated and isoprenaline treated 

p2 -adrenoceptor transfected CHO cells (Figure 3.2.2.C ).This is to be 

expected as it is believed that the p-adrenoceptor signalling process only 

operates through the Gg-adenylyl cyclase system.
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F igure 3 .3 .1 .a. A typ ical im m unoblot of Ggcc 

down-reguiation after the treatment o f p^-adrenoceptor 

expressing CHO ceils with varying concentrations of 

isoprenaline for 16 hours. Membranes from p2 -adrenoceptor 

expressing CHO cells treated with isoprenaline are shown, with 

concentrations of isoprenaline treatments as follows: 1 mM isoprenaline 

(Lane 1), 0.3 mM isoprenaline (Lane 2), 0.1 mM isoprenaline (Lane 3), 

30 /<M isoprenaline (Lane 4), 10 }àM isoprenaline (Lane 5), 1 piM 

isoprenaline (Lane 6), 0.1 piM isoprenaline (Lane 7), 10 nM 

isoprenaline (Lane 8), 1 nM isoprenaline (Lane 9), 0.1 nM isoprenaline 

(Lane 10), untreated (Lane 11).

Figure 3 .3 .l.b . Q uantitative analysis of the typical 

immunoblot of Gga down-reguiation after the treatment of 

P2 -adrenoceptor expressing CHO cells with varying  

concentrations of isoprenaline for 16 hours.

Figure 3 .3 .I.e. Gga down-reguiation in p%-adrenoceptor 

(open circles) and p3 -adrenoceptor (closed squares) 

expressing CHO cells exposed to varying concentrations of 

isoprenaline. Taken from Chambers et al (1994). p2 - and pg-

adrenoceptor expressing CHO cells were exposed to isoprenaline (0-100 

piM) for 7 hours. Membranes were prepared and immunoblotted to 

detect the presence of Gga45. This polypeptide was down-regulated by 

exposure to isoprenaline in both the p2 - and pg-adrenoceptor expressing 

CHO cells to a similar maximal extent. However, the EC5 0  for 

isoprenaline-induced Gga45 down-reguiation in p3 -adrenoceptor 

expressing CHO cells was considerably greater (approximately 300 nM) 

than in the p2 -adrenoceptor expressing CHO cells (approximately 10 

nM).
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Figure 3.3.2. Down-regulation of levels of Gga in

p2 -adrenoceptor expressing CHO cells after treatments with 

100 f iM  isoprenaline for different times. Quantitative analysis 

of a typical immunoblot.
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Adenylyl cyclase assays were performed on the p2 -adrenoceptor 

expressing CHO cell membranes produced and used in the above 

experiments for western blotting. Concentration-responses to

isoprenaline treatment are shown in Figure 3.3.3 (data taken from 

Chambers eta l, 1994). p2 -adrenoceptor expressing CHO cells.were 

pre-treated with isoprenaline or without for 24 hours before being 

harvested and membranes produced. Samples were then treated at 

varying concentrations of isoprenaline during the adenylyl cyclase 

assay. Results are presented as mean ± S.E.M. of data derived from a 

single experiment. Values of adenylyl cyclase activity in these 

P2 -adrenoceptor expressing CHO cells are expressed in units of 

pm ol/m in/m g p ro te in . H alf-m ax im al red u c tio n  in 

isoprenaline-stimulated adenylyl cyclase activity was approximately 30 

nM, very similar to that observed in the western blot studies of Figure 

3.3. l.b.(39 ± 25 nM). This shows a sensitivity of the adenylyl cyclase 

functional response to isoprenaline, and is proof that the 

p2 -adrenoceptor desensitization process is occurring. The fact that 

results are similar to western blotting results, is consistent with the idea 

that Gga down-regulation is an important factor in the desensitization of 

the p 2 -adrenoceptor.

To investigate the rate of this p2 -adrenoceptor desensitization process, 

adenylyl cyclase assays were also performed on membranes from 

P2 -adrenoceptor expressing CHO cells treated for different times with 

isoprenaline (100 jaM), Once more these produced values for half- 

maximal reduction in isoprenaline-stimulated adenylyl cyclase of 6-7 

hours. These results were indicative of a parallel link with the direct 

observation of Gga down-regulation upon isoprenaline stimulation 

obtained from western blots. This link between the functional assay and

8 9



protein detection systems suggests that the loss of Ggcc levels is a key 

element in the process of p2 -adrenoceptor desensitization. Figure 

3.3.4. shows a sample adenylyl cyclase assay result for 

P2 ~adrenoceptor expressing CHO cell membranes treated with 100 piM 

isoprenaline for varying lengths of time.

9 0



Figure 3.3.3. Desensitization of p2 "adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with varying concentrations of isoprenaline. p^-adrenoceptor 

expressing CHO cells.were pre-treated with isoprenaline (open circles) 

or without (closed circles) for 24 hours before being harvested and 

membranes produced. Samples were then treated at varying 

concentrations during the adenylyl cyclase assay. Results are presented 

as mean ± S.E.M. of data derived from a single experiment. Two 

further experiments produced similar results.
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Figure 3.3.4. Desensitization of p^-adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with isoprenaline (100 /^M); time course. p2 -adrenoceptor 

expressing CHO cells.were treated with isoprenaline for varying times. 

Samples were also stimulated during the adenylyl cyclase assay with 

100 pùA isoprenaline. Two further experiments produced similar 

results.
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3.4. RESULTS

INVESTIGATIONS OF MECHANISMS OF AGONIST-MEDIATED 

G.y DOW N-^REGULATION IN  TH E  6 ̂ ADRENOCEPTOR 

EXPRESSING CHO CELLS.

To compare the pi-adrenoceptor and p2 -adrenoceptor processes of 

desensitization with the lack of desensitization in the pg-adrenoceptor, 

SDS-PAGE (10% acrylamide) and western blotting were also 

performed on membranes taken from treated Pg-adrenoceptor 

expressing CHO cells. Cells were chronically treated for 16 hours with 

concentrations of isoprenaline which ranged from 1 mM to 0.01 nM. 

Figure 3.4.1. shows the curve constructed from results of a 

densitometer scan on the nitrocellulose blot. This was compared to 

control, untreated membranes of the Pg-adrenoceptor expressing CHO 

cells where basal levels of Gga were shown. The half-maximal 

reduction in Gg levels by treatment of the Pg-adrenoceptor expressing 

CHO cells was approximately 200 nM. This was a substantially higher 

concentration than was necessary to reduce Gg levels by half in the Pi- 

and p2 -adrenoceptor expressing CHO cells. This observation was 

consistent with the lower potency of isoprenaline at the pg-adrenoceptor 

compared with the potency at the P2 - and pi-adrenoceptor. Maximal 

reduction of Gg (only 5-10% of original levels remaining) occurred at a 

concentration of 10 jTWi isoprenaline. This experiment was repeated at 

least three times, each time producing similar results. Equivalent 

immunoblots of detection for Gq«, Gnot and Gi2a demonstrated that 

there were no differences in these polypeptides between untreated and 

isoprenaline-treated pg-adrenoceptor transfected CHO cells. This, as 

mentioned before, is to be expected, in that the p-adrenoceptors only 

transduce their signalling of agonist responses through the Gg-adenylyl 

cyclase system.
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EC5 0  values for isoprenaline-induced GgCt down-regulation in the 

Pg-adrenoceptor expressing CHO cells were similar to those found by 

Chambers etal (1994). While my investigations found the EC5 0  to be 

177 ±113 nM, Chambers etal (1994) found it to be 214 ± 43 nM. A 

comparison of the Gga down-regulation in the p2 -adrenoceptor and 

pg-adrenoceptor expressing CHO cells is shown in Figure 3.3.1 c.

This shows quite clearly how Chambers etal (1994) and my data both 

show differing EC5 0  values for isoprenaline at the p2 -adrenoceptors and 

p g - adrenoceptors, which can be directly related to the lower potency of 

isoprenaline at the pg-adrenoceptor.

5
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Figure 3.4.1. Quantitative analysis of a typical immunoblot 

showing Ggct down-regulation after isoprenaline treatment 

at varying concentrations in Pg-adrenoceptor transfected 

CHO cells. Experiments were repeated two more times with similar 

results.
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Figure 3.4.2. Quantitative analysis of a typical immunoblot 

showing Gga down-regulation after isoprenaline (100 //M) 

treatment for various times in p3 -adrenoceptor transfected 

CHO cells. Experiments were performed two more times with similar 

results.
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Figure 3.4.2.
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To examine the rate of Gg down-regulation upon (Bg-adrenoceptor 

stimulation with isoprenaline, Pg-adrenoceptor expressing CHO cells
■i'v:

were treated with a maximally effective concentration of isoprenaline 

(100 jwM), for time periods ranging from 1-9 hours (Figure 3.4.2). The 

Gga (L) polypeptide in these cells was lost at a much slower rate than 

the Ggcc (L) of the {31-adrenoceptor expressing CHO cells, but followed 

a similar time course to the loss of Gg in p2 -adrenoceptor expressing 

CHO cells. Only after approximately 3-4 hours (220 ± 72 minutes) of 

treatment with isoprenaline was half-maximal loss of Ggoc achieved. 

This is, as highlighted above, due probably to the levels of 

p3 -adrenoceptor expression (3000 ± 400 fmol/mg membrane protein) 

when compared with that of Pi-adrenoceptor expression in the CHO cell 

line (7130 ± 258 fmol/mg membrane protein). The P2 -adrenoceptor 

expressing CHO cell line used in this study had levels similar to the Pg- 

adrenoceptor levels, of 2300 ± 120 fmol/mg membrane protein. A 

study performed to compare the effect on Ggcx down-regulation of 

different receptor levels is shown at the end of Section 3.4. Two P3 - 

adrenoceptor expressing CHO cell lines were compared with different 

receptor levels of the p3 -adrenoceptor.

%

I

Adenylyl cyclase activity was calculated from assays perfonned on the 

P3 -adrenoceptor expressing CHO cell membranes which had previously 

been chronically treated. Concentration-responses to isoprenaline 

treatment for 16 hours were performed and results of adenylyl cyclase 

assays are shown in Figure 3.4.3. Cyclase activity was expressed in 

units of pmol/min/mg of protein. Half-maximal reduction in 

isoprenaline-stimulated adenylyl cyclase activity was approximately 150 

nM. This value, an indication of agonist-induced receptor 

desensitization, was very similar to values obtained from the western

97
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blot analysis of Ggoc levels (117 ± 113 nM for my studies and 214 ± 43 

nM in the study by Chambers et al (1994)), indicating that the observed 

loss of Gga is a key element in Pg-adrenoceptor desensitization.
7

Cyclase assays were performed on membranes from p3 -adrenoceptor 

expressing CHO cells treated for different times with 100 jaM 

isoprenaline. Once more these produced half-lives for rate of agonist- 

induced p3 -adrenoceptor desensitization by isoprenaline of 

approximately 6-7 hours, which were in close agreement with values 

obtained for Gga down-regulation from western blotting techniques. 

Figure 3.4.4 shows a typical cyclase assay time course for Pg- 

adrenoceptor expressing CHO cell membranes treated with 100 piM 

isoprenaline for varying lengths of time. As rates of desensitization of 

the Pg-adrenoceptor measured as a loss of adenylyl cyclase activity in 

Pg-adrenoceptor expressing CHO cells were shown to be following a 

similar temporal pattern to loss of Gga levels in the Pg-adrenoceptor 

expressing CHO cells, this would suggest that loss of Gga is an 

important element in the process of Pg-adrenoceptor desensitization.

I
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Figure 3.4.3. Desensitization of pg-adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with isoprenaline: concentration-response. pg-adrenoceptor 

expressing CHO cells.were treated with isoprenaline at varying 

concentrations for 16 hours, followed by a stimulation with 100 jaM 

isoprenaline during the course of the assay. Two further experiments 

produced similar results.
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Figure 3.4.4. Desensitization of ^g-adrenoceptor-mediated 

stimulation of adenylyl cyclase activity following treatment 

with isoprenaline (100 /fM) for varying times. Samples were 

also stimulated again during the course of the adenylyl cyclase assay 

with 100 ]M  isoprenaline. Two further experiments produced similar 

results.
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Figure 3.4.4.
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The immunoblot results for all three p-adrenoceptor subtype-mediated 

Gga down-regulation are shown in Table 3.4.1. Adenylyl cyclase 

activity values for agonist-mediated receptor desnsitization were not 

tabulated but results followed a similar pattern to western blotting results 

through the three p-adrenoceptor subtypes.

Table 3.4.1. Quantitation of data for Gga down-regulation 

follow ing analysis of im m unoblots for all three p- 

adrenoceptor subtypes. Results are from three or more 

experiments ± S.E.M.

I

I

I
I

I

CHO cells concentration

for

half-maximal

down- 

regulation of 

Gs (nM)

time for 

half-maximal 

down- 

regulation of 

Gs (min)

P r 2.7 ± 0.9 60 ± 4

adrenoceptor

P2- 39 ±25 247 ±35

adrenoceptor

Ps- 177 ± 133 220 ± 72

adrenoceptor

vt
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From this Table, it can be clearly observed that the three p- 

adrenoceptors show differences in their respective rates of Gga down- 

regulation. This, as discussed in the separate sections above, is likely to 

be due to different levels of receptor expression of each p-adrenoceptor 

subtype in the CHO cell lines. Further investigations into this

down-regulation of Gga, and therefore probably plays a key role in 

overall receptor desensitization. Figure 3.4.5. shows the graph 

produced after isoprenaline treatment on D43 and C15 P3 -adrenoceptor 

expressing CHO cells.

102

hypothesis took place when I was able to compare two stable CHO cell 

lines previously transfected to express different levels of the

p3 ~adrenoceptor. With these two cell lines, it was possible to confinn 

the phenomenon of the effect of receptor density on rate of 

down-regulation. These two CHO cell lines differed by approximately 

10-fold receptor levels of the p3 -adrenoceptor. The C15 CHO line 

contained 390 ± 83 fmol/mg membrane protein of p3 -adrenoceptors, 

while the D43 CHO cell line, used previously in the experiments above, 

contained 10-fold as many p 3 - adrenoceptors with 3000 ± 400 fmol/mg 

membrane protein. Treatment of these two cell lines with varying 

concentrations of isoprenaline resulted in down-regulation of Gga only 

in the D43 cells; no down-regulation occurred in the lower 

p3 -adrenoceptor expressing CHO cells (Figure 3.4.5.). This confirmed 

the belief that receptor density affects the rate and/or extent of
3;;
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Figure.3.4.5. Q uantitation of scans of imm unoblots 

showing Gga down-regulation in CIS and D43 cell lines 

follow ing treatm ent with varying concentrations of 

isoprenaline. Cells were treated for 16 hours with different 

concentrations of isoprenaline. Isoprenaline-treated C15 cell lines are 

shown as open circles, D43 cell lines as closed circles.
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Figure 3.4.5.
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in the p i-adrenoceptor expressing CHO cells, this cell line was chosen 

for a study to investigate the movement of Gg away from the cell 

membrane into the cytosol. Experiments were carried out to assess 

whether the Gg was broken down in the process of down-regulation or 

transferred to the cytosol, then perhaps processed into vesicles before

1 0 4

3.5. INVESTIGATIONS INTO MOVEMENT OF Gs FROM  THE 

PLASMA MEMBRANE INTO THE CYTOSOL.

■

As the Gg polypeptide was observed to be down-regulated most rapidly

being recycled back to the plasma membrane.

■i

&
pi-adrenoceptor expressing CHO cells were treated for four hours with 

a maximally effective concentration of isoprenaline (100 }iM), then 

harvested concurrently with untreated cells. The harvested pellets were 

homogenised, then centrifuged in an airfuge at 30 psi (178,000 x g) for 

10 minutes. The pellet produced was assumed to be the membrane 

fraction and the supernatant the cytosolic fraction. Samples were loaded 

onto 10% acrylamide gels and western blotting performed using an 

anti serum produced to the C-terminal of Gĝ  named CS (Milligan & 

Unson, 1984). Results are shown in Figure 3.5.1.

The results with the untreated Pi-adrenoceptor expressing CHO cells 

proved that all the GgCt was detected in the membrane fraction (including
:

vesicles), while undetectable levels were found in the cytosolic contents 

of the CHO cells. After the treatment of cells for four hours, relatively 

small amounts of GgO remained in the membrane (approximately 5% of 

original membrane fraction levels), yet still very little was found in the 

cytosol (approximately 11% of original membrane fraction levels).

There was no proof of complete transferral of GgO from the plasma



membrane to the cytosol, rather, close to complete removal of Gga from 

both regions of the cell.

1 0 5

1
I
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These results showed that the GgOt, polypeptide is not present in the 

cytosolic fraction after agonist-mediated down-regulation, indicating that 

the polypeptide is not stored for long times, is broken down and de 

novo synthesis is necessaiy for re-activation to the plasma membrane.

This agrees with other groups when investigating receptor loss,
■ :

(Perkins 1991, Von Zastrow 1992, Sddülzet oL, 1992), who 

suggest that along with the receptor, the G-protein may firstly be 

packaged into vesicles and later degraded. While I was unable to 

directly study movement of Gs into vesicles, it was clear from my 

studies that the Gg was not present in the membrane fraction or cytosolic 

fraction and therefore had most likely been degraded.
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3 .5 .1 . Q u a n tita tiv e  an a lysis  o f b lo t sh ow in g  

down-regulation of GgOt levels. Column graph represents 

movement of Gg from membrane to cytosol. P represents 'pellet' and S 

represents 'supernatant'. The columns are shown as arbitrary units. 

This column graph is representative of one immunoblot, but the 

experiment was performed three times with similar results.
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3.6. ALTERATIO NS IN  mRNA LEVELS OF  Gy IN  3 i- 

ADRENOCEPTOR CHO CELLS

As Figure 3.6.1.a. shows, while p-actinmRNA levels did not change 

upon agonist stimulation, GgU mRNA levels did not alter significantly 

either. This experiment was repeated three times and the alterations in 

Gs mRNA levels shown in the column graph of Figure 3.6.1b. These

To investigate the effect of agonist stimulation on levels of mRNA of 

Gs, and whether this could form a major part of the G-protein 

down-regulation process and the overall receptor desensitization, pi- 

adrenoceptor expressing CHO cells were treated with a maximally 

effective concentration of isoprenaline ( 100 piM) for either 30 minutes or 

4 hours. RNA was then extracted by the RNAzol method outlined in 

Chapter 2. Oligonucleotides specific to GgCt were produced for the 

detection by RT-PCR of Gg mRNA levels in the Pi-adrenoceptor 

expressing CHO cells. Oligonucleotides for the housekeeping gene p- 

actin were added in parallel as an internal control, as alterations in actin 

levels would not be expected to occur in response to isoprenaline 

stimulation of the cells.

■i

I 
%

I
results suggests that an alteration in mRNA levels does not play a major 

role in regulation of G-proteins upon agonist stimulation.
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Figure 3.6.1.a. Agarose gel showing levels of Gga mRNA 

from Pi-adrenoceptor expressing CHO cells, p-actin mRNA 

and molecular weight markers, p-actin mRNA is shown in 

Lanes 1, 2, and 3, while GgCt mRNA is shown in Lanes 4, 5, and 6. 

mRNA extracted from Pi-adrenoceptor expressing CHO cells is shown 

on the photograph after the following time treatments with isoprenaline 

( 100 piM)\ no treatment (Lanes 1 and 4), 30 minutes treatment (Lanes 2 

and 5), 4 hours of treatment (Lanes 3 and 6).

Figure 3.6.1,b. Column graph produced from quantitative

analysis of mRNA levels on agarose ge l. The procedure was 

performed three times.
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Figure 3.6. Lb.
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3.7. DISCUSSION

The actual loss of cellular receptors is a prominent mechanism during

1 0 9

long-term agonist desensitization of the pi- and p2 -adrenoceptors 

(Liggett, 1991, Hausdorff etal, 1990, Dohlman etal, 1991, Collins et 

al, 1991). During this down-regulation process, a recorded loss of 

some 50-70% of the receptors after 24 hours of agonist exposure is not 

uncommon. The Pg-adrenoceptor, however, has been shown to be 

resistant to down-regulation, with surface receptors staying the same or 

even increasing upon agonist exposure (Thomas et at, 1992, Emorine et 

al, 1989, Liggett etal, 1993, Chambers etal, 1994). For example, 

Thomas et al (1992) noted that during prolonged exposure to agonist.

no down-regulation of pg-adrenoceptor expression in 3T3-F442A cells 

occurred. Indeed, P3 -adrenoceptor expression increased during agonist 

exposure to approximately 165% of basal levels. Similarly, a lack of 

p3 -adrenoceptor desensitization has been demonstrated in non­

recombinant cells which express native p3 -adrenoceptors, such as 

isolated rat adipocytes (Granneman, 1992c).

Whereas the majority of G-protein-linked receptors are down-regulated 

by niaintained exposure to their agonists, the p3 -adrenoceptor is not the 

only example of a receptor reported to be resistant to such a process. In 

studies comparing the desensitization characteristics of the a 2 C 1 0 , 

« 2 C4  and a 2 C2 -adrenoceptors following transfection into CHO cells, it 

was noted that the a2C4-adrenoceptor was not down-regulated but, as 

with the P3 -adrenoceptor as noted here, the G-protein (Gi) linked to the 

a 2 -adrenoceptors was down-regulated (Eason and Liggett, 1992).

a
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G-protein loss have often been shown to be similar (Milligan, 1993).

As a number of groups had already investigated p-adrenoceptor 

down-regulation, I was interested in assessing effects of agonist 

treatment on elements downstream in the signalling pathway, that is, to 

assess the levels of Gg down-regulation in these cells expressing the 

p-adrenoceptors, and whether Gg could be co-down-regulated with the 

receptor, or was down-regulated separately. It had previously been

I,

Iassumed that down-regulation of the receptor occurred simultaneously 

with its respective G-protein. Evidence for such co-intemalization is 

numerous. Time course profiles of receptor down-regulation and

Results with the pi-adrenoceptor and P2 -adrenoceptor expressing CHO 

cells showed that Gg is down-regulated in a concentration-dependent
i

manner in response to isoprenaline. This was shown directly by Gg 

detection by immunoblotting, and indicated by adenylyl cyclase assays, 

as these showed similar EC5 0  values to the western blots of Gg, thus
'

suggesting that Gg down-regulation is a key element in pi-adrenoceptor 

and p2 -adrenoceptor desensitization.

The down-regulation of Gg in a time-dependent manner also occuned in 

the pi-adrenoceptor and P2 -adrenoceptor expressing CHO cells. The 

time for half-maximal loss of Gg in Pi-adrenoceptor expressing CHO 

cells was remarkably fast, 60 ± 4 minutes, compared to 247 ± 35 

minutes in the p2 -adrenoceptor expressing CHO cells and a similar rate 

of 220 ± 72 minutes in the Pg-adrenoceptor expressing CHO cells. This 

was assumed to be due to larger receptor levels in these cells (7130 ±

258 fmol/mg membrane protein for the p i-adrenoceptors and 2300 ±

120 fmol/mg membrane protein for the p2 -adrenoceptors) when 

compared to the P2 -adrenoceptor expressing CHO cells. While other
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groups had studied the down-regulation of the Pi-adrenoceptor and p%- 

adrenoceptor with binding studies (Thomas a/, 1992, Chambers etal, 

1994), I was mainly interested in Gg down-regulation, and therefore did 

not have time courses or concentration-responses for the p-adrenoceptor 

down-regulation to directly compare results with. However, groups 

(Chambers etal, 1994) working on the same CHO cells transfected with 

P2 -adrenoceptors, showed a similar time course of receptor down- 

regulation to my studies of Gg level down-regulation. For example, 

Chambers etal, (1994) observed a < 75% reduction in receptor levels 

following exposure for 24 hours to isoprenaline. This was in agreement 

with previous published reports that p2 -adrenoceptor levels in CHO 

cells are reduced to < 20% of their original levels over the same time 

period (Suzuki etal, 1992). I found that approximately 15% of original 

levels of Gg remained at the plasma membrane of the p2 -adrenoceptor 

expressing CHO cells after 24 hours of treatment with maximally

effective levels of isoprenaline (100 piM). This suggested that in the 

case of the P2 -adrenoceptor, at least, Gg and this receptor are down- 

regulated concurrently. The molecular basis of this pronounced down- 

regulation is thought to involve, at least partially, the presence of two 

tyrosine residues (Tyr-350 and Tyr-354) located in the intracellular C- 

terminal tail of the p2 -adrenoceptor, as replacement of these with 

alanines by site-directed mutagenesis dramatically reduces the ability of

the P2 -adrenoceptor to undergo agonist-induced down-regulation
■

(Valiquette^fa/, 1990).

%

Thomas et al (1992) also studied the down-regulation of the p%- 

adrenoceptor which had been transfected into 3T3-F442A cells. 

Although receptor density of the Pi-adrenoceptor was much lower in 

these cells (14.3 ± 3 fmol/mg membrane protein) than was present in
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I
my CHO cells (7130 ± 258 fmol/mg membrane protein), a similar time

.

course of down-regulation was observed, which could be compared to 

the time course of Gg down-regulation in my study. For example, 

receptor levels after treatment for 5 hours with isoprenaline (100 ]aM ) 

were approximately 20% of original levels in the study by Thomas et al 

(1992), while Gg levels in Pi-adrenoceptor expressing CHO cells in my 

studies also reached lowest levels (maximal down-regulation) after this 

short time. Half-maximal down-regulation of the receptor in the study 

by Thomas (1992) occurred at approximately 2.5 hours, while Gg 

half-maximal down-regulation in my CHO cell line occurred at 60 ± 4  

minutes. This, as mentioned previously, and proved by work on two 

p3 -adrenoceptor expressing CHO cell lines, was probably due to much 

larger receptor levels. The experiments comparing down-regulation of 

D43 and C15 P3 -adrenoceptor expressing CHO cells in Section 3.4., 

confirmed that this was the case. The higher the receptor density, the 

greater the rate of Gg down-regulation. This, once again, is in 

agreement with the pattern of down-regulation observed in the 

P2 -adrenoceptor, in that the receptor and G-protein down-regulate 

concurrently. The temporal co-incidence of loss of the receptor with the 

G-protein raised the possibility that down-regulation of the two 

polypeptides is inextricably linked.

A number of previous studies have also shown that agonist treatment 

results in a concurrent down-regulation of both receptor and G-protein 

{kdi&etal, 1992, Milligan, 1993). Two groups have, however, been 

able to show that the Ps-adrenoceptor, in contrast to the Pi- and p2 - 

adrenoceptor, at least when expressed in CHO cells, does not undergo 

substantial down-regulation (Chambers éf/a/ 1994, Nan tel e/a/, 1994).

These groups' results were in agreement with a previous study by
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Liggett era/, (1993). Clearly, the results of my studies showing Gg to 

down-regulate extensively in the p3 -adrenoceptor expressing CHO cells 

upon agonist stimulation, imply that, in some receptor/G-protein 

signalling systems, the down-regulation of the G-protein occurs 

independently of down-regulation of the receptor, and co- 

down-regulation is not required. It could be possible, perhaps, that 

there is an initial co-sequestration of the two polypeptides followed by 

separate sorting processes (Milligan cr a/, 1995). It may also be a 

possibility that the occurrence of two mechanisms (receptor 

up-regulation and G-protein down-regulation) operating to regulate the 

P3 -adrenoceptor response, at least in vivo, results in a neutral net effect 

on p3 -adrenoceptor mediated responses (i.e. no long term tolerance to 

the effect of p3 -agonists).

The mixed and differing results of the previous studies leave many 

questions to be answered concerning sequestration of the receptor and 

its respective G-protein. During agonist exposure, receptor 

sequestration occurs along a similar time frame to that of
-

phosphorylation, again beginning within seconds to minutes. It has 

previously been suggested that rapid internalization of the receptor away 

from the plasma membrane Gg occurs (Hausdorff etal, 1990).

A classic hallmark of acute sequestration of p2 -adrenoceptors, for 

example, has been the loss of hydrophilic ligand binding sites, with no 

change in the total number of sites, as assessed by hydrophobic ligands. 

Thus receptors are no longer accessible to classical p-adrenoceptor

hydrophilic ligands such as isoprenaline and CGP12177. Upon the 

removal of agonist, both desensitization and sequestration are readily

reversed with similar kinetics. That the loss of these sites is due to the
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accumulation of receptors within an intracellular compartment has been 

shown by various methods, including differential centrifugation when a 

light vesicle fraction of p2 "adrenoceptors can be isolated after agonist 

exposure (Perkins et al, 1991) due to the fact that the membrane 

compartment has a lower density than plasma membranes, 

immunofluorescent light microscopy (Von Zastrow et al, 1992) and 

electron microscopy of ligand binding sites (Saffitz etal, 1992). This 

light vesicle fraction hypothesis represents an attractive and simple 

mechanism for an explanation of loss of receptor activity, but now new 

lines of evidence suggest that it is not an important mechanism 

underlying rapid desensitization. Several groups, for example 

Hausdorff etal (1990), have effectively blocked sequestration by pre­

treatment of cells with inhibitors such as phenylarsene oxide or

concanavalin A, without seeing any effect on rapid desensitization
;

(Waldo e/a/, 1983). Also, the onset of agonist-induced desensitization

IK

has been detected before that of p-adrenoceptor sequestration (Waldo et 

al, 1983). It has also been proposed that receptor sequestration is a pre­

requisite stage for down-regulation. However, recent experimental 

manipulations that have impaired or abolished receptor desensitization 

have had no effect on the sequestration process (Bouvier et al, 1988, 

Hausdorff etal, 1989, Lohse etal, 1990). Whether sequestration plays 

any role in the regulation of p-adrenoceptor function has remained 

controversial. The latest proposals by Wu etal (1995) for the role of 

sequestration are that upon stimulation, p-adrenoceptors are uncoupled 

from Gg, and sequestered away from the cell surface into 

phosphatase-enriched vesicle compartments. In these compartments the 

phosphorylated receptors are presumably dephosphorylated and thus 

reactivated. Receptors are then recycled back to the plasma membrane 

where they can recouple to Gg. Mutations produced by Barak et al
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(1994, 1995) have been used to determine the importance of residues on

1Î 
1

transmembrane domain seven for sequestration. It was demonstrated 

that mutation of tyrosine residue 326 to an alanine abolished agonist 

sequestration of this mutant without affecting its ability to maximally 

stimulate adenylyl cyclase in membranes. Studies ongoing from this 

discovery are now focusing on the NPLIY amino acid sequence. The 

amino acid sequence NP(XX)2 ,3 Y recurs in the seventh transmembrane 

region throughout the superfamily of G-protein-coupled receptors.

Barak etal (1994) tested the hypothesis, for the p2"4drenoceptor, that

S '

this sequence behaves as a functional motif. Point mutations were 

produced of the most conserved amino acids, N, P, and Y. Mutation of 

asparagine 322 to an alanine resulted in complete uncoupling of the 

receptor, loss of high-affinity agonist binding, and abolition of receptor 

sequestration, downregulation, and phosphorylation. In contrast, a 

mutation of this residue to an aspartic acid resulted in an 

improvement of G-protein coupling without adversely affecting other 

receptor properties. Substitution of proline residue 323 with alanine 

resulted in a receptor with mild deficits in sequestration and coupling, a 

reduced agonist-mediated phosphorylation, and no change in 

downregulation. A mutant receptor with tyrosine residue 326 ehanged 

to a phenylalanine sequestered at 25% the rate of wild type receptor and 

was also phosphorylated less well than the wild type receptor in 

response to agonist. In contrast the alanine mutant of tyrosine 326 does 

not sequester and is weakly phosphorylated in response to agonist, and 

it activates adenylyl cyclase less well than wild type receptor. These 

data suggest that the NPLIY sequence of the (32 -adrenoceptor functions 

as a motif that may represent a critical deteiminant for maintaining the 

normal conformation of the receptor but does not function as a specific 

sequestration recognition motif.

Vr
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While most previous sequestration studies have focused on the receptor

1 1 6
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alone being packaged into vesicles, my studies investigated loss of Gg 

from the plasma membrane and looked at whether it was transferred into 

the cytosol, or just rapidly degraded. Previous workers have found 

conflicting results on whether Ggcc remains in the cytosol after down­

regulation, whether it is packaged into vesicles, or whether it is rapidly 

degraded. Ransnas et al ( 1989) reported receptor-mediated down­

regulation of GgCt in wild-type 849 lymphoma cells. This resulted in a 

redistribution of GgCt from the membrane fraction to the cytosol. Their 

studies were, however, limited by the poor specificity of the antiserum.

It did show two interesting findings in that the Ggcx was detected in the 

cytosol, and also that this cytosolic Gga behaved as if it were 

persistently activated. Kvapil etal (1994) found that the long and short 

forms of Gga were unequally distributed after isoprenaline stimulation 

of (3-adrenoceptors in 849 wild-type lymphoma cells. Two cellular 

pools of membranes, light density membranes and plasma membranes 

differed in their content of Gga splice forms. Kvapil and co-workers 

(1994) had, however, identified the presence of Gg in light vesicle 

fractions, encouraging the suggestions that G-proteins are firstly
::

packaged into vesicles, before degradation processes.

5;?

My investigations showed that, upon agonist stimulation, there was loss 

of Ggtt from the plasma membrane, but this polypeptide was not 

immunologically detected in the cytosolic fraction after four hours of 

treatment with 100 jwM isoprenaline. GgCt immunoreactivity was 

observed in the cytoplasmic fractions of both the control cells and 

treated cells, but only less than 10% of the original membrane fraction 

of Gga. It may perhaps have been found in the cytosol in a short space 

of time after treatment, but from my studies I can conclude that Gga is



low density membranes and cytosol fractions from the plasma
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rapidly degraded and not stored (for any length of time anyhow) in the 

cytosol. I cannot make assumptions however, on whether the Gg 

polypeptide is packaged into vesicles first. My results were in 

agreement with other studies (Milligan etal, 1989, Chang and Bourne, 

1989) where they were also unable to detect Gga in the cytoplasm of 

cholera-toxin treated cells, believing too that the G-protein must be 

rapidly degraded. Milligan etal (1989) noted that a reduction in Gga of 

the membrane fraction upon prostaglandin treatment of NG108-15 cells 

was not transferred to the cytoplasm, as there was no increase in Gga 

levels in that fraction.

I
Other studies looking at other G-proteins have found movement of the 

polypeptide from the plasma membrane to the cytosol (Svoboda and 

Milligan, 1994). In a clone of a CHO cell line expressing high levels of 

the human muscarinic Ml acetylcholine receptor (Hml), they observed 

substantial agonist-specific down-regulation of both Hm 1 receptors and

the alpha subunits of Gq and G n. The Gq and G n polypeptides were 

found to be transferred from plasma membranes to distinct light 

vesicular membranes. These observations suggested that the Hml 

receptor and associated G-proteins was down-regulated by two 

sequential steps. Firstly, there is a transfer of signal-transducing 

polypeptides from the plasma membrane to a non-plasma membrane
'

light vesicle fraction. Secondly, agonist-specific down-regulation 

occurs. A more recent study by Svoboda etal (1996) investigating the 

thyrotropin-releasing hormone (TRH) in human embryonic kidney 293 

cells, noted that the two transfected species variants of G n a  (human 

and murine) had identical cellular distribution. Sustained exposure of 

the cells to TRH resulted in transferral of both species forms of G n a  to
I .
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membrane. This demonstrated agonist-induced subcellular distribution 

and down-regulation of Gnot, suggesting that the G n  member of the 

G-protein family, at least, is tranferred to a light vesicle fraction from 

the plasma membrane.

Previous studies have investigated the regulation of p-adrenoceptors by 

alteration in mRNA levels (Hadcocke/a/, 1988, 1989, Nishikawa etal, 

1993, Bouvier e/aZ, 1989). Hadcock g/aZ (1988, 1989), demonstrated 

that homologous and heterologous down-regulation can occur at the 

level of receptor mRNA. Chronic stimulation by p-adrenoceptor 

agonists resulted in homologous down-regulation of receptor mRNA, 

while cholera toxin and forskolin also stimulated cAMP accumulation 

and heterologous down-regulation of receptor mRNA. Work 

demonstrated that agonist-promoted down-regulation of receptor mRNA 

required receptor-Gg coupling and protein kinase A activity, as well as 

Gg regulation of adenylate cyclase and some other effector. Nishikawa 

et al (1993) observed in rat lung tissue that administration of 

isoprenaline resulted in a significant decrease in p j-adrenoceptor mRNA 

after 2 hours, while the p2 -adrenoceptor mRNA was not altered after 2 

hours, but was significantly decreased after 1 day of isoprenaline 

treatment.

The discovery of cAMP response elements (CRE s) on regions of the 

p-adrenoceptors indicates the possibility of regulation of expression of 

the receptor. Transcriptional regulation by cAMP is accomplished by 

means of cAMP response element binding proteins (CREB), which bind 

to DNA sequences termed cAMP response elements and alter the rate of 

transcription (Yamamoto eZ aZ, 1988 ). The classic CRE motif has a 

sequence TGACGTCA, and DNA sequences that are imperfect by as
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much as two nucleotides are still effective in binding CREB and 

regulating transcription (Habener, 1990). Analysis of the 5' flanking 

region of the pg-adrenoceptor indicates that it contains potential cAMP 

response elements. In 3T3-F442A cells which have^differentiated L

towards an adipocyte phenotype by addition of insulin, the 

P3 -adrenoceptor is expressed although it is not in the undifferentiated 

fibroblast phenotype (Feve eZ aZ, 1991). These cells also express the 

pi-adrenoceptor at low levels in the fibroblast form, and levels of 

mRNA encoding this receptor are also increased with differentiation.

When differentiated cells were exposed to isoprenaline, levels of P3 - 

adrenoceptor mRNA were found to be elevated within 4 hours and this 

was then maintained for at least 30 hours. In addition to this, levels of 

the P3 -adrenoceptor also increased with a similar temporal pattern. 

However, in parallel, the levels of the pi-adrenoceptor declined by 

some 70% (Thomas etal, 1992). mRNA encoding the p2 -adrenoceptor 

has also been detected in differentiated 3T3-F442A cells (Feve et al,

1991). A cAMP-responsive element has also been noted in the 

promoter region of the P2 -adrenoceptor (Collins et ai, 1990). The 

influence of the cAMP-regulated transcriptional mechanism on p2 - 

adrenoceptor mRNA levels appears to predominate in the short tenn.

Three putative CRE's, which are imperfect by two nucleotides, are 

present in the 5' flanking region of the rat p 1-adrenoceptor gene. Very 

little is known so far of their involvement in regulating reporter gene 

expression in response to cAMP. Figure 3.8.1. illustrates the presence 

or absence of CRE's in the three p-adrenoceptors.

Although many groups have investigated the regulation of receptor 

mRNA (Feve cZaZ, 1991, Thomas etal, 1992), very few groups have 

targeted whether alterations occur in Gg mRNA levels upon agonist
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stimulation (McKenzie and Milligan, 1990, Shah and Milligan, 1994,

Mullaney etal, 1995). Alterations in Gg mRNA have previously been 

studied in NG1G8-15 cells, however, after iloprost-treatment (McKenzie 

and Milligan, 1990). Agonist-induced loss of Gga in this system was 

found to be independent of regulation of levels of GgCt mRNA, and 

unaffected by the presence of the de novo protein synthesis inliibitor 

cycloheximide. Mullaney eZ a/ (1995) also studied regulation of Gga 

mRNA levels in two NCB20 neuroblastoma clones. They found that 

stimulation of cells with isoprenaline produced no alteration in mRNA 

levels of Gga. My observations in this Chapter were in agreement with
"

these studies, in that after agonist treatment of the Pi-adrenoceptor 

transfected CHO cells with 100 piM isoprenaline, no alterations in GgCi 

mRNA levels were observed. It is therefore unlikely that either 

transcriptional or translational control of GgCc play a major role in 

desensitization (McKenzie and Milligan, 1990, Shah and Milligan,

1994) but that agonist-induced modulations in G-protein a  subunit 

levels involve changes in the turnover rate of activated G-proteins (Levis 

and Bourne, 1992, Milligan, 1993, Mitchell etal, 1993).

I
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Figure 3.7.1. Illustration of effect of agonist on the p- 

adrenoceptors: receptor mRNA changes, presence of 

CRE's, down-regulation of both receptor and Gg levels.
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CHAPTER 4.

EFFECT OF 6-ADRENOCEPTOR 
DENSITY ON G-PROTEIN 

DOWN-REGULATION AND 
THE EFFICACY AND POTENCY 

OF AGONISTS
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4.1. INTRODUCTION

The effect of changes in receptor density on agonist activity and 

receptor/G-protein regulation is now well-established (Milligan, 1993). 

However, in many systems little or no regulation is detected. For 

example, in neuroblastoma x glioma hybrid NG108-15 cells, agonists at 

each of the endogenously expressed IP prostanoid, adenosine A2 and 

secretin receptors cause stimulation of adenylyl cyclase but only those at 

the IP prostanoid receptor can cause down-regulation of G^a (Kelly et 

al, 1990, McKenzie and Milligan, 1990). This effect was not mimicked 

by analogues of cAMP (McKenzie and Milligan, 1990) and it was 

therefore believed that G-protein down-regulation might reflect the 

levels of expression of the individual receptors (Milligan and Green, 

1991). The importance of receptor levels in agonist-mediated down­

regulation has been studied traditionally by the use of irreversible 

receptor blockade (Kim fl/, 1994b, MacEwan aZ, 1995), where 

agonist access to the receptor population is limited. Irreversible 

blockers have been employed to 'knock out' receptor levels, leaving 

receptors inaccessible to agonist activation and regulation. The 

advantages of this method over others is that just one cell line is treated, 

with no complications resulting from slightly differing proportions of 

the other signalling components. It is also possible to investigate effects 

on efficacy and agonist potency via cell lines expressing differing levels 

of the receptor in the study. While results from such a study provide 

evidence for the concept that efficacy and potency alterations are likely 

to reflect levels of expression of a receptor, it may suffer from the fact 

that they had to be performed on different individual clonal isolates, 

leading to the possibility of slightly different levels of the signalling 

components between clones.
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Data from other groups demonstrates that the degree of G-protein 

down-regulation observed is related to the number of receptors available 

for the agonist ligand to occupy and not the ability of this receptor 

occupancy to result in the activation of adenylyl cyclase (Kim and 

Milligan, 1994). It should therefore be anticipated, as previous studies 

have shown, that such effects are restricted to the G-protein activated by 

the receptor, and that the effect is a reflection of enhanced degradation of 

the G-protein without significant transcriptional or translational control 

(Milligan a/, 1993, Mitchell et al, 1993). It is not mimicked by 

treatment with analogues of cAMP (McKenzie et al, 1990) and 

mutationally activated G-protein a  subunits are known to have reduced 

half-lives compared with the wild-type proteins (Milligan et al, 1993, 

Levis etal, 1992). Thus, if greater levels of available receptors are able 

to activate more copies of the G-protein, then greater down-regulation of 

this polypeptide should be anticipated. For example, investigations 

have been carried out previously into the concept that agonist-mediated 

G-protein down-regulation is likely to reflect levels of expression of a 

receptor (Adie e/a/, 1994a). Adie and co-workers (1994a) generated 

clonal cell lines of NG108-15 cells with genomic DNA encoding the 

human ^2 -adrenoceptor. Two clones were studied, one containing 

some 4,000 fmol/mg membrane protein and another with some 300 

fmol/mg membrane protein. The clone with high receptor levels 

responded to challenge with isoprenaline by down-regulating levels of 

Ggci whereas little effect was observed in the clone expressing much 

lower levels. While these results provide strong supporting evidence 

for the concept that agonist-mediated G-protein down-regulation is 

likely to reflect levels of expression of a receptor, as previously 

mentioned, they suffer from the fact that they had to be performed on 

different individual clonal isolates. To counteract this concern, my
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second study in this Chapter involved only a single clone of the pi~ 

adrenoceptor expressing CHO cells (Pi-adrenoceptor levels of 7130 ± 

258 fmol/mg membrane protein). I firstly took isoprenaline and 

stimulated |3i-adrenoceptors, then effected a way of allowing only 

limited access of the agonist to the receptors by pre-treating cells with an 

irreversible blocker, bromoacetyl alprenolol menthane (BAAM). 

Altering receptor levels in one just one cell line by this method provided 

a clear, reliable assessment of the principles that receptor density affects 

G-protein down-regulation, without alteration in amounts of the 

signalling components, which could occur using different cell lines. 

Although my investigations with BAAM were only preliminary, other 

investigators have generated similar results to mine (Kim et al, 1994b, 

MacEwanc/a/, 1995). The irreversible antagonist used in this study, 

bromoacetyl alprenolol menthane (BAAM) is an alkylating p-blocker. 

The pharmacophore of BAAM is derived from alprenolol, a drug 

binding with high affinity and specificity to p-adrenoceptors. BAAM 

also contains a bromoacetaniido group which reacts with an amino acid 

residue of the p-adrenoceptor. BAAM undergoes covalent attachment to 

the receptor protein through bromoalkylation of sulfhydryl groups and 

thus irreversible occupancy of the receptor binding site. It can therefore 

irreversibly decrease the density of pi-adrenoceptor binding sites at 

relatively low concentrations. These properties of BAAM were highly 

useful for my investigation into the effect of receptor level differences 

on G-protein down-regulation, by performing immunoblotting on crude 

membrane fractions taken from pi-adrenoceptor expressing CHO cells. 

1 also used binding assays, with the ligand pHJDHA, to assess 

alterations in the p i-adrenoceptor density, caused by BAAM treatment.
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My first study in this Chapter, however, assess effect of altered receptor 

levels on agonist potency and efficacy, in my case assessing action of 

ligands on the p2 -adrenoceptor expressed in murine neuroblastoma 

X Chinese hamster brain NCB20 cells. After selecting three cell lines 

with a range of p2 -adrenoceptor levels, it was then possible to perform 

assays of two kinds (pH]forskolin binding and adenylyl cyclase 

assays) to assess the intrinsic activities and potencies of four 

P-adrenoceptor specific agonists, isoprenaline, salbutarnol, ephedrine 

and the physiological agonist adrenaline. While isoprenaline and 

adrenaline are classically defined as full agonists, both salbutamol and 

ephedrine are defined as partial agonists. Whether this classification 

stands, or whether it is in fact dependent on receptor levels, will be 

assessed in this Chapter.
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4 .2 . INVESTIG ATIONS INTO THE EFFECT OF 

RECEPTOR DENSITY ON AGONIST POTENCY AND  

EFFICACY.

RESULTS

Three different cell lines of NCB20 neuroblastoma cells previously 

transfected with the p2 -adrenoceptor (Mullaney etal, 1995) at receptor 

densities shown in Table 4.2.1. were employed in this study. It had 

previously been confirmed that transfection of these cells had no effect 

on the cellular morphology or gross polypeptide composition of 

membranes from wild-type NCB20 cells, as assessed by Coomassie 

Brilliant Blue staining of SDS-PAGE (Mullaney etal, 1995). The L9 

cell line expressed the lowest p 2 -adrenoceptor levels, while the D4 cell 

line expressed the highest levels.

4f
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Table 4.2.1. Approximate receptor densities for the three 

cell lines of NCB20 neuroblastoma ceils: L9, D l, and D4.

NCB20 Approximate

cells receptor density

(praol/mg membrane

protein)

L9 0.6

D1 4.7

D4 12.9

.4"
“5-

Ï
-
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Two assays were employed in parallel for this investigation, a well- 

established assay and a relatively new assay. The well-established
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double column method of Johnson and Salomon (1991) was chosen to 

estimate adenylyl cyclase activity, measured in pmol/min/mg protein, 

while a more recently established pHjforskolin assay was also used. 

This provided a direct comparison of two diverse assays, one being a 

functional assay and the other a binding assay. It also involved 

comparison of results taken from a whole cell preparation 

(pHjforskolin binding assay) with results using a membrane fraction 

preparation (adenylyl cyclase assay). Methods for these two assays are 

as detailed in Chapter 2 (Materials and Methods).

Previous workers (Kim etal, 1995) had already found that the optimal 

temperature for the incubation in the pHjforskolin binding assay to be 

4°C, rather than the more common 30°C or 3TC for a binding assay. I 

did, however, perform a time course to estimate the optimum incubation 

time for maximal binding of the radiolabel in NCB20 cells to occur. 

This time course is shown in Figure 4.2.l.a. It was also vital to use 

enough cells to produce good levels of specific binding in this binding 

assay. 1 therefore performed an assay where varying levels of cells 

were added and specific binding calculated for each. This is shown in 

Figure 4.2.l.b.
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Figure 4.2.1.a. Time course for binding of [^HJforskolin.

Results, showing the mean ± S.E.M.from triplicate samples for each 

point, were expressed in units of dpm, representing specific binding. 

The assay was performed at 4°C for 90 minutes, using a final 

concentration of 10 nM pHjforskolin. This was a representative 

experiment of which two others were performed with similar results. 

EiTor bars represent the errors of three different binding points.

Figure 4.2 .l.b . Assessment of cell number versus specific 

binding of pH jforskolin . Error bars shown are from three 

different assay points. Results, showing the mean ± S.E.M.from 

triplicate samples for each point, were expressed in units of dpm, 

representing specific binding. The assay was performed at 4°C for 90 

minutes, using a final concentration of 10 nM pHjforskolin. From this 

assessment of cell numbers necessary for good, reproducible levels of 

specific binding, further [SHjforskolin binding assays used cell 

numbers between 0.75-1.25 x 10  ̂cells per assay.
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Figure 4.2.l.a.
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Figure 4.2. l.b.
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After optimal conditions for the specific [^H]forskolin binding assay 

had been established, concentrât!on-response curves were produced for 

a number of P2 -adrenoceptor agonists in both this and the adenylyl 

cyclase assay. The agonists represented a range of efficacies. A partial 

agonist is defined as an agonist which produces a response, but is 

unable to achieve a maximal réponse which full agonists can achieve. 

Therefore, while a full agonist has an intrinsic activity (lA) of 1.00, the 

partial agonist will have intrinsic activity less than 1.00.

Examples of concentration-response curves are shown in Figures 4.2.2. 

a &b, 4.2.3. a &b, and 4.2.4. a &b.
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4.2.2.a. Concentration-response curve to isoprenaline in 

L9 cells ([^HJforskolin). Results from [^H]forskolin binding 

assays are expressed as specific binding, units of which are dpm. Error 

bars represent S.E.M. and are for mean values determined from 

triplicate samples at each concentration of isoprenaline. This was a 

representative experiment of which two others were performed with 

similar results. The assay was performed at 4°C for 90 minutes, using a 

final concentration of 10 nM [^H]forskolin. Cell numbers were 

between 0.75-1.25 x 10  ̂per assay.

4.2.2.b. Concentration-response curve to isoprenaline in 

L9 cells (adenylyl cyclase assay). Results, showing the mean ± 

S.E.M. are determined from triplicate samples per point and are 

expressed in pmol/min/mg protein. This was a representative 

experiment of which two others were performed with similar results.
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Figure 4.2.2.a.
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Figure 4.2.2.b
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4.2.3.a. Concentration-response curve to isoprenaline and 

salbutam ol in D1 cells ( [^H]forskolin). Results from 

[^H]forskoliri binding assays are expressed as specific binding, units of 

which are dpm. Error bars represent S.E.M. and are for mean values 

determined from triplicate samples at each concentration of isoprenaline. 

This was a representative experiment of which two others were 

performed with similar results. The assay was performed at 4°C for 90 

minutes, using a final concentration of 10 nM [^HJforskoiin. Cell 

numbers were between 0.75-1.25 x 10^ per assay. This was a 

representative experiment of which two others were performed with 

similar results.

4.2.3.b. Concentration-response curve to isoprenaline in

D1 cells (adenylyl cyclase assay). Results of adenylyl cyclase 

activity are expressed as pmol/min/mg protein. Mean values ± S.E.M. 

are determined from triplicate samples per data point. This was a 

representative experiment of which two others were performed with 

similar results.
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Figure 4.2.3.b.
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4.2.4.â. Concentration response curve to isoprenaline in 

D4 cells ([^H]forskolin). Results from [^H]forskolin binding 

assays are expressed as specific binding, units of which are dpm. Error 

bars represent S.E.M. and are for mean values determined from 

triplicate samples at each concentration of isoprenaline. The assay was 

performed at 4°C for 90 minutes, using a final concentration of 10 nM 

pHjforskolin. Cell numbers were between 0.75-1.25 x 10^ per assay. 

This was a representative experiment of which two others were 

performed with similar results.

4.2.4.b. Concentration response curve to isoprenaline in 

D4 cells (adenylyl cyclase assay). Adenylyl cyclase activity is 

expressed in pmol/min/mg protein. Mean values ± S.E.M. are 

determined from triplicate samples per data point. This was a 

representative experiment of which two others were performed with 

similar results.
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Figure 4.2.4,a,
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Figure 4.2.4.b.
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After concentration responses were performed more than three times for 

each cell line of NCB20 cells, it was then possible to produce, for 

salbutamol at least, concentration-responses, showing responses as a 

percentage of the maximal isoprenaline (full agonist) response. These 

are shown in Figure 4.2.5. a &b, with results of both the adenylyl 

cyclase assays and [^HJforskolin binding assays shown. It is clear 

from these concentration-reponse curves that the cyclase and binding 

results are comparable, with salbutamol shown as a full agonist at the 

D 1 and D4 cell lines, while only a partial agonist at the L9 cell line. The 

L9 cell line had the lowest p2 ~adrenoceptor levels and is therefore clear 

proof that the efficacy (intrinsic activity) of a ligand is dependent on 

receptor levels.

■v!:
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Figure 4.2.5. a. Comparison of the [^HJforskolin assay 

results of the three cell lines, L9, D1 and D4, with different 

doses of salbutamol. Results are expressed as a percentage of the 

maximal isoprenaline response. Error bars represent S.E.M. and are for 

mean values determined from all salbutamol concentration-response 

curves. The [^H]forskoIin binding assay was performed at 4“C for 90 

minutes, using a final concentration of 10 nM [^H]forskolin. Cell 

numbers were between 0.75-1.25 x 10  ̂per assay.

Figure 4.2.5.b. Comparison of the adenylyl cyclase assay 

results of the three cell lines, L9, D1 and D4, with different 

doses of salbutamol. Results are expressed as a percentage of the 

maximal isoprenaline response. Error bars represent S.E.M. and are for 

mean values determined from all salbutamol concentration-response 

curves.
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Figure 4.2.5.b.
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more agonist-independent receptor activity occuring, and a higher basal 

value recorded. These alterations in basal levels are shown in Figure

From results for all concentration-effect curves at each cell line, it was

It was also possible to note alterations in basal signalling in the three cell 

lines. This has previously been explored by other investigators 

studying NG108-15 cells (Adie and Milligan, 1994b), and NCB20 cells 

(Mullaney et al, 1995). Mullaney et al (1995) observed that basal 

adenylyl cyclase activity was substantially higher in clone D1 NCB20 

cells than either the parental NCB20 cells or clone L9 NCB20 cells.

This phenomenon is believed to represent agonist-independent receptor 

activity, that is, empty receptor activation of the signalling cascade (Adie 

and Milligan, 1994b). Thus, the higher receptor levels in a cell, the

ÏR

4.2.6. a &b, for the [^HJforksolin binding assay and the adenylyl
'

cyclase assay, respectively. Results from the [^HJforskolin binding 

assay were significantly different (p< 0.013 for D 1 compared to L9, p< 

0.00001 for D4 compared to L9, and p< 0.021 for D4 compared to Dl), 

but it is not so clear, and only significantly different for the D4 line 

compared to the L9 line (p< 0.005), in results from adenylyl cyclase 

assays.

I
possible to calculate EC5 0  values and intrinsic activity (lA) values.

These are shown in Table 4.2.2. and Table 4.2.3. with comparisons of 

the [^Hjforskolin binding values and adenylyl cyclase assay values. It 

is clear from Table 4.2.2. that EC5 0  values (defining potency) of each 

agonist at the p2 -^drenoceptor, are affected by receptor density. For 

example, in the adenylyl cyclase assay, there was some 2 -fold 

difference in potency of isoprenaline between that of the lowest 

P2 -adrenoceptor expressing cell line L9, and that of D l (17 ± 3.5 nM 

and 8  ± 0.5 nM, respectively). There was also a 2-fold difference in
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potency between the D l cell line and the highest p2 -adrenoceptor 

expressing cell line D4 ( 8  ± 0.5 nM and 4 ± 0.9 nM, respectively). 

This suggests that as p-adrenoceptor levels increase, EC5 0  values are 

decreased, therefore potency of agonist increases with receptor density. 

These 2-fold differences in potency between cell lines is not a 

particularly large difference, as other groups have noted much larger 

differences (Mullaney 1995).
3

:

In Table 4.2.3., a trend can clearly be seen that as receptor level 

increases, so does the intrinsic activity of an agonist. For example, 

while salbutamol has an lA value of 0.7 at the L9 cell line, and therefore 

classed as a partial agonist, salbutamol has an IA value of 1.0 at the Dl 

and D4 cell lines, which have higher p2 -adrenoceptor levels. It can 

therefore be classed as a full agonist at the Dl and D4 NCB20 cell lines, 

but only a partial agonist at the lower p2 -adrenoceptor expressing L9 

NCB20 cells.
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Figure 4.2.6.a. Basal level changes in the three NCB20

cell lines, L9, D l and D4, from results of [^HJforskolin 

binding assays, measured in levels of specific binding.

Results from [^H]forskolin binding assays are expressed as basal 

binding, units of which are dpm. Error bars represent S.E.M. and are 

for mean values determined from all basal levels obtained during assays 

on each cell line. The assay was performed at 4°C for 90 minutes, 

using a final concentration of 10 nM [^H]forskolin. Cell numbers were 

between 0.75-1.25 x 10  ̂per assay. There was a statistically significant 

difference in basal levels between cell lines (p< 0.013 for Dl compared 

to D4, p< 0.00001 for D4 compared to L9, and p< 0.021 for D4 

compared to Dl).

Figure 4.2.6.b. Basal level changes in the three NCB20 

cell lines, L9, D l and D4, from results of adenylyl cyclase 

assays, measured in pmol/min/mg protein. Results are 

obtained from assays performed on each particular cell line, from which 

mean ± S.E.M. of basal levels are calculated. Results were found to be 

significantly different between the L9 and D4 lines (p< 0.005).
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Figure 4.2.6. a
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Table 4.2.2. Potency (ECgo) values for ligands at NCB20 

cells:a comparison of the two assays, [^H]forskolin binding 

and adenylyl cyclase. Results are means of three or more 

experiments (except numbers in brackets) ± S.E.M. N.D=not 

determined. Iso=isoprenaline, sal=salbutamol, eph=ephedrine, and 

adren=adrenaline.

ECso (nM)

cells iso sal eph adren

L9 37 ± 360 ± 300 + 200

(pHJforskolin) 8.1 138 50 (1)

L9 17 + 93 ± N.D. 24

(adenylyl 3.5 2.5 (2)

cyclase)

D1 38 ± 18 + 100 N.D.

(pHJforskolin) 5.9 8.2 (1)

D1 8 ± 18 + 340 + N.D.

(adenylyl 0.5 5.9 49

cyclase)

D4 1(2) 44 + N.D. N.D.

([^HJforskolin) 4.9

D4 4 ± 44 140 6(1)

(adenylyl 0.9 (2) (1)

cyclase)

a

4 ,

I
'

I
)
Î
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Table 4.2.3. Intrinsic activity (lA) values for ligands 

compared to isoprenaline. Comparison of the two assays, 

pHjforskolin binding and adenylyl cyclase. Results are means of three 

experiments ± S.E.M. except where stated in brackets. N.D.=not 

determined. Iso=isoprenaline, sal=salbutamol, eph=ephedrine, and 

adren=adrenaline.

Intrinsic activity (lA)

cells iso sal eph adren

L9 1.0 0.7 ± 0.5 ± N.D.

(pH]forskolin) 0.1 0.1

L9 1.0 0.7 ± 0.3 1.2

(adenylyl 0.1 (2) (1)

cyclase)

D1 1.0 1.0 0.4 + N.D.

(pH]forskolin) (2) 0.1

D1 1.0 1.0 0.7 + 1.0

(adenylyl (2) 0.2 (1)

cyclase)

D4 1.0 1.0 N.D. N.D.

([^H]forskolin) (2)

D4 1.0 1.0 0.9 N.D.

(adenylyl (2) (1)

cyclase)

I
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4 .3 .  IN V E ST IG A T IO N S INTO EFFECTS OF 

ALTERATIONS IN RECEPTOR LEVEL ON DOWN- 

REGULATION OF Gs

RESULTS

I

Crude membrane fractions derived from p i-adrenoceptor expressing 

CHO cells were examined for expression of these receptors by 

measuring the specific binding of the p-adrenoceptor antagonist 

pHJdihydroalprenolol (10 nM). Exposure of the pi-adrenoceptor 

expressing CHO cells to varying concentrations of BAAM for 4 hours 

prior to cell harvesting and crude membrane preparation resulted in a 

decrease in the number of detectable specific binding sites for pH]DHA 

(Figure 4.3,1). In the absence of BAAM, some 7,100 fmol/mg 

membrane protein of binding sites for the Pi-adrenoceptor are available 

in the passages of CHO cells used here. Half-maximal reduction in the 

number of available p i-adrenoceptors was achieved by treatment with 

30nM BAAM, and treatment with IjàM. BAAM reduced the number of 

P 1-adrenoceptors to some 15% of original levels.

Figure 4.3.2. shows percentage Gga levels remaining after 

concentration-reponses to isoprenaline were perform ed on 

pi-adrenoceptor expressing CHO cells, treated or untreated with 10 piM 

BAAM for four hours. It clearly shows that BAAM treatment blocks
:

agoni S t - receptor interactions to such an extent that the process of 

G-protein down-regulation is decreased, in direct proportion to the 

fraction of receptors irreversibly blocked by BAAM.

r?
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Figure 4.3.1. Effect of different concentrations of BAAM 

on pi-adrenoceptor levels. Results are expressed as the percentage 

of Pi-adrenoceptors remaining after BAAM treatment, obtained from 

pH]DHA binding assays. Cells were treated with concentrations of 

BAAM for four hours prior to harvesting and the production of crude 

membrane fractions. This Figure was a representative experiment of 

whieh two others were performed with similar results.
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Figure 43.1
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Figure 4.3.2. Concentration-response to isoprenaline in 

Pl-adrenoceptor expressing CHO cells with or without 

BAAM (10 fiM ) treatment. Cells were treated with different 

concentrations of isoprenaline, with or without BAAM pre-treatment for 

four hours. Results were expressed as a percentage of Ggoc remaining. 

This was a representative experiment of which two others were 

performed with similar results.
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Figure 4.3.2.
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4.4. DISCUSSION

î
îS
I 
J

In recent years, many biochemical studies have utilised wild-type or 

mutant receptors which have been stably or transiently expressed into 

model cell systems over wide ranges of receptor densities. In the past 

decade, however, a large amount of evidence has been accumulated 

from studies into the effect of receptor density on the kinetic parameters 

of adenylyl cyclase activation (Johnson etal, 1979, Bouvier et al, 1988,

George e ta l, 1988). No effort has been made so far, to fit the 

consequences of these varying receptor levels to any currently accepted 

model for adenylyl cyclase activation. Many studies looking at the 

P-adrenoceptors have not touched on the effect of different receptor 

densities on results. Very few groups have previously investigated this 

effect of receptor density on agonist potency and efficacy (Whaley etal,

1994, MacEwan et al, 1995). This may lead, in turn, to incorrect 

conclusions concerning the ability of mutant and wild-type p 

adrenoceptors to activate adenylyl cyclase when different receptor levels 

are present in different studies. I therefore investigated the effects of 

varying receptor density on signalling processes, such as G-protein 

down-regulation. I also assessed the effect of alterations in 

P2 -adrenoceptor density on partial and full agonists.

The main investigations in this Chapter were to obtain data on the 

importance of receptor levels (the p2 -adrenoceptor in NCB20 cells) in 

defining the intrinsic activity and potency of agonists. This could be 

performed without alterations in amounts of the other components of the 

signaling cascade in three clones of NCB20 cells transfected with 

different levels of the P2 -adrenoceptor. The concept that different
'

degrees of intrinsic activity of agonists should be observed in cells and
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tissues expressing different levels of a G-protein-linked receptor is a 

classical element of receptor theory (Stephenson al, 1956, Kenakin et 

al, 1989, Hoyer etal, 1993). Experimental examination of this has 

traditionally focused on the observations that many drugs act as full 

agonists in some tissues but not in others, or by the use of irreversible 

antagonists to limit access of agonists to receptors. The first approach is 

limited by the fact that levels of both the G-protein and effector systems 

are likely to vary widely between the cell type, and the second approach 

by the possibility that irreversible antagonism of a fraction of the 

receptors might be anticipated to limit access of the remaining receptors 

to a proportion of the G-protein population. In cells in which G-protein 

levels are comparable to those of the receptor this might alter receptor 

output.

In my first study, alongside changes in efficacy due to changes in 

receptor levels, I was also able to assess alterations in EC5 0  values of 

agonists due to alterations in receptor levels. The relationship between 

EC5 0  values for agonist and the nature and levels of receptor expression 

has been examined previously (Whaley et al, 1994, Samama et al,

1994). Whaley et al (1994) noted an increased potency (decreased 

EC5 0 ) of the ligand adrenaline with increasing receptor number (from 

200 to 0.2 nM as receptor density increased from 5 to 5000 fmol/mg 

membrane protein). I also observed an increased potency with the full 

agonist isoprenaline related to an increase in receptor number. This 

confirmed the results of Whaley etal (1994) and results of two previous 

studies performed with Chinese Hamster fibroblast membranes 

(Bouvier a/, 1988) and Chinese Hamster ovary whole cells (Samama 

etal, 1993). My results did not show this phenomenon so clearly with 

the partial agonist salbutamol, but the trend was similai’. These effects



1

of receptor density on agonist activity were consistent with the 

predictions of classical pharmacological models, and emphasise the 

importance of relating data on agonist potency at cloned receptors to 

receptor expression levels. Mathematical predictions have been 

developed by Whaley e ta l (1994), based on the cycle of G-protein 

activation first proposed by Cassell and Selinger (1977) and the mobile

The phenomenon that efficacy increased as receptor levels increased was 

confirmed in my study, very clearly by observations with the agonist 

salbutamol. At the lowest receptor density NCB20 cell line, it was only 

a partial agonist (lA of 0.7 ±0.1 in both pH] forskolin binding assays 

and adenylyl cyclase assays) while at the higher expressing 

adrenoceptor cell lines of D1 and D4 NCB20 cells, salbutamol was 

found to be a full agonist. Ephedrine followed a similar trend, although 

results were only preliminary. For example, using the adenylyl cyclase

1 4 6

receptor model, to analyse alterations in p-adrenoceptor full agonist 

EC5 0  values with receptor number. Equations predict the relationship of 

receptor number to the EC5 0  (potency) and lA (efficacy).

In systems in which the effector species is quantitatively the limiting 

component of the cascade, it is also often observed that elevation in 

receptor number will result in a leftward shift in the dose-effect curve, 

consistent with the notion of a receptor population reserve. A die el al, 

(1994) noted this phenomenon when studying isoprenaline stimulation 

of adenylyl cyclase activity in membranes of pN22 and pN17 cells. A 

number of other studies have reported this phenomenon with cells 

expressing various levels of the j32 -adrenoceptor (Whaley et al, 1994, 

Bouvier etal, 1988). However, one report, using 849 lymphoma cells 

did not report such an effect (Johnson etal, 1979).



from preliminary investigations, one was able to demonstrate that the 

degree of G-protein down-regulation observed was related to the 

number of receptors available for the agonist to occupy. This was in 

agreement with observations by Kim etal (1994) while investigating the 

regulation of the P2 -adrenoceptor, in that receptor availabilty defined the 

extent of agonist-mediated down-regulation in neuroblastoma x glioma 

hybrid cells transfected to express the p2 -adrenoceptor.

For example, Figure 4.3.2. shows that loss of receptors results in less 

down-regulation of G§, the G-protein associated with the p%-

1 4 7

assay, at the L9 NCB20 cells, ephedrine was only a partial agonist with 

an lA value of approximately 0.3. At the higher p2 -adrenoceptor 

expressing D1 NCB20 cells, the lA value was 0.7 ± 0.2, indicating that 

although ephedrine was still only a partial agonist at the p2 - 

adrenoceptor, the efficacy was increasing with increasing receptor 

levels. Finally, at the D4 NCB20 cells, although the result of just one 

experiment, the lA value was 0.9, suggesting that the results for 

ephedrine are consistent with the phenomenon of increasing receptor 

levels leading to increasing efficacy of agonist.

Further to the previous investigations into efficacy and potency of 

agonists at the p2 -adrenoceptor, and the effect of changes in receptor
■■ ■

levels, 1 also made preliminary investigations to assess the effect of 

alterations in receptor levels on down-regulation of the G-protein 

associated with the p ̂ -adrenoceptor, Gg. This followed similar 

investigations by Kim e ta l (1994) and MacEwan et al (1995) where 

they had utilised BAAM to investigate G-protein down-regulation (Kim 

etal, 1994b) and intrinsic activity and potency (MacEwan a/, 1995).

From assays performed here, using the irreversible antagonist BAAM,

I



adrenoceptor. A slightly larger concentration of isoprenaline (0.56 nM) 

is necessary to stimulate half-maximal Gg down-regulation after BAAM 

(10 piM) treatment, when compared to the pi-adrenoceptor-expressing 

CHO cells which did not receive BAAM pre-treatment (0.71 nM).

These preliminary results using the antagonist BAAM should be 

anticipated from previous studies (Kim etal, 1994b, MacEwan etal,

1995), which have shown that such effects are restricted to the G- 

protein activated by the receptor, and that the effect is a reflection of
'

enhanced degradation of the G-protein without significant transcriptional 

or translational control (Milligan et al, 1993b, Mitchell et al, 1993).

Effects are also not mimicked by treatment with cAMP analogues 

(McKenzie e ïa/, 1990), and also as mutationally activated G-protein a  

subunits are known to have reduced half-lives compared with the wild- 

type proteins (Milligan c? a/, 1993b, Levis el a/, 1992). Therefore, if 

greater levels of available receptors are able to activate more copies of 

the G-protein then greater down-regulation of this polypeptide is to be 

expected. However, the observation that reduction of P2 -9^drenoceptor 

availability in clone pN22 cells to some 300 fmol/mg membrane protein 

still resulted in a detectable down-regulation of GgO whereas this was 

not observed in clone pN17 which expresses this level of receptor 

endogenously, demonstrates that it is unwise to extrapolate results from 

data obtained in different clonal isolates (Adie etal, 1994a).

The implications of my studies are, along with other workers such as 

Whaleyg/a/, (1994), Kim e ta l (1994), and MacEwan etal (1995) 

that investigators cannot ignore the now well-established phenomenon 

that receptor expression levels in wild-type or transfected cell lines, has

:
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a direct result on efficacies and potencies of agonists, and can also affect 

the rates of down-regulation of components in the signaling cascade.
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CHAPTER 5.

INVESTIGATIONS INTO THE 
MOLECULAR BASIS OF 
PHARMACOLOGICAL 

DIFFERENCES BETWEEN THE
RAT AND HUMAN B3- 

ADRENOCEPTORS
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5.1. INTRODUCTION

The |3 3 -adrenoceptor is a mediator of the lipolytic and thermogenic responses 

which occur in rodent adipose tissues in vitro (Hollenga et al, 1991, Arch et al, 

1993), and atypical p-adrenoceptor agonists that activate these receptors have 

potent therapeutic effects in in vivo rodent models of adult-onset diabetes and 

obesity. Rodent adipocytes have been shown to exhibit the strongest response 

to p3 -adrenoceptor agonists while human fat cells are only poorly responsive to 

P3 -agonists. These species-related differences may be partly explained by 

lower p3 -adrenoceptor mRNA levels found in human adipocytes compared to 

rat adipocytes. Poor coupling efficiency of these human adipocyte 

p3 -adrenoceptors cannot, however, be ruled out. Experiments with rodent cells

importance to understand the molecular differences in the rat and human 

p3 -adrenoceptors from which the variation in pharmacology arises.
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natively expressing the §3 -adrenoceptor and other cells into which this receptor 

has been transfected, have suggested a number of differences in the 

pharmacology of the p3 -adrenoceptor between the different species known to 

investigators, i.e. the rat, mouse, human and bovine p3 -adrenoceptors.

Given that agonists specific for the P3 -adrenoceptor are in the process of being 

developed as potential therapeutic agents for such diseases as diabetes and 

obesity, and that these drugs are primarily tested in rodent models, it is of vital

The sequence homology is very high in the p3 -adrenoceptors, approximately 

80-90% identity between the human, bovine, mouse and rat P3 -adrenoceptors.

Figure 5.1.1. represents a divergence tree constructed to show these similarités 

between the human, bovine, rat and mouse P3 -adrenoceptors. The bovine and 

human p3 -adrenoceptors are similar to each other (>90% homology at amino
'

acid level) and the mouse and rat P3 -adrenoceptors show even closer similarity 

to eaeh other (>95% homology at amino acid level). Several residues located in

'I
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the transmembrane domains of the receptor are shared uniquely by these four 

species of p3 -adrenoceptors and are not found in the pi- or the P2 -adrenoceptor 

of the same species. Even though their sequence homology is so high, cross­

species differences in p3 -adrenoceptor pharmacology have been observed. For 

example, Liggett's group (Liggett etal, 1992), with their published data shown 

in Table 5.1.1, were able to demonstrate that, using cell lines with comparable 

p3 -adrenoceptor expression levels, while some agonists were only partial 

agonists at the human p3 -adrenoceptor, they were able to perform as full 

agonists at the rat p3 -adrenoceptor. In this same system, they also observed a 

reversal of intrinsic activity between CGP12177 and BRL37344 in the rat and 

human p3 -adrenoceptors. The SmithKlineBeecham p3 -adrenoceptor agonist
'

BRL37344, a phenylethanolamine, when compared to isoprenaline, is a full 

agonist at the rat P3 -adrenoceptor but only a partial agonist at the human 

P3 -adrenoceptor. Due to these published pharmacological differences between 

species, and work carried out by other groups, including studies at SB 

Pharmaceuticals, the agonist BRL37344 was never entered for human clinical 

trials. An understanding of the molecular basis of differences between the rat 

and human p3 -adrenoceptor may allow future workers to more rationally design 

agonists with greater efficacy at the human Ps-adrenoceptor.

Deletion and site directed mutagenesis studies have led to a good understanding 

of the catecholamine binding pocket (Strader et al, 1987, 1989), and the 

molecular basis for pharmacological differences between the catecholamine 

receptor subtypes has been explored with the use of chimeric receptors (Frielle 

etal, 1989: Kobilka etal, 1988). Recently, Guan et al (1995) employed a 

similar strategy to investigate the difference in efficacy of the 

phenylethanolamine BRL37344 for the p3 -adrenoceptor and other 

P-adrenoceptors by using a series of P2 /P3  chimeras. These studies suggested 

thatTM5 (transmembrane region 5) is a key molecular determinant responsible
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for the higher affinity binding of BRL37344 at p3 -adrenoceptors when 

compared to P2 -adrenoceptors.

As recent work on the p3 -adrenoceptor has suggested, it would be of great 

interest to discover how subtle molecular differences in the structure of the 

P3 -adrenoceptor produce such well-defined alterations in its pharmacology 

between the rat and human Ps-adrenoceptors.

Figure 5.1.1. Divergence tree showing differences in percentage 

terms between different species of Ps-adrenoceptors (bovine, 

human, mouse and rat).

-Bovine pS 
-Human p3 
-Mouse pS 
-Rat pS

% divergence at amino acid level
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Table 5.1.1. Summary of published data, taken from Liggett e t  a l  

(1992) showing significant differences in intrinsic activity  

between the rat and human p3 -adrenoceptor. Values are relative to the 

maximal level of isoprenaline stimulation in each cell line.

agonist

Intrinsic activity (lA)

human p 3 -adrenoceptor rat P3 -adrenoceptor

isoprenaline 1.00 1.00

BRL37344 0.60 ±0.01 1.00 ± 0.01

CGP12177 0.64 ± 0.05 0.31 ± 0.02
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The p3 -adrenoceptor and its malfunction have been linked with a number of 

common diseases. There is evidence that molecular abnormalities in the 

p3 -adrenoceptor may lead to obesity and the development of 

non-insulin-dependent diabetes mellitus (NIDDM). Groups have shown that 

expression of the receptor is markedly decreased in rodent models of obesity 

{M\xtl\u et al, 1991); mice with knockout (disruption) of the gene for the 

receptor have marked reductions in lipolysis stimulated by p-selective agonists 

(Susulie etal, 1995), and Ps-specific agonists have potent anti-obesity and 

anti-diabetic effects in both animals and humans (Himms-Hagen et al , 1994, 

Connacher et a l , 1992, Mitchell et a l , 1989). To examine the potential role of 

inherited defects in this gene, a number of groups have investigated molecular 

abnormalities in the p3 -adrenoceptor, and its effect on the development of 

obesity and onset of NIDDM.

A single site polymorphism of the p3 -adrenoceptor was recently discovered by 

Clement etal (1995), and has been suggested to lead to an increased capacity to 

gain weight in patients with morbid obesity. The frequency of this 

polymorphism was similar in morbidly obese French patients and normal 

subjects. However, the patients with morbid obesity who were heterozygous 

for the Trp64Arg mutation had an increased capacity to gain weight.

This Trp64Arg mutation appears at the beginning of the first intracellular loop 

of the p3 -adrenoceptor. This loop is thought to be important for the proper 

movement of the receptor to the eell surface and possibly also for its coupling to 

G-proteins. Defective expression at the cell surface or impaired signalling may 

lead to decreased lipolysis and thermo genesis in visceral fat tissue that may 

contribute to central obesity, insulin resistance, and NIDDM. Morbid obesity, 

where the body mass index is greater than 40, is believed to have a particularly 

strong genetic component. The functional deficiency of the ps-adrenoceptor in
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genetically obese mice, and the results of studies in which the gene for the 

receptor has been disrupted in mice, led Clement et al (1995) to investigate the 

role of the p3 ~adrenoceptor in patients with morbid obesity. Genomic DNA 

was extracted from leukocytes and a polymorphism resulting in the replacement 

of a tryptophan residue by arginine at position 64 in the p3 -adrenoceptor was 

detected. The frequency of this Trp64Arg allele was similar in the morbidly

obese patients and the normal subjects. However, the patients suffering morbid
.

obesity who were heterozygous for the Trp64Arg mutation had an increased 

capacity to gain weight The role of this mutation in the pathogenesis of obesity

may be conjectural but may be related to a lowering of the resting metabolic 

rate, which is genetically determined. Another study released at the same time 

(Widen etal, 1995) showed that this Trp64Arg allele of the p3 -adrenoceptor is 

associated with abdominal obesity and a resistance to insulin, which may be a

causal factor in the early onset of NIDDM. Obesity is a known risk factor for 

the development of NIDDM. NIDDM is one of the most common inherited

diseases. Although most forms of the disease do not have a simple Mendelian
::

pattern of inheritance, the contribution of heredity is well recognized. It is 

likely that the common forms of NIDDM are complex and heterogeneous and 

that they may develop when a pool of mutant genes, each contributing in a small 

and subtle way, interact with one another and with environmental, ageing, and 

behavioral influences to lead to the expression of the disease.

Another group in the U.S. performed a similar study (Walston etal, 1995) on 
.

the Pima Indians, a group with a very high prevalence of NIDDM. Pima 

subjects homozygous for the Trp64Arg polymorphism had an earlier onset of 

NIDDM and tended to have a lower resting metabolic rate. This mutation may 

therefore accelerate the onset of NIDDM by altering the balance of energy 

metabolism in visceral adipose tissue.
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To investigate the molecular basis for the species selectivity of compounds such 

as BRL37344 for the pg-adrenoceptor a series of human/rat chimeric 

(5 3 -adrenoceptors were constructed. Mutants were produced by identification of 

the changes in the amino acid residues of the transmembrane regions in the rat 

and human p3 -adrenoceptors.

Single point mutations were not performed but the whole transmembrane 

regions substituted to produce the chimeric constructs. This was after results 

from other groups (Guan et al, 1995) suggested that single point mutations 

were not as useful, in the first instance, as whole transmembrane region 

mutation, as this is more likely to represent the sum effects of both binding and

efficacy differences between mutants. Altering the whole transmembrane

region from one speeies to another would hopefully result in more global
-

changes in the receptor structure.

Each chimeric receptor consists largely of the human sequence, except that in 

each case a single transmembrane (TM) region has been substituted with the 

corresponding sequence in the rat homologue. Each receptor was named 

according to the TM region which had been replaced by the rat sequence. Table 

5.1.2. shows the specific amino acid changes. Thus the TMl mutant consists 

of the human P3 -adrenoceptor, except for the TMl region which is from the rat 

P3 -adrenoceptor transmembrane region. An exception to this was the TMl+7 

chimera which contains both its TM l and TM7 regions from the rat
■

p3 -adrenoceptor.

The Trp64Arg mutant was produced with somewhat different intentions, as 

mentioned previously. This mutation is just a single amino acid change at 

position 64 from an arginine residue to a tryptophan residue, as it had recently 

been observed (Walston etal, 1995) that in a population where high numbers of



î

of Biotechnology, SB Pharmaceuticals, Harlow, Essex.

-:'W'
their group developed NIDDM, there was a higher incidence of this human 

Pg-adrenoceptor polymoiphism. It was therefore of interest to examine whether 

drugs stimulating the nomial human pg-adrenoceptor were just as effective at 

stimulating this mutated fonn.

Methods for the construction and expression of the chimeric pg-adrenoceptors 

are detailed in Chapter 2 (Materials and Methods). These were kindly 

constructed by C.Chapman, T.Whitton, and H.Clinkenbeard of the Department

f
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Table 5.1.2 Amino acid substitutions for chimera production.

Transmembrane

domain

Mutation (human P3 to rat P3 -AR)

1 Vqg, L4 9  & A5 0  deletions

V60 -T, W64 -R

2 Agi -T, M8 6 -V

V9 1  -M, A9 4  -G

4 T i 56 -a , V i 63 -I,

A i 67 -T

5 V205-A

6 C292 -R, T3 0 O -I.

T 3 0 2 - s

7 0 3 2 5  -S, P3 2 6  “G,

A3 2 7  -V, L3 2 9  -I

1+7 V4 8 , L4 9  & A50 deletions

V60 -T, W64 -R, 0325 -S,

P3 2 6  -0 , A3 2 7  -V, L3 2 9  -I

Trp64Arg W64 -R

i

*

-I
I
f i s

3

I
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The functional assays chosen for the identification of molecular differences 

between the chimeras and the wild type rat and human Ps-adrenoceptors were

the microphysiometer and the cAMP accumulation 'flashplate' assay, a 

commercially available kit.

Compounds were employed in the study which classically define the 

ps-adrenoceptor; agonists isoprenaline, BRL37344 and CGP12177. 

Isoprenaline is a full agonist at both the rat and human pg-adrenoceptor, while 

the phenylethanolamine BRL37344 is an agonist at the rat and human 

P3 -adrenoceptors but is less efficacious in humans than in rodents. CGP12177 

is an aryloxypropanolamine which is a pi- and p2 -adrenoceptor antagonist, but
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The microphysiometer produces a non-invasive, physiological measurement in

"a:
real time by detecting cellular responses to stimulation. This is performed by 

measuring the excretion of acidic metabolites with a silicon sensor functioning 

as an extracellular pH meter. Changes of less than 0.01 pH unit per minute can 

be monitored. Activation of hormone receptors on intact cells has been shown 

to increase solution acidity. Cellular metabolism produces protons primarily by 

generating lactic acid during glycolysis or by generating carbon dioxide during 

respiration. Lactic acid and carbon dioxide passively diffuse across the cell 

membrane and they aie also actively transported out via acid and anion transport 

proteins. In addition, protons are excreted via exchangers, channels and pumps 

on the cell membranes. Energy metabolism is largely regulated by the supply 

and demand for cellular ATP. When cell surface receptors are activated, the 

secondary signals they generate can result in an increase or decrease in ATP 

consumption, which in turn causes changes in the rate of glycolysis and/or

respiration. The energy pathway that produces the greatest number of hydrogen 

ions per ATP consumed is glycolysis, us 

generating pathway for cells grown in culture

ions per ATP consumed is glycolysis, usually the predominating energy

t
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processing, such as the computation of the percentage change in acidification 

rates. Data for up to eight chambers can be displayed simultaneously. These 

will be displayed on the Figures in this Chapter as A, B, C, D, E, F, G, and H.

Ï
at the human and rat Pg-adrenoceptor it is a partial agonist, showing a higher 

potency for the human P3 -adrenoceptor, previously shown by Liggett's studies 

(1992) in Table 5.1.1.

Acidification rates are determined as microvolts per second during periods of 

flow cessation. Rates are recorded and plotted as a function of time. Data may 

be exported into appropriate database and graphics programs for further

The cyclic AMP accumulation 'flashplate' assay, the second type of functional 

assay to be performed, was used in parallel with the microphysiometer, to 

confirm and back up data obtained on the microphysiometer. The cAMP 

accumulation assay records results much further upstream than the 

microphysiometer, which itself records the final overall response of the whole 

cells to stimulation. As explained in Chapter 2 (Materials and Methods), the 

basic principle of the 'flashplate' assay is the competition between a radioactive 

and non-radioactive antigen for a fixed number of antibody binding sites. 

Samples in my assay were added to the wells of the kit, 30 }a \  of unknown 

cAMP sample per well, then after addition of radioactive tracer, values could be 

obtained by comparison with a standard curve to cAMP. Scintillant was already 

present in the wells.

As results emerged, it became obvious that the mutants, transiently expressed in 

CHO cells or mass cultures produced from transient transfections, did not 

produce strong enough responses on the microphysiometer to conduct full 

concentration-response curves to individual compounds, and therefore results 

of the highly sensitive 'flashplate' assay were vital to this study.
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5.2. RESULTS USING THE MICROPHYSIOMETER
Firstly, cumulative concentration-response curves to isoprenaline and

BRL37344 at the wild-type human and rat pg-adrenoceptors were obtained, for 

comparison with transiently transfected chimera mass cultures. Cumulative 

concentration-response curves are ideal for (Sg-adrenoceptor responses as they 

are not affected by short-term desensitization, but with most other receptors, 

cumulative concentration-reponses are not possible. Cells were treated with 

increasing concentrations of agonist for 1 2  minutes, after which time the next 

concentration could be immediately added. Figure 5.2.1.a, b, and c show 

typical cumulative concentration-responses to isoprenaline, BRL37344 and 

CGP12177 performed on the human and rat pg-adrenoceptor expressing CHO 

cells. The curves produced from one set of cumulative concentration-responses 

are shown in Figure 5.2.2.a , b, and c. These curves were similar over 3-5 

repeat cumulative concentration-response curves and resulted in EC5 0  values 

being obtained.

Table 5.2.1 shows the potency (EC5 0 ) values for the rat and human 

pg-adrenoceptor CHO cells upon stimulation with the three Pg-agonists 

isoprenaline, BRL37344 and CGP12177. Results are the means of 3-5 

separate experiments ± S.E.M. values. It can be seen quite clearly from this 

table that the potency for BRL37344 at the rat Pg-adrenoceptor is much higher, 

approximately 100-fold greater, than BRL37344 at the human pg-adrenoceptor.

These results are similar to the potency reversal observed by Liggett et al 

( 1992), in that BRL37344 had a higher potency for the rat pg-adrenoceptor than
■

isoprenaline, while at the human Pg-adrenoceptor the potency was reversed.
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F igu re  5 .2 .1 a . Cum ulative concentration-responses to

isoprenaline in human and rat pg-adrenoceptor expressing CHO

cells . Chambers contained the following cells:

A= rat pg-adrenoceptor expressing CHO cells 

rat Pg-adrenoceptor expressing CHO cells

E= human Pg-adrenoceptor expressing CHO cells 

F= human Pg-adrenoceptor expressing CHO cells

Cells were first treated with 0.01 nM isoprenaline for 12 minutes, as shown on 

the x-axis, then increasing concentrations as shown on the legend, eventually 

up to a maximal concentration of 1 piM isoprenaline. Responses are expressed 

on the y-axis as the percentage change in acidification rate.
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Fig.5.2.1.b Cumulative concentration-responses to BRL37344 in

human and rat pg-adrenoceptor expressing CHO cells. Chambers

contained the following cells:

A= rat p3 -adrenoceptor expressing CHO cells 

B= rat p3 -adrenoceptor expressing CHO cells 

C= rat p3 -adrenoceptor expressing CHO cells

E= human pg-adrenoceptor expressing CHO cells 

F= human pg-adrenoceptor expressing CHO cells 

G= human pg-adrenoceptor expressing CHO cells 

H= human Pg-adrenoceptor expressing CHO cells

Cells were first treated with 1 jwM isoprenaline for 12 minutes. The cumulative 

concentration responses were then begun at 0.01 nM BRL37344 for 12 

minutes, as shown on the legend for the x-axis, then increasing concentrations 

as shown, up to a maximal concentration of 1 ]aM  BRL37344. Responses are 

expressed on the y-axis as the percentage change in acidification rate.
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Fig.5.2.1.c Cumulative concentration-responses to CGP12177 in

human and rat pg-adrenoceptor expressing CHO cells. Chambers

contained the following cells:

A= rat Pg-adrenoceptor expressing CHO cells

B - rat Pg-adrenoceptor expressing CHO cells

C= rat pg-adrenoceptor expressing CHO cells 

D = rat p3  adrenoceptor expressing CHO cells

E= human pg-adrenoceptor expressing CHO cells 

F= human pg-adrenoceptor expressing CHO cells 

G= human pg-adrenoceptor expressing CHO cells 

H - human pg-adrenoceptor expressing CHO cells

Cells were first treated with 0.1 nM CGP12177 for 12 minutes, as shown on 

the x-axis legend, then increasing concentrations as shown, up to 1 piM 

CGP12177. Responses are expressed on the y-axis as percentage change in 

acidification rate.
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Figure 5.2.2.a. Concentration-curve to BRL37344 in rat pg-

adrenoceptor expressing CHO cells. Results show plots from one set of

cumulative concentrations.

Figure 5.2.2.b. Concentration-curve to isoprenaline in rat pg-

adrenoceptor expressing CHO cells. Results show plots from one set of

cumulative concentrations.

Figures 5.2.2.C. Concentration-curve to CGP12177 in rat pg-

adrenoceptor expressing CHO cells. Results show plots from one set of

cumulative concentrations.
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Figure 5.2.2.a.
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Figure 5.2.2.c.
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Table 5.2.1. ECso values for isoprenaline, BRL37344 and 

CGPI2177 at the human and rat ^3 -adrenoceptor transfected CHO 

ce lls . Means are calculated from 3-5 microphysiometer experiments,

± S.E.M.

agonist

ECso (nM)

human

p3 -adrenoceptor

rat

p 3 -adrenoceptor

isoprenaline

BRL37344

CGP12177

0.65 ± 0.07

3.37+ 1.30

2.62 ± 0.74

1.24 ±0.07

0.02 ± 0.01

6.40 ± 0.65
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After cumulative concentration-responses were performed, an observation 

unique to the rat ^3 -adrenoceptor CHO cells became apparent. After treatment 

of the rat j3s-adrenoceptor CHO cells with a maximally stimulating dose of 

BRL37344, then a washout period, it was noted that a sustained response 

occurred, in that the increased acidification rates did not return to basal levels, 

even after 1-2 hours of absence of the agonist. This observation was compared 

to the human ps-adrenoceptor CHO cells which were found to return to basal 

levels of acidification rate immediately after BRL37344 was removed from 

medium. The sustained response was only seen in rat p3 -adrenoceptor 

responses to BRL37344, not upon removal of the other two agonists 

isoprenaline and CGP12177. Figure 5.2.3 shows the rate data from a 

microphysiometer trace, comparing the response to BRL37344 in the rat 

p3 -adrenoceptor and the human p3 -adrenoceptor.

To follow up the intriguing sustained response to BRL37344 found only in the 

rat P3 -adrenoceptor transfected CHO cells, experiments were performed to 

confirm that this was truly a P3 -adrenoceptor-specific occurrence, and that 

BRL37344 was not somehow activating the cells via another mechanism. It 

could possibly be a reflection of the higher affinity of BRL37344 for the rat 

versus the human p3 -adrenoceptor.

Rat and human P3 -adrenoceptor CHO cells were firstly treated with or without 

10 jaM  propranolol, the p-adrenoceptor antagonist. All cells were then treated 

with a maximal dose of BRL37344 (0.1 piM and 1 nM in the human and rat 

P3 -adrenoceptor CHOs, respectively). Propranolol was still present in the 

medium of those chambers treated with BRL37344 after their pre-treatment with 

propranolol. Figure 5.2.4.a. shows the rate data for this experiment, resulting 

in the usual increase in acidification response to BRL37344 only in cells which 

had not received the antagonist. All cells treated with the antagonist showed
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very little or no response to BRL37344 treatment. This proved that this 

sustained response to BRL37344 could be completely blocked by propranolol 

and was therefore a receptor specific response. Thus BRL37344 was only 

affecting the CHO cells’ response via the pg-adrenoceptor and no other 

mechanism. Using propranolol did not, however, answer the questions into 

why the sustained response only occurs in the rat pg-adrenoceptor expressing 

CHO cells.

Propranolol (100 /iM) was also added during the sustained response to 

BRL37344, in a separate experiment. After treatment with 1 jaM  BRL37344 

for 6  minutes, followed by a washout, 1 0 0  j aM  propranolol was then added for 

8  minutes (Figure 5.2.4.b). The effect of the addition of the p-adrenoceptor 

antagonist was to abolish the sustained response to BRL37344, and to return 

the acidification rate to basal levels. Upon removal of propranolol, the 

sustained response immediately returned. This, once again, indicated that the 

sustained response was a Pg-adrenoceptor specific response, and BRL37344 

was not activating the cell by another process.
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Figure 5.2.3. Rate data from microphysiometer trace showing the 

sustained response to 1 j iM  BRL37344 in the rat Pg-adrenoceptor 

expressing CHO cells only. Chambers contained the following cel Is:

A= rat Pg-adrenoceptor expressing CHO cells

B= human pg-adrenoceptor expressing CHO cells

C= rat Pg-adrenoceptor expressing CHO cells 

D= rat pg-adrenoceptor expressing CHO cells 

E= rat pg-adrenoceptor expressing CHO cells

F= human pg-adrenoceptor expressing CHO cells 

G= human pg-adrenoceptor expressing CHO cells 

H= human pg-adrenoceptor expressing CHO cells

Chambers C to H were treated with 1 piM BRL37344 for 16 minutes, while 

chambers A and B were treated for the same time with 1 //M isoprenaline. The 

sustained response is clearly shown after the washout in chambers C, D and E, 

which contained rat Pg-adrenoceptor expressing CHO cells.
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Figure 5.2.4.a and b. Rate data from microphysiometer showing 

blockade of the response to BRL37344. Chambers for 5.2.4.a. 

contained the following cells:

A= rat p3 -adrenoceptor expressing CHO cells 

B= rat p3 -adrenoceptor expressing CHO cells 

D= rat p3 -adrenoceptor expressing CHO cells

E= human Pg-adrenoceptor expressing CHO cells 

F= human pg-adrenoceptor expressing CHO cells 

G= human pg-adrenoceptor expressing CHO cells 

H= human pg-adrenoceptor expressing CHO cells

The legend below the x-axis shows chambers A, B, E and F with pre­

treatments of cells with 10 /<M propranolol, followed by the treatment with a 

maximally stimulating concentration of BRL37344 (1 nM for rat Pg- 

adrenoceptor expressing CHO cells and 100 nM for human Pg-adrenoceptor 

expressing CHO cells). Propranolol blocked the response to BRL37344 in 

human and rat pg-adrenoceptor expressing CHO cells.

Chambers for Figure 5.2.4.b. contained the following cells:

A= rat pg-adrenoceptor expressing CHO cells 

B= rat pg-adrenoceptor expressing CHO cells

Cells were treated for 6  minutes with 1 piM BRL37344, followed by washing 

out of this agonist completely, then approximately 2 0  minutes later, cells were 

further treated with 100 piM propranolol for 8  minutes. These treatments are 

shown on the Figure, underneath the x-axis values.
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Figure 5.2.4.b.
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To assess the mechanisms of the cell's sustained response, an investigation

focusing on the sodium/hydrogen exchanger (NHE) of cells was carried out on

the microphysiometer. The profile of an acidification response to receptor

activation on the microphysiometer is the summation of the contributions of

individual cellular metabolic components that have been stimulated or inhibited
.

by the presence of a ligand. The NHE is the major regulator of intracellular pH
.

in mammalian cells. A ubiquitously expressed NHE subtype is named NHEl

and is stimulated by receptor tyrosine kinases and G-protein-coupled receptors 

(Hooley etal, 1996). It is probable that it is this NHE in the CHO cells that the 

homiones activate. A role for the G-protein a-subunit, G a o  in activation of 

NHEl has been observed by Hooley etal. (1996). Most of the intracellular 

signalling pathways mediating receptor regulation of this exchanger, however, '
are poorly understood. NHEl activity is stimulated by hormones, cytokines, 

and growth factors, increasing the rate of H+ efflux, therefore resulting in an 

increase in pHj . It can also be activated by hyperosmotic shock and cell 

adhesion. Receptor activation of NHEl is associated with increased 

phosphorylation of the exchanger on serine residues, suggesting kinase- 

dependent regulatory mechanisms. The contribution of the NHE to the 

extracellular response can be determined using agents that directly interact with 

the exchange protein and inhibit its activity. The most commonly used 

inhibitors of the NHE are amiloride hydrochloride and its analogues.

Amiloride was added to both the rat and human -adrenoceptor-transfected 

CHO cells after the treatment and removal of BRL37344, but also during the 

sustained response to BRL37344 seen in rat ^3 -adrenoceptor CHO cells. As 

Figure 5.2.5. shows, on the immediate addition of a high concentration of 

amiloride ( 1 0 0  jaM) to both rat and human p3 -adrenoceptor-transfected cells,
,

the acidification rate drops back down towards basal levels. This suggests that

I
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the Na+/H+ exchange system does play a part in the stimulatory response of the 

(3 3 -adrenoceptors recorded by the microphysiometer.

The effect of amiloride on basal levels was then assessed. This is shown in 

Figure 5.2.6. Amiloride was added after cells had been placed on the 

microphysiometer for 90 minutes, and its addition also produced a large drop in 

the acidification rate of the basal level. Upon amiloride removal, after an initial 

peak as protons are suddenly released from the cell, the rate returns to the 

original basal level. These results indicate that the Na+/H+ exchange is an 

integral part of the actual basal response recorded by the microphysiometer, and 

not just part of stimulation by agonists. The degree to which the NFIE 

contributes to the stimulated response varies according to the particular receptor 

class. In the case of the ^3 -adrenoceptors it does seem to contribute part of the 

response, and implies that this particular subtype of (3-adrenoceptor is 

well-coupled to the NHE system in CHO cells.

Experiments were then performed where rat (3 3 -adrenoceptor expressing cells 

were placed on the microphysiometer and some chambers treated with amiloride 

in the medium from the start of the experiment, and others not treated with 

amiloride. It was my interest to observe what occurred upon stimulation with 

isoprenaline. This would assess the contribution of amiloride to the response 

on the microphysiometer. The resulting isoprenaline response is shown in 

Figure 5.2.7. The response was actually larger in those cells which have not 

received treatment at all with 1 0 0  /^M amiloride, but whether there were slightly 

more cells in these chambers is difficult to prove. It does however seem that the 

three chambers left untreated by amiloride all had almost identical percentage 

changes in acidification (> 50%), and the three chambers treated showed less of 

a percentage change in acidification (>40% but not >45% change). It is difficult 

to assess accurately the amount of active cells in each chamber, but there does
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Two slightly differing types of CHO ceils were used (due to different sources) 

for the original production of the stable rat and human 

P3 -adrenoceptor-transfected lines. The human p3 -adrenoceptor was originally 

transfected into CHO-Kl dhfr+ cells, while the rat p3 -adrenoceptor had been 

transfected into CHO-Kl dhfr~ cells. Therefore a pair of transient transfections 

were set up: the rat ^3 -adrenoceptor transfected into CHO-Kl dhfr+ cells and 

in parallel the human ^3 -adrenoceptor into the same CHO cells. These 

transfected cells were then placed on the microphysiometer and treated with
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seem to be quite a clear difference between the two sets of differently treated 

cells. This suggests that amiloride does play a role in the responses to agonists 

on the microphysiometer.

In parallel to these microphysiometer experiments, the sustained response was 

also studied using the cAMP accumulation 'flashplate' assay. Rat and human 

P3 -adrenoceptor CHOs were stimulated with 1 pùsA BRL37344 for 15 minutes, 

then thoroughly washed out (no phosphodiesterase inhibitor was included in the 

treatment). Cells were then left to recover from agonist treatment for up to two 

hours, with reactions being stopped with IQpil of 1 0 % perchloric acid at 

different time points. Samples were then refrigerated overnight and neutralised 

the following day. As Figure 5.2.8. shows, cAMP levels continued to increase 

in the rat (3 3 -adrenoceptor CHO cells even after washout of BRL37344, but was

.33
.7 :

also seen this time with the human p3 ~adrenoceptor CHO cells too. Levels of 

up to 100 pmol/ml cAMP (per 30 jA sample) were obseiwed after 2 hours in the 

rat (3 3 -adrenoceptor CHOs. The maximal time studied in the cAMP assay was 2 

hours after washout of BRL37344, and at this time we cannot say whether the

response is plateauing or still climbing. Two hours was also the approximate 

time point in the microphysiometer assay when responses of the rat 

^3 -adrenoceptor to BRL37344 finally returned to basal levels.



I
isoprenaline and then BRL37344. Results, shown in Figure 5.2.9. prove 

conclusively that the difference in the two original types of CHO cells used can 

be ruled out for the production of the sustained effect to BRL37344 in the rat 

Ps-adrenoceptor.

I
■

175

_



Figure 5.2.5. Effect of addition of 100 j iM  amiloride on the 

sustained response to BRL37344. Treatments are shown at the base of 

the rate data. Chambers contained the following:

A= rat Pg-adrenoceptor expressing CHO cells 

B= rat Pg-adrenoceptor expressing CHO cells 

C= rat Pg-adrenoceptor expressing CHO cells 

D= rat pg-adrenoceptor expressing CHO cells

E= human Pg-adrenoceptor expressing CHO cells 

F= human pg-adrenoceptor expressing CHO cells 

G= human Pg-adrenoceptor expressing CHO cells 

H= human Pg-adrenoceptor expressing CHO cells

All chambers were treated with 1 BRL37344. Following this treatment

10 jaM  amiloride was added to chambers A, B, E and F after the BRL37344 

had been washed out. This concentration of amiloride had no effect, but on 

100 ptM additions of amiloride to chambers A and B (containing rat pg- 

adrenoceptor expressing CHO cells), the sustained response to BRL37344 was 

partially abolished. On removal of amiloride, the response returned to the level 

of the sustained response.
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Figure 5.2.6. Effect of amiloride on basal levels in rat and

human ^3 -adrenoceptor expressing CHO cells. Chambers contained

the following:

B= rat p3 -adrenoceptor expressing CHO cells 

C= rat p3 -adrenoceptor expressing CHO cells

G= human ^3 -adrenoceptor expressing CHO cells 

H= human p3 -adrenoceptor expressing CHO cells

On addition of 100 ptM amiloride to chambers, the basal réponse was reduced.
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Figure 5.2.7. Effect of pre-treatment with amiloride (100 f i M )  on

response to isoprenaline treatm ent in rat Pa-adrenoceptor

expressing CHO cells. Chambers contained the following:

A= rat p3 -adrenoceptor expressing CHO cells, pre-treatment with 100 fiM  

amiloride.

B= rat P3 -adrenoceptor expressing CHO cells, pre-treatment with 100 jaM  

amiloride

D= rat p3 -adrenoceptor expressing CHO cells, pre-treatment with 100 jaM  

amiloride

E= rat P3 -adrenoceptor expressing CHO cells 

F= rat P3 -adrenoceptor expressing CHO cells 

H= rat p3 -adrenoceptor expressing CHO cells

Cell pre-treated with 100 jaM  amiloride (chambers A, B and D) produced less of 

a percentage change in acidification rate to 1 jaM  isoprenaline than those 

chambers not pre-treated with amiloride.
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Figure 5.2.8. Effect on cAMP accumulation in rat and human 

Pa-adrenoceptor expressing CHO cells, after pre-treatment with 1 

} iM  BRL37344 for 15 minutes, then removal. Results for 015 

(human Ps-adrenoceptor) CHO cells are shown as closed circles, while the rat 

P3 -adrenoceptor expressing CHO cell results are shown as open squares. The 

Figure shows the time from 0 minutes when treatment with BRL37344 was 

begun, then its removal after 16 minutes. Results are the mean + S.E.M. of 

triplicate samples.
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Figure 5.2.8.
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Figure 5.2.9. Effect of isoprenaline and BRL37344 on transient 

transfections of the rat and human p3 -adrenoceptor into CHO-Kl 

dhfr+ cells, then com pared to stable rat P3 -adrenoceptor 

expressing CHO cells. Treatments are shown below the x-axis. Chambers 

contained the following:

B= transient rat p3 -adrenoceptor expressing CHO-Kl dhfr+ cells 

C~ transient rat p3 -adrenoceptor expressing CHO-Kl dhfr+ cells

D= rat P3 -adrenoceptor expressing CHO cells (stable)

E= rat P3 -adrenoceptor expressing CHO cells (stable)

F - transient human P3 -adrenoceptor expressing CHO-Kl dhfr+ cells 

G= transient human p3 -adrenoceptor expressing CHO-Kl dhfr+ cells

After treatment of chambers B to G with 1 piM isoprenaline, responses were 

seen in all cells. After treatment of chambers B to G with 1 jaM  BRL37344, 

transient rat P3 -adrenoceptor expressing CHO-Kl dhfr+ cells produced the 

same sustained response to BRL37344 as stable rat p3 -adrenoceptor expressing 

CHO cells.

180



Percent

SI
0

0

?: %. %=»» il J



For further confirmation of this 'rat Ps-adrenoceptor-like' behaviour, this TM2 

mutant was then placed alongside the wild-type rat and human Pg-adrenoceptors 

on the microphysiometer. The results of this are shown in Figure 5.2.12.

181

-
These unique results of the rat Pg-adrenoceptor expressing CHO cells' response 

to BRL37344 on the microphysiometer were used as a useful indicator in 

testing the mutants, i.e. a sustained response to BRL37344 would suggest "rat 

Ps-adrenoceptor-like" pharmacology over "human pg-adrenoceptor-like" 

pharmacology.

Mutants were placed on the microphysiometer and treated with 1 piM 

isoprenaline and 1 jaM  BRL37344 for 12-15 minutes each. At this stage of the 

study all samples were produced from transient tranfections, not mass cultures 

which would be used later. Figure 5.2.10. shows the results of mutants TM6,
-Ï-,,

TM7, TM l+7 and Trp64Arg. These mutants all showed typical human 

"P3 -adrenoceptor-like" pharmacology on the microphysiometer, in that 

responses to BRL37344 returned to normal basal values after BRL37344 was

removed. Responses observed were approximately a 20% change in 

acidification rates.

TMl, TM2, TM4 and TM5 mutants were placed on the microphysiometer and 

stimulated with 1 jaM  isoprenaline and 1 jaM  BRL37344. These are shown in 

the rate data traces of Figure 5.2.11. Responses were approximately 20% 

changes in the acidification rate above basal levels, upon normalization of the
-

data. TMl, TM4 and TM5 chimeras, like the first four mutants tested, showed 

the typical "human p3 -adrenoceptor-like" pharmacology, that is, return to basal 

levels immediately after washout of BRL37344 However, when the TM2 

mutant was stimulated with 1 }a M  BRL37344, upon removal of the agonist it 

showed signs of a slower return to basal than any other mutant.

I



When studied in direct comparison to the rat and human p3 -adrenoceptor 

CHOs, the TM2 mutant clearly showed the sustained response observed with 

the rat p3 ~adrenoceptor. Its pharmacology suggested a much closer similarity to 

the rat p3 -adrenoceptor than that of the human p3 -adrenoceptor, of which the 

TM2 mutant is mainly comprised.
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Figure 5.2.10. Responses to isoprenaline (1 f iM) ,  BRL37344 

(1 f iM)  and noradrenaline (1 jiM )  in chimeras TM6, TM7, TM 1+7 

and Trp64Arg. Treatments are shown below the x-axis and chambers 

contained the following:

A=TM6 chimera 

B= TM6 chimera

C= TM7 chimera

E= TMl+7 chimera 

F=TMl+7 chimera

G= T rp64Arg chimera 

Trp64Arg chimera

All chambers containing chimeric Ps-adrenoceptor expressing CHO cells 

produced responses to isoprenaline, BRL37344 and noradrenaline similar to 

those seen in the human Pg-adrenoceptor expressing CHO cells, i.e. no 

sustained response to BRL37344.
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Figure 5.2.11 Responses to isoprenaline (1 j i M )  and BRL37344

(1 /^M) in chimeras TM l, TM2, TM4, and TM5. Treatments are

shown below the x-axis and chambers contained the following cells:

A= TMl chimera 

B=TM1 chimera

C=TM2 chimera 

D= TM2 chimera

F=TM4 chimera

G= TM5 chimera 

H= TM5 chimera

The TM2 chimera showed the sustained response to BRL37344 similar to rat 

p3 -adrenoceptor expressing CHO cells, while all other chimeras tested here did 

not.
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Figure 5.2.12. Responses to 1 jiM. BRL37344 in rat and human 

Ps-adrenoceptor expressing CHO cells, in comparison to the TM2 

chimera. Treatment times are shown below the x-axis. Chambers contained 

the following cells;

A= rat p3 -adrenoceptor expressing CHO cells 

D= TM2 chimera

G= human p3 -adrenoceptor expressing CHO cells

The rat p3 -adrenoceptor expressing CHO cells and TM2 chimeric P3 - 

adrenoceptor expressing CHO cells showed similar responses to to 1 }ÙA 

BRL37344.
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RESULTS

with agonists for 30 minutes.

5.3. CAMP ACCUMULATION FLASHPLATE ASSAY

Due to the relatively low changes in acidification rate of the CHO cells' 

responses to isoprenaline and BRL37344, it was proposed to perform full

concentration-response curves in the mutant transiently transfected receptor 

expressing CHO cells using the highly sensitive cAMP flashplate assay, rather 

than the microphysiometer. The recorded response is also so far downstream 

on the microphysiometer that other metabolic responses in the cells may be 

masking results.

:
All cAMP assays were performed at room temperature, but the appropriate 

treatment time was investigated to ascertain the time used was on a linear scale.

Figure 5.3.1. shows this time course performed by treatment of human 

Pg-adrenoceptor expressing CHO cells, rat pg-adrenoceptor CHO expressing 

CHO cells and TM7 chimera CHO cells with a concentration of 1 piM 

isoprenaline for different times. The time course proved to be linear at least as 

far as 40 minutes, so all subsequent experiments involved treatments of cells
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Figure 5.3.1. Time course of cAMP accumulation flashplate 

assay. Treatment of human Ps-adrenoceptor CHOs, rat Pg-adrenoceptor 

CHOs and TM7 chimera CHOs with 1 jaM isoprenaline for different times 

proved to be linear up to 40 minutes.
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Figure 5.3.1.
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Assays were performed for each individual mutant by treatment with different 

concentrations of isoprenaline, BRL37344 and CGP12177. As ascertained 

previously, a treatment time of 30 minutes was used and the assay carried out at 

room temperature. Concentration-response curves were plotted with cAMP 

levels shown in pmol/ml cAMP. Figures 5.3.2. to 5.3.11. show 

concentration-responses for each chimera to isoprenaline, BRL37344 and 

CGP12177, where the results are expressed as a percentage of the maximal 

response to isoprenaline. This was due to variation in values between different 

flashplate kits. Data are the means ± S.E.M-of at least 3-5 experiments. These 

concentration-responses for the chimeric receptors can be compaied with those 

for the human and rat p3 -adrenoceptor CHO cells in Figure.5.3.2. and 5.3.3.

Results from these concentration-response curves were then tabulated, in Table 

5.3.1., showing EC5 0  values for each drug at the different chimeras and wild- 

types. A measure of the efficacy, defined as intrinsic activity (lA) is also 

plotted in Table 5.3.2. Values are the mean of three or more individual 

experiments, with S.E.M. shown.
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Figure 5 .3 .2 . C oncentration-responses to isoprenaline, 

BRL37344 and CGP12177 in human Pa-adrenoceptor transfected 

CHO cells. Results are expressed as a percentage of the maximal isoprenaline 

response.

Figure 5 .3 .3 . C oncentration-responses to isoprenaline, 

BRL37344 and CGP12177 in rat pg-adrenoceptor transfected CHO 

ce lls . Results are expressed as a percentage of the maximal isoprenaline 

response.

Figure 5.3.4 Concentration-responses to isoprenaline, BRL37344 

and CGP12177 in TM l chimera Pa-adrenoceptor transfected CHO 

cells . Results are expressed as a percentage of the maximal isoprenaline 

response.

Figure 5 .3 .5 . C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in TM2 chimera p3 -adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.

Figure 5 .3 .6  C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in TM4 p^-adrenoceptor transfected 

CHO cells. Results are expressed as a percentage of the maximal isoprenaline 

response.

Figure 5 .3 .7 . C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in TM5 chimera P3 -adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.
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Figure 5.3.2.
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Figure 5.3.4.
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Figure 53.6.
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Figure 5 .3 .8 . C oncen tration -resp on ses to isoprenaline,

BRL37344 and CGP12177 in TM6 chimera pg-adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.

Figure 5 .3 .9 . C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in TM7 chimera ^3 -adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.

Figure 5.3.10. C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in TM l+7 chimera ^3 -adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.

Figure 5.3.11. C oncentration-responses to isoprenaline,

BRL37344 and CGP12177 in Trp64Arg mutant p3 -adrenoceptor 

transfected CHO cells. Results are expressed as a percentage of the 

maximal isoprenaline response.
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Figure 5.3.8.
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Table 5.3.1. EC50  values for isoprenaline, BRL37344 and 

CGP12177 at the rat, human and chimeric p3 -adrenoceptors.

Means aie estimated from 3-5 experiments.

EC5 0  (uM)

isoprenaline BRL37344 CGP12177

human 1.4 ± 0.4* 9.1 +3.5 25.0 + 8.0

^3 -adrenoceptor

rat 7.0 ± 0.5 4.4 ± 2.2 82.0 + 23.0**

p3 -adrenoceptor

TMl cliimera 3.7 + 1.1 20.6 ± 12.0 213.0 + 144.0

TM2 chimera 2.4 ± 10.7 6.4 + 1.6 20.6 + 4.1

TM4 chimera 2.4 ± 0.8 9.9 ±3.1 68.0 + 30.0

TM5 chimera 3.4 ± 1.2 9.9 + 4.2 614.0 + 265.0

TM6 chimera 8.3 ± 3.3 22.9 ± 16.0 116.0 ±32.0

TM7 chimera 7.6 + 5.3 7.9 ± 4.2 79.0 ± 67.0

TM l+7 chimera 7.33 ± 2.8 2.8 ± 1.2*** 35.0 ± 12.0

Trp64Arg 4.90 ± 1.1 31.0+ 15.0 305.0 + 153.0

mutant

* p < 0.024, where isoprenaline is significantly more potent than 

BRL37344.

** p < 0.03, where CGP12177 is significantly more potent in the human 

than the rat pg-adrenoceptor.

*** p < 0.100 whereBRL37344 is significantly more potent at the TMl+7 

chimera than at the human wild type pg-adrenoceptor.
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Table 5.3.2. Intrinsic activity (lA) values ± S.E.M . for

isoprenaline, BRL37344 and CGP12177 a t the rat, hum an and 

chimeric p^-adrenoceptors. Estimates are made relative to the maximal 

level of isoprenaline stimulation in each cell line. Means result from at least 

three experiments.

_______Intrinsic activity (lA^______

isoprenaline BRL37344_____CGP12177

human 1.00 0.49 ± 0.07 0.50 ±0.10

P 3 -adrenoceptor

rat 1.00 1.08 ± 0.07* 0.39 ± 0.08

P 3 -adrenoceptor

TMl chimera 1.00 0.41 + 0.08 0.57 ±0.11

TM2 chimera 1.00 0.89 ± 0.06** 0.64 ± 0.13

TM4 chimera 1.00 0.59 ± 0.09 0.57 ±0.18

TM5 chimera 1.00 0.58 ± 0.04 0.50 ± 0.04

TM6 chimera 1.00 0.48 ±0.10 0.50 ±0.16

TM7 chimera 1.00 0.40 ± 0.03 0.38 ± 0.07

TMl+7 chimera 1.00 0.38 ± 0.07 0.51 ±0.11

Trp64Arg 1.00 0.43 ± 0.08 0.47 ± 0.06

mutant

** p < 0.006 where values are significantly different from the human wild 

type p3 ~adrenoceptor.

192

I
!

* p < 0.004 where values are significantly different from the human wild 

type p3 -adrenoceptor.



Once again, confirming results of the microphysiometer, the TM2 chimera was 

found to be the sole chimera showing 'rat Ps-adrenoceptor-like' pharmacology 

over human p^-adrenoceptor pharmacology. The IA value for BRL37344 at the 

TM2 chimera was found to be significant when compared to the wild type 

human p3 -adrenoceptor (p < 0.006 using an unpaired Student's t-test). It was 

much closer to the ÏA value for the rat P3 -adrenoceptor of 1.08. This efficacy 

value for the rat p3 -adrenoceptor is significantly different when compared to the 

human p3 -adrenoceptor IA value for BRL37344 (p < 0.004 using an unpaired 

Student's t-test). BRL37344 was found to be almost a full agonist at the TM2 

chimera, as it is at the rat p3 -adrenoceptor, while at all other mutants BR137344 

was only a partial agonist, similar to the human p3 -adrenoceptor. The 

compound CGP12177 was only a partial agonist at all chimeras and the rat and 

human p 3 -adrenoceptor.

EC50 values for the chimeras were similar to that of the human 

P3 -adrenoceptor, with isoprenaline being the most potent, then BRL37344 and 

much less potent at the p3 -adrenoceptor, CGP12177. Isoprenaline was 

observed to be significantly more potent than BRL37344 at the human receptor 

(p < 0.024), and a tendency for this order of potency to be reversed was 

observed in the rat wild type receptor, although this did not reach a significant 

level. It was further observed that for the TMl+7 chimera the potency of 

BRL37344 was noticeably higher than isoprenaline (although this difference did 

not reach a statistically significant level), and furthermore, the potency of these 

two compounds was very similar in the TM7 chimera. It was also observed 

that the potency of BRL37344 was significantly lower than isoprenaline at the 

wild type human P3 -adrenoceptor (p < 0.024), the data indicates a clear trend to 

a rat P3 -adrenoceptor-like pharmacology in the TM7 and TMl+7 chimeras, 

which is especially clear in the TMl+7 mutant, but less so in the TM7 chimera 

alone. This conclusion is further supported by the fact that BRL37344 was
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significantly more potent at the TMl+7 chimeric receptor than at the human wild 

type (p < 0 .1 ), despite the fact that there was no significant difference in the 

receptor density between these two cell lines (p < 0.46).

5.4. ASSESSMENT OF RECEPTOR DENSITY

As all these mutants were produced from either transient transfections or mass 

cultures developed from transient transfections, it was impoitant to establish the 

P3 -adrenoceptor receptor density (Bmax) for chimeras, as the present position is 

only a comparison of transiently tranfected cell lines with stable cell lines. 

A pari from two mutants (TMl and TM5) which were not developed into mass 

cultures and were always tested on the microphysiometer and flashplate assays 

as transients, all other receptor densities could be calculated from membranes of 

the mass cultures. [l^^I]cyanopindolol was the radioligand of choice for 

specific binding to the P3 -adrenoceptors. This radioligand has Kd values for rat 

and human P3 -adrenoceptors of 1.6 ± 0.2 nM and 1.6 ± 0.7 nM, respectively. 

Membranes were generated for each chimera mass culture and then placed in the 

radioligand binding assay, as previously described in Chapter 2. Three 

increasing concentrations of the radioligand were used to identify Bmax values, 

by plotting a saturation curve and using a Grafit program on an IBM PC 

computer to estimate Bmax values. These receptor density values (Bmax) are 

presented in Table 5.4.1. below. No specific binding was observed to non­

transfected cells. It was observed that the Bmax in all chimera-transfected cell 

lines was similar to, or significantly lower than that observed in human 

wild-type p3 -adrenoceptor expressing CHO cells.

It was of some concern that the intrinsic activity values recorded for the TM2 

chimera CHO cells were higher than the other mutants and wild type human and 

rat (̂ 3 -adrenoceptor levels due to much higher levels of the (3 3 -adrenoceptor

I
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being expressed in the chimeric cell lines. This table proves that an artefact due 

to differential expression is not the case in the TM2 chimera, showing all 

chimera receptor levels close to the stable wild-type rat and human 

p3 -adrenoceptor cell lines. I also observed that, despite the significantly lower 

Bmax in the human wild type receptor expressing cells compared to the rat wild 

type receptor expressing cells (p < 0.017), shown in Table 5.4.1., CGP12177 

was significantly more potent in the former than the latter (p < 0.03), indicating 

a pharmacological difference between these species homologues which is 

unlikely to be due to an artefact of differential receptor density. The 

significance level of the lower potency of CGP12177 in the chimera receptor 

expressing cell lines, as compared to the human wild type receptor expressing 

cells, has not been calculated as such differences would be impossible to 

distinguish from artefacts due to the lower receptor density in the chimeric 

receptor expressing cell lines.
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Table 5.4.1. Receptor levels for the mutant Ps-adrenoceptors, rat 

and human p3 »adrenoceptor in the CHO cells. Significant differences 

from the human wild-type P3 -adrenoceptor are also shown.

Cells Receptor levels

fmol/mg membrane 

protein

Significant 

difference from 

human wt p)- 

adrenoceptor

(p value)

human 217 ± 14 -

P3 -adrenoceptor

rat 321 ±35 0.017

p 3 -adrenoceptor

TM2 chimera 103 ± 10 0 . 0 0 1

TM4 chimera 130 ± 23 0 . 0 1 2

TM6  chimera 61 ± 14 0 . 0 0 1

TM7 chimera 186 ± 36 Not significant

TMl+7 chimera 181+49 Not significant

Trp64Arg mutant 90+ 10 0 . 0 0 1

i
s

S;
i

Î
S'

ii

I .

196



11

î

5 .5  C O M P U T A T IO N A L  C H E M IST R Y  IM A G E S  

CONSTRUCTED FOR THE RAT A N D  H U M A N  61- 

ADRENOCEPTORS

To relate the physical arrangement of the transmembrane domains within the rat 

and human p3 -adrenoceptors to my findings, Drs. Brian Clarke and Frank 

Blaney in the Computational Chemistry Department at SmithKline Beecham 

kindly produced some images in relation to my work. The images were created 

using a protein modelling program called "QUANTA" from Molecular 

Simulations. The coordinates for the 7TM receptors were created using both a 

bacteriorhodopsin template and a rhodopsin template. Only rhodopsin is 

coupled to a G-protein. Coordinate building is carried out and a number of 

images produced. These Figures are shown below.

I

Figue 5.5.1. shows an image of the rat and human P3 -adrenoceptors (both side

on and looking down from the top) with differences in the two structures

highlighted in red. A much clearer image of the actual positioning of the altered

amino acids are shown in Figure 5.5.2. This image is a top view of the

p3 -adrenoceptor model from the extracellular side to the cytoplasmic side. It

shows the two binding domains of the p3 -adrenoceptor. The ligand binding

pocket could go all the way through the depth of the membrane and its diameter

could vary depending on the relative orientations of the transmembrane

domains. Ligands vary both in length and in width, and one might expect quite 
.a large difference in the binding of a small, but very potent agonist such as 

noradrenaline and the more bulky ligands such as iodocyanopindolol, an 

agonist for the p3 -adrenoceptor but antagonist at both Pi- and 

P2 -adrenoceptors.
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It is known that the first groove consisting of TM3, 4, 5, and 6 is devoted to 

ligand binding while the second groove (TMl, 2,3, and 7) is mainly concerned 

with signal processing. For example noradrenaline binds mainly to serine 

residues on TM5 and an aspartate residue on TM3. The negative charge 

provided by aspartic acid (Aspl^^) neutralizes the positive amino group of 

noradrenaline. The two serine residues (Ser204 and Ser^O )̂ in the fifth domain 

donate hydrogen bonds to the catechol hydroxyl groups of noradrenaline. 

Figure 5.5.3. shows the side view of the human and rat pg-adrenoceptor with 

amino acid changes between the two highlighted in red. As with Figure 5.5.2. 

it is clear how the amino acids interact between transmembrane regions, and 

therefore alter the conformation of the whole receptor. Figure 5.5.4. shows the 

structure of BRL37344, interestingly showing a fully-extended length of 14 Â, 

while the distance between the two grooves of the Pg-adrenoceptor is at least 20 

Â. This suggests that in the case of BRL37344, if it binds in a similar fashion 

to isoprenaline in the first binding groove, it is unlikely to interact directly with 

the transmembrane 2 region to cause alterations from "human pg-adrenoceptor- 

like" pharmacology to "rat pg-adrenoceptor-like" pharmacology. These ideas 

will be elaborated on in the discussion section of this Chapter.
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Figue 5.5.1. Image to show the rat and human p^-adrenoceptor 

(both side on and observing from the top). Amino acid differences in 

the two structures are highlighted in red. ,

Figure 5.5.2. Image showing the extracellular view of the rat and 

human ps-adrenoceptors. Individual amino acid changes are highlighted 

in red.

Figure 5.5.3. Image showing the side view of the rat and human 

p3 -adrenoceptor. Amino acid changes between the two are highlighted in 

red.

Figure 5 .5 .4 . Structure o f the P3 -adrenoceptor agonist 

BRL37344.
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5.6. DISCUSSION

Despite a marked similarity of sequence (some 79% amino acid identity overall, 

and 90% in the transmembrane regions), the two wild type cloned receptors in 

the present study, the rat and human pg-adrenoceptors, have been found to have 

distinctively different pharmacology (Muzzin et al, 1991). This 

pharmacological difference is most clearly observed as a reversal in the rank 

order of intrinsic activity of compounds CGP12177 and BRL37344 between 

the two receptors (Liggett et al, 1992). The object of my current study, 

therefore, was to define more clearly the molecular basis for this difference in 

pharmacology.

In my study, I deliberately chose to monitor effects of the various mutations by 

a functional measure of receptor activity, such as cAMP accumulation, in order 

to assess the sum effects of both binding and intrinsic efficacy differences 

between mutants constructed. With this in mind, chimeric receptors were 

constructed rather than mutants widi individually altered residues, as I would 

have expected this former approach to result in more global changes in receptor 

structure than single residue changes might have expected to give. This was 

important as the molecular basis for differences in intrinsic efficacy are likely to 

be due to more diffuse structural differences between receptors than would 

normally be the case for binding affinity alone. In addition, I considered it 

important to adopt a functional assay as part of the strategy as the possibility of 

accessory binding sites (i.e. not the recognized catecholamine binding pocket) 

for non-catecholamine agonists such as BRL37344 (as suggested by Liggett et 

al, 1992) may possibly complicate competition binding data with radiolabelled 

antagonists such as [^^^Ij-CYP. Ideally, direct binding studies with 

radiolabelled pH]BRL37344 (Muzzin a/, 1991) would be less complex to 

inteipret,but, due to the low affinity and specific activity of this radiolabel, and
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the relatively low receptor density of the cell lines used in my study, its use was 

prevented.

It is well documented that receptor density levels are directly related to potency 

and efficacy of agonists (Kenakin etal, 1987), a finding which has previously 

been confirmed in many cloned receptor systems (Whaley etal, 1993, George 

etal, 1988, MacEwan etal, 1995), including the Pg-adrenoceptor expressed in 

CHO cells (Wilson etal, 1996). This was also shown in Chapter 4. For this 

reason I have taken care in this study to minimize, as far as possible.

the complication of differential receptor expression. Bmax values 

from all cell lines used in this study were comparable, and where a crucial 

difference in pharmacology is suggested by the data, we have only drawn 

conclusions from the data where the receptor density is at a level which might 

be expected to yield artefactual differences in the data opposite to that actually 

observed.

One of the clearest differences between rat and human pharmacology observed 

in the present study is that BRL37344 has a significantly higher intrinsic activity 

in the rat than in the human wild type receptor, and has a significantly lower 

potency than isoprenaline in the human wild type receptor. In the TM2 chimera 

the potency of isoprenaline and BRL37344 are not significantly different from 

one another, however, BRL37344 has a significantly higher intrinsic activity at 

the TM2 chimera than in the human wild type receptor. This is a difference 

between the TM2 chimera and human wild type receptor which is unlikely to 

arise as a result of differential expression of the receptor, since the higher level 

of expression of the human wild type receptor would be expected to lead to the 

same or a higher intrinsic activity of a compound which showed no selectivity 

between the two receptors. I can therefore conclude that the TM2 region is a 

key molecular determinant of the rat versus human selective efficacy of
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BRL37344. The intrinsic activity of CGP12177 at the human wild type

binding pocket is formed in a region within the receptor bordered by TM's 3, 4, 

5, and 6 , and possibly TM7, with TM's 1, 2, and possibly 7 more distantly 

located. Further studies have helped to confirm this picture to some extent by 

showing that residues Ser in TM4 and Phe in TM6  are also of importance in the
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receptor was not significantly different from the rat wild type receptor or any of 

the transmembrane chimeras. The significantly lower potency of CGP 12177 in 

the rat cell line compared to the human is the reverse of the pharmacology one 

would expect to observe if there were no receptor density-independent 

differences between these two cell lines. These data are therefore consistent 

with CGP12177 exhibiting a pharmacological difference between rat and human 

p3 -adrenoceptor, which is independent of receptor density. In view of this 

finding, one might predict that rat-like CGP12177 pharmacology in the TM 

chimera cell lines would also be indicated by a lower potency of CGP 12177 

compared to the human wild type. Unfortunately, since the receptor densities in 

the TM chimera cell lines are all similar or lower than that of the human wild 

type it is not possible to determine whether the lower potency of CGP12177 

observed in some of the TM chimera lines is due to an artefact of receptor 

density differences or a real tendency to rat-like pharmacology. For this reason 

the level of significance has not been calculated for these Figures.

The molecular basis of pharmacology at catecholamine receptors has been

extensively studied by deletion and site directed mutagenesis, largely with the

pa-adrenoceptor (Strader a/, 1989). These studies have allowed the proposal

of a ligand binding pocket for catecholamines where the catechol moiety of the

endogenous agonist is bound via two serine residues in TM5 (Strader et d ,

1989), and the amine moiety is bound via an aspartate residue in TM3 (Strader

etal, 1988). In conventional models of GPCR structure based on that of 
.

bacteriorhodopsin (Hibertc/ d ,  1991) this would suggest that the catecholamine

Î
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binding of ligand (Strader a/, 1987, Dixon era/, 1988). However, a residue 

in TM2, Asp79, which would be expected to be quite distant to the 

catecholamine binding pocket, has also been shown by a number of workers 

(Chung etal, 1988, Breyer etal, 1990, Strader et al, 1988) to be of importance 

in agonist binding. Interestingly, changes to this residue do not influence 

antagonist binding, only agonist binding. This finding led Strader et al (1988) 

to suggest that, although agonist and antagonist binding sites may well be 

largely overlapping, they are not necessarily identical. Strosberg.

(1993) has interpreted these same data by proposing that Asp'^^ TM2 is 

only indirectly involved in binding of agonist, and that switching of the phenyl 

moiety o f  T y r ^ i ^  in TM7 from binding to A s p H 3  in TM3 to binding to Asp^9 in 

TM2 is a key initial step in G-protein coupling. Strosberg (1993) therefore 

proposée in this model that the TM domains more distant from the catecholamine 

binding site may normally serve in a signal processing role rather than directly 

in binding catecholamine (Strosberg -, 1993).

This model has also proved useful for generating a working hypothesis to 

explain the versus pi- and p2 "adrenoceptor subtype selectivity of 

BRL37344; it is proposed that the bulky residue side chain of Phe49 in 

P2 -adrenoceptor may prevent access of BRL37344 to the signal processing 

region of the P2 “adrenoceptor, but no steric impediment would be expected to 

exist in the case of the p3 -adrenoceptor, where the equivalent residue is a 

smaller residue, glycine (Strosberg , 1993). The data in the current study 

may also be explained in terms of this hypothesis. For example, a number of 

the human to rat changes in the chimeras which occur towards the cytoplasmic 

side of the receptor may conceivably increase the degree of access to BRL37344 

to the signal processing pocket of the receptor (e.g. Asp^4 to Gly in TM2 and 

PrcP^^ to Gly in TM7). It must be recognized, however, that some of these 

changes would be expected to lead to greater steric hindrance (e.g. Gly^^S to

¥
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Ser in TM7). While the complete binding pocket of the p3 -adrenoceptor, 

including both grooves is approximately 20-25 Â in size, the ligand BRL37344 

is approximately 14 Â. This would imply that if it 'docks' with the 

P3 -adrenoceptor using similar residues and mechanisms to isoprenaline, and, 

unlike its positioning within the p2 -adrenoceptor could exist in its most 

extended conformation, BRL37344 is still unlikely to be able to interact directly 

with the TM2 region.

Recently, the basis for this hypothesis as a general explanation for the 

selectivity of BRL37344 at the p3 -adrenoceptor has been called into question 

from a study (Guan etal, 1995) where the p3 vs P1/P2  subtype selective affinity 

of BRL37344 was investigated by using a series of P2 /P3  chimeras. These 

studies suggested that TM5 is a key molecular determinant responsible for the 

higher affinity binding of BRL37344 at p3 -adrenoceptors when compared to 

p2 -adrenoceptors. My overall conclusion must therefore be that the major 

structural determinants of the rat vs human species selective efficacy of 

BRL37344, but not necessarily that of subtype selectivity, are located within 

TM region 2. This is a transmembrane region which, as mentioned earlier, is 

either not normally, or at least indirectly, associated with catecholamine 

binding.

My investigation into the sustained response to BRL37344 at the rat 

p3 -adrenoceptor only, was inconclusive, in that the actual mechanism of action 

was not uncovered. It was possible to conclude, however, that somehow, via 

the p3 -adrenoceptor specifically (the sustained response was blocked 

completely by propranolol) BRL37344 was able to 'switch on' the rat P3 - 

adrenoceptor for long periods of time. Results from the cAMP accumulation 

'flashplate' were also inconclusive, and further studies would be necessary. 

For example, from my preliminary investigations, I showed that the cAMP 

levels continued increasing after BRL37344 removal, but this occurred in both
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the rat and human p3 -adrenoceptor expressing CHO cells, the latter originally 

not showing the sustained response to BRL37344. It would be useful to 

continue these studies, perhaps checking how effective the washing out of 

BRL37344 was at the time. This could easily be performed by running 

experiments with control cells in parallel, where no washing out of BRL37344 

takes place.

In the Trp64Arg chimera, although cellular levels of this chimera were lower
1

than the wildtype human and rat p3 -adrenoceptors, there was no deviation in 

potency or intrinsic activity values away from those values for the wild type 

human p3 -adrenoceptor. This suggested that there was no alteration in the 

response to p3 -agonists by this mutant of the human P3 -adrenoceptor as 

compared to the wild type human p3 -adrenoceptor. Therefore, groups of the

population with this mutation of the P3 -adrenoceptor, whether homologous or

heterologous, would be expected to still respond to the same treatment as those 

without this mutation.

Overall from this Chapter, I have successfully identified a region of importance 

in the rat and human p3 -adrenoceptor, the TM2 region, which results in 

alterations in pharmacology from human-like pharmacology to rat-like 

pharmacology. However, we can conclude, from my studies and other groups, 

that this region, jdue to its known position, is not likely to interact directly with 

agonists, but it is more probable that it causes more overall changes within the (

p 3 -adrenoceptor.
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Within this Chapter I will discuss the conclusions which can be drawn from 

my investigations. I will, in certain areas, suggest possibilities for further 

approaches and studies, and assess what can be drawn from results from 

three very different Chapters.

While the pi- and p2 -adrenoceptors have been studied in greater detail, less 

is known about the third p-adrenoceptor, especially the factors involved in 

its regulation. Other studies have investigated the down-regulation of 

receptors and their associated G-protein, finding that down-regulation of 

both polypeptides follow a similar time course, and that co-down-regulation 

occurred. So, for example, while my first Chapter investigated some 

aspects of desensitization in all three p-adrenoceptors, during the course of 

investigations it was interesting to observe that while the p3 -adrenoceptor 

polypeptide did not itself down-regulate, the associated Gg, down-regulated 

extensively. This provided further evidence, little of which was in 

existence already, for the growing argument that the receptor and G-protein 

do not necessarily have to co-down-regulate. The latter process of co- 

down-regulation is certainly the case for the pi- and p2 -adrenoceptors. The 

reason for the down-regulation of the Pi- and P2 -adrenoceptors compared 

to the p3 -adrenoceptoy lies, presumably, in the presence of a number of 

phosphorylation sites in the C-terminal tail of the pi- and p2 -adrenoceptors. 

As mentioned in Chapter 1, phosphorylation of multiple serine and 

threonine residues in the third cytoplasmic loop and C-terminal tail of the 

pi- and P2 -adrenoceptor by regulatory kinases impairs the ability of the 

receptor to couple to Gg, therefore rendering the adrenoceptor desensitized. 

This is one of the rapid forms of desensitization. Evidence to contradict co- 

down-regulation of receptor and G-protein has recently emerged, however, 

by mutation of threonines in the C-terminal tail of the M3  muscarinic 

receptor (in which these mutations prevent the M3 receptor down-

2 0 7

I



regulation), resulting in down-regulation of GqOt/Gn« similar to the wild- 

type M3  receptor (Van de Westerlo et al, 1995) to occur. This strongly 

suggests that G-protein down-regulation, although often seen to follow a 

similar time-course of down-regulation to the receptor (see Chapter 3 

investigations on pi- and p2 -adrenoceptor expressing CHO cells), could 

perhaps not be directly coupled to receptor down-regulation.

Further studies in Chapter 3 also investigated loss of Gg from the plasma 

membrane, whether it was removed to the cytosol, or rapidly packaged into 

vesicles and degraded. After conflicting reports from other studies 

(Ransnas^ra/, 1989, Kvapil etal, 1994), my work led to my assumptions 

that, as I could not show that the Gg was present in the cytosol, it was most 

likely to be rapidly transferred to vesicles and degraded (Perkins et al, 

1991, Von Zastrow etal, 1992, Kvapil etal, 1994). In such vesicular 

compartments, it is thought that receptors are dephosphorylated and 

reactivated, and perhaps therefore, would indicate a similar method for G- 

proteins, perhaps being co-sequestered with the receptor. All evidence 

does, therefore, seem to point to the G-protein having to be newly 

synthesised. There is a continuous turnover of proteins in cells, and 

therefore it may not be too surprising that Gs should be degraded and 

resynthesised in a similar way. My work remains still preliminary and 

inconclusive, while other groups have also produced conflicting reports for 

both receptors and G-proteins (Wu eta l, 1995, Barak et al, 1995). A 

number of studies, using such de novo synthesis blockers as 

cycloheximide, will be necessary and the progress of more studies with 

detection of light vesicle fractions and their contents, will enable the further 

investigations of G-protein localization upon agonist-induced down- 

regulation.
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While there is clear evidence for alterations in receptor mRNA levels 

(Hadcock a/, 1988, 1989, Nishikawa etal, 1993, Bouvier et al, 1989, 

Feve et al, 1991, Thomas et al, 1992) this is not the case for G-proteins. 

While Hadcock et al (1988, 1989) demonstrated that homologous and 

heterologous down-regulation occurred at the level of receptor mRNA, 

Nishikawa etal (1993), found that agonist ^ffected alterations in pi- and 

P2 -adrenoceptor mRNA levels. From my investigations in Chapter 3, I 

was able to rule out the possibility of regulation of Gg at the level of Gg 

mRNA in the p%-adrenoceptor expressing CHO cells. This observation 

was in agreement with other groups, such as McKenzie and Milligan,

(1990) and Mullaney et al, (1995). It would imply therefore, that 

transcriptional or translational control of GgO is not a major mechanism in 

the overall desensitization process.

Work in Chapter 3 on the rate of down-regulation of Gg in the three 

p-adrenoceptor expressing CHO cell lines started investigations into areas 

of work studied more thoroughly in Chapter 4, that is, the effect of receptor 

density on elements of regulation. In Chapter 3 I looked at receptor 

expression on G-protein down-regulation. The fact that the pi- 

adrenoceptor expressing CHO cells had been transfected with greater levels 

of Pi-adrenoceptors than the other cell lines expressing P2 - and P3 - 

adrenoceptors, resulted in a much more rapid down-regulation of Gg in Pi- 

adrenoceptor expressing CHO cells than the other cell lines. It may also 

have resulted in an alteration of isoprenaline potency at the p%- 

adrenoceptor, as it is expected that isoprenaline would have a higher 

potency at the P2 -adrenoceptor. This could explain why, in my 

investigations, the agonist isoprenaline showed a higher potency for the p%-
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adrenoceptor over the p2 -adrenoceptor. This could therefore, have been 

caused by the differences of receptor density of the respective



adrenoceptors in CHO cells (Whaley et al, 1994, Kim et al, 1994,

MacEwan et al, 1995), as expression of receptor reserve would be

anticipated to move concentration response curves to the left. The effect of

receptor expression on rate of G-protein down-regulation was also shown

when Gs down-regulation was examined in two p3 ~adrenoceptor
■

expressing CHO cell lines. While the D43 p3 -adrenoceptor expressing 

CHO cell line (3000 ± 400 fmol/mg membrane protein) showed 

down-regulation of Gg following various concentrations of isoprenaline, 

the C15 p3 -adrenoceptor expressing CHO cell line (390 ± 83 fmol/mg 

membrane protein) did not.

I
Investigations in Chapter 4 moved on to assessments of effect of receptor 

density on agonist potency and efficacy. As mentioned earlier, it has been 

little researched before (Whaley etal, 1994, Kim etal, .1994, MacEwan et 

al, 1995) but it is extremely vital that investigators note differences in 

receptor density in tissues and cells, when comparing results from their 

own data with that of other groups. In my study of three NCB20 

neuroblastoma cell lines expressing different levels of the p2 -adrenoceptor, 

after treatments with the agonists isoprenaline, salbutamol, ephedrine and 

adrenaline, a common trend in results was noticed. This trend of effect by 

agonists was most clearly obtained in results from concentration-effeet 

curves for isoprenaline and salbutamol, while results with ephedrine and 

adrenaline were more preliminary and incomplete. These showed that as 

receptor density increased in NCB20 cells, so the EC5 0  value decreased, 

thus indicating that potency was increasing. Work with salbutamol showed 

a similar, if not quite as clear pattern. When intrinsic activity values were 

also obtained for the agonists, and compared to that of the full agonist 

isoprenaline, it proved that while salbutamol was only a so-called "partial" 

agonist (intrinsic activity values less than 1) at the cell line with the lowest
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p2 -adrenoceptor density (L9 NCB20 cells), it acted as a full agonist (close 

to or equal to an intrinsic activity value of 1) at the cell lines containing 

higher receptor densities (D1 and D4 NCB20 cells). This was also the case 

for ephedrine, while the physiological agonist adrenaline was a full agonist 

at all three cell lines. This is to be expected for adrenaline, as it is often 

used as the referral full agonist (as was isoprenaline in ray studies), to 

which other intrinsic activity values of other agonists, are compared. These 

results proved that the definition of a "full" agonist is very much 

dependent on the tissue studied and levels of receptors present. Such terms 

as a "partial" agonist should therefore be carefully considered when applied 

to a compound, as my results showed a compound acting as a partial 

agonist at one tissue may act as a full agonist at another.

While it is possible to predict pharmacological relationships via 

mathematical theories, it is important to prove these theories practically too. 

My work follows previously successful studies such as those by MacEwan 

etal, (1995) and Whaley etal, (1994). Whaley etal, (1994) predicted, and 

demonstrated experimentally, that potency increased for adrenaline with 

increasing receptor number. These previous investigations, along with my 

present studies, provide novel insights into receptor theory and predictions 

of behaviour of full and partial agonists, and as previously detailed, are 

important for pharmacological approaches to experiments and analysis of 

data and results.

Results in Chapter 5 centred around the discovery that from the production 

of eight chimeric constructs, in which mutations of the human P3 - 

adrenoceptor were produced, the TM2 region chimera (where all regions 

are as the human p3 -adrenoceptor, except for the TM2 region which is the 

sequence of the rat P3 -adrenoceptor) was found to alter the pharmacology
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of the human P3 -adrenoceptor to the rat p3 -adrenoceptor. Results for this 

TM2 chimera, using the cAMP accumulation flashplate assay, showed an 

increase in lA values from those of the human p3 -adrenoceptor for 

BRL37344, to lA values comparable to those of the rat Pg-adrenoceptor.

Another qualitative effect linking this chimera to the pharmacology of the rat 

rather than human Pg-adrenoceptor was noted on observations from 

microphysiometer studies. While the human Pg-adrenoceptor expressing 

CHO cells showed no sustained response to BRL37344 on its removal 

from medium, the rat Ps-adrenoceptor and, from all the chimeras tested, the 

TM2 chimera alone, showed a sustained response. This was a further 

indication that the TM2 chimera assumed pharmacological similarities to the 

rat p3 -adrenoceptor. The sustained response, not reported by any other 

investigators at the rat pg-adrenoceptor, would seem to indicate a Pg- 

adrenoceptor specific effect (blockade of sustained response effected by 

propranolol). It can only be assumed that different residues in the rat Pg- 

adrenoceptor, and present in the TM2 region, effect the sustained response 

upon BRL37344 binding.

While other groups have mainly linked TM5 and TM3 as important regions 

for agonist binding in the p2 - and pg-adrenoceptors (Strader et al 1988, 

1989a), further investigators have also indicated the importance of one of 

the residues in the TM2 region, Asp'^^ (Chung et a l,l9SS , Breyer et al, 

1990, Strader etal, 1988) in agonist binding. Changes to these residues do 

not affect antagonist binding, only agonist binding. From this work, and 

also with the assistance of computer modelling of the receptor structure and 

BRL37344, it must be assumed that TM2 region does not directly interact 

with agonist (as not situated in the 'binding groove'), but causes more 

global changes to the receptor conformation.
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