

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

## Cloning, Characterisation and Site-selected P-element Mutagenesis of Genes Encoding V-ATPase in Drosophila

A thesis submitted for the degree of Doctor of Philosophy at the University of Glasgow

By

Yiquan Guo

Division of Molecular Genetics Institute of Biomedical and life sciences University of Glasgow Glasgow G11 6NU UK

September 1996

ProQuest Number: 10391285

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.



ProQuest 10391285

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346



12

A set of the set

÷

AND TO MALLINE AND

## **Abbreviations**

| AA                | amino acid(s)                                         |
|-------------------|-------------------------------------------------------|
| АТР               | adenosine triphosphate                                |
| ATPase            | ATP hydrolysing enzyme                                |
| BCIP, X-phosphate | 5-bromo-4-chloro-3-indoyl-phosphate                   |
| Եթ                | base pair(s)                                          |
| BSA               | bovine scrum albumin                                  |
| cDNA              | complementary DNA                                     |
| DEPC              | diethyl pyrocarbonate                                 |
| DIG               | digoxigenin                                           |
| DNA               | 2' deoxyribonucleic acid                              |
| DNase I           | deoxyribonuclease I                                   |
| dATP              | 2' deoxyadenosine triphosphate                        |
| dCTP              | 2' deoxycytidine triphosphate                         |
| dGTP              | 2' deoxyguanosine triphosphate                        |
| dNTP              | 2' deoxy (nucleotide) triphosphate                    |
| dTTP              | 2' deoxythymidine triphosphate                        |
| dUTP              | 2' deoxyuridine triphosphate                          |
| DTT               | dithiothreitol                                        |
| EDTA              | ethylene diamine tetra-acetic acid (disodium salt)    |
| EtBr              | ethidium bromide                                      |
| g                 | gram                                                  |
| g                 | centrifugal force equal to gravitational acceleration |
| h                 | hour                                                  |
| HEPES             | 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid   |
| IPTG              | isopropyl-b-D-thio-galactopyranoside                  |
| kb                | kilobases                                             |
| kDa               | kiloDaltons                                           |

100

Section 2

| Klenow  | Klenow fragment of <i>E. coli</i> polymerase I   |
|---------|--------------------------------------------------|
| 1       | litres                                           |
| М       | molar                                            |
| mg      | milligram                                        |
| mM      | milliMolar                                       |
| min     | minutes                                          |
| ml      | millilitres                                      |
| MOPS    | 3-morpholinopropanesulfonic acid                 |
| mRNA    | messager RNA                                     |
| ng      | nanograms                                        |
| nM      | nanmolar                                         |
| hm      | nanometres                                       |
| NTB     | 4-nitro blue etrazolium chloride                 |
| OD      | optical density                                  |
| ORF     | open reading frame                               |
| PCR     | Polymerase chain reaction                        |
| PEG     | polyethylene glycol                              |
| рН      | acidity [-log10(Molar concentration of H+ ions)] |
| polyA+  | poly adenosine tailed RNA molecule               |
| ppi     | pyrophosphate                                    |
| RNA     | ribonucleic acid                                 |
| RNasc A | ribonuclease A                                   |
| RP49    | ribosomal protein 49 (Drosophila)                |
| rpm     | revolutions per minute                           |
| SDS     | sodium dodecyl sulphate                          |
| Tris    | Tris (hydroxymethyl) aminomethane                |
| tRNA    | transfer RNA                                     |
| UTR     | untranslated region                              |
| U       | units                                            |

II

| UV             | ultraviolet                                       |
|----------------|---------------------------------------------------|
| V-ATPase       | vacuolar H+-transporting adenosine triphosphatase |
| vha14          | gene encoding V-ATPase F-subunit in Drosophila.   |
| vha26          | gene encoding V-ATPase E-subunit in Drosophila.   |
| vha68-1        | gene encoding V-ATPasc A-subunit in Drosophila.   |
| vha68-2        | gene encoding V-ATPase A-subunit in Drosophila.   |
| Vol            | volume                                            |
| Xgal           | 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside  |
| μCi            | microCuries                                       |
| μl             | microlitres                                       |
| μg             | micrograms                                        |
| 3 <sup>*</sup> | three prime                                       |
| 5'             | five prime                                        |

## **Contents**

| Abbreviations    | I   |
|------------------|-----|
| Contents         | IV  |
| List of figures  | X   |
| List of Tables   | XIV |
| Acknowledgements | XV  |
| Summary          | XVI |

-

| Chapter 1 Introduction1                            |  |  |
|----------------------------------------------------|--|--|
| 1.1 Drosophila melanogaster1                       |  |  |
| 1.2 The P-element of Drosophila2                   |  |  |
| 1.2.1 P-element Biology2                           |  |  |
| 1.2.2 Germ-line transformation                     |  |  |
| 1.2.3 Remobilisation of P-elements9                |  |  |
| 1.2.4 Enhancer-trap elements11                     |  |  |
| 1.2.5 P-element mutagenesis15                      |  |  |
| 1.2.6 Site-selected mutagenesis16                  |  |  |
| 1.3 V-ATPase19                                     |  |  |
| 1.3.1 Proton pumps                                 |  |  |
| 1.3.2 Structure of V-ATPase                        |  |  |
| 13.3 Plasma membrane V-ATPase24                    |  |  |
| 1.3.4 Functions of V-ATPase24                      |  |  |
| 1.35 Mutational analysis of V-ATPase28             |  |  |
| 1.4 The aim of this project                        |  |  |
| Chapter 2 Materials and Methods                    |  |  |
| 2.1 Drosophila                                     |  |  |
| 2.2 <i>E. coli</i> , plasmids and Bacteriophages32 |  |  |
| 2.3 E. coli Growth medium                          |  |  |
| 2.4 Antibiotics and indicators                     |  |  |
| 2.5 Competent cells and transformation34           |  |  |

-----

| 2.5.1 Preparation of competent cells                                   |
|------------------------------------------------------------------------|
| 2.5.2 Transformation of <i>B. con</i>                                  |
| 2.6 Nucleic Acid Isolation                                             |
| 2.6.1 Plasmid DNA                                                      |
| 2.6.3 Drosophila DNA                                                   |
| 2.6.4 Drosophila RNA                                                   |
| 2.7 Quantification of nucleic acids                                    |
| 2.8 Labelling of nucleic acids                                         |
| 2.8.1 Random priming of <sup>32</sup> P40                              |
| 2.8.2 DIG random priming41                                             |
| 2.8.3 Nick translation                                                 |
| 2.9 Electrophoresis                                                    |
| 2.9.1 Agarose gel electrophoresis for DNA                              |
| 2.9.2 Denaturing agarose gel electrophoresis for RNA42                 |
| 2.9.3 Polyacrylamide gel for DNA sequencing                            |
| 2.10 Nucleic acid hybridisation43                                      |
| 2.10.1 Southern blotting and hybridisation43                           |
| 2.10.2 Northern blotting and hybridisation44                           |
| 2.11 Oligonucleotide synthesis                                         |
| 2.12 DNA sequencing                                                    |
| 2.13 PCR                                                               |
| 2.14 In Situ hybridization to polytene chromosomes                     |
| 2.15 Isolation of cDNA and genomic clones                              |
| 2.16 Generation of unidirectional deletions for rapid DNA sequencing   |
| 2.17 Plasmid rescue and mutation screening                             |
| 2.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1,                                |
| 2.18 Histochemical Staining and Immunocytochemistry 48                 |
| 2.18 Histochemical Staining and Immunocytochemistry                    |
| <ul> <li>2.18 Histochemical Staining and Immunocytochemistry</li></ul> |

| via plasmid rescue of lethal P-element insertions          | 52 |
|------------------------------------------------------------|----|
| 3.1 Summary                                                | 52 |
| 3.2 Introduction                                           | 52 |
| 3.3 Plasmid Rescue                                         | 56 |
| 3.4 Screening                                              | 57 |
| 3.4.1 vha68-2, the gene encoding V-ATPase A-subunit        | 60 |
| 3.4.2 Ductin, the gene encoding the V-ATPase c-subunit     | 60 |
| 3.4.3 CalpA, the gene encoding calpain                     | 60 |
| 3.4.4 DC0, the catalytic subunit of cAMP-dependent protein |    |
| kinase                                                     | 63 |
| 3.4.5 Syb, a gene encoding synaptobrevin                   | 63 |
| 3.4.6 KLP38B, a mitotic kinesin-related protein            | 68 |
| 3.4.7 PP2A-28D, the gene encoding protein phosphatase 2A   | 71 |
| 3.4.8 Mutations in other genes                             | 71 |
| 3.5 One-step screening                                     | 71 |
| 3.6 Verification                                           | 71 |
| 3.7 Discussion                                             | 74 |

## Chapter 3 Site-selected mutagenesis of the Drosophila second chromosome

### Chapter 4 Characterisation of vha68-1 and vha68-2, the genes encoding

5

| two isoforms of V-ATPase A subunit in Drosophila            | 78         |
|-------------------------------------------------------------|------------|
| 4.1 Summary                                                 | 78         |
| 4.2 Introduction                                            | 78         |
| 4.3 Isolation of two different cDNAs encoding the catalytic |            |
| A subunit                                                   | 80         |
| 4.3.1 Isolation of <i>vha68-1</i> cDNA                      | 80         |
| 4.3.2 Isolation of <i>vha68-2</i> cDNA                      | 83         |
| 4.3.3 Comparison of the two isoforms                        | 87         |
| 4.3.4 Homology of vha68 to subunit A of V-ATPases           |            |
| from other sources                                          | <b>9</b> 6 |
| 4.3.5 Comparison of <i>vha68</i> to β chain of F-ATPase     | 96         |
| 4.4 Genomic structure analysis of vha68-2                   | 96         |

۰.

| 4.4.1 Restriction mapping of genomic DNA and subcloning       | 96  |
|---------------------------------------------------------------|-----|
| 4.42 Genomic DNA analysis                                     | 99  |
| 4.4.3 A comparison of the vha68-1 and vha68-2 genes           | 99  |
| 4.4.4 Evidence for additional complexity at the vha68-2 locus | 103 |
| 4.6 Chromosomal location                                      | 110 |
| 4.7 Northern blot analysis of vha68-1 and vha68-2             | 110 |
| 4.8 Discussion                                                | 110 |

1997 - 1998 1997 - 1998 1997 - 1999

Charles in a second

### Chapter 5 Mutational analysis of vha68-2, a gene encoding one of the

L

| two isoforms of the Drosophila V-ATPase A-subunit                          | 115 |
|----------------------------------------------------------------------------|-----|
| 5.1 Summary                                                                | 115 |
| 5.2 Introduction                                                           | 115 |
| 5.3 l(2)k02508 contains a single insertion in vha68-2                      | 116 |
| 5.4 The insertion in l(2)k02508 lies within vha68-2                        | 117 |
| 5.5 Lethality in I(2)k02508 is caused by insertion of the P[ <i>lacW</i> ] |     |
| element                                                                    | 117 |
| 5.6 Imprecise excision generates a range of new alleles                    | 120 |
| 5.7 Reporter gene expression                                               | 120 |
| 5.8 Phenotypic analysis of 1(2)k02508 and new alleles                      | 126 |
| 5.9 Northern blot analysis of mutant flies                                 | 128 |
| 5.10 Discussion                                                            | 131 |

| Chapter 6 Characterisation and inactivation of vha26, the gene |     |
|----------------------------------------------------------------|-----|
| encoding an E-subunit of the V-ATPase                          | 132 |
| 6.1 Summary                                                    | 132 |
| 6.2 Introduction                                               | 133 |
| 6.3 Identification of a cDNA encoding a 26 kD E-subunit        | 133 |
| 6.3.1 cDNA cloning                                             |     |
| 6.3.2 Generation of unidirectional deletions of p26CD for      |     |
| sequencing                                                     | 134 |
| 6.3.3 DNA sequence analysis of <i>vha26</i> cDNA               |     |

| 6.4 Genomic structure of <i>vha26</i>                             | 139          |
|-------------------------------------------------------------------|--------------|
| 6.4.1 Genomic DNA clones corresponding to <i>vha26</i>            | 139          |
| 6.4.2 vha26 is a single copy gene                                 | 139          |
| 6.4.3 Generation of unidirectional deletions of p26kg             |              |
| DNA for sequencing                                                | 144          |
| 6.4.4 Correlation of genomic and cDNA sequences                   | 1 <b>4</b> 4 |
| 6.5 Phylogenetic analysis of the E subunit                        | 147          |
| 6.6 Gene expression                                               | 154          |
| 6.7 Identification of a fly carrying a P[lacW] insertion in vha26 | 154          |
| 6.8 Discussion                                                    | 159          |
|                                                                   |              |

~~ (C)

193

e spatie e

CONTRACTORS CONTRACT

## Chapter 7 vha14, the gene encoding a 14 kDa F-subunit of the V-ATPase......160

| 7.1 Summary                                | 160 |
|--------------------------------------------|-----|
| 7.2 Introduction                           |     |
| 7.3 cDNA cloning and DNA sequence analysis | 161 |
| 7.4 Amino acid scquence comparisons        | 163 |
| 7.5 vha14 is a single copy gene            |     |
| 7.6 Gene expression                        | 167 |
| 7.7 Discussion                             | 170 |

| Chapter | 8 Discussion and Future Work17                                        | '1 |
|---------|-----------------------------------------------------------------------|----|
|         | 8.1 One-step screening to correlate cloned gene to P-element lines17  | '1 |
|         | 8.2 The correlation of cDNA library clones with the P-element lines17 | '3 |
|         | 8.3 PCR amplification of cDNA corresponding to the rescued plasmids   | 5  |
|         | 8.4. The <i>Drosophila</i> V-ATPase17                                 | 5  |
|         | 8.5 The V-ATPase mutants in <i>Drosophila</i>                         | 9  |

| Appendix                                                  | 180 |
|-----------------------------------------------------------|-----|
| 1. List of publications from or partially from this study | 180 |
| 2. List of the primers used in this study                 | 181 |
| 3. List of rescued plasmids                               | 183 |
|                                                           |     |

| Ceferences |
|------------|
|------------|

# List oF Figures

| Figure 1.1 Structure of P-elements4                                                |
|------------------------------------------------------------------------------------|
| Figure 1.2 Model for template-dependent gap repair following P-element excision5   |
| Figure 1.3 Germ-line transformation                                                |
| Figure 1.4 Enhancer-trapping10                                                     |
| Figure 1.5 P-element mutagenesis                                                   |
| Figure 1.6 A controlled P-element mutagenesis strategy14                           |
| Figure 1.7 Site-selected mutagenesis17                                             |
| Figure 1.8 Plasmid rescue                                                          |
| Figure 1.9 Schematic subunit structure of V-ATPase                                 |
| Figure 1.10 Generalised model for insect cpithelia20                               |
| Figure 2.1 Scheme for isolation of viable revertants and deficiency strains        |
| Figure 3.1 Overview of the plasmid rescue strategy                                 |
| Figure 3.2 19 pools of 100 plasmids separated by electrophoresis in                |
| a 0.8% agarose gel58                                                               |
| Figure 3.3 Screening for insertions in vha68-2, the gene encoding                  |
| subunit A of the <i>Drosophila</i> V-ATPase59                                      |
| Figure 3.4 Screening for insertions in <i>ductin</i> , the gene encoding subunit c |
| of <i>Drosophila</i> V-ATPase61                                                    |
| Figure 3.5 Screening for insertions in CalpA, a Drosophila calpain homolog         |
| Figure 3.6 Screening for insertions in DCO, encoding a catalytic                   |
| subunit of cAMP depedent protein kinase64                                          |
| Figure 3.7 Insertion in <i>ductin</i> , <i>CalpA</i> and <i>DC0</i>                |

28

Pages

Х

| Figure 3.8 Screening for insertion in syb, the gene encoding synaptobrevin    |
|-------------------------------------------------------------------------------|
| Figure 3.9 Insertion in Syb67                                                 |
| Figure 3.10 Southern blot and Northern blot analysis of Syb mutant69          |
| Figure 3.11 Screening for insertions in the gene of <i>KLP38B</i> 70          |
| Figure 3.12 Southern blot of genomic DNA of the P[lacW] insertional lines73   |
| Figure 4.1 cDNA and putative as sequence of vha68-1                           |
| Figure 4.2. Three types of cDNA inserts hybridised to vha68 probes            |
| Figure 4.3 cDNA and predicted amino acid sequence for vha68-2                 |
| Figure 4.4 Alignment of the two cDNA by FASTA in GCG91                        |
| Figure 4.5A. Alignment of known V-ATPase A subunit (VA) aa sequences94        |
| Figure 4.5B Phylogenetic tree of V-ATPase A subunits95                        |
| Figure 4.6 Alignment of the V-ATPase A subunit and F-ATPase $\beta$ subunit   |
| Figure 4.7 Restriction map of genomic ph68A98                                 |
| Figure 4.8 Genomic DNA and putative as sequence of vha68-2                    |
| Figure 4.9 Structure of the genes encoding the two isoforms of the            |
| D. melanogaster V-ATPase A subunit104                                         |
| Figure 4.10 Partial sequence of 68kg-R105                                     |
| Figure 4.11 Homology between <i>vha68-2</i> genomic DNA                       |
| and partial 68kg-R sequence107                                                |
| Figure 4.12, Homology between the translated proteins of vha68-2              |
| and 68kg-R partial sequence108                                                |
| Figure 4.13 Southern blots of genomic D. melanogaster DNA109                  |
| Figure 4.14 Chromosomal localisation of vha68111                              |
| Figure 4.15 Developmental Northern blot analysis of the <i>vha68</i> genes112 |

XI

.....

·. ....

| Figure 4.16 Tissue specific Northern blot analysis of the vha68 genes113            |
|-------------------------------------------------------------------------------------|
| Figure 5.1 Southern blotting of genomic DNAs confirms that line                     |
| l(2)k02508 contains a single P[ <i>lacW</i> ] insertion in <i>vha68</i> 118         |
| Figure 5.2 Correspondance of the rescued plasmid and vha68-2                        |
| genomic DNA fragment118                                                             |
| Figure 5.3 Sequence homology of rescued plasmid and vha68-2119                      |
| Figure 5.4 New alleles with different survival efficiency after remoblisation       |
| of the P-element in strain l(2)k02508122                                            |
| Figure 5.5 Alleles with temperature-dependent survival123                           |
| Figure 5.6 Genomic Southern blot of vha68-2 mutant flies124                         |
| Figure 5.7 lacZ expression pattern of l(2)k02508125                                 |
| Figure 5.8 Antibody staining of $\beta$ -galactocidase in the Malpighian tubules127 |
| Figure 5.9 Phenotype of 68S-6                                                       |
| Figure 5.10 Northern blot analysis of the mutant flies of vha68-2                   |
| Figure 6.1 ExoIII deletion of the p26CD insert                                      |
| Figure 6.2 Sequence of a vha26 cDNA (p26CD) and deduced amino acid                  |
| sequence of the Drosophila E-subunit                                                |
| Figure 6.3 Agarose gel and Southern blot of ph26A phage140                          |
| Figure 6.4 Genomic organisation of the vha26 locus141                               |
| Figure 6.5 ExoIII deletion of the p26kg insert142                                   |
| Figure 6.6 (A). Plasmid minipreps from deletion experiment                          |
| (B) Plasmid minipreps from the SmaI/Kpnl deletion experiment143                     |

XII

1

÷

 $\sim$ 

| Figure 6.7 Sequence of vha26 genomic DNA and deduced amino acid               |
|-------------------------------------------------------------------------------|
| sequence of the Drosophila E-subunit146                                       |
| Figure 6.8 PILEUP and Phylogenetic tree of V-ATPase E subunit                 |
| Figure 6.9 Genomic Southern blot of the vha26 locus                           |
| Figure 6.10 Chromosomal localisation of vha26152                              |
| Figure 6.11 Northern blot analysis of vha26 gene expression153                |
| Figure 6.12 Southern blotting of gemonic DNA identified a line                |
| carrying a P[ <i>lacW</i> ]155                                                |
| Figure 6.13 Plasmid rescue of DNA flanking the P[lacW] element in l(3)j3E7156 |
| Figure 6.14 Position of the P[lacW] insertion in line 1(3)j3E7157             |
| Figure 7.1 Sequence of a vha14 cDNA, and deduced amino acid                   |
| sequence of the <i>Drosophila</i> F-subunit162                                |
| Figure 7.2 Alignment and Phylogenetic tree of known 14-kDa                    |
| F-subunit aa sequences165                                                     |
| Figure 7.3 Southern blot of <i>D. melanogaster</i> genomic DNA168             |
| Figure 7.4 Northern blot analysis of <i>vha14</i> gene expression169          |
| Figure 8.1 A strategy of pooling plasmids for One-step screening172           |
| Figure 8.2 Large scale correlation of Drosophila cDNA clone to P-element      |
| insertional mutants174                                                        |
| Figure 8.3 Schematic representation of PCR amplification of cDNA              |
| corresponding to the escued plasmids                                          |

• \* • .

1.1

## XIII

## <u>List of Tables</u>

# Pages

\*••• • • • •

ور معرور

no an

| Table 3.1 Summary of screening results74                                     |
|------------------------------------------------------------------------------|
| Table 5.1 New alleles and revertants after excision of the P[ <i>lacW</i> ]  |
| in line l(2)k02508121                                                        |
| Table 8.1 Characterisation of <i>D. melanogaster</i> genes encoding V-ATPase |
| subunits177                                                                  |
| Table 8.2 P-element mutations of genes encoding Drosophila V-ATPase          |

### Acknowledgements

I wish to take this opportunity to thank Dr. Kim Kaiser and Dr. Julian A. T. Dow for the excellent supervision, the critical reading and correcting this thesis. Their patience and generosity throughout all the years is greatly appreciated.

I would like to thank the past and present members of KK group, JATD group and media ladies. Special thanks would go to Ann Gillan and Xueqiong (Sally) Zhang for help with plasmid rescue; Zhongsheng (Susan) Wang for *in situ* hybridisation of polytene chromosomc; Peggy Ennis for mutant screening; and James Clark for reading the manuscript. Great thanks are also due to Dr. Kevin O'Dell, Dr. Minyao Yang, Dr. Yong Yu, Dr. Douglas Amstrong, Andy Mousey, Xin (Cindy) An, Audrey Davidson, Dr. Philippe Rosay, Dr. Shireen Divies, David Kelly, Ali Sozen and Shirley Graham for the many valuable discussions and technical tips.

I thank Professor Helmut Wieczorek (in Germany) for kindly providing the *Manduca* cDNAs; Dr. Istvan Kiss and Dr. Peter Deck (in Huangary) for providing the thousands of P-clement fly lines.

Thanks also go to Professor R. Wayne Davies and Dr. Richard Wilson for being my Auditors, their suggestion "you should stop bench work as soon as possible " is highly appreciated.

Thanks all those people in the Division of Molecular Genetics, IBLS, University of Glasgow, who provide help and support during this work.

### <u>Summary</u>

Over the last few years, thousands of lines carrying lethal P-element insertions have been produced by the *Drosophila* community, which must presumably have inactivated a large number of essential genes. This thesis describes a fast and efficient approach to correlating cloned genes with mutant fly lines carrying P[lacW] insertions in the second chromosome (Török *et al.*, 1993). We have made use of the fact that P[lacW] contains a plasmid replicon to establish a collection of rescued plasmids containing genomic DNA flanking sites of transposon insertion. Plasmids representing a total of 1836 lines were individually rescued, and pooled in batches of 10 and 100. Pools of 100 plasmids were screened by hybridisation with cDNAs corresponding to cloned second chromosome loci. Hybridising pools were then narrowed down to single plasmids by a process of subdivision and rehybridisation, and corresponding mutant lines were obtained. Initial screening with 40 cDNAs has detected positive hybridisation for more than 10 genes. Mutations for 7 genes have been confirmed, of which insertions in genes encoding the A and c subunits of *Drosophila* V-ATPase are included.

V-ATPase is a proton pump made of multiple subunits. The genes and cDNAs for A, E, and F subunits of V-ATPase have been cloned from *Drosophila melanogaster via* homology with the corresponding *Manduca sexta* genes. *vha68-1* and *vha68-2*, genes encoding two isoforms of V-ATPase A subunit, have also been isolated and sequenced. Both isoforms are composed of a polypeptide of 614 amino acids with a predicted molecular mass of 68.4 kDa and 68.3 kDa respectively. The *vha68-2* gene is punctuated by four introns. The chromosomal location of both genes is at 34A on the second chromosome. Northern analysis of total RNA reveals that both isoforms are expressed in a similar pattern. They are ubiquitously expressed in head, thorax and abdomen of the adult fly. Developmental Northern blots of embryo, larvae, pupae and adult total RNA show general expression, but at a much reduced level during metamorphosis. A fly line (25/8) carrying a single P[lacW] insertion in *vha68-2* was isolated by screening pools of rescued plasmids. The transposon is inserted into the first intron, in front of the translation start codon of *vha68-2*. The enhancer detector reporter gene carried by the P-element ( $\beta$ -galactosidase) was generally activated, but particularly strongly in the gut and Malpighian tubes of both larvae and adults. The insertion largely reduces the transcript of the *vha68-2* isoform which leads to a homozygous lethal phenotype at first instar larvae. The homozygous lethal phenotype can be reverted by 'jumping out' the insertion. Imprecise excision or internal deletion of the P-element created a set of novel hypomorphic or null alleles, with phenotypes which range from the first instar larvae lethal, as in the original P-element insertion line, to sub-lethals of different phenotype.

A gene and a cDNA encoding the E subunit of V-ATPase have been characterised. The gene contains three small introns. Its deduced translation product has 226 amino acids and a molecular weight of 26.1 kDa. vha26 is present as a single copy at cytological position 83B1-4 on the third chromosome and gives rise to an mRNA species of 2.3 kb, with an expression pattern similar to that of vha68. A fly line carrying a single lethal P[*lacW*] insertion within vha26 gene has been identified.

The deduced translation product of the cDNA (vha14) for the F subunit is a 124 amino acid polypeptide with a molecular mass of 14 kDa. vha14 is present as a single copy at cytological position 52B on the second chromosome, and gives rise to an mRNA species of 0.65 kb. Unlike vha68 and vha26, the vha14 transcript shows relatively little variation during development and between adult head, thorax and abdomen, suggesting that the F subunit is a relatively ubiquitous component of the V-ATPase.

# Chapter 1

### Introduction

### 1.1 Drosophila melanogaster

The fruit fly *Drosophila melanogaster* has a lot to offer as an experimental organism. It has a distinguished history as a subject of classical genetic analysis. Many of the major principles of genetics, principles that we tend to take for granted, were established by work with *D. melanogaster* (Ashburner, 1989b). A large number of easily recognisable genetic markers, a generation time of only 10 days, simple culture methods and a large body of literature and technical information are readily available to the investigator. Additionally, establishing the chromosomal location of a newly-cloned gene is particularly straightford, as the salivary gland polytene chromosomes are large and easy to map. This means that a newly discovered gene can be reconciled rapidly with the sum of existing knowledge of the *Drosophila genome* (Dow, 1994; Dow *et al.*, 1996). Transposable elements, and in particular the enhancer trap P-element, have played a pivotal role as mutagens, as molecular tags, and as germ-line transformation vectors (Rubin, 1988; Kaiser, 1995; Sentry and Kaiser, 1995). *D. menalogaster* is now widely used not only in classical and molecular genetics but also in research on more complex phenomena, such as those of developmental biology and neurobiology.

My PhD project will use *Drosophila* to address the issues of (i) systematic site-selected Pelement mutagenesis of second chromosome genes and (ii) the molecular genetic analysis of genes encoding V-ATPase subunits.

#### 1.2 The P-element of Drosophila

A large number of transposable elements are known to exist in *Drosophila melanogaster*, of which the P-element family is the most heavily exploited. P-element technology has revolutionised *Drosophila* molecular genetics, not only in terms of providing important insights into the mechanism of eukaryotic transposition, but also use as important tools for gene transfer, insertional mutagenesis, enhancer trapping and gene cloning (See Kaiser, 1990; Kaiser, 1993 and Kaiser *et al.*, 1995 for recent reviews).

#### 1.2.1 P-element Biology

P-clements are a family of transposable elements found in Drosophila melanogaster. They have been shown to be the causal agents of P-M hybrid dysgenesis, a syndrome whose traits include high rates of sterility, mutation, and chromosomal rearrangements (Engels, 1987; Engels, 1989; Rio, 1990). P-element transposition is genetically regulated, occurring at very high frequency only in the progeny from a cross between males of a 'P strain' and females of an 'M strain'. The distinguishing characteristics of P strains are that their eggs have "P cytotype", a condition that results in repression of P-element transposition, and that they carry autonomous 2.9 kb full-length P-elements which encode transposase. Transposition in a P- strain is repressed by a product of the fulllength P-element itself, thus the P-element is normally quiescent but becomes highly mobile in the progeny of females that lacks repressor (Black et al., 1987; Engles et al., 1990). M strains, by contrast, lack autonomous P-elements, and lay eggs that are permissive for P-element transposition (M cytotype). No dysgenic traits are observed in the progeny of the reciprocal M male by P female cross or in the progeny from P x P or M x M crosses. Moreover, as transposition is restricted to cells of the germline, phenotypic results are not observed until further generations.

The first P-element to be cloned was a defective element, identified by virtue of having disrupted the white locus. The defective element was then used as a molecular probe to clone a complete element which was further confirmed for its transpositional activity when injected into embryos of a M strain - it transposed from a plasmid into the Drosophila genome (Spradling et al., 1982). Molecular analysis indicated that the Pelements present in P- strains could be divided into two classes; a class of full-length 2.9kb elements and a heterogeneous class of internally deleted P-elements (Figure 1.1), Pelement sequences required in cis for transposition are contained within 138 bp at the 5' end and 150 bp at the 3' end. These include 31 bp terminal inverted repeats. Full-length P-elements include four long open reading frames encoding an 87 kDa transposase, the activity of which is restricted to the germline due to differential splicing because the third intron is not removed in somatic cells. (Rio, 1991; Handler et al., 1993). An element with the third intron removed ( $\Delta 2,3$ ) is able to transpose in somatic cells but lacks the capacity to establish a P- cytotype (Laski, et al., 1986). Internally deleted elements of various lengths can occur in both P- strain and M strains as well. Though unable to produce active transposase, such elements can nonetheless be mobilised in the presence of full-length elements.

When P-elements transpose they excise from the donor site and leave behind a doublestranded break, repair of which appears to require a template (Figure 1.2; Engels *et al.*, 1990; reviewed by Sentry and Kaiser, 1992; Weaver, 1995). Excision of the P-element can either be 'precise' or 'imprecise'. The phenomenon of precise and imprecise excision could be explained by a double-stranded break repair model (Engels *et al.*, 1990; Gloor *et al.*, 1991; Daniels and Chovnick, 1993). Sister chromatids or homologous chromosomes of the broken molecule are used as templates for repair. If the template contains the Pelement, double stranded repair will mostly produce a chromosome identical in appearance to the donor chromosome prior to transposition. In such a case, P-element sequences seem to have been retained at the donor site. In a few cases, however, repair can be interrupted, resulting in the generation of nonautonomous P-element deletion



Figure 1.1 Structure of P-elements. The full length 2.9 kb P-element has four long ORFs separated by introns. The P-element is bounded by 31 bp inverted repeats (large arrowheads). Insertion of a P-element causes an 8 bp target site duplication (Small arrowheads). Germline transcripts, spliced as shown, provide functional transposase. Somatic transcripts, which retain the intron between exon 2 and 3, encode a prematurely truncated and thus non-functional transposase. Internally deleted P-elements do not produce functional transposase and thus non-autonomous, but they retain *cis*-acting determinants that allow their mobilisation in the presence of a transposase source.  $\Delta 2,3$  elements, from which the third intron has been removed by *in vitro* manipulation and produce transposase in both germline and somatic tissues (Diagram kindly provided by Dr, Kim Kaiser).



Figure 1.2 Model for template-dependent gap repair following P-element excision. Excision of a P-element (open bars) induces a double-strand break that can be subject to widening by exonucleases. Free 3' ends invade the template duplex, which serves as a substrate for DNA synthesis. In the left panel, the template is a second copy of the Pinduced allele, most commonly provided by a sister chromatid. The result is restoration of a P-element at the locus. Less frequently, the template can be a wild-type allele present on a homologous chromosome (centre panel). This will give the impression of precise excision. Interruption of the repair process, in this case where the sister chromatid is the template, followed by pairing of partially extended 3' ends, may give the impression of an 'imprecise excision' (right panel). This can take the form of internal deletion of the Pelement, or more extremely a deletion that extends into flanking DNA, usually when the template is a wild-type allele present on a homologous chromosome. (Diagram kindly provided by Dr. Kim Kaiser). derivatives. A different result is obtained if the template does not contain the P-element (i.e. is a wild-type allele) at the site corresponding to the P-element donor site. In this case, double stranded break repair restores the donor site to its wild-type pre-insertion sequence; thus appearing as if the P-element had excised precisely from the donor site. Loss of sequences flanking a P-element, together with some or all of the element itself, would result from incomplete repair of a gap that had been widened by exonuclease activity. The involvement of double-strand gap repair was also suggested by the fact that reversion frequencies for heterozygous P-element insertion mutants are 100 times higher than those for homozygous mutants (Engels *et al.*, 1990).

### 1.2.2 Germ-line transformation

Introduction of cloned and manipulated genes into the germline DNA is a valuable tool for analysing many problems in *Drosophila* molecular genetics. The P-element transposon was first engineered as a transformation vector and used for the generation of transgenic flies by Rubin and Spradling in 1982. A plasmid construct bearing a nonautonomous Pelement, into which the gene of interest had been inserted, was injected into embryos undergoing the transition between syncitial and cellular blastoderm (Figure 1.3). Pelement DNA injected into the pole region can become internalised during cellularisation, and can transpose to the genome. Transposition is not frequent on a per molecular basis, but nonetheless provides acceptable transformation efficiencies. Newly integrated elements in the germ cells will be inherited by the progeny of individuals that survive the injection.

ę

41. JA.

An autonomous P-element provides its own transposase. P-elements engineered as vectors dispense with this ability, but retain sequences required in *cis* for transposition. In this respect they resemble the defective elements (Kaiser *et al.*, 1995). It is therefore necessary to provide transposase from another source. Transpose can be supplied in a number of ways: co-injection of an element that produces transposase but that cannot itself



Figure 1.3 Germ-line transformation. A plasmid construct bearing a nonautonomous Pelement, into which the gene of interest has been inserted, is injected into young M cytotype embryos prior to the cellularisation of the germline. P-element DNA injected into the embryo can become internalised during cellularisation, and can transpose to the genome. Transformed individuals can then be recovered in the surviving progeny; usually the transposon of interest carries a phenotypic marker to allow identification of transformations. (Diagram kindly provided by Dr. Kim Kaiser).

transpose - e.g. a wings-clipped element (Karess et al., 1984); co-injection of purified transposase (Kaufman et al., 1991); injection of the a construct into embryos that express transposase endogenously, such as the carrying the P[ $ry^+ \Delta 2,3$ ] (99B) element which generates high levels of transposase activity without establishing a P cytotype. Generation of a line with a stable insertion of the construct requires selection against  $\Delta 2,3$  in a subsequent generation. A dominant marker on the P[ry+ $\Delta 2,3$ ] (99B) chromosome makes it possible to select stable transformed progeny that have lost the transpose source by segregation. Transformed individuals can then be recovered in the surviving progeny, and usually the transposon of interest carries a phenotypic marker to allow identification of transformants. Markers that rescue a visible phenotypic defect, such as loss of eye colour (rosy, white, vermilion), loss of body pigmentation (yellow), or abnormal eye morphology (rough) are easily scored (Bingham et al., 1989; Ashburner, 1989b; Fridell et al., 1991; Patton et al., 1992; Lockett et al., 1992). Alternatively, adh and neomycinresistance genes confer the ability to survive on selective media (Goldberg et al., 1983; Steller et al., 1985). The frequency with which transformants are recovered appears inversely related to transposon length (Spradling, 1986). Nonetheless, transformation with cosmid sized pieces greater than 40 kb can achieved (Haenlin et al., 1985).

There can be pronounced position effects on the expression of genes contained within a P-element transformation construct. It is advisable to obtain lines containing a number of independent insertions. These can be generated either as primary transformants, or *via* remobilisation of a construct by a cross that provides  $\Delta 2,3$ . P-element transposition is non-random with respect to insertion site. Moreover, sequences contained within a P-element construct can have a pronounced effect on insertion specificity (Kassis *et al.*, 1992). Markers in the P-element can themselves be sensitive to position effects. Levels of marker expression may be a useful guide to whether a transgene will be expressed at a reasonable level (Kaiser *et al.*, 1995).

- 2

Other transposable elements, such as *hobo, minos*, have been successfully transferred into germ-line of *Drosophila* (Blackman *et al.*, 1989; Loukeris *et al.*, 1995a). And a transposable element in *Drosophila hydi* has been transferred into medfly (Loukeris *et al.*, 1995b).

Germ-line transformation experiments have had two major impact on *Drosophila* molecular genetics: firstly, P-element vectors can be used to transform cloned genes to rescue a mutant phenotype to prove that a DNA fragment carries the corresponding gene; secondly, genes manipulated *in vitro* can be reintroduced into the animal and its biological consequences assayed *in vivo*.

### 1.2.3 Remobilisation of P-elements

Three events (local jumping, precise and imprecise excision) would happen when the Pelement was supplied with a transposase:

#### Local jumping

Recent evidence indicates that mobilisation of P-elements in the female germline leads to a high frequency of insertion within a hundred kb or so of the donor site (Tower *et al.*, 1993; Zhang *et al.*, 1993). P-element transposition is not always accompanied by loss of the donor element (Golic, 1994; Johnsonschlitz *et al.*, 1993). It may thus not be easy to score a local jump based on the marker that the transposon contains. Site-selected mutagenesis by PCR may be the most efficient approach (Kaiser *et al.*, 1990; Littleton *et al.*, 1993). In case of more than one P-element, segregation might separate the insertion of interest from others (Kaiser *et al.*, 1995).



Figure 1.4 Enhancer-trapping. (A) A first generation enhancer-trap element inserted within a *Drosophila* gene. The pattern and timing of expression of the reporter, *lacZ*, is dependent upon the specific genomic context in which it is integrated. *white*<sup>+</sup> is a marker that confers red eye colour in a *white*<sup>-</sup> genetic background, and thus allows flies containing new insertions to be recognised. The ampicillin resistance determinant (*amp*<sup>R</sup>) and *E. coli* origin of replication (*Ori*) facilitate plasmid rescue of flanking sequences. (B) A GAL4 enhancer trap element. The pattern and timing of GAL4 expression is similarly context dependent, and can be used to drive expression of a secondary reporter gene linked to the GAL4-responsive promoter, UASG (Diagram kindly provided by Dr. Kim Kaiser).

### Precise and imprecise excision

Reversion of a P-induced mutation by precise loss of the transposon may be the only unambiguous means of demonstrating that a phenotypic change is indeed the consequence of a lesion in a tagged or targeted gene (Kaiser *et al.*, 1995). Such losses can be selected following remobilisation of the P-element, preferably from a background in which it is the only P-element remaining. Remobilisation can also result in imprecise excision, leading to the generation of a range of new alleles of varying severity (Voclker *et al.*, 1984; Tsubota *et al.*, 1986; O'Hare *et al.*, 1987; Salz *et al.*, 1987). Once a P-element lies close to rather than within genes of the interest, imprecise excision may be a necessary step in further analysis (Kaiser, 1990).

#### 1.2.4 Enhancer-trap element

An enhancer-trap element is a modified P-element, close to one end of which lies a 'reporter' gene (Figure 1.4). Due to the lack of a transcriptional enhancer, the reporter has a negligible level of intrinsic expression. In order for it to be expressed at a significant level, the transposon must insert close to an endogenous *Drosophila* enhancer. Reporter activity in a line with only one insertion thus reflects the temporal and spatial expression characteristics of a flanking gene (O'Kane and Gehring, 1987; Dorn *et al.*, 1993).

f

First generation enhancer-trap elements contain the reporter gene *lacZ*, encoding the enzyme  $\beta$ -galactosidase. The presence of  $\beta$ -galactosidase activity in a tissue can be detected simply by its conversion of the chromogenic substrate X-gal. In addition to the reporter gene, enhancer trap elements carrying a marker gene such as *white* enables flies with insertions to be recognised, and most include sequences that allow plasmid rescue of the flanking DNA.

P[lacW] is a widely used enhancer-trap element of the first generation. It is 10.6 kb long which carries the *lacZ*, *beta-lactamase* and *mini white* genes (Bier *et al.*, 1989). The *LacZ* gene permits detection of gene expression pattern by staining with X-gal. The *mini-white* gene permits rapid scoring of flics heterozygous or homozygous for a P[lacW] insertion. P[lacW] contains a bacterial origin of replication and the *beta-lactamase* gene coding for ampicillin resistance at the 3' end - this feature permits easy cloning of DNA flanking the insertion site (Cooley *et al.*, 1988; Hamilton *et al.*, 1991; Guo *et al.*, 1996c).

One potential disadvantage of the first generation enhancer trap elements is that they express  $\beta$ -galactosidase fused to the N-terminal nuclear localisation signal of the P-element transposase (Bier *et al.*, 1989). Nuclear staining has its uses but precludes visualisation of cell architecture, a particular problem in the study of cells with long processes, such as neurons (Kaiser *et al.*, 1995; Yang *et al.*, 1995).

A second generation enhancer-trap element P[GAL4] has now been developed (Fisher *et al.*, 1988). Instead of  $\beta$ -galactosidase the reporter of P[GAL4] is a yeast transcription factor that is functional in *Drosophila*, and that can be used to direct expression of other transgenes placed under the control of a GAL4-dependent promoter (UASG). A cross between a fly with a P[GAL4] insertion and a fly containing UASG-lacZ, for example, causes  $\beta$ -galactosidase to be expressed in a pattern that reflects GAL4 activity. Unlike the nuclear localisation signal in the first generation enhancer trap, GAL4 can nicely detect the signals in whole cells, including the long processes in neurons (Yang *et al.*, 1996). A another particularly attractive feature of this system is that any UASG-transgene construct can be used in conjunction with any P[GAL4] line. (Sentry *et al.*, 1993; Sentry *et al.*, 1994a; Sentry *et al.*, 1994b; Sweeney *et al.*, 1995).



Figure 1.5 P-element mutagenesis. P strain males, carrying autonomous and nonautonomous P-elements, are mated with M strain females. The fertilised eggs are of M cytotype, allowing P-element transposition to occur in the developing germline. As a result, each germline cell contains a new configuration of P-elements. Phenotypic consequences are observed in subsequent generations. (Diagram kindly provided by Dr. Kim Kaiser).



Figure 1.6 A controlled P-element mutagenesis strategy. *Birm-2*, a strain with 17 internally deleted P-elements on each of its second chromosomes, mated with a strain containing the  $\Delta 2,3$  element. The P-elements are mobilised by the  $\Delta 2,3$  transposase in germline cells of F<sub>1</sub> males. Each of their sperm has a different spectrum of new insertions. Selection against the transposase source in the F<sub>2</sub> generation ensures that new insertions remain stable (Diagram kindly provided by Dr. Kim Kaiser).

### 1.2.5 P-element mutagenesis

P-elements are particularly useful as mutagens because of their high transposition frequency and the availability of strains without P-elements. The latter property allows backcrossing to eliminate all P-elements from a line other than the one in the gene of interest. A typical protocol would be as follows: P strain males and M strain females are mated, leading to the induction of P-element transpositions in the germline of their progeny. These progeny are bred and their offspring are screened or selected for mutations in the gene of interest (Kidwell, 1987; Figure 1.5 ).

÷.

The most efficient general mutagenesis strategy (Figure 1.6) involves crossing Birmingham 2, a strain with 17 internally deleted P-elements on each of its second chromosome (Engels *et al.*, 1987), with a strain in which  $\Delta 2,3$  has become irreversibly inserted near to the dominant eye phenotype locus Dr (Robertson *et al.*, 1988); an immobile source of transposase linked to a dominant marker simplifies selection for loss of transposase in subsequent generations. Unlike crosses involving wild-type strains, the direction of the above cross is irrelevant. Eggs laid by  $\Delta 2,3$  females have M cytotype. One disadvantage of using  $\Delta 2,3$  is transposase activity in the soma. This reduces the viability of dysgenic individuals. The problem can be minimised by performing the cross at 16°C.

The generation of strains containing only a single marked P-element has many advantages as a method of mutagenesis (Zhang and Spradling, 1994). Phenotypic and molecular analyses of new mutations are greatly simplified. The mutant gene can be mapped, cloned and reverted. New alleles could be generated by imprecise excision of the P-element. A drawback with marked elements is their size; they are invariably much larger than unmarked elements, and so transpose at lower frequencies. In addition, the one or few copies of the marked P-element per genome make the target-mutagenesis less efficient. Nonetheless, large collections of single P-element insertions, many plasmidrescuable, are being assembled through the collective efforts of the international
Drosophila community (e.g. Cooley et al., 1988; Török et al., 1993; P. Deak, personal communication). It is thus increasingly likely that a colleague or stock centre will hold a line with a marked P-element in the region of one's target gene. Site-selected mutagenesis, either by PCR or by plasmid rescue, provides a means of screening such collections en masse. In situ hybridisation to polytene chromosome can be used to confirm that a P-element indeed lies in the region to which a mutant maps. Sequencing the rescued plasmids would reveal the exact position of the P-element insertion.

## 1.2.6 Site-selected mutagenesis

Although traditional genetics relies on the cloning and characterisation of a pertinent gene after a recognition of a mutant phenotype, a large number of novel genes have been cloned by virtue of their DNA sequence homology to a already known genes or on the basis of an interesting expression pattern. Only rarely, however, has such a gene been found to correspond to a pre-existing *Drosophila* mutation. It is therefore desirable for a reverse genetics approach to find a corresponding mutant from the cloned gene. One such approach is site-selected mutagenesis, a means of identifying *Drosophila* lines with P-element transposons inserted within or near to target genes by either PCR ( Ballinger *et al* 1989; Kaiser *et al*, 1990) or *via* plasmid rescue (Hamilton *et al.*, 1991; Hamilton, 1994; Guo *et al.*, 1996c)

## PCR-based screen for P-element insertion events

The PCR method amplifies a specific region of the target gene lying between a gene specific primer and a newly inserted transposon (defined by a transposon-specific primer) (Figure 1.7). Insertions are detected initially within a population of flics, and are then followed as specific amplification products while the population is subdivided. Detection at the molecular rather than the phenotypic level facilitates fast and efficient screening and can be performed on heterozygous individuals (Ballinger *et al* 1989; Kaiser *et al*, 1990; Banga *et al.*, 1992). A similar approach has been adapted for screening natural

) 1



l,

gene-specific amplification product

Figure 1.7 Site-selected mutagenesis. Juxtaposition of a P-element and a target gene uniquely provides a template for amplification between a gene-specific primer (GSP) and a transposon-specific primer based on the P-element 31bp inverted repeat. Open boxes represent exons of a hypothetical *Drosophila* gene (Diagram kindly provided by Dr. Kim Kaiser).

# Plasmid rescue of integrated transposon



Figure 1.8 Plasmid rescue. DNA is isolated from a line with a single engineered Pelement (here an enhancer-trap element) containing an *E. coli* origin of replication (*ori*) and a drug-resistance determinant ( $amp^R$ ). The DNA is cleaved with an appropriate restriction enzyme, ligated under conditions that favour intra-molecular ligation, and used to transform *E. coli*. Plasmids recovered from ampicillin-resistant colonies contain *Drosophila* DNA from adjacent to the site of P-element insertion (Diagram kindly provided by Dr. Kim Kaiser).

populations of *D. melanogaster* to obtain P-element insertions in or near the target gene (Clark et al., 1994).

#### Site- selected mutagenesis via Plasmid rescue

P-elements engineered to contain a plasmid origin of replication and a drug-resistance determinant allow one-step recovery of *Drosophila* genomic DNA flanking the site of insertion (Figure 1.8). This procedure is known as plasmid rescue (Pirrotta *et al.*, 1986; Steller *et al.*, 1986). Genomic DNA from the flies with the engineered P-element such as

P[*lacW*] and P[GAL4], is digested with an appropriate enzyme that cuts the polylinker in the P-element and somewhere in the flanking DNA. This enzyme is subsequently inactivated and the fragments are cloned as plasmids allowing them to be transformed into *E. coli*. Only those *E. coli* containing the plasmids can survive in the medium with antibiotics. Such rescued plasmids can also be used for a form of site-selected mutagenesis (Hamilton *et al.*, 1991; Guo *et al.*, 1996c). A pool of plasmids rescued from a population of flies with different insertion sites contains sequences representative of every flanking region. Hybridisation between the pool and a specific cDNA/genomic DNA clone is diagnostic of an insertion in or near the gene of interest.

#### 1.3 V-ATPase

#### 1.3.1 Proton pumps

Proton pumps (H<sup>+</sup>-ATPases) function in biological energy conversion in every known living cells and they fall into three types. One belongs to the family of P-ATPases which is integral membrane proteins and operates with a phospho-enzyme intermediate (Nelson 1992a). Na<sup>+</sup>/K<sup>+</sup>-ATPases and gastric H<sup>+</sup>-ATPases are notable members of the P-ATPase family. The function of this proton pump is primarily in the plasma membrane of plant and fungal cells and in specialised mammalian cells such as partietal cells in the stomach.

2

: :

The other families of F-and V-ATPases operate without an apparent phospho-enzyme intermediate (Pedersen *et al.*, 1987; Nelson, H. *et al.*, 1989; Nelson *et al.*, 1992a; Bowman *et al.*, 1993). F- and V-ATPases are more universal proton pumps and at least one of them is present in every living cell (Nelson, 1992a).

F-ATPase and V-ATPase share a common structure and mechanism of action and have a common evolutionary ancestry. F-ATPases function in eubacteria, chloroplasts and mitochondria, and V-ATPase is present in archaebacteria and the vacuolar system of eukaryotic cells. Eukaryotic F-ATPases are confined to the semiautonomous organelles, chloroplasts and mitochondria that contain their own genes encoding some of the F-ATPase subunits. F-ATPase is also vital for every known eubacterium acting in photosynthetic or respiratory ATP formation and/or in generating proton-motive-force (pmf) by the reaction of ATP dependent proton pumping. In contrast, V-ATPases are composed only of nuclear gene products and are present in organelles of the vacuolar system and in the plasma membrane of specialised cells (Nelson, 1992a).

One of the most notable distinctions between F- and V-ATPases is in their function in ATP formation. While the primary function of F-ATPases in cukaryotic cells is to form ATP at the expense of pmf generated by electron transport chains, the main function of V-ATPases is to generate a pmf at the expense of ATP and to cause limited acidification of the internal space of several organelles of the vacuolar system. The pmf generated by V-ATPases in organelles is utilised as a driving force for numerous secondary uptake processes. Several metabolic processes that take place in the internal membrane network of eukaryotic cells may be dependent or influenced by the function of V-ATPase (Nelson 1994).

## 1.3.2 Structure of V-ATPase

V-ATPases are multi-subunit protein complexes built from distinct catalytic and membrane sectors (Figure 1.9). The catalytic sector (V1) contains six different polypeptide donated as A, B, C, D, E and F (Nelson, 1992a; Nelson, 1994; Nelson *et al.*, 1994; Gräf *et al.*, 1994a; Graham *et al.*, 1994b; Nelson *et al.*, 1995; Guo *et al.*, 1996b). The stoichiometry of these subunits excluding F was determined to be 3:3:1:1:1, respectively (Arai *et al.*, 1988; Supek *et al.*, 1994). The function of the catalytic sector is to provide the ATP binding site and to catalyse the ATP formation and/or ATPase activities of the enzymes. The main function of the membrane sectors is to conduct protons across the membrane. A proteolipid (subunit c) is confirmed to present in the membrane sector of all the V-ATPase. A stoichiometry of six proteolipids per enzyme has been reported for V-ATPases from clathrin-coated vesicles and plant vacuoles (Arai *et al.*, 1988; Jones *et al.*, 1995).

It was only since 1988 that cDNAs and genes encoding subunits of V-ATPases were cloned and sequenced (Bowman *et al.*, 1988; Zimniak *et al.*, 1988; Hirsch *et al.*, 1988; Mandel *et al.*, 1988). The sequences revealed valuable information on the structure, function and evolution of the various subunits as well as the evolution of F- and V-ATPases (Nelson, N. *et al.*, 1989; Nelson 1994). It became apparent that subunits A and B of V-ATPases and subunit  $\beta$  and  $\alpha$  of F-ATPases evolved from a common ancestral gene.

The proteolipids of F- and V-ATPases also evolved from a common ancestral gene. The proteolipid has been found to be the principal protein component of gap junctions, at least in invertebrates. (Finbow *et al.*, 1992; Finbow and Pitts, 1993; Finbow *et al.*, 1994a), thus subunit c of V-ATPase was also called ductin. Gap junctions are aggregates of paired connexon channels that allow the intercellular movement of cytoplasmic solutes up to Mr. 1000 within tissues of metazoan animals (Finbow *et al.*, 1994b).



Figure 1.9 Schematic subunit structure of V-ATPase. The catalytic vector (V0) is composed of A, B, C, D, E, F, G subunits, the membrane sector (V1) is composed of subunit a, c, Ac 115, Ac 48 and Ac 39. Genes encoding subunit A, B, C, D, E, Ac115, Ac 48, Ac39 and the proteolipid (subunit c) has been cloned from chromaffin granules. Genes encoding subunit A, B, C, D, E, F, G and c has been cloned from *M. sexta*. More V-ATPase subunits are likelyto exist. (This diagram is modified from Nelson's (1994) and Dow's).

An analogy to the membrane sector of F-ATPases suggests that additional subunits should function in the membrane sector of V-ATPases. While the membrane sector of the archaebacterial V-ATPase may be composed only of the proteolipid (Denda *et al.*, 1990) the membrane sector of mammalian V-ATPase may composed of at least five different subunits (Zhang *et al.*, 1992; Nelson, 1992a). The genes or cDNAs encoding four of the subunits (M115, M45, M39 and proteolipid) have been cloned and sequenced from bovine, yeast and several other sources (Wang *et al.*, 1990; Perin *et al.*, 1991; Bauerle *et al.*, 1993). More subunits may function in proton conduction through the membrane and/or in the assembly of the V-ATPase membrane sector.

A novel 13 kDa subunit of V-ATPase has been cloned from yeast (*Vma10p*) Manduca (subunit G), and bovine (M16) (Lepier et al., 1996; Supekova et al., 1996). The deduced protein is significantly homologous to the b subunit of bacterial F-ATPases, but contains no apparent transmembrane segment in its N terminus. While *Vma10p* in yeast behaved like a V-0 subunit, the Manduca sexta 13 kDa subunit behaved like a V1 subunit, since it could be stripped from the membrane by treatment with the chaotropic salt KI and by cold inactivation, thus this subunit was considered to be a new member of the catalytic sector (V1) and was designated as subunit G (Lepier et al., 1996)

Gene disruption experiments in yeast that led to a complete loss of V-ATPase activity gave no indications for multiple isoforms in *Saccharomyces cerevisiae* (c.g. Nuomi *et al.*, 1991; Foury, 1990). Also, in other fungi only one gene per subunit has been identified (Gogarten *et al.*, 1992b). However, In the case of human, animal and higher plants, different genes encoding the same subunit type have been found. Two isoforms have been reported for A subunit from hunan, chicken and plants (van Hille *et al.*, 1993b; Hernando *et al.*, 1995; Gogarten *et al.*, 1992b); B subunit in human and bovine (Bernasconi *et al.*, 1990; Puopolo *et al.*, 1992; Nelson *et al.* 1992; Berkelman *et al.*, 1994); E subunit in Mammal (Hemken *et al.*, 1991), c subunit in yeast and maize (Umemoto *et al.*, 1991; Vieveck *et al.*, 1996) and 100-kDa subunit in bovine (Peng *et al.*, 1994). The presence of different isoforms might allow differential targeting and regulation of cell-, organelle- or plasma membrane- specific V-ATPases.

#### 1..3.3 Plasma membrane V-ATPase

V-ATPases usually reside in the membranes of acidic organelles. However, they are also present in the plasma membrane of several cell type. Although having a similar structure and subunit constitutes as that of endomembrane V-ATPase, the plasmid membrane V-ATPases in arthropod and vertebrate cells share several features that are not generally observed in the V-ATPases in intracellular membranes (Bowman et al., 1993; Gluck, 1992). Plasmid membrane V-ATPases are present at high densities, far greater than the densities on intracellular membranes. However, the amplification of plasma membrane V-ATPase is limited to specific cell types. In insects, high densities of V-ATPase on the plasma membrane are observed in the midgut goblet cell and the enveloping cells of sensilla (Klein et al., 1991a, 1991b). Similarly, high densities of plasma membrane V-ATPase are found in the mitochodria-rich cell of toad bladder (Brown et al., 1987) and frog skin (Harvey, 1992), in the intercalated cells of the mammalian kidney collecting tubule (Brown et al., 1988; Brown, 1992; Gluck et al., 1992a; Gluck et al., 1992b; Gluck et al., 1994), in insect Malpighian tubules (Dow, 1994; Garoyoa et al., 1995) and in insect midgut (Wieczorek et al., 1989). In bone only the osteoclast cells have the immunocytochemically detectable plasma membrane V-ATPase (Baron, 1994).

#### 1.3.4 Functions of V-ATPase

V-ATPase is a proton pump required for acidification of many types of eukaryotic vacuole. These include lysosomes, plant and fungal vacuoles, synaptic vesicles, coated vesicles and Golgi (Nelson, 1992a). The participation of V-ATPases in numerous aspects of endocytosis, secretion and sorting has been amply recognised (Forgac, 1989; Mellman *et al.*, 1986; Lukacs et al., 1996). In fungi, plants and most animal cells, V-ATPases

energise selected intracellular membrane compartments of the vacuolar system, acidifying the interior of these compartments and providing an electrochemical driving force for the transport of solutes (reviewed by Nelson, 1992a; Nelson, 1994).

V-ATPase functions not only in the vacuolar system but also in the plasma membrane of specialised cells. The roles of V-ATPase in kidney function and bonc reabsorption is well understood. The kidney plays a vital role not only in cleaning the body of waste products but also in the acid-base balance of mammals. Hydrogen ion excretion involves several processes including bicarbonate reabsorption, carbonic anhydrase activity and regulated pumping of protons across the plasma membrane by V-ATPase. In epithelial cells of the proximal urinary tubule, V-ATPase is present in the apical membrane and functions in proton secretion. In the collecting duct V-ATPase may be found either in apical or basolateral membranes of specialised intercalated cells. These cells shuttle V-ATPase between intracellular vesicles and the plasma membrane in response to changes in the acid-base balance of the animal. It was shown that the distribution of V-ATPase, in apical or basolateral membranes of intercalated cells, changes during adaptation to acidosis or alkalosis. The cells increase their number of V-ATPase enzymes in their apical membrane during acidosis and decrease their number during alkalosis. Therefore, V-ATPase plays a major role in maintaining pH homeostasis in mammals and other animals (Gluck, 1992).

The involvement of V-ATPase in bone reabsorption has been well reviewed by Baron *et al.* (1994). Bone reabsorption is necessary for bone growth, remodelling and repair. Osteoclasts are multinucleated and highly motile cells that migrate between the bone and bone marrow and function in bone reabsorption. They attach to the mineralised bone matrix forming a close space to which hydrolytic enzymes are secreted. The optimal activity of these enzymes require low pH which is provided by V-ATPase located in the part of the plasma membrane in contact with the bone. And protons are required for the release of each calcium ion from the mineral. The osteoclast V-ATPase provides all protons necessary for calcium reabsorption. The pharmacological value of studying the



**Figure 1.10** Generalised model for insect epithelia. An apical plasma-membrane V-ATPase pumps proton out of the cell. These are exchanged for alkali metal cations (Na<sup>+</sup> or K<sup>+</sup>) to produce a net ATP-dependent flux. Entry through the basal plasma membrane is not defined in the basic model, but is thought to be *via* channels, cotransports or ATPases in various insect tissues (Diagram kindly provided by Dr. Julian A. T. Dow).

ostcoclast V-ATPase is apparent because a specific slow down in its activity may prevent the onset of osteoporosis.

The plasma membrane V-ATPase in vertebrate cells functions primarily for proton transport. In contrast, The plasma membrane V-ATPases of insects generate a membrane potential, which is used to drives an electrogenic K<sup>+</sup>/H<sup>+</sup> antiporter operating in parallel in the same membrane (Wieczorek, 1991; Wieczorek, 1992; Klein, 1992; Wieczorek and Harvey, 1995), This "Wieczorek model" for the K<sup>+</sup> pump in insect midgut is now generally accepted for all insect epithelia which appear to have an apical, electrogenic pump for sodium or potassium. Essentially, it is that an apical plasma membrane V-ATPase energises an exchanger more or less similar to the vertebrate Na+/H+ exchanger, and that this coupling is normally so tight that on a macroscopic scale, the ion pumped appears to be the metal ion, rather than the proton (Figure 1.10). Unlike the vertebrate use of the pump in kidney epithelium and plasma membrane, the V-ATPase does not appear to be used directly to acidify the extracellular space; rather, it is used as a driving force, employed to move a different ion (Dow, 1994; Azuma et al., 1995). In M. sexta midgut this results in extreme alkalisation of the lumen of the midgut to pH>11 (Dow, 1984; Dow, 1986; Dow, 1989; Dow, 1992). Similarly, V-ATPases are the primary driving force generating a membrane potential which drive salt and water fluxes in the Malpighian tubules and the rectum (Moffett, 1992). The V-ATPase-generated membrane potential in the enveloping cells of the sensillum drives the signalling currents initiated by activation of the sensory cells (Klein, 1992).

-

2

1977

However, the 'Wieczorek' model has recently been challenged by an alternative explanation, based on the insensitivity of electrical measurements of the insect trichogen sensilla to amiloride or harmaline (Küppers and Bunse, 1996). On this basis, they argue that no exchanger exists and that the apical V-ATPase is primarily a proton ATPase, but with the additional ability to transport alkali metal cations. Given that the intracellular pH is 7, and that intracellular K<sup>+</sup> is around 100mM, even if the pump were  $10^5$ :1

selective in favour of H<sup>+</sup> over K<sup>+</sup>, under normal conditions the two ions would be transported at nearly equal rates (Dow *et al.*, 1996). However, given that an exchanger has been demonstrated functionally in *Manduca* midgut (Azuma *et al.*, 1995), this alternative model requires further supporting evidence.

In addition to the straightward endosomal acidification, an increasing number of cellular processes are being shown to be dependent on V-ATPase function (reviewed by Dow et al., 1996). Polycomb may be modulated by hemizygosity for vha55, a gene encoding a proton pump B subunit (Davies et al., 1996); V-ATPases have been implicated in the regulation of cytoplasmic pH (Dow et al., 1996); the proteolipid subunit of V-ATPase was implicated as the main structural protein in gap junctions (Finbow, 1992) and in neurosecretion of acetycholine (Birman et al., 1990); V-ATPases have also been found to colocalise with calcineurin, an important Ca<sup>2+</sup>-sensitive phosphatase, suggesting an important role for V-ATPases in regulating intracellular calcium (Garrettengele et al., 1995; Tanida et al., 1995). Three transmembrane subunits of the V-ATPase (proteolipid, Ac39 and Ac116) were found to coexist with synaptobrevin and synaptophysin in rat synaptosome (Galli et al., 1996), and the 39 kDa subunit of the V-ATPase has been identified as a synaptic-vesicle binding protein (Siebert et al., 1994). These observations further suggest a role of V-ATPase in the neurotransmission. It is also possible that some human genetic disease may be associated with haploabnormality for a V-ATPase gene (Goldstein et al., 1991; Baud et al., 1994; Mears et al., 1995; Gottlieb et al., 1995; Koralnik, 1995; DeFranco et al., 1995).

#### 1.3.5 Mutational analysis of V-ATPases

The yeast *S. cerevisiae* V-ATPase closely resembles the V-ATPases from other fungi, plants and animals, both in its overall structure and in the sequences of the subunit genes that have been cloned (Anraku *et al.*, 1992; Kane, 1992). Yeast has been used as a model system for mutational analysis of V-ATPase. Mutation for the 100, 69, 60, 42, 27, and

17 kDa subunits have been constructed (Kane, 1992; Liu et al., 1996). Deletions in any of these subunit genes yield a well-defined set of phenotypes, which includes a complete loss of vacuolar acidification, absence of all ATPase activity in isolated vacuoles and failure to grow in media buffered to neutral pH (Nelson and Nelson, 1990). Mutations in the ATPase subunits also result in precursor accumulation and missorting of both soluble and membrane vacuolar proteins (Yaver *et al.*, 1993; Ho *et al.*, 1993).

Gene replacement in yeast has been a powerful method to generate V-ATPase null mutants, but such approaches are not yet feasible in higher eukaryotes (Gogarten et al., 1992a), and yeast V-ATPases mainly play endomembrane role (Dow, 1994). As an alternative approach, Gogarten et al (1992a) used antisense mRNA to inhibit gene expression of V-ATPase A subunit in higher plants. Carrot root cells were transformed with the coding or 5' noncoding regions of the carrot V-ATPase A subunit cDNA cloned in the antisense orientation. Regenerated plants containing the antisense constructs exhibited altered leaf morphologies and reduced cell expansion. It was inferred that the antisense constructs specifically blocked expression of a tonoplast-specific isoform of the V-ATPase A subunit in carrot. The degree of antisense mRNA inhibition is variable in different tissues and rarely completely block the gene. Moreover, in some animals, antisense mRNA has not been so successful. As a solution to this problem, Drosophila may provide an ideal model organism for mutational analysis of genes encoding different subunits of V-ATPases (Dow, 1994; Davies et al., 1996, Dow et al., 1996). A pilot study for gene inactivation shows that transposable P-elements can be easily inserted into the Drosophila ductin vha16 gene. Although without phenotypic consequences, these can serve as a starting point for generation of null alleles (Finbow et al., 1994a). vha55, the gene encoding the B-subunit of Drosophila V-ATPase has been cloned recently. Inactivation of the gene reveals a larval lethal phenotype (Davies et al., 1996).

## 1.4 The aim of this project

The aim of this project is to clone and characterise genes encoding A, E, F subunits in *Drosophila* V-ATPase and subsequently inactivate these genes. The mutagenesis work began with a large scale plasmid rescue of P[lacW] lethal insertion lines (generated by the laboratories of Istvan Kiss and Peter Deck in Hungary) and was followed by screening for the specific mutations. The target genes, apart from components of V-ATPase, will also include a range of neurotransmitter receptors, neuronal kinases, *et al*. Once a mutation is isolated, a detailed molecular, physiological and behavioural study will subsequently follow to address the functions of the genes.

# Chapter 2

# Materials and Methods

#### 2.1 Drosophila

The main *Drosophila* stocks used in this work are described below:

| Strain/Genotype       | Reference               |
|-----------------------|-------------------------|
| Oregon R              | Lindsley and Zimm, 1992 |
| Canton S              | Lindsley and Zimm, 1992 |
| w; Sb P[ ry+Δ2,3)/TM6 | Robertson ct al., 1988  |

Mutations used are listed in Appendix 3.

Flies were routinely raised on Glasgow medium. Culture temperature was 25°C, unless otherwise stated. A grape juice agarose medium was used to obtain eggs. Third instar larvae, used for *in situ* hybridisation to polytene chromosomes, were reared on a rich medium.

Glasgow medium: 10 g agar, 15 g sucrose, 30 g glucose, 35 g dried yeast, 15 g maize meal, 10 g wheat germ, 30 g treacle, 10 g soya flour per litre of water.

Grape juice agarose medium: 19.8 g agarose, 52.2 g glucose, 26 g sucrose, 7 g dried yeast, 9% (v/v) red grape juice (Safeway) per litre of water.

Rich medium: 100 g glucose, 100 g dried yeast, 20 g agar per litre of water.

## 2.2 E. coli, plasmids and bacteriophages

The *E. coli* strains used in this work are all derivatives of *E. coli* K12. They are listed below with their genotypes:

| strain   | Genotype                                                                           | Reference        |
|----------|------------------------------------------------------------------------------------|------------------|
| XL1-Blue | recA1, endA1, gryA96, thi-1, hsdR17, supE44.                                       | Bullock (1987)   |
| NM621    | hsdR,mcrA,mcrB,supE41,recD1009.                                                    | Whittaker et al, |
|          |                                                                                    | 1988             |
| DH5a     | F <sup>-,</sup> deoR, phoA, sup E44, hsdR17, recA1, endA1,<br>gyrA96, thi-1, relA1 | Gibco BRL        |

Plasmids and bacteriophages used in this study, other than those whose construction is described elsewhere, are listed below.

| Plasmids/           | Description                                              | Source/ Reference      |
|---------------------|----------------------------------------------------------|------------------------|
| Bacteriophage       |                                                          |                        |
| pBR <i>rp49</i>     | EcoRI-HindIII fragment of the                            | O'Connell &            |
|                     | <i>Drosophila</i> ribosomal protein<br>49 gene in pBR322 | Rosbash, 1984          |
| pBluescript®IISK+/- |                                                          | Mead et al., 1985      |
| P[lacW]             | Whole P[ <i>lacW</i> ] sequence                          | Bier et al., 1989      |
| EMBL3               | λ Vector for genomic DNA                                 | Frischauf et al., 1983 |

## 2.3 E. coli Growth medium

| L-Broth: | 10 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 10 g |
|----------|--------------------------------------------------------------|
|          | NaCl, per litre of water and adjust to pH 7.0 with NaOH.     |
| L-Agar   | As L-broth with the addition of Bacto-agar (Difco) to 1.5%.  |

| BBL Broth       | 10 g trypticase peptone (BBL), 5 g sodium citrate, made up to  |
|-----------------|----------------------------------------------------------------|
|                 | 1 litre with distilled H2O.                                    |
| BBL agar:       | As BBL broth with the addition of Bacto-agar to 1.5%.          |
| BBL top agarose | As BBL broth with the addition of gel quality agarose to 0.7%. |
| 2xYT Broth:     | 10 g Bacto-tryptone (Difco), 10 g yeast extract (Difco), 5 g   |
|                 | NaCl made up to 1 litre with distilled H2O                     |
| φ–Broth         | 20 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 4.93 g |
|                 | MgSO4, 0.58 g, NaCl, 0.37 g KCl, made up to 1 litre with       |
|                 | distilled H2O                                                  |

All culture media was sterilised by autoclaving at 120°C for 15 min at 15 psi. Where required, L-broth and BBL top agar were supplemented with 10 mM MgSO4 for growth of bacteriophage lambda and its derivatives.

## 2.4 Antibiotics and indicators

Ampicillin, at a final concentration of 100  $\mu$ g/ml (100 mg/ml stock solution in sterile distilled water) was added to broth or agar to select transformed *E. coli*. When necessary, tetracycline, at a final concentration of 7.5  $\mu$ g/ml (15 mg/ml stock solution in absolute ethanol), was added to broth or agar. 5-bromo-4-chloro-3-indolyl- $\beta$ -D-galactopyranoside (X-gal) and isopropyl- $\beta$ -D-thiogalactopyranoside (IPTG) were added to molten agar (50°C) in order to detect recombinant clones. X-gal was dissolved in dimethylformamide and IPTG in sterile distilled water. Both were stored at -20°C as 20 mg/ml solutions, and used at a final concentration of 20  $\mu$ g/ml.

#### 2.5 Competent cells and transformation

#### 2.5.1 Preparation of competent cell

#### CaCl<sub>2</sub> method

This method is modified from that of Hanahan (1985). 20 ml of L-broth was inoculated with 0.4 ml of an overnight culture of XL1-Blue, and grown with aeration at 37°C until cells had entered the logarithmic growth phase ( $OD_{600}=0.4-0.6$ ). The cells were then pelleted at 4000 g for 5 min at 4°C in a bench-top centrifuge, the supernatant removed, and the resulting pellet resuspended in 10 ml icc-cold 100 mM CaCl<sub>2</sub> solution. After a 20 min incubation on icc, the cells were repelleted as above, and then suspended in 2 ml ice-cold 100 mM CaCl<sub>2</sub>. Competent cells were either used fresh, or frozen for later use after adding 25% of glycerol.

## RbCl method

A single colony was picked off a freshly streaked LB agar plate and dispersed in 20 ml of  $\varphi$ -broth. The culture was incubated with agitation overnight. 4 ml of the overnight culture was added to 200 ml of  $\varphi$ -Broth and incubated at 37°C with agitation in a 2 litre flask until OD<sub>600</sub>=0.5. The cells were then pelleted at 1300 g for 10 min at 4°C. The pellet was resuspended by gently shaking in 50 ml pre-chilled RF1 buffer and incubated on ice for 30 min. Cells were pelleted again as above and then resuspended in 15 ml of chilled RF2 buffer. The competent cells, after being flash frozen in liquid nitrogen, were stored at -70°C for later use.

| Compound                             | Concentration | Amount/litre             |
|--------------------------------------|---------------|--------------------------|
| RbCl                                 | 100 mM        | 12 g                     |
| MnCl <sub>2</sub> .4H2O              | 50 mM         | 9.9 g                    |
| Potassium acetate                    | 30 mM         | 30 ml (1 M stock pH 7.5) |
| CaCl <sub>2</sub> .2H <sub>2</sub> O | 10 mM         | 1.5 g                    |
| Glycerol                             | 15% (W/V)     | 150 g                    |

|      | _          |    |
|------|------------|----|
| T. 1 | <b>-</b> • | ъ. |
| - C  | н.         |    |
| 15   | •          |    |
| _    | _          | _  |

Adjust the pH to 5.8 with 0.2 M acetic acid. Sterilise by filtration through a pre-rinsed  $0.22 \mu$  membrane.

DEO

|                | <b>R</b> (2   |                          |
|----------------|---------------|--------------------------|
| Compound       | Concentration | Amount/litre             |
| MOPs           | 10 mM         | 20 ml (0.5M stock pH7.5) |
| RbCl           | 10 mM         | 1.2 g                    |
| $CaCl_2.2H_2O$ | 75 mM         | 11 g                     |
| Glycerol       | 15% (W/V)     | 150 g                    |

Adjust pH to final pH 6.8 with NaOH (if necessary) and sterilise by filtration through a pre-rinsed 0.22  $\mu$  membrane.

### Competent cells for eletroporation

4 ml of fresh overnight culture was added to 400 ml of L Broth at 37°C with vigorous shaking to an OD=0.5-0.7. The cells were pelleted at 4°C in cold centrifuge bottles in a cold rotor at 2000 g for 10 min. The pellets were gently resuspended in 400 ml of ice-cold 10% glycerol and repelleted as above. The step was repeated twice with the pellet being resuspended in 200 ml of ice-cold 10% glycerol for the first repeat, and in 100 ml of ice-cold 10% glycerol for the second repeat. Finally the cells were resuspended in 1.5-2 ml of ice-cold 10% glycerol. This suspension of competent cells can be used fresh or can be frozen in aliquots in liquid nitrogen and stored at -70°C.

## 2.5.2 Transformation of E. coli

50-100 ng of DNA in a volume up to 10  $\mu$ l was added to 200  $\mu$ l of competent cells and left on ice for 15 min. The mixture was subjected to a heat-shock at 42°C for 90 seconds and quickly chilled on ice for a few mininutes. The cells were either plated immediately, or after incubation in 800  $\mu$ l 2XYT with agitation at 37°C for 0.5 -1 hr., onto L-agar plates containing the appropriate antibiotics and indicators. The plates were incubated overnight at 37°C to select for transformants. Electroplation was performed according to the manual provided with that *E. coli* Pulser apparatus (BIO-RAD). 40  $\mu$ l of the cell suspension was mixed with 1 to 2  $\mu$ l of DNA in a cold, 1.5 ml polypropylene tube and left on ice for 0.5-1 min. Immediately after electroplation the mixture was plated on an ampicillin selective plate.

## 2.6 Nucleic Acid Isolation

## 2.6.1 Plasmid DNA

Large scale plasmid isolation was carried out by the alkaline-lysis method of Birnboim and Doly (1979) as described in Sambrook et al. (1989). Small scale plasmid preparations were made by the alkaline-lysis or boiling method (Sambrook *et al.*, 1989), or with the Magic<sup>TM</sup> DNA purification system (Promega) using the protocol recommended by the manufacturer.

#### 2.6.2 Bacteriophage $\lambda$ DNA

Isolation of  $\lambda$  DNA was performed by a modification of the protocol of D. Chisholm (1989).

#### Host Cell Preparation

1 ml of an overnight culture of NM621 was added into 100 ml of L-broth to grow until  $OD_{600}$  was  $\approx 0.3$  (about 3hrs). The cells were pelleted and resuspended in 10 mM MgSO<sub>4</sub> to a final  $OD_{600}$ =1.

## Growing Lamda Lysates

 $2\times10^6$  phage was added to 500 µl ( $4\times10^8$ ) of plating cells. The culture was incubated at 37°C for 30 min to allow the phage to be absorbed to the bacteria. The mixture was then

added to 37 ml of NZCYM in a 250 ml flask and grown with vigorous shaking until lysis was apparent (12-15 hrs).

#### **Isolation of Phage**

The above mixture was transferred to Falcon tubes containing 100  $\mu$ l chloroform with thorough shaking, 370  $\mu$ l of nuclease solution (50 mg DNAse 1, 50 mg RNAse A, in 10 ml of 50% glycerol, 30 mM NaOAc, pH 6.8; stored at -20°C) was added and the mixture was incubated at 37°C for 30 min. 2.1 g of NaCl was added and the mixture shaken gently until the salt was dissolved. Debris was pelleted (4000 rpm, 20 min, 4°C) and 3.7 g PEG8000 was added to the supernatant. The sample was placed on ice for 1 hr after the PEG had dissolved at room temperature. The phage were pelleted (10,000 rpm for 20 min at 4°C) and resuspended in 500  $\mu$ l of phage buffer. This phage suspension was mixed with an equal volume of chloroform and the phases separated by centrifugation.

#### Isolation of Phage DNA

The aqueous layer was transferred into a new Eppendorf and 20  $\mu$ l 0.5M EDTA, 5 ul of 20% SDS, and 2.5  $\mu$ l proteinase K (10 mg/ml) were added. After incubation at 65°C for 30 min, the supernant was extracted with phenol and then with chloroform. DNA was precipitated and dissolved in 300  $\mu$ l of TE. Yields for EMBL3 derivatives were generally 50-100  $\mu$ g.

#### 2.6.3 Drosophila DNA

## Rapid single fly DNA isolation for PCR

Single-fly DNA was prepared by the method modified from Gloor, G and Engels, W (1991). A single fly was homogenised in an 1.5 ml Eppendorf microcentrifuge tube with an micropestle in 50  $\mu$ l of homogenisation buffer (10 mM Tris-HCl, pH 8.3, 1 mM EDTA, 25 mM NaCl, 200  $\mu$ g/ml Proteinase K, from a 20 mg/ml stock solution in sterile

distilled water). And after incubation for 30 mins at 37°C, the homogenate was then heated to 95°C for 2 min, 2  $\mu$ l of the homogenate was used directly in a 20  $\mu$ l volume of PCR reaction.

## Genomic DNA isolation from adult flies

Adult genomic DNA was prepared by a modification of the method of Hamilton *et al.* (1991). 15-20 flies were homogenised in a 1.5 ml Eppendorf microcentrifuge tube with a motorised pestle in 400  $\mu$ l of lysis buffer (80 mM NaCl, 5% sucrose, 0.5% SDS, 50 mM EDTA, 100 mM Tris-HCl pH8.5). Following 30 min at 70°C, KOAc was added to a final concentration of 0.6 M, and the tube was placed on ice for 30 min. Debris was pelleted by centrifugation at 4°C for 15 min, and genomic DNA present in the supernatant was carefully removed to a fresh tube. The following stage (A, B, or C) is slightly variable according to the quality requirements for the DNA:

(A) The supernant was extracted once with an equal volume of phenol, once with an equal volume of phenol/CHCl<sub>3</sub> (1:1) and finally with an equal volume of CHCl<sub>3</sub>. The DNA was then precipitated with 0.6 volume of isopropanol. The pellet was washed with 70% ethanol, dried and resuspended in 50  $\mu$ l of TE with RNase A at 20  $\mu$ g/ml.

(B) 0.5 volume of PEG solution (13% PEG8000, 1.6 M NaCl) was added to the supernant, mixed well and centrifuged at 4°C for 5 min. The pellet was washed with 70% ethanol, dried and resuspended in 100 µl of TE.

(C) The supernant was pelleted with 0.6 volume of isopropanol and washed with 70% ethanol, dried and resuspended in 100 µl of TE.

Genomic DNA purified by either method (A) or method (B) can be cleaved by restriction enzymes for genomic Southern blot analysis. Genomic DNA prepared using (C) suffices for plasmid rescue.

#### 2.6.4 Drosophila RNA

Total RNA was isolated using TRIzol<sup>TM</sup> (Gibco BRL). 40 adult flies (or the same volume of larvae, pupae or embryos) were homogenised in a 1.5 ml Eppendorf with 1ml of TRIzol<sup>TM</sup> reagent and left at room temperature for 5 min. 0.2 ml of chloroform was added, mixed well and incubated at room temperature for 2-3 min. The mixture was centrifuged at 12000 g at room temperature for 15 min. The aqueous phase (about 600  $\mu$ l ) was carefully removed to a fresh 1.5 ml Eppendorf and 500  $\mu$ l of iso-propanol was added. After incubation at room temperature for 10 min, the sample was centrifuged at 4°C for 10 min and washed with 70% EtOH. The pellet of total RNA was dissolved in 40  $\mu$ l of RFW (RNase free water). 40 adult flies can result in 200 -300  $\mu$ g of total RNA.

#### 2.7 Quantification of nucleic acids

For quantitating the amount of DNA or RNA in a sample, reading/were taken at wavelengths of 260 nm or 280 nm. An OD<sub>260</sub> corresponds to 50 µg/ml for double stranded DNA, 40 µg/ml for RNA and 33 ug/ml for oligonucleotides. When samples had limiting concentrations of DNA (<250 ng/ml), the quantity of DNA was estimated by spotting the sample and known standards onto the surface of a 1% (W/V) agarose gel containing EtBr (0.5 µg/ml). The gel was photographed using short-wavelength UV illumination (254 nm) and the concentration of the DNA sample was estimated by comparing the intensity of fluorescence in the sample with those of known DNA concentration standards.

## 2.8 Labelling nucleic acids

# 2.8.1 <sup>32</sup>P labelling of DNA

Labelled gel-purified fragments or linearised plasmids were prepared by random priming, a method slightly modified from Feinberg and Vogelstein (1984). Briefly, to 5-100 ng of denatured DNA (in 27 µl of distilled water), 10µl of 4X random priming buffer, 3 µl of  $[\alpha$ -<sup>32</sup>P] dCTP (30µCi; 3000 Ci/mmole) and 1 µl of Klenow DNA polymerase (5 U/µl) were added. The mixture was then incubated for 1 to 4 hr. Probes were purified by Sephadex G50 (Pharmacia) chromatography, in columns prepared from disposable 1 ml syringes (Sambrook *et al.*, 1989).

The 4x Random priming buffer is "home -made" based on the original recipe. The random priming mix is made from three individual components (solutions 1 to 3). These are mixed together to make a batch of random priming buffer that is then aliquoted and stored at -20°C.

| Solution 1: | $Mix\Phi*$                           | 1 ml                    |
|-------------|--------------------------------------|-------------------------|
|             | $\beta$ mercaptoethanol              | 5 µl                    |
|             | 100mM each of dA, dG, dT             | 5 µl                    |
|             | Φ*: 1.25 M Tris HCl pH 8.0 and 0.1   | 25 M MgCl <sub>2.</sub> |
|             |                                      |                         |
| Solution 2: | 2 M Hepes pH 6.6                     |                         |
|             |                                      |                         |
| Solution 3: | Hexanucleotides at 90 OD units per 1 | nl. The                 |
|             | Pharmacia 50 OD unit aliquots of he  | kanucleotides were      |
|             | dissolved in 0.55 ml water.          |                         |
|             |                                      |                         |

| 4x buffer  | solution 1 | solution 2 | solution 3 |
|------------|------------|------------|------------|
| ratio      | 2:         | 5:         | 3          |
| for 0.5 ml | 100 µl     | 250 µl     | 150 µl     |

#### 2.8.2 DIG-labelling of DNA

Fragments used to generate probes were excised from the appropriate vector and separated by agarose electrophoresis. 200 ng of this gel purified fragment (See Section 2.9.1) was then used to produce each DIG labelled probe. Briefly, the DNA was denatured at 100°C for 5 min and quickly chilled on ice before addition to the labelling mixture. Distilled water was added to make a volume of 20  $\mu$ l and the sample incubated at 37°C overnight. The reaction was stopped by the addition of 2  $\mu$ l of 0.2 M EDTA (pH8.0) solution. The probe was precipitated by adding 2.5  $\mu$ l of 4 M LiCl and 75  $\mu$ l prechilled (-20°C) ethanol followed by incubation at -70°C for 30 min. The probe was then pelleted and resuspended in TE (pH8.0).

#### 2.8.3 Nick translation

Labelled plasmid DNA was prepared by nick translation (Sambrook *et al.*, 1989). Briefly, 2.5 µl of 10X Nick Translation Buffer (0.5 M Tris-HCl, pH 7.5, 0.1 M MgSO<sub>4</sub>, 1 M DTT, 500 µg bovine serum albumin; fraction V; Sigma), 20 nmole each of dATP, dGTP and dTTP (Pharmacia) and 50 µCi; 3000 Ci/mmole of  $[\alpha^{-32}P]$  dCTP were added to approx 0.5 µg of plasmid DNA and the volume was made up to 21.5 µl with distilled water. After chilling (0°C) the mixture, 2.5 µl of DNase I (10 ng/ml in ice-cold 1X Nick Translation Buffer containing 50% glycerol) and 2.5 U of *E. coli* DNA polymerase I were added. The reaction was then incubated for 60 min at 16°C and stopped by the addition of 0.04 volume of 0.5 M EDTA, pH 8.0. For probes for chromosomal *in situ* hybridisation the teaction was performed in the presence of 1 mM biotin 16 dUTP (Boeringer Mannheim). A trace  $[\alpha^{-32}P]$ dCTP (10 µCi) was also added

progression of the synthesis reaction. The precipitated probe from 500 ng of cDNA plasmid was resuspended in 75 µl of chromosomal *in situ* hybridisation solution (0.6 M NaCl, 50 mM NaPO4, pH 6.8, 5 mM MgCl<sub>2</sub>, 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone).

#### 2.9 Electrophoresis

#### 2.9.1 Agarose gel electrophoresis for DNA

This method was performed as described in Sambrook *et al.*, 1989. DNA was electrophoresed in agarose in 1X TBE (90 mM Tris, 90 mM boric acid, pH8.3, 2 mM EDTA). The marker was a 1 kb ladder (Gibco BRL). DNA fragments were purified from 1% (w/v) LMP (Low Melting Point agarose, Gibco BRL) agarose gel in 1X TAE (40 mM Tris-acetate, pH 7.6, 1 mM EDTA), using the Magic<sup>TM</sup> DNA purification system from Promega, or by using the silica suspension method (Boyle and Lew, 1995).

## 2.9.2 Denaturing agarose gel electrophoresis for RNA

Prior to electrophoresis, RNA samples (up to 5  $\mu$ l) were denatured by the addition of 10  $\mu$ l of formamide, 2  $\mu$ l of 5X MOPS buffer (200 mM MOPS, pH 7.0, 50 mM sodium acetate, 5 mM EDTA, 11 M formaldehyde), 3.5  $\mu$ l of formaldehyde (12.3 M), 1  $\mu$ l of EtBr (1mg/ml stock), and heated to 70°C for 5 min. Prior to loading, 2.5  $\mu$ l of loading dye (30% (w/v) Ficoll 400, 1 mM EDTA, 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol) was added. The RNA was electrophoresed in 1% (w/v) agarose formaldehyde gel (Sambrook *et al.*, 1989), using 1X MOPS, with constant circulation from anode to cathode chambers in order to maintain a constant pH.

#### 2.9.3 Polyacrylamide gel for DNA sequencing

Products of DNA sequencing reactions were separated on denaturing polyacrylamide gels: 6% (w/v) acrylamide (Acrylamide: N, N'-methylenebisacrylamide, 19:1), 7 M urea, in 1X TBE. Polymerisation was initiated by the addition of 1 ml of 10% (w/v) ammonium persulfate and 50  $\mu$ l of TEMED (N, N, N', N', -tetramethylenediamine) to 150 ml of 6% acrylamide/urea mixture. The gel was allowed to polymerise overnight before use. Samples were denatured for 5 min at 80°C and then loaded onto the gel. Gels were run for various lengths of time, depending on the size of DNA to be resolved, and then dried for 1-2 hr at 80°C on Whatman 3MM paper under vacuum. Autoradiography was carried out without intensifying screens at room temperature.

## 2.10 Nucleic acid hybridisation

## 2.10.1 Southern blotting and hybridisation

Agarose gels containing DNA were transferred to nylon membranes (Hybond-N), by capillary action and fixed to the membrane by UV treatment as instructed by the manufacturer (Amersham UK). DNA/DNA hybridisation was carried out at 65°C in hybridisation solution (5X SSPE, 10X Denhart's solution, 1% SDS, 0.005% sodium pyrophosphate and 100µg/ml of denatured sonicated salmon sperm DNA) or in Church buffer (7% SDS, 1% BSA, 1 mM EDTA, 0.25 M Na<sub>2</sub>HPO4 pH 7.2). Filters were pre-hybridised at 65°C for at least 1hr before addition of the denatured radioactive probe (10<sup>5</sup>-10<sup>6</sup> cpm/ml of hybridisation solution) and hybridised for between 4 hr and overnight according to the type and amount of DNA on the filters. After hybridisation, the blot was then washed at 65°C in 2x SSPE, 0.1% SDS for 30 min; 0.5x SSPE, 0.1% SDS for 30 min; and finally in 0.1x SSPE, 0.1% SDS for 30 min. The washed filters

were covered in Saran Wrap<sup>TM</sup> and then subjected to autoradiography between intensifying screens at -70°C.

## 2.10.2 Northern blotting and hybridisation

Agarose formaldehyde gels containing RNA were transferred to reinforced nitrocellulose (Hybond C<sup>+</sup>) by capillary action. RNA was fixed to the membrane by UV treatment as instructed by the manufacturer (Amersham UK). Pre-hybridisation and hybridisation was carried out at 42°C in RNA hybridisation buffer (50% formamide, 5X SSPE, 2X Denhardt's solution and 0.1% SDS) or at 55°C in Church buffer (7% SDS, 1% BSA, 1 mM EDTA, 0.25 M Na<sub>2</sub>HPO<sub>4</sub>, pH 7.2). Filters were pre-hybridised for at least 3 hr before addition of the denatured radioactive probe (10<sup>5</sup>-10<sup>6</sup>cpm/ml hybridisation solution) and then hybridised for a minimum of 16hr. The blots were washed at 42°C (or 55°C if the hybridisation was in Church buffer) in 2x SSC, 0.1% SDS for 30 min; and finally in 0.1x SSC, 0.1% SDS for 30 min. The washed filters were then covered in Saran Wrap<sup>TM</sup> and exposed to Fuji X-ray film for 1-3 days. Size was determined with respect to an RNA ladder (Gibco BRL).

## 2.11 Oligonucleotide synthesis

Oligonucleotides were synthesised by the solid state method on an Applied Biosystems Inc. PCR-MATE 391 DNA Synthesiser, employing phosphoramidite chemistry. After ammonium hydroxide cleavage and deprotection, oligonucleotides were evaporated to dryness under vacuum and resuspended in water or TE. Typically primers were 18-31 nt in length having about 50% G+C composition (Appendix 2)

## 2.12 DNA sequencing

Sequencing of double-stranded DNA was carried out by the dideoxy chain-termination method recommended in the Sequenase Version 2.0 manual supplied by the manufacturers (United States Biochemical Corporation).

#### 2.13 PCR

Generally PCR reactions were carried out on 100-200 ng of template DNA in 20  $\mu$ l of 50 mM KCl, 10 mM Tris-HCl (pH 8.3 at room temperature), 1.5 mM MgCl<sub>2</sub>, 0.01% (w/v) Triton X-100<sup>®</sup>, 200  $\mu$ m dATP, 200  $\mu$ m dCTP, 200  $\mu$ m dGTP, 200 $\mu$ m dTTP, primers (each at between 0.33-1  $\mu$ M) and 1 unit of *Taq* polymerase (Promega). Samples were overlaid with an equal volume of mineral oil (Sigma) and PCRs were performed in a Hybaid Thermal Reactor (Hybaid) with an initial denaturation step of 3 min at 94°C, followed by a three step routine that consisted of 1 min annealing at 55-60°C, extension at 72°C for 3 min and denaturation at 94°C for 1 min. A total of 30 cycles were carried out, followed by a return to 55-60°C for 5 min, a further 20 min extension step at 72°C, and a return to room temperature.

#### 2.14 In situ hybridization to polytene chromosomes

Salivary gland chromosome squashes were prepared as described by Ashburner (1989). Chromosomes were probed with a biotinylated, random-primed DNA probe, and hybridisation was detected using streptavidin-conjugated alkaline phosphatase.

#### 2.15 Isolation of cDNA and genomic clone

A  $\lambda$ ZapII (Stratagene) and a NM1149 (Dorssers and Postmes, 1987) oligo-dT primed cDNA library representing the heads of *eyes absent Drosophila* (S.R.H. Russell, unpublished) was used to screen for cDNAs encoding *Drosophila* V-ATPase A, E, and F subunit. Probes were either Dig-labelled or  $[\alpha - 32P]$  labelled, random-primed probes of the cDNAs encoding the A, E, and F subunit of *Maduca* V-ATPas. To isolate genomic DNA clones a *D. melanogaster* genomic DNA library in the vector EMBL3 was screened by plaque hybridisation with an  $[\alpha - 32P]$  labelled random-primed cDNA probe. Positives were purified by second or third round of screening. Genomic DNA fragments were subcloned in pBluescript SK-.

## 2.16 Generation of unidirectional deletions for rapid DNA sequencing

Generation of unidirectional deletions was with the Erase-a-Base system (Promega), using the method described by the manufacturer. The Erase-a-Base system is designed for the rapid construction of plasmid subclones containing progressive unidirectional deletions of inserted DNA, thus allowing efficient sequencing of large DNA fragments. The system makes use of the ability of exonucleaseIII (*Exo*III) to digest DNA from a 5' protruding or blunt end, while leaving a 4 base 3' protruding end or an  $\alpha$ phosphorothioate filled end intact. The uniform rate of digestion of the enzyme allows a series of deletions of increasing size to be made by removing timed aliquots from the reaction. See Section 6.3.2 and Promega's protocols for detailed procedures.

#### 2.17 Plasmid rescue and mutation screening

The laboratory of Istvan Kiss in Szeged (Hungary) has generated approximately 2300 fly lines with homozygous lethal mutant of a P[lacW] clement on the second chromosome, which were balanced over CyO (Török *et al.*, 1993)

Genomic DNA was prepared by a modification of the method of Hamilton *et al.*, (1991) (see Section 2.6.3) and resuspended in 50  $\mu$ l of 1X React 2 buffer (50 mM Tris-HCl, pH 8.0, 10 mM MgCl<sub>2</sub>, 50 mM NaCl<sub>2</sub>) by heating at 70°C for 15 min. After cooling to room temperature, another 50  $\mu$ l of React 2 buffer was added, together with 10 units of *Eco*RI, and the tube was placed at 37°C for 3-4 hours. Digestion was halted by heat-inactivation at 70°C for 15 min, and, after cooling to room temperature, ligation was initiated by adding an equal volume of 2x modified ligase buffer (10 mM MgCl<sub>2</sub>, 4 mM ATP, 20 mM DTT, 30 mM Tris-HCl pH 7.4) and 0.5  $\mu$ l T4 DNA ligase (Promega, 3 u/ $\mu$ ).

Competent *E. coli* (DH5 $\alpha$  or XL1-blue) were prepared using the RbCl method (Section 2.5.1). 200 µl of competent cells were mixed with 40µl of ligated DNA, placed on ice for 15min, heat-shocked at 42°C for 90 sec, again placed on ice for 5 min, and then mixed with 0.5 ml of 2xYT broth. The culture was shaken at 37°C for 1 hr, diluted into 25 ml of LB containing ampicillin at 150 µg/ml, and then shaken overnight at 37°C. Approximately 80% of overnight cultures showed evidence of growth. 1ml from cach 25ml culture was stored at -70°C in the presence of 20% glycerol. As a check on contamination, plasmid DNA isolated from 50µl of sampled overnight cultures was characterised by gel electrophoresis.

The remainder of the overnight culture (24 ml) was mixed with cultures representing nine other P[lacW] lines, and plasmid DNA was prepared by the alkaline lysis method and the resulted DNA was resuspended in 1 ml of TE. Portions of each pool were then

mixed to make pool of plasmids representing 100 lines for screening (See Chapter 3 for detail).

## 2.18 Histochemical Staining and Immunocytochemistry

 $\beta$ -Galactosidase expression in larval and adult tissues was detected by X-Gal staining (method modified from Bellen *et al.*, 1989). Adults or larvae were dissected in 1X PBS and tissues were fixed in 1% glutaraldyde for 10-15 min. After washing with 1X PBS twice, tissues were stained in X-gal solution overnight.

Embryo staining required more steps. Embryos were collected from yeasted apple/grape juice agar plates and dechorionated by dipping into 50% bleach (sodium hypochlorite solution, Safeway's bleach, freshly diluted 1:1) for 90 seconds. After washing with water, the embryos were fixed in a mixture of 0.35 ml 4% paraformaldehyde in 1X PBS and 0.7 ml n-heptane for 15-20 minutes at room temperature. The embryos were then washed at least twice with 800  $\mu$ l 1XPBS + 0.1%Triton X-100 and stained in X-gal solution until the colour appeared.

For staining with anti  $\beta$ -Galactosidase primary antibodies the tissue was fixed in 4% paraformaldehyde (in 1 X PBS) for 15 mins and washed twice in 1 X PBS, 3% triton X-100 and then preincubated in PAT (1 X PBS, 1% BSA, 1% Triton X-100) for 1 hour. The primary antibody, at a dilution of 1:2000 in PAT and 3% normal goat serum, was added and incubated overnight. The tissue was rinsed several times in PBS then reacted with an FITC-cojugated secondary antibody (1:250 for 1 hour). After washing in PAT, the tissue was then mounted in VectaShield for detection.

#### 2.19 Isolation of viable revertants and new alleles with P-element excision

Once a specific mutation line is isolated, it is necessary to isolate a viable revertant to prove the lethality is due to the insertion. If the insertion is on the 2nd chromosome,

female mutants are crossed to males carrying Sb,  $\Delta 2,3$  on their third chromosome over the TM6b balancer. This cross yields F0 "jumpstart" male carrying both P[*lacW*] and the  $\Delta 2,3$  element, and thus the P[*lacW*] will be mobilised. The crossing scheme is shown in Figure 2.1. Where the insertion is not within the gene, but at a site near the gene, local jumping combined with the strategy of PCR screening can identify other insertions within the target gene. The P-element loss may be precise or imprecise (Klambt *et al*, 1992; Tower *et al*, 1993). The identification of viable revertants proves that lethality was due to the P-element insertion.



Figure 2.1 Scheme for isolation of viable revertants and deficiency strains.  $P[W^+]$  stands for the P[lacW], [w-] stands for loss of the w+ marker.

The numbers of adults with phenotypes A, B and C were recorded.

If the numbers of A, B and C are equal, there has been a clean reversion of the homozygous lethal phenotype.

If the number of type C is less than A and B, it suggests that type C are suffering deleterious effects following remobilisation, i.e. a new allele with internal deletion within the original P-element or imprecise deletion of the gene.

If C=0, it is likely to be a new lethal allele due to deletion caused by imprecise excision or by internal deletion within P[lacW].

The survival efficiency of homozygous [w-]/[w-] can be further evaluated by the following cross.



The number of adults with phenotypes D and E was recorded.

If E=D/2, there has been clean reversion.

If  $0 \le D/2$ ; then the excision event has had some deleterious effects.

If E=0; then it is a new lethal allele with imprecise deletion or internal deletion of the Pelement.

## 2.20 Determination of lethal phase of the mutations

In order to determin the developmental phase for lethalities the original CyO balancer was replaced with a modified CyO balancer marked with a copy of  $y^+$ . Embryos were collected overnight from y w;  $P[lacW]/y^+CyO$  females crossed with yw;  $P[lacW]/y^+CyO$ males (See the following cross scheme). Eggs were laid out on an apple juice agar plate and incubated at 25°C. At regular intervals over a 48 hour period, the plate was examined to determine how many larvae had hatched. The phenotype of the larvae was determined by examination of their mouth hooks, homozygous y larvae possessing gold brown mouth hooks while heterozygous  $y^+$  larvae have brown/black mouth hooks.



Hence, offsprings with phenotype D and E can be distinguished as early as first instar larvae, allowing the lethal stage of the homozygous flies to be determined.
# <u>Site-Selected Mutagenesis of the Drosophila Second</u> <u>Chromosome via Plasmid Rescue of Lethal P-Element</u> <u>Insertions</u>

#### 3.1 Summary

This chapter describes a fast and efficient approach to correlating cloned genes with mutant phenotypes in *Drosophila*. We make use of a large collection *D. melanogaster* lines with recessive lethal insertions of a P[lacW] transposon on their second chromosome. Within this collection there must clearly be many insertions corresponding to *Drosophila* genes that have been cloned and characterised, but for which mutant phenotypes have yet to be identified. We have made use of the fact that P[lacW] contains a plasmid replicon to establish a collection of rescued plasmids containing genomic DNA flanking the sites of transposon insertion. Plasmids representing a total of 1836 lines were *independently* rescued, and pooled in batches of 10 and 100. Pools of 100 plasmids were screened by hybridisation with cDNAs corresponding to cloned second chromosome loci. Hybridising pools were then narrowed down to single plasmids by a process of subdivision and rehybridisation, and corresponding mutant lines were obtained.

#### **3.2 Introduction**

Many cloned *Drosophila* genes have yet to be correlated with a mutant phenotype. Siteselected transposon mutagenesis (SSM) is a reverse genetics solution to this problem. As originally described it involves the use of PCR between gene- and transposon-specific primers to identify individuals in which a P element transposon had inserted in or close to a target gene (Ballinger and Benzer, 1989; Kaiser and Goodwin, 1990; Banga *et al.*, 1992). The sensitivity of PCR allows a new insertion to be detected initially within a

population of mutagenised flies, after which it can be followed, as a specific amplification product, while the population is sub-divided. A similar strategy has been applied to mutagenesis of *Caenorhabditis elegans* (Rushforth *et al.*, 1993; Zwaal *et al.*, 1993) and maize (Das and Martienssen, 1995).

P elements engineered to contain a plasmid origin of replication and a drug-resistance determinant allow a different form of SSM, involving plasmid rescue of DNA flanking the site of insertion (Figure 3.1; Hamilton *et al.*, 1991; Hamilton and Zinn 1994; Guo *et al.*, 1996c). Pools of plasmids are created, each representing a population of flies with different insertion sites. Hybridisation between a pool and a specific cDNA/genomic DNA fragment is diagnostic of an insertion in or near to the gene of interest. The relevant pool is then narrowed down to a single hybridising plasmid, and thus to the corresponding *Drosophila* line, by a process of subdivision and re-hybridisation (Hamilton *et al.*, 1991; Guo *et al.*, 1996c).

Generation of large numbers of P element insertion lines is labour-intensive, as is their maintenance. In any case, only a small fraction of all new P element insertions is associated with phenotypic consequences. Thus, SSM tends to involve relatively transient collections of lines that are discarded or dispersed soon after screening. Even allowing for simultaneous screening with a number of target genes, this tends to reduce the generality of SSM. Further, plasmid rescue SSM tends to be performed on pools of lines (Hamilton *et al.*, 1991; K. Basler and E. Hafen, personal communication), rather limiting the amount of plasmid DNA that can be generated per individual line, and inevitably leading to misrepresentation of the individual plasmids. If time and resources allowed, it would clearly be preferable to rescue cach line independently.

A recent large scale screen for P[lacW] transposon insertions on the *D. melanogaster* second chromosome forms the background to a means by which some of the above



Figure 3.1 Overview of the plasmid rescue strategy. The essential structure of the P[*lacW*] transposon is shown at the top of the figure. Each line is maintained as a 'balanced lethal' in which only one of the pair of second chromosomes carries a recessive lethal P[*lacW*] insertion. The other second chromosome, the balancer *CyO*, confers a dominant visible phenotype (curly wings), is homozygous lethal, and suppresses recombination. Balanced lethal lines are thus easily maintained, since viable progeny have the same chromosomal constitution as their parents (see Ashburner 1989). P[*lacW*] contains an ampicillin resistance determinant (*amp*<sup>R</sup>) and a plasmid origin of replication (*ori*). This plasmid replicon is separated from the rest of the transposon by a unique site for *Eco*RI. Rescued plasmids therefore contain DNA extending to the right of the transposon up to the nearest flanking *Eco*RI site (complete digestion), or to a more distant site (partial digestion). Full arrows in anticlockwise direction show the order in which particular steps were carried out. Dashed arrows show source of plasmid DNA for second and third rounds.

problems can be overcome. 2308 independent recessive lethal mutations and 403 'semilethal' mutations were generated, each of which was saved in the form of a balanced lethal stock, and the lethal phase determined (Török *et al.*, 1993). P-induced lethals, though infrequent, must almost by definition correspond to insertions within genes. Inevitably the collection is likely to include many examples of genes that have been 'hit' more than once. There is also an unexpectedly high frequency ( $\approx$  50%) of lethals that do not coincide with an inserted P element (Kiss, I person. Com., 1996). Nevertheless, the collection represents a substantial proportion of the 2000 or so lethal complementation groups estimated to be present on the second chromosome (13/48 of the lethal complementation groups within the 1.8 Mb 34D-36A region, for example; Spradling *et al.*, 1995). Moreover, even non-lethal insertions are useful starting points for the secondary mutagenesis of flanking loci. The lines will be maintained in Szeged (Hungary), and possibly in other stock centres, for the conceivable future.

### 3.3 Plasmid Rescue

P[lacW], a modified P element transposon 10.6 kb in length, was designed as an enhancer-trap element (Bier *et al.*, 1989). It carries a *lacZ* reporter gene, the eye-colour marker *white*<sup>+</sup>, and a plasmid replicon with poly-linker (Figure 3.1). Insertion *within* a *Drosophila* gene of such a large element might be expected often to have significant consequences for gene expression (Spradling *et al.*, 1995). Plasmid rescue using the enzyme *Eco*RI was attempted independently for 2210 of the lines of Török *et al.*, (1993), as described in Materials and Methods.

Independent rescue and transformation allowed each transformant to be propagated without the risk of competitive growth. Rescue was successful in the case of 1836 of the 2210 lines (83%). Recalculated in the context of available *in situ* hybridisation data (Refer Encyclopaedia of *Drosophila*), this corresponds to 77% rescue of lines containing a single P[lacW] element, and 89% rescue of lines containing more than one P[lacW]

element. Because we were concerned that such a large scrics of transformations could present a contamination problem, small scale plasmid preparations of at least 500 transformants were analysed by agarose gel electrophoresis. Plasmid sizes varied considerably, with no evidence of contamination at any stage (not shown). Since most lines contain just one P[lacW] transposon (data not shown; Török *et al.*, 1993), rescue usually involved a single flanking region. Partial cleavage of genomic DNA by *Eco*RI can give rise to a series of related plasmids, however, and it is also possible for unrelated *Eco*RI fragments to be 'co-cloned'.

A 25 ml culture was generated for each P[lacW] line, and a small quantity was put into long-term storage in the form of a glycerol stock. The remainder was pooled together with cultures representing nine other lines, and plasmid DNA was isolated. Equal volume samples of ten such plasmid proparations were then mixed to create effective pool sizes of 100 plasmids. The amount of plasmid DNA generated will be sufficient for many screenings.

## 3.4 Screening

Plasmid DNAs in each of the 19 pools of 100 plasmids are separated in twenty slot agarose gels (Figure 3.2). The final slot is used for hybridisation controls and size markers. To screen for an insertion in the vicinity of a cloned gene, a blot of the gel is hybridised with a relevant cDNA or genomic DNA fragment. If the fragment has been cloned using a vector that contains plasmid sequences, it is essential that the fragment be gel-isolated before use. Here we show the results of screening several interesting *Drosophila* genes, of which *vha68-2* and *ductin* are the genes encoding *Drosophila* V-ATPase subunit A and c respectively.



Figure 3.2 19 pools of 100 plasmids separated by electrophoresis in a 0.8% agarose gel.



Figure 3.3 Screening for insertions in vha68-2 the gene encoding subunit A of the Drosophila V-ATPase. (A) Three pools of 100 plasmids showed cross-hybridisation with vha68-1 cDNA probe (lanes 2, 16, and 17). (B) Screening the ten pools of ten plasmids corresponding to lane 2 further narrowed down this particular insertion (lane 3). (C) Hybridisation was eventually assigned to a plasmid isolated from a single glycerol stock (lane 10). C indicates a positive hybridisation control (vha68-1 cDNA).

#### 3.4.1 vha68-2, the gene encoding V-ATPase A-subunit

Figure 3.3 are results of screening with a *vha68-2* cDNA fragment representing the gene encoding subunit A of the *Drosophila* vacuolar ATPase (See Chapter 5). Bands of hybridisation are seen in three lanes of 100 plasmids (Figure 3.3A). One such band was followed through subdivision to the relevant ten batches of ten plasmids (Figure 3.3B), and was eventually narrowed down to a single glycerol stock (Figure 3.3C). Detailed analysis of this P[*lacW*] insertion line is reported in Chapter 5.

#### 3.4.2 Ductin, the gene encoding the V-ATPase c-subunit

Ductin, the 16 kDa proteolipid c-subunit of V-ATPase is the major component of the vacuolar H<sup>+</sup>-ATPase membrane sector, responsible for proton translocation (Meagher *et al.*, 1990; Finbow *et al.*, 1994). Screening the pool of rescued plasmids found lines 16/1 and 76/16 hybridised to the genomic DNA probe (Figure 3.4). Line 16/1 has an insertion in the second intron (Figure 3.7A). Although the rescued plasmids from line 76/16 can hybridise to the *ductin* probe, the sequence near the P element do not align to *ductin* genomic DNA sequence. It is likely that the insertion in line 76/16 is near the gene, but outside of the reported genomic DNA sequence (GenBank accession no. X77936). Further analysis of these two lines is being carried out by Miss Shirley Graham in this department.

#### 3.4.3 CalpA, the gene encoding calpain

*CalpA* is a highly tissue-specific calpain gene from *Drosophila*, specifically expressed in a small set of nerve, midgut and blood cells (Theopold *et al.*, 1995). This calpain is involved in the dynamic changes in the embryonic cytoskeleton, especially actin-related structures, during early embryogenesis prior to cellularization (Emori and Saigo, 1994). The gene is located at 56C-D on the second chromosome. Using *CalpA* cDNA as a







Figure 3.5 Screening for insertions in *CalpA*, a *Drosophila* calpain homolog. (A) Two pools of 100 plasmids showed cross-hybridisation with *CalpA* cDNA probe (lanes 15, 17). (B) Screening the ten pools of ten plasmids corresponding to lane 15 and 17 by dot hybridisation, further narrowed down these particular insertions to dots 5 and 1 respectively. Dot 11 is the former pooled 100 as control. (C) A further round of dot hybridisation eventually identified two single glycerol stocks (Dot 4 and dot 6). Dot 11 is the former pooled 10 as a control.

probe to screen the pool of rescued plasmids found the 15th and 17th lanes showed positive hybridisation (Figure 3.5 A). Subdivision by DNA dot hybridisation assigned the two positive bands to two individual lines: 145/23 and 169/13 (Figure 3.5 B, C). Line 162/14 has an insertion between *CalpA* and *hu-li-tai-shao* (Ding *et al.*, 1993) It is likely the insertion is at the regulatory region of *CalpA*. However, insertion in line 145/23 is in the nearby gene, *hu-li-tai-shao* (Figure 3.7 B). Further analysis is carried out by Dr. Philippe Rosay in this laboratory. He is trying to remobilise the P-elements into the *CalpA* gene. 

# 3.4.4 DC0 the catalytic subunit of cAMP-dependent protein kinase

*DC0* is the gene encoding the catalytic subunit of cAMP-dependent protein kinase (Kalderon and Rubin 1987; Figure 3.6). The *DC0* cDNA was used as probe to screen the pool of rescued plasmids and bands of hybridisation are seen in three lanes of 100 plasmids. One such band was followed through subdivision to the relevant ten batches of ten plasmids, and was eventually narrowed down to a single glycerol stock from line 8/4. The insertion is within the first intron. (Figure 3.7C).

## 3.4.5 Syb, a gene encoding synaptobrevin

Synaptobrevin is a major constituent of the membranes of synaptic vesicles. Syb is a Drosophila gene encoding an isoform of synaptobrevin that abounds in non-neuronal cells. The Syb transcripts show no enrichment in the nervous system and are present in very carly embryos, well before neurogenesis. The greatest concentration of Syb transcripts has been found in cells of the gut and Malpighian tubules. It has been suggested that Syb may be involved in membrane trafficking and in the secretion of digestive enzymes (Chin et al., 1993). However, the precise function of Syb is unknown.



plasmids showed cross-hybridisation with a DCO cDNA probe. (B) Screening the ten pools of ten plasmids corresponding to lane 1 further narrowed down this particular insertion (lane 6). Lane 11 represents the previous pool of 100. (C) Hybridisation was eventually assigned to a Figure 3.6 Screening for insertions in DCO, encoding a catalytic subunit of cAMP-dependent protein kinase. (A) Several pools of 100 plasmid isolated from a single glycerol stock (lane 3). Lane 11 represents the previous pool of 10.



TCCATCAGCTGTTTGACACTTGACACGATCGAAAGTCGCCTCCTCTCGCTCTTTGCCA

Figure 3.7 Insertion in *ductin*, *CalpA* and *DCO*. (A) Insertion in gene of *ductin*, the subunit c of V-ATPase (GenBank accession no. X77936); (B) Insertions in or near gene encoding calpain. (GenBank accession no. X78555, Z46891, Z46892) (C) insertion in *DCO*, the catalytic subunit of cAMP-dependent protein kinase (GenBank accession no. X16969). Arrow on P-clement denotes the sense of P-*lacZ* reporter gene.



Figure 3.8 Screening for insertion in syb, the gene encoding synaptobrevin (A) One pool of 100 plasmids showed cross-hybridisation with a syb cDNA probe (Lane 8). (B) Screening the ten pools of ten plasmids corresponding to lane 8 further narrowed down this particular insertion to two pools of 10 (Lane 3 and 5). (C) Subdivision of the pool of 10 in lane 5 eventually assigned the positive band to a plasmid isolated from a single glycerol stock (lane 5).







CAAGTCCATCGAATCAACAGGCTCAGCGCACAAAAGCAAGGAAAATCCCATACAGTGACGTCACCTGCGTCA

Figure 3.9 Insertion in *Syb.* (A). Alignment of sequence of rescued plasmid p958 from mutant line 77/5 to *syb* genomic DNA sequence. (B) Position of insertion in *syb*, the gene encoding synaptobrevin (Chin *et al.*, 1993; GenBank accession no. L14270)

The filter with rescued plasmids was screened with a *Syb* cDNA probe (provided by Dr. Cahir O'Kane in Cambridge) and lane 8 showed positive hybridisation (Figure 3.8A). After subdivision of this pool of plasmids of 100 plasmids, lanes 3 and 5 show positive hybridisation (Figure 3.8B). Subdivision of the two lanes identified that the two plasmids from line 75/2 and 77/5 showed cross-hybridisation to the *Syb* probe. The sequence flanking the site of insertion in line 77/5 is identical to part of *Syb* gene. The exact position of p[*lacW*] is in the second intron (Figure 3.9A, B; Chin *et al.*, 1993). However, the insertion in line 75/2 is not relevant to *Syb*. The hybridisation of the plasmid from line 75/2 is due to a *Syb* fragment co-cloned during plasmid rescue. Repeated rescued plasmids from this line do not hybridise to the *Syb* probe.

Southern blotting of 77/5 and Canton S genomic DNA probed with Syb cDNA detected a 3.4 kb *Eco*RI band in addition to the wild type 5.1 kb band (Figure 3.10A). The band shift is due to the P-element insertion. Northern blotting showed a reduction of SybRNA in the P[*lac W*]/+ heterozygotes (Figure 3.10 B). Homozygous flies usually died shortly during the stage of the first instar larvae. Remobilising of the P-element produced many revertants and new alleles. Reversion indicated that the lethal phenotype was indeed caused by the P-element insertion. Further examination of the defect of the *Syb* mutant is being carrying out collaboratively with Dr. Cahir O'Kane's group in Cambridge.

### 3.4.6 KLP38B, a mitotic kinesin-related protein

*KLP38B* (Kinesin-Like-Protein-at-38B) is a new member of the kinesin superfamily in *Drosophila*. *KLP38B* was isolated through its binding to the catalytic subunit of type 1 serine/threonine phosphatase (PP1) in the two-hybrid interaction trap. Seven lines with P[lacW] insertions in the intron of *KLP38B* were isolated (Figure 3. 11). See Alphey *et al* . (1996) for detailed analysis of these mutants.



Figure 3.10 Southern blot and Northern blot analysis of *Syb* mutant (A) Southern blot of *Syb* mutant line 77/5 showing a band shift due to P[lacW] insertion. The first lane is Canton S genomic DNA, the second lane is line 77/5 genomic DNA, cut by *Eco*RI, probed with *Syb* cDNA. (B) Northern analysis of *Syb* mutant line to show the reduction of RNA transcript. Total RNA, isolated from adult Canton S and 77/5, was hybridised with *Syb* cDNA and *rp49* as a control for loading. Lane 1, Canton S 15 µg; Lane 2, Canton S 30 µg; Lane 3, 77/5 15 µg; Lane 4, 77/5 30 µg; Lane 5, 25/8 15 µg; Lane 6, 25/8 30 µg.



Figure 3.11 Screening for insertions in the gene of *KLP38B*. Six pools of 100 plasmids showed cross-hybridisation with *KLP8B* probe (lane 1, 3, 4, 5, 6, 10). Subdivision of the pools of plasmids with positive hybridisation signals further narrowed down these positive signals to 7 particular insertion lines: 8/2 (lane 1), 49/13 (lane 1), 39/3 (lane 3), 48/5 (lane 4), 57/2 (lane 5), 86/23 (lane 10).

#### 3.4.7 PP2A-28D, the gene encoding protein phosphatase 2A

*PP2A-28D* is a gene encoding protein phosphatase 2A in *Drosophila*. The line 98/22 which carried a P[lacW] insertion in 251 bp upstream of the initiating ATG. By excision of the P-element, it has been proved that this insertion had caused the lethality. A mutational analysis has been performed in Dr. Partritia Cohen's group in Dundee (Snaith *et al.*, 1996).

#### 3.4.8 Mutations in other genes

Apart from the mutations reported above, we have presently correlated each of the following cloned genes to P[lacW] mutant lines. D- $G\gamma I$ , a gene encoding a G protein  $\gamma$  subunit (Ray *et al.*, 1994); *shaw*, a *Shaker* cognate gene (Butler *et al.*, 1989: Butler *et al.*, 1990); *Drongo* and 5 other genes.

### 3.5 One-step screening

As an alternative to screening pools of plasmids, we have used a one-step screening procedure involving grids of colonies created by a robotic device. The entire grid is visualised by hybridisation with a <sup>35</sup>S probe for the plasmid replicon, while individual colonies corresponding to particular insertion sites are visualised with a <sup>32</sup>P probe specific to the gene of interest (not shown). This one step screening work was done by Mrs. Ann Gillan in collaboration with Zeneca.

## **3.6 Verification**

Once an individual glycerol stock has been identified as containing the hybridising plasmid, the corresponding balanced lethal line is obtained from the stock collection in Szeged. At this stage it is crucial to verify that the plasmid and *Drosophila* line do indeed correspond. This can be easily done by repetition of plasmid rescue. In the case of the  $\pi 1$ 

 $\overline{T}$ 

insertion reported in this chapter, plasmids of identical size and hybridisation characteristics were rescued again from the identified fly lines (data not shown). Were some unrelated *Eco*RI fragment to have been 'co-cloned' during the initial rescue, it is highly unlikely that the same event would occur a second time.

To confirm that identified lines each contain only a single insertion, we hybridised the blot of mutant genomic DNA with a P[lacW] specific probe. All the 4 lines tested appeared to contain only one insertion (Figure 3.12).

Other important concerns are whether the P element has indeed inserted within the target gene (a 'gene-specific' probe may unexpectedly hybridise to other sites in the genome), and whether insertion is truly the cause of lethality. In the case of the gene for subunit A of the *Drosophila* vacuolar ATPase, the rescued plasmid hybridised *in situ* to a single polytene chromosome band corresponding to the known location of the gene and sequencing of the rescued plasmid showed insertion within the first intron of *vha68-2* gene, loss of which is associated with reversion of lethality (see Chapter 7). Similar work was or is being carried out for other mutant lines.

In total, approximately 40 cDNA fragments corresponding to second chromosome genes have been used as probes. Positive hybridisation signals were seen in 13 cases and in seven cases shown to represent genuine insertions within or near to target genes (Table 3.1). In five of the seven cases, P[lacW] insertion had occurred 5' to the reported coding sequence. In the other two cases, insertion occured within the intron. That P elements prefer to insert near to the 5' ends of genes has been observed in other studies (Spradling *et al.*, 1995).



Figure 3.12 Southern blot of genomic DNA of the P[lacW] insertional lines to show the single insertion. Each lane is genomic DNA isolated from 10 flies, digested by *Eco*RI, hybridised with the 1.9 kb fragment of P[lacW] that correspond to pBluescript. lane 1: Canton S wild type; lane 2: 25/8, with insertion in *vha68-2*; the gene encoding subunit A of V-ATPase; lane 3: 16/1, with insertion in *ductin*, the gene encoding subunit c of V-ATPase; lane 4, 77/5, with insertion in *Syb*, the gene encoding synaptobrevin; lane 5, 8/4, with insertion in *DC0*, the gene encoding the catalytic subunit of cAMP-dependent protein kinase.

| Target gene                          | Accession                                | First | Verifie   | Reference                             |
|--------------------------------------|------------------------------------------|-------|-----------|---------------------------------------|
| vha68-2                              | 1159147                                  | 3     | 3         | Chapter 3 4                           |
| ducting                              | X77936                                   | 2     | 2         | Chapter 3                             |
| DCOd                                 | X16969                                   | 6     | 19        | Chapter 3                             |
| DCO <sup>6</sup>                     | X10909                                   | 0     | 1         | Spoith at al 1006                     |
| PP2A-20D                             | A33199                                   | 1     | 1         | Shalth et al., 1996.                  |
| KLP38B                               |                                          | /     | /         | preparation                           |
| Syb                                  | L14270                                   | 2     | 16        | McCabe et al ., 1996.                 |
| CalpA                                | Z46891                                   | 2     | 2         | Rosay et al., unpublished             |
| vha14                                | Z26918                                   | 1     | Ob        | Guo et al., 1996.                     |
| $D-G\gamma-1$                        | 1 martin                                 | 4     | 1         | Ray et al ., 1994                     |
| Shaw                                 |                                          | 3     |           | Butler et al., 1989                   |
| a-adaption                           |                                          | 1     | 1         | Nick Gay in Cambradge                 |
| Cliner                               |                                          | 1     | 1         | Chunyang Bai in New York              |
| La                                   |                                          | 1     | -         | P. Tolias in New York                 |
| ? gene                               |                                          | 1     | 1         | P. Wes in Crag Montell lab            |
| 3 gene                               |                                          | 5     |           | Myles Axton in Oxfod                  |
| A21                                  |                                          | 2     |           | B. Srinivasan in Purdue               |
| A22                                  |                                          | 1     |           | B. Srinivasan in Purdue               |
| 6356 DNA                             |                                          | 0     |           | B. Retinker                           |
| LRL1-5 5 genes                       |                                          | 0     |           | M. Cann in Cornell                    |
| 2a9                                  |                                          | 0     |           | C. Coelho in Koln                     |
| 32c2                                 |                                          | 0     | 1         | C. Coelho in Koln                     |
| 47c1                                 |                                          | 0     |           | C. Coelho in Koln                     |
| G808                                 |                                          | 0     |           | Y. Grau in France                     |
| CAM-kinase-like gene                 | 1                                        | 0     | 200 10 10 | Contraction of the Contraction of the |
| Simon's 51                           | 20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 0     |           |                                       |
| Simon's 123                          | 19                                       | 0     |           |                                       |
| Serotonin recepter 2A                |                                          | 0     |           |                                       |
| Serotonin recepter 2A                |                                          | 0     |           |                                       |
| Gf alfa                              | 1.1.5                                    | 0     |           |                                       |
| Gs alfa                              |                                          | 0     | 1.12.02   |                                       |
| Igloo                                |                                          | 0     |           |                                       |
| pbprp-5                              |                                          | 0     |           |                                       |
| РКС                                  |                                          | 0     |           |                                       |
| PKG-2cDNA                            |                                          | 0     |           |                                       |
| PLC                                  | New Orrest                               | 0     |           |                                       |
| NPY recepter                         | Section Streets                          | 0     | 100000    |                                       |
| muscarinic<br>acetylcholine recepter |                                          | 0     |           |                                       |

# Table 3.1 Summary of screening results

<sup>a</sup> Only one of the six putative insertions was chosen for further subdivision. <sup>b</sup> One first round hybridisation signal was a 'co-cloning' artefact. <sup>c</sup> No first round signal. <sup>d</sup> Genes for which P element insertions has been previously described (Finbow *et al.*, 1994; Skoulakis *et al.*, 1993).

## 3.7 Discussion

The strategy described here permits rapid identification of mutant lines corresponding to specific cloned genes. This is illustrated by Figure 3.3, detailing the identification of a line with a P element insertion in the gene for subunit A of the Drosophila vacuolar ATPase. Three novel and important features of this strategy are as follows. First, we cartied out plasmid rescue independently for each of many lines. Plasmid rescue from pools of lines (e.g. Hamilton et al., 1991) leads to misrepresentation both because transformation efficiency varies with the size of rescued plasmid, and because it is difficult to avoid competitive growth. By allowing each transformant to grow independently we avoided misrepresentation, and were able to generate sufficient plasmid DNA for screening with any number of target genes. Second, unlike previous examples of SSM by plasmid rescue, the lines described here were generated with the intention of creating and maintaining only lethal insertions of P[lacW] (lethals represent only a small proportion of all P element insertions). Though homozygous chromosomal lethality turned out to be associated with P element insertion in only approximately half of the lines, even nonlethal insertions can be useful for secondary mutagenesis. Third, there is a commitment to maintain the entire collection of balanced lethal lines in Szeged for the conceivable future. This is unlike most previous site-selected mutagenesis experiments, in which lines were discarded soon after screening, and were thus unavailable to the wider research community.

Approximately one in four cases of screening with cDNA probes has proved successful. cDNA probes will often fail to detect an insertion in a target gene, merely because the rescued plasmid contains no transcribed sequences. Such occasions will arise when an *Eco*RI site lies between the transposon and the nearest exon. It would of course have been preferable to rescue each line using a range of different enzymes, and to rescue DNA on both sides of the transposon. This would have been prohibitively laborious, however. A simpler way to increase the probability of a 'hit' is via screening with genomic DNA fragments representing non-transcribed in addition to transcribed sequences (though not a fragment that contains repetitive DNA sequences).

Even so, one should not expect all second chromosome genes to be represented by P[lacW] insertions within the Szeged collection since: a) P[lacW] mutagenesis was not carried out to saturation; b) not all *Drosophila* genes are good targets for P element insertion; c) not all *Drosophila* genes correspond to lethal complementation groups. Where a pre-existing mutation cannot be found, it may prove fruitful to probe with genomic DNA more distant to the gene of interest, and thereby detect an insertion in a nearby gene. Such an insertion could be used for 'local jumping', an elevated rate of transposition within 100 kb or so on either side of a 'donor' P element (Tower *et al.*, 1993; Zhang and Spradling, 1993).

Once one has obtained a line with a single P[lacW] transposon within the gene of interest, it is necessary to verify that the insertion is indeed the cause of the mutant phenotype. Spontaneous recessive lethal mutations are common within *Drosophila* populations and can become fixed on the same balanced chromosome as a P element. It is thus essential to demonstrate, as for the *vha68-2* insertion, that remobilisation of the inserted transposon can lead to reversion of the phenotype. Even then it may not be a simple matter to deduce, just from a single allele, the precise role of the gene and its product in *Drosophila* development or physiology. Remobilisation can also result in imprecise 'excision', however, and thus generation of a range of new alleles of varying severity (e.g. Klambt *et al.*, 1992). The presence of an eye colour marker (*white*) on P[lacW] makes loss of the transposon easy to score. Further, P[lacW] was designed as an enhancer-trap element, the *lacZ* component serving as a reporter for gene expression in the vicinity of the insertion site (Bier *et al.*, 1989). The pattern and timing of  $\beta$ -galactosidase expression may provide useful information concerning the tissue-specificity and developmental regulation of gene expression.

The collection of P element lethal mutants generated by Török *et al*. (1993) is finding many uses in *Drosophila* genetics and genome mapping. As described here, it provides a simple means of correlating a cloned *Drosophila* gene with a mutant phenotype. Sufficient plasmid DNA has been prepared to allow screening for many targets. An added dimension would be provided by performing large scale correlation of cDNA library clones with the Szeged lines. This would provide access to many as yet unknown, but nonetheless essential, *Drosophila* genetic loci.

One simple way this could be carried out is as follows. Probes of rescued plasmids could be labelled and used to screen a cDNA library to correlate individual clones within the *Drosophila* cDNA library to the corresponding fly lines bearing P[lacW] insertions. The whole rescued plasmids could be labelled for screening cDNA library in vector, such as *lambda* NM1149, which shares no sequence homology with the P-element sequence in the rescued plasmids. Each pair is highly likely to represent a mutation of a gene, and, alternatively, imprecise excision will generate mutations where the initial insertion does not. The cDNA library can be screened as arrays of plaques laid out in a rectangular grid by a robotic device.

# Chapter 4

# Characterisation of *vha68-1* and *vha68-2*, the Genes Encoding Two Isoforms of V-ATPase A Subunit in Drosophila

## 4.1 Summary

vha68-1 and vha68-2, genes encoding two isoforms of the V-ATPasc A subunit in Drosophila melanogaster, have been cloned and sequenced. Both isoforms are composed of a polypeptide of 614 amino acids with a predicted molecular mass of 68417 Da and 68338 Da respectively. The coding sequences of the cDNAs for the two isoforms share 85.5% identity while the translated proteins are 90.7% identical. The gene vha68-2 is punctuated by four introns. In situ hybridisation of the cDNA of vha68-1 to salivary gland chromosome squashes reveals only one band at 34A on the second chromosome, suggesting that the two genes are at the same location. Northern analysis of total RNA reveals that both isoforms are expressed in a similar pattern. They are expressed in head, thorax and abdomen of the adult fly. Developmental Northern blots of embryo, larvae, pupae and adult total RNA show general expression, but at a much reduced level during metamorphosis.

#### 4.2 Introduction

V-ATPases, found in all eukaryotic cells, are required for the acidification of intracellular organelles such as lysosomes, endosomes, the Golgi apparatus, secretary vesicles, and clathrin-coated vesicles, as well as plant and fungal vacuoles (Nelson, 1992a). They are also located in the apical membrane of cells specialised in H<sup>+</sup> secretion, such as osteoclasts (OCs), kidney intercalated cells, and insect midgut (Baton *et al.*, 1994;

Brown, et al., 1987; Blair et al., 1989; Dow, 1994). Although the organelle and plasma V-ATPases appear similar in composition, it is clear that cells can differentially target these enzymes and thereby regulate the pH of the various intracellular compartments and luminal spaces (Hernando et al., 1995). The mechanisms for this targeting is accomplished remains unclear, but several hypotheses have been proposed. The simplest hypothesis is the putative existence of organelle- or cell-specific isoforms of particular V-ATPase subunit. Only one gene per subunit and per genome has been identified in S. cerevisiae and other fungi (Gogarten et al., 1992). Gene disruption experiments in yeast that led to a complete loss of V-ATPase activity gave no indications for multiple isoforms in S. cerevisiae (Umemoto et al., 1990; Neumi et al., 1991; Foury, 1990). And only a single gene encoding subunit A from M. sexta (Gräf et al., 1992) and bovine (Pan et al., 1991). However, two isoforms of subunit A have been reported from plant, human and chicken (Gogarten et al., 1992b; van Hill et al., 1993; Hernando et al., 1995). In higher plants, two genes encoding the A subunit differ by the size of an intervening sequence. The two genes exhibit a coding region of the same length but differ in the length of the intron (Gogarten et al., 1992b; Stark et al., 1995). In human the VA68 isoform of V-ATPase subunit A is expressed in all tissues whereas the expression of a second isoform, HO68, has been found only in osteoclastomas, tumours enriched in osteoclasts (van Hill et al., 1993). In chicken, alternative splicing of a single gene generates two polypeptide isoforms of the A subunit. However, both isoforms seems to be ubiquitously expressed (Hernando et al., 1995). The putative existence of different isoforms of particular V-ATPase subunits and thus the specific assembly of different isoforms of some of the subunits may allow differential targeting and the regulation of cell-, organelle- or membrane-specific V-ATPases.

All of the V-ATPases purified to date share similar functions and structural features (Forgac, 1989). They are multimeric proteins with at least three common subunits: a catalytic subunit A, a regulatory subunit B, and a proton channel subunit c with relative molecular masses of approximately 70,000, 60,000 and 17,000 respectively (Gräf *et al.*,

1992). cDNAs and genes encoding subunit A were first cloned from plant (Zimniak *et al.*, 1988), fungi (Bowman *et al.*, 1988) and the archaebacterium *Sulfolobus acidocaldarius* (Denda *et al.*, 1988). It immediately became apparent that the enzyme that functions in ATP-synthesis in archaebacteria is also a V-ATPase, and that subunit A is homologous to the  $\beta$  subunit of F-ATPases. It was also revealed that a *S. cerevisiae* gene involved in trifluoperazine resistance, cloned the same year, encodes a larger protein that undergoes protein splicing to give the mature subunit A (Shih *et al.*, 1988; Hirata *et al.*, 1990; Kane *et al.*, 1990). Aligning the amino acid sequences of A and  $\beta$  subunits from various sources produced a wealth of information. The conserved glycine-rich loop in the A-subunit was implicated as a primordial common structure for nucleotide binding. It is thought that the A subunit, as the  $\beta$  subunit of F-ATPase, is the catalytic subunits of the V-ATPase.

A cDNA encoding an *M. sexta* V-ATPase A-subunit has been previously cloned by screening a larval midgut cDNA expression library with monoclonal antibodies to the midgut plasma membrane subunit A (Gräf *et al.*, 1992). It shared considerable homology to cDNAs encoding subunit A from other sources. Using *Manduca* cDNA as a probe, we have successfully isolated two corresponding *Drosophila* genes, *vha68-1* and *vha68-2*, which encode different isoforms of the V-ATPase A subunit. This chapter will report the isolation and characterisation of cDNAs and genomic DNA of the two genes.

#### 4.3 Isolation of two different cDNAs encoding the catalytic A subunit

#### 4.3.1 Isolation of vha68-1 cDNA

A Drosophila head  $\lambda$ Zap II cDNA library was screened by plaque hybridisation with a digoxygenin-random-primed probe of cDNA encoding the Manduca V-ATPase A-subunit. Positives were obtained at approximately 1:10,000 and were purified by a further round of plating. Nineteen clones were obtained and inserts of four recombinant

31 AAT TTT CAT AAG AGC TGG TGA AAC AAA TCC AAC GAA CGA TTT GAC CGT TAC CGA AGC AGA 91/361 AGA AGA AGA GCA GCA ACC GCG ACC ATG CCC AAC TTG AGG AAA TTC AAA GAC GAG GAG CGC NLRKFKDZER МР 151/23121/13GAG TOG GAA TAT GGC CGT GTC TAC GCG GTA TCC GGA CCA CNG GTC ACC GCT GAG GCC ATG E S E Y G R V Y A V S G P V V T A E A M 181/33 211/43TCT GGA TCA GCT ATG TAC GAG TTG GTC CGC GTC GGC TAC TAC GAG CTG GTG GGC GAG ATC VG SGSAMYELVR Y v Τ. Т Y L G E 241/53 271/63 ATC CGT CTG GAG GGC GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TCT GGC TTG ACT I R L E G D M A T I Q V Y E E T S G L T 331/83 301/73GTC GGC GAT CCG GTG CTG CGT ACC GGC AAA CCT CTT TCC GTG GAA CTT GGA CCC GGC AFT V G D P V L R T G K P L S V E L G P GI 391/103 361/93 ATG GGC AGC ATC TTC GAC GGC ATC CAA CGT CCT TTG CGG GAC ATT GGT GTC ATG ACC AAC P L M G SIF D G IQR R  $\mathbf{D}$ Ţ  $\mathbf{G}$ V 14 T N 451/123421/113TCC ATC TAT ATA CCC AAA GGT GTC AAC ACA ACT GCT TTG TCG CGC TCG GAG ATG TGG GAA STYIPKGVNTTAL SRSEMW E 511/143 481/133TTT AAT CCG CTG AAT GTG CGG GTG GGA TCC CAC ATC ACC GGA GGA GAT CTG TAT GGA GTG  $\mathbf{F} = \mathbf{M}$ PLNVRVGSHITGG D L Y C V 571/163 541/153GTA CAC GAG AAC ACG CTG GTG AAG CAG CGC ATG ATT GTG GCA CCG AGG GCT AAG GGA ACC RMIVAPRAK VHENTL V К Q G 12 601/173631/183 GTT OGA TAC ATT GCC CCC GCG GGC AAC TAC AAC CIG GAG GAC ATT GTC CTG GAG ACG GAG I A P A G N Y N L E ĩ/ R V L E т в v ד ת 691/203 661/193 TTC GAC GGC GAG ATC ACC AAG CAC ATG TTG CAG GTC TGG CCA GTG CGG CAG GCA CGT FOGEITKHTMLQVWP VRQ AR 751/223 721/213 CCC GTC ACA GAG AAG CTG CCA GCC AAC CAT CCG CTC TTC ACG GGC CAA CGC GTC CTT GAC QRV PVTEKLPANHPLFTG LD 781/233 811/243 TEG CTC TTC CCC TGC GTA CAG GGC GGC ACC ACT GCC ATC CCC GGT GCC TTT GGC TGC GGC PC VQGG S L F Т ΤA I ΡĠ А F G C G 871/263 841/253 AAG ACC GTC ATT TCG CAG GCC CTG TCC AAG TAC TCC AAC TCT GAT GTG ATC ATC TAC GTC K T I S Q A L S K Y S Ν S D V I  $\mathbf{M}$ 901/273 931/283 GGT THE GEC GAS CEC OGT AAC GAG ATG TET GAG GTA ETG CET GAC TTT CEC GAA ETG ACC G C G ERG NE M SEVLRD F P Ε L T 991/303 961/293TOC GAC ATA GAT GEC CTC ACC GAG TCC ATT ATG AAG CGA ACT GCT CTG GTG GCC AAC ACC N T C D I Ď G V T E Ś Ï M K R T A L V A 1021/313 1051/323 TCC AAC ATG CCG GTC GCA GCT CGT GAG GCC TCC ATT TAC ACT GGT ATC ACT CTG TCT GAA PVAAREASIY S N M TG I Т  $\mathbf{L}$ SE 1081/333 1111/343 TAC THE COT GAT ATC GEC TAC AAC GTA GEC ATG ATG GET GAT TEE ACC TEE CGT TGG GET FRDMGYNVAMMADSTSRWA Y 1141/353 1171/363 GAG GCA CTT CGT GAG ATT TCG GGT CGT TTG GCT GAG ATG CCT GCC GAT TCT GGC TAC CCG E A L R E I S G R L A E M P A D S G Y P 1201/373 1231/383 GCT TAT CTA GGA GCT CGT CTG GCC ACA TTC TAC GAG CGT GCT GGG CGC GTC AAG TGC TTG A Y L G A R LA  $\mathbf{T}$  $\mathbf{F}$ YER A G R V K Ċ Ľ 1261/393 1291/403 GGT AAC CCG GAG CGC GAG GGA TCC GTG TCC ATT GTC GGA GCT GTG TCT CCT CCT GGT GGT G N P ERE GS v SIVGAV s ₽ P (F G 1321/413 1351/423 GAC TTC TCC GAT CCC GTG ACC TCC GCC ACT TTG GGT ATC GTG CAG GTG TTC TGG GGT CTC DFS DPV T S A TLGIVQ VF W G T i

1.20

1 de la

1.074 A. A. A. A.

1411/443 1381/433GAC AAG AAA TTG GCC CAG CGC AAG CAC TTC CCC TCG ATC AAC TOG CTC ATC TCC TAC TCG Q Ŗ К Η F Ρ S N W T<sub>1</sub> Т S Y S D к к L А Ŧ 1471/463 1441/453AAG TAC ATG COT GCT CTG GAT GAA TAC TAT GAC AAG AAC TAC CCC GAG TTC GTG CCA CTA к ү R А L D E Y Υ D K N Y Ρ Е F V P ĩ. М 1531/483 1501/473CGC ACC AAG GTC AAG GAG ATC CTG CAG GAG GAG GAG GAT CTG TCT GAG ATC GTT CAG CTG Е Ι v 0 Ŀ Е Q  $\mathbf{E}$  $\mathbf{L}$ s R ጥ ĸ v к Т Τı Е E D 1561/493 1591/503 GTG GGC AAA GCA TCA CTG GCC GAG ACC GAC AAG GUG ACC CUG GAA GTG GCA AAG CTG CTG  $\mathbf{T}$ V V К  $\mathbf{L}$  $\Xi$ к Т Ľ Ε Α L A D VGK А s L 1651/523 1621/513 AAG GAC GAC TTT CTG CAA CAG AAC TCC TAC TCA CCA TAC GAT CGC GTT TGT CCC TTC TAC K D D F  $\mathbf{L}$ Q Q Ν  $\mathbf{s}$ Y S P Y D R V Ċ ₽ F Υ 1681/533 1711/543 AAG ACC GTG GGC ATG CTG AGA AAC ATC ATG GCC TTC TAT GAG ACC GCC CGG CAT GCC GTF F к т v М R Ν М А Υ  $\Xi$ т А R н А V G  $\mathbf{L}$ Т 1741/553 1771/563 GAG TCC ACA GCC CAG TCG GAC AAC AAG ATC ACA TGG AAC ACC ATC AGG GAA TCG ATG GGC Е G S  $\mathbf{T}$ Α Q  $\mathbf{S}$ Ð Ν К τ ΤW N Т Ι R s м Е 1831/383 1801/573 GGA ATT ATG TAC CAG CTG TCG TCG ATG AAG TTC AAGGAC CCT GTG AAA GAT GGC GAG CAA Ι Y Q Ŀ s s Μ Х  $\mathbf{F}$ K D P v ĸ D G Ε Q G М 1861/593 1891/603 AAG ATC AAG GCG GAC TAC GAC CAG CTG TAC GAG GAT CTG CAG CAG GCC TTC CGA AAT CTG K I D Y D Q Ъ Y Е D L Q Q А F R N Ľ ĸ А 19511921/613 GAG GAC TAA GCG GAA ACG CCC AGA AAC CAT CIG CGG GCT TTC CTA GCG GGA GGA ATG GAA Ē D 1981 2011 AAT GAA GCA AAC CAA ACG AAA TAA GTA ACC AAA ACT AGG TTA TTA TTC GAA TTC CCC ATT 2071 2041CAA TCT AGT CAT ATT TAC ATA ATG CAT AAT AAG ATA TTT GAA TCC AAG TTT ACT TAT AAG 2101 2131TTT AAC AAA CAG TTT GGC CCG CTT CAG GTC TAG TCA GGT CAG AAT CGA ATC ACC AGA AGA 2161 2191 TAC GCA MAA CGA MAG GAA AGA CGA ACA ATA ATT AGT OGG TAG CGC AAA TGG AAC GCA GTT 2251 2221AAA CCA GCC ATA TAC ATA AAT ACC ATA CAT ATA TGA CAC ATA TGT ATA ATT ATC TAT GTT 2281 2311GAT ATA TAA ATA TAA TTC ACA GCT ATG TAT TGG TAG TAA ATT TTC ATA TAG TTA TCG ATT 2341 2371GTG TTC GTT ACC CTA TTG TGT GAA ACT AAA CCA ACT AAA CGA CGA GTC TAA AGG GCG TTT 2431 24012461 2491 AAT AAC AAC GTA GCC CCA AAA GCA TGT ACC TCT ACT ACC AAA GGA TAG CTA TTT CAG TAA 2551 2521CTT GTG TGT GCT AAT GGA GCT ATG GAA ATA AAA TGT ATT ATG AAT GTT ACA AA

24.5

A start in the second second second second

Figure 4.1 cDNA and putative aa sequence of *vha68-1*. The presumed polyadenylation signal is underlined. The start of the poly A tail is marked in bold. This cDNA sequence has been published in the GenBank database under the accession number U19745.

phages were excised as pBluescript plasmids. Double-stranded sequencing was performed according to the Sequenase<sup>TM</sup> II protocol (US Biochemical, Cleveland, OH), with the aid of synthetic oligo primers. All of the four clones have the same 3' end, except for differing lengths of the poly A tails. The 5' end sequence of three cDNA clones, p68A1, p68B1 and p68El, were found to be identical, except for small differences in the length of the 5' end. However, p68C1 is the shortest of the four clones beginning at nucleotide 663. The longest cDNA p68A1 was sequenced from both DNA strands, using synthetic oligonucleotides to extend the reading. The resulting sequence consists of 2576 bp. A long open reading frame encodes a putative polypeptide of 614 amino acids (Figure 4.1) with a M<sub>7</sub> of 68417 Da which is clearly a V-ATPase A subunit. The gene has been named *vha68-1*. The open reading frame is preceded by a 5' untranslated region (UTR) of 84 bp. The 3' UTR of 644 bp long contains a poly A addition signal between nucleotides 2550-2556, 19 bases upstream of the poly A tail.

## 4.3.2 Isolation of vha68-2 cDNA

A NM1149 cDNA library representing adult heads of the *D. melanogaster eyes absent* (*eya*) mutant was screened by plaque hybridisation with the genomic DNA fragment of the plasmid rescued from the fly line l(2)k02508 (See Figure 3.3 in Chapter 3). Plaques giving both strong and weak hybridising signals were picked. More than 20 positive plaques were obtained, of which five recombinant phages were purified, cDNA inserts in the recombinant phages were excised by *Eco*RI and *Hind*III. There were three types of cDNAs according to digestion map and the intensity of the hybridisation to the genomic DNA probe (Figure 4.2). The inserts were subcloned into pBluescript SK<sup>-</sup> and sequenced by the universal primers T3 and T7 from the both ends. While the sequence of p68c-5 was identical to that of *vha68-1* cDNA, the digestion maps and sequences of p68c-1, p68c-2 and p68c-3 are different from *vha68-1* cDNA. Sequences of the three inserts are identical except for small length differences at the 5' end. The longest cDNA, p68c-1, was sequenced from both strands, using synthetic oligonucleotides to extend



Figure 4.2 Three types of cDNA inserts hybridised to *vha68* probes. cDNA inserts in the recombinant phages were excised by *Eco*RI and *Hind*III. The Southern blot was probed with the genomic DNA fragment of the plasmid rescued from the fly line l(2)k02508.

GTT CGT TCT GTT GGA GAA AAG CAG CAA TCA CAC GTT CGC AAG GTG AAC CCG AAG ACA CAG 91/261 CAA ATC GAA AAA ACA GAA TAA AGC AAA ATG TCC AAC CTT AAG CGT TTC GAT GAT GAG GAG SNLKRFDD E M 151/22121/12CET GAG TOC ANA TAT SGA CET GTC TTC GCT GTC TCC GET CET GTC ACC GCC GAG GCC RESKYGRVF A V S G P V V Т E Ä A 211/42181/32ATG TET GGA TEA GET ATG TAE GAG TTG GTC CGC GTC GGC TAE TAE GAG CTG GTG GGC GAG M S G S A M Y E L V R V G Y Y E L V G Б 271/62241/52ATC ATC COT CTG GAG GGT GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TCT GGC GTA I Q V RLEGDMA  $\mathbf{T}$ Y Ξ  $\mathbf{E}$ т S G 37 ТТ 301/72331/82 ACT GTC GGA GAT CCG GTG CTG CGT ACC GGC AAG CCT CTT TCC GTG GAG CTG GGA CCC GGT G D P V L R T G K P L S VE ьG P тv G 391/102 361/92 ATC ATG GGC AGC ATC TTT GAC GGT ATC CAG CGT CCC CTG AAG GAC ATT AAC GAG CTG ACC IMGSIFDGIQRPLKDINEL т 451/122 421/112CAA TCC ATC TAC ATT CCC AAG GGT GTG AAC GTG CCC AGT TTG TCC CGC GTG GCC AGC TGG VPSLSR VΛ ESI YIPKGVN S W 511/142 481/132 GAG TTC AAC CCC CTG AAC GTC AAG GTC GGC TCC CAC ATC ACC GGA GGT GAC CTG TAC GGT EFNFLNVKVG SHITGG D L v G 541/152 571/162 CTG GTG CAT GAG AAC ACT CTG GTC AAG CAC AAG ATG ATT GTG AAC CCC CGC GCC AAG GGA LVHENTLVKHKMIVNP R A K G 631/182 6017172 ACA GTG CGC TAC ATC GCC CCC TCC GGC AAC TAC AAG GTC GAC GAT GTC GTC CTG GAG ACC TVRYIAPSGN Υ Κ V D D V V L Ē T 661/192 691/202 GAG TTC GAT GGA GAG ATC ACC AAG CAC ACC ATG THG CAG GTG TGG CCA GTC CGT CAC CAC EFDGEITKHT мьQ V W 2 V R Ħ 751/222721/212 GET COC CTG ACC GAG AAG CTG CCC GCC AAC CAC CCC CTG CTC ACC GGA CAG CGT GTG CTC A P VTEKL PAN E P L L т G 0 R v 811/242 781/232 GAC TOG CTC TTC CCC TOT GTC CAG GGC GGT ACC ACC GCC ATT CCC GGA GCT TTC GGT TGC DSLFPCV Q G G т т А IPGAFG C 871/262 841/252 GGC AAG ACT GTG ATC TCG CAG GCT CTG TCC AAG TAC TCC AAC TCC GAT GTC ATC ATC TAC K Y S GKT ISQALS N S D V I Т Y 17 931/282 901/272 GTC GGT TEC GGT GAG CGT GGT AAC GAG ATG TCT GAG GTA CTG CGT GAC TTC CCC GAG CTG V G C G E R G N E M S E V L R D F P E Ľ 961/292 991/302 TCC GTG GAG ATC GAT GGT GTG ACC GAG TCC ATC ATG AAG CGT ACC GCC CTT GTG GCC AAC SVEIDGVTES IMKRTALV Α N 1051/322 1021/312 ACC TCC AAC ATG CCT GTG GCT GCT CGA GAG GCC TCC ATC TAC ACT GGT ATC ACC TTG TCC T S N M P V A A R E A S I Y T G I T L S 1111/342 1081/332GAA TAC 1TC CET GAT ATG GET TAC AAC GIG TCC AIG ATG GCT GAT TCC ACC TCC CET TGG EYFRDMGYNV S M M A D T S S R 1141/352 1171/362 GCT GAG GCT CTT CGT GAA ATT TCT GGT CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC TAC A E A L R E I S G R L A E M P RDS G Y 1231/3821201/372CCA GCC TAC TTG GGA GCT CGT CTG GCC TCC TTC TAC GAG CGT GCC GGT CGC GTT AAG TGC P A Y L G A R L A S F Y E R A G R V K С 1291/402 1261/392 TTG GET AAC CCC GAG CGC GAG GGA TCC GTG TCC ATT GTC GGA GCT GTG TCT CCT CCT GGT PEREGS S I V L G N V g a v Р S P G 1321/412 1351/422 GGT GAC TTC TCC GAT CCC GTA ACC TCC GCC ACT CTG GGT ATC GTG CAG GTG TTC TGG GGT G D F S D P V T S A T L G I V Q V F W G

31

1

(i) and the state of the state state of the state of t

1381/432 1411/442CTC GAC AAG AAG TTG GCC CAG CGC AAG CAT TTC CCC TCG ATC AAC TGG CTC ATC TCC TAC Q R DK к Т А ĸ E F Р S Ι Ν W  $\mathbf{L}$ Ι S Υ T. 1471/462 1441/452 TCG AAG TAC ANG CGT GCT CTG GAT GAC TTC TAT GAC AAG AAC TTC CCG GAA TTC GTG CCG S K Y м R Α L D D F Y D K N F Ρ E ਜ v P 1531/482 1501/472 CTG CGT ACC AAG GTC AAG GAG ATC CTG CAG GAG GAG GAG GAY CTG TCT GAG ATC GTG CAA v D L S Е Υ 0 Τ. R T к v K E. Ť Ľ Q EEE 1591/502 1561/492 CTG GTC GGC AAG GCC TCT CTC GCC GAA ACC GAC AAG ATC ACG CTG GAG GTG GCC AAG CTG L V G DKI v к Ľ S L Α т  $\mathbf{T}$ L E Ä к A Е 1621/512 1651/522 CTG AAG GAC GAT TTC CTG CAG CAG AAC TCC TAC TCC TCG TAC GAT CGC TTC TGC CCC TTC L K D D F L Q 0 Ν s Υ s s Y υ к  $\mathbf{F}$  $\mathbf{C}$ Р F 1681/532 1711/542 TAC AAG ACC GTG GGC ATG TTG AGG AAC ATC ATC GAC TTC TAC GAC ATG GCC CGT CAC TCC x 'P v G М L Ŗ N Ι I D F Y D м Α R IJ Y 1741/552 1771/562 GTG GAG TCT ACG GCT CAG TCT GAG AAC AAG ATC ACC TGG AAC CTG ATT CGT GAG GCA ATG  $\mathbf{S}$ I T W N v Ι R  $\mathbf{E}$ VES т Ä Q Ε Ν к А М 1801/572 1831/582 GGE AAC ATT ATG TAC CAG CTG TCA TCC ATG AAG TTC AAG GAC CCC GTT AAG GAT GGT GAG G N I M Y Q L  $\mathbf{S}$ S М к ਸ K  $\square$ P V Κ D G Ε 1861/592 1891/602 GCC AAG ATC AAG GCT GAC TTC GAG CAG CTG CAC GAG GAC CTG CAG CAG GCC TTC AGA AAT КІ K Α D F Е Q L H E D L Q Q A F, R N A 1951 1921/612 CTG GAG GAC TAG AGA CCG ACG ACT GGC CCT ACT TTT ACA CTC TAA TCT TAT ATT TGT TAT LED 1981 2011 ATA GTT AAC GTT TAA AAA TGA AAG CAG TCA AAA ACC ATC CGA AAA AGC CTA ATC AAA CAC 20712041 CAA CAA TTC CAG CTG CAT TCG ATG AAA AAC AAA AGT CCA ACA AAT ACC ATA ACT TCT TGG 2101 2131 TGC CTG OGA GAG ATG TAA ACA TTC CGG CCT GOG GTT AAT ACT TTC CCC TAA CCA CGC CCC 2191 2161CTC CCC CTC AAG GGC AAC TCT AGG CAA CAG CAA CTA CAA CCT CCT GCT ATG TAC TTC 2221 2251CAT TTA CAA CAA CAA CAC CAA CAT ACA CTT GAA TAA AAG TAC ACG GAC ACT GGC GCA CAC 2281 2311ACA ACA CAT ACA TAA AAG ACA CAA ATA CAA ATG CAT GCA TAA ATA GTA TTA TTG TTT AAT 2341 2371GAA TOG AAA TTO ITG TTT ATT TGT GAA AAA AGT CAT GTT TTO TOO CTG TTT GTT YGT TAA 24312401 ATT TAT GTA AAT ATT TXA AGT ATG AAA TAT TAA ATG TAC G<u>AA TAA A</u>GT GCA ACA ACA AAT 2461 ACA TTT ANT GTA AA

10

ar Si

CONTRACTOR AND AND A CONTRACTOR

Figure 4.3 cDNA and predicted amino acid sequence for *vha68-2*. The presumed polyadenylation signal is underlined. The beginning of the poly A tail is marked in bold. The cDNA sequence has been published in the GenBank database under the accession number U59146.

86

Constants Constants

readings. It is 2474 bp long. The long open reading frame encoded a putative polypeptide of 614 amino acids (Figure 4.3) with a molecular mass of 68338 Da. The high homology of this cDNA sequence with that of *vha68-1* cDNA (Figure 4.4) and with sequences for A subunits from other sources in the GenBank database (Figure 4.5) suggests that this new cDNA encodes a second isoform of the catalytic A subunit of the *Drosophila* V-ATPase. Accordingly, the gene was named as *vha68-2*. The 5' UTR of *vha68-2* cDNA is 88 bp long, the 3' UTR 542 bp. There is a poly A addition signal between nucleotides 2446-2451, 24 bp upstream of the poly A tail.

The digestion map of p68c-4 is different from both vha68-1 and vha68-2 cDNA. Whether this insert represents a third vha68 cDNA awaits confirmation by sequencing the insert.

#### 4.3.3 Comparison of the two isoforms

The length of the two cDNAs arc similar. *vha68-1* is 2576 bp while *vha68-2* is 2474 bp, about 100 bp shorter. Both cDNAs have a long open reading frame of 1842 bp which encodes a polypeptide of 614 amino acids  $\approx 68$  kDa. The two polypeptides share 91% aa identity. The coding DNA sequences share 85.5% identity. However, the homology between the 5' and 3' noncoding sequence is very low or without homology (Figure 4.4). The 5' UTRs in the two longest cDNA of *vha68-1* and *vha68-2* are almost of the same size, but the 3' UTR of *vha68-1* is 102 bp longer than that of *vha68-1*. The poly A tail signal AATAAA was found near the poly A tails of both cDNAs.

The predicted translation start site of *vha68-2* CAAAAIG is the same as that of *vha26* (See chapter 6) which is in perfect match with this consensus start site (C/A)AA(A/C)ATG (Cavener, 1987). However, *vha68-1* has a different start site GACCATG. *vha68-1* uses TAA for the translation stop codon but *vha68-2* uses TAG as the stop codon.
weeks and a second second

| rb = 58 - 1                                                                                     | 540                                                                                                                                                                                                                                      | 550<br>ACACCACAAC                                                                                                                                                                                         | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 570<br>»cc»cccam                                                                                                                                                                                     | 580<br>Gammengera                                                                                                                                                                                                           | 590<br>CCGAGGGCTA                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIIA00-1                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-2                                                                                         | ACGGTCTGGT                                                                                                                                                                                                                               | GCATGAGAAC                                                                                                                                                                                                | ACTCTGGTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGCACAAGAT                                                                                                                                                                                           | GATTGTGAAC<br>580                                                                                                                                                                                                           | CCCCGCGCCA                                                                                                                                                                                                                                                                     |
|                                                                                                 | 240                                                                                                                                                                                                                                      | 330                                                                                                                                                                                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,0                                                                                                                                                                                                  | 200                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |
| who60 1                                                                                         | 600<br>NCCCA & CCCTT                                                                                                                                                                                                                     | 610<br>നഗ്രസ്തരാത്ത                                                                                                                                                                                       | 620<br>Iseaccocce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 630<br>CCAACTACAA                                                                                                                                                                                    | 640<br>CCTCC&CC&C                                                                                                                                                                                                           | 650<br>אחדיםיםכבייים                                                                                                                                                                                                                                                           |
| VIIa00-1                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-2                                                                                         | AGGGAACAGT                                                                                                                                                                                                                               | GCGCTACATC                                                                                                                                                                                                | GCCCCCTCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCAACTACAA                                                                                                                                                                                           | GGTCGACGAT                                                                                                                                                                                                                  | GTCGTCCTGG                                                                                                                                                                                                                                                                     |
|                                                                                                 | 600                                                                                                                                                                                                                                      | 0T0                                                                                                                                                                                                       | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 030                                                                                                                                                                                                  | 040                                                                                                                                                                                                                         | 650                                                                                                                                                                                                                                                                            |
| who for 1                                                                                       | 660                                                                                                                                                                                                                                      | 670<br>CONCERCIÓN                                                                                                                                                                                         | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 690<br>אראלילא שלישיי                                                                                                                                                                                | 700<br>2000-2000                                                                                                                                                                                                            | 710<br>CCACECCCC                                                                                                                                                                                                                                                               |
| VII400-1                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-2                                                                                         | AGACCGAGTT                                                                                                                                                                                                                               | CGATGGAGAG                                                                                                                                                                                                | ATCACCAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ACACCATGTT                                                                                                                                                                                           | GCAGGTGTGG                                                                                                                                                                                                                  | CCAGTGCGTC                                                                                                                                                                                                                                                                     |
|                                                                                                 | 66V                                                                                                                                                                                                                                      | 0/0                                                                                                                                                                                                       | 08V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 690                                                                                                                                                                                                  | 100                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                             |
|                                                                                                 | 720                                                                                                                                                                                                                                      | 730<br>00000000000                                                                                                                                                                                        | 740<br>CAACCECCCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 750<br>CCCARCOMPC                                                                                                                                                                                    | 760<br>CCCCCC                                                                                                                                                                                                               | 770                                                                                                                                                                                                                                                                            |
| VIIA08-1                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-2                                                                                         | A-CCACGCTC                                                                                                                                                                                                                               | CCGTGACCGA                                                                                                                                                                                                | GAAGCTGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCCAACCACC                                                                                                                                                                                           | CCCTGCTCAC                                                                                                                                                                                                                  | CGGACAGCGT                                                                                                                                                                                                                                                                     |
|                                                                                                 | 720                                                                                                                                                                                                                                      | 750                                                                                                                                                                                                       | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 750                                                                                                                                                                                                  | 700                                                                                                                                                                                                                         | ,,,,                                                                                                                                                                                                                                                                           |
| wha68-1                                                                                         | 780<br>GTCCTTGACT                                                                                                                                                                                                                        | 790<br>CGCTCTTCCC                                                                                                                                                                                         | 800<br>240000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 810<br>GGCGGCACCA                                                                                                                                                                                    | 820<br>CTGCCATCCC                                                                                                                                                                                                           | 830<br>CCC109T                                                                                                                                                                                                                                                                 |
| viiado I                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-2                                                                                         | GTGCTCGACT<br>780                                                                                                                                                                                                                        | COCTCTTCCC<br>790                                                                                                                                                                                         | CTGTGTCCAG<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GGCGGTACCA<br>81.0                                                                                                                                                                                   | CCGCCATTCC<br>820                                                                                                                                                                                                           | CGGAGCTTTC<br>830                                                                                                                                                                                                                                                              |
|                                                                                                 | 700                                                                                                                                                                                                                                      | ,20                                                                                                                                                                                                       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 040                                                                                                                                                                                                  | 020                                                                                                                                                                                                                         | 030                                                                                                                                                                                                                                                                            |
|                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |
| vha68-1                                                                                         | 840<br>GGCTGCGGCA                                                                                                                                                                                                                        | 850<br>AGACCGTCAT                                                                                                                                                                                         | 860<br>TTCGCAG G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870<br>CCC1PC <del>1</del> PCCAA                                                                                                                                                                     | 880<br>GTACTCCAAC                                                                                                                                                                                                           | 890<br>TCTGATGTGAT                                                                                                                                                                                                                                                             |
| vha68-1                                                                                         | 840<br>GGCTGCGGCA                                                                                                                                                                                                                        | 850<br>AGACCGTCAT                                                                                                                                                                                         | 860<br>TTCGCAG G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870<br>CCCTGTCCAA                                                                                                                                                                                    | 880<br>GTACTCCAAC                                                                                                                                                                                                           | 890<br>TCTGATGTGAT                                                                                                                                                                                                                                                             |
| vha68-1<br>vha68-2                                                                              | 840<br>GGCTGCGGCA                                                                                                                                                                                                                        | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT                                                                                                                                                             | $\stackrel{860}{{}{}}_{{}{}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 870<br>CCCTGTCCAA<br>          <br>CTCTGTCCA#                                                                                                                                                        | 880<br>GTACTCCAAC<br>          <br> GTACTCCAAC                                                                                                                                                                              | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT                                                                                                                                                                                                                                |
| vha68-1<br>vha68-2                                                                              | 840<br>GGCTGCGGCA<br> !        <br>GGTTGCGGCA<br>840                                                                                                                                                                                     | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850                                                                                                                                                      | $\begin{array}{c} \begin{array}{c} 860\\ \text{TTTCGCAG} & \text{G}\\ 1 \\ 1 \\ \text{TTTCGCAG} \\ \end{array} \\ \begin{array}{c} \text{CTTCGCAG}\\ 860 \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 870<br>CCCTGTCCAA<br>          <br>CTCTGTCCAA<br>870                                                                                                                                                 | 880<br>GTACTCCAAC<br>          <br> GTACTCCAAC<br>880                                                                                                                                                                       | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890                                                                                                                                                                                                                         |
| vha68-1<br>vha68-2                                                                              | 840<br>GGCTGCGGCA<br>!!       <br>GGTTGCGGCA<br>840<br>900                                                                                                                                                                               | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910                                                                                                                                               | $\begin{array}{c} 860\\ \text{TTCGCAG} & \text{G}\\ 1 \\ 1 \\ \text{TCTCGCAG}\\ \text{S60}\\ 860\\ 920 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 870<br>CCCTGTCCAA<br>          <br>CTCTGTCCAA<br>870<br>930                                                                                                                                          | 880<br>GTACTCCAAC<br>          <br>GTACTCCAAC<br>880<br>940                                                                                                                                                                 | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950                                                                                                                                                                                                                  |
| vha68-1<br>vha68-2<br>vha68-1                                                                   | 840<br>GGCTGCGGCA<br> !       <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG                                                                                                                                                                 | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA                                                                                                                                 | $\begin{array}{c} 860\\ \text{TTCGCAG} & \text{G}\\ 1 & 1 & 1\\ \text{TCTCGCAG} & \text{G}\\ 860\\ 920\\ \text{GCGCGGTAAC} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG                                                                                                                                          | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG                                                                                                                                                  | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC                                                                                                                                                                                                    |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1                                                        | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>          <br>ATCTACGTCG                                                                                                                                                  | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>          <br>GTTGCGGTGA                                                                                                     | $\begin{array}{c} 860\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>                                                                                                                                      | 880<br>GTACTCCAAC<br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>HIIIIIIII<br>AGGTACTGCG                                                                                                                                      | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>          <br>TGACTTCCC                                                                                                                                                                         |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1                                                        | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>         <br>ATCTACGTCG<br>900                                                                                                                                            | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910                                                                                               | $\begin{array}{c} 860\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>        <br>GAGATGTCTG<br>930                                                                                                         | 880<br>GTACTCCAAC<br>IIIIIIIII<br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>IIIIIIIIIII<br>AGGTACTGCG<br>940                                                                                                                | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>        <br>TGACTTCCCC<br>950                                                                                                                                                                   |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1                                                        | 840<br>GGCTGCGGGCA<br>GGTTGCGGGCA<br>840<br>900<br>ATCTACGTCG<br>111111111<br>ATCTACCTCG<br>900<br>960                                                                                                                                   | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>          <br>GTTGCGGTGA<br>910<br>970                                                                                       | $\begin{array}{c} 860\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>         <br>GAGATGTCTG<br>930<br>990                                                                                                 | 880<br>GTACTCCAAC<br>UUUUUUUU<br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>UUUUUUU<br>BGGTACTGCG<br>940<br>1000                                                                                                             | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>          <br>TGACTTCCCC<br>950<br>1010                                                                                                                                                         |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1                                             | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>11111111<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT                                                                                                                        | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAI<br>850<br>910<br>GTTGCGGCGA<br>          <br>GTTGCGGCGA<br>910<br>970<br>GCGACATAGA                                                                         | $\begin{array}{c} 860\\ \hline TTCGCAG & G\\ \hline \\ 1 \\ TTCGCAG & G\\ \hline \\ CTCGCAG & G\\ 860\\ \hline \\ 920\\ \hline \\ GCGCGGGTAAC\\ 920\\ \hline \\ 980\\ \hline \\ TGGCGTCACC\\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>        <br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA                                                                                    | 880<br>GTACTCCAAC<br>UUUUUUUUUUU<br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>UUUUUUUU<br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC                                                                                           | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>        <br>TGACTTCCC<br>950<br>1010<br>TGCTCTGGTG                                                                                                                                              |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2                                  | 840<br>GGCTGCGGGCA<br>GGTTGCGGGCA<br>840<br>900<br>ATCTACGTCG<br>111111111<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>11111111<br>GAGCTGTCCG                                                                                           | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>                                                                      | $\begin{array}{c} 860\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>11111111<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>11111111                                                                        | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>           <br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>                                                                                    | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>          <br>TGACTTCCCC<br>950<br>1010<br>TGCTCTGGTG<br>                                                                                                                                       |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2                                  | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>111111111<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>1111111<br>GAGCTGTCCG<br>960                                                                                       | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGGCGA<br>        <br>910<br>970<br>GCGACATAGA<br>        <br>TGGAGATCGA<br>970                                                       | $\begin{array}{c} 860\\ 1 \\ TTCGCAG \\ 6\\ 1 \\ TTCGCAG \\ 8\\ 860\\ 920\\ GCGCGGTAAC\\ 920\\ GCGCGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 980\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870<br>CCCTGTCCAA<br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>930<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>1111111<br>GAGTCCATTA<br>990                                                         | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>           <br>BGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>             <br>TGAAGCGTAC<br>1000                                                 | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>         <br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>         <br>CCCCCTTGTG<br>1010                                                                                                         |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2                                  | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>11111111<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>1111111<br>GAGCTGTCCG<br>960<br>1020                                                                                | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>        <br>TGGAGATCGA<br>970<br>1030                                 | $\begin{array}{c} 860\\ \hline \\ TTCGCAG & G\\ \hline \\ \\ TTCGCAG & G\\ \hline \\ \\ TCCCGCAG & G\\ \\ 860\\ \hline \\ 920\\ \hline \\ \\ GCGCGCGTAAC\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 870<br>CCCTGTCCAA<br>CCCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>        <br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>         <br>GAGTCCATCA<br>990<br>1050                                          | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>           <br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>             <br>TGAAGCGTAC<br>1000<br>1060                                         | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>         <br>TGACTTCCCC<br>950<br>1010<br>TGCTCTGGIG<br>         <br>CCCCCTTGTG<br>1010<br>1070                                                                                                 |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-1                       | 840<br>GGCTGCGGCA<br>         <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>         <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT                                                                             | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>970<br>1030<br>CCAACATGCC<br>!                                        | $\begin{array}{c} 860\\ \hline \\ TTCGCAG & G\\ \hline \\ TTCGCAG & G\\ \hline \\ CTCGCAG & G\\ 860\\ \hline \\ 920\\ \hline \\ CCCCGCGGTAAC\\ 920\\ \hline \\ 920\\ \hline \\ 980\\ \hline \\ TGGCGTGGTAAC\\ 920\\ \hline \\ 980\\ \hline \\ 1040\\ \hline \\ CGTGGCAGCT\\ \hline \\ 111111111\\ \hline \\ 11111111\\ \hline \\ 11111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 870<br>CCCTGTCCAA<br>CCCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>990<br>1050<br>CGTGAGGCCT                                                                                 | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>1000<br>TGAAGCGAAC<br>            <br>TGAAGCGTAC<br>1000<br>1060<br>CCATTTACAC                                                                | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>          <br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>         <br>CGCCCTTGTG<br>1010<br>1070<br>TGGTATCACT                                                                                  |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-1<br>vha68-2            | 840<br>GGCTGCGGCA<br>         <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>         <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT<br>                                                                         | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCCGA<br>          <br>GTTGCGGCCGA<br>910<br>970<br>GCGACATAGA<br>        <br>TGGAGATCGA<br>970<br>1030<br>CCAACATGCC<br>            | $\begin{array}{c} 860\\ TTCGCAG & G\\        &  \\ PCTCGCAG & G\\ 860\\ 920\\ GCGCGGGTAAC\\     &     \\ GCGTGGTGAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 920\\ 980\\ TGGCGTGGCACC\\ 980\\ 1040\\ CGTGGCAGCT\\      &    \\ TGTGGCGCACCT\\       &    \\ TGTGGCTGCCACCT\\       &    \\ TGTGGCTGCCCCCC\\        &    \\ TGTGGCTGCCACCT\\             \\ TGTGGCTGCCACCT\\              \\ TGTGGCTGCCACCT\\               \\ TGTGGCTGCCACCT\\              \\ TGTGGCCTGCCCCCCC\\                 \\ TGTGGCCTGCCACCT\\                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 870<br>CCCTGTCCAA<br>CCCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>        <br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>         <br>CGAGTCCATTA<br>990<br>1050<br>CGTGAGGCCT<br>                       | 880<br>GTACTCCAAC<br>          <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>           <br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>            <br>TGAAGCGAAC<br>1000<br>1060<br>CCATTTACAC<br>                         | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>         <br>CGCCCTTGTG<br>1010<br>1070<br>TGGTATCACT<br>                                                                                                          |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-1<br>vha68-2            | 840<br>GGCTGCGGCA<br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>900<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>           <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT<br>                                                               | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>970<br>1030<br>CCAACATGCC<br>1030                                     | $\begin{array}{c} 860\\ TTCGCAG & G\\        &  \\ TTCGCAG & G\\ 860\\ 920\\ GCGCGGTAAC\\ 920\\ GCGCGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 980\\ 1040\\ GGTGGCAGCT\\       &   \\ TGTGGCGTGCTGCT\\ 1040\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 870<br>CCCTGTCCAA<br>          <br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>990<br>1050<br>CGTGAGAGGCCT<br>                                                             | 880<br>GTACTCCAAC<br>          <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>1000<br>1060<br>CCATTTACAC<br>1060                                                                                | 890<br>TCTGATGTGAT<br>IIIIIIIIIII<br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>IIIIIIIIII<br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGIG<br>IIIIIIIIII<br>CGCCCTTGTG<br>1010<br>1070<br>TGGTATCACT<br>IIIIIIIIII<br>TGGTATCACC<br>1070                                            |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-2<br>vha68-2            | 840<br>GGCTGCGGCA<br>         <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>           <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT<br>          <br>GCCAACACCT<br>1020<br>1080                               | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAL<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>970<br>1030<br>CCAACATGCC<br>!         <br>CCAACATGCC<br>1030<br>1090 | $\begin{array}{c} 860\\ TTCGCAG & G\\        &  \\ PCTCGCAG & G\\ 860\\ 920\\ GCGCGGTAAC\\ 920\\ GCGCGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 920\\ 980\\ 1040\\ CGGTGGCAGCT\\      &    \\ TGGTGGCAGCT\\ 1040\\ TGTGGCTGCTGCT\\ 1040\\ 1100\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 870<br>CCCTGTCCAA<br>CCCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>930<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>11111111111111111111111111111111                                                     | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>          <br>TGAAGCGAAC<br>1000<br>1060<br>CCATTTACAC<br>          <br>CCATCTACAC<br>1060<br>1120               | 890<br>TCTGATGTGAT<br>IIIIIIIIIII<br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>IIIIIIIIII<br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>IIIIIIIIIII<br>CCCCCTTGTG<br>1010<br>1070<br>TGGTATCACT<br>IIIIIIIIIII<br>TGGTATCACC<br>1070<br>1130                                  |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-1<br>vha68-2<br>vha68-2 | 840<br>GGCTGCGGCA<br> !       <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>         <br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>           <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT<br>                                            | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGCGA<br>         <br>GTTGCGGCGA<br>910<br>970<br>GCGACATGCG<br>970<br>1030<br>CCAACATGCC<br>1030<br>1090<br>ACTTCCGTGA               | $\begin{array}{c} 860 \\ TTCGCAG & G \\        &   \\ PCTCGCAG & G \\ 860 \\ 920 \\ GCGCGGTAAC \\     &      \\ GCGTGGTGAAC \\ 920 \\ 980 \\ TGGCGTGGTAAC \\ 920 \\ 980 \\ TGGCGTGGTAAC \\ 920 \\ 980 \\ 1040 \\ CGGTGGCAGCT \\     &     \\ TGGTGGCAGCT \\ 1040 \\ CGGTGGCAGCT \\ 1040 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\$ | 870<br>CCCTGTCCAA<br>CCCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>990<br>1050<br>CGTGAGGCCT<br>1050<br>1110<br>CAACGTAGCCA<br>1110                            | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>           <br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>             <br>TGAAGCGAAC<br>1060<br>CCATTTACAC<br>1060<br>1120<br>TGATGGCTGA<br> | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTGAT<br>890<br>950<br>TGACTTTCCC<br>           <br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>1010<br>1070<br>TGGTATCACT<br>           <br>TGGTATCACT<br>1070<br>TGGTATCACT<br>1070<br>TGGTATCACC<br>1070<br>1130<br>TTCCACCTCC<br> |
| vha68-1<br>vha68-2<br>vha68-1<br>vha68-1<br>vha68-1<br>vha68-2<br>vha68-2<br>vha68-2<br>vha68-2 | 840<br>GGCTGCGGCA<br>          <br>GGTTGCGGCA<br>840<br>900<br>ATCTACGTCG<br>900<br>960<br>GAACTGACCT<br>        <br>GAGCTGTCCG<br>960<br>1020<br>GCCAACACCT<br>         <br>GCCAACACCT<br>1020<br>CTGTCTGAAT<br>         <br>TTGTCCGAAT | 850<br>AGACCGTCAT<br>          <br>AGACTGTGAT<br>850<br>910<br>GTTGCGGGCGA<br>         <br>GTTGCGGTGA<br>910<br>970<br>GCGACATAGA<br>970<br>1030<br>CCAACATGCC<br>1030<br>1090<br>ACTTCCGTGA<br>          | $\begin{array}{c} 860\\ TTCGCAG & G\\ TTCGCAG & G\\ S60\\ 920\\ GCGCGGTAAC\\ 920\\ GCGCGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 920\\ 980\\ TGGCGTGGTAAC\\ 920\\ 1040\\ CGGTGGCAGCT\\ 1040\\ CGGTGGCAGCT\\ 1040\\ 100\\ TTGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ 1100\\ TATGGGCTAC\\ 1100\\ 1100\\ TATGGGCTAC\\ 1100\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCTAC\\ 1100\\ TATGGCCTAC\\ 1100\\ TATGGCCTAC\\ 1100\\ TATGGCCTAC\\ 1100\\ TATGGCCTAC\\ 1100\\ TATGGCCTAC\\ 100\\ TATGGCCTAC\\ 100\\ TATGGCTAC\\ 100\\ TATGGCCTAC\\ 100\\ TATGCCCTAC\\ 100\\ TATGCCCTAC\\ 100\\ TATGCCCTAC\\ 100\\ TATGCCCCAC\\ 100\\ TATGCCCAC\\ 100\\ TATGCCCAC\\ 100\\ TACCAC\\ 100\\ TACCAC\\$                       | 870<br>CCCTGTCCAA<br>          <br>CTCTGTCCAA<br>870<br>930<br>GAGATGTCTG<br>930<br>990<br>GAGTCCATTA<br>990<br>1050<br>CGTGAGGCCT<br>         <br>CGAGAGGCCT<br>1050<br>1110<br>CAACGTAGCCA<br>1110 | 880<br>GTACTCCAAC<br>           <br>GTACTCCAAC<br>880<br>940<br>AGGTACTGCG<br>940<br>1000<br>TGAAGCGAAC<br>          <br>TGAAGCGTAC<br>1000<br>1060<br>CCATTTACAC<br>1060<br>1120<br>TGATGGCTGA<br>                         | 890<br>TCTGATGTGAT<br>          <br>TCCGATGTCAT<br>890<br>950<br>TGACTTTCCC<br>         <br>TGACTTTCCC<br>950<br>1010<br>TGCTCTGGTG<br>1010<br>1070<br>TGGTATCACT<br>         <br>TGGTATCACC<br>1070<br>1130<br>TTCCACCTCC<br>                                                 |

0

÷.,

N. an

89

and an an an and and a second second

vha68-1 CATGCCGTTGAGTCCACACCCCAGTCGGACAACAAGATCACATGGAACACCATCAGGGAA 1 11 vha68-2 CACTCCGTCGAGTCTACGGCTCAGTCTGAGAACAAGATCACCTGGAACGTGATTCGTGAG vha68-1 TCGATGGGCGGGAATTATGTACCAGCTGTCGTCGATGAAGTTCAAGablaGACCCTGTGAAAGAT  $v_{ha68-2}$  gcaatgggcaacattatgtaccagctgtcatccatgaag1"1"caagablagaccccgttaaggat vha68-1 GGCGAGCAAAAGATCAAGGCGGACTACGACCAGCTGTACGAGGATCTGCAGGAGCCTTC vha68-2 GGTGAGGCCAAGATCAAGGCTGACTTCGAGCAGCTGCACGAGGACCTG GCAGGCCTTC vha68-1 CGAAATCTGGAGGACTAAGCGGGAAACGGCCAGAAACCATCTGCGGGCTTTCCTAGCGGGA vha68-2 AGAAATCIGGAGGACTAGAGACCGACGACTGGCCCTACTTTACACTCTAATCTTATATT 

Figure 4.4 Alignment of the two cDNA by FASTA in GCG. The positions of the introns were marked by " $\nabla$ " according the information of the genomic sequence. See Section 4.4 for genomic sequence of *vha68-2*. Refer Accession number: U19742 in GenBank database for genomic sequence of *vha68-1*.

| VA SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MEREL MURRILS OF SKITTESMETEMELES FLUT MUKA SAMI COSMUTI MEMOREFLACEVLET HODBOTTO AVERTSCH. TUCHDOOPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VA NELICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | î                                                                                                                                                                                                                                                                                                 | MA BOONGA FUNCT HTCH TO SALE OF A DATA STATE STA                                                                            |
| VA BOUTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MINDERY DY D DEDRIFTEREN ALLOY COM AN ACA ANY PLANAGE FUNCTION AND AN ANY PLANAGE THE ANY PLANAGE ANY                                                                             |
| VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | AND SALE ARDEDAS IF I VIGUSOFY I ACDINASAMITELY AVGISELIVES I RESEMANT I VIETOS VS VODEVLATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                 | MUDP SKLPKALDEDKESTFGTVIRGSGFVVTACDNAGAAATIELVRVGRSELVGETTRLEGDAATIQVTEETSGVSVGDPVLRTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_HOPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MDPSKLPK1LDEDKES1FG1V1RGVSGPV1RCDNAGAAF1ELVRVGPSELVGE11RLEDDMA11QV1EE1CGVSVGDPVLRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VA_MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MDPSKLPKIRUEDRESIPGIVINGVSGPVVIACDAKGAMITELVRVGRSELVGETIRLESDAFIQVIEETSGVSVGDPVLRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | WDPSKLPKIRDEDRAR VGIVQGVSGPVIACINAGAATIELUKVGPISELVGETIRLEGDLAIVQVIEETSGVSVGDPVLRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VA_CHICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | WIND PROPERTING AND A CONSIGNATION AND A CONSIGNATI                                                                            |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                 | MENURAR RUPERSEDENTRY INVSCHURGERANGSAMILEURWEITTELWEITTRLEGUMATTEVISETUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MONTRACE RULEBESE USEV INVOGEV VALEMSGAM I ELEVINGT I ELVINGET I RELEGITAT I QVI I EL I SGVI VGDR V LIKIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HO HIMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | î                                                                                                                                                                                                                                                                                                 | MTSTILLT DE DE DE VERVERV SGEV VIR ED AGGANTELE VIVOIT ED VOET HELEDHAT LOVIE DE DOA'V VOD VULTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĩ                                                                                                                                                                                                                                                                                                 | MASKGGLKTIANFENFERFGV/FAUSGPV/TAEKMSGSAMVEL/JEVG/NEL/GETIELEGDMATIO/VEFTSG/PV/GDP/LETG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | ELVRVGHDSLIGET I BLEGDSAT I OVVEETAGI TVNDPVL BTK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA MAIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĩ                                                                                                                                                                                                                                                                                                 | ARATIOVYEETAGLMVNDPVLRTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA BRANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MPAFYGGKLTTFEDDEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGHDNLIGEIIRLEGDSATIOVYEETAGLTVNDPVLRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MPSVYGDRLTTFEDSEKESEYGYVRKVSGPVVVADGMGGAAMYELVRVGHDNLIGEIIRLEGDSATIOVYEETAGLMVNDPVLRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_VIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MPAVYGARLTTFEDSEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGRDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_GOSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MPAVYGSRLTTFEDSEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MPAVYGDRMTTFEDSEKESEYGYIRKVSGPVVVADGMNGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETGGLTVNDPVLRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_ACEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MSKAKEGDYGSIKKVSGPVVVADNMGGSAMYELVRVGTGELIGEIIRLEGDTATIQVYEETSGLTVGDGVLRTK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_ENTHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MNFDTDKKEKEFGKVYSVSGPVVIAENMLGAAMNELVRVGSRGLMGEIIRLEGTTATIQVYEETAGLQLGDMVERTM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA_TRYCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MTSDKNPYKTEQRMGAVKAVSGPVVIAENMGGSAMYELVQVGSFRLVGEIIRLEGDTATIQVYEETGGLTVGDPVYCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 | MTKVAVEKEEPGVVYKVAGSLVIAENMSGTRMYELAKVGWNKLVGEIIRLEGNYAYIQVYEDTSGLSVGDPVIKTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                | KPLSVELGPGLAETIYDGIQRPLKQIFDKSQSIYIPRGINTESLNREHKWDFTPNKDLRIGDHVSGGDVFGSVFENSLFNDHKIMLPPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_NEUCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81                                                                                                                                                                                                                                                                                                | KPLSVELGPGLLNNIYDGIQRPLEKIAEASNSIYIPRGIATPALDRKKKWEFTPTMKVGDHIAGGDVWGTVYENSFISVHKILLPPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDVKWDFTPCKNLRVGSHITGGDIYGIVNENSLI.KHKIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDVKWEFTPSKNLRVGSHITGGDIYGIVNENSLI,KHRIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84                                                                                                                                                                                                                                                                                                | KPLSVDVGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENSLI.KHKIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84                                                                                                                                                                                                                                                                                                | KPRSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWEFIPSKNLRVGSHITGGDIYGIVNENSLI.KHKIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGAIFDGIQRPLSDISTLTKSIYIPRGVNVSALSRDVKWDFTPSKNLRVGSHITGGDIYGVVNENSLI.KHKIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 84                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGAIFDGIQRPLSDISTLTKSIYIPRGVNVSALSRDVKwDFTPSKNLRVGSHITGGDIYGVVNENSLI.KHKIMLPPRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGSIFDGIQRPLRDIGVMTNSIYIPKGVNTTALSRSEMWEFNP.LNVRVGSHITGGDLYGVVHENTLV.KQRMIVAPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_DROM1 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGSIFDGIQRPLRDIGVMTNSIYIPKGVNTTALSRSEMWEFNP.LNVRVGSHITGGDLYGVVHENTLV.KQRMIVAPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGSIFDGIQRPLKDINELTESIYIPKGVNVPSLSRVASWEFNP.LNVKVGSHITGGDLYGLVHENTLV.KHKMIVNPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HO_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMGSIFDGIQRPLKDINELSNSIYIPKGVNVPALSRTAQWDFSP, VSVKVGSHITGGDLYGLVHENTLV, KHKLLLPPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGSIFDGIQRPLKDINELTQSIYIPKGVNVPSLAREVDWEFNP.LNVKVGSHITGGDLYGIVHENTLV.KHKMLMPPRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                                                                                                                                                                                                                                                                                                | KPLSCELGPGILGNIFDGIQRPLKTIAIKSRDVYIPRGVSVPALDKDQLWEFQP.NKLGVGDNITNGDLYATVFENTLM.KHHIALPPGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_MAIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAIKSGDVYIPRGVSVPALDKDVLWEFQP.TKLGVGDVITGGDLYATVFENTLM.QHHVALPPGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_BRANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDCLWEFQP.KDFVEGDTITGGDLYATVFENSLM.QHHVALPPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP.KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_VIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP.KKIGEGDLLTGGDLYATVFENTLM.QHHIALPPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_GOSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDALWDFQP.KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                | KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPPLDKDTQWDFQP, KKLGVGDLLTGGDLYAIVDENSLM, QHHVVLPPDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_ACEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                                                                                                                                                                                                                                                                                                | QPLSVDLGPGILGNIFDGIQRPLKAIADVSGDVFIPRGVNVPSLDQTK*WEFRP.SAFKVGDRVTGGDIIGIVPENSLL.DHKVMLLPQA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                                                                                                                                                                                                                                                | SPLSVELGPGLMGNIFDGIQRPLEKIAERSNSVFIPRGVNVPALDRKKVWEFRPADNLKVGDPITAGDIYGIVPETPLI.DHKIMLPPNQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_ENTHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78                                                                                                                                                                                                                                                                                                | KPLSVELGPGIMTSIFDGIQRPLVSIAEKSGSIFIPRGISVASLDHQREWEFTPLVKKGDHVSGGDIIGTVPESALV.VHKILVPPTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_TRYCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                | KPLSLELGPGIMSEIFDGIQRPLDTIYRMVENVFIPRGVQVKSLNDQKQWDFKPCLKVGDLVSGGDIIGSVVENSLMYNHSIMIPPNV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TTR THY B PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_PLAPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_PLAPA<br>VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                                               | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGORVLDALYP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_PLAFA<br>VA_SCHPO<br>VA_NEUCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181<br>169                                                                                                                                                                                                                                                                                        | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTITRIAEKGEYTVEEKILEVEFDGKKTEYPMMQTWPVRVPRPAAEKHSANQPFLVGQRVLDALFP.SVQGGTVAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181<br>169<br>174                                                                                                                                                                                                                                                                                 | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGORVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTITRIAEKGEVTVEEKILEVEFDGKKTEYPMMQTWPVRVPRAEKHSANQPFLVGORVLDALFP.SVQGGTVAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGORVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>174                                                                                                                                                                                                                                                                          | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTTTRIAEKGEVTVEEKILEVEFDGKKTEYPMMQTWPVRVRPAAEKHSANQPFLVGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA_PLAPA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 181<br>169<br>174<br>174<br>173                                                                                                                                                                                                                                                                   | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEKGEVTVEEKILEVEFDGKKTEYPMMQTWPVRVRPAEEKHSANQPFLVGQRVLDALFP.SVQGGTVAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPARQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_PLAPA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>174<br>173<br>173                                                                                                                                                                                                                                                            | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEKGEYTVEEKILEVEFDGKKTEYPMQTWPVRVPRAEKHSANQPFLVGQRVLDALFP.SVQGGTVAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>174<br>173<br>173<br>173                                                                                                                                                                                                                                                     | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEFSIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173                                                                                                                                                                                                                                              | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTVAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELFEGIKKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VA_PLAPA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173<br>173                                                                                                                                                                                                                                       | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGRNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPFGRNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGRNYDTSDVVLELEFEGIKKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VA_PLAFA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170                                                                                                                                                                                                                                       | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEFSIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVRYIAPPGNYDTSDVLELEFESISKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_PLAFA<br>VA_SCHPO<br>VA_NEUCR<br>VA_DOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170                                                                                                                                                                                                                         | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVRYIAPFGNYDTSDVVLELEFEGIKKFTMVQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPSGNYKDDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VA_ELAFA<br>VA_SCHPO<br>VA_BOVIN<br>VA_BIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170                                                                                                                                                                                                                         | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTVAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPPGNYDTSDVVLELEFEGIKKEFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPSGNYTVDDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPSGNYTVDDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171                                                                                                                                                                                                           | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEDSIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESIXKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDASNVVLELEFESIXKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSDVVLELEFESIXKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSDVVLELEFESIXKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDSDVVLELEFESIXEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_ELAFA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>HO_HUMAN<br>VA_MANSE<br>VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>132                                                                                                                                                                                             | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGGNVNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPEGNYKVDDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPEGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPEGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPEGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_HIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_HORVU<br>VA_HORVU<br>VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>113                                                                                                                                                                                      | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPPGNYDTSDVVLELEFEGIKKFTMVQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPPGNYDTSDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPPGNYDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPPGNYTDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEKSKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEKSKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEKSKFTMLUVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVIYIAPAGNYKVDDVVLETEFDGEKSKFTMLUTWPVRPRPRVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKISYIAPAGQYKLDDTVLELEFQGIKKKFTMLUTWPVRFPRVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKISYIAPAGQYNLDDTVLELEFQGIKKKFTMLUTWPVRFPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ                                                                                                                                                                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_BAPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>113<br>175                                                                                                                                                                        | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALYP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEDGIKKTEYPMMQTWPVRVPRPAAEKHSANQPFLVGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYNLEDIVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYNLEDIVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRSPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKSFTMLQTWPVRSPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKSFTMLQTWPVRSPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ                                                                                                                                                                                  |
| VA_ELAFA<br>VA_SCHPO<br>VA_BEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>113<br>175<br>175                                                                                                                                                                 | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYTVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYTVDDVVLETEFDGEKAQYTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYLQDTVLELEFQGIKKSFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYLQDTVLELEFQGIKKSFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKISYIAPAGQYSLQDTVLELEFQGIKKSFTMLQVWPVRPRPRVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKSFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYLAPAGQYSLKDTVLELEFQGIKKSFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYLAPAGQYSLKDTVLELEFQGIKKSFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYLAPAGQYSLKDTVLELEFQGIKKSFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYLAPAGQYSLKDTVLELEFQGIKKGFTMLQTWPVRTPRVASKLAAD          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_HIC1<br>VA_DROM1<br>VA_CHIC2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>171<br>173<br>132<br>175<br>175                                                                                                                                                                        | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLDDIVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYTDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKDDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLHTWPVRTPRVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLDTVLELEFQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYVAPAGQYSLKDTVLELEFQGVKKQFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYVAPAGQYSLKDTVLELEFQGVKKKPTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYVAPAGQYSLKDTVLELEFQGVKKKPTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYAPFAGYSLKDTVLELEFQGVKKKPTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYAPFAGYSLKDTVLELEFQGVKKKPTMLQTWPVRTPRPVASKLAADTPLLT          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>113<br>175<br>175<br>175                                                                                                                                                                 | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEDGIKKTEYPMMQTWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPPGNYDTSDVVLELEFEGIKEKFTMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFTMVQWPVQQRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYNLEDIVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYSLQDTVLELEFQGIKKEFTMLQVWPVRQPRPVTEKLPANPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVL          |
| VA_ELAFA<br>VA_SCHPO<br>VA_BEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>132<br>113<br>175<br>175<br>175                                                                                                                                                                 | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQNPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQNPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQVKLDTVLELEFQGIKKFFTMLUTWPVRPRPVSSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLDTVLELEFQGIKKFFTMLQTWPVRSPRPVSSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYLAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVATRLADT          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BCHVU<br>VA_CACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>133<br>175<br>175<br>175<br>175<br>175                                                                                                                                                                 | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGGNVDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQRRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKDDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKDDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEPQGIKKFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYVAPAGQYSLDTVLELEPQGIKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPPGQYSLKDTVLELEPQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPPGQYSLKDTVLELEPQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPPGQYSLDTVLELEPQGVKKGTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SV          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_ACEAC<br>VA_CYACA<br>VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>175<br>175<br>175<br>175<br>162<br>165                                                                                                                                                   | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEGIKKEFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEFTMVQWPVQQRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVQQRPVTEKLPANHPLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVQQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYNLDDTVLELEFDGIKKFTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYSLQDTVLELEPQGIKKFTMLQWPVRPRPVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFG          |
| VA_SCHPO<br>VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MIZE<br>VA_MIZE<br>VA_SCARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_CEAC<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>166<br>6<br>166                                                                                                                                                     | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNUNLEDIVLETEFDGEITKHTMLQVWPVRQNPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNVKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYLDTVLELEFQGIKKFFTMLUTWPVRTPRPVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKFFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLT          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_ENTHI<br>VA_TRYCO<br>VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>168                                                                                                  | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQwQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPFGNYTVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPFGNYKVDDVVLETEFDGERKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPFGNYKVDDVVLETEFDGEKAQYTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPFGQYSLDTVLELEFQGIKKFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPFGQYSLDTVLELEFQGIKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQSLKDTVLELEFQGIKKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQSLKDTVLELEFQGIKKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQSLKDTVLELEFQGIKKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPFGQISLTDTVLELEFQGIKKKFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP.SVLG          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BRANA<br>VA_VIGRA<br>VA_VIGRA<br>VA_VIGRA<br>VA_VIGRA<br>VA_SERVU<br>VA_BETVU<br>VA_BETVU<br>VA_BETVI<br>VA_CACAC<br>VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167                                                                                                                       | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYNLEDIVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRQPRPVTEKLPANPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKEFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFSMHQWPVRTPRPVASKLAADTPLLTGQ          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_MIZE<br>VA_GOSHI<br>VA_GOSHI<br>VA_CARRO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_RTYCO<br>VA_PLAFA<br>VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>165<br>167<br>270                                                                                                  | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARRVADNLTANQPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDTSDVVLELEFEGIKKEFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGGNYDDDVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVYIAPAGGNYKDDVVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGGNYKDDVVLETEFDGEKTKHTMUQVWPVRQPRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGGNYKDDVVLETEFDGEKTKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGGNYKDDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGGNYKDDVVLETEFDGEKKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGTYTYIAPAGGYSLDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEPQGVKKSFTMLQTWPVRTPRPVASKL          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_HIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>HO_HUMAN<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>171<br>173<br>132<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                  | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPFGNVDTSDVVLELEFEGIKEKFSWVQWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGYSLQDTVLELEPGGIKKSFTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGYSLQDTVLELEPGGIKKSFTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYNLQDTVLELEPQGIKKSFTMLQWPVRPRPRVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEPQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQR          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_ARANA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_BOVIN<br>VA_SCHPO<br>VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>168<br>167<br>250<br>263                                                                                                         | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAEPGGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVDDVVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLQWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKEFTMLQTWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKL                                |
| VA_SCHPO<br>VA_BOVIN<br>VA_BEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARCO<br>VA_CYACA<br>VA_CARCO<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_DCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>165<br>166<br>167<br>270<br>258<br>263<br>263                                                               | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQwQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARRPVADNLTANQPLLTGQRVLDALYP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPCGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPCGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPCGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGSVTYIAPCGNYDTSDVVLELEFEGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGSNYKDDDVVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPSGNYKDDVVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKDDVVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPSGNYKDDVVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPASQYSLDDTVLELEFQGIKKFTMLQWPVRQRPRVTEKLPANHPLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGTVTYIAPASQYSLDDTVLELEFQGIKKFTMLQWPVRPRPVTSKLPANHPLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEFQGVKKSFTMLQWPVRPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEFQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEFQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPAGQYSLKDTVLELEFQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPGGYSLKDTVLELEFQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPGGYSLKDTVLELEFQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITYIAPGGYSLKDTVLELFQGVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>KGKITY       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_HIC1<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_CARRO<br>VA_OSHI<br>VA_BENTHI<br>VA_BENTHI<br>VA_BENTHI<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_NEUCR<br>VA_NEUCR<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BIG<br>VA_MOVAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1811<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>171<br>173<br>132<br>113<br>175<br>175<br>175<br>175<br>175<br>162<br>6<br>165<br>168<br>167<br>175<br>125<br>263<br>263<br>263<br>262                                                                              | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQwQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSMLHTWPVRARPVADNLTANQPLLTGQRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKKEKSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.SVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKKEKSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGJKKEKSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGJKKEKSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKKEKSMVQWPVQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKKEKSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKKEKSMVQWPVRQVRPVTEKLPANHPLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPCGNYDTSDVVLELEFEGJKEKSTMVQWPVRQVRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPGGNYNLEDIVLETEFDGEITKHTMLQWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYNDEDIVLETEFDGEITKHTMLQWPVRQRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGETKHTMLQWPVRQPRPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGYSLDTVULEFCPGGKKKFTMLQWPVRQPRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGYSLDTVLELEFQGKKKFTMLQWPVRQPRPVTEKLPANHPLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTYTYAPAGQYSLDTVLELEFQGKKKFTMLQWPVRQPRPVTSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGQYSLDTVLELEFQGVKKFTMLQWPVRPPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLDTVLELEFQGVKKFTMLQWPVRPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPGQYSLDTVLELEFQGVKKFTMLQWPVRPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPGQYSLDTVLELEFQGVKKFTMLQWPVRPRPPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPGQYSLDTVLELEFQGVKKFTMLQWPVRPRPPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPGGYSLDTVLELEFQGVKKFTMLQWPVRPRPVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPGGYSLDTVLELEFQGVKKFTMLQWPVRPRPVSKRLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPGGYSLDTVLELEFQGVKKFTMLQWPVRPRPP       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_GOSHI<br>VA_VIGRA<br>VA_SCHPO<br>VA_SCHPO<br>VA_PIG<br>VA_BEVCN<br>VA_SCHPO<br>VA_BOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_SCHPO<br>VA_BOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>168<br>167<br>270<br>258<br>263<br>262<br>262                                                                             | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFDGKKEFSMLHTWPVRAARPVADNLTANQPLLTGQRVLDALFP. SVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGKKEFSMVQWPVRVPVREVLEANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFSMVQWPVRVPVREVLEANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFSMVQWPVRVPREVLEANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFSMVQWPVRVVREVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFSMVQWPVRVVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPPCNYDTSDVVLELEFDGVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRHPVTEKLPANHPLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRHPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRHPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKVTDVVLETEFDGEKAQYTMLQWPVRPRPPVSKLAADTPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYSKUTDVLELEFQGIKKKFTMLQWPVRPRPPVSKLAADTPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPAGYSLKDTVLELEFQGIKKKFTMLQWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGIKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>MGKITYIAPGGYDIJIELFYCNIKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGT          |
| VA_SCHPO<br>VA_BOVIN<br>VA_BEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_MANSE<br>VA_MIZEA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_ROSHI<br>VA_CHICA<br>VA_DVIN<br>VA_DIG<br>VA_NEUCR<br>VA_DVIN<br>VA_DIG<br>VA_NEUCR<br>VA_MISMU<br>VA_MISMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>165<br>165<br>166<br>167<br>162<br>262<br>262<br>262                                   | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKTSYPMMQTWPVRVFRAARVADNLTANQPLLTGORVLDALFP. SVQGGTTAIPGAFGGKTVISQ<br>RGTVTIAPPGNYDTSDVVLELEFBGIKKETSYPMMQTWPVRVFRPAAEKHSANQPFLVGQRVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKSMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKSMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKSMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKFMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKFMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFBGIKKEKFMVQWPVRQVRPVTEKLPANHPLLTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQNRPVTEKLPANHPLFTGORVLDALFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPAGNYNLEDIVLETEFDGEITKHTMLQWPVRQNRPVTEKLPANHPLFTGORVLDSLFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPGCNYTDDVVLETEFDGEITKHTMLQWPVRQPRPVTEKLPANHPLFTGORVLDSLFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPGCNYTDDVVLETEFDGEKAQTTNLQWPVRQPRPVTEKLPANHPLLTGORVLDSLFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPGCNYSLDDVVLETEFDGEKAQTTNLQWPVRQPRPVTEKLPANHPLLTGORVLDSLFP. CVQGGTTAIPGAFGGKTVISQ<br>KGTVTYIAPGCNYSLDDVVLETEFDGEKAQTTNLQWPVRQPRPVTEKLAANTPLLTGORVLDSLFP. SVLGGTCAIPGAFGGKTVISQ<br>KGTYTYAPAGNYKVDDVVLETEFDGEKAQTTNLQWPVRPRPRVSKLAADTPLLTGORVLDSLFP. SVLGGTCAIPGAFGGKTVISQ<br>KGTYTYAPAGOYSLDTVLELEPGOKKKSFTMLQTWPVRTPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDTVLELEPGOKKKSFTMLQTWPVRTPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDTVLELEPGOKKKSFTMLQTWPVRTPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDTVLELEPGOKKKSFTMLQTWPVRTPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDTVLLEFGOKKKSFTMLQTWPVRTPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDTVLLEFGOKKKSFTMLQTWPVRTPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLGDTVLLEFFGOKKKSFTMLQTWPVRTPRVASKLAADTPLLTGORVLDALFP.           |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HOMAN<br>VA_PIG<br>VA_HOMAN<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>HO_HUMAN<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_CHICA<br>VA_SCHPO<br>VA_PIG<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>165<br>168<br>167<br>270<br>258<br>263<br>263<br>262<br>262<br>262<br>262<br>265                                                                                           | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIPGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSPSMLHTWPVRARPVADNLTANQPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEPGJKKEKFYMQCWPVRVPRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFSWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFSWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFSWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFSWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFSWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFTWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEGJKEKFTWQCWPVRQVRVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVRYIAPGNYDTSDVVLEEFEGJKEKFTWQCWPVRQARAVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGNYTVDDVVLETEFDGEITKHTHLQVWPVRQARAVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPGGNYKDDVVLETEFDGEITKHTHLQVWPVRQPRVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYKDDVVLETEFDGERSYKTHLQVWPVRQPRVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYLDDVVLETEFDGERSYKTHLQVWPVRPRVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISQ<br>MGKISYIAPAGYSLQDTVLELEPQGIKKFTHLQVWPVRPRVTSKLPANHPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKISYIAPAGYSLQDTVLELEPQGIKKFTHLQTWPVRFPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEPQGVKKOFTHLQTWPVRFPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGYSLKDTVLELEPQGVKKOFTHLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGNYSLLDKVGGERGNEMAEVLKOFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGNYSLLDKVGGERGNEMAEVLKOFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGNYSLLDKVGGERGNEMAEVLKOFTMLQTWPVRTPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGOYSLKDTVLELEFQGVKKFTMLQTMPVRTPRVASKLAADTPLLTGQRVLDALF          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_ACARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVII<br>VA_BETVII<br>VA_BETVII<br>VA_SCHPO<br>VA_BOVIN<br>VA_DISMU<br>VA_DISMU<br>VA_MISMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>123<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>262<br>262<br>262<br>255                                                               | NALSVELGPGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIPGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHESPSMLHTWPVRARRPVADNITANQPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRVRVTEKLEANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLEANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLEANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLLTQGRVLDALFP.CVQGGTTAIPGAFGGKTVISQ<br>RGTVTYIAPGGNYDTSDVVLELEFEGIKEKFSWQCWPVRQVRPVTEKLPANHPLTTQRVLDSLFP.CVQGGTTAIPGAFGGKTVISQ<br>KGTVYIAPGGNYNDEDVVLETEFDGEITKHTMLQVWPVRQRRPVTEKLPANHPLFTQGRVLDSLFP.CVQGGTTAIPGAFGGKTVISQ<br>KGTVYIAPGGNYKVDDVVLETEFDGEITKHTMLQVWPVRQRPVTEKLPANHPLFTQGRVLDSLFP.CVQGGTTAIPGAFGGKTVISQ<br>KGTVYIAPGGNYKVDDVVLETEFDGEITKHTMLQVWPVRQPRPVTEKLPANHPLLTQGRVLDSLFP.CVQGGTTAIPGAFGGKTVISQ<br>KGTVYIAPGGNSLDVTULELEFQGIKKEFTMLQVWPVRQPRPVTEKLPANPLLTQGRVLDSLFP.CVQGGTTAIPGAFGGKTVISQ<br>KGTVYIAPAGOYSLDUTVLELEFQGIKKEFTMLQVWPVRPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLDUTVLELEFQGIKKEFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGOYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPAGAYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPGGYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPGGYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLLTQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPGGYSLKUTVLELEFQGVKKFTMLQTWPVRTPRPVASKLADTPLUTGQRVLDALFP.SVLGGTCAIPGAFGGKTVISQ<br>KGKITYIAPGGYSLKUTVLE       |
| VA_SCHPO<br>VA_BOVIN<br>VA_BEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARCO<br>VA_CARCO<br>VA_TRYCO<br>VA_REVCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_DIG<br>VA_MISMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181<br>181<br>174<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>168<br>165<br>168<br>167<br>270<br>258<br>262<br>262<br>262<br>255<br>259                                                                                    | NALSVELGRGILLDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEFNGKKHESYSMLHTWEVRARREVADNITANQPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTITIAEKGEYTVEEKILEVEFDGKKTEYPMMQTWPVRVRPVRAAREVADNITANQPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKERSSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKERSSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEGIKERSSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFESVKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>RGTVTYIAPGGNYDLDUVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGARGCGKTVISQ<br>KGTVYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGARGCGKTVISQ<br>KGTVYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGARGCGKTVISQ<br>KGTVYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGARGCGKTVISQ<br>KGTVYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGARGCGKTVISQ<br>KGTVYIAPGGNYLDDVVLETEFDGEITKHTMLQVWPVRQVRPVTEKLPANHPLFTGQRVLDSLFP. SVLGGTCAIFGARGCKTVISQ<br>KGTVYIAPAGGNSLDDTVLELEFQGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFQGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFQGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCGKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFQGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFGGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFGGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFGGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFGGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP. SVLGGTCAIFGARGCKTVISQ<br>KKITYIAPAGGNSLDDTVLELEFGGIKKEFTMLQTWPVRPRPVXSKLAADTPLLTGQ          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_PIG<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_BRANA<br>VA_OSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>262<br>262<br>262<br>262<br>262<br>262<br>259<br>259                                                                             | NALSVELGEGILDNIYDGIQELERIANVCGDVYIYGIDMTSLDHIKQWQFYADKLKLNDIYTGGDIFGFVDENKLFKEHKIMAPPAA<br>RGTUTYIAEAGSYHVDEKLLEVEFNGKKHESSMLHTWEVMAAREVADNITANQPLLTGQRVLDALYP. CVQQGTTAIFGAFGGGKTVISO<br>RGTUTYIAEAGSYHVDEKLLEVEFGKKTEVPMQVTPEKLPANAEKHSANQPEI/GQRVLDALFP. SVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPPGRYDTSDV/LELEFGJKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPPGRYDTSDV/LELEFGJKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPPGRYDTSDV/LELEFGJKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPPGRYDTSDV/LELEFGJKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPPGRYDTSDV/LELEFGJKEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPGGNYDTSDV/LELEFGJWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>RGTVTIAPGGNYDTSDV/LELEFGJWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQQGTTAIFGAFGGKTVISO<br>KGTVRIIAPGGNYNDDV/LETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP. CVQQGTTAIFGAFGGKTVISO<br>KGTVRIIAPGGNYNLEDIVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP. CVQQGTTAIFGAFGGKTVISO<br>KGTVRIIAPGGNYNLDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP. CVQQGTTAIFGAFGGKTVISO<br>KGTVRIIAPGGNYNLDVVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLLTGQRVLDSLFP. CVQQGTTAIFGAFGGKTVISO<br>KGTVTIAPAGNYSKDTUVLEEFGGVKKFTMLQTWPVRPRPVTSKLADATPLLTGQRVLDSLFP. SVLGGTCAIFGAFGGKTVISO<br>KGTISTIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVTSKLADATPLLTGQRVLDSLFP. SVLGGTCAIFGAFGGKTVISO<br>KGTISTIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLDTVLELEFGGVKKFTMLQTWPVRPRPRVASKLADTPLLTGQRVLDALFP. SVLGGTCAIFGAFGGKTVISO<br>KGTITVIAPAGQYSLD       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_PIG<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_DISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>262<br>262<br>262<br>259<br>259<br>260                                          | NALSVELGFGILDNIYDGIQRPLERIANVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLADIVTGODIFGFVDENKLFKEHKIMAPPNA<br>RGTUTYIAEAGSYHVDEKLLEVEPNSKKHSFSMLATWPVRAARPVANRVENAQPFLVGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTUTYIAPGNYDTSDVUELEFEDIKKHSFSMLQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVUELEFEDIKKKFTMUQWPRQVRPVTEKLPANHPLLTGQRVLDALFPKHILKMKRAVEFELA<br>KGTVRYIAPAGNYNLEDIVLETEFDEITKHTMLQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFPKHILKMKRAVEFELA<br>KGTVRYIAPAGNYNLEDIVLETEFDEITKHTMLQVWPVRQVRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDERIKHTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYLDDIVLETEFDERSKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPAGNYLDDIVLETEFDERSKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGNYLDDIVLETEFDERSKFTMLQVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP.CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPAGQYSLCTVLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKTVLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKTVLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKTVLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKVTVLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKVTLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKVTLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ<br>MGKITYIAPAGQYSLKVTLELEFQXKKFTMLQTWPVRPRPVXSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MGKITYIAPAGQYSLKVPYLELEFQXKKFTMLQTWPV                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BUCR<br>VA_BUCR<br>VA_BUCR<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARCO<br>VA_DENTHI<br>VA_TRYCO<br>VA_NEUCR<br>VA_NUSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_MUMAN<br>VA_MONSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>165<br>165<br>165<br>165<br>165<br>263<br>263<br>263<br>263<br>262<br>262<br>262<br>255<br>259<br>259<br>259<br>269<br>262                                   | NALSVELGEGILDNIYDGIQEPLERIANVCGDVYIYKGIDNTSLDHDKQWQFYADKKLKLADIVTGODIFGFVDENKLFKEBKIMAPPNA<br>RGTUTYIAEAGSYHUDEKLLEVEPNSKKHSFSMLATWPVRAR PVADNLTANQPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTUTYIAPGGYNDTSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTIAPGGNYDLSDVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTIAPGGNYDDSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTIAPGGNYDDSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>RGTVTVIAPGGNYDDSDVVLELEFEJSWEKFSMVQWPVRQVRPVTEKLPANHPLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISO<br>KGTVRIAPSGNYLDDIVLETEFDGEITHHTMLQWPVRQPRVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISO<br>KGTVRIAPSGNYLDDIVLETEFDGEITHHTMLQWPVRQPRVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISO<br>KGTVRIAPAGGNYLDDIVLETEFDGEKRFTMLQWPVRQPRVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISO<br>KGTVRIAPAGGNYLDDIVLETEFDGEKKTMLQWPVRQPRVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISO<br>KGTVTIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISO<br>KGTITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNSLUDTVLELEFQGIKKKFTMLQTWPVRPRPRVASKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISO<br>MGKITYIAPAGGNYLQDTVLELEFQGIKKKFT                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_HIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_AIZE<br>VA_SCHPO<br>VA_DIGNI<br>VA_DRITHI<br>VA_TRYCO<br>VA_PIG<br>VA_SCHPO<br>VA_DIGNI<br>VA_DRITHI<br>VA_TRYCO<br>VA_DIGNI<br>VA_DRUM<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181<br>169<br>174<br>174<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>262                                                                      | NALSVELGFGILLDNIYDGIQRPLERIAWVCGDVYIYKGIDMTSLDHDKQWQFYADKKLKLADIVTGODIFGFVDENKLFKEBHKIMAPPNA<br>RGTUTYIAEAGSYHUDEKLLEVEFNKKHSFSMLHTWPVRARARPVADNLTANQPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTUTYIAEPGGYDTSDVULELEFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPGGNYDTSDVULELEFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPPGNYDTSDVULELEFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPPGNYDTSDVULELEFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPPGNYDTSDVULELEFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPPGNYDTSDVULELFFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPPGNYDTSDVULELFFESIKEKFSWVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>RGTVYIAPGGNYNLEDIVLETFEFDEITKHTMLQWPVRQRPVTEKLPANHPLTTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>KGTVRYIAPGGNYLEDIVLETEFDEGITKHTMLQWPVRQRPVTEKLPANHPLTTGQRVLDALFP.CVQGGTAIPGAFGCKTVISQ<br>KGTVRYIAPGGNYLEDIVLETEFDEGITKHTMLQWPVRQRPVTEKLPANHPLTTGQRVLDSLFP.CVQGGTAIPGAFGCKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDEGITKHTMLQWPVRPRPVTEKLPANHPLTTGQRVLDSLFP.CVQGGTAIPGAFGCKTVISQ<br>KGTVRYIAPAGNYNLEDIVLETEFDEGITKHTMLQWPVRPRPVTEKLPANHPLTTGQRVLDSLFP.CVQGGTAIPGAFGCKTVISQ<br>KGTVTVIAFAGQYSLLDTVLEEEPQGIKKEFTMUPVRPPRPVSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYIAPAGQYSLLDTVLELEFQGIKKEFTMLPWPRPRPVSKLAADTPLLTGQRVLDSLFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLLDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLLDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLLDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLKDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLKDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLKDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPAGQYSLKDTVLELEFQGIKKFFTMLQTWPVRPRPRVSKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCKTVISQ<br>MEKITYAPGGY                              |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIGNU<br>VA_BOVIN<br>VA_DIGNU<br>VA_BOVIN<br>VA_DIGNU<br>VA_BOVIN<br>VA_DIGNU<br>VA_DONIN<br>VA_MISMU<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>166<br>167<br>270<br>258<br>263<br>262<br>2259<br>2599<br>2599<br>2599<br>260<br>262<br>221                 | NALSYELGRGILDNIYDGIQRPLERIANVCGUVYIYKSIDMTSLDHDKQWQPYADKKLKLNDIVTGGDIFGFUDGIKLFKEHKIMAPPNA<br>RGTVTYIAEAGSYHVDEKLLEVEPGKHSFSHLHTWPVRARRPVADNITANQPLLTGQRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFBGIKEKFTMVQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPGNYLDELEFBGIKEKFTMVQWPVRQVRPVTEKLPANHPLTGQRVLDSLFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPGNYLDEVULETEFDGETTKHTHLQWPVRQARPVTEKLPANHPLTGQRVLDSLFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPGNYLDEVULETEFDGETXHTHLQWPVRHPAPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVRYIAPGOYSLDUVULETEFDGERSKFTHLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPGOYSLDUVULETEFDGERSKFTHLQWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVTYIAPGOYSLDUVULETEFDGERSKFTHLQWPVRPRPPVRSKLAADTPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKTVTUELEFQGVKKFTHLQWPVRPRPPVRSKLAADTPLLTGQRVLDSLFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYTIAPGOYSLKTVTLELEFQGVKKFTHLQWPVRPRPPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKTVTLELEFQGVKKFTHLQWPVRPRPPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKTVLELEFQGVKKFTHLQWPVRPRPPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKTVLELEFQGVKKFTHLQTWPVRPRPPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKTVLELEFQGVKKFTHLQTWPVRPRPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKHTVLELEFQGVKKFTHLQTWPVRPRPVRSKLAADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTTYIAPGOYSLKHTVL       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BUCR<br>VA_BUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_HORVU<br>VA_AHANA<br>VA_CARRO<br>VA_HORVU<br>VA_ARANA<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_DENTHI<br>VA_SCHPO<br>VA_NEUCR<br>VA_NUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MIZE<br>VA_HORVU<br>VA_MIZE<br>VA_HORVU<br>VA_MIZE<br>VA_HORVU<br>VA_MAIZE<br>VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>165<br>165<br>165<br>165<br>165<br>165<br>263<br>263<br>263<br>263<br>263<br>262<br>264<br>255<br>259<br>259<br>259<br>269<br>262<br>221<br>202<br>224              | NALSYELGRGILDNIYDGIQRELER I ANVCGUVYIYKSIDMISLDHEKWOYYADKKLKLNUTUTGGDIFOF UDEKLEKKERKIMAPPNA<br>RGTVTYIAPAGSYHVUDEKLEVEPGKKHSFSMLHTWPVRARAR PVADNLTANOPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWOWPVRQVRPVTEKLEANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFTWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFTWOWPVRQVRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>RGTVYIAPAGNNLEDI ULETEFDGITHTHTLUWPVRQNRPVTEKLPANHPLLTGORVLDALPP. CVQGGTAI PGAFGCGKTVISO<br>KGTVRVIAPAGNNLEDI ULETEFDGITHTHTLUWPVRQNRPVTEKLPANHPLTGORVLDSLFP. CVQGGTAI PGAFGCGKTVISO<br>KGTVRVIAPAGNNULEDI ULETEFDGITHTHTLUWPVRQNRPVTEKLPANHPLTTOQRVLDSLFP. CVQGGTAI PGAFGCGKTVISO<br>KGTVRVIAPAGNNULEDI VLETEFDGITHTHTLUWPVRQNRPVTEKLPANHPLTTOQRVLDSLFP. CVQGGTAI PGAFGCGKTVISO<br>KGTVRVIAPAGNNULEDI VLETEFDGITHTHTLUWPVRQNRPVTEKLPANHPLTTOQRVLDSLFP. CVQGGTAI PGAFGCGKTVISO<br>KGTVRVIAPAGNYUDIVULETEFDGISKFTHLOWPVRQPRPVTKLPANHPLTGORVLDSLFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLQDTVLELEFQGIKKEFTMLOWPVRQPRPVASKLAADTPLLTGORVLDSLFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLLDTVLELEFQGIKKEFTMLOWPVRPRPVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLKUTVLELEFQGIKKEFTMLOWPVRPRPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLKUTVLELEFQGIKKEFTMLOWPVRPRPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLKUTVLELEFQGIKKEFTMLOWPVRPRPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGQYSLKUTVLELEFQGIKKEFTMLOWPVRPRPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGOYSLKUTVLELEFQGIKKEFTMLOWPVRPRPRVASKLAADTPLLTGORVLDALFP. SVLGGTCAI PGAFGCGKTVISO<br>MGKISYIAPAGOYSLKUTVLELEFQGIKKEFTM                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DENC<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_CARRO<br>VA_DEVCN<br>VA_CARRO<br>VA_SCHPO<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DEVCN<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_D | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>262                                                                      | NALSYELGPGILDNIYDGIQRPLERIANVCGDVYIYKSIDMTSLDHEKQWQFYADKKLKKIDTUTGGDIFOF/DENKLKKERKINAPPNA<br>RGTVTYIAPEGSYHVDEKLLEVEPGKKKSFSMLHTWPVRARARPVADNLTANQPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLSANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSUVLELEFBGIKEKFSWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGNYDTSUVLELEFBGIKEKFTWQWPVRQVRPVTEKLPANHPLLTQGRVLDALPP. CVQGGTAIPGAFGCGKTVISQ<br>RGTVTYIAPGSNYDTSUVLELEFBGIKEKFTWQWPVRQARPVTEKLPANHPLLTQGRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVXIAPGSNYDTSUVLELEFBGIKEKFTWQWPVRQARPVTEKLPANHPLLTQGRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVXIAPGSNYDTSUVLETEFDGEITHHTMLQWPVRQARPVTEKLPANHPLTQGRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTDDVVLETEFDGEITHHTMLQWPVRQARPVTEKLPANHPLTQGRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTDDVVLETEFDGEIKKFTHUTWPVRQARPVTEKLPANHPLTUGQRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTDDVVLETEFDGEIKKFTHLQWPVRQFRPVTEKLPANHPLTUGQRVLDSLPP. CVQGGTAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTUDUVLETEFDGEKKKFTHLQWPVRQFRPVZKLAADTPLLTQQRVLDSLPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUULEFPGGVKKFTHLQWPVRQFRPVZKLAADTPLLTQQRVLDSLPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUULEFFGGVKKKFTHLQWPVRPRPVZKLAADTPLLTQQRVLDSLPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUELEFGGVKKKFTHLQWPVRPRPRVZKLAADTPLLTQQRVLDALPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUELEFGQVKKKFTHLQWPVRPRPRVZKLAADTPLLTQQRVLDALPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUELEFGGVKKKFTHLQWPVRPRPRVZKLAADTPLLTQQRVLDALPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTLUELEFGGVKKKFTHLQWPVRPRPRVZKKLAADTPLLTQQRVLDALPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIIAPGSNYTUDUVLELEFGGVKKKFTULWNFVCPRPRVZKKLAADTPLLTQQRVLDALPP. SVLGGTCAIPGAFGCGKTVISQ<br>KGTVYIAPGSNYTUPUCKKFTVLELEFG       |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_GOSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_CHIC1<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVU<br>VA_CHIC2<br>VA_BOVIN<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIGN<br>VA_DIGNU<br>VA_DIGNU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>166<br>167<br>270<br>258<br>263<br>262<br>2259<br>259<br>259<br>259<br>259<br>259<br>259<br>259<br>259<br>2 | NALSPELOPGILDNITTODIQRPLER: ANVCODY ITKGIDHTSLDHEKQWQFYADKLALNDITODIGDIGGYUDDIFGVDENKLFKEHKINAPPNA<br>RGTVTYIAPAGSYHVDEKLLEVEPGKKHSSSMLHTWPVRARRVAINLTANQPLLTGQRVLDALYP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALYP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDTSDVJELEFEDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLELFEFDIKEKSSWQWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEDIVLEFEDIEITKHTMLQWPVRQRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEDIVLEFEDDEITKHTMLQWPVRQRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEDIVLEFEDDEITKHTMLQWPVRDRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEDIVLEFEDDEITKHTMLQWPVRDRPVTEKLPANHPLFTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEDIVLEFEDDEITKHTMLQWPVRDRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGUNYDLEVLEFEDDEITKHTMLQWPVRDRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTKDTVVLEFEDDERSKFTHUQWPVRDRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTKDTVVLEFEDDERSKFTHUQWPVRDRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTKDTVVLEFEDDERSKFTHUQWPVRDRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIFGAFGGGKTVISQ<br>RGTVTIAPGQNTCDTVLELEFQUKKKFTMLQWPVRDRPVTEKLANATPLLTGQRVLDSLFP. SVLGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTUDVLEFEDDERSKFTHQVPVRDRPVYSKLADTPLLTGQRVLDSLFP. SVLGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTTDTVLELEFQUKKKFTMUQWPVRDRPVYSKLADTPLLTGQRVLDSLFP. SVLGGTCAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTDTULLEFQUKKKFTMUQWPVRDRPVYSKLADTPLLTGQRVLDSLFP. SVLGGTTAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTDTULLEFQUKKKFTMUQWPVRDRPVYSKLADTPLLTGQRVLDSLFP. SVLGGTCAIFGAFGGGKTVISQ<br>RGTVTYIAPGQNTDTULL       |
| VA_SCHPO<br>VA_BCVIN<br>VA_BCVIN<br>VA_BUCR<br>VA_BCVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARCA<br>VA_SCHPO<br>VA_BETVU<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_PIAFA<br>VA_SCHPO<br>VA_DROM1<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_MIZE<br>VA_BORM1<br>VA_CARRO<br>VA_VIGRA<br>VA_GRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 181<br>167<br>174<br>173<br>173<br>173<br>173<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                                                                                                      | NALSYELOPGILDNIYDGIQRPLER: ANVCODY IYKGIDHTSLDHEKQWQFYADKLALNDIYDGOIPGYDENLFKEHKINAPPNA<br>RGTVYTIAPGGYLDEKLEVEPIGKIKHSSYMLHTWPVRARRVADNLTANQPLLTGQRVLDALYP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVRQVRPVTEKLEANHPLLTGQRVLDALYP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVRQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVRQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIKEKSSWQWPVRQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIXEKSTMVQWPVRQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFESIXEKSTMVQWPVRQVRPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>RGTVYTIAPGUNYDSDVJLELEFEDIETKHTHLQWPVRQARPVTEKLEANHPLLTGQRVLDALFP. CVQGGTAIPGAPGCGKTVISQ<br>KGTVYIAPGUNNLEDIVLETEFDDEITKHTHLQWPVPRQARPVTEKLEANHPLLTGQRVLDELFP. CVQGGTAIPGAPGCGKTVISQ<br>KGTVYTIAPGUNYDDVJLETEFDDEITKHTHLQWPVPRQPRPVTEKLEANHPLLTGQRVLDELFP. CVQGGTAIPGAPGCGKTVISQ<br>KGTVYTIAPGUNYDDVJLETEFDDEKKYTMQVTHQVRPVPRYPYEKLEANHPLLTGQRVLDELFP. CVQGGTAIPGAPGCGKTVISQ<br>KGTVYTIAPGUNYDDVJLETEFDDEKKYTMQVTHQVRPVTEKLEANHPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTIAPGUNYDDVJLETEFDDEKKYTMUQWPVRQPRPVTEKLEANHPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTIAPGUNYDTVLELEFQUKKKSTMLQVTMVPRPRPVTSKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQQYSLKDTVLELEFQUKKSTMLQVTMVPRPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQQYSLKDTVLELEFQUKKSTMTUGTWPVTFPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQQYSLKDTVLELEFQUKKSTMTUGTWPVTPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQQYSLKDTVLELEFQUKKSTMTUGTWPVRPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQYSLKDTVLELEFQUKKSTMTUGTWPVRPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPAQQYSLKDTVLELEFQUKKSTMTUGTWPVRPRPVASKLAADTPLLTGQRVLDALFP. SVLGGTAIPGAPGCGKTVISQ<br>KGTVYTAPQQSVSLKDTVLELEF       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_CARRO<br>VA_DIGRA<br>VA_SCHPO<br>VA_DEUCR<br>VA_DRUCR<br>VA_DEUCR<br>VA_DRUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_ | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>170<br>170<br>171<br>173<br>175<br>175<br>175<br>175<br>175<br>162<br>166<br>168<br>167<br>270<br>258<br>263<br>263<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>262                                                                      | NALSYELOPGIENTYDDEKLEVEERIAWVCCDV/1YKGIDHTSIDHEKQWQFYADKKLKUNDITYGDIFGYUDENKLEKEHKINAPPNA<br>RGTVTYIAEAGSYHVDEKLEVEERIAKUSSSMLHTWEVPRARRVAINLITANQPLLTGQRVLDALYP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPRQVRPVTEKLEANHELLTGQRVLDALYP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPGNYDTSOVLELEFEDIKEKSSWQWEVPQVRPVTEKLEANHELLTGQRVLDALFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPGNYDTSOVLELEFEDIKEKSTWQWEVPQVRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPGNYDTSOVLELEFEDIKTHKILQWEVPGQRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVRYIAPGNYDTOVLETEFDOETIKHTMLQWEVPGQRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVRYIAPGNYTIDDVLETEFDOETIKHTMLQWEVPGRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVRYIAPGNYTDDVLETEFDOERSKETHLQWEVPGRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPGNYTIAPGOYSLDTVLEEFEOGETKKTMLQWEVPGPRPVTEKLEANHELLTGQRVLDSLFP. CVQGGTAIFAGRGGKTVISQ<br>RGTVTYIAPGQYSLDDTVLEEFEOGETKKTMLQWEVPGPRPVTEKLEANHELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVTEKLEANHELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVTEKLEANHELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVTEKLAADTELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVTEKLAADTELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVSKLAADTELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVSKLAADTELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEKKETHLQWEVPGPRPVSKLAADTELLTGQRVLDSLFP. SVL3GTCAIFAGRGGKTVISQ<br>RGTVTYIAPAGQYSLDDTVLEEFEOGEK       |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVU<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_SCHPO<br>VA_BOVIN<br>VA_DISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170<br>170                                                                                                                                                                        | NALSPELOPGILDNITYDDIQRPLERIAWCGDVYIYKGIDHTSLDHEKQWQFYADKLALNDITYDGDIFGYUDDIYGVDEWLFKEHKINAPPNA<br>RGTVTYIAPAGSYHUDEKLLEVEPGKKTESYMUGWPVRPRARARVADNLTANQPLLTGQRVLDALYP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALYP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEDIKEKSSMUGWPVQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVTYIAPGNYDTSDVVLELEFEDIKETKHTMUGWPVPQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>RGTVYTIAPGNYDTSDVVLELEFEDIKETKHTMUGWPVPQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>KGTVYIAPGNNTLDDIVLETEFDGEITKHTMLGWPVPQDRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPGCGKTVISQ<br>KGTVYIAPGNNTUDDIVLETEFDGEITKHTMLGWPVPQPRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPCGKTVISQ<br>KGTVYIAPGNNTUDDIVLETEFDGEITKHTMLGWPVPRPPTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPCGKTVISQ<br>KGTVYIAPGNNTUDIVLETEFDGEKAPTHMUGWPVPRPPTEKLPANHPLLTGQRVLDALFP. CVQGGTAIPAGPCGKTVISQ<br>KGTVYIAPAGNNTUDIVLETEFDGEKAPTHMUGWPVPRPPTEKLPANHPLLTGQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTVYIAPAGNYLDDIVLELEFQJKKKPTMLGVMPVRPRPPYTKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTVYIAPAGNYLDDIVLELEFQJKKKPTMLGVMPVRPRPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYLDDIVLELEFQJKKKPTMLGVMPVRPRPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYLDDIVLELEFQJKKKPTMLGVMPVRPRPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYLDDIVLELEFQJKKKPTMLGVMPVRPRPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYTUDUKLEFGPGEKAPFLMENTVFYMPPPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYTUDUKLELEFQJKKKPTMLGVMPVRPRPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYTUDUKLEFGPGEKAPFLMENTVFYMPPPPYAKLAPATPLLTQQRVLDALFP. SVLGGTAIPAGPCGKTVISQ<br>KGTYYIAPAGNYTULEFGQUKKYTMUGMPP       |
| VA_SCHPO<br>VA_BCVIN<br>VA_BCVIN<br>VA_BUCR<br>VA_BUCR<br>VA_BUCR<br>VA_BUCR<br>VA_BOURN<br>VA_CHIC2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVU<br>VA_RESCHPO<br>VA_BETVU<br>VA_CHIC2<br>VA_BOVIN<br>VA_BOVIN<br>VA_BCHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CARCO<br>VA_CACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>173<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                                                                                               | NALSYELGPCILLDNIYGCIQRPLERIANVCGDV1YKGIDHTSLDHIKKWQFYADKKLKLADIVTGGPCJDAEKE/KEHKIMAPPNA<br>RGTVTYIAPGGYLDKLUVERENGKGKFSMLUMVPVRQVRPTEKLPANPLLTGGVLDALFP.SVQGTTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFSMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.SVQGTTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFSMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFSMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFSMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFSMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFTMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFTMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSVVLELEFEGUKKFTMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYDTSVVLELEFEGUKKFTMVQWPVRQVRPTEKLPANPLLTGGVLDALFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYNVDEVLEFEFDUGEITKHTMLQWPVPRHAPYTEKLPANPLLTGGVLDSLFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYNVDEVLEFEFDUGEITKHTMLQWPVPRPTFKLPANPLLTGGVLDSLFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLQTVLEEFDUGEITKHTMLQWPVPRPTFKLPANPLLTGGVLDSLFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLQTVLEEFDUGEITKHTMLQWPVPRPTFKLPANPLLTGGVLDSLFP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLQTVLEEFDUGEITKHTMLQWPVPRPTFKLPANFLLTGGVLDSLFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGEITKHTMLQWPVPRPTFKPASKLADTPLLTGGVLDSLFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVRFFFYASKLADTPLLTGGVLDSLFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVRFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVFFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVFFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVFFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPVFFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKKFTMLQTVPVFFFFYASKLADTPLLTGGVLDALFP.SVLGTGAIPGGGKTVISQ<br>KGTVYIAPGGYSLUTVLEEFDUGKKFTMLQTVPFFFFFFYRASKLADTPLLTGGVLDALFP.SVLGGAAIPGGGKTVISQ<br>KGTVY |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UIGRA<br>VA_CARRO<br>VA_UIGRA<br>VA_CARRO<br>VA_DIGRA<br>VA_CARRO<br>VA_BETVU<br>VA_BETVU<br>VA_REUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_NEUCR<br>VA_NEUCR<br>VA_NEUCR<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_CARRO<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_CARRO<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO<br>VA_CARO<br>VA_CARO | 181<br>169<br>174<br>173<br>173<br>173<br>173<br>173<br>170<br>171<br>173<br>175<br>175<br>175<br>162<br>165<br>168<br>167<br>270<br>262<br>262<br>262<br>262<br>262<br>262<br>262<br>26                                                                                                          | NALSYELGPCILLDNIYGCIQRPLERINNYCGDVTYKGTDMTSLDHLKQWQFYADKKLKLADUTYGGUTGFYDDENKLFKEHKIMAPPNA<br>RGTVTYIAPGGYTDEKLLEVEFDGKKEYSMLGYWPYRQYRPYELADNADQFLUGQKULDALP.SVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSUVLELEFEGUKKEYSMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSUVLELEFEGUKKEYSMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSUVLELEFEGUKKEYSMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSUVLELEFEGUKKEYTMVQWPRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVTYIAPGGYDTSUVLELEFEGUKKEYTMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVYYIAPGGYDTSUVLELEFEGUKKEYTMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVYYIAPGGYDTSUVLELEFEGUKKEYTMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVYYIAPGGYDTSUVLELEFEGUKKEYTMVQWPYRQYRPYEKLPANHELLTGQRULDALP.CVQGGTAIPGAPGGKTVISQ<br>RGTVYYIAPGGYDTSUVLELEFEGUKKEYTMVQWPYRQPRYFEKLPANHELTGQRULDALP.PKHLLKMRAVEFELA<br>KGTVRYIAPGGYNTDUVLEFECDGEITKHTMLQWPYRPRPYEKLPANHELTGQRULDSLEP.CVQGGTAIPGAPGGKTVISQ<br>RGTVYIAPGGYNTDUVLEFECDGEITKHTMLQWPYRPPRPYEKLPANHELTGQRULDSLEP.CVQGGTAIPGAPGGKTVISQ<br>KGTVYIAPGGYSLUTULEFEGUGKKFTMLQWPYRPPRPYEKLPANHELTGQRULDSLEP.CVQGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLPANHELTGQRULDSLEP.CVQGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLPANHELTGQRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLLTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLLTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLUTGGRULDSLEP.SVLGGTAIPGAPGGKTVISQ<br>RGTYYIAPGGYSLUTULEFEGUGKKFTMLQTWPPRPPYEKLADTFLU                                 |

| VA SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHERWARAL DET CORTARMANCOVDAVI CARLACEVEDACEADOL CONDECTIONIC DECODERDIVICAMI CITIONERI DEVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VA_DCHTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONTRACTOR DECONTRACTOR AND A DEPARTMENT OF THE ADDRESS OF THE ADD                                                                               |
| VA_NEUCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSSRWAEALREISGRLGEMPALQGFPAYLGAKLASFYERAGKVQALGSPPREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSEWAFALRETSGELAFMPADSGVPAYLGABLASEVERAGRVKCLGNPEREGSVSTVGAVSPPGGDESDPUTSATLGTVOVPWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA MICMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CROBINEST DETCORT ADMONGNET A DIVERSITY OF DESCRIPTION OF THE ADMONGNET ADVISED ADVISE                                                                               |
| VA_HOSHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SISRWAEALREISGRLAEPIFADSGIPAIDGARLASFIERAGRVRCLONFEREGSVSIVGAVSPPAGDFSDFVISATLGIVQVPWGDDRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSEWAFALRETSGRIAFMPADSGVDAVIGARIATEVEPAGRVKCLGNPEREGSVSTUGAVS PROCEESDPUTSATIGTVOUFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UN DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHICKLISH DATE DET COLLE AND DE CONTRACTORISTIC DE LA CONTRACTORI DE LA CONTRACTORI<br>CONTRACTORI DE LA CONTRACTORI DE LA                                                                             |
| VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPRDSGYPATIGARLASFTERAGRVKCLGNPEREGSVSIVGAVSPRGGDFSDPVTSATLGIVQVPWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HO_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTTATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALRETSGRLAEMPADSGVPAVLASRLASFVERAGKVOCLGSPDRTGSVTTVGAVSPPGGDFSDPVTSATLSTVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA MATTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHICKLINE DETCORT A DADA ROOMENT A DAVE A DAVE A OPPEAL OF THE CONTRACT WITH PAYOR SOCIED FOR THE CONTRACT OF THE PAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VA_PIALZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SISRWARALREISGRLAEMPADSGIPAILAARLASFIERAGRVRCLGSPDRNGSVIIVGAVSPPOGDPSDPVISATLISIVQVPNGLDRRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_BRANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA VIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERPGKVKCLGGPERTGSVTTVGAVSPPGGDFSDPVTSATLSTVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA COSHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTORNACAL DET SCRIARMANCOVDAVIAADIACEVEDACEVEDACEVED CODEDTOCUPTUCAUCEDCODECDEVECATI CTUCUENCI DEVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_GOBHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALRELSGRLAEPPADSGTPATLAARLASPTERAGRVKCLOOPERIGSVTTVGAVSPPCGDPSDPVTSATLSTVQVPWGLDKRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SGSRWAEALREISGRLAEMPADSGYPAYLAARLASFYEAAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_ACEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERSGRVACIGSPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVSCLGSPNROGSITIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA ENTHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAFALRET SGRLAFMPADSGVPAYLARLASEVERAGMVECLGSPKRTGSVSTVGAVSPPGDFSDPVTTETLNTVOVEWCLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 173 TDVCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHICKLINEXT DET COLL X SUBTOONLY CALL A DEVENTION DE DOTTALE POLY DE L'ONDE DE DE VILOT DE DEVILOT DE DE VILOT DE DE DE VILOT DE DE DE VILOT DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_INICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SISRWAEALREISGRLAEPPALAGIPAILSARLASPIERAGRVICIGGPRREGSVIIVGAVSPPGGDPSDPVISATLGIVQVPWGLERRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGKVKCIGSPSRIGSITIVGAVSPPGGDFSDPVTTATMSIVQAFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHEPS INTSL SYSKY INAL OPWY FERVEGENTL ROOTKOT LOOPDSML FT TOLVGK SALSETDKYTLDT AGT TKNDEL OOMGY SDVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VA MELICIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADDULED CTARGUCYCYU MTU DUAVED PUDDED I DD FDOT I CODED I DATAOL I AVECT DE DATAOL TREE DATAOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VA_NEOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A CONTRACT ON CONTRACT OF CONT                                                                               |
| VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQMARH PSVNWLISYSKYMKALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLOONGYTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHEPSVNWLISYSKYMRALDEYYDKHETEFVPLRTKAKEILOEREDLAETVOLVGKASLAETDKITLEVAKLTKDDELOONGVTPVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADDRIED SUMMET SY SEVERAL DEVY DRIED TO DAVA VOT A DEVALUATE A DAVA VOT A DAV                                                                               |
| VA_HUSHU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND A COMMINST AND A COMPANY A                                                                               |
| VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYTRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYTRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVOLVGKASLAETDKITLEVAKLIKDDFLOONGYTPVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHEPSINWLISYSKYMRALDEYYDKNYPEEVPI.RTKVKEILOBEEDLSEIVOLUGKAGIAETDKUTLEVAKLIKDET ONSYGDYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA DROMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADEVLIDED TAKIT, TOYOV VMD AT DEVVDVD VD DEDVDT DE DEDVDT TO TOYOT AT A DEVDVD AT A DEVDVD AT A DEVDVDVD AT A DEVDVDVDVD AT A DEVDVDVDVD AT A DEVDVDVDVD AT A DEVDVDVDVD AT A DEVDVDVDVDVD AT A DEVDVDVDVDVDVDVDVDVDVDVDVDVDVDVDVDVDVDV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A_DROMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COMMERCE AND A COMMER                                                                               |
| VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQKKHFESINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HO HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILOEEEDLSEIVOLVGKASLAETDKITLEVAKLLKDDFLOONSYSPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHERS INNEL CYCKYMPAL DRYPKNY DEFURI DRYWYRFT O REPUY SETUCT UCHASLA PROVIDEL AND FLORE CONSYLCTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UR HODINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACARTER STANDARD STATEMALLOF TENNIFER VELICIAL ACARTER STATEMALLED AT THE VALUE OF TOTAL                                                                                                                                                                                                                                                                                                                           |
| VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYSTALEGYYEKFDPGFIDMRTKAREVLQREDDLNEIVQLVGKDALGESDKITLETAKLLREDYLAQNAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_MAIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYSKALESFYEKFDPDFIDIRTKAREVLQREDDLNEIVQLVGKDALAESDKITLETAKLLREDYLAQNAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA BRANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHEPSVNWLISYSKYSTALESEVEKEDSDETDTRTKAREVLOREDDINETVOLVGKDALAEGDKTTTLETAKLIREDVLAONAETPVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UN CARDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGRARP PSVNWLISTSKTSTALESFTERFDSDFIDIRTRAREVLOREDDLNEIVOLVGRDALAETDRITLETARLLREDYLAQNAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_VIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYSTALESFYEQFDPDFINIRTKAREVLQREDDLNEIVQLVGKDALAEGDKITLETAKLLREDYLAQNAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_GOSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYSGALESFYEKFDPDFISIRTKAREVLOREDDINEIVOLVGKDALAETDKITLETAKLLREDYLAONAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHEPSVNWLTSYSKYSGALESEYEKEDSEETDTRTKAREVLOREDDINETVOLVGKDALAETDKTTLDTAKLLEEDYLAONAETAVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA ACEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AORKHERSVARM I SYSKYI NAI EREVEKEDSDEUMI BOUAREUU OKEDEL NETUOI USKDAL AESDKI TI EMARKI OONSENWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA_ACLAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGARAF PSYMULTSTSKILLARDEFTERPOOPTVILLAGVAREVDUREDELINETVULVGRUALAESDKITDETARFIREDTIGGNOFTKID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYMKALEPYYEERFPEFLNYQQKAREILQTEDDLMEIVQLVGKDSLAENDKITLEVAKMIREDFLAQNSFTEYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_ENTHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPAVNWNISFSKYIKSLDSYYNSKDEEFVPLRDKIKEILQMEEGLLQIVQLVGQDSLAETDKLTLEIARVIKDDFLQQNSYTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA_TRYCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AQRKHFPSVNWLISYSKYLNALEPFFNTLDPDYMRLRSVAAEILOREEELOEIVOLVGKDSLSESDKIILETAKVIREEFLOONAFTPYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VA PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGRKHEPSVNWSTSESKYVROLEOYEDNEDODELSLROKTSDILOOESDINDIVOLVGKDSLSEDOKVVMEVAKITEEDELOONAESDVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.11.11.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Warners and an and an after new March the March the Anderson March the Anter the Ant                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA COUDO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_SCHPO<br>VA_NEUCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 538<br>526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWKTEWMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEGQEKICKKYEAIQQQMLDKFASVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 538<br>526<br>531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWKTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAOSDNKITWSIIREMGEILYKLSSMKFKDPVKDGEAKIKADYAOLLEDMONAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 538<br>526<br>531<br>531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWRTEWMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HIMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWKTEWMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>531<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGQEKICKKYEAIQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDMQNAFRSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>531<br>530<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWRTEWMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 538<br>526<br>531<br>531<br>530<br>530<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEKIKADYAQLEDWQNAFRSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 538<br>526<br>531<br>531<br>530<br>530<br>530<br>524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIWRTEWMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMSELLYKLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIREHMSELLYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DPOM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>531<br>530<br>530<br>530<br>524<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBCQEKICKYEAIQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGETKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>530<br>530<br>524<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGQEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMSEILYKLSSMKFKDPVKDGEKKIKADYAQLFDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFFSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFFSLE<br>RFCPFYKTVGMLRNIMAFYDMARRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFFSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>530<br>530<br>524<br>527<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBCQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPLKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSGIMYQLSSMKFKDPVKDGEKKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKKIKADYAQLFEDMQNAFRSLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQGEKICKYEAIQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDUQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDUQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGDILYKLSSMKFKDPVKDGEAKIKADYAQLLEDUQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDUQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLNIMAFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEQKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLNIMAFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEQKIKADYQLYEDLQQAFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWKTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBENICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RVCFFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RVCFFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RVCFFYKTVGMLNIMAFYETARHAVESTAQ.SDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCFFYKTVGMLNINIFYDMARHSVESTAQ.SSNKITWNVIREAMCNINVQLSSMKFKDPVKDGEQKIKADFQLHEDLQQAFRNLE<br>RFCFFYKTVGMLNINIFYDMARHSVESTAQ.SSNKITWNVIREAMCDIVVIREAMCHDPOLHEDLQQAFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>528<br>530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLNIMAFYETARHAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEOKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLNIMAFYETARHAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEOKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLNINAFYETARHCUSSTAQ.SENKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLNINAFYETARHCUSSTAQ.SENKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLNINIFYDMSRHAVESTAQ.SSNKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLNINIFYDMSRHAVESTAQ.SSNKITWNVIRAFKDPVKDGEAKIKADFEQLHEDLQQAFNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>HO_HUMAN<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>530<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>528<br>528<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWKTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGGEKICKKYEAIQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLPEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWNIIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIMFYETARHAVESTAQ.SDNKITWNVIKENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIMFYETARHAVESTAQ.SENKITWNVIREDMGINYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIAFYDMARHAVESTAQ.SDNKITWNVIREMGNMVQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQ.SDNKITWNVIREDMGNMVLVQLSSMKFKDPVKDGEQKIKADPDQLHEDIQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQ.SDNKITWNVIREMGNMVLVQLSSMKFKDPVKDGEQKIKADPDQLHEDIQQAFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_HORVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>528<br>530<br>490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.NBGEKIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLNIMAFYETARHAVESTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLNIMAFYETARHAVESTAQSDNKITWNIIRENGSMGIMYQLSSMKFKDPVKDGEXKIKADYAQLFEDLQQAFRNLE<br>RFCPFYKTVGMLNIMFYETARHAVESTAQSDNKITWNVIKEANGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLNIIFIDFYDMARHSVESTAQSDNKITWNVIRDMGNMVINVESMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>RFCPFYKTVGMLNIIFIDFYDMARHSVESTAQSDNKITWNVIRDEAMCNUVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>RFCPFYKTVGMLNIIFIDFYDMARHSVESTAQSDNKITWNVIRDMGNMIYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>RFCPFYKTVGMLNIIFFYDMSRHAVESTAQSDNKITWNVIRDMGNMIYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>KYCPFYKSVWMMNIIHFYDMSRHAVESTAQSDNKITWNVIRDVIRDMGNNIVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>KYCPFYKSVWMMRNIIHFNQLANQAVERAAN.ADGHKITYAVVKSRMGDLFYLVSQKFEDPA.BGEDVLVAKFQKLYDDLTAGFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_HORVU<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWKTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBGGEKICKKYEAIQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDDARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLRNIMFYTEARHAVESTAQSDNKITWNIIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIMFYTDMSRHAVESTAQSDNKITWNVIRENGGIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIINFYDMARHSVESTAQSDNKITWNVIRENGNIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIFSYDMARHSVESTAQSDNKITWNVIRENGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIISFYDMARHSVESTAQSDNKITWNVIREDMCNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KYCPFYKSVMMMRNIIHFNDMSRHAVESTAQADGHKITYAVVKSRMGDLFYRLVSQKFEDPA.B3EDVLVAKFQKLYDLTAGFRNLE<br>KFCPFYKSVMMMNIIHFNDARAGA.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.B3EDVLVAKFQKLYDLTAGFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_HIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_CRM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEKKIKADYQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWNIIRENMSGIMYQLSSMKFKDPVKDGEKKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIMFYETARHAVESTAQ.SDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEKKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIINFYETARHAVESTAQ.SENKITWNVIRDAMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIDFYDMARHSVESTAQ.SENKITWNVIRDAMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMSRHAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIFFNDARAHAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVMMMRNIIFFNDLANQAVERAAN.ADGHKITYXVVKSRMDLFYRLVSQKFEDPA.BGEALVGKKKLYDDLTAGFRNLE<br>KFCPFYKSVMMMRNIIFFNDLANQAVERAAM.ADGHKITYXVKIKHLGDLFYRLVSQKFEDPA.BGEALVGKKKLYDDLTAGFFNLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQGEKICKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIREHMSEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLNIAFYDMRRAVENTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLNINIAFYDMSRHAVESTAQSDNKITWNVIIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMSRHAVESTAQSDNKITWNVIRDMGINLYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMSRHAVESTAQSDNKITWNVIRDMGINLYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMSRHAVESTAQSDNKITWNVIRDMGINLYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVMMMNIIHFYDLANQAVERAAN.ADGHKITYAVKSMKDLFYRLVSQKFEDPA.BGEDVLVAKFQKLYDDLTAGFRNLE<br>KYCPFYKSVMMMNIIHFYNLANQAVERAAN.ADGHKITYAVKSMKDLFYRLVSQKFEDPA.BGEDVLVAKFQKLYDDLTAGFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLYDDLTSGFFNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAAG.MDGGKISYLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFFNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAAG.MDGGKISYLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFFNLE                                                                                                                                                                                                                                                                                                                                             |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_HORVU<br>VA_BRANA<br>VA_CARRO<br>VA_CARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 538<br>526<br>531<br>530<br>530<br>530<br>520<br>527<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEXKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWVIIRENMGGIMYQLSSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIAFYDMARRAVESTAQ.SDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIAFYDMARRAVESTAQ.SDNKITWNVIREAMGIMYQLSSMKFKDPVKDGEXKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIAFYDMARRAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMARRAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVWMMRNIIHFNDLANQAVERAAN.ADGHKITYAVVKSRMCDLFYRLVSQKFEDPA.BGEAVGKKKLYDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFNLANQAVERAAG.MDGKISYLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFNLANQAVERAAG.MDGKISYLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFNLANQAVERGAG.MDGKISYLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_BRANA<br>VA_CARRO<br>VA_UIGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533<br>533<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLAQLKSLKFEVP.SEQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMSEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLSSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVMMMNIIFFYDMSRHAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVMMMNIIFFYDMSRHAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KYCPFYKSVMMMNIIHFYDLANQAVERAAG.TDGHKITYAVVKSRMGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLVDDL/TAGFNNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLUDDL/TAGFNNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDL7SGFNNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDL7SGFNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGRFKKLHDDL7SGFNLE                                                                                                                                                                                                                                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UGRA<br>VA_GOSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 538<br>526<br>531<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533<br>533<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLAQALKSLKFEVP.SEQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENSELLYRLTSMKFKDPVKDGEXKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWNYIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMARRAVESTAQ.SDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMARRAVESTAQ.SDNKITWNVIRESMGIMYQLSSMKFKDPVKDGEXKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFFYDMARHSVESTAQ.SENKITWNVIRDAMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFFYDMARHSVESTAQ.SDNKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAM.ADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDDLTSGFNLE                                                                                                                                              |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_HIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_COSHI<br>VA_GOSHI<br>VA_GSHIVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 538<br>526<br>531<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>528<br>490<br>471<br>533<br>533<br>533<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.NEGEKIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLQAQLKSLKFEVP.SEQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYKLTSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMSRHAVESTAQSDNKITWNVIRDMGNVLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVMMMNIIFFYDMSRHAVESTAQSDNKITWNVIRDAMGNVLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KYCPFYKSVMMMNIIHFNULANQAVERAG.TDGHKITYAVVKSRKGDLYRLVSQKFEDPA.BGEDVLVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVMMMNIIHFNULANQAVERAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVMMMNIIHFNULANQAVERAGG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVGKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTSGFFNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFFNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFFNLE                                                                                                                                                      |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DIVIN<br>VA_DIVIN<br>VA_DIVINU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 538<br>526<br>531<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>4733<br>533<br>533<br>533<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWRTEMMMKLMMGFHDEAQKAIAQGQ.NWNKVREATQDLAQALKSLKFEVP.SEQEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIAFYDMARRAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARRAVESTAQ.SDNKITWNVIRDAMGNILYQLSSMKFKDPVKDGEXKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARRSVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEXKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARRSVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVMMMRNIIHFYDLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKKRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLNEDLTAGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKKRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFNLE                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_HIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>HO_HUMAN<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UIGRA<br>VA_GSHI<br>VA_BETVU<br>VA_BETVU<br>VA_BETVU<br>VA_BETVU<br>VA_BETVU<br>VA_BETVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 538<br>526<br>531<br>530<br>530<br>520<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMSRHAVESTAQSDNKITWNVIRDSMCNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KYCPFYKSVMMRNIIFFYDMSRHAVESTAQSDNKITWNVIRDSMCNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVMMRNIIHFNLANQAVERAAGTDGHKITYAVVKSRMGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFNLANQAVERAAGTDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAAGMDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLMEDLTAGFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLMEDLTAGFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLMEDLTAGFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRL                                                                                         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DIVIN<br>VA_DIVIN<br>VA_DIVINU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_UGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BETVU<br>VA_CACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 538\\ 526\\ 531\\ 530\\ 530\\ 524\\ 527\\ 528\\ 530\\ 4901\\ 533\\ 533\\ 533\\ 533\\ 533\\ 533\\ 518\\ 523\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEXKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMARRAVESTAQSDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARRAVESTAQSDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRDAMGNULYQLSSMKFKDPVKDGEXKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAMADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAGTDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAGMDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGGKITYSLIKKRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGGK                                                                                               |
| VA_SCHPO<br>VA_NEUCR<br>VA_DEUCR<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_HORVU<br>VA_BRANA<br>VA_CARRO<br>VA_UIGRA<br>VA_CARRO<br>VA_UIGRA<br>VA_OSHI<br>VA_BETVU<br>VA_CYACA<br>VA_ENTHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 538<br>526<br>531<br>530<br>530<br>530<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQEKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIREHMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLNINAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYQQLYEDLQQAFNLE<br>RFCPFYKTVGMLRNIINFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFNLE<br>RFCPFYKTVGMLRNIINFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>RFCPFYKTVGMLRNIINFYETARHAVESTAQSDNKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>RFCPFYKTVGMLRNIINFYDMSRHAVESTAQSDNKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFNLE<br>KFCPFYKSVWMMRNIIHFNQLANQAVERAADGHKITYAVVKSRMGDLFYRLVSQKFEDPA.BGEDVLVAKFQKLYDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFNQLANQAVERAAGTDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVAKFQKLYDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAGMDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAGSDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAGSDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGSDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIK                                                                                             |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_CARRO<br>VA_COSHI<br>VA_BETVU<br>VA_BETVU<br>VA_CARCO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 538\\ 526\\ 531\\ 530\\ 530\\ 530\\ 527\\ 527\\ 527\\ 528\\ 530\\ 490\\ 471\\ 533\\ 533\\ 533\\ 533\\ 518\\ 523\\ 525\\ 525\\ 525\\ 525\\ 525\\ 525\\ 525$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQSDNKITWNIIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMRRAVESTAQSDNKITWNVIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRENGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVWMMRNIIHFYDLANQAVERAA.SDCHKTWYSVIKHKLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAAFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAAFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKLRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAAFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAAFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRUGLLYRLSQKFEDPA.BGEALVAK                                                                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BEUCR<br>VA_HUMAN<br>VA_HIG<br>VA_HUMAN<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_BANA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_DETVU<br>VA_CACA<br>VA_ENTHI<br>VA_TRYCO<br>VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 538 526 531 1<br>531 530 530 530 524 527 527 527 527 528 490 471 533 533 533 533 533 533 533 522 525 518 528 522 525 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RVCPFYKTVGMLRNIMAFYETARHAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIMAFYDMRRAVESTAQSDNKITWNVIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMARRAVESTAQSDNKITWNVIKESMGGIMYQLSSMKFKDPVKDGEQKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMARRAVESTAQSDNKITWNVIRDSMONILYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVWMMRNIIHFNQLANQAVERAAADGHKITYAVVKSRMGDLFYRLVSQKFEDPA.BGEDVLVGKFKLLDDLTTGFRNLE<br>KFCPFYKSVWMMRNIIHFNQLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLDDLTTGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLEDLTAGFRALE<br>KFCPFYKSVWMMRNIIHFYLANGAVERGAG.SDGQKITYSLIKHR                                                                                   |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_MIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BETVU<br>VA_DETVU<br>VA_CARCO<br>VA_PLAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 538<br>526<br>531<br>530<br>530<br>524<br>527<br>527<br>527<br>527<br>528<br>530<br>490<br>471<br>533<br>533<br>533<br>533<br>533<br>533<br>533<br>522<br>525<br>522<br>522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMRRAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRENGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVWMMRNIIFYDMARHSVESTAQSDNKITWNVIREAMGNIVQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVWMMRNIIFFYDMARHSVESTAQ.SDNKITWNVIRDAGNVLYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVAKFKKLDDLTAGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRVDLFYRLVSQKFEDPA.BGEALVAK                                                                  |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_HIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_ACARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_ENTHI<br>VA_TRYCO<br>VA_PILAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 538 526 531 530 530 530 524 527 528 530 527 528 530 533 533 533 533 533 533 522 525 524 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBEIICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEXKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIMFYETARHAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEXKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIINFYDMARRAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMSRHAVESTAQ.SENKITWNVIRDAMGNULYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVWMMRNIIHFNLANQAVERAAM.ADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFNLANQAVERAAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SDGKTYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLT                                                    |
| VA_SCHPO<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAISE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_CHARA<br>VA_CHARA<br>VA_SCHPO<br>VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 538 526 531 530 530 530 530 524 527 528 530 490 471 533 533 533 533 533 518 523 522 525 524 619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBEIICKKYEAIQQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEAKIKADYAQLFDDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEXKIKADYAQLFDDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEXKIKADYAQLFDDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVESTAQSDNKITWNIIRENSGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIBFYDMARRAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRDMGNKIVQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVMMMNNIIHFYDLANQAVERAAGDSHKITWNVIRDAGNVLYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>KFCPFYKSVMMMNNIIHFNTLANQAVERAAGDSHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVAKFKKLUDDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFNTLANQAVERAAGDSHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGGMDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGGDDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERAGG.SDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGEALVGKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGEALVGKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGGKITYSLIKHRUGDLF                                                                                       |
| VA_SCHPO<br>VA_NEUCR<br>VA_DEUCR<br>VA_HUMAN<br>VA_HIG<br>VA_HUMAN<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAIZE<br>VA_GRANA<br>VA_CARRO<br>VA_SCHPO<br>VA_SCHPO<br>VA_NEUCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538<br>526<br>531<br>530<br>530<br>524<br>527<br>528<br>530<br>524<br>527<br>527<br>528<br>530<br>533<br>533<br>533<br>533<br>533<br>533<br>533<br>533<br>532<br>522<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBKICKKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLKNIIAFYDMARRAVESTAQSDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIAFYDMARRAVESTAQSDNKITWNVIRESMGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIBFYDMSRHAVESTAQSDNKITWNVIRDAMCNUYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKSVMMRNIIHFYDLANQAVERAAN.ADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTSGFFNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRUGDLFYRLVSQKFEDPA.BGE                                                                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BATVU<br>VA_MIZE<br>VA_CARRO<br>VA_VIGRA<br>VA_OSHI<br>VA_BETVU<br>VA_CHCO<br>VA_EXTHI<br>VA_TRYCO<br>VA_EXTHI<br>VA_SCHPO<br>VA_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 538 526 531 530 530 530 530 524 527 528 527 527 528 530 490 471 533 533 533 533 5188 523 522 525 524 6199 606 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBQBEIICKKYEAIQQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLFDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFDDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEQKIKADYQLFDDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVESTAQSDNKITWNIIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMINIFYDMARHSVESTAQSDNKITWNVIRDAGNKIVQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVMMMNNIIFYDMARHSVESTAQSDNKITWNVIRDAGNKIVQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVMMMNNIIFYDNARHSVESTAQSDNKITWNVIRDAGNVLYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>KFCPFYKSVMMMNNIIHFNTLANQAVERAAGDOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVAKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMMNNIIHFNNLANQAVERAGG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLNEDLTAFFNLE<br>KFCPFYKSVMMMNNIIHFYNLANQAVERAGS.SDGQKITYSLIKHRLG                                                                                    |
| VA_SCHPO<br>VA_NEUCR<br>VA_DEUCR<br>VA_HUMAN<br>VA_HIG<br>VA_HUMAN<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAIZE<br>VA_BRANA<br>VA_CARRO<br>VA_SCHIO<br>VA_SCHIO<br>VA_SCHIO<br>VA_SCHPO<br>VA_SCHPO<br>VA_NAEUCR<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 538 526 531 530 530 530 530 524 450 527 527 527 527 527 523 533 533 533 533 522 525 525 4490 618 618 618 618 618 618 618 618 618 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATQDLQAQLKSLKFEVP.SBCGEKICKYEAIQQMLDKFASU<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLRNINAFYDMRRAVESTAQSDNKITWNIIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNINAFYDMARRAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMARRAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIIBFYDMSRHAVESTAQSDNKITWNVIRDAMGNUYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKSVWMMRNIIHFYDLANQAVERAAN.ADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVGKFKKLHDDLTSGFFNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLMEDLTAFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLMEDLTAFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLMEDLTAFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLMEDLTAFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLMEDLTAFRALE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAG.SOGKITYSLIKHRLGDLFYRLVSQKFEDPA.BG                                                                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_GOSHI<br>VA_GOSHI<br>VA_BETVU<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_BCVIN<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SC | 5386<br>526<br>5311<br>5310<br>5300<br>527<br>527<br>527<br>528<br>5300<br>5330<br>5333<br>5333<br>5333<br>5333<br>5333<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RCCPLYKTYHMMRNMIAYYTKAKSAVETGQ.NWNKVREATODLQAQLKSLKFEVP.SBGGEKICKYEAIQQQMLDKFASU<br>RPCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLPEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLPEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEQKIKADYQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQSDNKITWNIIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVGMLKNIIFYDMARHSVESTAQSDNKITWNVIRDAGNULVQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKSVMMRNIIHFYDLARAVESTAQSDNKITWNVIRDAGNULVQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>KFCPFYKSVMMRNIIHFYDLANQAVERAAGTDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKLUDDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGMDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKLUDDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGMDGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAUVGKFKKLNEDLTAGFRNLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERGAGSDGGKITYSLIKHRLGDLFYRLVSQKFED                                                                                                 |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DIG<br>VA_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 538 526 531 530 530 530 530 524 490 527 527 527 527 527 527 523 533 533 533 533 533 522 524 619 6066 618 617 617 617 617 617 617 617 617 617 617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>PCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br/>QFCPIWKTEWMMKLMMGFHDEAQKAIAQGQ.NNNKVREATQDLQAQLKSLKFEVP.SEGQEKICKKYEAIQQQMLDKFASVI<br/>PFCPFYKTVGMLSNMIAFYDLARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDWQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMMSEILYRLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFFSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIRENMSEILYRLSSMKFKDPVKDGEAKIKADYAQLFEDMQNAFFSLE<br/>RFCPFYKTVGMLENIMAFYETARHAVESTAQSDNKITWNIIRENMSEILYRLSSMKFKDPVKDGEKIKADYAQLFEDMQNAFFSLE<br/>RFCPFYKTVGMLENIMAFYETARHCLESTAQSDNKITWNIIRENMSEILYRLSSMKFKDPVKDGEAKIKADYQLYEDUQAFFNLE<br/>RFCPFYKTVGMLENIDFYDMARHAVESTAQSDNKITWNVIRDSMGINLYQLSSMKFKDPVKDGEAKIKADTPQLAFEDQLAFNLE<br/>RFCPFYKTVGMLENIHFYDLANQAVERAAGSENKITYNVIRDSMGINLYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFFNLE<br/>RFCPFYKSVWMMRNIHFYDANGAKAASADGHKITYSVIKHRLGDLFYRLVSQKFEDPA.EGEDVLVAKFKLDDLTAGFNNLE<br/>KYCPFYKSVWMMRNIHFYDLANQAVERAAGDGKIYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKLHDDLTAGFNNLE<br/>KFCPFYKSVWMMRNIHFYDLANQAVERAAGSDGKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTGFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTGFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTGFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTGFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTGFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVAKFKKLMDELTAFFNLE<br/>KFCPFYKSVWMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVAKFKKLMDELTAFFNLE<br/>KFCPFYKSVMMMRNIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVAKFKKLMDELTAFFNLE</pre>                                  |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MANSE<br>VA_GOSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_BETVU<br>VA_BETVU<br>VA_SCHPO<br>VA_FIG<br>VA_BOVIN<br>VA_SCHPO<br>VA_BIG<br>VA_MUMAN<br>VA_MUSMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 5386\\ 5266\\ 5311\\ 5310\\ 5300\\ 527\\ 5277\\ 5277\\ 5278\\ 5300\\ 4900\\ 4711\\ 5333\\ 5333\\ 5138\\ 5232\\ 5252\\ 5252\\ 5225\\ 5224\\ 616\\ 616\\ 6168\\ 618\\ 617\\ 617\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br/>QFCPIWKTEWMMKLMMGFHDEAQKAIAQGQ.NMNKVREATQDLQAQLKSLKFEVP.SEGGEKICKKYEAIQQQMLDKFASVI<br/>RFCPFYKTVGMLSNMIAFYDLARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAQSDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAQ.SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAQ.SDNKITWNTIKESKGGIMYQLSSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br/>FVCPFYKTVGMLKNINAFYETARHCLESTAQ.SDNKITWNTIKESKGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br/>RFCPFYKTVGMLKNINAFYETARHCLESTAQ.SDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br/>RFCPFYKTVGMLKNIIAFYDMARRSVESTAQ.SDNKITWNVIRDAMCNILYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br/>KFCPFYKSVWMMRNIIHFYDLANQAVERAA.ADGHKITYAVVKSRMGDLFYRLVSQKFEDPA.EGEDVLVAKFQKLYDDLTGFNLE<br/>KFCPFYKSVWMMRNIIHFNQLANQAVERAA.ADGKKITYSIIKHRLGDLFYRLVSQKFEDPA.EGEDVLVAKFQKLYDDLTGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.TDGHKITYSIIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRUGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRUGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRUGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDLTTAFKAL<br/>KFCPFY</pre> |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BRANA<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CARRO<br>VA_CHACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_MISMU<br>VA_HIG<br>VA_HUMAN<br>VA_CHIC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 538 526 531 530 530 530 530 530 524 490 527 527 527 527 527 527 523 533 533 533 533 533 533 522 524 619 6066 618 617 617 617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br/>QFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMARRAVETTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEKKIKADYAQLFEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMRRAVETTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEKKIKADYAQLFEDMQNAFRSLE<br/>RFCPFYKTVGHLSNIAFYDMRRAVETAQSDNKITWNSIIRENSEILYRLTSMKFKDPVKDGEKKIKADYAQLFEDMQNAFRSLE<br/>RFCPFYKTVGHLKNIMAFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKKIKADYDQLYEDLQQAFRNLE<br/>RFCPFYKTVGHLKNIIAFYDMSRHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEXKIKADYDQLYEDLQQAFRNLE<br/>RFCPFYKTVGHLKNIIFYDMSRHAVESTAQSDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADFDQLHEDLQQAFRNLE<br/>RFCPFYKTVGHLKNIIFYDMSRHAVESTAQSDNKITWNVIRESMGGIMYQLSSMKFKDPVKDGEXKIKADFDQLHEDLQQAFRNLE<br/>RFCPFYKSVWMMRNIIHFYDLANQAVERAAGNDGKISYLIKHLGDLFYRLVSQKFEDPA.BGEDVLVAKFVLYDDLTGFRNLE<br/>KFCPFYKSVWMMRNIIHFYDLANQAVERAAGNDGKISYLIKHLGDLFYRLVSQKFEDPA.BGEDVLVAKFKLHDDLTSGFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAGMDGQKISYLIKHRLGDLFYRLVSQKFEDPA.BGEDVLVAKFKLHDDLTSGFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTSGFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTSGFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTGFRNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDDLTAFFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEDALVAKFKKLHDLTAFFNLE<br/>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRVSQKFEDPA.BGEDALVAKFKKLHDLTAFFN</pre>                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BETVU<br>VA_ACEAC<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIG<br>VA_BOVIN<br>VA_DIG<br>VA_MUSMU<br>VA_MUSMU<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5386<br>5266<br>5311<br>5310<br>5300<br>527<br>5277<br>5277<br>5277<br>5277<br>5277<br>5275<br>5330<br>5333<br>5333<br>5333<br>5333<br>5333<br>5333<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RCCPLYKTYHMRNNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPIKYTVGHLSNIFAYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFENPV.SBGQEKICKYFAIQQQMLDKFASVI<br>RFCPFYKTVGHLSNIFAYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEAKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETTAQSDNKITWSIIRENSEILYRLTSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETTAQSDNKITWNSIIRENSEILYRLTSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGHLSNIFAYDMRRAVETAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKIKADYQLYEDLQQAFRNLE<br>RFCPFYKTVGHLKNIFAYDMRRAVESTAQSENKITMNVIREMGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKTVGHLKNIFAYDMRRAVESTAQSENKITMNVIREMGIMYULSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKTVGHLKNIIFYDVARARAVESTAQSENKITMNVIREMGIMYULSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE<br>RFCPFYKSVWMMRNIIHFYDLANQAVERAAG.MDGKISYLIKHKIGDLFYRLVSQKFEDPA.B3EEDVLVAKFKKLYDDLTGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAAG.MDGKISYLIKHKIGDLFYRLVSQKFEDPA.B3EEDVLVAKFKKLYDDLTGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.MDGKITYSLIKHKIGDLFYRLVSQKFEDPA.B3EEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.MDGKITYSLIKHKIGDLFYRLVSQKFEDPA.B3EEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.MDGKITYSLIKHKIGDLFYRLVSQKFEDPA.B3EEDVLVGKFKKLHDDLTSGFRNLE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.MDGKITYSLIKHKIGDLFYRLVSQKFEDPA.B3EEALVGKFKKLNEDLTAFRALE<br>KFCPFYKSVWMMRNIIHFYNLANQAVERAGG.MDGKITYSLIKHKIGDLFYRLVSQKFEDPA.B3EEALVGKFKKLNEDLTAFRALE<br>KFCPFYKSVWMMRNIIHFYNLANGAVERAGG.MDGKITYSLIKHYGDLFYRLVSQKFEDPA.B3EALVKFKKNRENEN<br>KFCPFYKSVWMMRNIIH                                                                  |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CHACARCO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_MISMU<br>VA_MISMU<br>VA_CHIC1<br>VA_CHIC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 538655315530553155305527552755275527552755275527552755275533355333553355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPIWTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYRLTSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWNIIRENMGSIMYQLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWNTIRENGGIMYQLSSMKFKDPVKDGEKKIKADYQQLYEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMARRAVENTAQSDNKITWNTIRENGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMSRIAVESTAQSENKITWNVIRDMGNLVQLSSMKFKDPVKDGEAKIKADFEQIHEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMSRIAVESTAQSENKITWNVIRDMGNLVQLSSMKFKDPVKDGEAKIKADFEQIHEDLQQAFNNLE<br>RFCPFYKTVCMLKNIIFFYDMSRIAVESTAQSENKITWNVIRDMGNLVQUSSMKFKDPVKDGEAKIKADFEQIHEDLQQAFNNLE<br>KFCPFYKSVMMMRNIIHFNULANQAVERAGG.MDGKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAGG.MDGKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAGG.MDGCKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAGG.MDGCKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAGG.MDGCKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLSTGFNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAGG.MDGCKISYLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLSTGFNLE<br>KFCPFYKSVMMMRNIIHFYLANAAVERGGG.SOGCKITYSLIKHKIGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLTAAFFNLE<br>KFCPFYKSVMMMRNIIHFYLLANGAVERGGG.MDGCKISYLIKHKEDLLAAFFNLE<br>KFCPFYKSVMMMRNIIHFYLDAXAVERGGG.SOGCKITYSLIKH                                                         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BETVU<br>VA_ACARO<br>VA_VIGRA<br>VA_CARO<br>VA_VIGRA<br>VA_CARO<br>VA_VIGRA<br>VA_CARO<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIG<br>VA_BOVIN<br>VA_DIG<br>VA_MUSMU<br>VA_CHIC1<br>VA_MUSMU<br>VA_CHIC1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5386<br>5531<br>5311<br>5330<br>527<br>527<br>527<br>527<br>527<br>528<br>530<br>533<br>533<br>5333<br>5333<br>5333<br>5333<br>5333<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCCPLYKTYHMRRNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPYKTVCMLSNNIAFYDNARRAVETTAQSDNKITMSIIREHMGEILYKLSSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNARRAVETTAQSDNKITMSIIREHMGEILYKLSSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNARRAVETTAQSDNKITMSIIREHMGEILYKLSSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNARRAVETTAQSDNKITMSIIREHMGEILYKLSSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNARRAVETTAQSDNKITMSIIREHMGEILYKLSSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNRRAVETTAQSDNKITMSIIREMMSEILYKLTSMKFKDPVKDGBAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNRRAVENTAQSDNKITMSIIRENMSEILYKLTSMKFKDPVKDGBKKIKADYQQLFEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNRRAVENTAQSDNKITMNTIRESMGGIMYQLSSMKFKDPVKDGBKKIKADYQQLFEDMQNAFRSLE<br>RFCPFYKTVCMLSNNIAFYDNRRAVENTAQSDNKITMNTIRESMGGIMYQLSSMKFKDPVKDGBCKIKADYQQLYEDDQQAFRNLE<br>RFCPFYKTVCMLSNNIAFYDNRRAVENTAQSDNKITMNTIRESMGGIMYQLSSMKFKDPVKDGBCKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVCMLKNINAFYETARHCLSSTAQSDNKITMNTIRESMGGIMYQLSSMKFKDPVKDGBCKIKADYDQLYEDLQQAFRNLE<br>RFCPFYKTVCMLKNINAFYETARHCLSSTAQSDNKITMNTIRESMGGIMYQLSSMKFKDPVKDGBAKIKADFDQLHEDLQQAFRNLE<br>RFCPFYKTVCMLKNINIFYDMSRHAVESTAQSDNKITMNVIRDAMGNVLVQLSSMKFKDPVKDBBAKIKADFDQLHEDLQQAFRNLE<br>RFCPFYKSVMMMRNIHFYDNARAVESTAQSDNKITMNVIRDAMGNVLVQLSSMKFKDPVKDBBAKIKADFDQLHEDLQQAFRNLE<br>RFCPFYKSVMMMRNIHFYDNARAVESTAQSDNKITMNVIRDAMGNVLVQLSSMKFKDPVKDBBAKIKADFDQLHEDLQQAFRNLE<br>KFCPFYKSVMMMRNIHFYDLANQAVERAAADGHKITYAVVKSRMGDLFYKLVSQKFEDPA.E3BEALVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVMMMRNIHFYDLANQAVERAAG.G.SDGKITYSIIKHRLGDLFYKLVSQKFEDPA.E3BEALVGKFKKLYDDLTAGFRNLE<br>KFCPFYKSVMMMRNIHFYNLANQAVERAAG.SDGKITYSIIKHRLGDLFYKLVSQKFEDPA.E3BEALVGKFKKLINDLTAGFRNLE<br>KFCPFYKSVMMMRNIHFYNLANQAVERGAG.SDGKITYSIIKHKLGDLFYKLVSQKFEDPA.E3BEALVGKFKKLINDLTAGFRNLE<br>KFCPFYKSVMMMRNIHFYNLANQAVERGAG.SDGKITYSIIKHKLGDLFYKLVSQKFEDPA.E3BEALVGKFKKLINDLTAAFRNLE<br>KFCPFYKSVMMMRNIHFYNLANQAVERGAG.SDGKITYSIKHKLGDLFYKLVSQKFEDPA.E3BEALVGKFKKLINDLTAAFRNLE<br>KFCPFYKSVMMMRNIHFYNLANQAVERAGA.SDGGKITYSIIKHKUGDLFYKLVSQKFEDPA.E3BEALVGKFKKLINDL                                                                 |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_COM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_MANSE<br>VA_GOSHI<br>VA_BETVU<br>VA_GOSHI<br>VA_BETVU<br>VA_CARRO<br>VA_CARRO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_MICSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 538 \ 6\\ 5531 \ 5\\ 531 \ 5\\ 530 \ 5\\ 530 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 $                                                                                                                   | RCCPLYKTYHMMRNMIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPIWTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEAKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELLYKLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVETTAQSDNKITWSIIREMMSELLYKLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWSIIRENMSELLYKLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWNIIRENMGSIMYQLSSMKFKDPVKDGEKKIKADYQQLEDMQNAFRSLE<br>RFCPFYKTVCMLSNMIAFYDMARRAVENTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEQKIKADYQQLYEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMARRAVESTAQSDNKITWNTIKESMGGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMSRIAVESTAQSENKITWNVIRDMGNLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKTVCMLKNIIFFYDMSRIAVESTAQSENKITWNVIRDMGNLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYKLVSQKFEDPA.EGEDVLVGKFKKHDDLTGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGKISYSLIKHRLGDLFYKLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHDDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLSTGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLSTGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLTAFFRLE<br>KFCPFYKSVMMMRNIIHFYNLANGAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLTAFFRLE<br>KFCPFYKSVMMMRNIIHFYNLANGAVERGAG.MDGGKISYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHEDLTAFFRLE<br>KFCPFYKSVMMMRNIIHFYNLANGAVERGAG.MDGGKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKHENDITAFFRLE                                                          |
| VA_SCHPO<br>VA_NEUCR<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_MISMU<br>VA_MISMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BARNA<br>VA_GOSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_PLAFA<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5386<br>5531<br>5311<br>5330<br>5237<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHMMRNIAYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPIWICVMLSNMIAFYDLARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDLARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMARAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMARAVETTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWNIKENSELKNLTSMKFKDPVKDGEKKIKADYAQFEDMQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYTDMRRAVESTAQ.SDNKITWNIKENSELKNLTSLTSMKFKDPVKDGEKKIKADYQLQQAPRNLE<br>RFCPFYKTVGMLNNIAFYETARHAVESTAQ.SDNKITWNIKESMGGIMYQLSSMKFKDPVKDGEKKIKADFQLHEDLQQAPRNLE<br>RFCPFYKTVGMLNNIAFYDMRRAVESTAQ.SENKITWNVIRESMGGIMVQLSSMKFKDPVKDGEKKIKADFQLHEDLQQAPRNLE<br>RFCPFYKVMMRNIIHFNLANQAVERAA.NADGHYTTAVVKSKNGDLFYRLVSQKFEDPA.BGEAKIKADFQLHEDQAAPRNLE<br>RFCPFYKSVMMMRNIIHFNLANQAVERAAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERAAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTSGFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTAFRAL<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGQKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEALVAKFKKLHDLTAFRAL<br>KFCPFYKSVMMMRNIIHFYNLANQAV                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_CARRO<br>VA_GOSHI<br>VA_BETVU<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO<br>VA_CARO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO | $\begin{array}{c} 538 \ 6\\ 5531 \ 5\\ 531 \ 5\\ 530 \ 5\\ 530 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 $                                                                                                                   | RCCPLYKTYHMMRNIAYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPIWICVMLSNMIAFYDLARAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDLARAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEKKIKADYAQLEDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDDMRRAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEKKIKADYAQLEDDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKITWSIIREHMGELYKLSSMKFKDPVKDGEKKIKADYAQLEDDQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVETAQSDNKITWSIIRENSELITRLTSMKFKDPVKDGEKKIKADYAQLFEDMQNAPRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVETAQSDNKITWNTIREMSGIMYQLSSMKFKDPVKDGEKKIKADYAQLFEDMQNAPRSLE<br>RVCPFYKTVGMLSNMIAFYDMRRAVESTAQ.SDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEKKIKADYAQLFEDMQNAPRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQ.SDNKITWNTIRESMGIMYQLSSMKFKDPVKDGEKKIKADFQLEDQQAPRNLE<br>RFCPFYKTVGMLKNNIAFYDMRRAVESTAQ.SDNKITWNVIRDSMGTLYQLSSMKFKDPVKDGEKKIKADFQLHEDQQAPRNLE<br>RFCPFYKVGMLKNNISFYDMSRHAVESTAQ.SDNKITWNVIRDSMGTLYQLSSMKFKDPVKDGEAKIKADFQLHEDQQAPRNLE<br>RFCPFYKVGMLKNNISFYDMSRHAVESTAQ.SDNKITWNVIRDSMGTLYQLSSMKFKDPVKDGEAKIKADFQLHEDQAPRNLE<br>RFCPFYKVGMLKNIISFYDMSRHAVESTAQ.SDNKITWNVIRDSMGTLYQLSSMKFKDPVKDGEAKIKADFQLHEDQAPRNLE<br>RFCPFYKVGMLKNIISFYDMSRHAVESTAQ.SDNKITWNVIRDSMGTLYQLSSMKFKDPVKDGEAKIKADFQLHEDGAPRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MGQKISYSLIKHKLGDLFYRLVSQKFEDPA.BGEADVAKFKKIHDUTTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHKLGDLFYRLVSQKFEDPA.BGEALVGKFKKIHDUTTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHKLGDLFYRLVSQKFEDPA.BGEALVAKFKKIHDUTTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.SDGQKITYSLIKHKLGDLFYRLVSQKFEDPA.BGEALVAKFKKIHDUTTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MGQKITYSLIKHKLGDLFYRLVSQKFEDPA.BGEALVAKFKKIHDUTTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MGQKITYSLIKHKLGDLFYRLVSQKFEDPA.BGEALVGFYKKYKLEUTAFRNLE<br>KFCPFYKSVMMMNIIHFYNLANQAVERGAG.MGQKITYSLIKH                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_NEUCR<br>VA_NEUCR<br>VA_DEVIN<br>VA_DEVIN<br>VA_DIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BARNA<br>VA_GOSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_GOSHI<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_DEVIN<br>VA_NEUCR<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_MISMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5386<br>5531<br>5311<br>5330<br>5300<br>5247<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCCPLYKTYHMMRNIAYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QFCPIWICVMLSNMIAFYDLAQKAIAQGQ.NNNKVREATQDLQAQLKSLKFEVP.SBOGEKICKKYEAIQQQMLDKFASVI<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEDQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMARRAVETTAQSDNKITWSIIRENSELLYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVENTAQ.SDNKITWSIIRENSELLYRLTSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLSNMIAFYDMRRAVESTAQ.SDNKITWNIKENSGIMYQLSSMKFKDPVKDGEXKIKADYAQLFEDMQNAFRSLE<br>RFCPFYKTVGMLKNIMAFYETARHAVESTAQ.SDNKITWNYIRESMGGIMYQLSSMKFKDPVKDGEKKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIAFYDMRRAVESTAQ.SENKITWNVIRESMGGIMYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLRNIAFYDMRRAVESTAQ.SENKITWNVIREMGUNYQLSSMKFKDPVKDGEAKIKADFQLHEDLQQAFRNLE<br>KFCPFYKSVMMMRNIIHFNLANQAVERAAG.MDGYKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKIVDUTAFGRNLE<br>KFCPFYKSVMMMRNIIHFNTLANQAVERAGG.SDGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKIVDUTAFGRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGYKISYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRNLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRRLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MDGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRRLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRRLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGYKITYSLIKHRLGDLFYRLVSQKFEDPA.BGEAVIAKFKKINEDLTAFRRLE<br>KFCPFYKSVMMMRNIIHFYNLANQAVERGAG.MGGYKITYSLIKHRLGDLFYRLSQKFEDPA.BGEALVAKFKKINEDLTAFRRLE<br>KFCPFYKSVM                                                      |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_HORVU<br>VA_MAIZE<br>VA_GOSHI<br>VA_BETVU<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CHIC1<br>VA_DETVU<br>VA_CARRO<br>VA_DETVU<br>VA_CARRO<br>VA_DETVU<br>VA_CHIC2<br>VA_CHIC1<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 5386\\ 5526\\ 5311\\ 5330\\ 5530\\ 5527\\ 527\\ 527\\ 527\\ 527\\ 527\\ 527\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5225\\ 524\\ 619\\ 6066\\ 618\\ 617\\ 6114\\ 614\\ 614\\ 614\\ 614\\ 614\\ 614\\ 61$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCCPLYKTYHNMRNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTKYCMMSNIAPYDLARAVETTAQSUNKITWSIIREHMGEIVKLSSMKFKDPVKDGEAKIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDLARAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDLARAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDDARRAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDDARRAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDMARRAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEXIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDMARRAVETTAQSUNKITWSIIREHMGEILYKLSSMKFKDPVKDGEXIKADYAQLEEDMONAFRSLE<br>RFCPFYKTVGMLSNNIAFYDMRRAVENTAQSUNKITWSIIREMMSELLYRLTSSMKFKDPVKDGEXIKADYAQLEEDMONAFRSLE<br>RVCPFYKTVGMLSNNIAFYDMRRAVENTAQSUNKITWNIKENSIIRENNSELLYRLTSSMKFKDPVKDGEXIKADYQLFEDMONAFRSLE<br>RVCPFYKTVGMLSNNIAFYDMRRAVENTAQSUNKITWNIKESMGIMYQLSSMKFKDPVKDGEXIKADYQLFEDUQAFRNLE<br>RFCPFYKTVGMLRNIMFYETARHAVESTAQSUNKITWNYIRESMGIMYQLSSMKFKDPVKDGEXIKADPQLYEDLQQAFRNLE<br>RFCPFYKTVGMLRNINFYETARHAVESTAQSUNKITWNVIRESMGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKVVMMLNIIFYDMSRANVESTAQSUNKITWNVIRESMGIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE<br>RFCPFYKVVMMLNIIFYNLANQAVERAAGDOGKISYTLIKHKUSDLFYRLVSQKFEDPA.EGEDUVKKFKLNDDLTAGRRLLE<br>KYCPFYKSVMMRNIIHFYNLANQAVERAAGDOGKISYTLIKHKUSDLFYRLVSQKFEDPA.EGEDUVKKFKLHDDLTSGRRLLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAAGSOGKITYSLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKKFKLHDDLTSGRRLLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAGG.SOGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKKFKKLHDDLTAGRRLLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAGG.SOGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKKFKKLHDDLTAGRRLLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAGG.SOGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKKFKKLHDDLTAGRRLE<br>KFCPFYKSVMMRNIIHFYNLANQAVERAGG.SOGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKKFKKLHDDLTAGRRLE<br>KFCPFYKSVMMRNIIHFYLLANKAVERAGGKGGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKFKKLHDDLTAGRRLE<br>KFCPFYKSVMMRNIIHFYLLANGAVERAGG.SOGKISTYLIKHKUGDLFYRLVSQKFEDPA.EGEDUVKFKKLHDLTAGRRLE<br>KFCPFYKSVMMR                                                                        |
| VA_SCHPO<br>VA_NEUCR<br>VA_DEUCR<br>VA_DEUCR<br>VA_DUCN<br>VA_DUCNU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_GOSHI<br>VA_BETVU<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CHICA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_DISMU<br>VA_DIGN<br>VA_DIGN<br>VA_DIGN<br>VA_DROM1<br>VA_DROM1<br>VA_MONVU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5386<br>5531<br>5311<br>5330<br>5247<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277<br>5277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCCPLYKTYHNMRNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTKYCMLSMIAFYDDARRAVETTAQONNKUTWSIIREMGEILYKLSSMKFKDPVKDGAKIKADYAQLEEDQMAFRSLE<br>RPCPFYKTVGMLSNNIAFYDDARRAVETTAQSDNKITWSIIREMGEILYKLSSMKFKDPVKDGAKIKADYAQLEEDQMAFRSLE<br>RPCPFYKTVGMLSNNIAFYDDARRAVETTAQSDNKITWSIIREMGEILYKLSSMKFKDPVKDGAKIKADYAQLEEDQMAFRSLE<br>RPCPFYKTVGMLSNNIAFYDDARRAVETTAQSDNKITWSIIREMGEILYKLSSMKFKDPVKDGAKIKADYAQLEEDQMAFRSLE<br>RPCPFYKTVGMLSNNIAFYDDARRAVETTAQSDNKITWSIIREMGEILYKLSSMKFKDPVKDGAKIKADYAQLEEDQMARRSLE<br>RPCPFYKTVGMLSNNIAFYDMRRAVETTAQSDNKITWSIIREMGEILYKLSSMKFKDPVKDGEKIKADYAQLEEDQMARRSLE<br>RPCPFYKTVGMLSNNIAFYDMRRAVENTAQSDNKITWSIIREMSEILYKLSSMKFKDPVKDGEKIKADYAQLEEDQMARRSLE<br>RPCPFYKTVGMLSNNIAFYDMRRAVENTAQSDNKITWSIIREMSEILYKLSSMKFKDPVKDGEKIKADYAQLEEDQMARRSLE<br>RPCPFYKTVGMLSNNIAFYDMRRAVENTAQSDNKITWNIKENSSIIRENSELLYKLSSMKFKDPVKDGEKIKADYAQLEEDQMARRSLE<br>RPCPFYKTVGMLSNNIAFYDMRRAVENTAQSDNKITWNIKESMGIMIQLSSMKFKDPVKDGEKIKADYAQLEEDQAARRLE<br>RPCPFYKTVGMLKNIMAFYETARHAVESTAQSDNKITWNIKESMGIMIQLSSMKFKDPVKDGEKIKADYAQLEEDQAARRLE<br>RPCPFYKTVGMLKNIISTYDNSRIAVESTAQSDNKITWNIKESMGIMIQLSSMKFKDPVKDGEAKIKADFGQLHEDLQQAFRNLE<br>RPCPFYKTVGMLKNIISTYDNSRIAVESTAQSDNKITWNIKESMGIMIQLSSMKFKDPVKDGEAKIKADFGQLHEDLQQAFRNLE<br>RPCPFYKVMMRNIIHFNTLANQAVERAAGTDGHKITYXVKSRNGLEFYKLVSQKFEDPA.EGEDVLVKKFKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFNTLANQAVERAAGTDGHKITYSVIKHRLGDLFYRLVSQKFEDPA.EGEDVLVKKFKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFNLANQAVERAAGSDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVKKFKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFNLANQAVERAAGSDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEAVLVKFKKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFYLLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSQKFEDPA.EGEAVLVKFKKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFYLLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSGKFEDPA.EGEAVLVKFKKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFYLLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSGKFEDPA.EGEAVLVKFKKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFYLLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSGKFEDPA.EGEAVLVKFKKLHDDLTSGRRHLE<br>KPCPFYKSVMMRNIIHFYLLANQAVERAGG.SDGQKITYSLIKHRLGDLFYRLVSGKFEDPA.EGEAVLYKFKLHELSELFKFALE<br>FYCPF                                                                                     |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_DIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BETVU<br>VA_ACARRO<br>VA_VIGRA<br>VA_CIGRA<br>VA_CIGRA<br>VA_CIGRA<br>VA_CIGRA<br>VA_SCHPO<br>VA_NEUCR<br>VA_DETVII<br>VA_DETVII<br>VA_DETVII<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_MANSE<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 538 \\ 556 \\ 5531 \\ 5531 \\ 5530 \\ 5527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 533 \\ 533 \\ 533 \\ 533 \\ 523 \\ 525 \\ 524 \\ 619 \\ 606 \\ 618 \\ 617 \\ 611 \\ 614 \\ 614 \\ 614 \\ 614 \\ 615 \\ 577 \\ 558 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RCCPLYKTYHNMRNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br>QFCPTWCMUSLSMLAFYDDARRAVETTAQONNKUREATQDLQAQLKSLKFENP.SE3QEKICKYEAIQQMLDKPASVI<br>RFCPFYKTVGMLSNNLAFYDDARRAVETTAQSDNKITWSIIREHMGELLYKLSSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDDARRAVETTAQSDNKITWSIIREHMGELLYKLSSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDMARRAVETTAQSDNKITWSIIREHMGELLYKLSSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDMARRAVETTAQSDNKITWSIIREHMGELLYKLSSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDMRRAVENTAQSDNKITWSIIREHMGELLYKLSSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDMRRAVENTAQSDNKITWSIIRENNSEILVRLTSMKFKDPVKDGBAKIKADYAQLEEDWQNAFRSLE<br>RFCPFYKTVGMLSNNLAFYDMRRAVENTAQSDNKITWSIIRENNSEILVRLTSMKFKDPVKDGBTKIKADYAQLFEDWQNAFRSLE<br>RFCPFYKTVGMLRNIMAFYETARHAVESTAQSDNKITWNIRENNSILVRLTSMKFKDPVKDGBTKIKADYAQLFEDWQNAFRSLE<br>RFCPFYKTVGMLRNIMAFYETARHAVESTAQSDNKITWNIRENNSILVRLTSMKFKDPVKDGBKIKADYQLFEDUQAAFRLE<br>RFCPFYKTVGMLRNINAFYETARHAVESTAQSDNKITWNVIREAMGINYQLSSMKFKDPVKDGBAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKTVGMLKNILFYDMSRIAVESTAQSDNKITWNVIREAMGINYQLSSMKFKDPVKDGBAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKVWMRNIIHFNLANQAVERAASDNKITWNVIREAMGINYQLSSMKFKDPVKDGBAKIKADFQLHEDLQQAFRNLE<br>RFCPFYKSVWMRNIIHFNLANQAVERAGTOGHKITYSVIKRRGLFYRLVSQKFEDPA.EGEDVLVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFNLANQAVERAGDGKKITYSVIKHKLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFNLANQAVERAGGGGKITYSLIKHKLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFNLANQAVERAGGGGKITYSLIKHKLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFNLANQAVERAGGGGKITYSLIKHKLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFNLANQAVERAGGGGKITYSLIKHKLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFYLLANQAVERAGGSGGHUTLSLIKHKLGDLFYRLVSQKFEDPA.EGEDALVGKFKKLHDDITSGRFNLE<br>KFCPFYKSVWMRNIIHFYLLANQAVERAG                                                                                                                                                                                                                                                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_ACARRO<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CHIC1<br>VA_CHIC1<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_NUSMU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 538 5561<br>531 5530<br>530 5530 5527<br>527 5527 5527<br>527 5527 5527 5527<br>533 5533 5533 5533 5533 5533 5533 5523 5524 619<br>6066 6188 6617 6616 614 6615 5620 6614 6614 6615 5577 5558 620 620 620 620 620 620 620 620 620 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RCCPLYKTYHNMRNIAYYTKAKSAVETG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_OROMI<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BETVU<br>VA_CARRO<br>VA_CARRO<br>VA_CHIC1<br>VA_CARRO<br>VA_CHIC1<br>VA_CARCO<br>VA_SCHPO<br>VA_NEUCR<br>VA_SCHPO<br>VA_BOVIN<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIGM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DR | $\begin{array}{c} 538 \\ 5526 \\ 5531 \\ 5531 \\ 5530 \\ 5527 \\ 5527 \\ 5527 \\ 5527 \\ 5527 \\ 5533 \\ 5533 \\ 5533 \\ 5533 \\ 5533 \\ 5533 \\ 5525 \\ 552 \\ 6196 \\ 6186 \\ 6177 \\ 6114 \\ 6144 \\ 614 \\ 614 \\ 615 \\ 6177 \\ 5576 \\ 622 \\ 622 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>BCCPLYKTYHNMENNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKPENP.NEGEKEIVEHYETLHKKIEDKPHILT<br/>QFCPLYKTYGHLSMIAFDDARARVETAQSONKITWSIISIENEMGELIYKLSSMKFKDPVKOGEKIKADYAQLEDVQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDDARARVETAQSONKITWSIIREMGELIYKLSSMKFKDPVKOGEKIKADYAQLEDVQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDDARARVETAQSONKITWSIIREMGELIYKLSSMKFKDPVKOGEKIKSDYAQLEDVQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDDMARAVETAQSONKITWSIIREMGELIYKLSSMKFKDPVKOGEKIKSDYAQLEDVQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDDMARAVETAQSONKITWSIIREMGELIYKLSSMKFKDPVKOGEKIKSDYAQLEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDDMARAVETAQSONKITWSIIREMGELIYKLSSMKFKDPVKOGEKIKSDYAQLEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDTMARAVETAQSONKITWSIIREMSELLYKLTSMKFKDPVKOGEKIKSDYAQLEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDTMARAVETAQSONKITWSIIREMSELLYKLTSMKFKDPVKOGEKIKADYAQLEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDTMARAVETAQSONKITWSIIREMSELLYKLTSMKFKDPVKOGEKIKADYAQLEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIAFDTMARAVETAQSONKITWNIIRESMGGIMYQLSSMKFKDPVKOGEKIKADYAQLFEDMQNAFFSLE<br/>PFCPFYKTYGHLSMIIDFTDMRRAVETAQSONKITWNIIRESMGGIMYQLSSMKFKDPVKOGEKIKADPDQLYEDLQQAFFNLE<br/>PFCPFYKTYGHLSMIIDFTDMRRAVESTAQSONKITWNIIRESMGGIMYQLSSMKFKDPVKOGEKIKADPDQLYEDLQQAFFNLE<br/>PFCPFYKTYGHLSMIIDFTDMRRAVESTAQSONKITWNIINGKSMKFKDPVKOGEKIKADPDQLYEDLQQAFFNLE<br/>PFCPFYKVWMRNIIHFNTLANQAVERAGSOQKISTYSLIKHTNOVINGKSMKFKDPVKOGEKIKADPDQLLEDMSAAFFNLE<br/>PFCPFYKVWMRNIIHFNLANQAVERAGSOGKISYSLIKHTVAVVSKRDDFR.BSEEALVGKFKKIKDDDISGFRNLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKISYSLIKHLGDLFYRLVSQKFEDA.BSEEALVGKFKKIHDDISGFRNLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHLGDLFYRLVSQKFEDA.BSEEALVGKFKKIHDDISGFRNLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITAFFRLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITAFFRLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITAFFRLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHKLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITAFFRLE<br/>KFCPFYKSVMMRNIIHFNLANQAVERAGG.SOGKITYSLIKHKLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITAFFRLE<br/>KFCPFYKSVMMRNIIHFNLANGAVERAGG.SOGKITYSLIKHKLGDLFYRLVSQKFEDA.BSEEALVGKFKKINEDLITA</pre>                              |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC2<br>VA_COM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_ACARRO<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CHIC1<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRIG<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_C | 538 526 531 530 5330 5330 5330 524 490 1533 5333 5333 5333 5333 5333 5333 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>BCCPLYKTYHNMENNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br/>QFCPLYKTYGHLSMIAFDDARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKKIKADYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKKIKADYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKKIKADYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKKIKSDYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDMARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKKIKSDYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDMARAVETAQSONKITWSIIEMEMGELIYKLSSMKFEDPVKOEGKIKSDYAQLLEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDMRRAVETAQSONKITWSIIEMEMSELIYRITSMKFEDPVKOEGKKIKSDYAQLUEDMQNAFFSLE<br/>PFCPFYKTVGHLSMIAFDDMRRAVETAQSONKITWSIIEMENSELIYRITSMKFEDPVKOEGKIKADDYQLEDMQAFFNLE<br/>PVCPFYKTVGHLSMIAFDDMRRAVETAQSONKITWSIIEMSGGIMYOLSSMKFEDPVKOEGKIKADDYQLYEDLQAFFNLE<br/>PVCPFYKTVGHLSMIAFDDMRRAVESTAQ.SONKITWNYIESMGGIMYOLSSMKFEDPVKOEGKIKADDYQLYEDLQAFFNLE<br/>PVCPFYKTVGHLSMIIAFTDMSRAVESTAQ.SONKITWNYI KEMGGIMYOLSSMKFEDPVKOEGKIKADDPQLHEDJQQAFFNLE<br/>PFCPFYKTVGHLSMIIAFTDMSRAVESTAQ.SONKITWNYI KEMGGIMYOLSSMKFEDPVKOEGKIKADDPQLHEDJQQAFFNLE<br/>PFCPFYKTVGHLSMIIIFTDMSRAVESTAQ.SONKITWNYI KEMGGIMYOLSSMKFEDPVKOEGAKIKADPEQLHEDJQQAFFNLE<br/>PFCPFYKVWMRNIIHFNTLANQAVERAG.MCGUKISYSLIKHKOLSSWKFKDPVKOEGAKIKADPEQLHEDJQQAFFNLE<br/>PFCPFYKVWMRNIIHFNTLANQAVERAG.MCGUKISYSLIKHLGDLFYRLVSQKFEDPA.BSEEAJVGKFKKLYDDLTAGFRNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHLGDLFYRLVSQKFEDPA.BSEEAJVGKFKKLYDDLTAGFRNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHKGLEJPYRLVSQKFEDPA.BSEEAJVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHKGLEJPYRLVSQKFEDPA.BSEEAJVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHKGLEJPYRLVSQKFEDPA.BSEEAJVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHKGLEJPYRLVSQKFEDPA.BSEEAJVGKFKKLHDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.MCGUKISYSLIKHKGLEJPYRLVSQKFEDPA.BSEEAJVGKFKKLHDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANQAVERAGG.SGGUKITYSLIKHKGDLFYRLVSQKFEDPA.BSEEAJVGKFKKLHDLTSGFFNLE<br/>KFCPFYKSVMMRNIIHFNTLANGAVERAGG.SGGUKITSUKIKKASSLIK</pre>    |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_OROMI<br>VA_OROMI<br>VA_DROMI<br>VA_DROMI<br>VA_DROMI<br>VA_DROMI<br>VA_DROMI<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_BETVU<br>VA_CARRO<br>VA_VIGRA<br>VA_CIGRA<br>VA_COSHI<br>VA_DETVU<br>VA_CARRO<br>VA_CHCI<br>VA_DETVU<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVU<br>VA_SCHPO<br>VA_BOVIN<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIGNA<br>VA_SCHPO<br>VA_BOVIN<br>VA_DIGNA<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DRO | $\begin{array}{c} 538 \\ 5526 \\ 5531 \\ 5531 \\ 5530 \\ 5527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 527 \\ 533 \\ 533 \\ 533 \\ 523 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ 525 \\ $  | <pre>BCCPLIKTYHNMENNIAYYTKAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKFHTLT<br/>QFCPLIKTEMMMKLMMGFHDEAQKAIAQGQ,NNMKVREATQDLQAQLKSLKFEVP.SEGEKIKAKYPAIQQQMLDKPASVI<br/>PFCPFYKTVGHLSNNIAFTDDARRAVETAQSCNKITWSIIREMMGELIYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDDARRAVETAQSCNKITWSIIREMMGELIYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMARRAVETAQSCNKITWSIIREMMGELIYKLSSMKFKDPVKDGEAKIKADYAQLEDMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMARRAVETAQSCNKITWSIIREMMGELIYKLSSMKFKDPVKDGEAKIKSDYAQLEDMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMARRAVETAQSCNKITWSIIREMMGELIYKLSSMKFKDPVKDGEKIKADYAQLEDMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMRRAVETAQSCNKITWSIIREMSSLIYRITSMKFKDPVKDGEKIKADYAQLEPEMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMRRAVETAQSCNKITWSIIREMSSLIYRITSMKFKDPVKDGEKIKADYAQLEPEMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMRRAVETAQSCNKITWSIIREMSSLIYRITSMKFKDPVKDGEKIKADYAQLEPEMQNAFFSLE<br/>RFCPFYKTVGHLSNNIAFTDMRRAVETAQSCNKITWNTIKESMGGIMYOLSSMKFKDPVKDGEKIKADYDQLYEDLQAAFFNLE<br/>RFCPFYKTVGHLSNNIAFTDMARRAVESTAQSCNKITWNTIKESMGGIMYOLSSMKFKDPVKDGEKIKADYDQLHEDLQAAFFNLE<br/>RFCPFYKTVGHLSNNIAFTDMARRAVESTAQSCNKITWNVIRDMGNVLVQLSSMKFKDPVKDGEKIKADYDQLHEDLQAAFFNLE<br/>RFCPFYKTVGHLKNIISFYDMARRAVESTAQSCNKITWNVIRDMGNVLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQAAFFNLE<br/>RFCPFYKTVGHLKNIISFYDMSRHAVESTAQSCNKITWNVIRDMGNVLVQLSSMKFKDPVKDGEAKIKADFEQLHEDLQAAFFNLE<br/>RFCPFYKSVWMMRNIIHFNDLANQAVERAAGDOGKISYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLNDDLTAGFFNLE<br/>KFCPFYKSVWMMRNIIHFNTLANQAVERAAGDOGKISYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLNDDLTAGFFNLE<br/>KFCPFYKSVWMMRNIIHFNTLANQAVERAAGMDGXISYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVWMMRNIIHFNLANQAVERAGGSDGXITYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVWMMRNIIHFNLANQAVERAGGSDGXITYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLHDDLTSGFFNLE<br/>KFCPFYKSVWMMRNIIHFNLANQAVERAGGSDGXITYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLHDLTAGFFNLE<br/>KFCPFYKSVWMMRNIIHFNLANQAVERAGGSDGXITYSLIKHLGDLFYRLVSQKFEDPA.SEBEALVGKFKKLHDLTAGFFNLE<br/>KFCPFYKSVWMRNIIHFYNLANGAVERAGGSDGXITYSLIKHNEDLFAFFNE<br/>KFCPFYKSVWMRNIHFYLENKLENCERAGGSIYNTLKFNIKEU</pre>                                             |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_MISMU<br>VA_CHIC2<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAIZE<br>VA_HORVU<br>VA_ACARRO<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_GOSHI<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC2<br>VA_CHIC2<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRYCO<br>VA_TRIG<br>VA_MISMU<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_COSHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 538 \ 6\\ 5531 \ 5\\ 5310 \ 5\\ 5300 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 527 \ 5\\ 5\$                                                                                                                   | <pre>BCCELVETTHEMENUIAYTYEKASAVETGSVPWKIKESTSDIFVELTSMKEPNP.NEGEKEIVEHTETLHEKIEDKPHTLT<br/>QFCPFVKTVGHLSMIAFHDEAQKAIAQGQ,NNKVREATQDLQAQUKSLKPENP.NEGEKEIVEHTETLHEKIEDKPHTLT<br/>QFCPFVKTVGHLSMIAFDDAARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDDAARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDDAARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEAKIKADYAQLLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEAKIKSDYAQLLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEAKIKSDYAQLLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMARAVETTAQSNKITWSIIREHMGEILVKLSSMKFKDFVKDGEKIKADYAQLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMRRAVETAQSNKITWSIIREMSELLVRITSMKFKDFVKDGEKIKADYAQLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMRRAVETAQSNKITWSIIREMSELLVRITSMKFKDFVKDGEKIKADYAQLEDWQNAFFSLE<br/>BFCPFYKTVGHLSMIAFTDMRRAVETAQSNKITWNIKISSMKFKDFVKDGEKIKADYAQLEDWQAFFNLE<br/>FVCPFYKTVGHLSMINAFTDMRRAVETAQSNKITWNIKINSSMKFKDFVKDGEKIKADYAQLEDWQAFFNLE<br/>FVCPFYKVMGHLSMINAFTDMRRAVETAQSNKITTWVIKISMGGINYQLSSMKFKDFVKDGEKIKADYDQLYEDLQQAFFNLE<br/>FVCPFYKVMMENIIHFYDMSRAVESTQQSNKITTWVIKISSMKFKDFVKDGEKIKADPEQLHEDIQQAFFNLE<br/>FVCPFYKVMMENIIHFYDMSRAVESTQQSNKITTWVIKISSMKFKDFVKDGEKIKADPEQLHEDIQQAFFNLE<br/>FVCPFYKVMMENIIHFYDMSRAVESTQQSNKITTYVIKISMGENFYKLVSQKFEDPA.BEEDVLVGKKKIKADPEQLHEDIQQAFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAAGDCGKISYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKIKADDDITGGFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAAGDCGKISYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKKINDDLTAGFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAAGSDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKKINDDLTAGFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAAGSDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKKINDDLTAGFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAAGSDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKKINDDITAGFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAGG.SDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDVLVGKKKKINDDITAGFFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAGG.SDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDAVGFYKKVFKALEEFITVGFNLE<br/>FVCPFYKSVMMENIIHFYNLANQAVERAGG.SDGKITYSLIKHLGDLFYRLVSQKFEDPA.BEEDAVGFYK</pre>                                            |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_GOSHI<br>VA_CARRO<br>VA_VIGRA<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SC | $\begin{array}{c} 5386\\ 5526\\ 5531\\ 5531\\ 5530\\ 5527\\ 527\\ 5527\\ 5527\\ 5527\\ 5527\\ 5533\\ 5533\\ 5533\\ 5533\\ 5533\\ 5533\\ 5533\\ 5523\\ 5525\\ 525\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BCCPLVKTYHNMRNMLAYYTXAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHTLT<br>QPCPTWKTVGMLSNMLAYDDAARAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDVQNAPRASVI<br>RPCPPYKTVGMLSNMLAYDDAARAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDVQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDAARAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDVQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDAARAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDVQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDAARAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDARRAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLLEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETTAQSONKTWSIIREMGELLYKLSSMKFKDPVNDGBALKADTAQLEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETTAQSONKTWSIIREMSGINVQLSSMKFKDPVNDGBALKADTAQLEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETTAQSONKTWSIIREMSELLYNLTSMKFKDPVNDGBALKADTAQLFEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETAQ.SONKTWSIIREMSELLYNLTSMKFKDPVNDGBALKADTAQLFEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMRRAVETAQ.SONKTYNDYIREMAGGINYQLSSMKFKDPVNDGBALKADTAQLFEDMQNAPRSLE<br>RPCPPYKTVGMLSNMLAYDDMARSVESTAQSONKTYNNYIREMGGINYQLSSMKFKDPVNDGBALKADPDQLHEDQAFRNLE<br>RPCPPYKTVGMLSNMLAYDDMARSVESTAQ.SONKTYNNYIREMGAUKADEUYLUXQUSSMKFKDPVNDKGBALKADPDQLHEDMSAARNLE<br>KPCPPYKSVMMRNNIIHYNLIANAVESTAQ.SONKTYNNYIREMAUNDYQLSSMKFKDPVNDKGBALKADPDQLLEDMSAARNLE<br>KPCPPYKSVMMRNNIIHYNLIANAVESTAQ.SONKTYNNYIREMAUNDYQLSSMKFKDPVNDKGBALKADPDQLLEDMSAARNLE<br>KPCPPYKSVMMRNNIIHYNLIANAVESTAQ.SONKTYNYIKIDAMANUNYQLSSMKFKDPVNDKGBALKADPDQLLEDMSAARNLE<br>KPCPPYKSVMMRNNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUNYQLSSMKFKDPVNDGBALKADPUNCKFKKKHDDUNGLAUCKTKKKHDDUNCLANGFKKLUDAL<br>KPCPPYKSVMMRNNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUNYQLSSMKFKDPVNDGBALKADFDULLDGAFFNLE<br>KPCPPYKSVMMRNNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUNYQLSSMKFKDPVNDGBALKADFUNCKFKKLUDAL<br>KPCPPYKSVMMRNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUNYUSSMKFKDPVNDGBALKADFDUNCKFKKLUDAL<br>KPCPPYKSVMMRNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUNYUSSMKFKDPVNDGBALKATADPUNCKFKKLUDAL<br>KPCPPYKSVMMRNIIHYNLANAVESTAQ.SONKTYNYIKIDAMANUN                                        |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_HUMAN<br>VA_DROMI<br>VA_DROMI<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_ACARRO<br>VA_GOSHI<br>VA_BETVU<br>VA_ACARRO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_CARRO<br>VA_CARRO<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_RANA<br>VA_CARRO<br>VA_MISEU<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_RANA<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_C | $\begin{array}{c} 5386\\ 5261\\ 5310\\ 5300\\ 5300\\ 5227\\ 527\\ 527\\ 527\\ 527\\ 527\\ 527\\ 52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>BCCPELVKTYHUMENMILAVYTEXAKSAVETGSVPWSKIKESTSDIFYELTSMKFENP.NEGEKEIVEHYETLHKKIEDKPHILT<br/>QFCPFUKTVGMLSNMIAFYDDARRAVETTAQSDNKTWSITREMMGELLYKLSSMKFKDPVNDGBALIKADTAQLLEDVQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKTWSITREMMGELLYKLSSMKFKDPVNDGBALIKADTAQLLEDVQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKTWSITREMMGELLYKLSSMKFKDPVNDGBALIKADTAQLLEDVQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKTWSITREMMGELLYKLSSMKFKDPVNDGBALIKADTAQLLEDVQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDDARRAVETTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGBALIKADTAQLLEDWQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGBALIKADTAQLEDWQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGBALIKADTAQLEDQUADAN<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGBALIKADTAQLFEDMQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGGALIKADTQQLFEDMQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAALCESTAQSDNKTWSITREMMSELLYKLSSMKFKDPVNDGGALIKADTQQLFEDMQNAFRSJE<br/>RFCPFYKTVGMLSNMIAFYDMRRAVETAALS.SDNKTTWNTIRESMGGINYQLSSMKFKDPVNDGGALIKADTQQLFEDLQQAFRNLE<br/>RFCPFYKTVGMLSNMIAFYDMARHSVETAAL.SSDNKTWNVTRDSMCNILVQLSSMKFKDPVNDGGALIKADTQQLYEDLQQAFRNLE<br/>RFCPFYKSVMMENNIIHFNLANQAVERAAM.ADGKITYAVVRSKMGDLFYRLVSGKFEDPA.BGEDLVAKFKKLYDDLTAGFRNLE<br/>KYCPFYKSVMMENNIIHFNLANQAVERAAM.ADGKITYSVIKEDGLFYRLVSGKFEDPA.BGEDLVAKFKKLYDDLTAGFRNLE<br/>KYCPFYKSVMMENNIIHFNLANQAVERAAG.MDGKISYSLIKHRLDDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFNLANQAVERAAG.MDGKISYSLIKHRLDDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFNLANQAVERAAG.MDGKITYSLIKHLDDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFNLANQAVERAAG.MDGKITYSLIKHLDDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFNLANQAVERAAG.MDGKITYSLIKHLDDEYRLVSGKFEDPA.BGEDLVAKFKKLHDDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFYNLANQAVERAAG.MDGKITYSLIKHLDDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFYNLANQAVERAAG.MDGKITYSLIKHLDLFYRLVSGKFEDPA.BGEDLVAKFKKLHDLTSGFRNLE<br/>KFCPFYKSVMMENNIIHFYNLANQAVERAAG.SDDGYTYSLIKHLDFYRLVSGKFEDPA.BGEDLVAKFKKLHDLTSGFRNLE<br/>KFCPFYKSVMMENTHFYNLANGAVE</pre>         |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_OLIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_SCHPO<br>VA_VIGRA<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SC | $\begin{array}{c} 5386\\ 5526\\ 5531\\ 5531\\ 5530\\ 5527\\ 527\\ 527\\ 527\\ 528\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 5333\\ 533$ | <pre>BCCEUKTYHEMENNIAWYTEXASAVETGSURVEKILESTSDIFFELTSWEFEND.NBESKEIVENYELLEKILEKIEDENTLY<br/>QFCPTWETEWINKLAMGFHDEAQKAIAQGQ.NNKKVERATODLJAQLKSLKFEVP.BEGCEKICKYEAIQQOHLDKRASVI<br/>BFCPTYKTVGALSNMIAFYDDARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUVQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDDARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUVQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDDARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUVQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDDARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUMQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUMQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLLEUMQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGBALIKADTAQLEUMQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETTAQSDNKITWSIIREMGELIYLLSSWEFKDPVNDGGTKIKADTAQLEUMQNAFRSLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETAA.S.SDNKITWSIIREMGELIYLLSSWEFKDPVNDGGTKIKADTQLUEDQAFRNLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETAA.SDNKITWSIIREMGELIYLLSSWEFKDPVNDGGTKIKADTQLUEDQAFRNLE<br/>BFCPTYKTVGALSNMIAFYDMARRAVETAA.SDNKITWNTIRESMGGIMYOLSSWEFKDPVNDGGTKIKADTQLUEDQAFRNLE<br/>FFCPTYKSVMMENNIHFYDMARRAVETAA.SDNKITWNTIRESMGGIMYOLSSWEFKDPVNDGGTKIKADTQLUEDQAFRNLE<br/>FFCPTYKSVMMENNIHFYDMARRAVETAA.SDNKITWNTIRESMGGIMYOLSSWEFKDPA.BGDVLVAKFKKILDDLQAFRNLE<br/>KFCPTYKSVMMENNIHFYDMARRAVETAA.SDNKITTYVIVRENDLAGUNULVOLSSWEFKDPA.BGDVLVAKFKKILDDULTQGFRNLE<br/>KFCPTYKSVMMENNIHFYDMARRAVETAA.SDNKITTYVIVRENDLAGUNULVOLSSWEFKDPA.BGDVLVAKFKKILDUDLTGGFRNLE<br/>KFCPTYKSVMMENNIHFYDLANAVEGAG.DOGKITYSLIKHLGDLYRUSSKFEDPA.BGDVLVAKFKKILDULTGGFRNLE<br/>KFCPTYKSVMMENNIHFYDLANAVEGAG.BDGKITYSLIKHLGDLYRUSSKFEDPA.BGDAVAKFKKINEDLITGFFRNLE<br/>KFCPTYKSVMMENNIHFYNLANAVEGAG.BDGKTTYSLIKHLGDLYRUSSKFEDPA.BGDAVAKFKKINEDLITGFFRNLE<br/>KFCPTYKSVMMENNIHFYNLANAVEGAG.BGDGKTTYSLIKHLGDLYRUSSKFEDPA.BGDAVAKFKKINEDLITGFFRNLE<br/>KFCPTYKSVMENNIHFYNLANAVEGAG.BGDGKTTYSLIKHLGDLYRUSSKFEDPA.BGDAVAKFKKINEDITTGFFRNLE<br/>KFCPFYKSVMENNIHFYNLANAVEGAG.BGDGKTTYSLIKHLGDLYRUSSKFEDPA.BGDAVAKFKKINEDFYNL<br/>KTCPTYKSVMENTAGUNUTAKFKINTUNTIKATAGUNUTAGUNUTAGUNUTA</pre>                 |
| VA_SCHPO<br>VA_BOVIN<br>VA_BOVIN<br>VA_DEUCR<br>VA_BOVIN<br>VA_DEUCR<br>VA_CHIC1<br>VA_DROMI<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MAISE<br>VA_HORVU<br>VA_MAISE<br>VA_HORVU<br>VA_GSHI<br>VA_BETVU<br>VA_CARRO<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_CYACA<br>VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_DEUTI<br>VA_BOVIN<br>VA_DEUTI<br>VA_BOVIN<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_CARRO<br>VA_CHIC1<br>VA_CHIC1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_D | 538655315530553155305527752785277552785533355333553335533355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCCPEVKTYMHMENNIAYTTAKSAVETGSUNKIKESTSDIFYELTSKKEENP.BEGKEIVENYELIKKIEDTGOOMLOKASUNG<br>PCCPFYKTVOMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEVQNAFRSJE<br>PCCPFYKTVOMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEVQNAFRSJE<br>PCCPFYKTVOMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEVQNAFRSJE<br>PCCPFYKTVOMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEVQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGBAKIKADTAQLEEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGGKXIKADTQQLFEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETTAGSUNKITWSIIREHMGELIYKLSSKEKEPVNDGGKXIKADTQQLFEMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETAG.SUNKITWSIIREHMGELIYKLSSKEKEPVNDGGKXIKADTQQLFEDMQNAFRSJE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETAG.SUNKITVNTIRESUNTINGUSSKEKEPVNDGGKXIKADTQQLFEDQAFRNLE<br>PCCPFYKTVGMLSNMIAFYDMARRAVETAG.SUNKITVNTIRESUNTINGUSSKEKEPVNDGGKXIKADTQQLYEDLQQAFRNLE<br>PCCPFYKSVMMENNIIHFYDMARRAVETAG.SUNKITVNTIRESUNTILGUSSKEKEPVNDGGKXIKADTQQLYEDLQQAFRNLE<br>PCCPFYKSVMMENNIIHFYDMARRAVETAG.SUNKITVNTIRESUNTILGUSSKEKEPVNDGGKXIKADTQQLYEDLQQAFRNLE<br>PCCPFYKSVMMENNIIHFYDMARRAVETAG.SUNGKKKIPVNDKICDAGKKENPVNDGGKXIKADTQQLYEDLQQAFRNLE<br>PCCPFYKSVMMENNIIHFYDMARRAVETAG.SUNGKKUPVNTURDAGAKIKEPPANE<br>PCCPFYKSVMMENNIIHFYDMARRAVETAG.SUNGKKKUPVDICUSSKEKEPPANE<br>PCCPFYKSVMMENNIIHFYDMARRAVESAG.SUNGKYTYSLIKHLGDLFYRLVSQKFEDPA.BGEDVLVKFKKKLHDDLTAGFPANLE<br>PCCPFYKSVMMENNIIHFYDLANQAVERGAG.MCGKYTYSLIKHLGDLFYRLVSQKFEDPA.BGEDVLVKKKKLHDDLTAGFPANLE<br>PCCPFYKSVMMENNIIHFYDLANQAVERGAG.MCGKYTYSLIKHLGDLFYRLVSQKFEDPA.BGEDVLVKKKKLHDDLTAGFPANLE<br>PCCPFYKSVMMENNIIHFYDLANQAVERGAG.SUNGKYTYSLIKHLGDLFYRLVSQKFEDPA.BGEDVLVKFKKLHDUTAFFNLE<br>PCCPFYKSVMMENNIIHFYDLANQAVERGAG.GOKTYSLIKHLGDLFYRLSGKFEDPA.BGEDVLVKFKKLHDUTAFFNLE<br>PCCPFYKSVMENNIHFY                                |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_ORONI<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_SCHPO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_SCHPO<br>VA_BETVU<br>VA_BETVU<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SCHPO<br>VA_SC | 5386<br>5531<br>5531<br>5530<br>5527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>527<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCCPTYRYVENELSMITAYYKAKSANETGSUTWEKT KESTSDIFYELTSMEEDP. SEGEKIKKETVETIGKEREN<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERAKIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETTAQSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETAGSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETAGSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETAGSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSMITAFYDARRAVETAGSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADYAQLEENGAAFSLE<br>PCCPTYRYVENELSKIKAUSTAGSDEKITNEIREMSEILYKLSSMEFKDFYKDFYKOERXIKADOUGAAFSLE<br>PCCPTYRYVENELSKIKAUSTAGSDEKITNEIREMSEILYKLSSMEFKDFYKOERXIKADOUGAAFSLE<br>PCCPTYRYVENELSKIKAUSTAGSDEKITNEIREMSEILYKLSSMEFKDFYKDFYKOERXIKADOUGAAFSLE<br>PCCPTYRYVENELSKIKAUSTAGSDEKITNEIREMSEILYKLSSMEFKDFYKDFYKDFYKOERXIKADOUGAAFSLE<br>PCCPTYRSVMENNIIFYNLANAVESTAGSDEKITNEIIREMSELYKLSSMEFKDFYKDFYKDFYKUTAFSLE<br>PCCPTYRSVMENNIIFYNLANAVESTAGSDEKITNEIREMSEN<br>PCCPTYRSVMENNIIFYNLANAVESTAGSDEKTNEIREMSELYKLSSMEFKDFYEDFYSUERSE<br>PCCPTYRSVMENNIIFYNLANAVESTAGSDEKTNEIREMSELYKLSSMEFKD                                                                                                             |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_DIG<br>VA_HUMAN<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_HORVU<br>VA_MAIZE<br>VA_GOSHI<br>VA_BETVU<br>VA_CARRO<br>VA_CARRO<br>VA_BETVU<br>VA_CARRO<br>VA_DETVU<br>VA_DETVU<br>VA_DETVU<br>VA_DETVU<br>VA_DETVU<br>VA_DECRO<br>VA_BOVIN<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM | 538 5526 5531 5530 5530 5527 5527 5527 5527 5527 5527 5527 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCCPEYTYUAMISNILAYYTKAKSANETGSVPNISKILKESTSDIFYELTEMKEENP.NEERIJVEKEIVETHIKKIECKAPTAI<br>QCCPTYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMSELLYKISSKEPEVP.SBOQKICKKYEAIQQALDKSASVI<br>PCCPPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLLEUVAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLEUVAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLEUVAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLEUVAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLEUMAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEAKIKADYAQLEUMAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEKIKADYAQLEPUMAAPPSLE<br>PCCPYKIVAMISNILAPTDAARAVETTAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEKIKADYQQLAPPINLE<br>PCCPYKIVAMISNILAPTDAARAVETAQSDNITTWSIIREMMSELLYKISSKEPKOPYKOBEKIKADYQQLAPPINLE<br>PCCPYKIVAMISNILAPTDAARAVETAAN.SDNITAVIKIESMSGINYQLSSKEPKOPYKOBEKIKADYQQLAPPINLE<br>PCCPYKIVAMISNILAPTDAARAVESTAQSDNITTWNTIKESMSGINYQLSSKEPKOPYKOBEKIKADYQQLAPPINLE<br>PCCPYKIVAMISNILAPTDAARAVESTAQSDNITTWNTIKESMSGINYQLSSKEPKOPYKOBEKIKADYQQLAPPINLE<br>PCCPYKIVAMISNILHENDAARAVESTAQSDNITTWNTIKESMSGINYQLSSKEPKOPYKOBEKIKADPQLAPPINLE<br>PCCPYKIVAMISNILHENDAARAVESTAQSDNITTWNTIKESMSGINYQLSSKEPKOPYKOBEAKIKADPQLAPPINLE<br>PCCPYKIVAMISNILHENDAARAVESTAQSDNITTWNTIKESMSGINYQLSSKEPKOPYKOBEAKIKADPQLAPPINLE<br>PCCPYKIVAMISNILHENDAARAVESTAQSDNITTWNTIKSKEMBELYKIVSQKEDPA.BOEDVIVAKPKIKIDDUTAGERNILE<br>PCCPYKKVMMMINIHENDAARAVESTAQSDNITTWNTIKSKEMBELYKIVSQKEDPA.BOEDVIVAKPKKIKDDUTAGERNILE<br>PCCPYKKVMMMINIHENDAARAVESTAQSDNITTWNTIKSKEMBELYKIVSQKEDPA.BOEDVIVAKPKKIKDDUTAGERNILE<br>PCCPYKKVMMMINIHENDAARAVESTAQSDNITTWNTIKSKEMBELYKIVSQKEDPA.BOEDVIVAKPKKIKDDUTAGERNILE<br>PCCPYKKVMMINIHENDAARAVESTAQSDNITTWNTIKSKEMBELYKUSQKEDPA.BOEDVIVAKPKKIKDDUTAGERNILE<br>PCCPYKKVMMINIHENDAARAVESTAQSDNITTWAYIKEMBANE<br>PCCPYKKVMMINIHENDAARAVESTAQSDNITTYKIKKEMBELYKUSQKEDPA.BOEDVIVAKPKKIKDDUTAGERNILE<br>PC                                                                                                       |
| VA_SCHPO<br>VA_NEUCR<br>VA_BOVIN<br>VA_PIG<br>VA_HUMAN<br>VA_ORDIN<br>VA_MUSMU<br>VA_CHIC2<br>VA_CHIC1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>VA_BETVU<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_VIGRA<br>VA_CARRO<br>VA_CARRO<br>VA_DETVU<br>VA_BETVU<br>VA_BETVU<br>VA_SCHPO<br>VA_BEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_SCHPO<br>VA_DEUCR<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARRO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARARO<br>VA_CARAR          | $\begin{array}{c} 5386\\ 5526\\ 5531\\ 5531\\ 5530\\ 5527\\ 527\\ 527\\ 527\\ 527\\ 527\\ 527\\ 52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCCPFYRYUMMENNIAYYTKAKSANETGSUTWIKK KESTSDIFYELTSMKFENP. NEEDIGEK ICKYFATQOQMLDKFASUT<br>QFCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMGEILYKLSSMKFKDPVKOEAKIKADYAQLLEUKMAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMGEILYKLSSMKFKDPVKOEAKIKADYAQLLEUKMAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMGEILYKLSSMKFKDPVKOEAKIKADYAQLEUNAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMGEILYKLSSMKFKDPVKOEAKIKADYAQLEUNAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMGEILYKLSSMKFKDPVKOEAKIKADYAQLEUNAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMSEILYKLSSMKFKDPVKOEAKIKADYAQLEUNAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMSEILYKLSSMKFKDPVKOEBKIKADYAQLEUNAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMMSEILYKLTSMKFKDPVKOEBKIKADYAQLEPUMAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMSEILYKLTSMKFKDPVKOEBKIKADYAQLEPUMAAFFSLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWSIIREMSEILYKLTSMKFKDPVKOEBKIKADYQQLVEDLQAFFNLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWNSIIREMSEILYKLTSMKFKDPVKOEBKIKADYQQLVEDLQAFFNLE<br>PCCPFYRTVOMLSNMLAFYDMARRAVETTAQSDMKITWNSIIREMSEILYKLTSMKFKDPVKOEBKIKADYQQLVEDLQAFFNLE<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAQ.SDMKITWNVIEDMARAVETAQ<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAQ.SDMKITWNVIEDMARAVETAQ<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAQ.SDMKITWNVIEDMARAVETAQ<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAQ.SDMKITWNVIEDMARAVETAQ<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAVETARA<br>PCCPFYRTVOMLSNILAFYDMARRAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETARAVETA                                                                                     |

Figure 4.5A. Alignment of known V-ATPase A subunits (VA) as sequences. All sequences are deduced from cDNAs. The source tissues, accession number and references for each sequences are list below:

VA\_SCHPO: fission yeast, Schizosacharomyces pombe, X68580 (Ghislain et al., 1992);

VA\_NEUCR: Neuropora crassa, J03955 (Bowman et al., 1988);

VA\_BOVIN: Bos primigenius taurus, X58386 (Pan et al., 1991);

VA\_PIG: Susscrofu, X62338 (Sander et al., 1992);

VA\_HUMAN: Homo sapiens, isoform VA68, L09235 (van Hille et al., 1993b);

VA\_MUSMU: Mus musculus, U13837 (Laitala et al., 1986);

VA\_CHIC1: Chicken, Gallus gallus, A1 isoform, U22077 (Hernando, 1995);

VA\_CHIC2: Chicken, Gallus gallus, A2 isoform, U22076 (Hernando, 1995);

VA\_DROMI: Dresophila melanogaster, isoform vha68-1, U19745 (Guo et al., 1996d);

VA\_DROM2: Drosophila melanogaster, isoform vha68-2, U59146 (Guo et al., 1996d);

VA\_DROM1': Drosophila melanogaster, isoform vha68-2, U19742 (Chio et al., 1995);

HO\_HUMAN: homo sapiens, isoform HO68, L09234 (van Hille et al., 1993b);

VA\_MANSE: Manduca sexta, X64233 (Cräfet al., 1992);

VA\_BRANA: Brassica napus, U15604 (Orr et al., 1995);

VA\_CARRO: carrot, Daucus carota, J03769 (Zimmiak et al., 1988);

VA\_VIGRA: Vigna midiata, U26709 (Chiu et al., 1995);

VA\_GOSHI: Gosyphum hirsutum, L03186 (Vilkins, 1993);

VA\_HORVU: Barley, Hordeum vulgare, U36939;

VA\_MAIZE: Zea maps, U36436; VA\_ACEAC: Acetabularia acetabulum D50528;

VA\_ACEAC: Acetabularia acetabulum D50528;

VA\_CYACA: Cyunidium caldarium, U17100 (Ziegler et al., 1995);

VA\_ENTHI: Entamoeba histolytical, U04849 (Yi et al., 1994).

VA\_PLAFA: Plasmodium falciparum, A48582 (Kanz et al., 1993);

VA\_BETVU: Beta vulgaris, X98767;

VA\_TRYCO: Trypanosoma congolense, Z25814.

% identity



Figure 4.5B Phylogenetic tree of V-ATPase A subunits. This figure was generated by ClustalW and N-J plot from the multiple alignment in Figure 4.5A. See the legend of Figure 4.5A for the sources of aa sequence.

# 4.3.4 Homology of vha68 to subunit A of V-ATPases from other sources

The alignment in figure 4.5A showed both isoforms share high homology with V-ATPase A subunit of other organisms. There is greater than 60% identity at the aa level for all the compared sequence of the V-ATPase A-subunits. Figure 4.4B is the phylogenetic tree of the V-ATPase A-subunits generated by GCG, ClustalW and N-J plot.

#### 4.3.5 Comparison of vha68 to β chain of F-ATPase

Alignment of the two isoforms of *Drosophila* V-ATPase A subunit with several  $\beta$ -chains of F-ATPases, including that of *Drosophila*, is shown in Figure 4.7 In general, the V-ATPase subunit shows significant homology to that of F-ATPases.

The homology is remarkably evident in the region that has already been identified in F0F1-ATPases as areas of probable importance for function or assembly (Zimniak, *et al.*, 1988; Taiz *et al.*, 1994). The most important of these is the proposed nucleotide binding site; GXXXXGKT and RXXXGXXXX\*\*\*D. (\* represents hydrophobic residents) are well conserved in both isoform (marked in bold in Figure 4.6). The homology between V-ATPase and F-ATPase of *Drosophila* proved again that the catalytic subunits from the two classes of ATPase share similar structure for the catalytic domain.

#### 4.4 Genomic structure analysis of vha68-2

## 4.4.1 Restriction mapping of genomic DNA and subcloning

Four recombinant phage were isolated from an EMBL3 genomic DNA library by hybridisation with a *vha68-1* cDNA probe. DNAs prepared from each recombinant phage were cleaved first with *Sal*I and it was found that the four clones contain an

| PD LITMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P.D. HOPPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                                                                                                                                                                  | PILGEVGRVAAAPASGALIRRUTESASUPPAQUUURAAPTAVHEVRDTAAQTSPSPRAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                  | MISLUGRVASAS ASGALRGINPLA ALPOAHLLIRTAPAGUHPARDYAAOSS AAPKAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ED DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  | MEAT DAA OVADVANT I DEL COT OD CUA AVAA VAA AAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                  | HE ALKAASKADKNULFE DOQUSKSRAAKAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  | MPNLRKFKDEERESEYGRVYAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGLTVGDPVLRTGKPLSVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  | MSNLKRFDDEERESKYGRVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIOVYEETSGVTVGDPVLRTGKPLSVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  | MASKOGI KTTANEENEEREGVUEAVSODUATAEKMSOSAMVELURUSVNELUGETTELECOMATIOUVEETSSUTUCIDDUL PTCKDLSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| the human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                  | IN DROUGHT INVESTIGATION OF THE DROUGHT EDVICED TRUE DROUGHT IN THE DROUGHT INTE DROUGHT IN THE DROUGHT IN THE DROUGHT INTE DROUGHT                                                                       |
| HO_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                                                                                                                                                                                  | . MISTLIKISDEDRESKFGFVFAVSGPVVTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDISGVTVGDPVLRTGRPLSVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                  | .MDFSKLPKILDEDKESTFGYVHGVSGPVVTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIQVYEETCGVSVGDPVLRTGKPLSVD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PD UTMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_HOMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                 | IGRIVAVIGAVVDVQFDEGLPPILNALEVQGREIRLVLEVAQHLGESTVKTIAMD3TEGLVRGQKVLDSGAPIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                                                                                                                                                                                 | TGRIVAVIGAVVDVQFDEGLPPILNALEVQGRETRLVLEVAQHLGESTVRTIAMDGTEGLVRGQKVLDSGAPIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                 | TGQIVAVIGAVVDVOFDEGLPPILNALEVOGRESRLVLEVAOHLGESTVRTIAMDGTEGLVRGOKVLDSGAPIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                 | NGKTVAVTGAVVDV OFDDNLPPTLNALEVDNR SPRIVLEVAOHLGENTVBTTAMDGTEGLVRGOKVLDDGVPTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VA DROMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88                                                                                                                                                                                 | LOD OTMOSTEDCTODDIDECTODDIDECTVTDVOTATOTAL COCEMADENTS I NUMERATORI VOTATIENTS I INVOLUTIONE VOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA_DROHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                                                                                 | LOP OTBOOT DOT ON TAXABLE ROUND AND A CONTRACT OF A CO                                                                          |
| VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88                                                                                                                                                                                 | LGPGIMGSIFDGIQRPLKDINELTESIYIPKGVNVPSLSRVASWEFNP.LNVKVGSHITGGDLYGLVHENTLVKHKMIVNPRAKGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91                                                                                                                                                                                 | LGPGILGSIFDGIQRPLKDINELTQSIYIPKGVNVPSLAREVDWEFNP.LNVKVGSHITGGDLYGIVHENTLVKHKMLMPPRAKGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HO human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                                                                                                                                                 | LGPGIMGSIFDGIORPLKDINELSNSIYIPKGVNVPALSRTAOWDFSP. VSVKVGSHITGGDLYGLVHENTLVKHKLLLPPRAKGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                 | VGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENSLIKHKIMLPPRNRGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134                                                                                                                                                                                | IP.VGPETLGRIMNVIGEPIDERGPIKTKQFAPIHAEAPEFMEMSVEQEILVTGIKVVDLLAPYAKGGKIGLFGGAGVGKTVLIMELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FB BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134                                                                                                                                                                                | IP. VGPETLGRIMNVIGEP., IDERGPIKTKOFAAIHAEAPEFVEMSVEOEILVIGIKVVDLLAPYAKGGKIGLFOGAGVGKTVLTMELT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FB RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134                                                                                                                                                                                | TP VQDETLGRIMNVIGED TDEPQDIKTKOFADTUAFADEETENGUEDETI UNOTVIDELLADVAKOOVIOLEMAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ED DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                | TE WORK OF THE TOP TOP TOP TOP TO THE TO TH                                                                      |
| FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                | IF. VOAETLAKTINVIGEF IDERGFIDIDKTAAIMAEAPEFVQMSVEQEILVTGIKVVDLLAPYAKGGKIGLFGGAGVGRTVLIMELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 173                                                                                                                                                                                | VRYIAPAGNYNLEDIVLETEFDGEITKHTMLOVWPVROARPVTEKLPANHPLF, TGORVLDSLFPCVOGGTTAIPGAFGCGKTVISOALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VA DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 173                                                                                                                                                                                | VRY IAPSGNYKVDDVVLETEFDGEITKHTMLOVWPVRHHAPVTEKLPANHPLL, TGORVLDSLEPCVOGGTTAT DGA BOYGHTMUT GOALG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VA MANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176                                                                                                                                                                                | UTVIA DACAVUKUPPINUT PEPEDCER AQVINI UTABUTOODDAMENT DAGUTA DAGUT FOL FOLYGOT FALLONG GOVERNAT SUNAL VIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VALMANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/0                                                                                                                                                                                | VIIIAPAGWINVIDVUBTEFDGERAQITELLQVWPVRQPRPVTEKLPANHPLL.TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HO_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 174                                                                                                                                                                                | VTYIAEPGNYTVDDVVLETEFDGERSKFTMLQVWPVRQPRPVTEKLPANYPLL.TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQSLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176                                                                                                                                                                                | VTYIAPPGNYDTSDVVLELEFEGVKEKFTMVQVWPARQVRPVTEKLPANHPLL,TGQRVLDALFPCVQGGTTAIPGAFGCGKTVISQSLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 221                                                                                                                                                                                | NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKVALVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FB BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 221                                                                                                                                                                                | NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV. ALVYGOMNEPPGARARVALTCLTVAEYFROORGODVLLFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FR DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 221                                                                                                                                                                                | NNVAKA UCCVCVERACVCERTD CONTVUENT PCCUTNICKDATCKV ALUVCOMMED DCAR ARVAN FOR THE PVD DCAR ARVAN FOR ARVAN FOR THE PVD DCAR ARVAN FOR THE PVD DCAR ARVAN FOR THE P                                                                      |
| FD_NAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                | AUVARABOSISVFASVGERIREGULIHEIIESSVINGRUATSRVALVIGUNEFFGARARVALIGLIVAEIFRUARQVVLFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 198                                                                                                                                                                                | NNVAKAHGGYSVFAGVGERTREGNDLYNEMIEGGVISLKDKTSKVALVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 262                                                                                                                                                                                | KYSNSDVIIYVGCGERGNEMSEVLRDFPELTC.DIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYNVAMMAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 262                                                                                                                                                                                | KY SNSDVTTVUGCGERGNEMSEVLEDEPELSV. ETDOVTESTMKETALVANTSNMDVAAREASTVTGTTLSEVETTM. GYNVSMMAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VA MANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 265                                                                                                                                                                                | VV CNCPUTTVVCCCEDCNEMCETI DDEDET MI ETECTIMETRICALITATIONAL PRACTICICAL CONTRACTOR OF A CONTRA                                                                      |
| VA_PINISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 203                                                                                                                                                                                | RISINSDVIIIVGCGERGNERSEVERDEFELTV.ELEGVIESIMERIALVANISNMEVAAREASIIIGIILSEIFRUM.GINVOMMAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HO_numan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 203                                                                                                                                                                                | KYSNSDVIIYVGCGERGNEMSEVLRDFPQLSL.EIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYNVSMMAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 265                                                                                                                                                                                | KYSNSDVIIYVGCGERGNEMSEVLRDFPELTM.EVDGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYHVSMMAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and an and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307                                                                                                                                                                                | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and any other strength of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 307                                                                                                                                                                                | NTERETOACSEVENT, OR TOSAVOYOPT, ATDMCTMORE TOTAL KOSTAVOSTVURADI, TODADATTERAUT DATES OF T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                    | AT A A THE A PROPERTY OF A DATE OF A                                                                      |
| FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307                                                                                                                                                                                | NITE DECASE VERAL ( DE DESTRICADORES ADDRESS ADDRE                                                                                                                                                                                                                                                                                                                  |
| FB_BOVIN<br>FB_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307                                                                                                                                                                                | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FB_BOVIN<br>FB_RAT<br>FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 307 284                                                                                                                                                                            | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB_RAT<br>FB_DROME<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 307<br>284<br>347                                                                                                                                                                  | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGDDFSDPVTSATLGIVOVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307<br>284<br>347<br>347                                                                                                                                                           | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLAFYFERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYFERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307<br>284<br>347<br>347<br>350                                                                                                                                                    | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPRDSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPRDSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307<br>284<br>347<br>347<br>350                                                                                                                                                    | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 307<br>284<br>347<br>347<br>350<br>348                                                                                                                                             | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 307<br>284<br>347<br>347<br>350<br>348<br>350                                                                                                                                      | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 307<br>284<br>347<br>347<br>350<br>348<br>350                                                                                                                                      | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>348<br>350                                                                                                                        | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLAFFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARGVGYQFYGQVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>390<br>390                                                                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>390<br>390<br>390                                                                                                                 | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQATVYPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQATYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPEGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF<br>SEGUYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQVKILQDYKSLDDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROME<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307<br>284<br>347<br>350<br>348<br>350<br>348<br>350<br>390<br>390<br>390<br>390                                                                                                   | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQATVYPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQATVYPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF                                                                                                                                                                                                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROMI<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390                                                                                                   | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIIGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIIGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_DANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>367<br>437                                                                                                   | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEDLSEIVQLVGKASLAETDKVTEVAKLLKDDFLQONSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HOMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>367<br>437                                                                                            | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIIGGEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQONSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307<br>284<br>347<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>397<br>437<br>440                                                                              | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITTEVAKLLKDDFLQQNSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HOMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>367<br>437<br>437<br>438                                                                              | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTRKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSIWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSIWLLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSIWLLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>HO_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307<br>307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>367<br>437<br>437<br>440<br>438                                                                       | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307<br>307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                 | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFPQVAEVF<br>AQRKHFPSINWLISYSKVMRALDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKTTEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                                                                                                                                                                                                                                                                                               |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>HO_human<br>VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307<br>307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>367<br>437<br>437<br>437<br>440<br>438<br>440                                    | NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                                                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307<br>307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>367<br>437<br>437<br>4438<br>440<br>475                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNYFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKKKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKKKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                                                                                                 |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HOMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HOMAN<br>FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQUVGKASLAETDKVTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKYTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL.                                             |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 307<br>284<br>347<br>350<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>367<br>437<br>437<br>437<br>440<br>475<br>475                                                  | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAAFDKITLEV                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 307<br>284<br>347<br>350<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKYTLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKYTLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKAKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKYMRALDEYDKHFTEFVPLRTKAKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKH                                                |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_ROME<br>FB_DROME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 307<br>284<br>347<br>350<br>350<br>390<br>390<br>390<br>367<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>43                                                   | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERESSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERESSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERESSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERESSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERESSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY                                                   |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_DROM2<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                         | 307<br>284<br>347<br>347<br>347<br>347<br>347<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                   | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKTTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLSEIVQLVGKASLAETDKITLEV                                                      |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HOMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_ROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 307<br>284<br>347<br>347<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRNAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPOGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEYTNHFFESVELSTAGSENSTVNIGHTNNYRERENDEVCKARAD. KLAEEHS.<br>TGHMGKLVPLKETI |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>VA_human<br>VA_human<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2                                         | 307<br>284<br>347<br>350<br>350<br>350<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>437 | NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNFFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNFFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDFYDKNFFFFVQLXFKAKEILQEEEDLSEIVQLVGKASLAETDKITLSVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKVMRALDFYDKNFFFFVQLXFKAKEILQEEEDLSEIVQLVGKASLAETDKITLSVAKLKDDFLQQNSY                                                       |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BOVIN<br>FB_ROME<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>V                                     | 307<br>284<br>347<br>350<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTTATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTTATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTTATLGIVQVFWGLDKKL<br>STSRMAEALREISGRLAEMPADSGYPAYLGARLSFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>ACRHFPSINWLISYSKYMRALDEYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>A |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                         | 307<br>284<br>347<br>350<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                          | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTKKGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQFFQVAEVF<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKVMRALDDFYDKNPESTAQSDNKITWNTIRESMGINYQLSSMKKFDVVGPIEEAVAKADKLAEEHS<br>TGHMGKLVPLKETIKGFQQILAGEYDHLPEQAFYMVGPIEEAVAKADKLAEEHS<br>TGHMGKLVPLKETKGFQQILAGEYDHLPEQAFYMVGPIEEAVAKADKLAEEHS<br>SY.DRFCPFYKTVGMLRNIINFYDMSRHAVESTAQSDNKITWNTIREAMGINYQLSSMKKFDPVKDGBQKIKADPQLLEDMAAA<br>SY.DRFCPFYKTVGMLRNIINSFYDMSRHAVESTAQSDNKITWNTIR                                                                 |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>VA_human<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 307<br>284<br>347<br>350<br>347<br>350<br>348<br>350<br>390<br>390<br>367<br>437<br>440<br>438<br>440<br>475<br>452<br>526<br>526<br>526                                           | NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHPSINWLISYSKVMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKVMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKVMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSINWLISYSKVMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSVNWLISYSKVMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSVNWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSVNWLISYSKVMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHPSVNWLISYSKVMRALDEYNDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL.<br>SVCDFYKTVGMLSNIIAFSVESTAQSDNKITNNTRRSMGGINYQLSSMKFKDPVKDGEQKIKADTVDJVGUSANKADFAQJLEDQAFAN<br>SY. DRFCPFYKTVGMLRNIIFSTAGSDNKVTVNVIRDAMGNVLYQLSSMKFKDPVKDGEQKIKADFQLLEDQAFRN<br>SY. DRFCPFYKTVGMLSNIIFSTMASTAQSDNKITNNVIRDSMGNI |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA                                     | 307<br>284<br>347<br>350<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFREPQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDPSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLSFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVPWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLSFYERAGRVKCLGNPEREGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDPFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDPLQQNSY<br>A |
| FB_BOVIN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_DROME<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307<br>284<br>347<br>350<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQONSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDKNFFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. EVAKLLKDDFLQQNSY<br>AQRKHFPSINWLI |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MNSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 307<br>284<br>347<br>350<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVRADDUTDPAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQAIYVRADDUTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDFYDNNPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKTTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKTTLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEDLSIVQLVGKASLAETDKITL                                             |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_BOVIN<br>FB_RAT<br>FB_DOME<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_RAT<br>FB_DOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307<br>284<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>437<br>437<br>437<br>437<br>437<br>437<br>437<br>452<br>523<br>526<br>524<br>526        | NIFNETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVRADDUTDPAPATTFAHLDATTVLSRAI<br>NIFNETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTK. KGSITSVQAIYVRADDUTDPAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLAFYVERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLAFYVERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERBGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIALLGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHPSINMLISYSKYMRALDFYDNYPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL . EVAKLLKDPLQONSY<br>AQRKHPSINMLISYSKYMRALDBYYDNYPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL . EVAKLLKDPLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL . EVAKLLKDPLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDNYPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL .<br>AQRKHPSINMLISYSKYMRALDDFYDNYPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL .<br>AQRKHPSINMLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEDLSSIVQLVGKASLAETDKITL .<br>AQRKHPSINMLISYSKYMRALDDFYDNNFPEFVPLRTKVKELLQEEDLSSIV |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_DROME<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_MANSE<br>HO_human<br>CA_HUMAN<br>FB_BOVIN<br>CA_MANSE<br>HO_human<br>CA_HUMAN<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_NON1<br>CA_N | 307<br>284<br>347<br>350<br>348<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                 | NIFRETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTKKGITSVQAIYVRADDJUTDRAPATTFAHLDATTVLSRAI<br>NIFRETQAGSEVSALIGRIPSAVGYQPTLATDMGTMQERITTTKKGITSVQAIYVRADDJUTDRAPATTFAHLDATTVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKTTLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKTTLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNPFEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHPFSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQAFYM<br>SY.DRFCPFYKTVGMLKNIISFYDMSRHAVESTAQSDNKITWNYIRSMGIMYQLSSMKFKDPVKDGEAKIKADFEQLHQDAFDA<br>SY.DRFCPFYKTVGMLKNIKSFSTAQSENKITWVINDSMGIMVQLSSMKFKDPVKDGEAKIKADFEQLHQAPR                                        |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>FB_HUMAN<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307<br>284<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                                      | NIFNETQAGSEVSALLGRIPSAVGYQPTLATDNGTNQERITTTK. KGSITSVQAIVVPADDLDDPAATIFAHLDATIVLSRAI<br>NIFNETQAGSEVSALLGRIPSAVGYQPTLATDNGSMQERITTTK. KGSITSVQAIVVPADDLDDPAATIFAHLDATIVLSRAI<br>NIFNETQAGSEVSALLGRIPSAVGYQPTLATDNGSMQERITTK. KGSITSVQAIVVPADDLDDPAATIFAHLDATIVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP. NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRHFPSINNLISYSKYMRALDFYDKMPPEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPPEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPPEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPPEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPPEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDDFYDKMPFEFVPLKTKVKELLQEEDLSBIVQLVGKASLAETDKIT. EVAKLLKDDFLQQNSY<br>AQRHFPSINNLISYSKYMRALDFYDKMPF |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>VA_human<br>FB_HUMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIPRFQAGSEVSALLGRIPSAVGYQPTLATDNGTMQERITTTK. KGSITSVQAIVVPADDLTDPAPATIPAHLDATIVJSRAI<br>NIFRFQAGSEVSALLGRIPSAVGYQPTLATDNGTMQERITTTK. KGSITSVQAIVVPADDLTDPAPATIPAHLDATIVJSRAI<br>NIFRFQAGSEVSALLGRIPSAVGYQPTLATDNGSMQERITTK. KGSITSVQAIVVPADDLTDPAPATIPAHLDATIVJSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGMPERGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDIIAILCMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYSLQDIIAILCMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>ACKLIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYSLQDIIAILCMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHPSINMLISYSKYMRALDDFYDKNYPEVPPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL SVARLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNYPEVPPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNYPEVPPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNYPEVPPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNYPEVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSENSVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDFYDKNPFEVPLRTKVKEILQEEDLSENSVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEDLSENSVQLVGKASLAETDKITL SVAKLLKDDFLQQNSY<br>AQRKHPSINMLISYSKYMRALDDFYDKNPFEVPLRTKVK |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>FB_HUMAN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                         | 307<br>284<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                                      | NIFRFTQAGSEVSALLGRIFSAVGYQPTLATDMGTMQERITTYKKGSITSVQATVVPADDLDDFAPATTFAHLDATVVLSRAI<br>NIFRFTQAGSEVSALLGRIFSAVGYQPTLATDMGTMQERITTYKKGSITSVQATVVPADDLDDFAPATTFAHLDATVVLSRAI<br>NIFRFTQAGSEVSALLGRIFSAVGYQPTLATDMGSMQERITTYKKGSITSVQATVVPADDLDDFAPATTFAHLDATVVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPFGGPSDPVTAATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPFGGPSDPVTAATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIALLMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLDDIIALLMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>ACRHFPSINWLISYSKYMRALDFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY<br>AQRKHPSINWLISYSKYMRALDDFYDKNPFFVPLRTKVKWILGEEDKAEIVSTACKAALSTDKITTEVAKLLKDDFLQQASYN<br>SY.DRFCPFYKTVGMLKNNIAFYDMSRAVESTAQSDNKITWNVIRBAMGNIVYQLSSMKFKDPVKDGEAKIKADPGULEDMGAAFN<br>SY.DRFCPFYKTVGMLKNIAFYDMARRAVESTAQSDNKITWNVIRBAMGNVLYQLSSMKFKDPVKDGEAKIKADFQLHEDQAAFN<br>SY.DRFCP                                            |
| FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>VA_human<br>VA_human<br>VA_human<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_BOVIN<br>FB_RAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM1<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2<br>VA_DROM2                                         | 307<br>284<br>347<br>350<br>348<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                        | NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKKGSITSVQATVVPADDLDTDFAPATTFAHLDATVVLSRAI<br>NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTKKGSITSVQATVVPADDLDTDFAPATTFAHLDATVVLSRAI<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPERGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDPSDPVTSATLGIVQVFWGLDKKL<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLDDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGIYPAVDPLDSTSRIMDPNIVGSEHYDVARGVQKILQDYKSLDDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AQRKHFPSINWLISYSKYMRALDEFYDKNYPEPVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNPFPVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNPFPVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFFVRARTMVFFFVRAGRVKICKASLAETDKITTSVALLKDDFLQQNSY<br>AQRKHFPSINWLISYSKYMRALDEFYDKNFFFFVRARTMVFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                                                                                                                                                |
| FB_BOVIN<br>FB_BAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM2<br>VA_MANSE<br>HO_human<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>FB_HUMAN<br>FB_BOVIN<br>FB_BOVIN<br>FB_BAT<br>FB_DROME<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1<br>VA_DROM1                                         | 307<br>284<br>347<br>350<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>39                                                                                      | NIFRFTQAGSEVSALLGR IFSAVGYQPTLATDMGTMQER ITTTK. KGS ITSVQAT YVFADDLDTDFAPATTFAHLDATIVLSKAT<br>NIFRFTQAGSEVSALLGR IFSAVGYQPTLATDMGSMQER ITTTK. KGS ITSVQAT YVFADDLDTDFAPATTFAHLDATIVLSKAT<br>NIFRFTQAGSEVSALLGR IFSAVGYQPTLATDMGSMQER ITTK. KGS ITSVQAT YVFADDLDTDFAPATTFAHLDATIVLSKAT<br>STSKMAEALREI SGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVS IVGAVS PPGGDFSDFVTSATGI UQVFWGLDKKL<br>STSRMAEALREI SGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVS IVGAVS PPGGDFSDFVTSATGI UQVFWGLDKKL<br>STSRMAEALREI SGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVS IVGAVS PPGGDFSDFVTAATLGI UQVFWGLDKKL<br>AELGI YPAVDPLDSTSRIMDP NIVGSEHYDVARGVQK ILQDYKSLQD I TAILGMELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>AELGI YPAVDPLDSTSRIMDP NIVGSEHYDVARGVQK ILQDYKSLQD I TAILGMELSEEDKLTVSRARKIQRFLSQPFQVAEVF<br>ACRHFPSINWLI SYSKYMRALDFYDKNYPEFVPLRTKVKEILQEEEDLSEI VQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRHFPSINWLI SYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSEI VQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRHFPSINWLI SYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSEI VQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRHFPSINWLI SYSKYMRALDDFYDKNPFEVPLRTKVKEILQEEEDLSEI VQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRHFPSINWLI SYSKYMRALDDFYDKNPFEVPLRTKVKWI I LQEEDSLSEI VQLVGKASLAETDKITL EVAKLLKDDFLQQNSY<br>AQRHFPSINWLI SYSKYMRALDDFYDKNPSTAPSSNYMTAKINYN I RASMGNI YQUSSMKFKDPVKNGEEAVAADKLAEEHSS<br>GHMGKLVPLKETIKGFQQI LAGEYDHLPEQAFYMVGPI EEAVAKADKLAEEHSS<br>GHMGKLVPLKETIKG                                                              |

Figure 4.6 Alignment of the V-ATPase A subunit (VA) and F-ATPase β subunit (FB). All sequences are deduced from cDNA: The source tissues, accession number of FB and references are listed below: FB\_HUMAN: homo sapiens, P06576; FB\_BOVIN: Bos primigenius taurus, P00829; FB\_RAT: P10719, FB\_DROME: Drosophila melanogaster, Q05825. See the legend of Figure 4.5 for those of V-ATPase. The proposed nucleotide binding sites are marked in bold.



(C)

— 1 kb



Figure 4.7 Restriction map of genomic ph68A. (A) photo of agarose gel in which the phage ph68A was cleaved by various enzymes. S, *Sal*1; E, *Eco*RI; B, *Bam*HI; S/E, *Sal* I/*Eco*RI; S/B, *Sal*1/*Bam*H1; E/B, *Eco*RI/*Bam*HI. (B) The blot of the gel A hybridised with *vha68-1* cDNA. (C) Digestion map of ph68A deduced from the (A) and (B). Fragments which hybridised to the probe were subcloned into pBluescript SK<sup>-</sup>. Black indicated hybridising fragments

identical genomic fragment of 12 kb long. ph68A was then chosen for constructing the restriction map. The DNA was cleaved with *Sal*I, *Eco*RI, *Bam*HI and every possible double digestion of the three enzymes (Figure 4.6). Fragments that hybridised to *vha68-1* cDNA were subcloned into pBluescript SK<sup>-</sup>. (See Figure 4.7).

#### 4.4.2 Genomic DNA analysis

The four subclones of genomic DNA shown in Figure 4.7 were sequenced, first by T3 and T7, then with synthesised oligo nucleotide primers. 4405 bp of genomic DNA has been sequenced, comprising 68kg-5, 68kg-7 and part of 68kg-9 sequences (Figure 4.8). Although ph68A was identified by a *vha68-1* cDNA probe, the genomic sequence actually appears to be correspond to *vha68-2* (Figure 4.8). Moreover, the digestion map and the sequence of ph68A is corresponded to the genomic DNA in the rescued plasmid from fly line l(2)k02508, suggesting that the P[lacW] insertion in this line is in *vha68-1* (See Chapter 5).

#### 4.4.3 A comparison of the vha68-1 and vha68-2 genes.

It is clear from this work and from Choi et al (1995) that there are two vha68 genes encoding the *D. melanogaster* V-ATPase A subunit. vha68-2 cDNA was punctured by 4 introns of 1165, 405, 108 and 66 bp at nucleotides 66-67, 166-167, 864-865 and 1843-1844 of the cDNA (Figure 4.4, 4.8and 4.9). The first intron is at 23 bp upstream of the ATG translation start site. The other three introns are within the coding sequence. Unfortunately, among the 4 genomic fragments identified by a vha68-1 probe, none of them corresponded to vha68-1. However, a partial genomic sequence corresponding to vha68-1 has been reported (Choi et al., 1995; GenBank accession number: U19742), which makes it possible to compare the genomic structure of the two different genes. Instead of having 4 introns vha68-1 has 3 introns at nucleotides 31-32, 163-164 and 1840-1841 of the cDNA (Figure 4.4, 4.9). The first intron is at 59 bp upstream of the

31 1 gte gae gtt tta tit etg egg ete agi egg tit tag TTC GTT CTG TTG GAG AAA AGC AGC 61 91 AAT CAC ACG TTC GCA AGG TGA ACG CGA AGA CAC AGC AAA gta age eet tee eee cad caa 151 121 cac aca cac cca ccc aaa gca aat aag taa aaa taa ata atg gaa tgg ctg gaa gac ggt 211181 tet ggg ega tit aaa caa ita geg aaa gaa age gge alt gaa ate egi eti gaa ite gee 271241cog aaa aag tga oga ago ago gat caa ago goa gag caa aac aog cac aca gac tgo aag 301 331 tgt gtt aca taa taa gtg cag cac aag tee aca ett gag taa aat aat eee taa aaa age 361 391 ega ata tea att agt ttt eea agg age tig aaa aag tge egg tat gaa aac gig aaa att 451 421tee geg tgg aaa att ate tte eet tgt eag etg ade eee tte eee gtg tte get dea tee 511481 etg teg cae ege ggg tet tgt gat ege ege ege tet tge get ege ttg ete tee cat tte 571 541 yaa act ega aac aga agt ggg agt tat teg tat tee gat aat gaa aaa eea ata tgg aga 631 601 acy age gae gta aaa aag geg gee caa aga tit tita eea tit eee tita cae act tit tit 661 691 tea tit gie age iga egg caa iga eag iag tet igi gat caa e $\downarrow$ gi caa aag caa iig iea 721 751 aat att oga act oga atg gag ago gag aga goo aga gog aga gtt got oto coa oto cao 811 781 eet ete ttg ttt tte ttt get gat aat tat gaa aae eeg eat att ttg aaa aae atg eat 871 841 tte agt tad att det deg tig aat tig tea add tigt gigt tigt tit tie ada get dit att 901 931 tta ttt att tag oga tta gtt tga caa alt get tte tte gaa ett tea aag ete tgt cae 991 961 gtg aaa ega aag ete tge ttt taa agt tit acg eag cat aat caa aga agg gga gtt aaa 1021 1051 aga aat aat taa ate aat ega aat tat tag etg eta aee tae aae tit ata aee tat aat 1081 1111 ega aza tit ggg age tut ugg etu tae aza aze tita ace tut aza tut age aga tae ace 1141 1171tge dee ttg dea get gad aga ggg etg age aag aaa tta gtg ata aga aaa tgt tea oot 1201 1231 tta tot mog dee tte tge age cag cat tha aca all ble die tte tat tit dee tee alt 12611291/2gea gte gaa aaa aca gaa taa age aaa atg tee aac eit aag cot tte gat gat gag gag S N M Ľ к R F Ď Ð  $\mathbf{E}$ Ξ 1351/221321/12CGT GAG TCC AAA TAT GGA CGT GTC TTC GCT GTC TCC GGT CCT Ggt aag cac cta act ata v RES к Y G R V F А S G P 1381 1411 otg agt aac cat aac toa tgo tat ota aaa gtt aat aaa aat aaa tta ata ata cot gtg 1471 1441 aad tea aad eta gte tag aad tta cad bbe bgt gbg aaa baa tgg caa ett tag aaa tgt 1501/501 1531/511 gte cae eta tit gig alt aat alt caa aca act caa aca itg git tea ita tie aaa alt 1561/521 1591/531 aaa tgt gaa taa ttt taa taa tta att aar tgt tte tut aaa out uut tot ata att ota 1651/551 1621/541 aca aaa aca toa toa agt ato ata aat aat aaa aaa ttt taa aag aaa atg tto aag goo 1681/561 1711/571 gaa aty gaa eet ate tty gtt gge aaa gtt ata aaa aet tet tga atg aaa tgt ate eee 1741/581 1771/27cet aac cea ace aac egt tte att eea gTC GTC ACC GCC GAG GCC ATG TET GGA TCA GCT v V T λ E А М S G S А 1801/37 1831/47 ATS TAC GAG TTG GTC CGC GTC GGC TAC TAC GAG CTG GTG GSC GAG ATC ATC CGT CTG GAG Y V M E Τ. R V G Υ Y ЕL V G Ε Τ Ι R L Б 1861/571891/67 GGT GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TCT GGC GTA ACT GTC GGA GAT CCG G D  $\mathbf{T}$ V В М А Ι 0 Y E  $\mathbf{T}$ ΠP. S G v V G D Ρ

100

Access to the state of the

ģ

2

. .

and the second second

1951/87 1921/77 GTG CTG CGT ACC GGC AAG CCT CTT TCC GTG GAG CTG GGA CCC GGT ATC ATG GGC AGC ATC T G K P L S V E L G P GIM GS Τ V 7. R 2011/107 1981/97TTT GAC GGT ATC CAG CGT CCC CTG AAG GAC ATT AAC GAG CTG ACC GAA TCC ATC TAC ATT FDGIQRFLKDINEL<sup>¬</sup>ES Ι Y т 2071/127 2041/117 CCC AAG GET GTG AAC GTG CCC AGT TTG TCC CGC GTG GCC AGC TGG GAG TTC AAC CCC CTG r v A S L0 Ξ.  $\mathbf{F}$ Ν Ľ PKGVNV PSL S 2101/137 2131/147 AAC GTC AAG GTC GGC TCC CAC ATC ACC GGA GGT GAC CTG TAC GGT CTG GTG CAT GAG AAC N V K S Η Ŧ GDL Y G L v н Е N v G Ι G 2191/167 21.61/157 ACT CTG GTC AAG CAC AMG ATG ATT GTG AAC CCC CGC GCC AAG GGA ACA GTG CGC TAC ATC v т ь V кикм T V N PRA K G R Y Ι 2251/187 2221/177 GCC CCC TCC GGC AAC TAC AAG GTC GAC GAT GTC CTC CTG GAG ACC GAG TTC GAT GGA GAG A P S G N Y  $\mathbb{D}$ VŸL ΞТ  $\mathbf{E}$ F D G E К v D 2311/207 2281/197 ATC ACC AAG CAC ACC ANG THS CAG GTG TOG CCA GTG CCT CAC GAC GCT CCC GTG ACC GAG P V R т м L Q v ψJ н н А  $\mathbf{P}$ v т В T T K Н 2341/217 2371/227 AAG CTG CCC GCC AAC CAC CCC CTG CTC ACC GGA CAG CGT GTG CTC GAC TCG CTC TTC CCC KLP G Q R V. S L P A N H  $\mathbf{P}$ LL 171 L D F 2431/247 2401/237 TGT GTC CAG GGC OGT ACC ACC GCC ATT CCC GGA GCT TTC GGT TGC GGC AAG ACT GTG ATC C V Q GAF GKT v GGT т А I  $\mathbf{P}$ GС I 2491 2461/257 TCG CAG gig aga gie cea caa att gag aat tia agg age gat gee teg igt age ete cat s Q 25212551 aca ete aag tit cat aaa aac aca ate eet aat aaa tea tit act tge tig eag GCT CTG А T. 2581/261 2611/271 TCC AAG TAC TCC AAC TCC GAT GTC ATC ATC TAC GTC GGT TGC GGT GAG CGT GGT AAC GAG S K Y S N S D V Т Ι Y V G С G Ε R G N  $\mathbf{E}$ 2671/291 2641/281ATC TCT GAG GTA CTG CGT GAC TIX CCC GAG CTG TCC GTG GAG ATC GAT GGT GTG ACC GAG M S E VLRD F PELSV E I D G v  $\mathbf{T}$ E 2731/311 2701/301 TCC ATC ATG AAG CGT ACC GCC CTT GTG GCC AAC ACC TCC AAC ATG CCT GTG GCT GCT CGA N T S RT А L v N м 2 V А R S ΙM K А А 2791/331 2761/321 GAG GCC TCC ATC TAC ACT GGT ATC ACC TTG TCC GAA TAC TTC CCT GAT ATG GGT TAC AAC EAS Т Y φ. G т T  $\mathbf{L}$ SEY 7 R D M G Y N 2821/341 2851/351 GTO TCC ATG ATG GCT GAT TCC ACC TCC CGT TGG GCT GAG GCT CTT CGT GAA ATT TCT GGT STSRWAEAL VSMMAD R E T S Ġ 2881/361 2911/371 CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC TAC CCA GCC TAC TTG GGA GCT CGT CTG GCC YPAYL EMP R D S G G A R Α RLA L 2941/381 2971/391 TCC TTC TAC GAG CGT GCC GGT CGC GTT ANG TGC TTG GGT NAC CCC GAG CGC GAG GGA TCC S F Y R KCLG ERA G v N P E F Ε -5 G 3001/401 3031/411 GTG TCC ATT GTC GGA GCT GTG TCT CCT CCT GGT GGT GAC T2C TCC GAT CCC GTA ACC TCC v S Ι V GA V S P P GG Ð F S Ð P V т S 3061/421 3091/431 GCC ACT CTG GGT ATC GTG CAG GTG TTC TGG GGT CTC GAC AAG AAG TTG GCC CAG CGC AAG A T D G D V Ω V F W GLDKK ī. A 0 R к 3121/441 3151/451 CAT TTC CCC TCG ATC AAC TGG CTC ATC TCC TAC TCG AAG TAC ATG CGT GCT CTG GAT GAC HFP Ν W L Ι s Y S K Y R S м А L D Ð 3181/461 3211/471 TTC TAT GAC AAG AAC TTC CCG GAA TTC GTG CCG CTG CGT ACC AAG GTC AAG GAG ATC CTG FYD KNF ΡE F VPLR ТК VK E Ŧ 3241/481 3271/491 CAG GAG GAG GAG GAT CTG TCT GAG ATC GTG CAA CTG GTC GGC AAG GCC TCT CTC GCC GAA QEE EDLSE I v QLVGKASL А Ë

101

in a second s

3331/511 3301/501 ACC GAC AAG ATC ACG CTG GAG GTG GCC AAG CTG CTG AAG GAC GAT TTC CTG CAG CAG AAC Q Ν ΤD К Ι т LEV A K LLK D D F ъ 0 3391/531 3361/521 TCC TAC TCC TCG TAC GAT CGC TTC TGC CCC TTC TAC AAG ACC GTG GGC ATG TTG AGG AAC F Y K Ç т v G М Я N S Y S S Y D R F  $\mathbf{P}$ Ŀ 3451/551 3421/541 ATC ATC GAC TTC TAC GAC ATG GCC CGT CAC TCC GTG GAG TCT ACG GCT CAG TCT GAG AAC  $\mathbf{F}$  $\mathbf{D}$ Μ А R S V  $\mathbf{T}$ А Q  $\mathbf{s}$ Ë N IJD Y H Ε S 3481/561 3511/571 AAG ACC ACC TEG AAC GTE ATT CET GAE GCA ATE GEC AAC ATT ATE TAC CAE CTE TCA TCC N v I R Е А M G Ν Ι М Y 0 S  $\mathbf{S}$ ΚI т W 3571/591 3541/581 ATG AAG TTC AAG gtg ggt taa cac gca aac tta gee att gee tag aca cgg gtg ace aca м к  $\mathbf{F}$ K 3631/589 3601 ttt tte aat dea ttt eag GAC CCC GTT AAG GAT GGT GAG GCC AAG ATC AAG GCT GAC TTC D Р Ŷ Κ DG Ε A Κ Т к А D F 3661/599 3691/609 CAG CAG CTG CAC GAG GAC CTG CAG CAG GCC TTC AGA AAT CTG GAG GAC TAG aga cog acg FR E Ħ E Ð L Ö Q A N L E D \* Q L 3751 3721 ACT GOC CCT ACT TTT ACA CTC TAA TCT TAT ATT TGT TAT ATA GTT AAC GTT TAA AMA TGA 3811 3781 AAG CAG TCA AAA ACC ATC CGA AAA AGC CTA ATC AAA CAC CAA CAA TTC CAG CTG CAT TCG 3841 3871 ATG AAA AAC AAA AGT CCA ACA AAT ACC ATA ACT TCT TGG TGC CTG CGA GAG ATG TAA ACA 3901 3931 TTC CGG CCT GCG GTT AAT ACT TTC CCC TAA CCA CGC CCC CTC CGC CCC TTG AAG GGC AAC 3961 3991 TCT AGG CAA CAG CAA CTA CAA CGT CCT GCT ATG TAC TTC CAT TTA CAA CAA CAA CAC CAA 40514021CAT ACA CTT GAA TAA AAG TAC ACG GAC ACT GGC GCA CAC ACA ACA CAT ACA TAA AAG ACA 4081 41114171 4141 TGT GAA AAA ACT CAT GTT TTC TCC CTG TTT GTT IGT TAA ATT TAT GTA AAT ATT TAA AGT 4231 4201ATG AAA TAT TAA ATG TAC GAA TAA AGT GCA ACA ACA AAT ACA TIT AAT GTa att gaa agt 4261 4291 gaa ttt cac tgg cag cag aat gga tat taa aaa tgt gtc aac tog ata aaa aga taa taa 4321 4351 gtt aaa ata ttt ttt tga att ttg aaa oot toa tta tat aaa oat act tga ota tat gaa 4381 ago taa gaa aat ggg aat ata ttg t

Figure 4.8 Genomic DNA and putative aa sequence of *vha68-2*. (GenBank accession no.: U59147). cDNA sequence is shown in upper case.

102

and the second second

24

ATG translation start site. The other two introns are within the coding sequence at exactly the same sites as the two introns of the *vha68-2* gene.

## 4.4.4 Evidence for additional complexity at the vha68-2 locus

A genomic DNA fragment just 3'to vha68-2 gene also shows hybridisation to the vha68 probe (Figure 4.7). 68kg-R, a partial sequence around the *Eco*RI site in subclone p68g-4 has been obtained (Figure 4.10). The DNA sequence is 61% identical with the genomic sequence of vha68-2 (Figure 4.11), which contains a long open reading frame with a translated polypeptide 73% identical to vha68-2 (Figure 4.12). Thus this may be a gene encoding another isoform of V-ATPase A subunit. However, it is also possible that this fragment offers an alternative splicing as it is very close to vha68-2; or it is a pseudogene without transcription. Hopefully, information of longer sequence of 68kg-R and the sequence of p68c-4 cDNA clone (See section 4.2) would help to answer this question.

# 4.5 Southern blot analysis of genomic DNA with vha68-1 and vha68-2 cDNA probes

D. melanogaster (CS) genomic DNA was cleaved with a range of restriction endonucleases. Southern blots were probed with the coding region of vha68-1 cDNA. After hybridisation and washing at high stringency, more than one band was revealed at each of the lanes (Figure 4.13A). The band sizes were same as that predicted from the digestion map of vha68-1 and vha68-2 genomic DNA clones. However, probing with the 3' non-coding sequence of either vha68-1 or vha68-2, which is gene-specific, reveals only one band in most of the lancs (Figure 4.13B, C), suggesting that the two cDNAs are the products of two different genes and each gene has only one copy.



28.83

é

人名英格兰人姓氏 化合物 化合物合金合物

Figure 4.9 Structure of the genes encoding the two isoforms of the *D. melanogaster* V-ATPase A subunit. The exons are represented as rectangles of which coding regions are in dark. *dvha* is the partial genomic sequence for *vha68-1* from Chio et al (1995). As the genomic sequence is incomplete, the length of the first intron in *vha68-1* is uncertain, and whether the 3' UTR has an intron or not awaits confirmation. Here we assume there is no intron in the 3' UTR of *vha68-1*. As 68kg-R has not been completely sequenced, here it is presented as a small filled rectangle. E: *EcoR* I; B, *BamH*I; S, *Sal*I.

COG TAC CCC CTC CAC CAC CCA AGC CTG TAG CCG ACC CGG AAA GCC CCC ATG ATA CAG TCA ATG ACG AGG ACA GIT TGA AGG ACT IGA GAC GTT CGA CGG ACC AAT CCC ACA AGA GCG CTC ACA TCG CCT TGG AGA AGA ATG AGG ACT CCG GTT TTG TGA TCG AGC AGG TGG TTG ATA CCC ACA AAT ATT CCT COG ATG AAG AAG AGG AGG AGG CGA CGA TGG GTC GCA TIT TCG GAT GTC CCC GGC CCG GTG GTC AAT GCC GAG GAG ATG GCC GGC GCA GCC ATG TAC GAG CTG GIT CGC GTT GGA CAC TCC CAG CTT CTT GGT GAG ATC ATT CGA CTG GAG GGT GAT ATG GCC ACC ATT CAG GTT TAC GAG GAT ACT TCG GGT GTG AGC GTG GGT GAT CCC GTC TAC CAG ACG GGA AAG CCA CTC TCC GIT GAA TTG GGA CCC GGC ATC ATG GGC AGC ATC TIT GAT GGT ATC CAG CGA CCA TTG AGG TCC ATC AGT GAA CTA ACC AAC TCC ATA TAC GTG CCC AAG GGC ATC GAT ACG CCC TCC CTG CCC AGG AAC ATT GCG TAC GAA TTC ACA CCC GGA AAA TTG AAG ATC GAT GCT CTG ATC ACC GGC GGA GAC ATC TAC GGA TCT GTT TTC GAA AAC AGC ATG ATG CAC GAT CAC CGC CTG ATA CTA CCG CCC CGC ACC AAG GGG CGC ATC CGG TGG TTG GCA CCG CCC GGG AAC TAC TEC OTG GAC GAG GTG ATC GTG GAG ACC GAG TTC AAC GAC GAG ATC ACC AAG CAC ACC ATG CTC CAG GTG TGG CCC GTA CGG AGG TGT CGT CGG TGG AGG ATA AGC TCC CCC AGC AAT TCA CCA CTC TTG ACT CGC CAG CGC GTC CTG GAC CCA TTC TTT CCA TGT GIC CAG GGC GGA ACC ACT GCC ATT CCA GGA GCG TTT GGA TGT GGA AAG ACC GTC ATC TCG CAG GTG AGA CGE TIT CTA AGA CTT TAG TIG ACA AAT GAT TAC ATT CCA ATC AAC TTA TAC CCC TAG GCC CTG TCC AAA TAC TCC AAC TCA GAT GTC ATC ATC TAC GTG GGC TGC GGT GAG CTC GGG AAC GAA ATG TCC GAG GTT CTT ATG GAC TTT CC

Figure 4.10 Partial sequence of 68kg-R. The EcoRI site is marked in bold.

· ·

| Lei             | Gap Weight:      | 5.000<br>0.300                | Avera<br>Average        | age Match:<br>Mismatch:      | $1.000 \\ 0.000$       |              |
|-----------------|------------------|-------------------------------|-------------------------|------------------------------|------------------------|--------------|
|                 | Quality:         | 626.8                         |                         | Length:                      | 4408                   |              |
|                 | Ratio:           | 0.564                         |                         | Gaps:                        | 6                      |              |
| Percent         | Similarity:      | 60.956                        | Percent                 | Identity:                    | 60.956                 |              |
| vha68-2         | .g.seq x 68k     | g-R. seq                      |                         |                              |                        |              |
| vha682          | 1451 tagtetaga   | aacttacact                    | tetgtgtgaaa             | Laatggcaactt                 | tagaaatgt 1            | .500         |
| 68kg-R          | 1                |                               |                         |                              |                        | l            |
| vha68-2         | 1501 gtecace<br> | tatttgtgat<br>                | taatatteaaa             | acaactcaaacat                | tggtttcatt             | 1550         |
| 68kg-R          | 5 accoct         | ceccetcaat                    | eacgeaageet             | gtageegageeg                 | gaaagedeee             | 54           |
| <b>v</b> ha68-2 | 1551 attcaaa<br> | attaaatgtg<br>      <b>  </b> | aataattttaa             | taattaattaat                 | tgtttettta<br>         | 1600         |
| 68kg-R          | 55 atgatac       | agteaatgac                    | gaggacagttt             | gaaggacttgag                 | acgttcgacg             | 104          |
| vha68-2         | 1601 aactttt<br> | ttetataatt                    | ctaacaaaaaa<br>         | atcatcaagtat                 | cataaataat             | 1650         |
| 68kg-R          | 105 gac.caa      | teccacaaga                    | gegeteacate             | geettggagaag                 | aatgaggact             | 153          |
| vha68-2         | 1651 aaaaaat<br> | tttaaaagaa<br>                | aatgttcaag <u>o</u><br> | reegaaatggaad                | etatettggt             | 1700         |
| 68kg-R          | 154 cgggttt      | tgtgategag<br>,               | caggtgg                 | rttgatacgcaca                | aatattegte             | 199          |
| vha68-2         | 1701 tggcaaa<br> | gttataaaaa<br>                | ettettgaatg.<br>        | ;aaatgtatceed                | cotaacocaa<br>         | 1750         |
| 68kg-R          | 200 ggatgaa      | gaagaggagg                    | aggegaegatç             | ggtegeatttte                 | ggatgtee               | 2 <b>4</b> 7 |
| vha68-2         | 1751 ccaaccg     | tttcattcca                    | gTCGTCACCGC             | CGAGGCCATGTC                 | TGGATCAGCT             | 1800         |
| 68kg-R          | 248              | COGECCOG                      | GTGGTCAATGC<br>·        | CGAGGAGATGGC                 | CGGCGCAGCC             | 288          |
| vha682          | 1801 ATGTACG     |                               |                         |                              |                        | 1850         |
| 68kg-R          | 289 ATGTACG      | AGCTGGTTCG                    | CGTTCGACACI             |                              | GTGAGATCAT             | 338          |
| vha68-2         |                  | GAGGGTGACA                    |                         |                              |                        | 1900         |
| 68kg-R          | 1841 COACTO      | GAGGGIGATA                    | deceacearia             |                              | GATACTTCGG             | 1050         |
| vna68-1         |                  |                               |                         |                              |                        | 1950         |
| boxg-x          | 389 GTGTGAG      | CGIGGGIGAL                    |                         |                              | ACTOTOCOPT             | 438          |
| Vnao8-2         |                  |                               |                         |                              |                        | 466          |
| uba69_7         | 2001 COMPAND     |                               |                         | 10211102110012               |                        | 2050         |
| 68kg-R          | 489 ATIGAGG      | TCCATCAGTG                    |                         | TCCATATACGT                  | CCCAAGGGCA             | 538          |
| vha68-2         | 2051 TGAACGT     | GCCCAGTTIC                    | TCCCCCCTCC              | CAGCTGGGAGT                  | CAACCCCCTG             | 2100         |
| 68kg-R          | <br>539 TCGATAC  | <br>GCCCTCCCTG                | <br>XCCAGGAACAI         | <br>FTGCGTACGAATT            | III III<br>ICACACCCGGA | 588          |
| vha68-2         | 2101 AACGTCA     | AGGTCGGCTC                    |                         | GAGGTGACCTG                  | TACGGTCTGGT            | 2150         |
| vha68-2         | 589 AAATTGA      | II III I<br>AGATCGATGC        | TCTGATCACCO             | ii ii ii ii<br>Geeggagacate: | TACGGATCTGT            | 638          |

106

و بنې .

| 68kg-R           | 2 <b>1</b> 51 | GCATGAGAACACTCTGGTCAAGCACAAGATGATTGTGGAACCCCCGGG    | 2197 |
|------------------|---------------|-----------------------------------------------------|------|
| vha682           | 639           | TTYCGADAACAGCATGATGCACGATCACCGCCTGATACTACCGCCCCGCA  | 688  |
| 68kg-R           | 2198          | CCAAGGGAACAGTGCGCTACATCGCCCCCTCCGGCAACTACAAGGTCGAC  | 2247 |
| vha68-2          | 689           | CCAAGGGGGGCATCCGGTGGTTGGCACCGCCCGGGAACTACTGCGTGGAC  | 738  |
| 68kg-R           | 2248          | GATGTCGTCCTGGAGACCGAGTTCGATGGAGAGATCACCAAGCACCACCA  | 2297 |
| vha68-2          | 739           | GAGGTGATCGTGGAGACCGAGTTCAACGACGAGATCACCAAGCACCAT    | 788  |
| 68kg-R           | 2298          | GT ISCAGGTGTGGCCAGTGCGTCACCACGCTCCCGTGACCGAGAAGCTGC | 2347 |
| vha682           | 789           |                                                     | 838  |
| vha68-2          | 2348          | CCCCCAACCACCCCTGCTCCCCCGACAGCGTGTGCTCGACTCGCTCTTC   | 2397 |
| 68kg-R           | 839           | CCAGCAATICACCACTCTTGACTGGCCAGCGCGTCCTGGACCGATTCTTT  | 888  |
| vha68-2          | 2398          | CCCTGTGTCCAGGGGGGTACCACCGCCATTCCCGGAGCTTTCGGTTGCGG  | 2447 |
| 68kg-R           | 889           | CCATGTGTCCAGGCGGAACCACTGCCATTCCAGGAGCGTTIGGATGTGG   | 938  |
| vha68-2          | 2448          | CAAGACTGTGATCTCGCACgtgagagtcccacaaattcaagaatttaagga | 2497 |
| 68kg-R           | 939           | AAAGACCGTCATCTCGCAGgtgagagggtttetaagagtttagttgacaa  | 988  |
| vha68-2          | 2498          | gcgatgcctcgtgtagcctccatacaotcaagtttcataaaaacacaatc  | 2547 |
| 68kg-R           | 989           | atgattacattccaatcaacttatacccc                       | 1017 |
| vha68-2          | 2548          | cctaataaatcatttacttgcttgcagGCTCTGTCCAAGTACTCCAACTC  | 2597 |
| 68kg R           | 1018          | till                                                | 1043 |
| vha <b>6</b> 8-2 | 2598          | CGAUGICATCATCTACGTCGGTTGCGGTGAGCGTGGTAACGAGATGTCTG  | 2647 |
| 68kg-R           | 1044          | AGATGTCATCATCTACGTGGGCTGCGGTGAGCTCGGGAACGAAATGTCCG  | 1093 |
| vha68-2          | 2648          | AGGTACTOCGTGACTTCCCCGAGCTGTCGGTGGAGATCGATGGTGTGACC  | 2697 |
| 68kg-R           | 1094          | AGGTTCTTATGGACTITCC                                 | 1112 |

بر کرد. زخ

Figure 4.11 Homology between vha68-2 genomic DNA and partial 68kg-R sequence.

107

| Le      | Gap<br>ength | Weight:<br>Weight: | 3.000<br>0.100  | Avera<br>Average | age Match:<br>Mísmatch: | 0.540<br>-0 <b>.39</b> 6 |     |
|---------|--------------|--------------------|-----------------|------------------|-------------------------|--------------------------|-----|
|         | Q            | uality:<br>Ratio:  | 313.2<br>1.186  |                  | Length:<br>Gaps:        | 615<br>1                 |     |
| Percent | t Simi       | larity:            | 83.650          | Percent          | Identity:               | 73.384                   |     |
| vha68   | 2 x 68       | kg-R .             |                 |                  |                         |                          |     |
| vha68-2 | 1            | MSNLKRFDI          | DEERESKYGF      | XVFAVSGPVVTA     | EAMSGSAMYELN            | /RVGYYELVG<br>   . :}    | 50  |
| 68kg-R  | 1            | ••••••             |                 |                  | EEMAGAAMYELA            | RVGHSQLVG                | 25  |
| vha68-2 | 51           | ETIRLEGDN          | MATIQVYEEM      | SGVTVGDPVLR      | TGKPLSVELGPO            | IMGSIFDGI                | 100 |
| 68kg+R  | 26           | ELIRUEGO           | (ATIQVYEDI      | SGVSVGDPVYQ      | TGKPLSVELGPO            | IMGSIFDGI                | 75  |
| vha68-2 | 1,01         | QRPLKDEN#          | ·<br>ELTESIYIPK | GVNVPSLSRVA      | SWEFNPLNVKVC            | SHITGGDLY                | 150 |
| 68kg-R  | 76           | QRPLRSIS           | T.TNSIYVPR      | GIDTPSLPRNI      | AYEFTPGKLKII            | DALITGGDIY               | 125 |
| vha£8-2 | 151          |                    | KHKMIVNE        | PRAKGTVRYIAF     | SGNYKVDDVVLE            | STEFDGEITK               | 199 |
| 68kg-R  | 126          | GSVFENSM           | HDHRLILPE       | RTKGRIRWLAP      | PGNYCVDEVIVE            | STEFNDEITK               | 175 |
| vha68-2 | 200          | HTMLQ\WP\<br>}     | /RHHAPVTER      | LPANHPLLAGQ      | RVLDSLFPCVQC            | GTTAIPGAF                | 249 |
| 68kg-R  | 176          | HTMLQVWPV          | VRRCREWRIS      | SPSNSPLLAGQ      | RVLDRFFPCVQ             | GTTAIPGAF                | 225 |
| vha68-2 | 250          | GCGKTVIS           | Dalskysnse      | VIIYVGCGERG      | NEMSEVLRDFPI            | ELSVEIDGVI               | 299 |
| 68kg-R  | 226          | GCGRTVIS           | JALSKYSNSI      | VIIYVGCGELG      | NEMSEVLIDE              |                          | 264 |

ver en g

ġ

Figure 4.12 Homology between the translated proteins of *vha68-2* and 68kg-R partial sequence.



Figure 4.13 Southern blots of genomic *D. melanogaster* DNA. (A) Probed with *vha68-1* coding sequence; (B) probed with *vha68-2* 3' isoform-specific sequence; (C) Probed with vha68-1 3' isoform-specific sequences. E, *Eco*RI; EV, *Eco*RV; Xh, *Xho*I; B, *Bam*HI; H, *Hin*dIII; P, *Pst*I; Sc, *Sac*I; Xb, *Xba*I; Bg, Bg/II; Sl, *Sal*I; Sm, *Sma*I.

#### 4.6 Chromosomal location

Salivary gland chromosome squashes probed with *vha68-1* cDNA revealed only one site of hybridisation band at polytene chromosome 34A (Figure 4.14). As both *vha68-1* and *vha68-2* share significant homology and cross hybridise in Southern blots, the *vha68-1* cDNA probe should also hybridise to *vha68-2*. Thus, *vha68-2* may also be at 34A. This has been further supported by the localisation at 34A of the P-element in fly line 1(2)k02508 (Refer to Encyclopaedia of *Drosophila*). In next chapter we will show that this P-element is in the first intron of *vha68-2*.

#### 4.7 Northern blot analysis of vha68-1 and vha68-2

Northern blots of total RNA, using the whole vha68 - I cDNA as a probe, detected only a single band equivalent to mRNA(s) of  $\approx 2.6$  kb. The single band probably corresponds to both vha68-1 and vha68-2 transcripts. A developmental Northern of embryo, larval, pupal and adult total RNAs showed that the genes are almost equally expressed at embryo, larval and adult stages, but at much reduced level at the pupal stage (Figure 4.15). Tissue-based Northern analysis of adult head, thorax and abdomen total RNAs showed the genes to be almost equally expressed (Figure 4.16) as would be expected for a putative housekeeping gene. The same blots, probed with vha68-1 or vha68-2 specific 3' prime non-coding fragments, found that both genes to be similarly expressed (Figure 4.15 & 4.16).

#### 4.8 Discussion

The V-ATPase A subunit has been previously reported to be encoded by a single gene in all the animals and microorganisms studied. Although multiple genes have been found in plants only a single type mRNA has been reported. Therefore, it has been originally concluded that there is just a single isoform of the A subunit (Bowman *et al.*, 1988; Hirata *et al.*, 1990; Puopolo *et al.*, 1991; Zimniak et al, 1988; Gräf *et al.*, 1992).



States of the

Figure 4.14 Chromosomal localisation of *vha68*. Salivary gland chromosome squashes were prepared by standard techniques (Ashburner, 1989). Chromosomes were probed with biotinylated, random-primed *vha68-1* cDNA and hybridisation was detected using streptavidin-conjugated peroxidase and diaminobenzidinc.



Figure 4.15 Developmental Northern blot analysis of the *vha68* genes. Total RNA was isolated from Canton S embryos, larvae, pupae and adults. The RNA was separated by electrophoresis in a 1% formaldehyde-agarose/MOPS gel, blotted to nitrocellulose and hybridised with 32P-labelled random-primed probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respect to an RNA ladder (Gibco BRL). E, Embryo; L, third instar larva; P, pupa; Ad, adult. The filter was first hybridised with whole *vha68-1* cDNA, then stripped and reprobed with isoform-specific cDNA fragments and *rp49* as a control for differences in RNA loading.

and the second second

. .



Figure 4.16 Tissue specific Northern blot analysis of the *vha68* genes. Total RNA of adult head, thoraces and abdomens, as well as male and female adults was isolated. The RNA was separated by electrophoresis in a 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose, and hybridised with  $^{32}$ P-labelled random-primed probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respected to an RNA ladder (Gibco BRL). H, head; T, thorax, Ab, abdomen; M, males; F, females. The filter was first hybridised with whole *vha68-1* cDNA, then stripped and reprobed with isoform-specific cDNA fragments and *rp49* as a control for differences in RNA loading.

The existence of two isoforms of the A subunit was first reported in human (van Hille, 1993). The VA68 isoform is expressed in all tissues whereas the HO68 isoform was detected only in osteoclastoma, a tumour enriched in osteoclasts (Chambers et al., 1985). In chicken, two isoforms of the A subunit are generated by differently splicing of two mutually exclusive exons from the same genc. Unlike the classical A1 isoform, the chicken A2 isoform docs not contain either the ATP-binding consensus sequences (the p-loop) or the pharmacologically relevant Cys<sup>254</sup> in its polypeptide. Both isoforms appear to be ubiquitously expressed (Hernando et al., 1995). In this chapter two D. melanogaster A subunit genes, vha68-1 and vha68-2, have been described. The two isoforms share 91% identity at the polypeptide level. A genomic DNA fragment correspond to vha68-2 was identified and sequenced. A partial genomic DNA fragment for vha68-1 was already available (Chio et al, 1995). Both genes are found to have a similar structure, the two introns are at the exact same sites but vha68-2 has a small extra intron. Sequences of introns and of 3' and 5' prime non-coding fragments are different. However, since the coding sequence and corresponding polypeptides share high homology, the two genes presumably arise from a duplication of a single gene present in an ancestor. If the two isoforms have the same function the purpose of the two copies of the gene might be to compensate for an increased need for the protein product. The presence of two isoforms could also impart different properties or provide alternative sorting to cell compartments (such as vacuolar or plasma membrane). Although Northern blot of D. melanogaster total RNA suggests both genes are ubiquitously expressed, this does not necessary mean that both isoforms are present in the same cellular population or subcellular compartment. It is still possible one of the isoforms might be involved in plasma membrane V-ATPase while another may be implicated in endomembrane V-ATPase function. The reporter detector of P[lacW] insertion in vha68-2 reveals this gene is highly expressed in Malpighan tubulcs, midgut etc. where the plasma membrane V-ATPase should have a role (See Chapter 5). However, the functional implications of the presence of two isoforms of the V-ATPase A subunit are still not clear.

ż

ķ

# <u>Chapter 5</u> <u>Mutational Analysis of *vha68-2*, a Gene Encoding One of the Two Isoforms of the *Drosophila* V-ATPase A-subunit</u>

# 5.1 Summary

A Drosophila line (l(2)k02508) carrying a single P[lacW] insertion in vha68-2, a gene encoding one of the two isoforms of the Drosophila V-ATPase A subunit, was isolated by screening pools of rescued plasmids. Molecular characterisation demonstrates that the transposon is inserted within the first intron, and thus lies 5' to vha68-2 translation start codon. Expression of the enhancer detector reporter gene carried by the lacZ ( $\beta$ galactosidase) was widespread, but was particularly strong in the gut and Malpighian tubules of both larvae and adults. The insertion significantly reduces the accumulation of vha68-2 mRNAs and causes homozygous lethality durng the first larval instar. The lethal phenotype can be reverted by excision of the inserted P-element. Imprecise excision or internal deletion of the P-element created a set of novel hypomorphic or null alleles, with phenotypes ranging from first instar lethality to sub-lethals of various classes.

# 5.2 Introduction

Chapter 4 described the identification and characterisation of two genes, vha68-1 and vha68-2, both of which encode V-ATPase A subunits. Both vha68-1 and vha68-2 are widely expressed. In order to address the *in vivo* functions of the two genes, it would be useful to partially or entirely inactivate them. For this purpose, *Drosophila* had the considerable advantages that it is genetically well characterised and amenable in several ways to mutational analysis. Once the chromosomal location of a gene has been specified, there is often a large amount of available information related to that chromosome location that can help with the analysis. For example, the P-element insertions in vha26 (Chapter 6) and vha55 (Davies *et al.*, 1996) were identified by screening available P-

element lines corresponding to the approximate locations of the genes. In the case of vha68 gene, no such lines had been described. Fortunately, however, a collection of more than 2000 lines with recessive lethal P[lacW] insertions on the Drosophila second chromosome was available (Török, 1993) and plasmids representing the insertion sites of 1864 of these had been rescued (See Chapter 3). Southern blotting of the rescued plasmids and hybridisation with vha68-1 cDNA identified 3 lanes containing related plasmids. One of these plasmids was traced to a single rescued plasmid (P184) corresponding to fly line 1(2)k02508 (See Figure 3.3). A "mini-white" gene (Pirrotta, 1988) has been inserted in the middle of P[laeW]. As a genetic marker, mini-white provides advantages. First, flies heterozygous for mini-white in a genetic background null for the white locus generally have orange eyes, whereas flies homozygous for the same element have red eye pigmentation. Eye colour also tend to be darker in flies with multiple insertions (Kiss, 1996, Personal com.). Second, once P-element has been detected in a region of interest, it can be remobilised in the presence of transposase, and by screening for loss of eye pigmentation one can isolate revertants (precise excision) or new alleles (imprecise excision). At the 5' end of P[lacW] is the lacZ reporter gene which may give clues to the expression pattern of the target gene.

## 5.3 l(2)k02508 contains a single insertion in vha68-2

Southern blotting of genomic DNA from fly line l(2)k02508, cleaved by *EcoRI* and probed with *vha68-1* cDNA, shows band shifts due to P[lacW] insertion (Figure 5.1A). Probing with a 1.9 kb P[lacW] fragment corresponding to the plasmid replicon detected only a single band (Figure 5.1B), suggesting that line l(2)k02508 contains a single P[lacW] insertion in or near one of the two *vha68* genes. This is supported by *in situ* hybridisation to polytene chromosomes with a P-element probe, which shows line l(2)k02508 to contain a single insertion at 34A3-4 (refer to Encyclopaedia of *Drosophila* for information on l(2)k02508). As reported in Chapter 4, *in situ* hybridisation to

polytene chromosomes with *vha68-1* cDNA also detects a single band at 34A, the probable location of both A subunit genes.

### 5.4 The insertion in l(2)k02508 lies within vha68-2

Comparison of the restriction maps of the plasmid P184 and vha68-2 showed the insertion to be in the first intron, less than 1 kb 5' to the translation start site (Figure 5.2). Sequencing of the rescued plasmid produced unequivocal evidence for the insertion within the vha68-2 gene. The insertion has occured between 703 and 704 in the vha68-2 genomic DNA sequence (Figure 5.3). The sequence generated by primer PR is exactly the same as a region of the first intron of vha68-2. PR is a P-element primer reading out of the P-element into flanking DNA, i.e. into the rescued DNA (Figure 5.3 A). Sequence generated by primer 68T7-6 shared more than 97% homology among the 218 base pairs (Figure 5.3 B), with no changes found in the coding sequences.

## 5.5 Lethality in l(2)k02508 is caused by insertion of the P[lacW] element

That the P[lavW] insertion is indeed responsible for the homozygous lethality of the l(2)k02508 was shown by the generation of viable revertants following precise P-element excision. P[lavW] was remoblised by the cross shown in Figure 2.1. *white* progeny of various classes was generated (Table 5.1). One class was homozygous viable for the original second chromosome. Lethality in the l(2)k02508 was then due to P-element insertion rather than to some other accidently fixed events elsewhere on the same chromosome.



Figure 5.1 Southern blotting of genomic DNAs confirms that line l(2)k02508 contains a single P[lacW] insertion in *vha68*. (A) Canton S (lane 1) and l(2)k02508 (lane 2) DNAs cleaved by *Eco*RI and hybridised with *vha68-1*. (B) Probed with the 1.9 kb P[lacW] fragment corresponding to the plasmid replican.



Figure 5.2 Correspondance of the rescued plasmid and *vha68-2* genomic DNA fragment. S, *Sal*I; B, *Bam*HI; E, *Eco*RI.



Figure 5.3 Sequence homology of rescued plasmid and *vha68-2*. (A) 68k-PR is the sequence reading out of rescued plasmid from primer PR. Bold indicates the end of the P[lacW] insertion. (B) 68T7-6 is the sequence of rescued plasmid generated by primer 68T7-6 which is in *vha68-2* gene.

ور فر د

den al l'instructions de la comp

## 5.6 Imprecise excision generates a range of new alleles

Remobilisation of a P-element, apart from the precise excision, often generates flanking sequence deletions by imprecise excision (Daniels *et al.*, 1994; Salz *et al.*, 1987; Voelker *et al.*, 1984). Remobilisation may also generate local reinsertions that can often be selected by scoring the dominant marker on the transposon (Tower, *et al.*, 1993).

Ş

About 200 lines which lost eye colours were selected and backcrossed to the original line 1(2)k02508 to test survival to the adult stage. The survival rate showed a range of differences (Table 5.1 and Figure 5.4). Interestingly, several lines showed a temperature-sensitive phenotype. The homozygous flies of these lines can survive at high temperature (25-30°C) but they die before reaching adult stage if they are reared at 16°C (Table 5.1 and Figure 5.5). A genomic Southern blot of the new alleles found that alleles 68S-6 and 68S-10 are likely to have deletions in gene *vha68-2* (Figure 5.6). Of the five temperature-depedent alleles, 68S-27 has an internal deletion with the plasmid replicon still there. However, the hybridisation patterns of other three alleles, 68S-22, 68S-25 and 68S-38, looks the same as that of Canton S. It is possible that these alleles still contain deletions but the deletions are too small to be detected by genomic Southern blot.

#### 5.7 Reporter gene expression

Line l(2)k02508 contains a single P[lacW] insertion, located in the first intron of vha68-2. Since lacZ enhancer detector element is in the same orientation as vha68-2 transcript, it might be expected that the *lacZ* expression pattern would mirrot at least in part the expression pattern of vha68-2.

The first evidence for *lacZ* expression was in gastrulating embryos (Figure 5.7) The heaviest staining was initially in a loop of embryonic midgut, with staining soon becoming general. In larvae, pupae and adults, most or all tissues eventually stain, as

would be expected for a ubiquitously expressed gene; however, staining in shorter time showed certain tissues, the labial palps, a region of the midgut, the main segments of the Malpighian tubules and rectal pads to be conspicuously labelled. This is significant, because it neatly delineates those tissues in which V-ATPases play a plasma-membrane, rather than an endomembrane role (Davies et al., 1996). Although P-element enhancer detectors do not necessarily report faithfully the entire expression pattern of their neighbouringtranscription units, as they may be unduly influenced by short-range

ž

1

| fliy  | 25 <sup>PC</sup> |    |    |     |    | 30 <sup>¤</sup> C |    | 16 <sup>¤</sup> C |    |
|-------|------------------|----|----|-----|----|-------------------|----|-------------------|----|
| lines | A                | В  | С  | D   | E  | D                 | E  | D                 | Е  |
| S1    | 24               | 46 | 5  | 156 | 9  | 65                | 3  | 69                | 1  |
| S2    | 25               | 26 | 14 | 97  | 52 | 42                | 31 | 36                | 21 |
| S3    | 20               | 16 | 10 | 137 | 30 | 32                | 22 | 52                | 4  |
| S4    | 14               | 18 | 19 | 78  | 56 | 18                | 24 | 39                | 23 |
| S6    | 30               | 32 | 0  | 131 | 0  | 108               | 0  | 74                | 0  |
| 58    | 22               | 29 | 19 | 96  | 19 | 39                | 16 | 67                | 1  |
| S9    | 19               | 21 | 11 | 97  | 33 | 62                | 37 | 79                | 41 |
| S10   | 40               | 45 | 0  | 163 | 1  | 71                | 0  | 25                | 0  |
| S11   | 17               | 28 | 2  | 166 | 14 | 33                | 4  | 60                | 3  |
| S13   | 15               | 36 | 21 | 45  | 16 | 50                | 21 | 65                | 37 |
| S22   | 48               | 48 | 54 | 67  | 11 | 17                | 8  | 83                | 0  |
| S25   | 23               | 23 | 6  | 112 | 21 | 40                | 5  | 74                | 0  |
| S27   | 27               | 81 | 18 | 85  | 10 | 81                | 18 | 181               | 2  |
| S29   | 13               | 19 | 7  | 92  | 28 | 59                | 15 | 110               | 27 |
| S33   | 15               | 23 | 1  | 191 | 7  | 35                | 12 | 86                | 3  |
| S35   | 13               | 13 | 12 | 58  | 24 | 64                | 24 | 50                | 21 |
| \$36  | 20               | 32 | 0  | 138 | 0  | 77                | 0  | 89                | 0  |
| \$37  | 21               | 48 | 24 | 89  | 26 | 22                | 5  | 75                | 24 |
| S38   | 28               | 68 | 28 | 122 | 21 | 16                | 3  | 108               | 3  |
|       |                  |    |    |     |    |                   |    |                   |    |

Table 5.1 New alleles and revertants after excision of the P[lacW] in line 1(2)k02508

A, B, C, D, E, F stand for different phenotypes, See Method section 2.18 for the meaning.



Fly line no.

Figure 5.4 New alleles with different survival efficiency after remoblisation of the Pelement in strain l(2)k02508. Filled boxes show the % survival when heterozygous with the l(2)k02508 chromosome; Empty boxes show % survival when homozygous for a new allele.

Actual ratio of certain progeny

Survival efficiency (%) =

Expected ratio of certain progeny if without detrimental effects



A State of the second s

a set a straight of the set

2

j



Figure 5.5 Alleles with temperature-dependent survival. Filled boxes show survival at 30°C, empty boxes show the survival at 16°C.


**Figure 5.6** Genomic Southern blot of *vha68-2* mutant flies. Genomic DNA was digested with *Eco*RI, run out on a 1% agarose gel and blotted to Hybond N. The both filters were hybridised with probe of *vha68-1* cDNA.



Figure 5.7 *lacZ* expression patterns of l(2)k02508. (A) embryonic, showing a loop of the midgut staining; (B) embryonic, showing Malpighian tubule and midgut staining; (C) embryonic with longer staining; (D) Larval gut showing the mid gut and Malpighian tubule staining; (E) Adult gut showing the Malpighian tubules and midgut staining; (F) Adult Malpighian tubules, showing staining confined to nuclei of main segment; (G) Enlarged view of the adult Malpighian tube staining; (H) Front view of adult head, showing staining of antennal bases and labial palps; (I) Side view of adult head, showing the staining of antennae and labial palps.

enhancers, the pattern of expression reported here is precisely what would be expected for a V-ATPase gene (Figure 5.7). Antibody staining for  $\beta$ -galactosidase shows a similar expression pattern. Figure 5.8 shows the antibody staining of Malpighian tubules in larvae.

j,

# 5.8 Phenotypic analysis of l(2)k02508 and new alleles

The original P-element strain l(2)k02508 and the two new alleles 67S-6 and 67S-10 are homozygous lethal and are maintained over balancer CyO. Flies homozygous for balancer CyO are lethal at late embryo or early larvae stage, but flies heterozygous for CyO are viable with curly wings (Lindsley and Zimm, 1992). If flies homozygous for the vha68- could survive to adult stage they should have distinctive straight wings. However, it is difficult to distinguish the difference earlier than the adult stage. To facilitate the analysis of lethal phase the CyO balancer chromosome was first replaced with wild type to observe whether embryos homozygous for the P-element can hatch. 468 larvae hatched from 483 eggs laid by parents P[lacW]/+. The hatch rate is 97%, approximately the same hatch rate for the wild type flies. Of the 15 unhatched eggs, 7 eggs are unfertilised. This high hatch rate means that the homozygous P[lacW] can survive to larval stage. To distinguish the homozygous [vha68-2-/vha68-2-] larvae from the heterozygous larvae the original balancer CyO was replaced by the y<sup>4</sup>CyO chromosome distinguish the homozygotes [vha68-2-/vha68-2-] from which then could heterozygotes [ $vha68-2^{-}/y^+CyO$ ] as early as the first instar larvae. The heterozygous fly has a black hook while the homozygous flies have yellow hooks (figure 5.9A).

For the three mutant lines, l(2)k02508, 68S-6, and 68S-10, the homozygotes can survive the embryo stage. The new hatched larvae wiggled around slowly and were not as active as the healthy one. The homozygous [*vha68-2*<sup>-</sup>/*vha68-2*<sup>-</sup>] larvae were observed dying in first instar larvae.



Figure 5.8 Antibody staining of  $\beta$ -galactocidase in the Malpighian tubules. (A) Third instar larval Malpighian tubules showing nuclear staining in the principal cells. (B) Malpighian tubules and gut of third instar larvae showing the nuclear staining of gut and Malpighian tubules, and the unstaining junction.

Examination of the Malpighian tubules in the homozygous larvae indicates the mutation affects the morphology of this organ, especially the anterior segment. Tubules are responsible for the clearance of the waste products. The anterior segment of the Malpighian tubules normally stores the primary urine in the form of crystalline concrements of uric acid, calcium phosphate, etc (Maddrell and O'Donnell, 1992). The concrement play an important role in the process of osmoregulation and they are either absent or severely reduced in the original P-element mutant and the two deletion alleles (Figure 5.9B). 一方、アンドになく ひろうたき いちい どうちょう たまと

#### 5.9 Northern blot analysis of mutant flies

The above results indicated that the l(2)k02508 strain and the two alleles 68S-6 and 68S-10 were hypomorphic for V-ATPase function. I therefore was interested to test whether a decrease also occurred at the level of transcription of the *vha68* gene in line l(2)k02508. Total RNA was isolated from adult of wild-type Canton S, the heterozygous P-element insertional line l(2)k02508, two homozygous revertants, 67R-2 and 67R-4. The RNA was separated by electrophoresis in 1% formaldehyde-agarose/MOPS gels and blotted to nitrocellulose. The blot was probed with *vha68-1* cDNA (Figure 5.10). For comparison of RNA loading, the blots were stripped and probed with *Rp49* cDNA. All the 4 lines has the same 2.6 transcript of *vha68*, but fly strain l(2)k02508, even being heterozygous and that the probe used here can be expected to hybridise to transcripts of both *vha68-1* and *vha68-2*, shows an appreciable reduction in overall *vha68* levels in the mutant lines. The revertant line 67R-4 has the same RNA level as that of wild type, but The revertant line 67R-2 has the same RNA level as that of the heterozygous l(2)k02508. Thus, it can be strongly suggested that the l(2)k02508 are also a hypomorphic mutation at the level of transcription.



(A)

(B)

**Figure 5.9** Phenotype of 68S-6. (**A**) Difference of hook colour between homozygous and heterozygous larvae of 68S-6. (1) and (3) are homozygous dying larvae with yellow hook, (2) is heterozygous larvae with black hook.(**B**) defects in Malpighian tubules in dying homozygous larvae of 68S-6, (1) is the dying homozygous the larvae in which the white precipitates are reduced or absent. (2) is the heterozygous larvae with normal Malpighian tubules which contain a white precipitate of uric acid and calcium salts. (here seen as black by transmitted light).



Figure 5.10 Northern blot analysis of the mutant flies of *vha68-2*. Total RNA was isolated from the adult flies using TRIzoI<sup>TM</sup> (Gibco BRL). The RNA was separated by electrophoresis in 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose, and hybridised with <sup>32</sup>P-labelled random-primed probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respected to an RNA ladder (Gibco BRL). The filters were first hybridised with whole *vha68-1* cDNA, then the same blots were stripped and reprobed with *rp49* to control for differences in RNA loading. Lane 1. Canton S; Lane 2, P-element insertional mutant l(2)k02508; lane 3, homozygous revertant 68R-2; Lane 4, homozygous revertant 68R-4.

# 5.10 Discussion

The identification of a P[lacW] insertion in *vha68-2* is of great help in addressing the function of the gene. Inactivation of just *vha68-2* leads to the homozygous lethality at first instar larvae, which suggests *vha68-2* to be an essential gene. Although the sequence of the two isoforms is highly homologous at DNA and protein levels, the presence of only *vha68-1* is insufficient for proper function. The Northern blots of total RNA of both isoforms detected a very similar pattern of ubiquitous expression. However, this does not necessarily mean that both isoforms are present in the same cellular population or subcellular compartment. The X-gal staining of the strain l(2)k02508 with a P-element in *vha68-2* reveals a general expression pattern, but highly enriched in the midgut and Malpighian tubules, suggesting a plasma membrane role for the *vha68-2* isoform. This staining pattern is similar to the x-gal staining pattern of fly lines with a P-element in genes encoding other subunits, such as the E, B and c subunits of Drosophila V-ATPases. Such a expression pattern may be applied to other subunits of V-ATPase and thus may provide a general means of screening P-element for mutations for V-ATPases.

ł

The new alleles generated by excision of P-element in l(2)k02508 show phenotypes with different severity; and in particular, five temperature-sensitive alleles. However, the molecular mechanism underlying these potentially important alleles needs further investigation.

As vha68-1 and vha68-2 are both at 34A and remobilisation of P-element tends to reinsert into the local sites around the original P-element, it should not be too difficult to identify a fly carrying a P[lacW] in vha68-1 by the PCR strategy (Kaiser and Goodwin, 1990) following the local jumping of the P-element in line 1(2)k02508. Analysis of the mutants of both vha68-1 and vha68-2 should help in elucidation of the function differentiation of the two isoforms of the V-ATPase A subunit in Drosophila.

# <u>Chapter 6</u>

# Characterisation and Inactivation of *vha26*, the Gene Encoding an E-Subunit of the V-ATPase

#### 6.1 Summary

A *D. melanogaster* gene and a cDNA for the 26 kDa E subunit have been cloned utilising homology with the corresponding *M. sexta* gene. The *Drosophila* gene contains three small introns. Its deduced translation product has 226 amino acids and a molecular weight of 26.1 kD. The polypeptide shares 76.5% identity with the *M. sexta* polypeptide, 62.8% with that of human and 34.3% with that of yeast. 'The *Drosophila* gene (*vha26*) is present as a single copy at cytological position 83B1-4 on the third chromosome and gives rise to an mRNA species of 2.3 kb. Abundance of the latter, relative to an *rp49* control, shows relatively little variation within adult head, thorax and abdomen, suggesting that the E subunit is a relatively ubiquitous component of the V-ATPase. *vha26* is, however, relatively less expressed during metamorphosis, as is also the case for the *D. melanogaster* V-ATPase A subunit (Chapter 4). A fly line carrying a single lethal P[*lacW*] insertion within *vha26* gene has been identified. This will greatly facilitate study of the *in vivo* function of the E subunit.

# **6.2 Introduction**

Subunit E is a constituent of the catalytic sector of the V-ATPase. It was one of the first subunits to be identified in kidney V-ATPase by immunological studies, and the cDNA encoding the kidney subunit has been cloned and sequenced (Hirsh *et al.*, 1988). Studies with monoclonal antibodies, supported by partial DNA sequencing, reveal the existence of at least two isoforms of subunit E in the kidney. While V-ATPase isolated from kidney

microsomes contains one form of subunit E, the enzyme from the kidney brush-border contains at least one additional form of subunit E. Presently a cDNA for subunit E has been cloned and sequenced from *M. sexta*. The deduced polypeptides show high homology with the E subunit from other sources. Although at least two isoforms for the E subunit may exist in human, only one gene encoding the M. sexta E subunit has been detected in Southern and Northern blots (Gräf et al., 1994a). The precise function of the E subunit is unknown but it has been suggested that E subunit may play an analogous role in the V-ATPase to the  $\gamma$ -subunit in F-ATPases (Bowman et al., 1995) and as such should be considered to form part of the catalytic headgroup. The corresponding yeast gene vma4, has been cloned, sequenced and mutagenised (Foury, 1990). The mutant exhibits a similar phenotype to all other yeast V-ATPase nulls. While the proteolipid assembles into the membrane, all subunits of the catalytic sector did not assemble. Consequently, the mutant is unable to grow in medium buffered at pH 7.5 (Ho et al., 1993). This suggests that subunit E may be necessary for the functional assembly of the enzyme. In vertebrates, it has been suggested that E subunit co-localises immunocytochemically with plasma membranes, rather than microsomes in kidney (Hemken, et al., 1992), implying that E subunit may be important in assembly of the holoenzyme on the plasma membrane of certain epithelia. Here, as first step to clarify this issue, I report the cloning, characterisation and mutagenesis of the gene encoding subunit E of V-ATPase in D. melanogaster, a species which is particularly suited to genetic analysis.

Alternative states and the second second

# 6.3 Identification of a cDNA encoding a 26 kD E-subunit

#### 6.3.1 cDNA cloning

A *D. melanogaster* head  $\lambda$ -ZapII cDNA library was screened by plaque hybridisation with a *M. sexta* E-subunit cDNA probe and one positive plaque was purified by successive rounds of screening. The purified clone was excised as pBluescript and the cDNA insert cDNA clones were obtained and subcloned into pBluescript SK<sup>-</sup>. Sequences from both ends of all five clones were identical except for differences in length at the 5' end. The longest insert (p26CD) was 2.1 kb long.

# 6.3.2 Generation of unidirectional deletions of p26CD for sequencing

p26CD was isolated and purified on a Promega column. ExoIII was used to generate a set of deletions of p26CD DNA for sequencing. Two pairs of enzyme (Sacl /EcoRI and HindIII/KpnI) were selected for digesting DNA which can then be further digested by ExoIII to make deletions from both ends (Figure 6.2A). The cDNA insertion has no digestion site for any of the 4 enzymes. SacI and KpnI can generate the 3' ExoIIIprotected end, while EcoRI and HindIII generate the 5' overhang which is digested by ExoIII. In the case of making deletions which can be sequenced by primer T3, 20 µg of p26CD plasmid was first digested with 50 units of SacI for 3 hours. A sample of this digest was clectrophoretically separated on a 1% agarose TBE gel to assess the extent of digestion. After completion of the digestion, buffer condition was adjusted with NaCl for EcoRI digestion for another 3 hours. Double digested DNA was digested by ExoIII at 37°C and samples were taken every 30 seconds. The first 15 samples were treated with S1 nuclease and were electrophoretically separated through an agarose gel (Figure 6.2B). From the figure we can see the digestion rate was about 200 bp/min. This rate of digestion is less than described by the manufacturer of Erase-a-Base system (Promega). However the *Exo*III digestion indeed produced progressive deletions.

Each timepoint sample was treated with the Klenow fragment of *E. coli* DNA polymerise to generate flush DNA termini and was then recircularised with DNA ligase. Ligation products were used to transform DH5 $\alpha$  competent cells (see methods section). 50 to 1000 colonies were obtained for each timepoint transformation. Three colonies from each of the first 12 transformations were selected at random and miniprep DNAs



Figure 6.1 *Exo*III deletion of the p26CD insert. (A) p26CD structure showing the restriction enzymes selected to make *Exo*III protected and unprotected termini. *EcoR1* and *Hin*dIII generate 5' overhanging termini, *SacI* and *Kpn*I generate protected termini. (B) The products of *Exo*III and S1 nuclease digestion of *SacI/Eco*RI digested p26CD. Samples of the *Exo*III reaction were removed at intervals of 30 seconds. (C) Plasmid minipreps from the deletion experiment after digestion with *XhoI* and *XbaI*.

(Method Section) were digested with XhoI and XhoI (Figure 6.1C). Subclones with different size of deletions were selected for sequencing by primer T3.

Similarly, DNA from the double digestion of p26CD by *Hin*dIII and *Kpn*I was digested by *Exo*III to generate deletions which can be sequenced from the opposite end using primer T7. The 2.1 kb cDNA insert of p26CD was completely sequenced from both directions.

#### 6.3.3 DNA sequence analysis of vha26 cDNA

The 2.1 kb contig of p26CD has an open reading frame corresponding to a 226 amino acid polypeptide of  $M_r$  26.1 kDa (Figure 6.3). This is clearly a V-ATPase E-subunit, sharing 76.5% amino acid identity with the E-subunit of *M. sexta*, 62.8% with that of human, but only 34.3% identity with that of *S. cerevisiae* (Figure 6.3). In accordance with the nomenclature for other *D. melanogaster* V-ATPase loci, the gene has been named *vba26*. Although we cannot at present exclude the possibility that longer transcripts exist, the longest 5' UTR of the 5 cDNA clones is 77 bp. This is in good agreement with the length of 5' UTRs reported for other V-ATPase subunits in *Drosophila*, 84 and 88 bp for the two genes encoding 67 kDa A-subunit (see Chapter 4); 86 bp for the 55 kDa B-subunit (Davis, *et al.*, 1996); 116 bp for the 17 kDa c-subunit (Meagher, *et al.*, 1990); and 42 bp for the 14 kDa F-subunit (see Chapter 7). The sequence of the start site CAAAATG matches the consensus start site (C/A)AA(A/C)ATG perfectly (Calvener, 1987). The 3' UTR is 1307 bp long, with a canonical AATAAA signal centred 26 bases upstream of the polyA tail.

31 GCA CGG TIG TIG TAC GTG GGC TTC TTT AAA ACA CTT GAA TTT CCT TTC GGT TIG TGC AGT 90/5 61. GAA AAA AAT CAG TCA AA ATG GCA CTG AGC GAT GCT GAT GTA CAA AAG CAG ATC AAG CAC D A  $\mathbb{D}$ V K I K н М А Ξ. S 0 0 120/15150/25ATG ATG GCG TTC ATT GAG CAG GAG GCC AAT GAG AAA GCC GAG GAG ATC GAT GCC AAG GCC Е N ЕКАЕ F. J. D 式 А M M A F Ι Ε Q А Α 210/45 170/35BAG GAG GAG TTO AAC ATT GAG AAG GGA CGC CTG GTO CAG CAG CAG CGT CTO AAG ATO ATG ΕË Е F N Ι  $\mathbf{E}$ K G R ĽΥ Q Q Q R L ĸ T. M 270/65 240/55 GAA TAC TAC GAG AAG AAG GAG AAG CAA GIT GAG CTG CAG AAG AAG ATT CAG TCC TCC AAC ΕY v E K к Е KQ V EL Q K ĸ Т O SS Ň 300/75 330/85 ATG CTC AAC CAG GCT CGT CTG AAG GTG CTG AAA GTG CGC GAG GAC CAT GTG AGC AGC GTG R L K v K V RΈ D Н v S S  $\mathbf{V}$ мL NQA L 390/105 360/95 CTG GAT GAT GCC CGC AAG CGT CTC GGC GAG GTC ACC AAG AAT CAC TCC GAG TAC GAG ACT K R E Ψ T Κ Ν Q  $\mathbf{S}$ 73 Y  $\mathbf{T}$  $\mathbf{T}$ DAR L G L D 420/115450/125 GTG CTG ACC AAG CTC ATC OTC CAG GGC CTG TTC CAG ATC ATG GAG CCC AAG GTG ATC CTG V F Q Μ E Ρ х V Ľ VL Ŧ KL I Q G Т Г 510/145 480/135 CGC TGC CGC GAG GTG GAC GTC CCC CTG GTA CGT AAC GTC CTG CCT GCC GCT GTG GAG CAA R C R E v D v  $\mathbf{P}$ Ŀ V R N V L P Α Α V E 0 540/155 570/165 TAC AAG GCC CAG ATC AAT CAG AAC CTC GAG CTG TTC ATC GAC GAG AAA GAC TTC CTC TCT I. F Π. D Е к D s ΥΚΑQΙ Ν Q. N V Ë F Ъ 530/185 600/175 GCT GAT ACC TGC GGT GGT GTT GAG CTG CTG GCC CTC AAC GGA CGC MTC AAG GTG CCC AAT A D  $\mathbf{G}$ G v Ε A L И G R Т К  $\mathbf{M}$ р N  $\mathbf{T}$ С Ъ Ŀ 690/205 660/195 ACC CTG GAG TCC AGA TTA GAC CTC ATT TCG CAG CAG CTG GTG CCC GAG ATT CGT AAC GCA Q Q L TL Е S R L  $\mathbb{D}$ Ŀ I  $\mathbf{S}$ v 2 E Т R N А 7510/225 720/215 CTT TTC GGC CGC AAC GTC AAT CGC AAA TTC ACC GAC TAA ATT CTA TAA GTG CAA AAC AAA T D GRN K L F V N R F 780 810 ACA TAA CTA ACC AGA AAG AGA ACC AGC ATC AAC ACC TAT TCA GCA GGA ACA GTT CAA GTT 870 840 ATT ACA CAG AGC TCC ACC CAC TAA ATA TTG AAC CCA AGT AAA CTT ATC CTT TGG CAG TCA 900 930 GGA GGC AAC AGC TAG GAT ATA TTG ATT GTC AAA ATA CPT TTG CCG TTG TCT TGT AAA GTG 990 960 AAA TTG AAA CAC TCA AGA ACA TTT CGG TCC TTG TGT ACG CAA CAG TTT TAA TAG TAA CCA 1020 1050 CAC TAA ACG CEC ATA TAT ATT CTC CGA TAT ATA TGT CTG TAT GCC AAT ACT TAT TAT ATA 1080 1110 GTT TAG AGG ACA CGA TCC TAG GAG CAT ACG AAA GCA TAA TAC GAA GTT TGT TAA AGT TTG 1.1401170 TTC GTT TTT TTT TTA CAT ATG CAC ATG TTT CTG AGC AGT AGG TCT AGA TAT GTG CTT ATA 1200 1230 TTG TAT ACA TAC ACT TTA AAA TTT TGC ATA CAT TCC TGT CCA AGA ATT TTT ATT TCA GTT 1290 1260TTC CCC ITG TTT ATT GTA CAT TAT TIT CTG TAG TCT TTG TTA ACT TIT TAT ATG TCT ATG 1320 1350 TCG TIT ANG TIC GIA ATT AND AAG TGC ACG TIC AGG AGG AAC AAC GGC AGT GGA TCG CCC 1380 1410CTT TTA CAG ACC GCT GOC AGG TTG CGA TGC GAC CAC ACA GCA TTG TTG CTC AGC GAA GCA 14701440CCG AAA TGG ACC TAA ACC CCC GAT TTC GCT TCT TCG AGG GCA ACG GAC GCT TGT GCA ACT 1500 1530 GCC ACT GGC TCA ACG AMA GCC CCG AAA ATC ATC AAT GTC TGT TGT TGT TGA GAT ACC GAG 1560 1590 AGT AGA GAA TAC ACA CTG CTT AGC ACG CGA CAC TTA ATA CCC ATT CAT TAC ACA TGC ACC 1620 1650 ACG ACG ATG AAG TTT GCC AAG TAG CTA AGT TGT TGA CCT GAC CAT CAA GTG CAG CTT TCA 16BO 1710

4 855 S

1.25

And the second second second

137

CAC CCT CAT ATA ACT ACT TAA AGA AAA TAT AGA AAA ATG GAA ATT ACT TTT GCA ATT TAG 1770 1740GCC ACT GCC GAA CTG CCA CCG TTT CCA CCT GAC GTG CGC CAT CAT ATC AGG CTC TAA AAA 1800 1830 TCA ACA CAC CAT GTT CAA ACA CAC GAC TAG CAT ACA GGA GCA GGA GCT ACA GTA AAT TTG 1890 1860 AAC CTT GEA TTC GCA TGT TCG CCA ATG TTC ATA GTC TAT TCT TCA ACC TCA TTT TCT AAC 1950 1920 CAA GTT ACC AAG TTC AAT ATG ATG AAT AAC TAC AAG ATT AGC AAA CAA ATA CAA GTA GCA 2010 1980 TAT GOG TTA TTA TAT AAC ATC GAG TAC TAT ATA CAT TAC ATG AAA TAC AAA ATG CAA GAA 2040 2070 AAA TTA CTT TTA AAC AAA ATT TAT GTT GAA TAA AAA ACA GTA TTT CCA AAA ACT AAA

N.

.

100

Figure 6.2 Sequence of a *vha26* cDNA (p26CD) and deduced amino acid sequence of the *Drosophila* E-subunit (GenBank accession no. is U38198). Double-stranded sequencing of the cloned genomic DNA fragment was performed according to the Sequenase<sup>TM</sup> II protocol (USB) by generation of unidirectional deletions with the Erase-a-Base system (Promega), and with the aid of synthetic oligo primers when required. The putative polyadenylation signal is underlined. The start of poly A is marked as bold.

# 6.4 Genomic structure of vba26

#### 6.4.1 Genomic DNA clones corresponding to vha26

An Oregon R genomic DNA library in vector EMBL3 was used to isolate the gene represented by the *vha26* cDNA. Approximately 40,000 phage from the library were plated on four Petri dishes (150mmX150mm). Plaque-lifts probed with random-primed p26CD cDNA, revealed three "positive" signals. Plaques from the corresponding spots were re-plated at 50-200 pfu per 90 mm Petri dish and re-screened: two individual and overlapping positive clones were obtained (ph26A and ph26B). Restriction digests of ph26A are shown in Figure 6.3A. The deduced map is shown in Figure 6.4. Probing of ph26A with *vha26* cDNA reveals the sequence homology between the genomic fragment and *vha26* (Figure 6.3B). A 5 kb *Bam*HI fragment that hybridises with the cDNA was subcloned into pBluescript SK<sup>-</sup>, and named p26kg.

ð

. .

#### 6.4.2 vha26 is a single copy gene

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and probed at high stringency with the part of vha26 cDNA (1183-2096 bp in Figure 6.2). The single band of hybridisation seen in each lane suggests a single genetic locus. This is consistent with the structure and sequence of cloned genomic DNA and *in situ* hybridisation to polytene chromosome squashes which identifies a single locus at 83B1-4 on the right arm of chromosome 3 (Figure 6.10). The 188 kb 83B interval contains three identified genes: *gorp*, a gene implicated in meiosis (Castrillon *et al.*, 1993), *nmdaR*, a glutamate receptor (Ultsch *et al.*, 1993), and a tRNA gene (Dunn, *et al.*, 1979). However, there are also several lethal P-element insertions, suggesting that inactivation of the *vha26* locus by "local jumping" of the P-element may be feasible, or even that an existing P-element insertion might already represent a lethal allele of this gene.



Figure 6.3 A: Agarose gel of ph26A phage DNA cleaved with *Bam*HI (B), *Eco*RI (E), *Sal*I(S), SalI/*Eco*RI (S/E), *BamHI*/*EcoR*I (B/E) and *Sal*I/*BamH*I (S/B). B: A blot of the above gel probed with *vha26* cDNA.



1kb

「しい」ので、「ないないのない」である

Figure 6.4 Genomic organisation of the *vha26* locus. Above: Restriction map of ph26A DNA. The estimated length of the insert is 10 kb? Below: map of p26kg and p26CD subclone of p26kg. S; *Sal*I; B; *Bam*HI; E: *Eco*RI; P:*Pst*I; X: *Xba*I.



Figure 6.5 ExoIII deletion of the p26kg insert. (A) p26kg structure showing the restriction enzymes selected to make ExoIII protected and unprotected termini. NotI and SmaI generate 5' overhanging and thus unprotected termini; SacI and KpnI generated protected termini. (B) The first 10 samples of ExoIII and S1 nuclease digestion of SacI/NotI digested p26kg. (C) The first 10 samples of ExoIII and S1 nuclease digestion of SmaI /KpnI digested p26kg. Samples of the ExoIII reaction were in both cases, removed at interval of 30 second.





Figure 6.6 (A). Plasmid minipreps from the SacI/NotI deletion experiment digested with XbaI and PstI. (B) Plasmid minipreps from the SmaI/KpnI deletion experiment digested with XbaI and KpnI.

В

А

In Section 6.8 we will see that a fly line with a P[lacW] insertion in the first intron of *vha26* can indeed be identified.

# 6.4.3 Generation of unidirectional deletions of p26kg DNA for sequencing

Two pairs of enzyme (*Sacl/Not*I and *SmaI/Kpn*I) were selected for digesting p26kg, and the resulting DNA fragments are treated with *ExoIII* to make deletions from each end (Figure 6.5A). p26kg has no digestion site for any of the four enzymes. 20 timepoints were taken for each *ExoIII* digestion. Figure 6.5B and 6.5C shows the first 10 digestions by *ExoIII* from either ends. Two colonies from each of the first 9 transformations were selected at random, and plasmid DNAs were digested with *Xba*I and *Pst*I (Figure 6.6 A, B). From the size of the bands we know how far the DNA has been deleted. A set of subclones with different sizes of deletions (Figure 6.6A) were selected for sequencing using primer T3. Another set of subclones was sequenced using primer T7. A genomic DNA fragment covering all of the *vha26* cDNA was sequenced on both strands.

#### 6.4.4 Correlation of genomic and cDNA sequences

The cDNA sequence of p26CD is contained within the 5 kb BamHI fragment of p26kg. It is punctuated by three small introns with in-frame boundaries (Figure 6.7). This is the first description of a genomic DNA sequence, and thus of intron placement in the gene for an in animal E subunit. Intron placement frequently marks functional boundaries within proteins; however, the only other genomic DNA sequence available, for *Neurospora crassa vma4* (Bowman, *et al.*, 1995), shows that intron placement is not precisely conserved between animals and fungi; however, as further genomic sequences are obtained, they may be informative. As with the *N. crassa* gene *vma4*, no TATA or CAAT boxes could be seen upstream of the putative transcriptional start site in the available sequence for *vha26*. This is commonly the case for ubiquitously expressed genes.

31 1 caa caa ata cac att ttt acc ctc gea atc gea ggg tea cac ttt cgt gaa atc ata tga 91 61 teg att tge agt gaa aat ttt cag acg tig gge aga agg caa aag taa ett ate gtt tte 121151 cae the cost oft got gog cog cog the coa act cag the goe tot gaa tot and the 211 181 att aaa tit caa tia tit cca gGC ACG GTT GTT GTA CGT GGG CTT CTT TAA AAC ACT TGA 271241ATT TCC TTT CGG TTT CTG CAG TGA AAA AAA TCA GTC AAA ATG GCA CTG AGC GAT GCT GAT s D A А  $\mathbf{L}$ М 301/8 331GTA CAA AAG CAG gta att gaa aac ttg gat tgg gaa cgg gca ggc gat caa ggt cgt agg v о к о 391 361 gaa aca ago aaa acy aga ggo the ght tge ont tht gee tht gea att tge ett tge aat 451421 aaa gat ggo gaa gto atg gga tot ooo agg toa tgt gaa ott tto ace goo agt agt doa 511 481 att aga etg aca tee tte caa ate gge eeg gte att tgg gag ttg eeg gag ttt tga cat 571 541att tyt tyg ota atg aag aca cat caa ttt att tyt oca yat ayt thy oyt aaa aag iya 631 601 gta aaa att ogt get ggt cat gtg aca ogg ooo oog cat tgg age aat gtg ttg gag oga 691 661 gae gae tag dee tge ace dea cae teg tae tet etg tea dae gae dag ega dee det tae 751 721 gtt ate aaa act tha acg aaa ata aat aga gge tag ggt ett gga egt ete eet tht eea 781 811 ttt ate aug bee agt tat cal gtg aca cae agg caa eta eta aae agg aeg act gtt tea 871/21 841/12 GATC AAG CAC ATG ATG GCG TTC ATT GAG CAG GAG GCC AAT GAG AAA GCC GAG GAG ATC GAT н м м А  $\mathbf{F}$ ΙE E A N Е К Б E тк 0 A 932/42 902/32 GCC AAG GCC GAG GAG GAG TTC AAC ATT GAG AAG GGA CGC CTG GTC CAG CAG CGT CTC F A K AEË Е Ν Ŧ Ε KG R L V 0 0 0 R Ŀ 992/62 962/52 AAG ATC ATG GAA TAC TAC GAG AAG AAG GAG AAG CAA GTT GAG CTG CAG AAG AAG ATT CAG K I M E Y Y E K к Е KQVE L Q Κ ĸ I Q 1052/82 1022/72 TCC TCC AAC ATG CTC AAC CAG GCT CGT CTG AAG gtg cgt gtc gtc cag ttg gtg gcc cta MIN Q A S -NR L ĸ 10821112aca tat acc gga aaa cac clb att clb aat cat teg taa tgt acc ctg tag GTG CTG AAA v - Lu ĸ 1172/93 1142/86 GTG CGC GAG GAC CAT GTG AGC AGC GTG CTG GAT GAT GCC CGC AAG CGT CTC GGC GAG GTC V R E D H V S S V L D D A R ĸ R Τ. G E V 1232/116 1202/106 ACC ANG ANT CAG TCC GAG TAC GAG ACT GTG CTG ACC AAG CTC ATC GTC CAG GGC CTG TTC E ¥ E, Ţ v ь т к ь TKNQS E V 0 G T. F 1262/126 1293/136 CAG ATC ATG GAG CCC AAG GTG ATC CTG CGC TGC CGC GAG GTG GAC GTC CCC CTG GTA CGT OIM Р ĸ V I RCRE v D V Ρ V R E L L 1352/156 1322/146AAC GTC CTG CCT GCC GCT GTG GAG CAA TAC AAG GCC CAG ATC AAT CAG AAC GTC GAG CTG K A N V L P A A v E Q Y 0 I N Q Ν V Ε  $\mathbf{L}$ 1412/176 1382/166TTC ATC GAC GAG AAA GAC TTC CTC TCT GCT GAT ACC TGC GGT GGT GTT GAG CTG CTG GCC A D T C FID EKD F  $\mathbf{L}$ s G G V Ε L Ξı A 1442/186 1472CTC AAC GGA CGC ATC AAG gtg agt act gtc ctt tog gtg gag aga gag caa toc caa ctg L N R Ι к G 15021533/196 ate taa caa ace act tea g GTG CCC AAT ACG CTG GAG TEC AGA TTA GAC CTC ATT TEG CAG V P N T L E S R L D L Ι S 0

ł

édi...

1551/213 1563/206 CAG CTG CTG CCC GAG ATT CGT AAC GCA CTT TTC GGC CGC AAC GTC AAT CGC AAA TTC ACC T. v P Е Ϊ R N А L F  $\mathbf{G}$ R N V N R К F ጥ Ċ, 1653 1623/226 GAC TAA AT TCT ATA AGT GCA AMA CAA AAC ATA ACT AAC CAG AAA GAG AAC CAG CAT CAA D 1712 1682CAC CTA TTC AGC AGG AAC AGT TCA AGT TAT TAC ACA GAG CTC CAC CCA CTA AAT ATT GAA 17721742CCC AAG TAA ACT TAT CCT TTG GCA GTC AGG AGG CAA CAG CTA GGA TAT ATT GAT TGT CAA 1802 1832 AAT ACT TIT GCC GTT GIC TIG TAA AGT GAA ATT GAA ACA CTC AAG AAC ATT TCG GTC CTT 1862 1892 GTG TAC GCA ACA GTT TTA ATA GTA ACC ACA CTA AAC GCG CAT ATA TAT TCT CCG ATA TAT 1922 1952 ATG TCT GTA TGC CAA TAC TTA TAT AGT TTA GAG GAC ACG ATC CTA GGA GCA TAC GAA 1982 2012 AGC ATA ATA CGA AGT TTG TTA AAG TTT GTT CGT TTT TTT ACA TAT GCA CAT GTT TCT 2042 2072 GAG CAG TAG GTC TAG ATA TGT GCT TAT ATT GTA TAC ATA CAC TTT AAA ATT TTG CAT ACA 2102 2132 TTC CTG TCC AAG AAT TYT TAT TTC AGT TTT CCC C1T GTT TAT TGT ACA TTA TTT TCT GTA 2192 2162 GTC TTT GTT AAC TTT TTA TAT GTC TAT GTC GTT TAT GTT CGT AAT TAT CAA GTG CAC GTT 22522222 CAS GAG GAA CAA CGG CAG TGG ATC GCC CCT TTT ACA GAC CGC TGG CAG GTT GCG ATG CGA 2282 2312 CCA CAC AGE ATT GTT GCT CAG CGA AGE ACE GAA ATG GAE CTA AAC CCE CGA TTT CGE TTE 2372 2342 TTC GAG GGC AAC GGA CGC TTG TGC AAC TGC CAC TGG CTC AAC GAA AGC CCC GAA AAT CAT 2402 2432 CAA TGT CTG TTG TTG AGA TAC CGA GAG TAG AGA ATA CAC ACT GCT TAG CAC GCG ACA 2492 2462 CTT AAT ACC CAT TCA TTA CAC ATG CAC CAC GAC GAT GAA GTT TGC CAA GTA GCT AAG TTG 2522 2552 TTG ACC TGA CCA TCA AGT GCA GCT TTC ACA CCC TCA TAT AAC TAC TTA AAG AAA ATA TAG 26122582 AAA ANT GGA AAT TAG TTT TGC AAT TTA GGC CAC TGC CGA ACT GCC ACC GTT TCC ACC TGA 26722542CGT GCG CCA TCA TAT CAG GCT CTA AAA ATC AAC ACA CCA TGT TCA AAC ACA CGA CTA GCA 2702 2732 TAC AGG AGC AGG AGC TAC AGT AAA TTT GAA CCT TGT ATT CGC ATG TTC GCC AAT GTT CAT 2762 2792 AGT GTA TTC TTC ANG CTC ATT TTC TAN CCA AGT TAC CNA GTT CAN TAT GAT GAA TAA CTA 2852 2822CAA GAT TAG CAA ACA AAT ACA AGT AGC ATA TGC CTT ATT ATA TAA CAT CGA GTA CTA TAT 2882 2912 ACA TTA CAT GAA ATA CAA AAT GCA AGA AMA MTT ACT TTT AAA CAA AAT TTA TGT TG<u>A ATA</u> 2942 2972 AAA AAC AGT ATT TOC AAA AAC TAA Act taa ctg tat aac aac ttc ctt ttg caa tgt tct 3032 3002 aat gat dot aaa aac aag aca tgg ggt aaa ota tit taa gaa att caa tot agg act caa 3062 tag tet ata gta cea

y. Nj

ŝ

Ż

ê

いたい たいたい いたまい

and the second

Figure 6.7 Sequence of *vha26* genomic DNA and deduced amino acid sequence of the *Drosophila* E-subunit (GenBank accession No. is U389510. Double-stranded sequencing of the cloned genomic DNA fragment was performed according to the Sequenase<sup>TM</sup> II protocol (USB) by generation of unidirectional deletions with the Erase-a-Base system (Promega) and also with the aid of synthetic oligo primers when required. The putative polyadenylation signal is underlined.

Although the cDNA (Canton S) and genomic DNA (Oregon R) came from different *D*. *melanogaster* strains, apart from the genomic DNA having three small introns, the sequences are identical.

# 6.5 Phylogenetic analysis of the E subunit

The recent availability of deduced sequence from a broad range of phyla allows new insights into the structure of the E subunit. Although the primary sequence is poorly conserved across phyla, the substitutions are generally conservative, even in the distantly related halophilic archaebacterial Haloferax volcanii gene. Similarly, the predicted secondary structure is conserved; all members of the family appear to encode predominantly hydrophilic α-helical proteins with conserved N- and C-termini, as noted previously (Bowman, et al., 1995). However, there is a clearer dichotomy between animal and plant/fungal sequences than we have observed for other D. melanogaster V-ATPase subunits, suggesting that the E-subunit may have a distinctive role in animals (perhaps plasma membrane or epithelial targeting), which requires the conservation of regions of primary sequence. As the gene appears to be single-copy both in Manduca (Gräf, et al., 1994) and Drosophila, it is likely that the same gene product serves both endomembrane and plasma membrane roles, so we speculate that in epithelia there may be as yet unidentified conserved accessory proteins which bind conserved domains. For example, an extended 22-aa N-terminal motif DVQKQIKHMMAFIEQEANEKAEE is absolutely conserved in all known animal sequences across a 400 million year cyclutionary span, but only 15 residues are conserved in plants, 11 in fungi and 6 in H. volcanii (Figure 6.8). Further in the sequence, the motifs QRLKIMEYYEKKEKQ and QKKIQ(S/M)SN(L/M)(L/M)NQARLKVL are absolutely conserved in animals, while being poorly conserved in plants; they also have a particularly high surface probability (as calculated by Mac Vector, IBI). Similarly, at the C-terminus, the motif NTLESRL(D/E)LI(A/S)QQ is conserved only in animals.

1 .....MNDGDVSRQIQQMVRFIRQEAEEKANEISVPAEEEFNIEKLQLVEAEKKKIRQ VE arath VE\_mescr 1 .....MNDTDVQNQIQQMVRFMRQEAEEKANEISVSAEEEFNIEKLQLVEAEKKKIRQ 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME VE\_huma1 VE\_huma2 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDRKAEEEFNIEKGRLVQTQRLKIME VE huma3 VE bovin 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME VE\_mans1 VE mans2 1 .....DADVOKOIKHMMAFIEOEANEKAEEIDAKAEEEFNIEKGRLVOOORLKIME VE\_drome 1 .....MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME 1 MSSAITALTPNOVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG VE\_yeas1 1 MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG VE\_yeas2 1 .MSQVHALSDDQVGQELRKMTAFIKQEAEEKAREIQIKADEEFAIEKSKLVRQETDAIDS VE\_neucr VE\_arath 54 DYEKKEKQADVRKKIDYSMQLNASRIKVLQAQDDIVNAMKDQAAKDLLNVSRDEYAYKQL VE\_mescr 54 EYERKAKQVDVRRKIEYSMQLNASRIKVLQAQDDLVNAMKEAASKELLLVSGDHHQYRNL 56 YYEKKEKOIEOOKKIOMSNLMNOARLKVLRARDDLITDLLNEAKORLSKVVKDTTRYOVL VE humal VE\_huma2 56 YYEKKEKQIEQQKKIQMSNLMNQARLKVLRGRDDLITDLLNEAKQRLSKVVKDTTRYQVL 56 YYEKKEKQIEQQKKIQMSNLMNQARLKVLRARDDLITDLLNEAKQRLSKVVKDTTRYOVL VE huma3 VE\_bovin 56 YYEKKEKQIEQOKKIOMSNLMNOARLKVLRARDDLITDLLNEAKORLSKVVKDTTRYQVL VE\_mans1 56 YYEKKEKQVELOKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLAEVPKDIKLYSDL VE\_mans2 52 YYEKKEKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLAEVPKDIKLYSDL VE\_drome 56 YYEKKEKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVTKNQSEYETV VE\_yeas1 61 NFKSKLKKAMLSQQITKSTIANKMRLKVLSAREQSLDGIFEETKEKLSGIANNRDEYKPI VE\_yeas2 61 NFKSKLKKAMLSQQITKSTIANKMRLKVLSAREQSLERIFEETKEKLSGIANNRDEYKPI VE\_neucr 60 AYAKKFKQAQMSQQITRSTMANKTRLRVLGARQELLDEIFEAASAQLGQATHDLGRYKDI VE\_arath 114 LKDLIVOCLLRLKEPSVLLRCREEDLGLVEAVLDDAKEEYAGKAKVHA.PEVAVDTKIFL 114 LKELIVQSLLRLKEPAVLLRCREEDKHHVHRVLHSAREEYGEKACVSH. PEVIVD. DIHL VE\_mescr VE\_huma1 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV..DVQIDQESYL VE\_huma2 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV..DVQIDQESYL VE\_huma3 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV..DVQIDQESYL VE bovin 116 LDGLVLOGLYOLLEPRMIVRCRKODFPLVKAAVOKAIPVYKVATKRDV..DVQIDQEAYL VE mans1 116 LVTLIVQALFQLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV..VLKIDNENFL VE\_mans2 112 LVTLIVOALFOLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV..VLKIDNENFL VE drome 116 LTKLIVOGLFQIMEPKVILRCREVDVPLVRNVLPAAVEQYKAQINQNV..ELFIDEKDFL VE\_yeas1 121 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN VE\_yeas2 121 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN VE neucr 120 LRDLILEGFYAMNEPELVIRARQADYDAVREAAGWASAQYKHKTDKDVKATIDAENPV.. VE\_arath 173 PPPPKSNDPHGLHCSGGVVLASRDGKIVCENTLDARLDVAFRMKLPVIRKSLFGQVTA.. VE\_mescr 172 PPAPTSYDSHELSCSGGVVMASRDGKIVFENTLDARLEVAFRKKLPQIRKQLFAV..... VE\_huma1 174 PE.....DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK VE\_huma2 174 PE.....DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK VE\_huma3 174 PE.....DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK VE\_bovin 174 PE.....EIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK VE mans1 174 PP.....DTCGGIELIAAKGRIKISNTLESRLELIAQQLLPEIRNALFGRNPNRK VE\_mans2 170 PP.....DTCGGIELIAAKGRIKISNTLESRLELIAQQLLPEIRNALFGRNPNRK VE\_drome 174 SA.....DTCGGVELLALNGRIKVPNTLESRLDLISQQLVPEIRNALFGRNVNRK 181 KD.....LVSGGVVVSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK VE\_yeas1 VE\_yeas2 181 KD.....LVSGGVVVSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK VE\_neucr 178 PE.....GSAGGIIIVGGNGKIDIDNTFEARLTLLKDSALPAMRKALFGENPNRK VE\_arath VE\_mescr . . .

VE\_mescr ... VE\_huma1 224 FLD VE\_huma2 224 FLD VE\_huma3 224 FLD VE\_huma3 224 FLD VE\_mans1 224 FLD VE\_mans2 220 FTD VE\_drome 224 FTD VE\_yeas1 231 FFD VE\_yeas2 231 FFD VE\_neucr 228 FFD (A)



(B)

% identity

i ar

Figure 6.8 A: PILEUP (GCG) of polypeptides related to the *Drosophila* E subunit. All sequences are deduced from cDNA. B: Phylogenetic tree of V-ATPase E-subunits generated by ClustalW and N-J plot using the PILEUP data.. GenBank accession numbers are as follows.

VE\_drome Drosophila melanogaster ACCESSION NO.:U38198 and U38951

VE\_mans1 Manduca sexta accession no.: P31402

VE\_mans2 Manduca sexta accession no.: S25014

VE-humal Homo sapiens accession no.: P36543

VE\_huma2 Homo sapiens accession no.: A42666

VE\_huma3 Homo sapiens accession no.: JN0909

VE-bovin Bos taurus accession no.: P11019

VE\_arath Arabidopsis thaliana accession no.: X92117

VE\_neucr Neurospora crassa accession no.: U17641

VE\_mescr Mesembryanthemum crysta accession no.: X92118

VE\_ycas1 Saccharomyces cerevisiae accession no.: Z49821

VE\_yeas2 Saccharomyces cerevisiae accession no..: P22203



Figure 6.9 Genomic Southern blot of the *vha26* locus. Southern blot of genomic *D. melanogaster* DNA. Genomic DNA purified from wild-type *D. melanogaster* (Canton S) was cleaved with a range of restriction endonucleases, separated by electrophoresis in a 0.8% agarose gel, blotted to Hybond N (Amersham), and hybridised with a  $^{32}P_{-}$  labelled random-primed probe of *vha26* cDNA. Prehybridisation was in Church buffer (7% SDS, 1% BSA, 1 mM EDTA, 0.25 M Na2HPO4, pH 7.2) at 65 °C for 3 hours, and hybridisation was in Church buffer overnight. The filter was then washed at 65 °C in 2XSSPE, 0.1% SDS for 30 min; 0.5X SSPE, 0.1% SDS for 30 min; and finally in 0.1XSSPE, 0.1% SDS for 30 min and exposed to X-ray film for 1-2 days.



Figure 6.10 Chromosomal localisation of vha26. Salivary gland chromosome squashes were prepared by standard techniques (Ashburner, 1989). Chromosomes were probed with biotinylated, random-primed vha26 cDNA and hybridisation was detected using streptavidin-conjugated peroxidase and diaminobenzidine (Courtesy of Ms. Zhongsheng Wang).



Figure 6.11 Northern blot analysis of vha26 gene expression. Total RNA was isolated using RNA zoI<sup>TM</sup> from Canton S embryos, larvae, pupae and adults; from adult head, thoraces and abdomens; and from male and female adults. The RNA was separated by electrophoresis in 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose and hybridised with <sup>32</sup>P-labelled random-primed probes. (A) Adult tissues. H, head; T, thorax, Ab, abdomen; M, males; F, females. (B) Developmental Northern. E, embryo; L, third instar larva; P, pupa; Ad, adult. The filter was first hybridised with a *vha26* cDNA probe, then the same blot was stripped and reprobed with *rp49* as a control for differences in RNA loading.

Recently, it has been shown in *M. sexta* that V-ATPase activity can be controlled hormonally via reversible association and dissociation of the V1 headgroups from the V0 transmembrane sector (Sumner, *et al.*, 1995), and that V-ATPases in *D. melanogaster* tubules are controlled by cAMP and cGMP (Dow, *et al.*, 1994). In this context, it is interesting to note that the insect genes share a C-terminal PKA/PKG phosphorylation site consensus (RKFT) at residues 222-5, although the target threonine is not preserved in other phyla. 2.0

Ş

ų

#### 6.6 Gene expression

Northern blots of total RNA probed with *vha26* cDNA identify a single band equivalent to a transcript (s) of approximately 2.3kb (Figure 6.11). Different cloned cDNAs differed only in the length of their 5' UTRs, and the genomic sequence identified so far does not contain alternative exons that could be spliced to yield a product of the same size. The simplest interpretation is therefore that a single mRNA species is transcribed from the gene. Equivalent levels of expression are found in adult head, thorax and abdomen (Figure 6.11A) as might be expected for a "housekeeping" gene. The RNA is, however, much reduced during pupation (Figure 6.11B), as is the case with RNA for the *D. melanogaster* 68 kD A subunit (See Chapter 4). In contrast, the 14 kD V-ATPase F subunit RNA is expressed at similar levels during all development (Chapter 7; Guo *et al.*, 1995). In *M. sexta*, it has been suggested that some of the V-ATPase subunits disappear as the midgut pump shuts down during larval moults (Sumner, *et al.*, 1995); it is possible that downregulation of certain critical mRNA species may be involved.

#### 6.7 Identification of a fly line carrying a P[lacW] insertion in vha26

In situ hybridisation for polytene chromosome places vha26 at 83B1-4 in chromosome 3. From the Bloomington Drosophila Stock Center and the Drosophila Genome Center





Figure 6.12 Southern blotting of gemonic DNA identified a line carrying a P[lacW] insertion in or near the *vha26* gene. (A) Photo of Agarose gel of genomic DNA cleaved by *Bam*HI, each lane containing genomic DNA from 10 adult flies. Each lane represents a line with a P-element insertion at 83B. 1, p1560; 2, p1581; 3, p1520; 4, p1609; 5, p1636; 6, p1540; 7, p1644; 8, p1529; 9, l(3)s1938; 10, l(3)j3E7; 11, l(3)j9B6;12, l(3)j5E7. Lines 1-8 were provided by the Bloomington stock centre; Lines 9-12 were from the Drosophila Genome Centre at the Carnegie Institute of Washington. (B) Southern blot of the genomic DNA gel (A) probed with p26kg, the 4 kb genomic fragment that includes *vha26*.



Figure 6.13 Plasmid rescue of DNA flanking the P[lacW] element in l(3)j3E7. The restriction enzyme for plasmid rescue was EcoRI. (A) Restriction digests of rescued plasmid. (B) Southern blot of gel (A) probed with p26kg. (C) Same filter as (B) stripped and reprobed with the 1.9 kb P[lacW] fragment corresponding to the plasmid sequences. E, EcoRI; B, BamHI.

1 31 CCT TAT GTT ATT TCA TCA TGG ATC ATA TGA TTA AGT GGA TOT CTC TTG CCG ACG GGA CCA 61 91 TTT CAC GAA AGT GTG ACC CTG CGA TTG CGA GGG TAA AAA TGT GTA TTT GTT GTC GCT GTC 121 151 AGA CCA CCG ATA GAC GAT GTA ATT GTT ATC GCA TTT GTA ACA GAG GCT TCA CTT TAA TCG 181 211ACT AGG TAG AAA AAT CAT GCG ATA TAA TCT ATA TAT GAT AAT GAA AAA TCA ATT TCG CTC 271 241 TTT AAA TAT CAT TAT TAT ATT ACT CGA ATA ATC GAG CGT TAA TTT ATA CAT CTG CAT TCC 301 331 CGA AAT CCA CAT TAA TTG CCA GTG TGA TCG GAG TAT AAT AAC CTG ACA ATA ATA TGA TGT 391 361 GAC AAT ATA AGC CAT CCC TGC TTT ATT GTA AGT GTA TTT TTT AAT GTA CAC ACG CTG ACA 421AAA GTT GTG TTT CCT TCG GGA TTT CGC TAA GT



TTCGTGAAATCATATGATCGATTTGCAGTGAAAATTTTCAGACGTTGGGCAGAAGG

Figure 6.14 (A) Sequence reading out of the rescued plasmid from primer PR-1. (B) Sequence homology of rescued plasmid from line l(3)j3E7 and *vha26*. Underlined indicates the end of the P[*lacW*] insertion. (C) Position of the P[*lacW*] insertion in line l(3)j3E7.

(A)

C. N. S. C.

とないが、「はなける」というできた。 ひゃってはないが、いなないです。 いろになる する ていたち あたい 大学

at the Carnegie Institute of Washington, 12 fly lines carrying P-element insertions in this region were obtained. Adult genomic DNA isolated from each line was cleaved by *Bam*HI and separated in 0.8% agrose gel (Figure 6.12 A). A Southern blot of this gel was hybridised with a dro26kg fragment probe (Figure 6.12B) All lanes exhibited a  $\approx$ 5kb band which hybridised with the 5 kb *vha26* genomic fragment (See Figure 6.4). However, Lane 10 corresponding to fly line l(3)j3E7, exhibited two extra bands of  $\approx$ 1.8 kb and  $\approx$ 13.5 kb. This fly line carries a single P[*lac*W] insertion at 83B1-2 (Refer to Encyclopaedia of *Drosophila*). The 5 kb size band in this lane was from the balancer chromosome. The other two extra bands were likely come from the chromosome with the P-element which inserted in gene *vha26*. F

3

Ś

.e. ...

.,

<u>م</u>

-

P[*lacWJ* is an enhancer-trap element that which includes a *lacZ* reporter and bacterial plasmid sequences for rapid plasmid rescue (Bier *et al.*, 1989). *Eco*RI was chosen for digestion of the genomic DNA used for plasmid rescue of line 1(3)j3E7 (See Chapter 2 and 3 for methods). Figure 6.13 A shows the rescued plasmid digested with *Eco*R1 (lane 1) and doubly digested with *Eco*RI and *Bam*HI (lane 2). The plasmid digested with *Eco*RI produced two bands of ≈14 kb and ≈4.1 kb. Hybridisation with a dro26kg probe (Figure 6.13B) and with plasmid sequence (Figure 6.13C) shows that the 14 kb band contains both the 1.9 kb plasmid sequence and flanking genomic DNA which hybridises to *vha26* genomic DNA. The 4.1 kb fragment comes either from incomplete digestion or from "co-cloning" in the process of plasmid rescue. The plasmid after double digestion with *Eco*RI and *Bam*HI released a 1.8 kb *vha26* genomic fragment which is of a same size as the band found in the genomic Southern blot (Figure 6.12).

Figures 6.12 and 6.13 strongly suggested that the P[lacW] insertion in line l(3)j3E7 is in the *vha26* gene. As the rescued plasmid by *Eco*RI was 14+4.1 kb, the orientation of the insertion should be opposite to *vha26* gene, otherwise the rescued plasmids should be much smaller because there are several *Eco*RI sites immediately 3' prime to the dro26kg fragment (See Figure 6.4). Sequencing the rescued plasmid specified the P[lacW] insertion to the 5' of *vha26* (Figure 6.14).

# 6.8 Discussion

This chapter reports the first genomic sequence and chromosomal localisation for a V-ATPase E-subunit in an animal. Alignment with a few E subunit sequences clearly shows that *Drosophila* gene to be conserved across eukaryote and prokaryote phyla. It has been possible to identify extended motifs diagnostic of either all members or merely animal members of the family. Expression studies suggest that *vha26* mRNA may fall into a subclass of V-ATPase subunits which is not expressed continually during the life of the insect. This characterisation of *vha26* is the first step to elucidate further the function of the subunit in an organismal context by *Drosophila* genetics. (1)の設計はないのである。ためである。ためである。これである。これである。これである。これである。これである。これである。

The isolation of a P[lacW] insertion in gene vha26 might be of great use for analysis the function of V-ATPase E-subunit in *Drosophila*. The *lacZ* gene in P[lacW] may allow detection of the domain of expression of the gene. Precise and imprecise excision of the P-element will generate new alleles. More detailed mutational analysis based on the P[lacW] insertion line will be carried out in the near future. See chapter 5 for examples of this kind of analysis.
# Chapter 7

# *vha14*, the Gene Encoding a 14 kDa F Subunit of the V-<u>ATPase</u>

### 7.1 Summary

A Drosophila melanogaster cDNA for the 14 kDa F-subunit has been cloned via homology with the corresponding M. sexta gene. Its deduced translation product is a 124 amino acid polypeptide sharing 90% identity with the M. sexta polypeptide and 50% identity with an analogous polypeptide of Saccharomyces cerevisiae. Homology was also found with expressed sequence tags from a variety of other species, indicating that the subunit is phylogenetically conserved. The Drosophila gene (vha14) is present as a single copy at cytological position 52B on the second chromosome, and gives rise to an mRNA species of 0.65 kb. Abundance of the vha14 transcript, relative to an rp49 control, shows relatively little variation during development and between adult head, thorax and abdomen, suggesting that the F-subunit is a relatively ubiquitous component of the V-ATPase.

#### 7.2 Introduction

The gene encoding F-subunit of V-ATPases was first identified from Tobacco hornworm midgut (*Manduca sexta*) and subsequently from yeast and mammalian. Cloning of a cDNA for the F-subunit and demonstration that the polypeptide is indeed a component of the *M. sexta* V-ATPase, was carried out as follows (Gräf et al., 1994b). A polyclonal antiserum against *M. sexta* plasma membrane V-ATPase was used to screen a cDNA expression library, leading to characterisation of a gene that encodes a 14 kDa polypeptide (Gräf *et al.*, 1994). A fusion protein was then used to purify monospecific antibodies against the gene product. Such antibodies both cross-reacted with the Fsubunit on a Western blot and were able to abolish *M. sexta* V-ATPase activity *in vitro* (Gräf *et al.*, 1994). Though Western blotting failed to detect membrane components from other species (Gräf *et al.*, 1994), a related *S. cerevisiae* gene (*VMA7*) was subsequently described, null mutations of which show properties characteristic of other classes of V-ATPase null (Graham *et al.*, 1994; Nelson *et al.*, 1994). Another related gene (NtpG) appears to encode a component of the Na<sup>+</sup>-pump from the microbe *Enterococcus hirae* (Takase *et al.*, 1994). While these results confirm the F subunit as an essential component of some V-ATPases, it is not clear whether it is a general component, or instead serves a specialised role in holoenzymes from particular tissues. In principle, the powerful genetic tools unique to *Drosophila* (Rubin, 1988) may allow a more detailed resolution of this question. As a first step to such an analysis, this chapter reports the cloning and characterisation of *vha14*, the *D. melanogaster* gene encoding the F-subunit.

...

î.

Add Same

200

## 7.3 cDNA cloning and DNA sequence analysis

A D. melanogaster head  $\lambda$ ZapII cDNA library was screened by plaque hybridisation with a cloned cDNA for the M. sexta F-subunit. Hybridisation signals were obtained at approx. 1:10,000 and three plaques were purified by successive rounds of screening. One of these cDNAs was excised as pBluescript and sequenced on both strands, using synthetic oligonucleotides to extend the reading. The 595 bp contig contains an open reading frame corresponding to a 124 amino acid polypeptide of  $M_r \approx 13.9$  kDa (Figure 7.1), which is clearly a V-ATPase F-subunit, sharing 90.3% identity with the F-subunit of M. sexta (insect), and 49.6% identity with that of S. cerevisiae (Figure 7.2). In accordance with the nomenclature for other D. melanogaster V-ATPase loci, the gene has been named vha14. TCCACATCGCTCGTAAGAAAAAATTAGAAAAAACCAATCGAA**ATG**GCTCTGCACTCGGCA 60 Ŀ Н S Ā 6 Μ А ANCAAGGGAAAACTGATCAGCGTTATCGGCGACGAGGACACCTGTGTGGGCTTTCTGCTC 120 π ĸ G к Γ., I  $\mathbf{S}$ v Ι G D E D  $\mathbf{T}$ С v G F  $\mathbf{L}$ L 26 GGCGGAGTGGGCGAGATCAACAAGAATCGCCATCCCAACTTTATGGTGGTCGACAAAAAT 180 G G Ε Ι Ν Κ Ν R Ħ Ρ Ν F М v v D К Ν 46 G V ACGGCCGTCAGCGAACTGGAGGACTGTTTCAAGCGTTTCCTTAAGCGGGACGATATCCAC 240 т А v S Е L  $\mathbf{E}$ D С  $\mathbf{F}$ ĸ R F L Κ R D D Ι D 66 ATCATTCTAATCAACCAGAACTGCGCCGAGCTTATTCGTCATGTGATCGATGCCCATACG 300 I Τ L Ι N Q Ν С A Е L Ι R н V Ι D А Н Т 86 TCGCCCGTGCCCGCTGTTTTGGAGATTCCCTCCAAGGACCATCCGTACGACGCCAGCAAG 360 Ε Τ S Κ D н Y D 105 S Р v Ρ А v Ľ Ρ Ρ А S K. GACTCCATTCTGCGTCGCGCCCGCGGCATGTTCAATCCGGAGGATCTGGTGCGCTAATTC 420  $\mathbf{S}$ Ι L R R RGM F Ν  $\mathbf{P}$  $\mathbf{E}$ Ð  $\mathbf{L}$ V R k 124D Α CTCGAATTCTGCTCGAGGACACTGTTTCGTATTGCTGCAACCGCCAGAGTATTGCTTTAC 480 ACCCTGTAAACAACTATCCATAGATTCAGTGCTTCGCCTTTGTTCTTATCGTGTATTTAA 540 AGACATTTATTAAATGGTTTTCGTTGTATAAATAGATTAAA 581

Figure 7.1 Sequence of a *vha14* cDNA, and deduced amino acid sequence of the *Drosophila* F-subunit (GenBank accession no. Z26918).

The putative start codon between nucleotides 43-45 is embedded within a region of perfect agreement with the canonical cukaryotic translation initiation sequence, RNNMTGG. A 3' UTR of 164 bp separates the stop codon at nucleotide position 415-417 from a 16 residue poly(A) tract. As in the case of the cloned cDNA for the *D. melanogaster* 16 kDa subunit (Meagher *et al.*, 1990), there is no canonical polyadenylation signal. There is, however, the motif ATTAAA between nucleotides 548-552, centred 26 bp before the start of the poly-A tract. In *M. sexta*, there are two F-subunit transcripts, distinguished by the length of 3' UTR (Gräf *et al.*, 1994). The shorter of the two has a AATAAA motif, though unusually close to its poly(A) tract, whereas the longer has in addition an ATTAAA motif centred 17 bp before the poly(A) tract. Thus this may be a polyadenylation signal for these RNAs.

### 7.4 Amino acid sequence comparisons

In addition to matches to *M. sexta* and *S. cerevisiae* F-subunit sequences, a search of the GenBank database using the programmes TFASTA (GCG) and BLAST (NCBI) revealed matches to expressed sequence tags (ESTs) from human fetal lung, spleen, and brain; from the plants *Arabidopsis thaliana* and *Oryza sativa*; from the nematode worms *Caenorhabditis elegans* and *briggsiae*; and from the malarial parasite *Plasmodium falciparium* (Figure 7.2A). Probably due to EST sequencing errors, it was occasionally necessary to switch reading frames in order to maximise alignment (see legend to Figure 7.2A). We can thus extend greatly the known phylogenetic base for the occurrence of the F-subunit, which is clearly distributed widely and conserved in plants, animals and fungi (Figure 7.2B). We can also add greatly to the authority of the suggestion of similarity between the Na<sup>+</sup> ATPase of the bacterium *Enterococcus hirae* and the V-ATPases, as most of the residues identified as matching the *M. sexta* sequence can now be seen to be conserved among all the V-ATPase subunits (Figures 7.2A and 7.2B)

| VF_ATTS   | 1.        | MAGSSYTPARNSALIAMIADEDTVVGLIMAGVGNVDIRRKINYLIVDSKTTVXQIEDA       |
|-----------|-----------|------------------------------------------------------------------|
| VF RICC   | 1         | MAGRPSIPTNSSALIAIIADEDTVTGFLLAGVGNVDLRKKTNYLIV. DNKTIVKQIEDA     |
| VF_CELEG  | 1         | , MASAAKGKILAVIGDEDIVVGFLLGGVGELNKARKPNYLIVDKQTTVQEIEEA          |
| VF_R02891 | 1         |                                                                  |
| VF_F06548 | í.        | AGRGKLIAVIGDEDTVTGFLLGGIGBLNKXRHPNFLVVEKDTIXNEIEDT               |
| VF_F07836 | 1         | AGRGKLIAVIGDEDTVTGFLLGGIGELNKXRHPNFLVVEKDTTXNETEDT               |
| VF_F08542 | 1         | AGRGKLIAVIGDEDIVTGFLLGGIGELNKXRHPNFLVV., EKDITIXEIEDI            |
| VF_D31181 | 1         | AAGMAGRGKLIAVIGDEDTVTGFLLGGIGELNKNRHPNFLVV EKDTTINXIEDT          |
| VF_DROME  | 1.        | MALHSAIKGKLISVIGDEDTCVGFLLGGVGEINKNRHPNFMVVDRWTAVSELEDC          |
| VF_MANSE  | 1         | MALHAAVKGKLISVIGDEDTCVGFLLGGIGEINKNRHPNFMVVDKNTPVSEIEEC          |
| VF_T57982 | 1         | TEDT                                                             |
| VF_YEAST  | 1         | MAEKRTLIAVIADEDTTTGLLLAGIGQITPETQEKNFFVYQEGKTTKEELTDK            |
| VF_T02519 | 1         | AREEV                                                            |
| VF_NTPG   | 1         |                                                                  |
|           |           |                                                                  |
| VF_ATTS   | 59        | FKEFS, GXDDIAIILSSHFIANMIRFLVDSYNKPV, PXILEIPSKDHPYDPDHESVLSRV   |
| VF_RICC   | 59        | FKEFT.TREDIAIVLISQYVANMIRFLVDSYNRPV.PAILEIHSKDHPYDQDRFCSFWVK     |
| VF CELEG  | 54        | FNGFC . ARDDIAIILINQHIAEMIRYAVDNHTQSI . PAVLEIPSKEAPYDPSKDSILNRA |
| VF_R02891 | 30        | FKGFC.ARDDXILINGHIAEMIRYAVDQHTQSI.PAVLEIPSKEAPYDPSKDSILNRA       |
| VF_F06548 | 51        | FRQFL, NRDDIGIILINQYIAEMVRHALDAHQQSI, PAVLEIPSKEHPYDX            |
| VF_F07836 | 51        | FRQFL.NRDDIGIILINQYIAEMVRHALDAH*QSI.PAVLEIPSKEHPYDAA             |
| VF_F08542 | 51        | FRQFL.NRDDIGIILINQYIAEMVRHALDAHXQST.PAVLEIPSKEHP                 |
| VF_D31181 | 55        | FRQFL.NRDDIGIILINQYIAEMVRHALDGHQQSI.PAVLGIPFKE                   |
| VF_DROME! | 56        | FKRFL.KRDDIDITLINQNCAELIRHVIDAHTSPV.PAVLEIPSKDHPYDASKDSILRRA     |
| VF_MANSE  | 56        | FKRFV.KRDDIDIILINQNVAELVRHVIDAHTAPV.PSVLEIPSKDHPYDASKDSILRRA     |
| VF_T57982 | 5         | FRQFL.NRDDIGIILINQYIAEMVRHALDAHQQSI.PAVLEIPSKEHPYDAAKDSILRRA     |
| VF_YEAST  | 54        | FNHFTEERDDIAILLINQHIAENIRARVDSFTNAF.PAILEIPSKDHPYDPEKDSVLKRV     |
| VF_T02519 | 6         | FKEYS.SKHDCGVILINQQIADETRYLVDLHDKIL.PTVLEIPSKDKPFDPNKDSIIQRV     |
| VF_NTPG   | 37        | IDEM., AKNEYGVIYITEQCANLVPETIERYKGQLTPATILIPSHQGTLGIGLEEIQNSV    |
|           |           |                                                                  |
| VF_ATTS   | 117       | KYLFSAESVSQR                                                     |
| VF_RICC   | 117       | NCFL*                                                            |
| VF_CELEG  | 112       | RGLFNPEDFR,,                                                     |
| VF_R02891 | 86        | RGLFNPEGFR                                                       |
| VF_F06548 |           |                                                                  |
| VF_F07836 |           |                                                                  |
| VF_F08542 |           | ******                                                           |
| VF_D31181 |           |                                                                  |
| VF_DROME  | 114       | RGMFNPEDLVR.                                                     |
| VF_MANSE  | 114       | KGMFNPEDLVR.                                                     |
| VF_T57982 | 63        | RXLFTAEDLR                                                       |
| VF_YEAST  | 113       | RKLFGE                                                           |
| VF_T02519 | <b>64</b> | KLFFGGDISHL.                                                     |
| VF NTPG   | 95        | EKAVGONIL                                                        |

(A)

. . . .

Sec. 10

そのえて、



Figure 7.2 A: Alignment of known 14-kDa F-subunit as sequences. All sequences are deduced from cDNA. GenBank accession numbers are as follows:

- A. thaliana, ATTS2695 and ATTS 3474;
- Oryza sativa (rice) callus, RICC1365A;
- C. elegans, Z49073;
- C. briggsiae, R02891 and R02892;
- H. sapiens infant human brain, F06548, F07836, F08542;
- H. sapiens fetal lung, D31181;
- D. melanogaster head, Z26918;
- M. sexta midgut, X67130;
- S. cerevisiae; U10073; P. falciparum, T02519; ntpG, D17462.

B: Phylogenetic tree of V-ATPase F-subunits generated by PILEUP using default parameters.

- 上穴 Y i. N 

The many human ESTs show some differences in amino-acid sequence (Figure 7.2A); but it should be noted that they are all at least 98% identical at the DNA level, with many of the differences being ambiguous nucleotides in their sequences. It seems likeliest at present that the human ESTs are all cDNAs from the same human gene.

In common with other F-subunits (Figure 7.2), the N-terminus of the Drosophila polypeptide lacks a known membrane targeting sequence. Since the polypeptide is also hydrophilic and is accessible to antibodies (Gräf et al., 1994), this would be compatible with it being synthesised cytoplasmically. A search of the Prosite polypeptide motif database also revealed extended similarity to a casein kinase II phosphorylation site, beginning at amino acid 50 (SELED), and the motif is conserved in the F-subunit of *M. sexta* (though not in other F-subunits). Although there are few clues as to how V-ATPases might be regulated (Sumner et al., 1995), and there is not yet evidence for the action of any particular kinase, V-ATPases demand a large fraction of the cellular energy budget (Dow and Harvey, 1988), and are known to be hormonally regulated in both Manduca midgut (Sumner et al., 1995) and Drosophila Malpighian tubules (O'Donnell et al., 1995).

## 7.5 vha14 is a single copy gene

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and probed at high stringency with vha14 cDNA (Figure 7.3). The single band of hybridisation seen in each lane suggests a single genetic locus. This is consistent with *in situ* hybridisation to polytene chromosome squashes, which identifies a single locus at 52B on the right arm of chromosome 2 (not shown). Several uncharacterised lethal alleles have been mapped to 52A-D as part of more detailed studies of two neighbouring loci, *hexokinase-C* and *pox-N*. For example, eight lethal complementation groups (l(2)52ACa-b) uncovered by Df(2R)XTE-18 have been documented (Davis and MacIntyre, 1988).

Drosophila genes encoding several other V-ATPase subunits have recently been cloned and characterised. Chapter 4-6 has reported the characterisation and mutagenesis of the A and E subunit genes. Inactivation of vha26 or vha68-2 lead to a homozygous lethal phenotype. This Glasgow group has also been working on the B and c subunits of Drosophila V-ATPase. vha55, the gene for the B-subunit, corresponds to a known lethal complementation group, SzA (Davies et al., 1995; Gausz et al., 1979), extreme alleles of which are recessive embryonic or early first instar larval lethals. Malpighian tubules of dying individuals are transparent, a defect that is cell-autonomous in transplants (Gausz et al., 1979). Such a phenotype can be reconciled with the critical role of V-ATPases in transporting epithelia (Dow, 1994; Wieczorek, 1992). Since one might predict a similar phenotype associated with null alleles of other essential V-ATPase subunits, this may provide a way of screening candidate lethals at thevha14 locus.

## 7.6 Gene expression

Northern blots of total RNA probed with *vha14* cDNA identify a single band equivalent to a transcript(s) of approximately 0.65 kb (Figure 7.4). Normalisation with respect to an*rp49* control indicates little modulation during development (Fig. 7.4A) Moreover, equivalent levels of expression are found in adult head, thorax and abdomen (Figure 7.4B), as might be expected for a gene involved in the basic aspects of function.

*M. sexta* cDNAs corresponding to the F-subunit differ by 97 bp in the length of their 3' UTRs (Gräf*et al.*, 1994). While all three cDNAs isolated here have the same 3' end, it cannot be ruled out that the single band seen in chromosomal *in situ* hybridisation comprises more than one transcript class.



Figure 7.3 Southern blot of *D. melanogaster* genomic DNA cleaved with the following enzymes: lane 1, *Eco*RI; lane 2, *Eco*RV; lane 3, *Bam*H1; lane 4, *Hin*dIII; lane 5, *Pst*I. The blot was probed with a 400 bp *XhoI/Xba*I fragment of *vha14* cDNA, which contains no sites for the above enzymes.





Figure 7.4 Northern blot analysis of *vha14* gene expression. (A) Adult tissues. H, head; T, thorax; Ab, abdomen; M, adult males; F, adult females. (B) Developmental stages. E, embryo; L, third instar larva; P, pupa; Ad, adult. The lower panels in both (A) and (B) show the same blots, stripped and reprobed with cDNA for the ribosomal protein gene, *rp49*, This controls for differences in RNA loading.

## 7.7 Discussion

The Drosophila vha14 has been cloned by homology with a gene thought to encode a subunit of M. sexta V-ATPase, and that is expressed in M. sexta midgut. An analogous subunit has been identified by homology in another V-ATPase model, the yeast S. cerevisiae, and has been shown to be essential for proper assembly of the yeast V-ATPase holoenzyme (Graham et al., 1994). Is the F-subunit a genuine V-ATPase subunit, or an accessory; and is it a specialisation for either a plasma membrane or endomembrane role of the V-ATPase? The widespread tissue distribution implied by the human ESTs and the broad phylogenetic distribution implied by ESTs from other species would suggest that this cannot be uniquely a subunit of a plasma-membrane form of the V-ATPase. The ubiquitous spatial and temporal expression of vha14 in D. melanogaster reported here further supports the suggestion that this is a general subunit which exists in all V-ATPases. A definitive demonstration of an essential role of vha14 in animal V-ATPase function will depend on the future identification of a null allele, for which Drosophila is likely to be a uniquely suitable model. Possibly a pre-existing mutant corresponding to the locus can be identified can be identified (as described earlier). Alternatively, a novel allele could be generated by P-clement mutagenesis. Such studies should help in elucidating the function of F subunit in V-ATPase.

R

-

a for a start of the first of the

۲. ا

# Chapter 8

## Discussion and Future Work

This thesis consists of two main parts: (i) a set up of a fast and efficient method to correlate cloned genes to P-element mutants and (ii) cloning, characterisation and mutagenesis of genes encoding *Drosophila* V-ATPase. Chapter 3 described the approach of site-selected mutagenesis of *Drosophila* genes *via* plasmid rescue. 1836 fly lines have been plasmid rescued individually and a simple procedure to screen mutants for a target genes has been set up. Initially screening has isolated mutations for more than 10 genes. Sufficient plasmid DNA has been prepared to allow screening for many targets.

## 8.1 One-step screening to correlate cloned gene to P-element lines

As an alternative to screening pools of plasmids, an one-step screening procedure involving grids of colonies created by a robotic device has been tried. The entire grid is visualised by hybridisation with a <sup>35</sup>S probe for the plasmid replicon, whist individual colonies corresponding to particular insertion sites are visualised with a <sup>32</sup>P probe specific to the gene of interest. Unfortunately the robotic equipment is unavailable in Glasgow and the hybridisation to the grids was not as sensitive as that described in Chapter 3. Here, I propose an improved screening procedure which reduces the former three rounds of screening to one single hybridisation while still retaining the sensitivity (Figure 8.1). A large cube made of 1000 small cubes each representing the plasmid(s) from a *Drosophila* line. The 1000 plasmids are pooled into 10 pools from each dimension of the cube with each pool containing 100 plasmids. By pooling from the three dimensions a total of 30 pools of plasmids are obtained which can be loaded into a gel of 30 lanes. A single hybridisation of the Southern blot could easily assign any positive signal to the corresponding fly line. Screening for the 1836 plasmids from the second chromosome



Figure 8.1 A strategy of pooling plasmids for One-step screening. The cube represents plasmids from 1000 individual *Drosophila* lines.  $P_{i,j,k}$  (i,j,k=1, 2, 3, ....., 10) stand for the individual plasmid.  $P_i$ ,  $P_j$  and  $P_k$  (i, j, k=1, 2, 3, ....., 10) stand for the pool of 100 plasmids pooling from each of the three dimensions. All the 30 pools of DNA could be loaded in a single gel. A single hybridisation of the Southern blot could easily assign any positive signal to the corresponding fly line.

insertion line (see Chapter 3) could be simplified if the individual plasmids arc re-pooled according to Figure 8.1. This pooling strategy will be applied to the work of the third chromosome lines. Approximately 2500 fly lines with P-element in third chromosome are being plasmid rescued individually (collaborated with Dr. Peter Deak). The resulting transformed *E. coli* will be pooled from three directions for maxi DNA preparation.

いいしいたのでなるともの、ちないない、いたのですいのである。 やけいのい いいい

A State of the second se

## 8.2 The correlation of cDNA library clones with the P-element lines

Except for the use in site-selected mutagenesis, the large amount of rescued plasmids can also be utilised in the correlation of individual clones within Drosophila cDNA library with the individual flies bearing a P-element. This would provide access to many unknown but essential Drosophila genetic loci. A procedure likely to be suitable for large scale screening for cDNA clones with our rescued plasmids is proposed (Figure 8.2). The whole rescued plasmids (including the vector) can be directly labelled if the cDNA library is in a vector such as lambda NM1149, which shares no sequence homology with the vector sequence of the rescued plasmids. The cDNA library are laid out as plaques in a rectangular grid by a robotic device constructed by this group (Mackenzie et al., 1989). The device can easily generate 6 or more arrays of 1000 clones and produce as many filter replicas of each as desired. The filter can be screened by probes of pooled plasmids representing 10 or 100 lines depending on the sensitivity of the probe. As the plaque is laid out individually in the grid, positive plaques will represent a single cDNA clone without need for a further round of screening. However, as the probe is labelled from a pool of plasmids, the cDNA clone needs to be further labelled to screen the filter of plasmids (obtained as in figure 8.1) to be correlated to the mutant flies, thus a pair of cDNA and mutant is obtained. This pair, very possibly, represents a mutation of a gene. In cases wherever insertion is near the gene, local jumping or deletion could possibly mutate the gene. For flies being homozygous lethal there is high possibility for each of the rescued plasmid to detect one cDNA and hence one informative insertion. The resulting cDNA/P-element line pair would be subjected to preliminary studies: Lines



Figure 8.2 Large scale correlation of *Drosophila* cDNA clones to P-element insertional mutants. The pools of plasmids are labelled to screen filters of cDNA clones. Any positive cDNA clone is further labelled to screen the gel blot of the pooled plasmids (as in Figure 8.1) to identify the corresponding *Drosophila* line.

could be examined initially for obvious phenotypes in the homozygote and for lacZ expression. Sequence of the cDNA and deduced peptide, in association with the phenotype exhibited by the mutant, provide valuable information in the study of gene function as well as other purposes such as in the searching for novel insecticides.

## 8.3 PCR amplification of cDNA corresponding to the rescued plasmids

Cloning cDNAs corresponding to the locus of P-clement insertion in large scale can be an arduous task. Here I suggest a simple strategy which is modified from Straus and Ausubei (1990). The method is diagrammed in Figure 8.3. An excess of biotinylated rescued plasmids is mixed with a small amount of purified cDNA library (in a vector sharing no homology with that of P-element vector). The mixture is denatured and then allowed to reassociate. The corresponding cDNA will hybridise to biotinylated strands of rescued plasmid. The biotinylated DNA, together with the cDNA reassociated with it, is bounded to avidin-coated polystyrene beads. The bound cDNA is thus separated from other cDNAs and is then released from the beads for PCR amplification.

A Company of the second second

#### 8.4. The Drosophila V-ATPase

In this thesis I have reported the cloning and characterisation of genes and cDNA for subunit A, E and F of V-ATPases in *Drosophila*. Subunit c and B have also been cloned by the Glasgow research group (Meagher *et al.*, 1990; Davies *et al.*, 1996). Two further subunits have been cloned unintentionally, one from an enhancer-trap study (Harvie and Bryant, 1996), and one from a yeast two-hybrid study of cytoskeletal proteins (He and Kramer, 1996). Adding all this together, genes encoding seven subunits have been cloned (Table 8.1).

In spite of the overwhelming advantage (Rubin, 1988); ), *Drosophila* as a model system had a major drawback (Dow, 1994; Dow *et al.*, 1996). The extremely small size of the



cDNA corresponding to the rescued plasmid

Figure 8.3 Schematic representation of PCR amplification of cDNA corresponding to the rescued plasmids. The biotinylated rescued plasmids are reassociared with the corresponding DNA in the cDNA library. The cDNAs hybridised to the biotinyted DNA are bound to avidin-coated heads and separated from the rest cDNAs. The bound cDNA is then released and is subject to PCR amplification.

أتشدرن

organism compared with vertebrate make it difficult to perform physiological analysis of the V-ATPase function. Nonetheless, a delicate assay of the Malpighian tubule has been developed (Dow, 1994; Dow *et al.*, 1996). The insect Malpighian tubule performs a unction analogous to that of the vertebrate kidney tubule. Despite its small size, the *D. melanogaster* tubule is remarkably robust and provides a valuable physiological phenotype (Dow *et al.*, 1994). Potentially, then the *D. melanogaster* Malpighian tubule may prove a useful tool for the study of plasma membrane V-ATPase function. 7

The second second second

| subunit | ger     | <u></u>  | transcript . | 0    | leduced pep | tide      | Citation              |
|---------|---------|----------|--------------|------|-------------|-----------|-----------------------|
|         | name    | location | (kb)         | size | identity    | identity  |                       |
| ,       |         |          |              | (kb) | (human)     | (Manduca) |                       |
| A       | vha68-1 | 34A      | 2.6          | 68   | 87.1 (VATO) | 87.4      | Chapter 4             |
|         |         |          |              |      | 81.9 (VATA) |           |                       |
| A       | vha68-2 | 34A      | 2,6          | 68   | 91.7 (VATO) |           | Chapter 4             |
|         |         |          |              |      | 82.4 (VATA) | 91.2      | Chapter 4             |
| В       | vha55   | 87C      | 2.8, 2,3     | 55   | 93 (brain)  | 97        | Davies <i>et al</i>   |
|         |         |          |              |      | 89(kidney)  |           | 1996                  |
| С       |         |          | 1.8          |      | 66          |           | Harvie <i>et al</i> . |
|         |         |          |              |      |             |           | 1996                  |
| D       |         |          |              |      |             |           | He et al.             |
|         |         |          |              |      |             |           | 1996                  |
| E       | vha26   | 83B      | 2.3          | 26   | 63          | 77        | Chapter 6             |
| F       | vha14   | 52B      | 0.65         | 14   | 71          | 90        | Chapter 7             |
| С       | vha17   | 42B      | 1, 1.2       | 16   | 87          | 93        | Meagher <i>et al</i>  |
|         |         |          |              |      |             |           | 1990                  |

Table 8.1 Characterisation of D. melanogaster genes encoding V-ATPase subunits

## 8.5 The V-ATPase mutants in Drosophila

The cloning of a gene in *D. melanogaster* and identification of the chromosomal location unlocks a wealth of information. It is possible that the existing mutations in the region include alleles of the gene under study. Over the last few years, the probability of such findings has been increased greatly by the systematic physical mapping of the genome, the production of comprehensive panels of thousands of lines carrying lethal P-element insertions, which must presumably have inactivated a large number of essential genes (Török *et al.*, 1993). The development of site-selected mutagenesis of target genes by PCR (Kaiser and Goodwin, 1990) and via plasmid rescue (Chapter 3) allow the easy identification of candidate lines for a particular genes. This thesis reported the identification of P[*lac W*] mutant lines for genes encoding subunit A, E and c of *Drosophila* V-ATPase. Together with mutations for genes encoding subunit B (Davies *et al.*, 1996) and subunit C (Harvie *et al.*, 1996), P-element mutations for five V-ATPase genes have been identified (Table 8.2).

| subunit and      | fly No.      | position of<br>the insertion | homozygous<br>phenotype    | citation                     |
|------------------|--------------|------------------------------|----------------------------|------------------------------|
| в.<br>A, vha68-2 | 25/8         | before ATG, in intron.       | first instar larvae        | Chapter 5                    |
| B, vha55         | l(3)j2E9     | after ATG, in intron         | embryonic lethal to        | Davies et al                 |
| С                |              | before ATG                   | viable<br>second instar to | 1996<br>Harvie <i>et al.</i> |
| E, vha26         | l(3)j3E7     | after ATG, in intron         | pupal lethal<br>lethal     | 1996<br>Chapter 6            |
| c, <i>vha17</i>  | <b>16/</b> 1 | after ATG, in intron         | third instar lethal        | Dow et al. ,1996             |
|                  |              |                              |                            | Chapter 3                    |

Table 8.2 P-element mutations of genes encoding Drosophila V-ATPase

There is no detectable heterozygous phenotype of any of the available V-ATPase mutations, but total RNA reduction for vha68 has been observed even in the heterozygous mutant flies. The homozygous lethal phenotype has been observed in all the five P-element lines. Although the lethal phase is varied for mutations of different subunits (Dow *et al.*, 1996) all the null alleles seem to be able to live past the embryo stage. The V-ATPase needed is likely to be provided by their mother. It has been found that the mutation of vha68-2, as well as mutation in vha55, shows a homozygous detectable tubule phenotype. The mutant homozygotes which survived to late embryonic or early larval stages showed transparent Malpighian tubules, without the luminal white material observed in healthy larvae. This phenotype is considered to be a characteristic of mutations of genes of V-ATPase function are likely to show this characteristic phenotype as well (Dow *et al.*, 1996).

ł

The LacZ expression in the P-element lines for *vha68-2*, *vha55*, *vha26* and *vha17* seems to have a similar staining pattern (Chapter 5; Davies *et al.*, 1996; Dow *et al.*, 1996). The expression is strongly detected in epithelia known to be energised by V-ATPases, the Malpighian tubules, the antennal palps and rectum. If this expression is a general pattern for P-element insertion in genes encoding any of the V-ATPase subunits, it could be as a general marker to screen for P-element insertions in other V-ATPase genes. However, the *lacZ* expression of lines with a insertion in gene of sununit C gives a different pattern from the gene (Harvie *et al.*, 1996), This *lacZ* expression may be affected by other nearby promoters.

## <u>Appendix 1.</u> <u>List of publications from or partially from this study</u>

- 1. Yiquan Guo, Ann Gillan, Tibor Török, Istvan Kiss, Julian A. T. Dow and Kim Kaiser. 1996. Site-selected mutagenesis of the *Drosophila* second chromosome via plasmid rescue of lethal P-element insertions. *Genome Research* 6:972-979.
- Yiquan Guo, Zhongsheng Wang, Andrew Carter, Kim Kaiser and Julian Dow. 1996. Characterisation of *vha26*, the *Drosophila* gene for a 26kDa E-subunit of the vacuolar ATPase. *Biochemica et Biophisica Acta* 1283, 4-9.
- 3 Yiquan Guo, Kim Kaiser, Helmut Wieczorek, and Julian A. T. Dow. 1996. The *Drosophila melanogaster* gene *vha14* encoding a 14-kDa F-subunit of the vacuolar ATPase. Gene 172: 239-243.

- 4. Luke Alphey, Louise Parker, Gillian Hawcroft, Yiquan Guo, Stephen Elledge, Kim Kaiser and Gareth Morgan. 1996. KLP38B - a mitotic kinesin-related protein from *Drosophila* which associates with PP1. Submitted to *Cell*.
- 5. Hilary A. Snaith, Christopher G. Armstrong, Yiquan Guo, Kim Kaiser and Patricia T. W. Cohen. 1996. Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles in *Drosophila* embryos. *Journal of Cell Science* (in press).
- 6. Y. Guo, J. A. T. Dow, A Gillan, I. Kiss and K. Kaiser. 1996. Molecular characterisation and inactivation of the 68 kDa A-subunit of V-ATPase in *Drosophila*. 37th American *Drosophila* Conference, San Diego. 91B.
- B. McCabe, Y. Guo, S. Sweeney, E. Goldstein, K. Kaiser, C. O'Kane Investigation of the function of synaptobrevin proteins in Drosophila melanogaster. 37th American *Drosophila* Conference, San Diego. 102 B.
- Dow, J. A. T., Davis, S. A., Guo, Y., Graham, S., Finbow, M. and Kaiser, K. (1996). Molecular genetic analysis of V-ATPase function in *Drosophila* melanogaster. J. Exp. Biol. 202 (in press).

|           |                            |                   | oriontotion           | monition  |
|-----------|----------------------------|-------------------|-----------------------|-----------|
| primers   |                            | genes<br>Relement | omentation            | position  |
| P31       |                            | P-element         | +/-                   |           |
| PR        | AGCATACGITAAGIGGATGICIC    | P-element         | <del> </del>          |           |
| PL        | CTGTATACTTCGGTAAGCTTCGG    | P-element         |                       |           |
| gt10rev   | GGCTTATGAGTATTTCTTCCAGGGTA | nm1149 vector     |                       |           |
| nm1149him | AACCTTCAGCCAGAATCCATTGCC   | nm1149 vector     |                       |           |
| 14KT3-1   | AACTGGAGGACTGTTTCAAG       | vha14c            | +                     | 194-213   |
| 14KT7-1   | TGGCGTCGTACGGATGGTCC       | vha14c            | -                     | 336-354   |
| G14T3-2   | GGTGCGCTAATTCCTCGAAT       | vha14c            | 4-                    | 426-427   |
| G14T7-2   | TCGACCACCATAAAGTTGGG       | vha14c            | -                     | 154-172   |
| 28T3-1    | GAAGAAGATTCAGTCCTCCA       | vha26g            | <b>-</b> ∤~           | 1009-1028 |
| 28T3-2    | GAACGTCGAGCTGTTCATCG       | vha26g            | +                     | 1369-1388 |
| 28T3-3    | CAGTCAGGACGCACAGCTAGGA     | vha26g            | +                     | 1769-1786 |
| 28T3-5    | AGTAGCTAAGTTTGTTGACCTG     | vha26g            | -+-                   | 2509-2529 |
| 28T7-1    | GTTATATAATAACGCATATGTAC    | vha26g            | -                     | 2848-2866 |
| 28T7-2    | CGATGAACAGCTCGACGTTC       | vha26g            | -                     | 1369-1387 |
| 28T7-3    | CACGCTGCTCACATGGTCCTC      | vha26g            | -                     | 1148-1167 |
| 28T7-4    | CGCATATGCTACTTGTATTTG      | vha26g            | -                     | 2835-2854 |
| 28T7-6    | TCCTAGCTGTGCGTCCTGACTG     | vha26g            |                       | 1764-1786 |
| 28T7-5    | CAGGTCAACAAACTTAGCTACT     | vha26g            |                       | 2509-2528 |
| 28g-1     | CACTGCACAAACCGAAAGGAAA     | vha26g            |                       | 242-262   |
| 28g-2     | CATCGAGTACTATATACATTA      | vha26g            | +                     | 2867-2887 |
| 28g-3     | GCAGGCGATCAGGTCGTA         | vha26g            | +                     | 340-358   |
| 28g-4     | CGTCCAAGACCCTAGCCTCTA      | vha26g            | -                     | 747-766   |
| 28g-10    | GATECACTGCCGTTGTTCCTCC     | vha26g            | ····                  | 2224-2244 |
| 28g-4     | CGTCCAAGACCCTAGCCTCTA      | vha26g            | _                     | 747-766   |
| G67T3-1   | CGACATGGCCACCATCCAGG       | vha68-1c          | +                     | 255-274   |
| G67T3-2   | AGATGGCGAGCAAAAGATCA       | vha68-1c          | +                     | 1840-1867 |
| G67T3-4   | GAAAGTCACGCAGTACCTCA       | vha68-1c          | -                     | 930-948   |
| G67T3-3   | CTACAACCTGGAGGACATTG       | vha68-1c          | ╡<br>│ - <del> </del> | 627-646   |
| G67T3-8   | CGGTAGCTGAAATGGAACG        | vha68-1c          | +                     | 2197-2215 |
| G67T3-9   | CTGTCCAAGTACTCCAACTC       | vha68-1c          |                       | 862-881   |
| 67T3-20   | TCTGTCTGAATACTTCCGTG       | vha68-1c          | <del> </del>          | 1071-1090 |
| G67LT3-1  | TTCAGCTGGTTGGCAAAGCA       | vha68-1c          | <br>                  | 1553-1572 |
| G67T7-1   | GTCCTTTAGTCCCGCTTACC       | vha68-1c          | -                     |           |
| G67T7-2   | TGATCITTTGCTCGCCATCI       | vha68-1c          | _                     | 1847-1866 |
| G67T7-3   | CAATGTCCTCCAGGTTGTAG       | vha68-1c          |                       | 627-645   |
| G67'1'7-4 | TGAGGIACIGCGIGACITIC       | vha68-1c          |                       | 930-949   |
| G67T7-5   | AGGGTAACGAACACAATCGA       | vha68-1c          |                       | 2335-2353 |
| G67T7-8   | CGTTCCATTTCAGCTACCG        | vha68-1c          | <b>-</b>              | 2197-2234 |
| I         | 1                          | 1                 | 1                     | 1         |

## Appendix 2 List of primers used in this study

1. . . .

r A

d 2

é

۰ •

ŝ

с. С

a strain a strain a strain

1.424.77

一日 一部 一部門

| primers    | sequences (5'-3')              | genes     | orientation | position  |
|------------|--------------------------------|-----------|-------------|-----------|
| 6717-10    | CCCGTGAAGAGCGGATGGTT           | vha68-1c  |             | 745-763   |
| 67T7-20    | TGCGTAGTGGCACGAACTCGG          | vha68-1c  | -           | 1484-1503 |
| G67LT7-1   | TCGGAGAAGTCACCACCAGG           | vha68-1c  | -           | 1332-1330 |
| 67LT7-2    | GAACACCTGCACGATACCCAAA         | vha68-1c  | _           | 1349-1370 |
| PS67-1     | GAGCTGGTGAAACAAATCCAACG        | vha68-1c  | +           | 12-34     |
| PS67-2     | GCGATTAGTTTGACAAATTGC          | vha68-2g  | +           | 912-932   |
| PS67-3     | TAACTCAGCAAACGAAGATAGG         | vha68-2g  |             | 1690-1700 |
| 67T3-5     | TCCATTTACACTGGTATCACT          | vha68-1c  |             | 1051-1071 |
| G67T7-6    | TCCAAGTTCCACGGAAAGAG           | vha68-1c  | -           | 332-350   |
| 67CP-1     | AGAAGAAGAAGAGCAGCAACCGCGACC    | 6vha68-1g |             |           |
| 67GP-1     | ATTGCAGTCGAAAAAACAGAATAAAGCAAA | vha68-2g  | +           | 1258-1287 |
| 67CP-2     | GTAACATTCATAATACATTTTATTTCC    | vha68-1c  | _           | 2547-2572 |
| EHT7-1     | GCATGCATTTGTATTTCTGTCT         | vha68-2g  | -           | 4076-4097 |
| EHT7       | AAGTCATGTTTTCTCCCTGTTTG        | vha68-2c  | -+-         | 2370-2392 |
| EHT7       | GTTGCACTTTATTCGTACATT          | vha68-2c  | -           | 2432-2452 |
| 67KG-10    | CACCAACAATTCCAGCTGCAT          | vha68-2g  | +           | 3817-3838 |
| 67KG-PS-2' | CCTTCTTTGTTATGCTGCG            | vha68-2g  | _           | 991-1009  |
| 67KG-9-3-2 | TTCAATCCATTTCAGGACC            | vha68-2g  | +           | 3604-3622 |
| 67KG-9-7-3 | ATCCTCGGCATTGACCACCGG          | vha68-2g  | 1_          |           |
| 67KG-9-7-3 | AACGCATAGTGCAGCAGCGAC          | vha68-2g  | -           | ······    |
| PS-9'      | ΛΛCATCATCAAGTATCAT             | vha68-2g  | •+          | 1626-1643 |
| 5'1'3-1'   | GGTATCATGGGCAGCATCTT           | vha68-2g  | -+-         | 1963-1982 |
| 67KR-1     | ACCTGGCTCATCTCCTACTCG          | vha68-2g  |             | 3136-3156 |
| 67KG-9-7-1 | CGTCTGGTAGACGGATCACCA          | vha68-2g  | -           |           |
| 67KG7T3-1  | ACTTGCAGTCTGTGTGCGTGTT         | vha68-2g  | <b>_</b>    | 280-301   |
| 67KG9T7-2  | ATGGACCTCAATGGTCGCTGGA         | vha68-2g  |             |           |
| 67KG9T7-1  | TCCAGCGACCATTGAGGTCCAT         | vha68-2g  |             |           |
| 67KG9T3-1  | CCTGCAGCAGAACTCCTACT           | vha68-2g  | +           | 3348-3367 |
| 67KG5T7-1  | AGTGACGAAGCAGCGATCAA           | vha68-2g  | +           | 248-267   |
| 67KGT3-1   | TGTAGATGGATTCGGTCAGC           | vha68-2g  |             | 2018-1037 |
| 67KG-PS14  | TCGATGATGAGGAGCGTGAGT          | vha68-2g  |             | 1307-1327 |
| 67KG9T7-2  | AGGTGTCGTCCGGTGGAGGATAA        | 67kg-mid  | +           | 813-834   |
| PS-7       | GACCGTTACCGAAGCAGAAGA          | vha68c-1  |             | 43-63     |
| PS-8       | CGCGTAGACACGGCCATATT           | vha68-2g  |             |           |
| PS-9       | CCAACCAAGATAGGTTCCAT           | vha68-2g  | -           | 1683-1702 |
| PS-10      | TTGCCGTCAGCTGACAAATG           | vha68-2g  | -           | 661-682   |
| PS-12      | ATGTAGCAGATACACCTGCC           | vha68-2g  | +           | 1125-1144 |
| PS-13      | GTGCGGTATGAAAACGTGAA           | vha68-2g  | +           | 397-416   |

.

Nuclear lange of a second secon

South and the second sec

1.1.8.1.1.8.1. T.1.

## Appendix 2 List of primers used in this study, cont.

Notes for some items in the table:

1. The Glycerol stock in the table is the rescued plasmid transformed in *E. coli* which was stored at -70°C. Plasmid DNAs were isolated by pool of 10 line.

2. Lethal phase and chromosomal sites of the P-elements were kindly provided by Dr. Istvan Kiss. P: Pupae; L: larvae; 8A: Pharate adult;  $A^{\pm}$ : Adult (semi-lethal); E; Embryo; L<n : Larvae maller than normal; L<<n: Larvae much smaller than normal. L>n: Larvae larger than normal.

|                   | Plasmid  | lood l                                                                                                                                                                                  | 1                     |                   | Plasmid  | lood           | 2                |                | Plasmid  | pool                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Plasmid  | pool 4                      |                       |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|----------|----------------|------------------|----------------|----------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------------------------|-----------------------|
| Glycerol          | Fly line | lethal                                                                                                                                                                                  | P[lacW]               | Glycerol          | Fly line | lethal         | P[lacW]          | Glycerol       | Fly line | lethal                                                                           | P[lacW] site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Glycerol          | Fly line | lethal                      | P[lacW] site          |
| 380               | 46/8     | 8A                                                                                                                                                                                      | 2110                  | 402               | 49/17    | E              |                  | 412            | 51/14    | A <sup>±</sup>                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                 | 1/3      | E                           | 51C1-2                |
| 384               | 48/2     | Е                                                                                                                                                                                       |                       | 403               | 50/1     | Ρ              |                  | 413            | 51/15    | Е                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                 | 1/7      | 8A-A <sup>±</sup>           | 43E1-3                |
| 391               | 48/11    | 8A                                                                                                                                                                                      |                       | 404               | 50/2     | Е              |                  | 414            | 51/19    | E                                                                                | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                 | 1/8      | 8A                          |                       |
| 392               | 49/1     | Е                                                                                                                                                                                       |                       | 405               | 50/7     | Е              |                  | 416            | 51/24    | E                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                 | 1/9      | E                           |                       |
| 395               | 49/9     | Е                                                                                                                                                                                       | 26B5-6<br>42E3-4      | 406               | 51/3     | Е              | 47F8-9           | 417            | 51/4     | B-L                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                 | 1/10     | 8A                          |                       |
| 396               | 49/10    | L< <n< td=""><td></td><td>407</td><td>51/23</td><td>A<sup>±</sup></td><td></td><td>418</td><td>51/25</td><td>E</td><td></td><td>7</td><td>1/12</td><td>A<sup>±</sup></td><td></td></n<> |                       | 407               | 51/23    | A <sup>±</sup> |                  | 418            | 51/25    | E                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                 | 1/12     | A <sup>±</sup>              |                       |
| 397               | 49/11    | E                                                                                                                                                                                       |                       | 408               | 51/5     | E              | 56D8-11          | 419            | 52/1     | 8A                                                                               | 47A3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                 | 1/14     | L< <n< td=""><td></td></n<> |                       |
| 398               | 49/12    | Е                                                                                                                                                                                       |                       | 409               | 51/6     | A <sup>±</sup> |                  | 420            | 52/2     | E                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                 | 1/15     | P-8A                        |                       |
| 399               | 49/13    | E                                                                                                                                                                                       | 44F1-2                | 410               | 51/8     | Е              |                  | 421            | 52/4     |                                                                                  | 57F5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                | 1/16     |                             | 57A4-8                |
| 401               | 49/16    | Е                                                                                                                                                                                       |                       | 411               | 51/13    | Е              | 30B5-6<br>83F1-2 | 422            | 52/5     | Е                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                | 2/28     | E                           |                       |
|                   | Plasmic  | lood 1                                                                                                                                                                                  |                       | T                 | lasmid   | lood           | 9                |                | lasmid   | lood                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Plasmid  | pool 8                      |                       |
| Glycerol<br>stock | Fly line | lethal                                                                                                                                                                                  | P[ <i>lacW</i> ] site | Glycerol<br>stock | Fly line | lethal         | P[lacW] site     | Glycerol stock | Fly line | lethal<br>phase                                                                  | P[lacW] site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Glycerol<br>stock | Fly line | lethal<br>phase             | P[ <i>lacW</i> ] site |
| 30                | 2/31     | Ρ                                                                                                                                                                                       | 46A2-3                | 42                | 3/8      | E              |                  | 59             | 4/23     | L< <n< td=""><td>38A5-6</td><td>1</td><td>1/1</td><td>E</td><td>43E1-3</td></n<> | 38A5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                 | 1/1      | E                           | 43E1-3                |
| 31                | 2/32     |                                                                                                                                                                                         | 46A2-3                | 45                | 3/13     | Ρ              | 45D1-2           | 60             | 4/24     | Е                                                                                | 30D1-2<br>44F1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                | 1/19     | Ρ                           |                       |
| 32                | 2/33     | L< <n< td=""><td>42A15-19</td><td>46</td><td>3/14</td><td>ш</td><td></td><td>62</td><td>5/3</td><td>Ρ</td><td>42B1-3</td><td>13</td><td>2/1</td><td>8A-A<sup>±</sup></td><td></td></n<> | 42A15-19              | 46                | 3/14     | ш              |                  | 62             | 5/3      | Ρ                                                                                | 42B1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                | 2/1      | 8A-A <sup>±</sup>           |                       |
| 33                | 2/35     | Е                                                                                                                                                                                       |                       | 47                | 3/15     | Е              |                  | 63             | 5/4      | E                                                                                | No. of Street, or Stre | 14                | 2/3      | E                           | 46A2-3                |
| 35                | 2/37     | E                                                                                                                                                                                       |                       | 49                | 4/3      | Ρ              |                  | 67             | 6/4      | P-8A                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                | 2/7      | E                           | A PUPE P              |
| 37                | 3/2      | L-P                                                                                                                                                                                     | 34B8-9                | 53                | 4/12     | E              |                  | 68             | 6/5      | L< <n< td=""><td>27A1-2</td><td>19</td><td>2/11</td><td>E</td><td></td></n<>     | 27A1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                | 2/11     | E                           |                       |
| 38                | 3/3      | 8A                                                                                                                                                                                      | 34B8-9                | 54                | 4/13     | Ρ              | 45A4-8           | 69             | 9/9      | Е                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                | 2/12     | A±                          | 59A1-3                |
| 39                | 3/4      | 8A-A <sup>±</sup>                                                                                                                                                                       | 43F5-6                | 56                | 4/18     | Е              |                  | 70             | 6/7      | P-8A                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                | 2/22     | E                           | Sale is a             |
| 40                | 3/5      | 13                                                                                                                                                                                      | 53F3-5<br>47A11-14    | 58                | 4/20     | 8A             |                  | 71             | 6/9      |                                                                                  | 23F5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                | 2/23     |                             | 23D3-4                |
| 89                | 8/4      | E                                                                                                                                                                                       |                       | 90                | 8/5      | P-8A           |                  | 203            | 26/10    | E                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                | 2/24     | L≤n                         |                       |

| 2       | P[lacW] site          |                | 49E1-2<br>28D1-2 | 43F1-2                                                                                                                                                                                                                                                |        |                   |                                                                                                                                                                                                            |                                                                                                                                                                                                           | 53D11-14                                                                                                                                                                           |                                                                                                                                                                     |            | 6       | P[ <i>lacW</i> ] site |                 |                    |        |             | 27C4-5   |       |        |                |        |  |
|---------|-----------------------|----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------------------|-----------------|--------------------|--------|-------------|----------|-------|--------|----------------|--------|--|
| pool ]  | lethal<br>phase       | Ρ              |                  | E                                                                                                                                                                                                                                                     |        | E                 | 8A <sup>±</sup>                                                                                                                                                                                            | Е                                                                                                                                                                                                         | 8A-A <sup>±</sup>                                                                                                                                                                  | Е                                                                                                                                                                   |            | pool 1  | lethal<br>phase       |                 | Е                  | E      | A±          |          |       | Е      | $A^{\pm}$      | E      |  |
| lasmid  | Fly line              | 6/13           | 8/9              | 1/20                                                                                                                                                                                                                                                  | 12/7   | 4/1               | 48/7                                                                                                                                                                                                       | 52/6                                                                                                                                                                                                      | 52/7                                                                                                                                                                               | 52/9                                                                                                                                                                |            | lasmid  | Fly line              | 28/3            | 28/9               | 28/11  | 28/12       | 28/14    | 28/17 | 29/1   | 29/3           | 36/3   |  |
| I       | Glycerol<br>stock     | 6/13           | 6/8              | 12                                                                                                                                                                                                                                                    | 12/7   | 48                | 387                                                                                                                                                                                                        | 423                                                                                                                                                                                                       | 424                                                                                                                                                                                | 425                                                                                                                                                                 |            | I       | Glycerol<br>stock     | 28/3            | 28/9               | 28/11  | 28/12       | 28/14    | 28/17 | 29/1   | 29/3           | 36/3   |  |
| 1       | P[lacW] site          |                |                  | 47A11-14<br>70D4-5                                                                                                                                                                                                                                    |        |                   | 60A10-14                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                     |            | 5       | P[lacW] site          | 57B1-5<br>59E-F | 57D11-12<br>22E1-2 |        | 12 II - 274 | 50C20-23 |       | 32E1-2 |                |        |  |
| pool 1  | lethal<br>phase       | Ρ              |                  | E                                                                                                                                                                                                                                                     |        | 8A                | L< <n< th=""><th>E</th><th></th><th></th><th></th><th>pool</th><th>lethal<br/>phase</th><th>E</th><th></th><th></th><th></th><th>E</th><th></th><th></th><th>A<sup>±</sup></th><th>P-8A</th><th></th></n<> | E                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                     |            | pool    | lethal<br>phase       | E               |                    |        |             | E        |       |        | A <sup>±</sup> | P-8A   |  |
| lasmid  | Fly line              | 10/2           | 10/4             | 10/5                                                                                                                                                                                                                                                  | 10/8   | 10/9              | 10/15                                                                                                                                                                                                      | 10/12                                                                                                                                                                                                     | 10/10                                                                                                                                                                              | 10/18                                                                                                                                                               |            | lasmid  | Fly line              | 26/8            | 27/4               | 47/4   | 28/1        | 28/2     | 28/6  | 28/7   | 28/8           | 44/5   |  |
|         | Glycerol<br>stock     | 102            | 103              | 104                                                                                                                                                                                                                                                   | 106    | 107               | 111                                                                                                                                                                                                        | 109                                                                                                                                                                                                       | 108                                                                                                                                                                                | 113                                                                                                                                                                 |            | P       | Glycerol<br>stock     | 26/8            | 27/4               | 47/4   | 28/1        | 28/2     | 28/6  | 28/7   | 28/8           | 44/5   |  |
| 0       | P[lacW] site          |                |                  | 51B1-5                                                                                                                                                                                                                                                | 56D5-6 | 60D6-8            |                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                    | 47C1-2                                                                                                                                                              | 1. 1.2 L 2 | 4       | P[ <i>lacW</i> ] site |                 | 30C7-8             | 31F3-4 |             |          |       |        |                |        |  |
| [ lood  | lethal<br>phase       | E              |                  | P-8A                                                                                                                                                                                                                                                  | E      | 8A-A <sup>±</sup> | 8A                                                                                                                                                                                                         | L< <n< th=""><th></th><th>L&lt;<n< th=""><th>E</th><th>lood</th><th>lethal<br/>phase</th><th>Е</th><th></th><th>E</th><th></th><th>E</th><th>E</th><th>E</th><th>Ρ</th><th>Е</th><th></th></n<></th></n<> |                                                                                                                                                                                    | L< <n< th=""><th>E</th><th>lood</th><th>lethal<br/>phase</th><th>Е</th><th></th><th>E</th><th></th><th>E</th><th>E</th><th>E</th><th>Ρ</th><th>Е</th><th></th></n<> | E          | lood    | lethal<br>phase       | Е               |                    | E      |             | E        | E     | E      | Ρ              | Е      |  |
| Plasmid | Fly line              | <i>3/16</i>    | 8/2              | 8/3                                                                                                                                                                                                                                                   | 8/6    | 8/8               | 8/11                                                                                                                                                                                                       | 8/15                                                                                                                                                                                                      | 9/1                                                                                                                                                                                | 6/6                                                                                                                                                                 | 9/12       | lasmid  | Fly line              | 25/26           | 25/6               | 26/5   | 26/6        | 26/5     | 26/4  | 27/8   | 27/7           | 27/6   |  |
|         | Glycerol<br>stock     | 85             | 87               | 88                                                                                                                                                                                                                                                    | 91     | 93                | 95                                                                                                                                                                                                         | 98                                                                                                                                                                                                        | 66                                                                                                                                                                                 | 100                                                                                                                                                                 | 101        | P       | Glycerol<br>stock     | 25/26           | 25/6               | 26/5   | 26/6        | 26/5     | 26/4  | 27/8   | TIT2           | 27/6   |  |
| (       | P[ <i>lacW</i> ] site |                | 25C1-2           | 50C17-19                                                                                                                                                                                                                                              | 23A4-6 |                   |                                                                                                                                                                                                            | 48E1-2                                                                                                                                                                                                    |                                                                                                                                                                                    | 51B4-5<br>83B6-7                                                                                                                                                    | 56D7-9     | 13      | P[ <i>lacW</i> ] site | 42D1-2          |                    | 42D1-2 |             |          |       |        | 52E5-7         | 34A3-4 |  |
| pool    | lethal<br>phase       | A <sup>±</sup> | E-L              | L< <n< th=""><th>E</th><th></th><th>E</th><th></th><th>L&lt;<n< th=""><th>E-A<sup>±</sup></th><th>P-8A</th><th>pood</th><th>lethal</th><th></th><th>E</th><th>Е</th><th>Ρ</th><th>Е</th><th></th><th></th><th></th><th>Е</th><th></th></n<></th></n<> | E      |                   | E                                                                                                                                                                                                          |                                                                                                                                                                                                           | L< <n< th=""><th>E-A<sup>±</sup></th><th>P-8A</th><th>pood</th><th>lethal</th><th></th><th>E</th><th>Е</th><th>Ρ</th><th>Е</th><th></th><th></th><th></th><th>Е</th><th></th></n<> | E-A <sup>±</sup>                                                                                                                                                    | P-8A       | pood    | lethal                |                 | E                  | Е      | Ρ           | Е        |       |        |                | Е      |  |
| Plasmid | Fly line              | 2/29           | 2/36             | 2/8                                                                                                                                                                                                                                                   | 6/10   | 6/12              | 6/15                                                                                                                                                                                                       | 6/17                                                                                                                                                                                                      | 6/18                                                                                                                                                                               | 7/3                                                                                                                                                                 | 7/5        | Plasmid | Fly line              | 25/23           | 25/21              | 25/20  | 25/17       | 25/16    | 25/13 | 25/12  | 25/11          | 25/8   |  |
|         | Glycerol<br>stock     | 28             | 34               | 17                                                                                                                                                                                                                                                    | 72     | 74                | 76                                                                                                                                                                                                         | 78                                                                                                                                                                                                        | 6L                                                                                                                                                                                 | 83                                                                                                                                                                  | 84         |         | Glycerol<br>stock     | 25/23           | 25/21              | 25/20  | 25/17       | 25/16    | 25/13 | 25/12  | 25/11          | 25/8   |  |

|        | lacW]<br>e        |        | )C14-16                                                                                                                                                                                                                                                                 | B4-5<br>F1-2                                                                                                                                                                                                                   | 3E1-2          |        | D3-4     | 3F1-2              | 5A1-2  | F1-2<br>B3-4  |         | lacW]<br>e        |                | B4-6   |          |        |                |                  |                   | 7A8-9    |                |                  |
|--------|-------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------|--------------------|--------|---------------|---------|-------------------|----------------|--------|----------|--------|----------------|------------------|-------------------|----------|----------------|------------------|
| ol 20- | tal P[            |        | 50                                                                                                                                                                                                                                                                      | 46<br>59                                                                                                                                                                                                                       | 53             |        | 21       | 33                 | 56     | 39            | ol 24   | al P[<br>se sit   |                | 21     |          |        |                |                  |                   | 57       |                |                  |
| od p   | leth              | Е      |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                |        |          |                    | E      | E             | od p    | leth              | E              | L-I    | E        |        | 1              | E                | E                 | E-I      | A <sup>±</sup> |                  |
| Plasmi | Fly line          | 54/38  | 54/39                                                                                                                                                                                                                                                                   | 54/41                                                                                                                                                                                                                          | 54/42          | 54/45  | 54/47    | 54/48              | 55/2   | 54/29         | Plasmi  | Fly line          | 18/2           | 19/1   | 20/4     | 21/2   | 21/4           | 21/7             | 22/1              | 22/6     | 22/8           |                  |
|        | Glycerol<br>stock | 54/38  | 54/39                                                                                                                                                                                                                                                                   | 54/41                                                                                                                                                                                                                          | 54/42          | 54/45  | 54/47    | 54/48              | 55/2   | 54/29         |         | Glycerol stock    | 155            | 156    | 160      | 161    | 162            | 163              | 164               | 167      | 168            | N DO             |
| 6      | P[lacW] site      |        |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                |        |          | 50B1-2<br>50C11-15 | 26D7-8 |               | 23      | P[lacW]<br>site   | 45F1-2         |        |          |        |                |                  | 26B8-9            |          |                | 25C1-2           |
| lood   | lethal<br>phase   | E      | E-L                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |                |        |          | Е                  |        | A Contraction | pood    | lethal<br>phase   | A <sup>±</sup> | E      | E        | E      | A <sup>±</sup> | Ρ                | E                 | E        | Е              | 10.00            |
| lasmid | Fly line          | 54/24  | 54/25                                                                                                                                                                                                                                                                   | 54/26                                                                                                                                                                                                                          | 54/27          | 54/31  | 54/32    | 54/34              | 54/35  | 56/36         | lasmid  | Fly line          | 13/1           | 13/3   | 13/7     | 13/8   | 13/10          | 14/3             | 15/1              | 16/1     | 16/3           | 17/1             |
|        | Glycerol<br>stock | 54/24  | 54/25                                                                                                                                                                                                                                                                   | 54/26                                                                                                                                                                                                                          | 54/27          | 54/31  | 54/32    | 54/34              | 54/35  | 56/36         | d       | Glycerol<br>stock | 138            | 140    | 142      | 143    | 144            | 146              | 148               | 151      | 152            | 153              |
| 8      | P[lacW] site      |        | 24A1-2                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |                | 46B4-5 | 46B3-13  |                    |        |               | 2       | P[lacW] site      | 25C1-2         |        | 47B15-16 | 60B4-5 |                | 31F4-5<br>42D4-5 |                   | 60D15-16 | 60B4-5         |                  |
| lood   | lethal<br>phase   | P-8A   | 8A                                                                                                                                                                                                                                                                      | L< <n< td=""><td>8A</td><td>E-L</td><td>L-P</td><td></td><td></td><td></td><th>lood</th><td>lethal</td><td>E</td><td>E</td><td>8A</td><td>Е</td><td>L-P</td><td>Е</td><td></td><td></td><td></td><td>E-A<sup>±</sup></td></n<> | 8A             | E-L    | L-P      |                    |        |               | lood    | lethal            | E              | E      | 8A       | Е      | L-P            | Е                |                   |          |                | E-A <sup>±</sup> |
| lasmid | Fly line          | 42/10  | 47/3                                                                                                                                                                                                                                                                    | 48/1                                                                                                                                                                                                                           | 53/11          | 54/20  | 54/22    |                    |        |               | lasmid  | Fly line          | 4/5            | 4/6    | 4/7      | 5/8    | 11/7           | 11/10            | 12/2              | 12/5     | 12/8           | 12/11            |
|        | Glycerol<br>stock | 42/10  | 47/3                                                                                                                                                                                                                                                                    | 48/1                                                                                                                                                                                                                           | 53/11          | 54/20  | 54/22    |                    |        |               | d       | Glycerol<br>stock | 50             | 51     | 52       | 65     | 120            | 123              | 126               | 128      | 131            | 134              |
| 7      | P[lacW] site      | 60B1-2 | 49D1-3<br>33C4-5                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 36A11-12       |        | 42A10-16 | 48F5-6             | 45B1-2 |               | 1       | P[lacW] site      |                | 53B1-2 |          |        |                |                  |                   |          |                |                  |
| pool 1 | lethal            | E      | L< <n< td=""><td>Е</td><td>A<sup>±</sup></td><td>Е</td><td>L-P</td><td></td><td>Е</td><td>Е</td><th>pool</th><td>lethal<br/>phase</td><td>L-P</td><td></td><td>E</td><td></td><td>A<sup>±</sup></td><td>Е</td><td>8A-A<sup>±</sup></td><td></td><td></td><td></td></n<> | Е                                                                                                                                                                                                                              | A <sup>±</sup> | Е      | L-P      |                    | Е      | Е             | pool    | lethal<br>phase   | L-P            |        | E        |        | A <sup>±</sup> | Е                | 8A-A <sup>±</sup> |          |                |                  |
| lasmid | Fly line          | 42/9   | 42/17                                                                                                                                                                                                                                                                   | 42/21                                                                                                                                                                                                                          | 3/11           | 45/1   | 45/4     | 45/10              | 45/12  | 46/5          | Plasmid | Fly line          | 46/1           | 54/40  | 25/7     | 27/5   | 46/7           | 55/4             | 25/5              |          |                |                  |
|        | Glycerol<br>stock | 42/9   | 42/17                                                                                                                                                                                                                                                                   | 42/21                                                                                                                                                                                                                          | 44             | 45/1   | 45/4     | 45/10              | 45/12  | 46/5          |         | Glycerol<br>stock | 46/1           | 54/40  | 25/7     | 27/5   | 46/7           | 55/4             | 25/5              | 1        |                |                  |

| 28      | P[lacW] site      | 51B1-3                                                                                                                                                                                                                                                                                                                                   | 46F1-2                                                                                                                                                                                                                                                                                                      | 38B3-4           | 36A1-2                     | Contraction of the | 28B1-4                                                                                                                                                                                                                                                                                   | 27F4-5<br>50D5-6 |                                                                                                                                                                                                 | 46F1-2            |                                                                                                                                                                                                                   | 32      | P[lacW]  | sitc         | 50E4-7 | 24D1-2            |                  |                                                                                      | 54B1-2         | 60E8-9            |       |                                | 56F10-13          |
|---------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------|--------|-------------------|------------------|--------------------------------------------------------------------------------------|----------------|-------------------|-------|--------------------------------|-------------------|
| pood    | lethal            | A <sup>±</sup>                                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                                                           | A <sup>±</sup>   | 8A                         | 8A                 | $E-A^{\pm}$                                                                                                                                                                                                                                                                              | Р                | E                                                                                                                                                                                               | A <sup>±</sup>    | E                                                                                                                                                                                                                 | lood    | lethal   | F            | E      | E                 | E                | $E-A^{\pm}$                                                                          | A <sup>±</sup> | E                 | E-L   | L< <n< th=""><th>L-P</th></n<> | L-P               |
| Plasmid | Fly line          | 37/1                                                                                                                                                                                                                                                                                                                                     | 37/3                                                                                                                                                                                                                                                                                                        | 39/3             | 42/6                       | 42/16              | 42/20                                                                                                                                                                                                                                                                                    | 43/1             | 43/4                                                                                                                                                                                            | 43/8              | 44/3                                                                                                                                                                                                              | Plasmid | Fly line | 53/7         | 49/7   | 43/6              | 45/2             | 38/1                                                                                 | 42/22          | 37/4              | 46/4  | 41/1                           | 53/28             |
|         | Glycerol<br>stock | 308                                                                                                                                                                                                                                                                                                                                      | 309                                                                                                                                                                                                                                                                                                         | 315              | 327                        | 333                | 336                                                                                                                                                                                                                                                                                      | 341              | 344                                                                                                                                                                                             | 348               | 354                                                                                                                                                                                                               |         | Glycerol | stock<br>443 | 394    | 346               | 365              | 312                                                                                  | 338            | 310               | 376   | 322                            | 453               |
| 7       | P[lacW] site      |                                                                                                                                                                                                                                                                                                                                          | 42A1-2                                                                                                                                                                                                                                                                                                      | 42A1-2           | 55C9-12<br>54B15-16<br>90D | 26D6-9             | 42B1-3                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                 |                   | HI - CAN                                                                                                                                                                                                          | 1       | P[lacW]  | site         |        |                   |                  |                                                                                      |                | 53E1-2            |       |                                | 2                 |
| pool 2  | lethal            | Е                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                                                                                                                                           | pP               | P-8A                       | Е                  | A <sup>±</sup>                                                                                                                                                                                                                                                                           |                  | L< <n< td=""><td>8A-A<sup>±</sup></td><td>E</td><td>pool 3</td><td>lethal</td><td>pnase</td><td>L-P</td><td>E</td><td></td><td></td><td></td><td>Е</td><td>P-8A</td><td>Э</td><td>L-P</td></n<> | 8A-A <sup>±</sup> | E                                                                                                                                                                                                                 | pool 3  | lethal   | pnase        | L-P    | E                 |                  |                                                                                      |                | Е                 | P-8A  | Э                              | L-P               |
| lasmid  | Fly line          | 8/4                                                                                                                                                                                                                                                                                                                                      | 31/13                                                                                                                                                                                                                                                                                                       | 31/14            | 31/17                      | 32/1               | 36/14                                                                                                                                                                                                                                                                                    | 32/2             | 32/3                                                                                                                                                                                            | 32/4              | 36/11                                                                                                                                                                                                             | lasmid  | Fly line | 44/8         | 53/29  | 54/11             | 54/13            | 54/14                                                                                | 54/19          | 54/33             | 54/45 | 54/44                          | 55/1              |
| I       | Glycerol<br>stock | 89s                                                                                                                                                                                                                                                                                                                                      | 251                                                                                                                                                                                                                                                                                                         | 252              | 255                        | 256                | 304                                                                                                                                                                                                                                                                                      | 257              | 258                                                                                                                                                                                             | 259               | 303                                                                                                                                                                                                               | d       | Glycerol | 357          | 454    | 465               | 467              | 468                                                                                  | 472            | 485               | 496   | 495                            | 499               |
| 9       | P[lacW]<br>site   | 49F4-5                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             | 49B1-2<br>94F1-2 | 55E1-2<br>23A5-6           | 49E1-2<br>94F1-2   |                                                                                                                                                                                                                                                                                          | 32C1-2           | 44C1-2                                                                                                                                                                                          |                   | 60B3-5                                                                                                                                                                                                            | 0       | P[lacW]  | sile         |        |                   |                  |                                                                                      |                |                   |       | 50B1-2<br>50C11-15             | 57F5-6            |
| pool 2  | lethal            | L< <n< td=""><td>L&lt;<n< td=""><td>A<sup>±</sup></td><td>L-P</td><td>E-A<sup>±</sup></td><td>Е</td><td></td><td>A<sup>±</sup></td><td>A±</td><td>E</td><td>pool 3</td><td>lethal</td><td>pnase</td><td>Е</td><td>8A-A<sup>±</sup></td><td>Ρ</td><td>E</td><td></td><td></td><td></td><td>ш</td><td>8A-A<sup>±</sup></td></n<></td></n<> | L< <n< td=""><td>A<sup>±</sup></td><td>L-P</td><td>E-A<sup>±</sup></td><td>Е</td><td></td><td>A<sup>±</sup></td><td>A±</td><td>E</td><td>pool 3</td><td>lethal</td><td>pnase</td><td>Е</td><td>8A-A<sup>±</sup></td><td>Ρ</td><td>E</td><td></td><td></td><td></td><td>ш</td><td>8A-A<sup>±</sup></td></n<> | A <sup>±</sup>   | L-P                        | E-A <sup>±</sup>   | Е                                                                                                                                                                                                                                                                                        |                  | A <sup>±</sup>                                                                                                                                                                                  | A±                | E                                                                                                                                                                                                                 | pool 3  | lethal   | pnase        | Е      | 8A-A <sup>±</sup> | Ρ                | E                                                                                    |                |                   |       | ш                              | 8A-A <sup>±</sup> |
| lasmid  | Fly line          | 29/5                                                                                                                                                                                                                                                                                                                                     | 30/2                                                                                                                                                                                                                                                                                                        | 30/4             | 30/7                       | 30/8               | 8/4                                                                                                                                                                                                                                                                                      | 31/7             | 31/10                                                                                                                                                                                           | 31/12             | 31/1                                                                                                                                                                                                              | lasmid  | Fly line | 57/14        | 53/2   | 53/4              | 53/9             | 53/10                                                                                | 54/6           | 54/7              | 54/10 | 53/34                          | 52/4              |
| I       | Glycerol          | 230                                                                                                                                                                                                                                                                                                                                      | 232                                                                                                                                                                                                                                                                                                         | 234              | 236                        | 237                | 89                                                                                                                                                                                                                                                                                       | 246              | 248                                                                                                                                                                                             | 250               | 242                                                                                                                                                                                                               | P       | Glycerol | Stock<br>430 | 439    | 441               | 444              | 445                                                                                  | 461            | 462               | 464   | 456                            | 459               |
| 5       | P[lacW]<br>site   |                                                                                                                                                                                                                                                                                                                                          | 47A11-14                                                                                                                                                                                                                                                                                                    |                  |                            |                    | 35D1-4                                                                                                                                                                                                                                                                                   | 38B3-5<br>27F3-6 |                                                                                                                                                                                                 |                   |                                                                                                                                                                                                                   | 9       | P[lacW]  | site         |        | 35D1-2            |                  |                                                                                      |                | 53E1-2            |       |                                |                   |
| pool 2  | lethal            |                                                                                                                                                                                                                                                                                                                                          | 8A                                                                                                                                                                                                                                                                                                          | н                | Ч                          | Ь                  | L< <n< td=""><td>A<sup>±</sup></td><td>Е</td><td>Е</td><td>L&lt;<n< td=""><td>pool 2</td><td>lethal</td><td>phase D-8.4</td><td>E-L</td><td>E</td><td>E-A<sup>±</sup></td><td>L&lt;<n< td=""><td>Ρ</td><td>8A-A<sup>±</sup></td><td>Е</td><td>8A</td><td>Е</td></n<></td></n<></td></n<> | A <sup>±</sup>   | Е                                                                                                                                                                                               | Е                 | L< <n< td=""><td>pool 2</td><td>lethal</td><td>phase D-8.4</td><td>E-L</td><td>E</td><td>E-A<sup>±</sup></td><td>L&lt;<n< td=""><td>Ρ</td><td>8A-A<sup>±</sup></td><td>Е</td><td>8A</td><td>Е</td></n<></td></n<> | pool 2  | lethal   | phase D-8.4  | E-L    | E                 | E-A <sup>±</sup> | L< <n< td=""><td>Ρ</td><td>8A-A<sup>±</sup></td><td>Е</td><td>8A</td><td>Е</td></n<> | Ρ              | 8A-A <sup>±</sup> | Е     | 8A                             | Е                 |
| lasmid  | Fly line          | 22/14                                                                                                                                                                                                                                                                                                                                    | 23/1                                                                                                                                                                                                                                                                                                        | 23/2             | 24/1                       | 24/3               | 24/5                                                                                                                                                                                                                                                                                     | 24/6             | 25/1                                                                                                                                                                                            | 25/2              | 25/3                                                                                                                                                                                                              | lasmid  | Fly line | SUNA         | 45/8   | 45/9              | 45/13            | 46/2                                                                                 | 48/6           | 48/10             | 51/19 | 52/12                          | 52/13             |
| H       | Glycerol          | 170                                                                                                                                                                                                                                                                                                                                      | 171                                                                                                                                                                                                                                                                                                         | 172              | 174                        | 175                | 176                                                                                                                                                                                                                                                                                      | 177              | 178                                                                                                                                                                                             | 179               | 180                                                                                                                                                                                                               |         | Glycerol | stock<br>362 | 368    | 369               | 372              | 374                                                                                  | 386            | 390               | 414   | 428                            | 429               |

|          | Plasmid  | pool                                                                                                                                                                                   | 33           |                   | Plasmid  | lood           | 34                |                   | lasmid   | pool                                                                                | 35           |                   | Plasmid  | pool 3                      | 9               |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------|----------------|-------------------|-------------------|----------|-------------------------------------------------------------------------------------|--------------|-------------------|----------|-----------------------------|-----------------|
| Glycerol | Fly line | lethal                                                                                                                                                                                 | P[lacW]      | Glycerol          | Fly line | lethal         | P[lacW]           | Glycerol          | Fly line | lethal                                                                              | P[lacW]      | Glycerol          | Fly line | lethal                      | P[lacW]         |
| stock    |          | phase                                                                                                                                                                                  | site         | stock             |          | phase          | site              | stock             |          | phase                                                                               | site         | stock             |          | phase                       | site            |
| 57       | 4/19     | 8A-A <sup>±</sup>                                                                                                                                                                      |              | 3-24              | 26/12    | Е              |                   | 485               | 54/33    | E                                                                                   | 53E1-2       | 139               | 13/2     | Е                           | 25D1-2          |
| 82       | 7/2      | 8A                                                                                                                                                                                     |              | 336               | 42/20    | L-8A           | 28B1-4            | 442               | 53/5     | Ρ                                                                                   |              | 238               | 13/1     | A <sup>±</sup>              | 45F1-2          |
| 81       | 6/20     | L< <n< td=""><td>42C1-2</td><td>362</td><td>44/13</td><td>Е</td><td></td><td>437</td><td>52/24</td><td>8A-A<sup>±</sup></td><td></td><td>231</td><td>30/1</td><td>E</td><td></td></n<> | 42C1-2       | 362               | 44/13    | Е              |                   | 437               | 52/24    | 8A-A <sup>±</sup>                                                                   |              | 231               | 30/1     | E                           |                 |
| 116      | 11/2     | P-8A                                                                                                                                                                                   |              | 311               | 37/6     | A <sup>±</sup> | 29D1-2            | 438               | 52/25    | A <sup>±</sup>                                                                      |              | 243               | 31/2     | Е                           | 25C1-2          |
| 112      | 10/17    | E                                                                                                                                                                                      | 46F5-6       | 348               | 43/8     | A <sup>±</sup> | 46F1-2            | 435               | 52/31    |                                                                                     |              | 246               | 31/7     |                             | 32C1-2          |
| 119      | 11/6     | 8A                                                                                                                                                                                     |              | 302               | 36/10    | E              | 46F1-2            | 457               | 54/1     |                                                                                     | 21B4-6       | 245               | 31/6     | L-P                         |                 |
| 130      | 12/7     | E                                                                                                                                                                                      | 43F1-2       | 326               | 42/5     | E              |                   | 466               | 54/12    |                                                                                     |              | 253               | 31/15    | 8A-A <sup>±</sup>           | 46B1-2          |
| 132      | 12/9     | L< <n< td=""><td>54B4-8</td><td>385</td><td>48/5</td><td>E</td><td></td><td>488</td><td>54/36</td><td></td><td></td><td>240</td><td>30/11</td><td>E-A<sup>±</sup></td><td></td></n<>   | 54B4-8       | 385               | 48/5     | E              |                   | 488               | 54/36    |                                                                                     |              | 240               | 30/11    | E-A <sup>±</sup>            |                 |
| 141      | 13/4     | A <sup>±</sup>                                                                                                                                                                         |              | 363               | 44/15    | P-8A           |                   | 467               | 54/13    |                                                                                     |              | 264               | 33/1     | E                           |                 |
| 124      | 11/15    | E-L                                                                                                                                                                                    | New York     | 233               | 30/3     | P-8A           | 34B8-9            | 471               | 54/18    |                                                                                     |              | 263               | 32/10    | E                           | and the         |
|          | Plasmid  | lood                                                                                                                                                                                   | 37           | I                 | lasmid   | pool           | 38                | P                 | lasmid   | pool                                                                                | 39           |                   | Plasmid  | pool 4                      | 0               |
| Glycerol | Fly line | lethal                                                                                                                                                                                 | P[lacW] site | Glycerol<br>stock | Fly line | lethal         | P[lacW]<br>site   | Glycerol<br>stock | Fly line | lethal                                                                              | P[lacW] site | Glycerol<br>stock | Fly line | lethal<br>phase             | P[lacW]<br>site |
| 265      | 33/2     |                                                                                                                                                                                        | 37A1-2       | 296               | 36/1     | Е              |                   | 36                | 3/1      | A <sup>±</sup>                                                                      | 36A11-12     | 90s               | 8/5      | P-8A                        |                 |
| 272      | 33/11    |                                                                                                                                                                                        |              | 291               | 35/11    | Е              |                   | 41                | 3/7      | E                                                                                   |              | 77                | 8/13     | L< <n< td=""><td></td></n<> |                 |
| 271      | 33/10    |                                                                                                                                                                                        |              | 290               | 35/10    | E              |                   | 43                | 3/10     | E                                                                                   |              | 110               | 10/13    | 8A-A <sup>±</sup>           |                 |
| 275      | 33/16    | L< <n< td=""><td>51B7-8</td><td>293</td><td>35/13</td><td>E</td><td></td><td>55</td><td>4/14</td><td>E-L</td><td></td><td>117</td><td>11/3</td><td>E</td><td>48F3-6</td></n<>          | 51B7-8       | 293               | 35/13    | E              |                   | 55                | 4/14     | E-L                                                                                 |              | 117               | 11/3     | E                           | 48F3-6          |
| 266      | 33/3     | A <sup>±</sup>                                                                                                                                                                         | 54E1-2       | 287               | 35/5     | Е              | 36F11-12          | 64                | 5/7      | pP                                                                                  |              | 129               | 12/6     | E                           | 21A1-4          |
| 277      | 34/2     | Е                                                                                                                                                                                      | 53C1-4       | 288               | 35/6     |                | 35D1-2<br>89B9-10 | 99                | 6/2      | Ρ                                                                                   |              | 139               | 13/2     | E                           | 25D1-2          |
| 283      | 35/1     | P-8A                                                                                                                                                                                   |              | 292               | 35/12    | E              |                   | 73                | 6/11     | P-A <sup>±</sup>                                                                    | 58F4-5       | 165               | 22/3     | 8A-A <sup>±</sup>           | 44C1-2          |
| 281      | 34/8     | E                                                                                                                                                                                      |              | 295               | 35/14    | E              | 47F1-2            | 17                | 6/16     | L< <n< td=""><td>21B7-8</td><td>185</td><td>25/10</td><td></td><td>30C6-7</td></n<> | 21B7-8       | 185               | 25/10    |                             | 30C6-7          |
| 270      | 33/9     | L< <n< td=""><td></td><td>298</td><td>36/4</td><td>E</td><td></td><td>26</td><td>2/17</td><td></td><td></td><td>189</td><td>25/14</td><td>E</td><td>35D3-4</td></n<>                   |              | 298               | 36/4     | E              |                   | 26                | 2/17     |                                                                                     |              | 189               | 25/14    | E                           | 35D3-4          |
| 269      | 33/8     | Ρ                                                                                                                                                                                      |              | 300               | 36/8     | E              |                   | 86                | 8/1      |                                                                                     |              |                   |          |                             |                 |

|                   | Plasmid  | pool           | 41                    |                   | Plasmid  | pood .                                                                                                                        | 12                 |                   | Plasmid  | pool 4                                                                          | 3                                        |                   | Plasmid  | pood            | 44                    |
|-------------------|----------|----------------|-----------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------|---------------------------------------------------------------------------------|------------------------------------------|-------------------|----------|-----------------|-----------------------|
| Glycerol          | Fly line | lethal         | P[lacW]               | Glycerol          | Fly line | lethal                                                                                                                        | P[lacW]            | Glycerol          | Fly line | lethal                                                                          | P[lacW]                                  | Glycerol          | Fly line | lethal          | P[lacW]               |
| stock             |          | phase          | site                  | stock             | L. Mar   | phase                                                                                                                         | site               | stock             |          | phase                                                                           | site                                     | stock             |          | phase           | site                  |
| 196               | 26/1     | Е              |                       | 21                | 2/13     | P-8A                                                                                                                          | 27C2-3             | 274               | 33/15    | Е                                                                               |                                          | 294               | 35/15    | E               |                       |
| 197               | 26/2     | Е              | 35D3-4                | 22                | 2/15     | Е                                                                                                                             |                    | 275               | 33/16    | L< <n< td=""><td>51B7-8</td><td>299</td><td>36/7</td><td>E-L</td><td></td></n<> | 51B7-8                                   | 299               | 36/7     | E-L             |                       |
| 198               | 26/3     | E              |                       | 122               | 11/9     | 8A                                                                                                                            | 41F8-9             | 280               | 34/6     | E                                                                               | a la | 301               | 36/9     | E               | 53C1-2                |
| 204               | 26/11    | E              |                       | 127               | 12/3     |                                                                                                                               | 30E1-2             | 284               | 35/2     | E                                                                               |                                          | 313               | 38/2     | E               |                       |
| 206               | 26/15    | L-P            | 52E3-4                | 125               | 11/17    | $E-A^{\pm}$                                                                                                                   |                    | 289               | 35/9     | A <sup>±</sup>                                                                  | 29E1-2                                   | 314               | 39/1     | L-P             |                       |
| 208               | 27/3     | P-8A           |                       | 159               | 20/3     | 8A-A <sup>±</sup>                                                                                                             |                    | 440               | 53/3     | 8A-A <sup>±</sup>                                                               | 52E5-8                                   | 317               | 39/4     | A <sup>±</sup>  | 43F5-9                |
| 215               | 27/13    | E              |                       | 158               | 20/2     | P-8A                                                                                                                          |                    | 203               | 26/10    | E                                                                               |                                          | 318               | 39/5     | E               | 48C5-6                |
| 239               | 30/10    | E              |                       | 247               | 31/9     | E-L                                                                                                                           |                    | 351               | 43/14    | L-P                                                                             | 42A1-2                                   | 321               | 40/4     | $A^{\pm}$       |                       |
| 244               | 31/5     | Е              |                       | 219               | 28/5     | E                                                                                                                             |                    | 460               | 54/5     | E                                                                               |                                          | 324               | 42/3     | Ρ               |                       |
| 261               | 32/7     | Е              | 48F3-4                | 267               | 33/4     | P-A <sup>±</sup>                                                                                                              |                    | 260               | 32/5     | E                                                                               |                                          | 340               | 42/24    | Е               |                       |
|                   |          |                |                       | 268               | 33/7     | E                                                                                                                             |                    |                   |          |                                                                                 |                                          |                   |          |                 |                       |
|                   | Plasmid  | pool           | 45                    | ł                 | lasmid   | pool .                                                                                                                        | 16                 | H                 | lasmid   | pool 4                                                                          | 17                                       |                   | Plasmid  | lood            | 48                    |
| Glycerol<br>stock | Fly line | lethal         | P[ <i>lacW</i> ] site | Glycerol<br>stock | Fly line | lethal<br>phase                                                                                                               | P[lacW] site       | Glycerol<br>stock | Fly line | lethal<br>phase                                                                 | P[lacW] site                             | Glycerol<br>stock | Fly line | lethal<br>phase | P[ <i>lacW</i> ] site |
| 328               | 42/7     | P-8A           | 35D1-2                | 393               | 49/6     |                                                                                                                               |                    | 517               | 55/16    | P-8A                                                                            |                                          | 455               | 53/32    |                 |                       |
| 332               | 42/13    | ш              | 48F5-6                | 400               | 49/14    | Е                                                                                                                             |                    | 518               | 55/17    | Ρ                                                                               | 35D1-4<br>37C6-7<br>82E6-7               | 458               | 54/2     |                 |                       |
| 335               | 42/18    | Е              |                       | 415               | 51/22    | P-A <sup>±</sup>                                                                                                              |                    | 519               | 55/18    | Е                                                                               |                                          | 447               | 53/13    | L-P             |                       |
| 350               | 43/11    | A <sup>±</sup> |                       | 426               | 52/10    | E                                                                                                                             |                    | 520               | 55/19    | L< <n< td=""><td></td><td>451</td><td>53/19</td><td>Ρ</td><td></td></n<>        |                                          | 451               | 53/19    | Ρ               |                       |
| 352               | 44/1     | Е              | 55D1-2                | 427               | 52/11    |                                                                                                                               | 35F1-2<br>60B10-11 | 521               | 55/23    | 8A-A <sup>±</sup>                                                               |                                          | 501               | 55/3     | P-8A            |                       |
| 353               | 44/2     | 8A             | 28C7-8                | 431               | 52/15    | E                                                                                                                             |                    | 524               | 55/32    | Ρ                                                                               |                                          | 480               | 54/28    | E               |                       |
| 357               | 44/8     | Ρ              |                       | 432               | 52/18    |                                                                                                                               |                    | 511               | 55/7     | Е                                                                               |                                          | 482               | 54/30    |                 |                       |
| 358               | 44/9     | Е              | 59A1-3                | 433               | 52/19    | L< <n< td=""><td></td><td>512</td><td>55/8</td><td>P-8A</td><td></td><td>549</td><td>56/33</td><td>E</td><td>53E1-2</td></n<> |                    | 512               | 55/8     | P-8A                                                                            |                                          | 549               | 56/33    | E               | 53E1-2                |
| 360               | 44/11    | Ρ              | 26B8-9                | 436               | 52/23    |                                                                                                                               |                    | 514               | 55/12    | Ρ                                                                               |                                          |                   |          |                 |                       |
| 361               | 44/12    | E              |                       | 449               | 53/17    | Ρ                                                                                                                             | 56F10-12           | 516               | 55/15    | Е                                                                               |                                          |                   |          |                 |                       |
|                   |          |                |                       |                   |          |                                                                                                                               |                    |                   | 1000     |                                                                                 |                                          |                   |          |                 |                       |

|        | [4       |       |                                                                                                                                                                                                                                                                                                     |                   | -5    | -2             |                   | 4-15           |                |                |                  | 2                 |        | [4       |       |          |        |                   |                                                                                         | 4 0         |                                                              | C1 80 | -2             | -2     | - |
|--------|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|----------------|-------------------|----------------|----------------|----------------|------------------|-------------------|--------|----------|-------|----------|--------|-------------------|-----------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------|-------|----------------|--------|---|
| 52     | P[lach   | site  |                                                                                                                                                                                                                                                                                                     |                   | 21C4  | 30E1-          |                   | 53C1           |                |                |                  | 58D1-             | 56     | P[lacV   | site  |          |        |                   |                                                                                         | 23D3-47F1-2 |                                                              | 37F1- | 23D1           | 50D1   |   |
| pool   | lethal   | phase | E                                                                                                                                                                                                                                                                                                   | 8A-A <sup>±</sup> | P-8A  | E-L            | 8A-A <sup>±</sup> | A <sup>±</sup> | E              |                | Ρ                | E                 | pool   | lethal   | phase | E        | E      | E                 | A <sup>±</sup>                                                                          | L-P         | E                                                            | Э     | A <sup>±</sup> | E      |   |
| lasmid | Fly line |       | 64/1                                                                                                                                                                                                                                                                                                | 64/19             | 65/6  | 64/16          | 64/13             | 65/3           | 65/4           | 65/11          | 65/14            | 65/15             | lasmid | Fly line |       | 56/5     | 57/5   | 57/22             | 58/6                                                                                    | 58/7        | 58/8                                                         | 58/11 | 58/16          | 58/21  |   |
| 1      | Glycerol | stock | 704                                                                                                                                                                                                                                                                                                 | 721               | 728   | 718            | 716               | 725            | 726            | 731            | 732              | 733               | I      | Glycerol | stock | 529      | 566    | 577               | 583                                                                                     | 584         | 585                                                          | 588   | 592            | 596    |   |
|        | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                     |                   |       |                | 51B5-6<br>51B9-10 | 30C3-4         | 1              |                | 57F5-6<br>35D1-2 | 50D1-2<br>57F9-11 | 5      | P[lacW]  | site  | 42A10-12 | 35D1-4 | 34D5-6            | 31A1-2                                                                                  |             | 28E3-4                                                       |       |                |        |   |
| pool 5 | lethal   | phase |                                                                                                                                                                                                                                                                                                     | P-8A              | E     | E              | Е                 | Е              | E-L            | A <sup>±</sup> | В                | Е                 | pool 5 | lethal   | phase |          | Е      | E                 | L< <n< td=""><td>B-L</td><td>P-8A</td><td>B-L</td><td>P-8A</td><td>Е</td><td></td></n<> | B-L         | P-8A                                                         | B-L   | P-8A           | Е      |   |
| lasmid | Fly line |       | 56/41                                                                                                                                                                                                                                                                                               | 56/47             | 56/42 | 57/17          | 56/51             | 57/12          | 57/8           | 57/2           | 56/14            | 56/9              | lasmid | Fly line |       | 62/10    | 62/11  | 63/21             | 63/24                                                                                   | 63/26       | 63/27                                                        | 67/14 | 68/1           | 68/2   |   |
|        | Glycerol | stock | 555                                                                                                                                                                                                                                                                                                 | 557               | 556   | 574            | 561               | 570            | 567            | 565            | 538              | 533               | P      | Glycerol | stock | 666      | 667    | 685               | 687                                                                                     | 688         | 689                                                          | 764   | 765            | 766    |   |
| 0      | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                     |                   |       | 36A6-7         | 60B4-5            |                |                |                | 51B4-5<br>98C1-2 |                   | 4      | P[lacW]  | site  |          |        |                   | 42A8-9                                                                                  |             |                                                              |       | 54C1-4         | 46B1-2 |   |
| pool 5 | lethal   | phase | E                                                                                                                                                                                                                                                                                                   | E                 | Е     | E              | Е                 | E-L            | A <sup>±</sup> | E              | 8A               | ш                 | 5 lood | lethal   | phase | E        | E      | 8A-A <sup>±</sup> | 8A-A <sup>±</sup>                                                                       | E           | Е                                                            |       | Е              | L-P    |   |
| lasmid | Fly line |       | 56/29                                                                                                                                                                                                                                                                                               | 56/30             | 56/32 | 56/27          | 56/33             | 56/25          | 56/17          | 56/40          | 56/39            | 56/35             | lasmid | Fly line |       | 61/20    | 61/22  | 61/25             | 61/26                                                                                   | 61/31       | 61/32                                                        | 61/33 | 62/2           | 62/5   |   |
|        | Glycerol | stock | 546                                                                                                                                                                                                                                                                                                 | 547               | 548   | 545            | 549               | 544            | 541            | 554            | 553              | 550               | d      | Glycerol | stock | 650      | 652    | 653               | 654                                                                                     | 656         | 657                                                          | 658   | 660            | 663    |   |
| 6      | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                     |                   |       | 28B1-2         |                   |                |                | 1 N            | No. or           |                   | 3      | P[lacW]  | site  |          |        |                   | 31A1-2<br>60B1-2                                                                        |             | 58D6-7                                                       |       | 50E6-7         | 48D1-2 |   |
| pool 4 | lethal   | phase | L< <n< td=""><td>Е</td><td>Е</td><td>A<sup>±</sup></td><td>Е</td><td>E</td><td>E-L</td><td>E</td><td>н</td><td>Ь</td><td>pool 5</td><td>lethal</td><td>phase</td><td>8A</td><td>Е</td><td>Е</td><td>P-8A</td><td>Е</td><td>L&lt;<n< td=""><td>P-8A</td><td>Е</td><td>Ш</td><td></td></n<></td></n<> | Е                 | Е     | A <sup>±</sup> | Е                 | E              | E-L            | E              | н                | Ь                 | pool 5 | lethal   | phase | 8A       | Е      | Е                 | P-8A                                                                                    | Е           | L< <n< td=""><td>P-8A</td><td>Е</td><td>Ш</td><td></td></n<> | P-8A  | Е              | Ш      |   |
| lasmid | Fly line |       | 56/6                                                                                                                                                                                                                                                                                                | 56/10             | 56/11 | 56/13          | 56/15             | 56/8           | 56/12          | 56/2           | 56/24            | 56/23             | lasmid | Fly line |       | 65/20    | 66/3   | 66/5              | 66/8                                                                                    | 66/20       | 66/17                                                        | 66/14 | 66/18          | 66/12  |   |
|        | Glycerol | stock | 530                                                                                                                                                                                                                                                                                                 | 535               | 536   | 537            | 539               | 532            | 534            | 527            | 543              | 542               |        | Glycerol | stock | 734      | 739    | 740               | 743                                                                                     | 752         | 749                                                          | 748   | 750            | 746    |   |

| 0       | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                             |          |                                                                                                                 | 1                 |                  |        | 34C3-5   |                |        |       | 4       | P[lacW]  | site  |        |                |                   |                                                                                                                |       | 47A11-14 | Sec. 1            |                   |                              |        |
|---------|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------|----------|----------------|--------|-------|---------|----------|-------|--------|----------------|-------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|-------------------|-------------------|------------------------------|--------|
| pool 6  | lethal   | phase | L< <n< th=""><th>E</th><th>P-8A</th><th>P-A<sup>±</sup></th><th>E-A<sup>±</sup></th><th>E-L</th><th>E</th><th>E</th><th>E</th><th>Ρ</th><th>pool 6</th><th>lethal</th><th>phase</th><th>E</th><th>E-L</th><th>E</th><th></th><th>E</th><th>E</th><th>8A-A<sup>±</sup></th><th></th><th>ш</th><th></th></n<> | E        | P-8A                                                                                                            | P-A <sup>±</sup>  | E-A <sup>±</sup> | E-L    | E        | E              | E      | Ρ     | pool 6  | lethal   | phase | E      | E-L            | E                 |                                                                                                                | E     | E        | 8A-A <sup>±</sup> |                   | ш                            |        |
| Plasmid | Fly line |       | 69/4                                                                                                                                                                                                                                                                                                        | 69/69    | 69/3                                                                                                            | 69/8              | 69/9             | 69/10  | 69/15    | 69/16          | 69/18  | 69/19 | Plasmid | Fly line |       | 61/3   | 61/4           | 61/5              | 61/7                                                                                                           | 61/8  | 61/12    | 61/14             | 61/15             | 61/17                        | 61/19  |
|         | Glycerol | stock | 785                                                                                                                                                                                                                                                                                                         | 786      | 784                                                                                                             | 787               | 788              | 789    | 790      | 161            | 792    | 793   |         | Glycerol | stock | 636    | 637            | 638               | 640                                                                                                            | 641   | 644      | 646               | 647               | 648                          | 649    |
| 6       | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                             |          | Contraction of the second s | A Long            |                  |        |          |                |        |       | 3       | P[lacW]  | site  |        |                |                   |                                                                                                                |       | 21B4-6   | 45B7-8            |                   | 47A11-14<br>47C4-7           | 21C6-7 |
| pool 5  | lethal   | phase | P-8A                                                                                                                                                                                                                                                                                                        | P-8A     | E                                                                                                               | 8A-A <sup>±</sup> | P-A <sup>±</sup> | E      | E        | E              | P-8A   | E     | pool 6  | lethal   | phase | E-L    | E              | 8A                | P                                                                                                              | E     | P-8A     | pP                | E                 | Е                            | E      |
| Plasmid | Fly line |       | 69/20                                                                                                                                                                                                                                                                                                       | 69/22    | 70/2                                                                                                            | 70/3              | 63/42            | 63/43  | 67/1     | 67/3           | 67/4   | 67/6  | lasmid  | Fly line |       | 60/8   | 60/10          | 60/11             | 60/15                                                                                                          | 60/18 | 60/19    | 60/21             | 60/22             | 60/24                        | 61/1   |
| I       | Glycerol | stock | 794                                                                                                                                                                                                                                                                                                         | 795      | 797                                                                                                             | 798               | 701              | 702    | 754      | 755            | 756    | 757   | đ       | Glycerol | stock | 623    | 625            | 626               | 627                                                                                                            | 628   | 629      | 630               | 631               | 632                          | 635    |
| 8       | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                             |          | 10                                                                                                              |                   |                  |        | 21C4-5   |                | 37A2-3 |       | 2       | P[lacW]  | site  | 14 M 3 |                |                   | The second s |       |          | 54B10-14          |                   |                              | 44F3-4 |
| s lood  | lethal   | phase | E                                                                                                                                                                                                                                                                                                           | E        | E                                                                                                               | A <sup>±</sup>    | E                | E      | P        | A <sup>±</sup> | E-L    | P-8A  | pool 6  | lethal   | phase | E      | A <sup>±</sup> | E-L               | Е                                                                                                              | E     | Е        | Ρ                 | 8A-A <sup>±</sup> | L< <n< td=""><td>Е</td></n<> | Е      |
| lasmid  | Fly line |       | 6/19                                                                                                                                                                                                                                                                                                        | 67/12    | 67/13                                                                                                           | 68/8              | 68/10            | 68/11  | 70/5     | 70/11          | 70/12  | 70/13 | lasmid  | Fly line |       | 59/1   | 59/2           | 59/7              | 59/8                                                                                                           | 59/10 | 59/13    | 59/16             | 59/20             | 60/4                         | 60/6   |
|         | Glycerol | stock | 759                                                                                                                                                                                                                                                                                                         | 762      | 763                                                                                                             | 771               | 772              | 773    | 997<br>9 | 802            | 803    | 804   | d       | Glycerol | stock | 601    | 602            | 604               | 605                                                                                                            | 607   | 610      | 612               | 616               | 619                          | 621    |
| L       | P[lacW]  | site  | 44E1-2                                                                                                                                                                                                                                                                                                      | 50C14-15 | 36B1-2                                                                                                          | 43D1-2            |                  | 46B1-2 |          |                |        |       | 1       | P[lacW]  | site  |        |                |                   | 47A7-8                                                                                                         |       |          |                   |                   |                              |        |
| pool 5  | lethal   | phase | P-A <sup>±</sup>                                                                                                                                                                                                                                                                                            | E-L      | Ρ                                                                                                               | E                 | E                | E      |          | 8A             | E      | L-P   | pool 6  | lethal   | phase | E      | 8A             | 8A-A <sup>±</sup> | E-A <sup>±</sup>                                                                                               | L-8A  | Е        | P-8A              | P-8A              | Е                            | E      |
| lasmid  | Fly line |       | 70/14                                                                                                                                                                                                                                                                                                       | 70/18    | 70/20                                                                                                           | 70/24             | 27/10            | 31/11  | 34/5     | 34/9           | 12/10  | 18/1  | lasmid  | Fly line |       | 68/13  | 68/14          | 68/15             | 68/17                                                                                                          | 68/18 | 68/19    | 68/20             | 68/21             | 1/69                         | 69/2   |
|         | Glycerol | stock | 805                                                                                                                                                                                                                                                                                                         | 808      | 809                                                                                                             | 810               | 214              | 249    | 279      | 282            | 133    | 154   |         | Glycerol | stock | 774    | 775            | 776               | LLL                                                                                                            | 778   | 6LL      | 780               | 781               | 782                          | 783    |

| 8       | P[lacW]<br>site          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                    | 53B1-2                                                                                                                                                                                                                                                                                                                                | 21C4-5           | 41C<br>39B1-2    |                    |                   |                                                                                                                                                                                     | 59F1-2 | 2       | P[lacW]  | 2110        |                | 47A7-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                  |                                                                                                            | 55B5-10          |                   |                                            |                  |
|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|------------------|-------------------|--------------------------------------------|------------------|
| pool 6  | lethal<br>phase          | L-P                                                                                                                                                                                                                                                                                                                                                                                                                      | E                 | P-8A                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                                                                                                                                                                                                                     | E                | P-8A             | E                  | E                 | E-A <sup>±</sup>                                                                                                                                                                    | Ρ      | pool 7  | lethal   | F           | A <sup>±</sup> | E-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                               | Е                | L< <n< td=""><td>E-A<sup>±</sup></td><td>pP</td><td>L&lt;<n< td=""><td>P-A<sup>±</sup></td></n<></td></n<> | E-A <sup>±</sup> | pP                | L< <n< td=""><td>P-A<sup>±</sup></td></n<> | P-A <sup>±</sup> |
| lasmid  | Fly line                 | 72/40                                                                                                                                                                                                                                                                                                                                                                                                                    | 73/6              | 72/44                                                                                                                                                                                                                                                                                                                                                              | 73/1                                                                                                                                                                                                                                                                                                                                  | 73/10            | 73/12            | 73/21              | 73/13             | 73/22                                                                                                                                                                               | 73/24  | lasmid  | Fly line | 7815        | 78/9           | 78/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79/7                                                                            | 8/61             | 79/12                                                                                                      | 79/16            | 79/19             | 79/21                                      | 79/23            |
|         | Glycerol<br>stock        | 870                                                                                                                                                                                                                                                                                                                                                                                                                      | 879               | 872                                                                                                                                                                                                                                                                                                                                                                | 875                                                                                                                                                                                                                                                                                                                                   | 882              | 884              | 888                | 885               | 889                                                                                                                                                                                 | 890    |         | Glycerol | 070         | 982            | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1013                                                                            | 1014             | 1016                                                                                                       | 1019             | 1021              | 1023                                       | 1025             |
| 7       | P[ <i>lacW</i> ]<br>site | 53E1-2                                                                                                                                                                                                                                                                                                                                                                                                                   | 53E1-2            | 52E5-6                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       | 53C1-2           | 49E6-7           | 57F5-6<br>47A11-14 | 53E1-2            | 46C1-2                                                                                                                                                                              |        | 1       | P[lacW]  | alic        |                | and the second se | 32D1-2                                                                          | 29D1-2           |                                                                                                            |                  | 23F5-6            | 45A1-2                                     |                  |
| pool 6  | lethal<br>phase          | E                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | E-L                                                                                                                                                                                                                                                                                                                                                                | L< <n< td=""><td>E-L</td><td>Е</td><td>E</td><td>8A-A<sup>±</sup></td><td>L&lt;<n< td=""><td>E</td><th>pool 7</th><td>lethal</td><td>D</td><td>pP</td><td>E</td><td>L&lt;<n< td=""><td>E</td><td>E</td><td>pP</td><td>E</td><td>E</td><td>P</td></n<></td></n<></td></n<>                                                             | E-L              | Е                | E                  | 8A-A <sup>±</sup> | L< <n< td=""><td>E</td><th>pool 7</th><td>lethal</td><td>D</td><td>pP</td><td>E</td><td>L&lt;<n< td=""><td>E</td><td>E</td><td>pP</td><td>E</td><td>E</td><td>P</td></n<></td></n<> | E      | pool 7  | lethal   | D           | pP             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L< <n< td=""><td>E</td><td>E</td><td>pP</td><td>E</td><td>E</td><td>P</td></n<> | E                | E                                                                                                          | pP               | E                 | E                                          | P                |
| Plasmid | Fly line                 | 72/26                                                                                                                                                                                                                                                                                                                                                                                                                    | 72/28             | 72/36                                                                                                                                                                                                                                                                                                                                                              | 72/31                                                                                                                                                                                                                                                                                                                                 | 71/27            | 72/11            | 72/4               | 72/20             | 72/37                                                                                                                                                                               | 72/33  | lasmid  | Fly line | UCIAT       | 77/8           | 77/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTITT                                                                           | 77/4             | 77/13                                                                                                      | 77/27            | 77/36             | 77/37                                      | 77/38            |
|         | Glycerol stock           | 858                                                                                                                                                                                                                                                                                                                                                                                                                      | 860               | 866                                                                                                                                                                                                                                                                                                                                                                | 862                                                                                                                                                                                                                                                                                                                                   | 829              | 846              | 842                | 854               | 867                                                                                                                                                                                 | 864    |         | Glycerol | 010         | 096            | 961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 965                                                                             | 957              | 963                                                                                                        | 970              | 973               | 974                                        | 975              |
| 9       | P[lacW]<br>site          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 37B7-10<br>32A1-2                                                                                                                                                                                                                                                                                                                                                  | 32A1-2                                                                                                                                                                                                                                                                                                                                |                  |                  | 25F1-2<br>36E3-4   | 56D7-9            |                                                                                                                                                                                     |        | 0,      | P[lacW]  | SIIC        |                | 49E6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49E6-7                                                                          | 25C1-2<br>26A5-6 |                                                                                                            |                  |                   |                                            |                  |
| pool 6  | lethal<br>phase          | A <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                                           | E                 | Е                                                                                                                                                                                                                                                                                                                                                                  | 8A-A <sup>±</sup>                                                                                                                                                                                                                                                                                                                     | L-A <sup>±</sup> | P-A <sup>±</sup> | Е                  | $E-A^{\pm}$       | L-8A                                                                                                                                                                                | L-P    | pool 7  | lethal   | pildsc<br>E | н              | E-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                               | Е                | P-8A                                                                                                       | E                | 8A-A <sup>±</sup> | E                                          | Е                |
| Plasmid | Fly line                 | 36/19                                                                                                                                                                                                                                                                                                                                                                                                                    | 54/5              | 54/2                                                                                                                                                                                                                                                                                                                                                               | 55/31                                                                                                                                                                                                                                                                                                                                 | 71/5             | 71/6             | 71/9               | 71/8              | 71/16                                                                                                                                                                               | 71/20  | lasmid  | Fly line | 21176       | 71/38          | 72/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72/16                                                                           | 72/18            | 72/32                                                                                                      | 73/25            | 76/2              | 76/3                                       | 76/5             |
|         | Glycerol<br>stock        | 307                                                                                                                                                                                                                                                                                                                                                                                                                      | 460               | 458                                                                                                                                                                                                                                                                                                                                                                | 526                                                                                                                                                                                                                                                                                                                                   | 813              | 814              | 816                | 815               | 821                                                                                                                                                                                 | 824    | d       | Glycerol | SLUCK       | 836            | 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 850                                                                             | 852              | 863                                                                                                        | 891              | 933               | 934                                        | 936              |
| 5       | P[lacW]<br>site          | 51A1-5                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 29C3-4                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |                  |                  |                    | 46E1-2            |                                                                                                                                                                                     |        | 9       | P[lacW]  | silc        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                  |                                                                                                            | 56D8-9           | 29C1-3            |                                            | 36B1-2           |
| pool 6  | lethal<br>phase          | L< <n< td=""><td>8A-A<sup>±</sup></td><td>L&lt;<n< td=""><td>L&lt;<n< td=""><td>E-A<sup>±</sup></td><td>Е</td><td>P-8A</td><td>P-A<sup>±</sup></td><td>Е</td><td>Е</td><th>o lood</th><td>lethal</td><td>pnase</td><td>E</td><td>Ш</td><td>E-A<sup>±</sup></td><td>8A</td><td>L&lt;<n< td=""><td>E</td><td>8A-A<sup>±</sup></td><td><math>L-A^{\pm}</math></td><td>A<sup>±</sup></td></n<></td></n<></td></n<></td></n<> | 8A-A <sup>±</sup> | L< <n< td=""><td>L&lt;<n< td=""><td>E-A<sup>±</sup></td><td>Е</td><td>P-8A</td><td>P-A<sup>±</sup></td><td>Е</td><td>Е</td><th>o lood</th><td>lethal</td><td>pnase</td><td>E</td><td>Ш</td><td>E-A<sup>±</sup></td><td>8A</td><td>L&lt;<n< td=""><td>E</td><td>8A-A<sup>±</sup></td><td><math>L-A^{\pm}</math></td><td>A<sup>±</sup></td></n<></td></n<></td></n<> | L< <n< td=""><td>E-A<sup>±</sup></td><td>Е</td><td>P-8A</td><td>P-A<sup>±</sup></td><td>Е</td><td>Е</td><th>o lood</th><td>lethal</td><td>pnase</td><td>E</td><td>Ш</td><td>E-A<sup>±</sup></td><td>8A</td><td>L&lt;<n< td=""><td>E</td><td>8A-A<sup>±</sup></td><td><math>L-A^{\pm}</math></td><td>A<sup>±</sup></td></n<></td></n<> | E-A <sup>±</sup> | Е                | P-8A               | P-A <sup>±</sup>  | Е                                                                                                                                                                                   | Е      | o lood  | lethal   | pnase       | E              | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-A <sup>±</sup>                                                                | 8A               | L< <n< td=""><td>E</td><td>8A-A<sup>±</sup></td><td><math>L-A^{\pm}</math></td><td>A<sup>±</sup></td></n<> | E                | 8A-A <sup>±</sup> | $L-A^{\pm}$                                | A <sup>±</sup>   |
| Plasmid | Fly line                 | 62/3                                                                                                                                                                                                                                                                                                                                                                                                                     | 62/13             | 63/3                                                                                                                                                                                                                                                                                                                                                               | 63/5                                                                                                                                                                                                                                                                                                                                  | 63/9             | 63/18            | 68/3               | 73/36             | 72/39                                                                                                                                                                               | 71/17  | Plasmid | Fly line | 12121       | 73/27          | 73/33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73/26                                                                           | 71/23            | 60/28                                                                                                      | 71/15            | 71/18             | 71/24                                      | 71/29            |
|         | Glycerol<br>stock        | 661                                                                                                                                                                                                                                                                                                                                                                                                                      | 668               | 672                                                                                                                                                                                                                                                                                                                                                                | 674                                                                                                                                                                                                                                                                                                                                   | 677              | 683              | 767                | 897               | 869                                                                                                                                                                                 | 822    |         | Glycerol | STOCK       | 893            | 896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 892                                                                             | 825              | 634                                                                                                        | 820              | 823               | 826                                        | 830              |

| 76      | P[lacW]<br>site |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                          |       | 23C1-2 |                                                                                                                                                                                                                                                          | 59B1-2                                           |                |                                                                                                                                                                                                             | 80     | P[lacW]  | slic   |                                                                                                                                                                  |                   |                   | 46C7-8         |                                                                               |                   |                   |                              |                    |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|-------------------------------------------------------------------------------|-------------------|-------------------|------------------------------|--------------------|
| pool    | lethal          | D-A <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                               | Е                                                                                                                                                                                                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                          |       | E      |                                                                                                                                                                                                                                                          | E-P                                              | pP             | pP                                                                                                                                                                                                          | lood   | lethal   | pilase | L< <n< th=""><th>c</th><th>P-8A</th><th>A<sup>±</sup></th><th>A<sup>±</sup></th><th>E-A<sup>±</sup></th><th>E-L</th><th>L&lt;<n< th=""><th>E</th></n<></th></n<> | c                 | P-8A              | A <sup>±</sup> | A <sup>±</sup>                                                                | E-A <sup>±</sup>  | E-L               | L< <n< th=""><th>E</th></n<> | E                  |
| lasmid  | Fly line        | 81/16                                                                                                                                                                                                                                                                                                                                                                          | 81/18                                                                                                                                                                                                                                                                                                                                             | 81/19       | 81/21                                                                                                                                                                                                                                                                                                    | 81/24 | 81/25  | 81/27                                                                                                                                                                                                                                                    | 81/34                                            | 81/39          | 81/41                                                                                                                                                                                                       | lasmid | Fly line | 63/10  | 63/32                                                                                                                                                            | 63/41             | 63/44             | 64/8           | 64/12                                                                         | 65/11             | 67/8              | 75/15                        | 75/16              |
|         | Glycerol        | 1086                                                                                                                                                                                                                                                                                                                                                                           | 1087                                                                                                                                                                                                                                                                                                                                              | 1088        | 1090                                                                                                                                                                                                                                                                                                     | 1093  | 1094   | 1095                                                                                                                                                                                                                                                     | 1097                                             | 1101           | 1102                                                                                                                                                                                                        |        | Glycerol | 510CK  | 693                                                                                                                                                              | 700               | 703               | 711            | 715                                                                           | 731               | 758               | 923                          | 924                |
| 15      | P[lacW] site    |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                   | 39E3-4      | A Shire and                                                                                                                                                                                                                                                                                              |       |        | 21B4-6                                                                                                                                                                                                                                                   | 35F11-12<br>35F4-5<br>21B4-5<br>34C4-5<br>42C1-2 |                | All and a second se                                                                                              | 6/     | P[lacW]  | slic   |                                                                                                                                                                  |                   |                   | 46C7-8         |                                                                               | and the           |                   |                              |                    |
| pool 7  | lethal          | P-8A                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                                                                                                                                                                                 | Е           | E                                                                                                                                                                                                                                                                                                        | E     | E      | A <sup>±</sup>                                                                                                                                                                                                                                           | L-A <sup>±</sup>                                 | A <sup>±</sup> | E                                                                                                                                                                                                           | pool 7 | lethal   | pnase  | L< <n< td=""><td>E</td><td>P-8A</td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>E-P</td><td>E-L</td><td>L&lt;<n< td=""><td>E</td></n<></td></n<>             | E                 | P-8A              | A <sup>±</sup> | A <sup>±</sup>                                                                | E-P               | E-L               | L< <n< td=""><td>E</td></n<> | E                  |
| Plasmid | Fly line        | 80/31                                                                                                                                                                                                                                                                                                                                                                          | 80/32                                                                                                                                                                                                                                                                                                                                             | 80/34       | 80/35                                                                                                                                                                                                                                                                                                    | 80/45 | 81/1   | 81/2                                                                                                                                                                                                                                                     | 81/6                                             | 81/12          | 81/13                                                                                                                                                                                                       | lasmid | Fly line | 62/10  | 63/32                                                                                                                                                            | 63/41             | 63/44             | 64/8           | 64/12                                                                         | 65/11             | 67/8              | 75/15                        | 75/16              |
| I       | Glycerol        | 1059                                                                                                                                                                                                                                                                                                                                                                           | 1060                                                                                                                                                                                                                                                                                                                                              | 1062        | 1063                                                                                                                                                                                                                                                                                                     | 1069  | 1072   | 1073                                                                                                                                                                                                                                                     | 1077                                             | 1083           | 1084                                                                                                                                                                                                        | P      | Glycerol | STOCK  | 693                                                                                                                                                              | 700               | 703               | 711            | 715                                                                           | 731               | 758               | 923                          | 924                |
| 4       | P[lacW]         | 0110                                                                                                                                                                                                                                                                                                                                                                           | 51D3-5                                                                                                                                                                                                                                                                                                                                            | N. B. S. S. | 44A1-2                                                                                                                                                                                                                                                                                                   |       |        | 51D3-5                                                                                                                                                                                                                                                   |                                                  | 22D4-5         |                                                                                                                                                                                                             | 8      | P[lacW]  | sile   | 26B8-9                                                                                                                                                           | E TELE            |                   |                |                                                                               |                   | 47A11-14          | 31A1-2                       |                    |
| pool    | lethal          | A-A±                                                                                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                                                                                                 | E           | L< <n< td=""><td>Ρ</td><td>E</td><td>E</td><td>L-A<sup>±</sup></td><td>E</td><td>L&lt;<n< td=""><td>pool</td><td>lethal</td><td>pnase</td><td>P</td><td>Е</td><td>8A-A<sup>±</sup></td><td>Ρ</td><td>L&lt;<n< td=""><td>Е</td><td>E</td><td>E</td><td>L&lt;<n< td=""></n<></td></n<></td></n<></td></n<> | Ρ     | E      | E                                                                                                                                                                                                                                                        | L-A <sup>±</sup>                                 | E              | L< <n< td=""><td>pool</td><td>lethal</td><td>pnase</td><td>P</td><td>Е</td><td>8A-A<sup>±</sup></td><td>Ρ</td><td>L&lt;<n< td=""><td>Е</td><td>E</td><td>E</td><td>L&lt;<n< td=""></n<></td></n<></td></n<> | pool   | lethal   | pnase  | P                                                                                                                                                                | Е                 | 8A-A <sup>±</sup> | Ρ              | L< <n< td=""><td>Е</td><td>E</td><td>E</td><td>L&lt;<n< td=""></n<></td></n<> | Е                 | E                 | E                            | L< <n< td=""></n<> |
| Plasmid | Fly line        | 80/14                                                                                                                                                                                                                                                                                                                                                                          | 80/15                                                                                                                                                                                                                                                                                                                                             | 80/17       | 80/18                                                                                                                                                                                                                                                                                                    | 80/19 | 80/21  | 80/23                                                                                                                                                                                                                                                    | 80/25                                            | 80/27          | 80/29                                                                                                                                                                                                       | lasmid | Fly line | 5010   | 59/17                                                                                                                                                            | 59/19             | 61/11             | 61/30          | 62/21                                                                         | 63/18             | 63/30             | 63/35                        | 63/40              |
|         | Glycerol        | 1045                                                                                                                                                                                                                                                                                                                                                                           | 1046                                                                                                                                                                                                                                                                                                                                              | 1048        | 1049                                                                                                                                                                                                                                                                                                     | 1050  | 1051   | 1053                                                                                                                                                                                                                                                     | 1055                                             | 1056           | 1058                                                                                                                                                                                                        | ł      | Glycerol | STOCK  | 613                                                                                                                                                              | 615               | 643               | 655            | 670                                                                           | 683               | 692               | 969                          | 669                |
| 3       | P[lacW]         | 7110                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                   | 55B5-6      |                                                                                                                                                                                                                                                                                                          |       |        | 21D3-4                                                                                                                                                                                                                                                   |                                                  | 42D4-5         |                                                                                                                                                                                                             | 7      | P[lacW]  | site   |                                                                                                                                                                  |                   |                   |                | 32C4-5                                                                        | 39E3-4            |                   |                              |                    |
| pool 7  | lethal          | L< <n< th=""><th>L&lt;<n< th=""><th>E-L</th><th>L&lt;<n< th=""><th>Е</th><th></th><th>L&lt;<n< th=""><th>E-L</th><th>8A</th><th>Ρ</th><th>pool 7</th><th>lethal</th><th>phase</th><th>L-A</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>Е</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>8A</th></n<></th></n<></th></n<></th></n<> | L< <n< th=""><th>E-L</th><th>L&lt;<n< th=""><th>Е</th><th></th><th>L&lt;<n< th=""><th>E-L</th><th>8A</th><th>Ρ</th><th>pool 7</th><th>lethal</th><th>phase</th><th>L-A</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>Е</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>8A</th></n<></th></n<></th></n<> | E-L         | L< <n< th=""><th>Е</th><th></th><th>L&lt;<n< th=""><th>E-L</th><th>8A</th><th>Ρ</th><th>pool 7</th><th>lethal</th><th>phase</th><th>L-A</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>Е</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>8A</th></n<></th></n<> | Е     |        | L< <n< th=""><th>E-L</th><th>8A</th><th>Ρ</th><th>pool 7</th><th>lethal</th><th>phase</th><th>L-A</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>Е</th><th>8A-A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>8A</th></n<> | E-L                                              | 8A             | Ρ                                                                                                                                                                                                           | pool 7 | lethal   | phase  | L-A                                                                                                                                                              | 8A-A <sup>±</sup> | 8A-A <sup>±</sup> | Е              | Е                                                                             | 8A-A <sup>±</sup> | 8A-A <sup>±</sup> | Е                            | 8A                 |
| lasmid  | Fly line        | 79/27                                                                                                                                                                                                                                                                                                                                                                          | 79/28                                                                                                                                                                                                                                                                                                                                             | 79/31       | 79/32                                                                                                                                                                                                                                                                                                    | 80/1  | 80/3   | 80/4                                                                                                                                                                                                                                                     | 80/5                                             | 80/11          | 80/16                                                                                                                                                                                                       | lasmid | Fly line | CEIT   | 57/11                                                                                                                                                            | 57/18             | 58/1              | 58/4           | 58/12                                                                         | 58/15             | 58/17             | 58/18                        | 58/23              |
|         | Glycerol        | 1028                                                                                                                                                                                                                                                                                                                                                                           | 1029                                                                                                                                                                                                                                                                                                                                              | 1031        | 1032                                                                                                                                                                                                                                                                                                     | 1033  | 1035   | 1036                                                                                                                                                                                                                                                     | 1037                                             | 1042           | 1047                                                                                                                                                                                                        |        | Glycerol | stock  | 569                                                                                                                                                              | 575               | 579               | 581            | 589                                                                           | 591               | 593               | 594                          | 597                |

| 4       | P[lacW]<br>site       | 52E5-6            |                  | 111125                                                                                                                                                                                                                                             |         | 42C1-2             | 56E3-6                                                                                                                                                                                                                                        | 43E15-16          | 60E1-2 | 43F1-2 | 46F5-6            | 8       | P[lacW]  | site          | T              |       |        |                                                                                                                  | 56D8-11 |        |                   |        | 21C4-5 |                    |
|---------|-----------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--------|-------------------|---------|----------|---------------|----------------|-------|--------|------------------------------------------------------------------------------------------------------------------|---------|--------|-------------------|--------|--------|--------------------|
| s lood  | lethal<br>phase       | 8A-A <sup>±</sup> | Е                | 8A-A <sup>±</sup>                                                                                                                                                                                                                                  | E       | P-8A               | L< <n< td=""><td>8A-A<sup>±</sup></td><td>E</td><td>P-8A</td><td>Е</td><td>pool 8</td><td>lethal</td><td>phase</td><td>4</td><td>Е</td><td>Е</td><td>8A-A<sup>±</sup></td><td>E</td><td>Е</td><td></td><td>P-8A</td><td>1</td><td>Ш</td></n<> | 8A-A <sup>±</sup> | E      | P-8A   | Е                 | pool 8  | lethal   | phase         | 4              | Е     | Е      | 8A-A <sup>±</sup>                                                                                                | E       | Е      |                   | P-8A   | 1      | Ш                  |
| Plasmid | Fly line              | 76/10             | 76/11            | 76/12                                                                                                                                                                                                                                              | 76/15   | 76/16              | 76/18                                                                                                                                                                                                                                         | 76/19             | 76/23  | 76/24  | 7715              | Plasmid | Fly line | 0115          | C/10           | 81/7  | 81/9   | 81/11                                                                                                            | 82/3    | 82/8   | 82/11             | 82/17  | 82/18  | 82/19              |
|         | Glycerol stock        | 940               | 941              | 942                                                                                                                                                                                                                                                | 944     | 945                | 947                                                                                                                                                                                                                                           | 948               | 951    | 952    | 958               |         | Glycerol | stock<br>1076 | 10/0           | 1078  | 1080   | 1082                                                                                                             | 1106    | 1108   | 1110              | 1113   | 1114   | 1115               |
| 3       | P[lacW]<br>site       | 54E1-2            |                  |                                                                                                                                                                                                                                                    | 43E7-10 | 46A3-4             |                                                                                                                                                                                                                                               | 44C1-2            |        |        | N. N. N.          | 7       | P[lacW]  | site          |                |       | 56F6-9 |                                                                                                                  |         | 39E3-4 | 44F11-12          |        |        | 35D1-4<br>68C1-2   |
| pool 8  | lethal                | 8A-A <sup>±</sup> | P-8A             | E                                                                                                                                                                                                                                                  | E       | E-L                | Е                                                                                                                                                                                                                                             | E                 |        | 8A     | 8A                | pool 8  | lethal   | phase         | L              | Ρ     |        | L< <n< td=""><td>E</td><td>E</td><td>8A-A<sup>±</sup></td><td>E</td><td>E</td><td>L&lt;<n< td=""></n<></td></n<> | E       | E      | 8A-A <sup>±</sup> | E      | E      | L< <n< td=""></n<> |
| Plasmid | Fly line              | 75/9              | 75/11            | 75/12                                                                                                                                                                                                                                              | 75/13   | 75/17              | 75/19                                                                                                                                                                                                                                         | 75/21             | 75/25  | 76/4   | 76/6              | lasmid  | Fly line | UND           | 7161           | 79/5  | 80/2   | 80/9                                                                                                             | 80/24   | 80/34  | 80/40             | 80/41  | 81/3   | 81/4               |
|         | Glycerol<br>stock     | 917               | 919              | 920                                                                                                                                                                                                                                                | 921     | 925                | 927                                                                                                                                                                                                                                           | 929               | 930    | 935    | 937               | ł       | Glycerol | stock         | 1000           | 1011  | 1034   | 1040                                                                                                             | 1054    | 1062   | 1067              | 1068   | 1074   | 1075               |
| 82      | P[ <i>lacW</i> ] site | 34A1-2            |                  |                                                                                                                                                                                                                                                    |         | 49B5-6<br>47A11-14 | 42E,51B<br>58D,60F                                                                                                                                                                                                                            |                   | 26D1-2 | 57B1-3 | 48C7-8            | 98      | P[lacW]  | site          |                |       |        |                                                                                                                  | 53C1-4  |        |                   | 34B6-7 | 57A5-6 |                    |
| pool 8  | lethal<br>phase       | Е                 | E                | Ρ                                                                                                                                                                                                                                                  | E       | Е                  | L≤n                                                                                                                                                                                                                                           | E                 | Ρ      | E      | 8A-A <sup>±</sup> | 3 lood  | lethal   | phase +       | A <sup>±</sup> | Е     | Ρ      | E                                                                                                                | Е       | Е      | A <sup>±</sup>    | P-8A   | E      | 1.0                |
| Plasmid | Fly line              | 74/4              | 74/5             | 74/9                                                                                                                                                                                                                                               | 74/22   | 74/23              | 74/31                                                                                                                                                                                                                                         | 74/33             | 75/2   | 75/5   | TST               | lasmid  | Fly line | 10110         | 18/18          | 78/21 | 78/22  | 78/23                                                                                                            | 78/24   | 78/27  | 78/31             | 78/32  | 78/39  | 6/6L               |
|         | Glycerol<br>stock     | 901               | 902              | 905                                                                                                                                                                                                                                                | 908     | 606                | 910                                                                                                                                                                                                                                           | 911               | 913    | 915    | 916               | P       | Glycerol | stock         | 166            | 993   | 994    | 995                                                                                                              | 966     | 998    | 1002              | 1103   | 1006   | 1015               |
| 11      | P[lacW] site          |                   | 37F1-2<br>73D1-2 | 46F1-2                                                                                                                                                                                                                                             |         |                    | 53B1-4<br>50A12-14                                                                                                                                                                                                                            | 46B1-2            |        |        | 34A1-2            | 35      | P[lacW]  | site          |                |       |        |                                                                                                                  | 23F5-6  | 44C4-5 |                   | 55E1-2 |        |                    |
| s lood  | lethal                | Е                 | ш                | L< <n< td=""><td>E</td><td></td><td>Е</td><td>E-L</td><td>E</td><td>E</td><td>Е</td><td>s lood</td><td>lethal</td><td>phase</td><td></td><td>P-8A</td><td>P-8A</td><td>Е</td><td>E</td><td>P-8A</td><td>L-P</td><td>Е</td><td></td><td>н</td></n<> | E       |                    | Е                                                                                                                                                                                                                                             | E-L               | E      | E      | Е                 | s lood  | lethal   | phase         |                | P-8A  | P-8A   | Е                                                                                                                | E       | P-8A   | L-P               | Е      |        | н                  |
| lasmid  | Fly line              | 72/17             | 72/22            | 72/27                                                                                                                                                                                                                                              | 72/34   | 72/38              | 73/5                                                                                                                                                                                                                                          | 73/9              | 73/15  | 73/20  | 73/32             | Plasmid | Fly line | 01100         | 11119          | 77/21 | 77/22  | 77/35                                                                                                            | 77/39   | 78/11  | 78/13             | 78/14  | 78/16  | 78/17              |
|         | Glycerol              | 851               | 855              | 859                                                                                                                                                                                                                                                | 865     | 868                | 878                                                                                                                                                                                                                                           | 881               | 886    | 887    | 895               |         | Glycerol | stock         | 900            | 967   | 968    | 972                                                                                                              | 976     | 984    | 986               | 987    | 989    | 066                |

| a mod minicipit a                                                                                                                                  | Glycerol Fly line lethal P[lacW]                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Glycerol Fly line lethal P[lac                                                                                                                     | stock phase site                                                                                               |
| Glycerol Fly line lethal stock phase                                                                                                               |                                                                                                                |
| Glycerol Fly line letha<br>stock phas<br>697 63/38 P-A                                                                                             | 697 63/38 P-A                                                                                                  |
| Glycerol     Fly line       stock     63/38       5     712     64/9                                                                               | 697     63/38       5     712     64/9                                                                         |
| P[lacW] Glyc<br>site stocl<br>697<br>50C11-15 712<br>747                                                                                           | 50C11-15 712                                                                                                   |
| lethal P[ <i>lac</i><br>phase site<br>E-L E<br>E 50C                                                                                               | E-L<br>E 50C<br>E                                                                                              |
| Fly line le<br>57/13 E<br>58/3 E<br>58/26 E<br>57/14 P                                                                                             | 57/13 E<br>58/3 E<br>58/26 E<br>58/26 P                                                                        |
| Glycerol     F       stock     5       571     5       580     5       598     5       572     5                                                   | 571 5   580 5   598 5   598 5   572 5                                                                          |
| [lacW] Gly<br>te sto<br>57<br>58<br>58<br>58<br>58<br>58<br>58<br>58<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57 | 57     57       580     589       7A5-6     599       577     577       3C1-2     522                          |
| lethal Pfla<br>phase site<br>$L \ll n$<br>$E A^{\pm} 57A$<br>$A^{\pm} 57A$<br>$A^{\pm}$<br>P-8A 53C                                                | L< <n<br>E-A<sup>±</sup><br/>A<sup>±</sup><br/>A<sup>±</sup><br/>S7A<br/>A<sup>±</sup><br/>P-8A<br/>S3C</n<br> |
| Fly line le<br>83/2 L<br>83/4 E<br>83/6 A<br>83/6 A                                                                                                | 83/2 L<br>83/4 E<br>83/5 A<br>83/6 A                                                                           |
| Glycerol F<br>stock 8<br>1135 8<br>1137 8<br>1137/1 8<br>1138 8                                                                                    | 1135     8       1137     8       1137/1     8       1138     8                                                |
| P[lacW]<br>site                                                                                                                                    |                                                                                                                |
| P. S.                                                                                                                                              |                                                                                                                |
| ethal<br>hase<br>E-A <sup>±</sup>                                                                                                                  | ∃-A±                                                                                                           |
| ly line lethal phase                                                                                                                               |                                                                                                                |
| 100     | P[lacW]  | site  | 46B1-2                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                   |          | 28A1-2            | 26D1-2         | 26D1-2      |                                                                                                                                                                                                                      |          | 25C1-2            | 104     | P[lacW]  | site  | 55F1-3         | 43D1-4           | A State of     | 56D3-6         |           | 58D4-5                                                                       |                                                 | 56D5-6                                                    | 58D4-5 |                    |
|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|---------|----------|-------|----------------|------------------|----------------|----------------|-----------|------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|--------|--------------------|
| pool    | lethal   | phase | L< <n< td=""><td>Е</td><td>L&lt;<n< td=""><td>E</td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td><math>E-A^{\pm}</math></td><td>E-L</td><td></td><td>Е</td><td>pood</td><td>lethal</td><td>phase</td><td>E</td><td>A<sup>±</sup>A</td><td>A<sup>±</sup></td><td></td><td><math>A^{\pm}</math></td><td>E-A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td><math>8A-A^{\pm}</math></td><td></td><td>Е</td></n<></td></n<> | Е                 | L< <n< td=""><td>E</td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td><math>E-A^{\pm}</math></td><td>E-L</td><td></td><td>Е</td><td>pood</td><td>lethal</td><td>phase</td><td>E</td><td>A<sup>±</sup>A</td><td>A<sup>±</sup></td><td></td><td><math>A^{\pm}</math></td><td>E-A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td><math>8A-A^{\pm}</math></td><td></td><td>Е</td></n<> | E        | A <sup>±</sup>    | A <sup>±</sup> | $E-A^{\pm}$ | E-L                                                                                                                                                                                                                  |          | Е                 | pood    | lethal   | phase | E              | A <sup>±</sup> A | A <sup>±</sup> |                | $A^{\pm}$ | E-A <sup>±</sup>                                                             | 8A-A <sup>±</sup>                               | $8A-A^{\pm}$                                              |        | Е                  |
| Plasmid | Fly line |       | 92/21                                                                                                                                                                                                                                                                                                                                                                                                                    | 92/24             | 92/25                                                                                                                                                                                                                                                                                                                                                                             | 92/29    | 92/38             | 92/39          | 92/40       | 92/44                                                                                                                                                                                                                | 92/47    | 93/6              | Plasmid | Fly line |       | 97/10          | 97/16            | 97/17          | 98/3           | 98/5      | 98/8                                                                         | 98/9                                            | 98/10                                                     | 98/11  | 98/12              |
|         | Glycerol | stock | 1283                                                                                                                                                                                                                                                                                                                                                                                                                     | 1286              | 1287                                                                                                                                                                                                                                                                                                                                                                              | 1288     | 1293              | 1294           | 1295        | 1297                                                                                                                                                                                                                 | 1299     | 1302              |         | Glycerol | stock | 1370           | 1373             | 1374           | 1378           | 1379      | 1380                                                                         | 1381                                            | 1382                                                      | 1383   | 1384               |
| 6       | P[lacW]  | site  | 25C1-2                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                   | 47A11-14 | 60A8-11<br>86F1-2 |                |             | 25C1-2                                                                                                                                                                                                               |          | 32C4-5            | 03      | P[lacW]  | site  | 48F3-4         | 0                | 46F5-6         |                |           |                                                                              |                                                 | 57F10-11                                                  |        |                    |
| pool 5  | lethal   | phase | E                                                                                                                                                                                                                                                                                                                                                                                                                        | Е                 | A <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                    | Ρ        | E                 | Е              | E           | L< <n< td=""><td>E</td><td>Е</td><td>pool 1</td><td>lethal</td><td>phase</td><td>A<sup>±</sup></td><td>E-L</td><td>E</td><td>E</td><td>E</td><td>8A-A<sup>±</sup></td><td>Е</td><td>E</td><td>pP</td><td>Е</td></n<> | E        | Е                 | pool 1  | lethal   | phase | A <sup>±</sup> | E-L              | E              | E              | E         | 8A-A <sup>±</sup>                                                            | Е                                               | E                                                         | pP     | Е                  |
| lasmid  | Fly line |       | 90/3                                                                                                                                                                                                                                                                                                                                                                                                                     | 90/8              | 90/15                                                                                                                                                                                                                                                                                                                                                                             | 90/24    | 90/25             | 90/30          | 90/32       | 90/41                                                                                                                                                                                                                | 91/2     | 91/4              | lasmid  | Fly line |       | 95/33          | 95/36            | 95/38          | 95/39          | 95/41     | 96/2                                                                         | 96/8                                            | 96/17                                                     | 96/19  | 96/29              |
|         | Glycerol | stock | 1235                                                                                                                                                                                                                                                                                                                                                                                                                     | 1237              | 1240                                                                                                                                                                                                                                                                                                                                                                              | 1247     | 1248              | 1251           | 1253        | 1258                                                                                                                                                                                                                 | 1259     | 1260              | P       | Glycerol | stock | 1342           | 1344             | 1346           | 1347           | 1348      | 1350                                                                         | 1354                                            | 1358                                                      | 1360   | 1365               |
| 8       | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                                                                                                                                          | 60A8-11           |                                                                                                                                                                                                                                                                                                                                                                                   |          |                   |                |             |                                                                                                                                                                                                                      | 52D11-12 |                   | 02      | P[lacW]  | site  | 55B5-10        |                  |                | 46F5-7         |           |                                                                              |                                                 |                                                           | 44B7-8 |                    |
| pool y  | lethal   | phase | A <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                                           | 8A-A <sup>±</sup> | L-8A                                                                                                                                                                                                                                                                                                                                                                              | L-A      | L-P               | 8A             | $A^{\pm}$   | E                                                                                                                                                                                                                    | P-A      | 8A-A <sup>±</sup> | l lood  | lethal   | phase | L-8A           | Е                | A <sup>±</sup> | Е              | Е         | L< <n< td=""><td>L&lt;<n< td=""><td>Ш</td><td>E</td><td></td></n<></td></n<> | L< <n< td=""><td>Ш</td><td>E</td><td></td></n<> | Ш                                                         | E      |                    |
| lasmid  | Fly line |       | 91/5                                                                                                                                                                                                                                                                                                                                                                                                                     | 92/1              | 92/3                                                                                                                                                                                                                                                                                                                                                                              | 92/5     | 92/8              | 92/9           | 92/10       | 92/14                                                                                                                                                                                                                | 92/17    | 92/18             | lasmid  | Fly line |       | 89/31          | 90/5             | 92/36          | 92/42          | 90/28     | 92/32                                                                        | 95/2                                            | 95/6                                                      | 95/13  | 9/96               |
|         | Glycerol | stock | 1261                                                                                                                                                                                                                                                                                                                                                                                                                     | 1269              | 1271                                                                                                                                                                                                                                                                                                                                                                              | 1273     | 1274              | 1275           | 1276        | 1277                                                                                                                                                                                                                 | 1279     | 1280              | d       | Glycerol | stock | 1233           | 1236             | 1292           | 1296           | 1250      | 1290                                                                         | 1327                                            | 1330                                                      | 1333   | 1353               |
| 1       | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                                                                                                                                          | 54B15-16          | 55F5-6                                                                                                                                                                                                                                                                                                                                                                            |          |                   |                |             |                                                                                                                                                                                                                      |          | 37F1-2<br>55E6-7  | 101     | P[lacW]  | site  |                |                  |                |                |           |                                                                              |                                                 | 28D1-2                                                    |        | 39B1-2             |
| lood    | lethal   | phase |                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                                                                                                                                                                                                                                                                                                                                                                                   |          | Е                 | E              | Е           | E                                                                                                                                                                                                                    | E        | Ш                 | pool    | lethal   | phase |                | Е                | Е              | A <sup>±</sup> | E         | P-A <sup>±</sup>                                                             | 8A                                              | L< <n< td=""><td>E</td><td>L&lt;<n< td=""></n<></td></n<> | E      | L< <n< td=""></n<> |
| lasmid  | Fly line |       | 88/19                                                                                                                                                                                                                                                                                                                                                                                                                    | 89/1              | 89/2                                                                                                                                                                                                                                                                                                                                                                              | 89/3     | 89/6              | <i>F1</i> 68   | 6/68        | 89/18                                                                                                                                                                                                                | 89/19    | 89/21             | lasmid  | Fly line |       | 93/10          | 93/12            | 93/19          | 93/22          | 94/2      | 94/3                                                                         | 94/4                                            | 94/11                                                     | 94/13  | 94/14              |
|         | Glycerol | stock | 1212                                                                                                                                                                                                                                                                                                                                                                                                                     | 1213              | 1214                                                                                                                                                                                                                                                                                                                                                                              | 1215     | 1217              | 1218           | 1220        | 1225                                                                                                                                                                                                                 | 1226     | 1228              |         | Glycerol | stock | 1303           | 1304             | 1310           | 1312           | 1315      | 1316                                                                         | 1317                                            | 1321                                                      | 1323   | 1324               |

|         | 5        |       | 2 2                                                                                                                                                                                                                                                                                                                                      |                |        |        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                | 2      |           |                |                                                                                                                                                                                                                     |        | 5                 | 6<br>2<br>-14           |                |                   |                  |                |                                                                             |                                                                            | 5                             |                   | Π      |
|---------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------------------|----------------|-------------------|------------------|----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|-------------------|--------|
| 108     | P[lacW   | site  | 51B1-<br>78D4-                                                                                                                                                                                                                                                                                                                           |                |        |        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                | 35D1-  |           |                |                                                                                                                                                                                                                     | 112    | P[lacV<br>site    | 26A5-<br>46A1-<br>47A11 |                | 53F4-5            |                  |                |                                                                             |                                                                            | 45D4                          |                   |        |
| lood    | lethal   | phase | 8A                                                                                                                                                                                                                                                                                                                                       | A <sup>±</sup> | E      | E-L    | L< <n< td=""><td>L&lt;<n< td=""><td>E</td><td><math>A^{\pm}</math></td><td>L-8A</td><td>P-8A</td><td>pool</td><td>lethal</td><td>P-8A</td><td>A<sup>±</sup></td><td></td><td></td><td>Е</td><td>pP</td><td>L&lt;<n< td=""><td><sup>±</sup>A-A<sup>±</sup></td><td>E</td><td>Ρ</td></n<></td></n<></td></n<> | L< <n< td=""><td>E</td><td><math>A^{\pm}</math></td><td>L-8A</td><td>P-8A</td><td>pool</td><td>lethal</td><td>P-8A</td><td>A<sup>±</sup></td><td></td><td></td><td>Е</td><td>pP</td><td>L&lt;<n< td=""><td><sup>±</sup>A-A<sup>±</sup></td><td>E</td><td>Ρ</td></n<></td></n<> | E      | $A^{\pm}$ | L-8A           | P-8A                                                                                                                                                                                                                | pool   | lethal            | P-8A                    | A <sup>±</sup> |                   |                  | Е              | pP                                                                          | L< <n< td=""><td><sup>±</sup>A-A<sup>±</sup></td><td>E</td><td>Ρ</td></n<> | <sup>±</sup> A-A <sup>±</sup> | E                 | Ρ      |
| lasmid  | Fly line |       | 107/1                                                                                                                                                                                                                                                                                                                                    | 107/2          | 108/3  | 108/4  | 108/11                                                                                                                                                                                                                                                                                                      | 108/12                                                                                                                                                                                                                                                                         | 108/17 | 109/5     | 109/9          | 109/16                                                                                                                                                                                                              | lasmid | Fly line          | 112/11                  | 112/23         | 113/1             | 119/12           | 120/2          | 123/1                                                                       | 124/1                                                                      | 124/2                         | 124/5             | 126/2  |
|         | Glycerol | stock | 1537                                                                                                                                                                                                                                                                                                                                     | 1538           | 1547   | 1548   | 1552                                                                                                                                                                                                                                                                                                        | 1553                                                                                                                                                                                                                                                                           | 1555   | 1562      | 1566           | 1568                                                                                                                                                                                                                |        | Glycerol<br>stock | 1611                    | 1619           | 1628              | 1697             | 1699           | 1709                                                                        | 1714                                                                       | 1715                          | 1717              | 1721   |
| 07      | P[lacW]  | site  | 10                                                                                                                                                                                                                                                                                                                                       |                |        |        | 22D1-2                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                |        |           |                |                                                                                                                                                                                                                     | 11     | P[lacW]<br>site   |                         |                |                   | 50D1-2<br>58D6-7 |                |                                                                             |                                                                            |                               | 48D1-2            |        |
| pool 1  | lethal   | phase | L< <n< td=""><td></td><td>Е</td><td>Е</td><td>22C1-2</td><td>L&lt;<n< td=""><td>P</td><td></td><td>L-P</td><td>L&lt;<n< td=""><td>pool 1</td><td>lethal<br/>phase</td><td>E-P</td><td>L-8A</td><td>Е</td><td>Э</td><td>L-P</td><td>Е</td><td>L-A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td>Е</td><td>pP</td></n<></td></n<></td></n<> |                | Е      | Е      | 22C1-2                                                                                                                                                                                                                                                                                                      | L< <n< td=""><td>P</td><td></td><td>L-P</td><td>L&lt;<n< td=""><td>pool 1</td><td>lethal<br/>phase</td><td>E-P</td><td>L-8A</td><td>Е</td><td>Э</td><td>L-P</td><td>Е</td><td>L-A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td>Е</td><td>pP</td></n<></td></n<>                | P      |           | L-P            | L< <n< td=""><td>pool 1</td><td>lethal<br/>phase</td><td>E-P</td><td>L-8A</td><td>Е</td><td>Э</td><td>L-P</td><td>Е</td><td>L-A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td>Е</td><td>pP</td></n<>                 | pool 1 | lethal<br>phase   | E-P                     | L-8A           | Е                 | Э                | L-P            | Е                                                                           | L-A <sup>±</sup>                                                           | 8A-A <sup>±</sup>             | Е                 | pP     |
| Plasmid | Fly line |       | 106/4                                                                                                                                                                                                                                                                                                                                    | 96/19          | 97/18  | 98/28  | 99/3                                                                                                                                                                                                                                                                                                        | 104/20                                                                                                                                                                                                                                                                         | 106/10 | 106/12    | 106/13         | 106/15                                                                                                                                                                                                              | lasmid | Fly line          | 112/15                  | 112/17         | 112/22            | 112/25           | 112/34         | 112/31                                                                      | 113/29                                                                     | 115/8                         | 105/1             | 106/22 |
| I       | Glycerol | stock | 1526                                                                                                                                                                                                                                                                                                                                     | 1360           | 1375   | 1396   | 1418                                                                                                                                                                                                                                                                                                        | 1515                                                                                                                                                                                                                                                                           | 1531   | 1532      | 1533           | 1534                                                                                                                                                                                                                | P      | Glycerol<br>stock | 1615                    | 1616           | 1618              | 1620             | 1623           | 1624                                                                        | 1642                                                                       | 1660                          | 1518              | 1536   |
| 90      | P[lacW]  | site  | 22C1-2                                                                                                                                                                                                                                                                                                                                   |                |        | 34A5-6 |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                | 36B1-2 | 60D1-2    |                |                                                                                                                                                                                                                     | 10     | P[lacW]<br>site   |                         |                | 45D4-5            | 45B1-2           | 56D7-10        |                                                                             | 45B1-2                                                                     |                               |                   | 50F4-7 |
| pool 1  | lethal   | phase | 8A-A <sup>±</sup>                                                                                                                                                                                                                                                                                                                        | ш              | Е      | Е      | 8A                                                                                                                                                                                                                                                                                                          | E                                                                                                                                                                                                                                                                              | Е      | 8A        | Е              | L< <n< td=""><td>pool 1</td><td>lethal</td><td>A<sup>±</sup></td><td>Е</td><td>8A-A<sup>±</sup></td><td>Э</td><td>в</td><td>L&lt;<n< td=""><td>8A-A<sup>±</sup></td><td>Ш</td><td>L-P</td><td>Ρ</td></n<></td></n<> | pool 1 | lethal            | A <sup>±</sup>          | Е              | 8A-A <sup>±</sup> | Э                | в              | L< <n< td=""><td>8A-A<sup>±</sup></td><td>Ш</td><td>L-P</td><td>Ρ</td></n<> | 8A-A <sup>±</sup>                                                          | Ш                             | L-P               | Ρ      |
| lasmid  | Fly line |       | 99/32                                                                                                                                                                                                                                                                                                                                    | 101/11         | 101/18 | 101/19 | 101/26                                                                                                                                                                                                                                                                                                      | 104/16                                                                                                                                                                                                                                                                         | 104/23 | 105/2     | 105/5          | 105/6                                                                                                                                                                                                               | lasmid | Fly line          | 111/15                  | 111/16         | 111/20            | 112/1            | 112/2          | 112/3                                                                       | 112/5                                                                      | 112/10                        | 112/12            | 112/13 |
|         | Glycerol | stock | 1434                                                                                                                                                                                                                                                                                                                                     | 1451           | 1456   | 1457   | 1461                                                                                                                                                                                                                                                                                                        | 1513                                                                                                                                                                                                                                                                           | 1516   | 1519      | 1522           | 1523                                                                                                                                                                                                                | d      | Glycerol          | 1596                    | 1597           | 1600              | 1601             | 1602           | 1603                                                                        | 1605                                                                       | 1610                          | 1612              | 1613   |
| 05      | P[lacW]  | site  |                                                                                                                                                                                                                                                                                                                                          |                |        | 25C1-2 | 35F1-5                                                                                                                                                                                                                                                                                                      | 26D1-2                                                                                                                                                                                                                                                                         | 26D1-2 |           | 22D1-2         |                                                                                                                                                                                                                     | 60     | P[lacW]<br>site   | 43E4-5<br>58C1-2        | 54B15-16       |                   | 35F4-5<br>93D3-5 |                | 28D10-11                                                                    |                                                                            |                               |                   |        |
| pool    | lethal   | phase | ш                                                                                                                                                                                                                                                                                                                                        | P-A            | E      | E      | Е                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                              | P-A    | 8A        | A <sup>±</sup> | 8A-A <sup>±</sup>                                                                                                                                                                                                   | pool 1 | lethal            | A <sup>±</sup>          | Е              | E                 | Р                | A <sup>±</sup> | A <sup>±</sup>                                                              |                                                                            | Е                             | 8A-A <sup>±</sup> | 8A     |
| lasmid  | Fly line |       | 98/15                                                                                                                                                                                                                                                                                                                                    | 98/17          | 98/20  | 98/24  | 98/34                                                                                                                                                                                                                                                                                                       | 98/47                                                                                                                                                                                                                                                                          | 98/50  | 99/2      | 99/3           | 8/66                                                                                                                                                                                                                | lasmid | Fly line          | 110/11                  | 110/12         | 110/16            | 110/24           | 110/31         | 111/1                                                                       | 111/2                                                                      | 111/6                         | 111/8             | 111/9  |
|         | Glycerol | stock | 1387                                                                                                                                                                                                                                                                                                                                     | 1389           | 1391   | 1395   | 1401                                                                                                                                                                                                                                                                                                        | 1409                                                                                                                                                                                                                                                                           | 1411   | 1417      | 1418           | 1422                                                                                                                                                                                                                |        | Glycerol          | 1574                    | 1575           | 1577              | 1581             | 1584           | 1588                                                                        | 1589                                                                       | 1591                          | 1593              | 1594   |

| 116    | P[ <i>lacW</i> ] site |                | 32B1-3            |                                                                                                                                                                                                                                                                                                                             |        |                  |                  | 47A11-14          | 27C1-2                                                                                                                                                                                                                               |        | 31F4-5            | 120    | P[lacW]  | site  |                                                                                                                                                                 |                  | 21C1-2           | 34A5-6            |                |                  | 45F5-6<br>54C1-4 | 47A3-4<br>61F6-8 |                              | 33A3-4<br>79E1-2   |
|--------|-----------------------|----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------|----------------|------------------|------------------|------------------|------------------------------|--------------------|
| pood   | lethal<br>phase       | $E-A^{\pm}$    | 8A-A <sup>±</sup> | L< <n< td=""><td>E</td><td></td><td>Е</td><td>L-P</td><td>E</td><td>E</td><td>P-A<sup>±</sup></td><td>lood</td><td>lethal</td><td>phase</td><td>L&lt;<n< td=""><td>A<sup>±</sup></td><td>E-A<sup>±</sup></td><td>Ρ</td><td><math>L_{-}A^{\pm}</math></td><td>E</td><td>Е</td><td>Е</td><td>в</td><td>8A</td></n<></td></n<> | E      |                  | Е                | L-P               | E                                                                                                                                                                                                                                    | E      | P-A <sup>±</sup>  | lood   | lethal   | phase | L< <n< td=""><td>A<sup>±</sup></td><td>E-A<sup>±</sup></td><td>Ρ</td><td><math>L_{-}A^{\pm}</math></td><td>E</td><td>Е</td><td>Е</td><td>в</td><td>8A</td></n<> | A <sup>±</sup>   | E-A <sup>±</sup> | Ρ                 | $L_{-}A^{\pm}$ | E                | Е                | Е                | в                            | 8A                 |
| lasmid | Fly line              | 84/3           | 84/5              | 87/6                                                                                                                                                                                                                                                                                                                        | 89/20  | 90/11            | 90/18            | 90/20             | 90/22                                                                                                                                                                                                                                | 90/31  | 91/16             | lasmid | Fly line |       | 113/2                                                                                                                                                           | 113/10           | 113/24           | 113/28            | 113/29         | 114/2            | 114/8            | 114/7            | 114/11                       | 114/13             |
| P      | Glycerol<br>stock     | 1152           | 1154              | 1193                                                                                                                                                                                                                                                                                                                        | 1227   | 1239             | 1243             | 1244              | 1245                                                                                                                                                                                                                                 | 1252   | 1265              | L      | Glycerol | stock | 1629                                                                                                                                                            | 1631             | 1639             | 1641              | 1642           | 1646             | 1647             | 1651             | 1652                         | 1654               |
| 15     | P[lacW]<br>site       |                | 49D1-3            |                                                                                                                                                                                                                                                                                                                             | 46A1-2 |                  |                  |                   | 30C1-2                                                                                                                                                                                                                               | 30C7-8 |                   | 19     | P[lacW]  | site  | 53F6-9                                                                                                                                                          |                  | 50C3-4<br>53C1-4 | 39F1-2            | 54B1-2         | 43E4-6           |                  | 25C5-6           | 26A5-6<br>46A1-2<br>47A11-14 | 39C1-2             |
| pool 1 | lethal<br>phase       | 1              | Е                 | L≤n                                                                                                                                                                                                                                                                                                                         | E-L    |                  | Ρ                | E                 | P-A                                                                                                                                                                                                                                  | E      | Е                 | pool 1 | lethal   | phase | L-P                                                                                                                                                             | Е                | Е                | 8A-A <sup>±</sup> | $A^{\pm}$      | Е                | A <sup>±</sup>   | A <sup>±</sup>   | P-8A                         | P-8A               |
| lasmid | Fly line              | 119/5          | 120/1             | 121/1                                                                                                                                                                                                                                                                                                                       | 121/2  | 121/4            | 123/2            | 123/4             | 124/3                                                                                                                                                                                                                                | 124/8  | 125/3             | lasmid | Fly line |       | 108/15                                                                                                                                                          | 109/7            | 110/26           | 111/4             | 109/14         | 111/10           | 111/17           | 112/6            | 112/11                       | 112/26             |
| I      | Glycerol<br>stock     | 1696           | 1698              | 1703                                                                                                                                                                                                                                                                                                                        | 1704   | 1707             | 1710             | 1712              | 1716                                                                                                                                                                                                                                 | 1718   | 1720              | d      | Glycerol | stock | 1554                                                                                                                                                            | 1564             | 1582             | 1590              | 1567           | 1595             | 1598             | 1606             | 1611                         | 1621               |
| 14     | P[lacW]<br>site       |                | 25E5-6            |                                                                                                                                                                                                                                                                                                                             |        | 1.4.7.0          |                  | 57E3-4<br>86E9-10 |                                                                                                                                                                                                                                      | 25D4-5 | 43E1-5            | 18     | P[lacW]  | site  | 48E6-9                                                                                                                                                          | 42C1-2           | 45D1-2           |                   |                | 49F7-8<br>21F1-2 |                  |                  | 53D10-13<br>54C7-8           |                    |
| pool 1 | lethal<br>phase       | A <sup>±</sup> | Е                 | PO                                                                                                                                                                                                                                                                                                                          | E      | pP               | pP               | A <sup>±</sup>    | L< <n< td=""><td>E</td><td>L-8A</td><td>pool 1</td><td>lethal</td><td>phase</td><td>E</td><td>147</td><td>ш</td><td>Е</td><td>ш</td><td>E-L</td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>8A-A<sup>±</sup></td><td>Р</td></n<> | E      | L-8A              | pool 1 | lethal   | phase | E                                                                                                                                                               | 147              | ш                | Е                 | ш              | E-L              | A <sup>±</sup>   | A <sup>±</sup>   | 8A-A <sup>±</sup>            | Р                  |
| lasmid | Fly line              | 115/9          | 115/11            | 115/13                                                                                                                                                                                                                                                                                                                      | 115/15 | 115/26           | 115/30           | 115/33            | 115/42                                                                                                                                                                                                                               | 118/5  | 1/611             | lasmid | Fly line |       | 97/20                                                                                                                                                           | 98/19            | 98/21            | 98/31             | 104/9          | 106/7            | 107/4            | 107/5            | 107/6                        | 107/12             |
| ł      | Glycerol<br>stock     | 1661           | 1662              | 1663                                                                                                                                                                                                                                                                                                                        | 1665   | 1672             | 1674             | 1677              | 1681                                                                                                                                                                                                                                 | 1691   | 1692              | P      | Glycerol | stock | 1376                                                                                                                                                            | 1390             | 1392             | 1398              | 1508           | 1528             | 1540             | 1541             | 1542                         | 1543               |
| 13     | P[lacW]<br>site       | 48F3-5         |                   |                                                                                                                                                                                                                                                                                                                             |        | 25D1-2<br>49B3-4 | 21D1-2<br>98F1-2 |                   |                                                                                                                                                                                                                                      | 54F1-2 | 37C5-7            | 17     | P[lacW]  | site  | 54A1-2                                                                                                                                                          | 44C4-5<br>57E3-4 | 52E5-6<br>78C1-2 |                   | 48F1-6         |                  | 45D4-5           |                  |                              |                    |
| pool 1 | lethal                | A <sup>±</sup> | A <sup>±</sup>    | L< <n< td=""><td>Е</td><td>Е</td><td></td><td>Р</td><td>P-8A</td><td>E</td><td>8A-A<sup>±</sup></td><td>pool 1</td><td>lethal</td><td>phase</td><td>E</td><td>Е</td><td>Е</td><td>A<sup>±</sup></td><td>8A</td><td>E-L</td><td>A<sup>±</sup></td><td>E</td><td>ш</td><td>L&lt;<n< td=""></n<></td></n<>                     | Е      | Е                |                  | Р                 | P-8A                                                                                                                                                                                                                                 | E      | 8A-A <sup>±</sup> | pool 1 | lethal   | phase | E                                                                                                                                                               | Е                | Е                | A <sup>±</sup>    | 8A             | E-L              | A <sup>±</sup>   | E                | ш                            | L< <n< td=""></n<> |
| lasmid | Fly line              | 95/18          | 113/10            | 113/12                                                                                                                                                                                                                                                                                                                      | 113/15 | 113/18           | 113/25           | 113/28            | 113/31                                                                                                                                                                                                                               | 115/5  | 115/8             | lasmid | Fly line |       | 92/2                                                                                                                                                            | 92/4             | 92/23            | 92/46             | 93/4           | 93/15            | 95/7             | 96/5             | 96/18                        | 96/23              |
|        | Glycerol<br>stock     | 1336           | 1631              | 1633                                                                                                                                                                                                                                                                                                                        | 1635   | 1636             | 1640             | 1641              | 1644                                                                                                                                                                                                                                 | 1657   | 1660              |        | Glycerol | stock | 1270                                                                                                                                                            | 1272             | 1285             | 1298              | 1301           | 1306             | 1331             | 1352             | 1359                         | 1361               |

| 24      | P[lacW]  | site  | 25C1-2            |                  |          |        | S P S C I      |                                                                                                                                                                                                                                        |        | 27C6-8                                                                                                                                                                                                                                         |                   |        | 28      | P[lacW]  | site  |                                                                                                                                                                             |                                                                                                                                                |        |                | 21B4-6             | 57B1-3             | 26A5-6<br>61D1-2<br>66F1-2                                                         |                                                             |        | 57C1-2             |
|---------|----------|-------|-------------------|------------------|----------|--------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------------|--------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|--------------------|
| pool 1  | lethal   | phase | A <sup>±</sup>    | 8A               | E        | E      | A <sup>±</sup> | L-P                                                                                                                                                                                                                                    | A±     | E-L                                                                                                                                                                                                                                            | 8A                | E      | pool 1  | lethal   | phase | 8A-A <sup>±</sup>                                                                                                                                                           | E                                                                                                                                              | E      | A <sup>±</sup> | P-A                | E-L                | ш                                                                                  | L< <n< th=""><th>L-A</th><th>L&lt;<n< th=""></n<></th></n<> | L-A    | L< <n< th=""></n<> |
| lasmid  | Fly line |       | 101/27            | 104/1            | 104/2    | 104/9  | 104/10         | 104/19                                                                                                                                                                                                                                 | 106/8  | 106/17                                                                                                                                                                                                                                         | 107/3             | 107/14 | lasmid  | Fly line |       | 131/3                                                                                                                                                                       | 133/22                                                                                                                                         | 134/1  | 134/21         | 136/24             | 137/6              | 137/16                                                                             | 137/19                                                      | 138/1  | 138/3              |
| F       | Glycerol | stock | 1462              | 1502             | 1503     | 1508   | 1509           | 1514                                                                                                                                                                                                                                   | 1529   | 1535                                                                                                                                                                                                                                           | 1539              | 1544   |         | Glycerol | stock | 1745                                                                                                                                                                        | 1784                                                                                                                                           | 1785   | 1795           | 1830               | 1843               | 1851                                                                               | 1853                                                        | 1856   | 1858               |
| 23      | P[lacW]  | site  |                   |                  | 53D12-14 | 52E7-8 | 56F8-15        |                                                                                                                                                                                                                                        |        | 26D1-2                                                                                                                                                                                                                                         | 51B4-5<br>30A7-8  |        | 27      | P[lacW]  | site  |                                                                                                                                                                             |                                                                                                                                                | 60B4-5 |                |                    | 47A11-14<br>46F5-6 |                                                                                    |                                                             |        |                    |
| pool    | lethal   | phase | Е                 | P-A <sup>±</sup> | L≤n      | E      | Е              | L< <n< th=""><th>L≤n</th><th></th><th>Е</th><th>P-8A</th><th>pood</th><th>lethal</th><th>phase</th><th>E</th><th></th><th>E</th><th>A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>E</th><th>pP</th><th></th><th>E</th><th>E</th></n<> | L≤n    |                                                                                                                                                                                                                                                | Е                 | P-8A   | pood    | lethal   | phase | E                                                                                                                                                                           |                                                                                                                                                | E      | A <sup>±</sup> | 8A-A <sup>±</sup>  | E                  | pP                                                                                 |                                                             | E      | E                  |
| Plasmid | Fly line |       | 98/52             | 9/66             | L/66     | 99/10  | 99/18          | 99/19                                                                                                                                                                                                                                  | 99/21  | 99/23                                                                                                                                                                                                                                          | 101/21            | 101/22 | lasmid  | Fly line |       | 116/3                                                                                                                                                                       | 119/4                                                                                                                                          | 121/3  | 122/1          | 122/2              | 123/5              | 126/4                                                                              | 126/9                                                       | 130/3  | 130/9              |
|         | Glycerol | stock | 1413              | 1420             | 1421     | 1423   | 1425           | 1426                                                                                                                                                                                                                                   | 1428   | 1430                                                                                                                                                                                                                                           | 1458              | 1459   | P       | Glycerol | stock | 1683                                                                                                                                                                        | 1695                                                                                                                                           | 1705   | 1706           | 1708               | 1713               | 1722                                                                               | 1725                                                        | 1740   | 1742               |
| 22      | P[lacW]  | site  | 35D1-2<br>39E1-4  |                  |          |        |                | 49B7-8                                                                                                                                                                                                                                 | 1      |                                                                                                                                                                                                                                                |                   |        | 26      | P[lacW]  | site  |                                                                                                                                                                             | 54E1-2                                                                                                                                         |        |                |                    | 54C1-2             |                                                                                    | 27C1-2                                                      |        | 37C5-6             |
| pool 1  | lethal   | phase | 8A-A <sup>±</sup> | Ρ                | Е        | E      |                | A <sup>±</sup>                                                                                                                                                                                                                         | E      | E                                                                                                                                                                                                                                              | 8A-A <sup>±</sup> | Е      | pool 1  | lethal   | phase | L< <n< th=""><th>L&lt;<n< th=""><th>E</th><th>E-L</th><th>L-8A</th><th>A<sup>±</sup></th><th>щ</th><th>A<sup>±</sup></th><th>E</th><th>8A-A<sup>±</sup></th></n<></th></n<> | L< <n< th=""><th>E</th><th>E-L</th><th>L-8A</th><th>A<sup>±</sup></th><th>щ</th><th>A<sup>±</sup></th><th>E</th><th>8A-A<sup>±</sup></th></n<> | E      | E-L            | L-8A               | A <sup>±</sup>     | щ                                                                                  | A <sup>±</sup>                                              | E      | 8A-A <sup>±</sup>  |
| lasmid  | Fly line |       | 90/17             | 90/37            | 95/19    | 98/29  | 98/32          | 98/33                                                                                                                                                                                                                                  | 98/41  | 98/42                                                                                                                                                                                                                                          | 98/44             | 98/45  | lasmid  | Fly line |       | 112/37                                                                                                                                                                      | 113/11                                                                                                                                         | 113/19 | 114/1          | 114/12             | 115/7              | 115/14                                                                             | 115/16                                                      | 115/19 | 115/38             |
|         | Glycerol | stock | 1242              | 1256             | 1337     | 1397   | 1399           | 1400                                                                                                                                                                                                                                   | 1404   | 1405                                                                                                                                                                                                                                           | 1406              | 1407   | d       | Glycerol | stock | 1625                                                                                                                                                                        | 1632                                                                                                                                           | 1637   | 1645           | 1653               | 1659               | 1664                                                                               | 1666                                                        | 1667   | 1680               |
| 21      | P[lacW]  | site  | 53F1-2            |                  |          |        |                |                                                                                                                                                                                                                                        | 1000   |                                                                                                                                                                                                                                                | 43E7-10<br>86A4-5 |        | 25      | P[lacW]  | site  |                                                                                                                                                                             |                                                                                                                                                |        |                | 50C14-15<br>49F1-2 |                    |                                                                                    | 22D1-2                                                      |        |                    |
| pool 1  | lethal   | phase | P-A               | Е                | P-8A     | Ρ      | A <sup>±</sup> | 8A                                                                                                                                                                                                                                     | E-L    | L< <n< th=""><th>8A</th><th></th><th>pool</th><th>lethal</th><th>phase</th><th>E-8A</th><th>8A</th><th>8A</th><th>Ρ</th><th>н</th><th>ш</th><th>L&lt;<n< th=""><th>8A-A<sup>±</sup></th><th>Е</th><th>L&lt;<n< th=""></n<></th></n<></th></n<> | 8A                |        | pool    | lethal   | phase | E-8A                                                                                                                                                                        | 8A                                                                                                                                             | 8A     | Ρ              | н                  | ш                  | L< <n< th=""><th>8A-A<sup>±</sup></th><th>Е</th><th>L&lt;<n< th=""></n<></th></n<> | 8A-A <sup>±</sup>                                           | Е      | L< <n< th=""></n<> |
| Plasmid | Fly line |       | 114/6             | 115/2            | 115/4    | 115/6  | 115/21         | 115/23                                                                                                                                                                                                                                 | 115/25 | 115/37                                                                                                                                                                                                                                         | 119/2             | 119/3  | Plasmid | Fly line |       | 108/1                                                                                                                                                                       | 108/5                                                                                                                                          | 108/7  | 108/18         | 108/21             | 108/24             | 110/35                                                                             | 110/38                                                      | 111/18 | 112/14             |
|         | Glycerol | stock | 1650              | 1655             | 1656     | 1658   | 1668           | 1669                                                                                                                                                                                                                                   | 1671   | 1679                                                                                                                                                                                                                                           | 1693              | 1694   |         | Glycerol | stock | 1545                                                                                                                                                                        | 1549                                                                                                                                           | 1550   | 1556           | 1558               | 1559               | 1585                                                                               | 1587                                                        | 1599   | 1614               |

|        | 5                     | 1-                |                                                                                                                                                                                                                                                                    | 9        |                                                                                                                                                                                                                                                                                                                                       | -2                |                                                                                                                                                                                                                                                                                 |                    |                |                  |        |         | [4       |       |         | 4                | 5                  |                   |        |                |                                                                         | 55                                      |                |                    |
|--------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------------|--------|---------|----------|-------|---------|------------------|--------------------|-------------------|--------|----------------|-------------------------------------------------------------------------|-----------------------------------------|----------------|--------------------|
| 132    | P[lacV site           | 35D5-             |                                                                                                                                                                                                                                                                    | 30F5-    |                                                                                                                                                                                                                                                                                                                                       | 39C1-             |                                                                                                                                                                                                                                                                                 |                    |                |                  |        | 136     | P[lacV   | site  |         | 48A3             | 60B3-              |                   |        |                |                                                                         | 39B1-                                   |                |                    |
| pool   | lethal                | 8A-A <sup>±</sup> | 8A-A <sup>±</sup>                                                                                                                                                                                                                                                  | E        | L< <n< td=""><td>8A-A<sup>±</sup></td><td>L&lt;<n< td=""><td>Е</td><td>E</td><td>A<sup>±</sup></td><td>P-8A</td><td>lood</td><td>lethal</td><td>phase</td><td></td><td>A<sup>±</sup></td><td>L-P</td><td>8A</td><td>E</td><td>Е</td><td>L&lt;<n< td=""><td>E-L</td><td>E-L</td><td>L&lt;<n< td=""></n<></td></n<></td></n<></td></n<> | 8A-A <sup>±</sup> | L< <n< td=""><td>Е</td><td>E</td><td>A<sup>±</sup></td><td>P-8A</td><td>lood</td><td>lethal</td><td>phase</td><td></td><td>A<sup>±</sup></td><td>L-P</td><td>8A</td><td>E</td><td>Е</td><td>L&lt;<n< td=""><td>E-L</td><td>E-L</td><td>L&lt;<n< td=""></n<></td></n<></td></n<> | Е                  | E              | A <sup>±</sup>   | P-8A   | lood    | lethal   | phase |         | A <sup>±</sup>   | L-P                | 8A                | E      | Е              | L< <n< td=""><td>E-L</td><td>E-L</td><td>L&lt;<n< td=""></n<></td></n<> | E-L                                     | E-L            | L< <n< td=""></n<> |
| lasmid | Fly line              | 144/22            | 144/23                                                                                                                                                                                                                                                             | 145/2    | 145/3                                                                                                                                                                                                                                                                                                                                 | 145/5             | 145/6                                                                                                                                                                                                                                                                           | 145/18             | 145/20         | 146/10           | 146/12 | Plasmid | Fly line |       | 131/2   | 134/3            | 134/9              | 134/18            | 139/11 | 158/22         | 160/8                                                                   | 160/9                                   | 160/10         | 161/2              |
|        | Glycerol<br>stock     | 1953              | 1954                                                                                                                                                                                                                                                               | 1956     | 1957                                                                                                                                                                                                                                                                                                                                  | 1960              | 1961                                                                                                                                                                                                                                                                            | 1969               | 1970           | 1979             | 1980   |         | Glycerol | stock | 1744    | 1787             | 1788               | 1793              | 1878   | 2082           | 2101                                                                    | 2102                                    | 2103           | 2106               |
| 31     | P[ <i>lacW</i> ] site |                   | 30D1-2                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                       | 49F7-8            | 31A                                                                                                                                                                                                                                                                             | 29B1-2<br>42A15-19 |                |                  |        | 35      | P[lacW]  | site  | 45C7-8  | 28D1-2           | Contraction of the | ALC: NOT          | 52E5-8 | 28B1-2         | Contraction of                                                          |                                         |                |                    |
| 100d   | lethal                | L-P               | L< <n< td=""><td>8A</td><td>E</td><td>Е</td><td>L≤n</td><td>Е</td><td>E</td><td>Е</td><td>E</td><td>pool ]</td><td>lethal</td><td>phase</td><td>E</td><td>Е</td><td>Ρ</td><td>Е</td><td>8A</td><td>Е</td><td>E</td><td>8A</td><td>A<sup>±</sup></td><td></td></n<> | 8A       | E                                                                                                                                                                                                                                                                                                                                     | Е                 | L≤n                                                                                                                                                                                                                                                                             | Е                  | E              | Е                | E      | pool ]  | lethal   | phase | E       | Е                | Ρ                  | Е                 | 8A     | Е              | E                                                                       | 8A                                      | A <sup>±</sup> |                    |
| lasmid | Fly line              | 141/9             | 142/4                                                                                                                                                                                                                                                              | 143/1    | 143/4                                                                                                                                                                                                                                                                                                                                 | 143/12            | 144/1                                                                                                                                                                                                                                                                           | 144/7              | 144/9          | 144/16           | 144/21 | lasmid  | Fly line | 1111  | 98/16   | 98/22            | 98/39              | 1/66              | 99/5   | 71/66          | 108/2                                                                   | 108/20                                  | 113/13         | 113/30             |
|        | Glycerol<br>stock     | 1913              | 1918                                                                                                                                                                                                                                                               | 1928     | 1929                                                                                                                                                                                                                                                                                                                                  | 1935              | 1938                                                                                                                                                                                                                                                                            | 1942               | 1944           | 1950             | 1952   | P       | Glycerol | stock | 1388    | 1393             | 1403               | 1416              | 1419   | 1424           | 1546                                                                    | 1557                                    | 1634           | 1643               |
| 30     | P[ <i>lacW</i> ] site |                   | 35D1-2                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                 | 48B6-7             |                |                  |        | 34      | P[lacW]  | site  | ALC: NO | 26A5-8<br>45B7-8 |                    | 44B5-6            |        | 29E1-2         |                                                                         | 35D1-2<br>54B12-16                      |                |                    |
| pool   | lethal                |                   | E                                                                                                                                                                                                                                                                  | Е        | L-P                                                                                                                                                                                                                                                                                                                                   | E                 | P-8A                                                                                                                                                                                                                                                                            | E                  | A <sup>±</sup> | E-A <sup>±</sup> | E      | lood    | lethal   | phase | E-L     | Е                | Е                  | Е                 |        | A <sup>±</sup> | Е                                                                       | Ш                                       | 8A             | L-P                |
| lasmid | Fly line              | 137/7             | 140/10                                                                                                                                                                                                                                                             | 140/14   | 140/18                                                                                                                                                                                                                                                                                                                                | 140/25            | 140/29                                                                                                                                                                                                                                                                          | 140/36             | 140/38         | 140/41           | 141/4  | lasmid  | Fly line |       | 158/11  | 160/6            | 161/17             | 161/20            | 167/12 | 161/15         | 168/21                                                                  | 113/9                                   | 114/3          | 104/15             |
|        | Glycerol              | 1844              | 1889                                                                                                                                                                                                                                                               | 1891     | 1893                                                                                                                                                                                                                                                                                                                                  | 1898              | 1902                                                                                                                                                                                                                                                                            | 1903               | 1905           | 1908             | 1910   | P       | Glycerol | stock | 2074    | 2100             | 2115               | 2117              | 2247   | 2248           | 2204                                                                    | 2243                                    | 2245           | 2246               |
| 29     | P[lacW] site          |                   |                                                                                                                                                                                                                                                                    | 50A12-14 |                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                 |                    |                |                  |        | 33      | P[lacW]  | site  |         | 39B1-2<br>60A5-6 |                    | 29B1-2            |        |                |                                                                         |                                         |                |                    |
| pool 1 | lethal                | A±                | 8A-A <sup>±</sup>                                                                                                                                                                                                                                                  |          | E                                                                                                                                                                                                                                                                                                                                     | A <sup>±</sup>    | P-8A                                                                                                                                                                                                                                                                            |                    | 1              | Е                | Е      | pool 1  | lethal   | phase | Е       | 8A               | A <sup>±</sup>     | 8A-A <sup>±</sup> | Е      | Е              | Ш                                                                       | L< <n< td=""><td>E-P</td><td></td></n<> | E-P            |                    |
| lasmid | Fly line              | 138/4             | 138/5                                                                                                                                                                                                                                                              | 138/9    | 138/10                                                                                                                                                                                                                                                                                                                                | 138/22            | 138/25                                                                                                                                                                                                                                                                          | 115/20             | 105/14         | 137/17           | 140/2  | lasmid  | Fly line |       | 146/14  | 147/2            | 149/1              | 149/2             | 154/3  | 154/9          | 154/11                                                                  | 154/14                                  | 154/15         | 158/3              |
|        | Glycerol              | 1859              | 1860                                                                                                                                                                                                                                                               | 1862     | 1863                                                                                                                                                                                                                                                                                                                                  | 1869              | 1870                                                                                                                                                                                                                                                                            | 2242               | 2244           | 1852             | 1883   |         | Glycerol | stock | 1981    | 1985             | 2007               | 2008              | 2036   | 2039           | 2041                                                                    | 2042                                    | 2043           | 2071               |

|         | acW]            |                                                                                                                                                                                                                                                                                                                         | A9-10<br>84-5    |                                                                                                                                                                                                                                                                                       | F1-2                       |        |                   | 2-3<br>5-6                                                                                                                                                                                                              |                | 82-3<br>C1-2       |                   |         | acW]            | C3-4                                                                                                                                                                        |                               | 10-11<br>1-2       | A10-11<br>E4-7                                                                                       | 3-4<br>1-23 | A1-2              |                                                     | A3-5              |                    |                |
|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|-------------------|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------------------------------------------------|-------------------|--------------------|----------------|
| 140     | P[L<br>site     |                                                                                                                                                                                                                                                                                                                         | 50,              |                                                                                                                                                                                                                                                                                       | 371                        |        |                   | 32B<br>38B                                                                                                                                                                                                              |                | 211 960            |                   | 144     | PIL             | 210                                                                                                                                                                         |                               | 56F<br>55E         | 49/<br>481                                                                                           | 60A<br>38C  | 30/               |                                                     | : 53/             |                    |                |
| pool    | lethal          | P-A                                                                                                                                                                                                                                                                                                                     | ш                | Е                                                                                                                                                                                                                                                                                     | E-A <sup>±</sup>           |        | E                 | 8A                                                                                                                                                                                                                      | Р              | E                  | A <sup>±</sup>    | pool    | lethal          | L< <n< th=""><th><sup>±</sup>A-A<sup>±</sup></th><th>E-L</th><th>pP</th><th>pP</th><th>A<sup>±</sup></th><th>E-L</th><th>8A-A<sup>±</sup></th><th>P-8A</th><th>8A</th></n<> | <sup>±</sup> A-A <sup>±</sup> | E-L                | pP                                                                                                   | pP          | A <sup>±</sup>    | E-L                                                 | 8A-A <sup>±</sup> | P-8A               | 8A             |
| Plasmid | Fly line        | 81/23                                                                                                                                                                                                                                                                                                                   | 81/31            | 81/35                                                                                                                                                                                                                                                                                 | 82/43                      | 82/53  | 82/58             | 84/1                                                                                                                                                                                                                    | 84/14          | 84/16              | 86/24             | Plasmid | Fly line        | 129/13                                                                                                                                                                      | 131/3                         | 131/4              | 131/7                                                                                                | 131/8       | 133/4             | 133/7                                               | 133/14            | 133/19             | 140/7          |
| I       | Glycerol        | 1092                                                                                                                                                                                                                                                                                                                    | 1096             | 1098                                                                                                                                                                                                                                                                                  | 1128                       | 1131   | 1133              | 1150                                                                                                                                                                                                                    | 1161           | 1163               | 1186              |         | Glycerol        | 1738                                                                                                                                                                        | 1745                          | 1746               | 1749                                                                                                 | 1750        | 1772              | 1775                                                | 6411              | 1782               | 1888           |
| 39      | P[lacW]<br>site | 42E5-6<br>30A1-2                                                                                                                                                                                                                                                                                                        | 31E1-2<br>60F1-2 |                                                                                                                                                                                                                                                                                       | 23B5-6                     | 25C1-2 |                   | 58F4-5                                                                                                                                                                                                                  | 30D3-4         | 60A8-11            |                   | 43      | P[lacW]<br>site | 23C1-2<br>48E4-5                                                                                                                                                            |                               | 21B1-2<br>42A10-12 | 39B, 42F<br>50D                                                                                      |             |                   | 34C4-5                                              |                   |                    |                |
| pool 1  | lethal          | Е                                                                                                                                                                                                                                                                                                                       | Е                | L< <n< td=""><td>E</td><td>E</td><td>E</td><td>E-L</td><td>E</td><td>Е</td><td>8A-A<sup>±</sup></td><td>pool 1</td><td>lethal</td><td>E</td><td>8A</td><td>E</td><td>L&lt;<n< td=""><td>Ρ</td><td>Е</td><td>L&lt;<n< td=""><td>P-8A</td><td>Ρ</td><td>Ρ</td></n<></td></n<></td></n<> | E                          | E      | E                 | E-L                                                                                                                                                                                                                     | E              | Е                  | 8A-A <sup>±</sup> | pool 1  | lethal          | E                                                                                                                                                                           | 8A                            | E                  | L< <n< td=""><td>Ρ</td><td>Е</td><td>L&lt;<n< td=""><td>P-8A</td><td>Ρ</td><td>Ρ</td></n<></td></n<> | Ρ           | Е                 | L< <n< td=""><td>P-8A</td><td>Ρ</td><td>Ρ</td></n<> | P-8A              | Ρ                  | Ρ              |
| Plasmid | Fly line        | 167/8                                                                                                                                                                                                                                                                                                                   | 168/1            | 168/5                                                                                                                                                                                                                                                                                 | 168/7                      | 168/12 | 168/13            | 170/2                                                                                                                                                                                                                   | 90/10          | 90/16              | 92/1              | lasmid  | Fly line        | 95/37                                                                                                                                                                       | 96/25                         | 96/28              | 96/40                                                                                                | 97/15       | 120/3             | 120/4                                               | 120/5             | 129/9              | 129/10         |
| I       | Glycerol        | 2180                                                                                                                                                                                                                                                                                                                    | 2187             | 2191                                                                                                                                                                                                                                                                                  | 2193                       | 2197   | 2198              | 2216                                                                                                                                                                                                                    | 1238           | 1241               | 1269              | d       | Glycerol        | 1345                                                                                                                                                                        | 1363                          | 1364               |                                                                                                      | 1372        | 1700              | 1701                                                | 1702              | 1733               | 1734           |
| 38      | P[lacW] site    | 36A4-5                                                                                                                                                                                                                                                                                                                  | 43F3-6<br>55C7-8 |                                                                                                                                                                                                                                                                                       |                            |        | 12.23             | 25C1-2                                                                                                                                                                                                                  |                |                    |                   | 42      | P[lacW]         | Allo                                                                                                                                                                        |                               |                    | 26A5-6<br>38F1-2<br>57F5-6                                                                           | No          |                   |                                                     |                   |                    | 28E3-4         |
| pool 1  | lethal          | P                                                                                                                                                                                                                                                                                                                       | E-L              | pP                                                                                                                                                                                                                                                                                    | Е                          | Е      |                   | L< <n< td=""><td>A<sup>±</sup></td><td>ш</td><td>E</td><td>pool</td><td>lethal</td><td>E-A<sup>±</sup></td><td>Е</td><td>Е</td><td></td><td></td><td>Е</td><td>Е</td><td>8A-A<sup>±</sup></td><td>Е</td><td>E</td></n<> | A <sup>±</sup> | ш                  | E                 | pool    | lethal          | E-A <sup>±</sup>                                                                                                                                                            | Е                             | Е                  |                                                                                                      |             | Е                 | Е                                                   | 8A-A <sup>±</sup> | Е                  | E              |
| lasmid  | Fly line        | 162/15                                                                                                                                                                                                                                                                                                                  | 162/21           | 162/24                                                                                                                                                                                                                                                                                | 162/25                     | 166/1  | 166/5             | 166/15                                                                                                                                                                                                                  | 166/19         | 167/4              | 167/6             | lasmid  | Fly line        | 84/10                                                                                                                                                                       | 84/12                         | 93/21              | 94/6                                                                                                 | 94/7        | 95/3              | 95/21                                               | 95/26             | 95/31              | 94/12          |
|         | Glycerol        | 2135                                                                                                                                                                                                                                                                                                                    | 2139             | 2140                                                                                                                                                                                                                                                                                  | 2141                       | 2160   | 2164              | 2169                                                                                                                                                                                                                    | 2173           | 2177               | 2179              | d       | Glycerol        | 1159                                                                                                                                                                        | 1160                          | 1311               | 1318                                                                                                 | 1319        | 1328              | 1338                                                | 1340              | 1341               | 1322           |
| 37      | P[lacW]         | 2410                                                                                                                                                                                                                                                                                                                    |                  |                                                                                                                                                                                                                                                                                       | 23CI-2<br>61F3-4<br>68CI-2 |        |                   |                                                                                                                                                                                                                         |                | 47A11-14<br>30E1-2 | 56F1-2            | 41      | P[lacW]         | 2116                                                                                                                                                                        |                               | 21C5-6             | 53F4-5                                                                                               | New York    | 42C1-2            | 54B15-16                                            | 25F3-4<br>27D3-6  | 56C20-21<br>78A1-2 |                |
| pool 1  | lethal          | L <n< td=""><td>Ш</td><td>P-8A</td><td>Е</td><td>P-8A</td><td>8A-A<sup>±</sup></td><td>E</td><td>A<sup>±</sup></td><td></td><td>Ρ</td><td>lood</td><td>lethal</td><td>E-L</td><td>P-8A</td><td>A<sup>±</sup></td><td>Ρ</td><td>Ρ</td><td>8A-A<sup>±</sup></td><td>E</td><td>Ρ</td><td>E</td><td>A<sup>±</sup></td></n<> | Ш                | P-8A                                                                                                                                                                                                                                                                                  | Е                          | P-8A   | 8A-A <sup>±</sup> | E                                                                                                                                                                                                                       | A <sup>±</sup> |                    | Ρ                 | lood    | lethal          | E-L                                                                                                                                                                         | P-8A                          | A <sup>±</sup>     | Ρ                                                                                                    | Ρ           | 8A-A <sup>±</sup> | E                                                   | Ρ                 | E                  | A <sup>±</sup> |
| lasmid  | Fly line        | 152/2                                                                                                                                                                                                                                                                                                                   | 161/11           | 161/22                                                                                                                                                                                                                                                                                | 161/24                     | 161/25 | 161/30            | 161/31                                                                                                                                                                                                                  | 162/5          | 162/8              | 162/10            | lasmid  | Fly line        | 8/68                                                                                                                                                                        | 89/10                         | 89/15              | 93/3                                                                                                 | 93/16       | 144/12            | 145/1                                               | 145/14            | 158/16             | 95/24          |
| A       | Glycerol        | 2108                                                                                                                                                                                                                                                                                                                    | 2112             | 2118                                                                                                                                                                                                                                                                                  | 2119                       | 2120   | 2124              | 2125                                                                                                                                                                                                                    | 2128           | 2131               | 2132              |         | Glycerol        | 1219                                                                                                                                                                        | 1221                          | 1222               | 1300                                                                                                 | 1307        | 1946              | 1955                                                | 1966              | 2076               | 1339           |

|         | cW]      | Τ     |                  |                | 1-2<br>9-11    |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   | 1-2                                                                                                                                                                                                                                                                                                             | 1-90      |                                                                                                                                                                                                                                                                  |                |                                                                                                                |        | cW]               |        |                                                                                                                                                                                                   |                |                                                                                                                                                            |                                                                                  |                                                                                                                     |                |                                                                              |                                                 |                |
|---------|----------|-------|------------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|--------|-------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|-------------------------------------------------|----------------|
| 148     | P[la     | site  |                  |                | 28F<br>93B     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                   | 45F                                                                                                                                                                                                                                                                                                             | 58D       |                                                                                                                                                                                                                                                                  |                |                                                                                                                | 152    | P[la site         |        |                                                                                                                                                                                                   |                |                                                                                                                                                            |                                                                                  |                                                                                                                     |                |                                                                              |                                                 |                |
| pood    | lethal   | phase | Е                | E              | Е              |                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                 | L< <n< th=""><th>Е</th><th>E</th><th>E-L</th><th>Ρ</th><th>pood</th><th>lethal</th><th>A±</th><th>L&lt;<n< th=""><th>Е</th><th>L&lt;<n< th=""><th>Е</th><th>L&lt;<n< th=""><th>Ρ</th><th>L&lt;<n< th=""><th>L&lt;<n< th=""><th><math>A^{\pm}</math></th></n<></th></n<></th></n<></th></n<></th></n<></th></n<> | Е         | E                                                                                                                                                                                                                                                                | E-L            | Ρ                                                                                                              | pood   | lethal            | A±     | L< <n< th=""><th>Е</th><th>L&lt;<n< th=""><th>Е</th><th>L&lt;<n< th=""><th>Ρ</th><th>L&lt;<n< th=""><th>L&lt;<n< th=""><th><math>A^{\pm}</math></th></n<></th></n<></th></n<></th></n<></th></n<> | Е              | L< <n< th=""><th>Е</th><th>L&lt;<n< th=""><th>Ρ</th><th>L&lt;<n< th=""><th>L&lt;<n< th=""><th><math>A^{\pm}</math></th></n<></th></n<></th></n<></th></n<> | Е                                                                                | L< <n< th=""><th>Ρ</th><th>L&lt;<n< th=""><th>L&lt;<n< th=""><th><math>A^{\pm}</math></th></n<></th></n<></th></n<> | Ρ              | L< <n< th=""><th>L&lt;<n< th=""><th><math>A^{\pm}</math></th></n<></th></n<> | L< <n< th=""><th><math>A^{\pm}</math></th></n<> | $A^{\pm}$      |
| lasmid  | Fly line |       | 131/10           | 131/13         | 131/16         | 132/1                                                                                                                                                                                                                                                                                          | 132/7                                                                                                                                                                                                                                                                                                             | 132/8                                                                                                                                                                                                                                                                                                           | 132/11    | 132/14                                                                                                                                                                                                                                                           | 132/15         | 132/17                                                                                                         | lasmid | Fly line          | 136/5  | 136/9                                                                                                                                                                                             | 136/38         | 137/9                                                                                                                                                      | 136/12                                                                           | 136/15                                                                                                              | 136/27         | 136/30                                                                       | 136/32                                          | 137/3          |
|         | Glycerol | stock | 1752             | 1753           | 1754           | 1755                                                                                                                                                                                                                                                                                           | 1758                                                                                                                                                                                                                                                                                                              | 1759                                                                                                                                                                                                                                                                                                            | 1761      | 1762                                                                                                                                                                                                                                                             | 1763           | 1764                                                                                                           |        | Glycerol<br>stock | 1820   | 1823                                                                                                                                                                                              | 1836           | 1846                                                                                                                                                       | 1824                                                                             | 1826                                                                                                                | 1832           | 1833                                                                         | 1835                                            | 1840           |
| 47      | P[lacW]  | site  |                  | S H PA         | 23C1-2         | 57F5-7                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 |           | 29C1-2                                                                                                                                                                                                                                                           |                | ( and the second se | 51     | P[lacW]<br>site   |        | 35A1-2                                                                                                                                                                                            | 28E3-4         |                                                                                                                                                            |                                                                                  |                                                                                                                     |                |                                                                              | 1 1 1                                           | 45D4-5         |
| pool 1  | lethal   | phase | pP               | A <sup>±</sup> | A <sup>±</sup> | L< <n< th=""><th>A<sup>±</sup></th><th>A±</th><th><math>A^{\pm}</math></th><th>E</th><th>E</th><th>A<sup>±</sup></th><th>pool 1</th><th>lethal</th><th>Е</th><th>±A-A±</th><th>Ρ</th><th></th><th>L&lt;<n< th=""><th>Е</th><th>E</th><th>E</th><th>Е</th><th>A<sup>±</sup></th></n<></th></n<> | A <sup>±</sup>                                                                                                                                                                                                                                                                                                    | A±                                                                                                                                                                                                                                                                                                              | $A^{\pm}$ | E                                                                                                                                                                                                                                                                | E              | A <sup>±</sup>                                                                                                 | pool 1 | lethal            | Е      | ±A-A±                                                                                                                                                                                             | Ρ              |                                                                                                                                                            | L< <n< th=""><th>Е</th><th>E</th><th>E</th><th>Е</th><th>A<sup>±</sup></th></n<> | Е                                                                                                                   | E              | E                                                                            | Е                                               | A <sup>±</sup> |
| Plasmid | Fly line |       | 127/2            | 128/1          | 129/1          | 129/5                                                                                                                                                                                                                                                                                          | 129/7                                                                                                                                                                                                                                                                                                             | 129/2                                                                                                                                                                                                                                                                                                           | 129/12    | 129/14                                                                                                                                                                                                                                                           | 130/1          | 131/6                                                                                                          | lasmid | Fly line          | 135/5  | 135/7                                                                                                                                                                                             | 135/10         | 135/16                                                                                                                                                     | 135/17                                                                           | 135/19                                                                                                              | 135/20         | 135/21                                                                       | 136/2                                           | 136/3          |
|         | Glycerol | stock | 1726             | 1727           | 1728           | 1730                                                                                                                                                                                                                                                                                           | 1732                                                                                                                                                                                                                                                                                                              | 1729                                                                                                                                                                                                                                                                                                            | 1736      | 1737                                                                                                                                                                                                                                                             | 1739           | 1748                                                                                                           | d      | Glycerol          | 1802   | 1803                                                                                                                                                                                              | 1807           | 1808                                                                                                                                                       | 1809                                                                             | 1811                                                                                                                | 1812           | 1813                                                                         | 1817                                            | 1818           |
| 46      | P[lacW]  | site  | 100 M            |                |                |                                                                                                                                                                                                                                                                                                | 22F1-2<br>38F1-3                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                  |                |                                                                                                                | 50     | P[lacW]<br>site   |        |                                                                                                                                                                                                   |                | 25C1-2                                                                                                                                                     |                                                                                  | 41C<br>48D5-6                                                                                                       |                |                                                                              | 21B4-6<br>82C1-2                                |                |
| pool 1  | lethal   | phase | E                | Е              | н              | L< <n< th=""><th>100</th><th>L-P</th><th>8A</th><th>E</th><th>8A</th><th>Е</th><th>[ lood</th><th>lethal</th><th>Е</th><th>8A</th><th>E-P</th><th>E</th><th>8A</th><th>L&lt;<n< th=""><th>E</th><th>E</th><th>E-L</th><th>E</th></n<></th></n<>                                                | 100                                                                                                                                                                                                                                                                                                               | L-P                                                                                                                                                                                                                                                                                                             | 8A        | E                                                                                                                                                                                                                                                                | 8A             | Е                                                                                                              | [ lood | lethal            | Е      | 8A                                                                                                                                                                                                | E-P            | E                                                                                                                                                          | 8A                                                                               | L< <n< th=""><th>E</th><th>E</th><th>E-L</th><th>E</th></n<>                                                        | E              | E                                                                            | E-L                                             | E              |
| Plasmid | Fly line |       | 80/47            | 88/1           | 89/23          | 95/8                                                                                                                                                                                                                                                                                           | 170/36                                                                                                                                                                                                                                                                                                            | 140/39                                                                                                                                                                                                                                                                                                          | 140/40    | 141/3                                                                                                                                                                                                                                                            | 141/14         | 142/2                                                                                                          | lasmid | Fly line          | 134/11 | 134/15                                                                                                                                                                                            | 134/16         | 134/20                                                                                                                                                     | 134/27                                                                           | 134/22                                                                                                              | 134/30         | 135/1                                                                        | 135/2                                           | 135/4          |
|         | Glycerol | stock | 1071             | 1199           | 1230           | 1332                                                                                                                                                                                                                                                                                           | 2238                                                                                                                                                                                                                                                                                                              | 1907                                                                                                                                                                                                                                                                                                            | 1906      | 1909                                                                                                                                                                                                                                                             | 1915           | 1917                                                                                                           | d      | Glycerol          | 1790   | 1791                                                                                                                                                                                              | 1792           | 1794                                                                                                                                                       | 1796                                                                             | 1797                                                                                                                | 1798           | 1799                                                                         | 1800                                            | 1801           |
| 45      | P[lacW]  | site  | 42C1-2<br>22B4-5 |                | 21B7-8         | 56F5-6                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                  |                | 52E5-6                                                                                                         | 49     | P[lacW]<br>site   | 35B3-5 |                                                                                                                                                                                                   | See 1          | 30F5-6                                                                                                                                                     | 48E1-2<br>102D5-6                                                                |                                                                                                                     | 48D5-6         |                                                                              |                                                 |                |
| pool 1  | lethal   | phase | 8A               | Е              | 8A             | 8A-A <sup>±</sup>                                                                                                                                                                                                                                                                              | L< <n< th=""><th>Ш</th><th>E</th><th>L&lt;<n< th=""><th>A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>pool 1</th><th>lethal</th><th>Е</th><th>Е</th><th>A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>L&lt;<n< th=""><th>A<sup>±</sup></th><th>Е</th><th>Е</th><th>P-8A</th></n<></th></n<></th></n<> | Ш                                                                                                                                                                                                                                                                                                               | E         | L< <n< th=""><th>A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>pool 1</th><th>lethal</th><th>Е</th><th>Е</th><th>A<sup>±</sup></th><th>8A-A<sup>±</sup></th><th>Е</th><th>L&lt;<n< th=""><th>A<sup>±</sup></th><th>Е</th><th>Е</th><th>P-8A</th></n<></th></n<> | A <sup>±</sup> | 8A-A <sup>±</sup>                                                                                              | pool 1 | lethal            | Е      | Е                                                                                                                                                                                                 | A <sup>±</sup> | 8A-A <sup>±</sup>                                                                                                                                          | Е                                                                                | L< <n< th=""><th>A<sup>±</sup></th><th>Е</th><th>Е</th><th>P-8A</th></n<>                                           | A <sup>±</sup> | Е                                                                            | Е                                               | P-8A           |
| lasmid  | Fly line |       | 140/27           | 144/13         | 145/4          | 145/23                                                                                                                                                                                                                                                                                         | 152/2                                                                                                                                                                                                                                                                                                             | 152/10                                                                                                                                                                                                                                                                                                          | 154/9     | 159/3                                                                                                                                                                                                                                                            | 170/6          | 140/17                                                                                                         | lasmid | Fly line          | 132/18 | 132/21                                                                                                                                                                                            | 133/12         | 133/5                                                                                                                                                      | 133/6                                                                            | 133/10                                                                                                              | 133/12         | 133/13                                                                       | 134/6                                           | 134/10         |
| 4       | Glycerol | stock | 1900             | 1947           | 1958           | 1971                                                                                                                                                                                                                                                                                           | 2018                                                                                                                                                                                                                                                                                                              | 2022                                                                                                                                                                                                                                                                                                            | 2039      | 2087                                                                                                                                                                                                                                                             | 2220           | 1892                                                                                                           |        | Glycerol          | 1765   | 1767                                                                                                                                                                                              | 1771           | 1773                                                                                                                                                       | 1774                                                                             | 1776                                                                                                                | 1777           | 1778                                                                         | 1786                                            | 1789           |

|        | P[lacW]<br>site       |                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                                                                                                                                                            | 25D4-5           |                  |                  |                  | 37B6-9 | 27B1-2                                                                                                                                                                                                                |        |        | P[lacW]<br>site       |                              |                  |                                                                                                                                               | 53f1-5           | 43b1-2            |                                                                                                                |                               | 44f3-4 | 27e1-2<br>53a1-2<br>51d1-2                      |                    |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------------------|------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|--------|-------------------------------------------------|--------------------|
| pool 1 | lethal                | Е                                                                                                                                                                                                                                                                                                                                                                                  |        | L< <n< td=""><td>E-A<sup>±</sup></td><td></td><td>A<sup>±</sup></td><td>E</td><td>E</td><td>E</td><td>L-A</td><td>pool 1</td><td>lethal</td><td>ш</td><td>E-A<sup>±</sup></td><td>E</td><td>P-8A</td><td>P</td><td>L&lt;<n< td=""><td>E</td><td>E</td><td>L&lt;<n< td=""><td>L&lt;<n< td=""></n<></td></n<></td></n<></td></n<>            | E-A <sup>±</sup> |                  | A <sup>±</sup>   | E                | E      | E                                                                                                                                                                                                                     | L-A    | pool 1 | lethal                | ш                            | E-A <sup>±</sup> | E                                                                                                                                             | P-8A             | P                 | L< <n< td=""><td>E</td><td>E</td><td>L&lt;<n< td=""><td>L&lt;<n< td=""></n<></td></n<></td></n<>               | E                             | E      | L< <n< td=""><td>L&lt;<n< td=""></n<></td></n<> | L< <n< td=""></n<> |
| lasmid | Fly line              | 90/2                                                                                                                                                                                                                                                                                                                                                                               | 95/34  | 96/1                                                                                                                                                                                                                                                                                                                                       | 97/13            | 129/11           | 131/5            | 133/1            | 133/2  | 133/15                                                                                                                                                                                                                | 136/19 | lasmid | Fly line              | 159/9                        | 159/11           | 159/13                                                                                                                                        | 159/15           | 161/1             | 161/6                                                                                                          | 161/8                         | 161/9  | 161/13                                          | 161/14             |
| H      | Glycerol<br>stock     | 1234                                                                                                                                                                                                                                                                                                                                                                               | 1343   | 1349                                                                                                                                                                                                                                                                                                                                       | 1371             | 1735             | 1747             | 1769             | 1770   | 1780                                                                                                                                                                                                                  | 1828   |        | Glycerol<br>stock     | 2091                         | 2092             | 2093                                                                                                                                          | 2095             | 2105              | 2109                                                                                                           | 2110                          | 2111   | 2113                                            | 2114               |
|        | P[lacW] site          | 21B4-6<br>82C1-2                                                                                                                                                                                                                                                                                                                                                                   |        | 23C4-5                                                                                                                                                                                                                                                                                                                                     |                  |                  | 22B3-5<br>42B2-3 | and and a        | 38A    |                                                                                                                                                                                                                       |        |        | P[ <i>lacW</i> ] site |                              |                  | 50C17-19                                                                                                                                      |                  | 21B4-5            |                                                                                                                | 52E1-2                        |        |                                                 |                    |
| lood   | lethal                | E-L                                                                                                                                                                                                                                                                                                                                                                                | Ρ      | E                                                                                                                                                                                                                                                                                                                                          | Е                | Е                | 8A               | A±               |        | E                                                                                                                                                                                                                     | pP     | pool 1 | lethal                | ш                            | Е                | E                                                                                                                                             | E                | E-L               | L< <n< td=""><td>A<sup>±</sup></td><td>E-L</td><td>L&lt;<n< td=""><td>L&lt;<n< td=""></n<></td></n<></td></n<> | A <sup>±</sup>                | E-L    | L< <n< td=""><td>L&lt;<n< td=""></n<></td></n<> | L< <n< td=""></n<> |
| lasmid | Fly line              | 135/2                                                                                                                                                                                                                                                                                                                                                                              | 139/14 | 140/1                                                                                                                                                                                                                                                                                                                                      | 140/2            | 140/4            | 140/6            | 140/5            | 140/28 | 140/37                                                                                                                                                                                                                | 140/19 | lasmid | Fly line              | 155/16                       | 156/5            | 156/6                                                                                                                                         | 156/8            | 156/12            | 156/14                                                                                                         | 156/17                        | 156/19 | 156/20                                          | 157/15             |
|        | Glycerol<br>stock     | 1800                                                                                                                                                                                                                                                                                                                                                                               | 1881   | 1882                                                                                                                                                                                                                                                                                                                                       | 1883             | 1885             | 1886             | 1887             | 1901   | 1904                                                                                                                                                                                                                  | 1894   | P      | Glycerol<br>stock     | 2050                         | 2053             | 2054                                                                                                                                          | 2055             | 2057              | 2058                                                                                                           | 2060                          | 2061   | 2062                                            | 2068               |
|        | P[lacW] site          |                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                                                                                                                                                                                                                                                                                                            |                  |                  |                  | 36A10-11         | 46D1-2 |                                                                                                                                                                                                                       |        |        | P[lacW]<br>site       | 47A11-14<br>49D1-3<br>57B1-3 | 28B1-2           |                                                                                                                                               |                  |                   |                                                                                                                | 100 m                         |        |                                                 | 54C5-8             |
| pool 1 | lethal<br>phase       | P-8A                                                                                                                                                                                                                                                                                                                                                                               | Е      | 8A                                                                                                                                                                                                                                                                                                                                         | E                | Е                | Е                | Ш                | Е      | P-8A                                                                                                                                                                                                                  | E      | pool 1 | lethal                | pP                           | E-L              | L< <n< td=""><td>E-A<sup>±</sup></td><td>A<sup>±</sup></td><td>Е</td><td><sup>±</sup>A-A<sup>±</sup></td><td>E</td><td>ш</td><td>pP</td></n<> | E-A <sup>±</sup> | A <sup>±</sup>    | Е                                                                                                              | <sup>±</sup> A-A <sup>±</sup> | E      | ш                                               | pP                 |
| lasmid | Fly line              | 138/12                                                                                                                                                                                                                                                                                                                                                                             | 138/14 | 138/17                                                                                                                                                                                                                                                                                                                                     | 138/27           | 139/2            | 139/3            | 139/5            | 139/6  | 139/9                                                                                                                                                                                                                 | 139/12 | lasmid | Fly line              | 152/5                        | 152/6            | 152/11                                                                                                                                        | 153/3            | 153/11            | 154/2                                                                                                          | 154/4                         | 154/10 | 154/18                                          | 155/12             |
| H      | Glycerol<br>stock     | 1865                                                                                                                                                                                                                                                                                                                                                                               | 1867   | 1868                                                                                                                                                                                                                                                                                                                                       | 1871             | 1872             | 1873             | 1874             | 1875   | 1876                                                                                                                                                                                                                  | 1879   | P      | Glycerol              | 2020                         | 2021             | 2023                                                                                                                                          | 2026             | 2030              | 2035                                                                                                           | 2037                          | 2040   | 2044                                            | 2048               |
|        | P[ <i>lacW</i> ] site |                                                                                                                                                                                                                                                                                                                                                                                    |        | 28B1-2                                                                                                                                                                                                                                                                                                                                     | 21C7-8           | 38F1-2<br>87C6-7 |                  | 26C2-3           |        |                                                                                                                                                                                                                       | 32C3-5 |        | P[lacW]<br>site       | 23A5-6<br>75C3-4             |                  |                                                                                                                                               | 21B4-6           | 25B1-2            |                                                                                                                | 34C4-5                        |        |                                                 | ATT THE            |
| pool 1 | lethal                | L< <n< td=""><td>8A</td><td>L&lt;<n< td=""><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>Е</td><td>P-A<sup>±</sup></td><td>Е</td><td>L&lt;<n< td=""><td>8A</td><td>pool 1</td><td>lethal</td><td>н</td><td>Е</td><td>Е</td><td>pP</td><td>8A-A<sup>±</sup></td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>E-L</td><td>Р</td><td>A<sup>±</sup></td></n<></td></n<></td></n<> | 8A     | L< <n< td=""><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>Е</td><td>P-A<sup>±</sup></td><td>Е</td><td>L&lt;<n< td=""><td>8A</td><td>pool 1</td><td>lethal</td><td>н</td><td>Е</td><td>Е</td><td>pP</td><td>8A-A<sup>±</sup></td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>E-L</td><td>Р</td><td>A<sup>±</sup></td></n<></td></n<> | A <sup>±</sup>   | A <sup>±</sup>   | Е                | P-A <sup>±</sup> | Е      | L< <n< td=""><td>8A</td><td>pool 1</td><td>lethal</td><td>н</td><td>Е</td><td>Е</td><td>pP</td><td>8A-A<sup>±</sup></td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>E-L</td><td>Р</td><td>A<sup>±</sup></td></n<> | 8A     | pool 1 | lethal                | н                            | Е                | Е                                                                                                                                             | pP               | 8A-A <sup>±</sup> | A <sup>±</sup>                                                                                                 | A <sup>±</sup>                | E-L    | Р                                               | A <sup>±</sup>     |
| lasmid | Fly line              | 137/8                                                                                                                                                                                                                                                                                                                                                                              | 137/12 | 137/13                                                                                                                                                                                                                                                                                                                                     | 137/12           | 137/15           | 137/17           | 137/20           | 137/21 | 138/6                                                                                                                                                                                                                 | 138/11 | lasmid | Fly line              | 80/10                        | 80/39            | 98/55                                                                                                                                         | 100/3            | 100/4             | 103/6                                                                                                          | 148/17                        | 148/20 | L16L                                            | 151/3              |
|        | Glycerol<br>stock     | 1845                                                                                                                                                                                                                                                                                                                                                                               | 1847   | 1848                                                                                                                                                                                                                                                                                                                                       | 1849             | 1850             | 1852             | 1854             | 1855   | 1861                                                                                                                                                                                                                  | 1864   |        | Glycerol              | 1041                         | 1066             | 1415                                                                                                                                          | 1437             | 1438              | 1489                                                                                                           | 2002                          | 2003   | 1013                                            | 2016               |

|         | [W)               | C1-4             |                                                                                                                                                                                                                                                                                                                                          |                |                | 33-4                                                                                                                                                                                                                                       | 34-5           | E          |        | 21-4                                                                                                                                                                            |                |         | ICW]     |       |                  | 36-7        | <b>N13-14</b>    |                                                                                                       | 4-5              |                                                                        |                  |                |        | 33-4   |
|---------|-------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------|-------|------------------|-------------|------------------|-------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------|------------------|----------------|--------|--------|
| 164     | P[ <i>la</i> site | 530              |                                                                                                                                                                                                                                                                                                                                          |                |                | 28E                                                                                                                                                                                                                                        | 58F            | 51A<br>53C |        | 530                                                                                                                                                                             |                | 168     | P[la     | site  |                  | 48E         | 474              | _                                                                                                     | 32A              |                                                                        |                  | -              |        | 470    |
| lood    | lethal            | Е                | Е                                                                                                                                                                                                                                                                                                                                        | L≤n            | Е              | E                                                                                                                                                                                                                                          | E-L            | Е          | E      | Е                                                                                                                                                                               | Е              | lood    | lethal   | phase | Е                | E           | pP               | 8A                                                                                                    | A <sup>±</sup>   | L< <n< td=""><td>A<sup>±</sup></td><td>Е</td><td>E</td><td>ш</td></n<> | A <sup>±</sup>   | Е              | E      | ш      |
| lasmid  | Fly line          | 169/1            | 169/2                                                                                                                                                                                                                                                                                                                                    | 169/4          | 169/13         | 169/19                                                                                                                                                                                                                                     | 170/2          | 170/10     | 170/11 | 170/2                                                                                                                                                                           | 170/20         | Plasmid | Fly line |       | 102/27           | 102/28      | 103/21           | 132/2                                                                                                 | 132/6            | 110/37                                                                 | 110/1            | 110/14         | 110/4  | 110/18 |
|         | Glycerol<br>stock | 2208             | 2209                                                                                                                                                                                                                                                                                                                                     | 2210           | 2213           | 2215                                                                                                                                                                                                                                       | 2216           | 2221       | 2222   | 2223                                                                                                                                                                            | 2227           |         | Glycerol | stock | 1478             | 1479        | 1499             | 1756                                                                                                  | 1757             | 1586                                                                   | 1569             | 1576           | 1571   | 1578   |
| 63      | P[lacW]<br>site   |                  | 60F2-3<br>60D1-2                                                                                                                                                                                                                                                                                                                         | 201 102        | 42E3-4         |                                                                                                                                                                                                                                            | No. No.        |            | 23B5-6 |                                                                                                                                                                                 |                | 67      | P[lacW]  | site  |                  | 60B4-5      |                  |                                                                                                       |                  | 53F4-5                                                                 | 45F1-2           | 45A4-8         | 53E1-2 |        |
| pool 1  | lethal            | E                | L< <n< td=""><td>Е</td><td>A<sup>±</sup></td><td>E-L</td><td>E</td><td>Е</td><td>L-P</td><td>E-L</td><td>A<sup>±</sup></td><td>pool 1</td><td>lethal</td><td>phase</td><td>E</td><td>E</td><td>P-A<sup>±</sup></td><td></td><td>P-8A</td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>A<sup>±</sup></td><td>Ρ</td><td>84_A±</td></n<> | Е              | A <sup>±</sup> | E-L                                                                                                                                                                                                                                        | E              | Е          | L-P    | E-L                                                                                                                                                                             | A <sup>±</sup> | pool 1  | lethal   | phase | E                | E           | P-A <sup>±</sup> |                                                                                                       | P-8A             | A <sup>±</sup>                                                         | A <sup>±</sup>   | A <sup>±</sup> | Ρ      | 84_A±  |
| Plasmid | Fly line          | 167/1            | 167/14                                                                                                                                                                                                                                                                                                                                   | 167/19         | 167/22         | 167/24                                                                                                                                                                                                                                     | 168/3          | 168/4      | 168/14 | 168/16                                                                                                                                                                          | 168/17         | lasmid  | Fly line | 1     | 91/11            | 93/17       | 93/24            | 98/14                                                                                                 | 98/46            | 98/54                                                                  | 102/13           | 101/6          | 102/9  | 100/9  |
|         | Glycerol<br>stock | 2174             | 2181                                                                                                                                                                                                                                                                                                                                     | 2183           | 2185           | 2186                                                                                                                                                                                                                                       | 2189           | 2190       | 2199   | 2201                                                                                                                                                                            | 2202           | P       | Glycerol | stock | 1264             | 1308        | 1313             | 1386                                                                                                  | 1408             | 1414                                                                   | 1468             | 1447           | 1465   | 1440   |
| 62      | P[lacW]<br>site   | 30C1-2           | 39E1-4                                                                                                                                                                                                                                                                                                                                   | 44A4-5         |                |                                                                                                                                                                                                                                            | 21B4-6         |            |        |                                                                                                                                                                                 |                | 99      | P[lacW]  | site  |                  |             |                  | 1                                                                                                     | 50F1-2<br>87D1-2 |                                                                        | 48F4-5<br>49C1-3 |                | 29E5-6 | 45F1-2 |
| pool 1  | lethal            | Ш                | A <sup>±</sup>                                                                                                                                                                                                                                                                                                                           | E              | E-L            | P                                                                                                                                                                                                                                          | A <sup>±</sup> | Е          | Е      | E                                                                                                                                                                               | 8A             | pool ]  | lethal   | phase | Е                | P-8A        |                  | L< <n< td=""><td>E</td><td><sup>±</sup>A-A<sup>±</sup></td><td></td><td></td><td></td><td>Н</td></n<> | E                | <sup>±</sup> A-A <sup>±</sup>                                          |                  |                |        | Н      |
| lasmid  | Fly line          | 164/1            | 164/3                                                                                                                                                                                                                                                                                                                                    | 165/3          | 165/2          | 165/7                                                                                                                                                                                                                                      | 165/10         | 166/3      | 166/4  | 166/8                                                                                                                                                                           | 166/16         | lasmid  | Fly line |       | IILL             | <i>79/6</i> | 79/15            | 79/25                                                                                                 | 80/22            | 80/46                                                                  | 83/15            | 86/10          | 88/2   | 89/24  |
|         | Glycerol          | 2144             | 2145                                                                                                                                                                                                                                                                                                                                     | 2149           | 2148           | 2151                                                                                                                                                                                                                                       | 2152           | 2162       | 2163   | 2166                                                                                                                                                                            | 2170           | P       | Glycerol | stock | 955              | 1012        | 1018             | 1026                                                                                                  | 1052             | 1070                                                                   | 1143             | 1175           | 1200   | 1231   |
| 61      | P[lacW]<br>site   | 34B1-2<br>44F1-2 |                                                                                                                                                                                                                                                                                                                                          |                | 43C3-4         | 56D1-2                                                                                                                                                                                                                                     |                | 44F2-6     |        |                                                                                                                                                                                 | 1 1 1 1 1 1    | 65      | P[lacW]  | site  | 31F1-2<br>51B4-5 |             |                  |                                                                                                       | 28C4-5<br>47C1-4 |                                                                        |                  |                |        |        |
| pool 1  | lethal            | A <sup>±</sup>   | L< <n< td=""><td>A<sup>±</sup></td><td>Е</td><td>L&lt;<n< td=""><td>E</td><td>Е</td><td>E</td><td>L&lt;<n< td=""><td>Ρ</td><td>pool 1</td><td>lethal</td><td>phase</td><td>Е</td><td>P-8A</td><td>Ρ</td><td>Е</td><td></td><td>Е</td><td>Ρ</td><td>Е</td><td>E-L</td><td></td></n<></td></n<></td></n<>                                  | A <sup>±</sup> | Е              | L< <n< td=""><td>E</td><td>Е</td><td>E</td><td>L&lt;<n< td=""><td>Ρ</td><td>pool 1</td><td>lethal</td><td>phase</td><td>Е</td><td>P-8A</td><td>Ρ</td><td>Е</td><td></td><td>Е</td><td>Ρ</td><td>Е</td><td>E-L</td><td></td></n<></td></n<> | E              | Е          | E      | L< <n< td=""><td>Ρ</td><td>pool 1</td><td>lethal</td><td>phase</td><td>Е</td><td>P-8A</td><td>Ρ</td><td>Е</td><td></td><td>Е</td><td>Ρ</td><td>Е</td><td>E-L</td><td></td></n<> | Ρ              | pool 1  | lethal   | phase | Е                | P-8A        | Ρ                | Е                                                                                                     |                  | Е                                                                      | Ρ                | Е              | E-L    |        |
| lasmid  | Fly line          | 161/18           | 161/29                                                                                                                                                                                                                                                                                                                                   | 162/3          | 162/6          | 162/7                                                                                                                                                                                                                                      | 162/14         | 162/18     | 162/19 | 163/4                                                                                                                                                                           | 163/15         | lasmid  | Fly line |       | 39/6             | 55/8        | 55/12            | 55/15                                                                                                 | 55/21            | 55/27                                                                  | 55/32            | 56/55          | 56/38  | 9/0L   |
|         | Glycerol          | 2116             | 2123                                                                                                                                                                                                                                                                                                                                     | 2126           | 2129           | 2130                                                                                                                                                                                                                                       | 2134           | 2137       | 2138   | 2142                                                                                                                                                                            | 2143           |         | Glycerol | stock | 319              | 512         | 514              | 516                                                                                                   | 522              | 523                                                                    | 524              | 564            | 552    | 801    |

| pool | 169                        | į                 | Plasmid  | pool                                                                                                                                                                   | 170                        |                   | Plasmid  | pool                                                                                             | [7]<br>Driedun               | 1                 | Plasmid  | pool                                         | T2<br>Difeetin        |
|------|----------------------------|-------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------|--------------------------------------------------------------------------------------------------|------------------------------|-------------------|----------|----------------------------------------------|-----------------------|
| _    | P[lacW] site               | Glycerol<br>stock | Fly line | phase                                                                                                                                                                  | P[lacW] site               | Giycerol<br>stock | Fly line | phase                                                                                            | P[lacW] site                 | stock             | FIY line | phase                                        | Placw]<br>site        |
| -    | 22B1-2                     | 1940              | 144/4    |                                                                                                                                                                        | 55C9-12                    | 2083              | 158/26   | 8A-A <sup>±</sup>                                                                                | 47C3-4                       | 2157              | 165/21   | E-L                                          | 21B4-6                |
|      | 29C1-2                     | 1995              | 148/7    | Е                                                                                                                                                                      |                            | 2104              | 160/11   | E                                                                                                | 39B1-2<br>40B1-2             | 2161              | 166/2    | E-L                                          | 43E7-10               |
|      | 35B6-7<br>93D3-5           | 1989              | 147/7    | Е                                                                                                                                                                      | 51C1-2                     | 2121              | 161/26   | Ρ                                                                                                |                              | 2165              | 166/6    | A <sup>±</sup>                               |                       |
|      | 58F1-2                     | 2000              | 148/14   | В                                                                                                                                                                      |                            | 2133              | 162/13   | Е                                                                                                | 27E1-2<br>53A1-2<br>61D1-2   | 2167              | 166/10   |                                              | 21D3-4                |
|      | 26B8-9<br>26C1-2<br>26D4-5 | 2001              | 148/16   | Ρ                                                                                                                                                                      | 29A3-5<br>23D1-2           | 2136              | 162/16   | Ρ                                                                                                |                              | 2168              | 166/11   | Ш                                            |                       |
|      | 48E4-7                     | 2009              | 149/4    | 8A                                                                                                                                                                     |                            | 2146              | 164/6    | 8A-A <sup>±</sup>                                                                                |                              | 2171              | 166/17   | E-L                                          | 47A11-14              |
|      | 53B1-2                     | 2045              | 154/19   |                                                                                                                                                                        | 22F3-4                     | 2147              | 165/1    | L< <n< td=""><td>25A6-7<br/>28D1-2</td><td>2188</td><td>168/2</td><td>Ρ</td><td>26B8-9</td></n<> | 25A6-7<br>28D1-2             | 2188              | 168/2    | Ρ                                            | 26B8-9                |
|      |                            | 2080              | 158/20   | ш                                                                                                                                                                      | 26A5-6<br>29A1-2<br>67B1-2 | 2153              | 165/14   | A                                                                                                |                              | 2192              | 168/6    | A <sup>±</sup>                               | 45D4-5                |
|      | 42D1-2                     | 2059              | 156/16   | L< <n< td=""><td>42A15-16</td><td>2184</td><td>167/21</td><td>Е</td><td>25C1-2</td><td>2194</td><td>168/8</td><td>8A-A<sup>±</sup></td><td>34B1-2<br/>60F1-3</td></n<> | 42A15-16                   | 2184              | 167/21   | Е                                                                                                | 25C1-2                       | 2194              | 168/8    | 8A-A <sup>±</sup>                            | 34B1-2<br>60F1-3      |
|      | 50F4-7<br>57B4-6           | 2067              | 157/13   | Е                                                                                                                                                                      |                            | 2155              | 165/16   | Ρ                                                                                                | 36A10-11<br>39C1-2<br>40B1-2 | 2200              | 168/15   | L< <n< td=""><td></td></n<>                  |                       |
|      | 173                        |                   | Plasmid  | pool                                                                                                                                                                   | 174                        |                   | lasmid   | lood                                                                                             | 175                          |                   | Plasmid  | lood                                         | 76                    |
|      | P[lacW] site               | Glycerol<br>stock | Fly line | lethal                                                                                                                                                                 | P[lacW] site               | Glycerol<br>stock | Fly line | lethal                                                                                           | P[lacW] site                 | Glycerol<br>stock | Fly line | lethal<br>phase                              | P[ <i>lacW</i> ] site |
|      | 27D1-2                     | 2226              | 170/19   | L< <n< td=""><td>49B3-4<br/>49E1-2</td><td>510</td><td>55/6</td><td>8A</td><td></td><td>603</td><td>59/5</td><td>Ρ</td><td>26B8-9</td></n<>                            | 49B3-4<br>49E1-2           | 510               | 55/6     | 8A                                                                                               |                              | 603               | 59/5     | Ρ                                            | 26B8-9                |
|      |                            | 2230              | 170/24   | Е                                                                                                                                                                      |                            | 517               | 55/16    | P-8A                                                                                             |                              | 662               | 62/4     | E                                            | 46C1-2                |
| -    |                            | 2231              | 170/25   | 8A-A <sup>±</sup>                                                                                                                                                      | 33E7-8                     | 518               | 55/17    | Р                                                                                                | 35D1-4<br>37C6-7<br>82E6-7   | 684               | 63/20    | L< <n< td=""><td>60C7-8<br/>67C5-8</td></n<> | 60C7-8<br>67C5-8      |
|      |                            | 2232              | 170/26   | E                                                                                                                                                                      | 58D6-7                     | 525               | 55/29    | E                                                                                                | 1 South                      | 619               | 63/11    | E-L                                          |                       |
|      |                            | 2233              | 170/27   | E                                                                                                                                                                      | 35F10-11                   | 586               | 58/9     | E                                                                                                | - And - And                  | 694               | 63/33    | E                                            | 31A1-2                |
|      |                            | 2235              | 170/31   | L-P                                                                                                                                                                    | 45F1-2<br>50F1-2           | 587               | 58/9     | 8A                                                                                               |                              | 729               | 65/7     | A <sup>±</sup>                               |                       |
|      |                            | 2237              | 170/35   | E-L                                                                                                                                                                    | 45F1-2                     | 595               | 58/19    | Е                                                                                                | 24F1-2                       | 741               | 66/6     | E                                            | 30B1-2<br>21B4-6      |
|      | 34A3-4                     | 2239              | 170/37   | E                                                                                                                                                                      |                            | 614               | 59/18    | E                                                                                                |                              | 800               | LIOL     | Е                                            |                       |
|      | 47F4-9                     | 2229              | 170/23   | L< <n< td=""><td></td><td>620</td><td>60/5</td><td>E</td><td>48E8-11</td><td>856</td><td>72/23</td><td>Е</td><td>34A5-6</td></n<>                                      |                            | 620               | 60/5     | E                                                                                                | 48E8-11                      | 856               | 72/23    | Е                                            | 34A5-6                |
|      |                            | 2243              | 113/9    | Е                                                                                                                                                                      |                            | 645               | 61/13    | E-L                                                                                              | 39E5-6                       | 926               | 75/18    | P-8A                                         |                       |

|        | P[ <i>lacW</i> ] site |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  |         | P[ <i>lacW</i> ] site |  |  |  |   |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------|---------|-----------------------|--|--|--|---|
| pool   | lethal<br>phase       |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                | Tex Pol                                                                                                                                           |                                                                                                                      |                  | pood    | lethal<br>phase       |  |  |  |   |
| lasmid | <sup>4</sup> ly line  |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  | lasmid  | <sup>1</sup> ly line  |  |  |  |   |
| P      | Glycerol 1<br>stock   |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  | P       | Glycerol 1<br>stock   |  |  |  |   |
|        | P[ <i>lacW</i> ] site | The second second                                                                                                                                                                                                               | N. C. L. |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  |         | P[lacW] site          |  |  |  |   |
| pool 1 | lethal<br>phase       |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  | pool 1  | lethal<br>phase       |  |  |  |   |
| lasmid | Fly line              | 14                                                                                                                                                                                                                              |          | N III III                                                                                                                                                                             |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  | asmid ] | Fly line              |  |  |  |   |
| P      | Glycerol stock        |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      |                  | PI      | Glycerol<br>stock     |  |  |  | T |
| 86     | P[lacW] site          |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       | 48B6-7<br>56D1-2 | 42A15-19 |        | 70A1-2                                                                                                                                                                         |                                                                                                                                                   | 47A11-14<br>62E6-7                                                                                                   | 48B1-2<br>67B1-2 |         | P[lacW]<br>site       |  |  |  |   |
| pool 1 | lethal<br>phase       | L< <n< td=""><td>P-8A</td><td>L&lt;<n< td=""><td>8A</td><td>Е</td><td>E</td><td>E</td><td>E-A<sup>±</sup></td><td>Е</td><td>L≤n</td><td>l lood</td><td>lethal<br/>phase</td><td></td><td></td><td></td><td></td></n<></td></n<> | P-8A     | L< <n< td=""><td>8A</td><td>Е</td><td>E</td><td>E</td><td>E-A<sup>±</sup></td><td>Е</td><td>L≤n</td><td>l lood</td><td>lethal<br/>phase</td><td></td><td></td><td></td><td></td></n<> | 8A               | Е        | E      | E                                                                                                                                                                              | E-A <sup>±</sup>                                                                                                                                  | Е                                                                                                                    | L≤n              | l lood  | lethal<br>phase       |  |  |  |   |
| lasmid | Fly line              | 146/3                                                                                                                                                                                                                           | 146/7    | 146/8                                                                                                                                                                                 | 140/27           | 147/10   | 147/15 | 147/16                                                                                                                                                                         | 148/11                                                                                                                                            | 79/26                                                                                                                | 146/2            | asmid   | Fly line              |  |  |  |   |
| P      | Glycerol<br>stock     | 1976                                                                                                                                                                                                                            | 1977     | 1978                                                                                                                                                                                  | 1900             | 1991     | 1992   | 1993                                                                                                                                                                           | 1997                                                                                                                                              | 1027                                                                                                                 | 1975             | d       | Glycerol<br>stock     |  |  |  |   |
| 85     | P[lacW]<br>site       |                                                                                                                                                                                                                                 |          |                                                                                                                                                                                       |                  |          |        |                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                      | 54E1-2           |         | P[lacW]<br>site       |  |  |  |   |
| pool 1 | lethal<br>phase       | A <sup>±</sup>                                                                                                                                                                                                                  | E        | Ш                                                                                                                                                                                     | Е                | E-L      | pP     | L< <n< td=""><td>L&lt;<n< td=""><td>L&lt;<n< td=""><td>A<sup>±</sup></td><td>pool 1</td><td>lethal<br/>phase</td><td></td><td></td><td></td><td></td></n<></td></n<></td></n<> | L< <n< td=""><td>L&lt;<n< td=""><td>A<sup>±</sup></td><td>pool 1</td><td>lethal<br/>phase</td><td></td><td></td><td></td><td></td></n<></td></n<> | L< <n< td=""><td>A<sup>±</sup></td><td>pool 1</td><td>lethal<br/>phase</td><td></td><td></td><td></td><td></td></n<> | A <sup>±</sup>   | pool 1  | lethal<br>phase       |  |  |  |   |
| lasmid | Fly line              | 142/13                                                                                                                                                                                                                          | 143/6    | 143/8                                                                                                                                                                                 | 143/10           | 143/11   | 144/3  | 144/5                                                                                                                                                                          | 144/8                                                                                                                                             | 144/10                                                                                                               | 146/1            | lasmid  | Fly line              |  |  |  |   |
| P      | Glycerol<br>stock     | 1926                                                                                                                                                                                                                            | 1930     | 1931                                                                                                                                                                                  | 1933             | 1934     | 1939   | 1941                                                                                                                                                                           | 1943                                                                                                                                              | 1945                                                                                                                 | 1974             | A       | Glycerol<br>stock     |  |  |  |   |

## <u>References</u>

Alphey, L., Parker, I., Hawcroft, G., Guo, Y., Elledge, S., Kaiser, K., Glover, D. M. and Morgan, G. (1996). KLP38B- a mitotic kinesin-related protein from *Drosophila* which associates with PP1. *Cell* (submitted).

Anraku, Y., Hirata, R., Wada, Y. and Ohya, Y. (1992). Molecular genetics of the yeast vacuolar H+-ATPase. J. Exp. Biol. 172, 67-81.

Arai, H., Terres, G., Pink, S. and Forgac, M. (1988). Topography and subunit stoichiometry of the coated vesicle proton pump. *J. Bio. Chem.* 263, 8796-8802.

Ashburner, M. (1989a). *Drosophila*: A laboratory manual. Cold Spring Harbour Laboratory Press.

Ashburner, M. (1989b). Drosophila: A Laboratory Handbook. Cold Spring Harbour Press.

Azuma, M., Harvey, W. R. and Wieczorek, H. (1995). Stoichiometry of K<sup>+</sup>/H<sup>+</sup> antiport helps to explain extracellular pH11 in a model epithelium. *FEBS Letters* 361, 153-156.

Ballinger, D. G. and Benzer, S. (1989). Target gene mutations in *Drosophila*. Proc. Natl. Acad. Sci. USA. 86, 9402-9406.

Banga, S. S. and Boyd, J. B. (1992). Oligonucleotide-directed site-specific mutagenesis in *Drosophila melanogaster. Proc. Natl. Acad. U.S.A.* 89, 1735-1739.

Baron, R., Bartkiewicz, M., David, P. and Hernando-Sobrino, N. (1994). Acidification and bone resorption: The role and characteristics of V-ATPases in the osteoclast. In Organellar proton-ATPases (ed. Nelson, N), pp. Austin, Texas: R. G. Landes Company.

Baud, V., Mears, A. J., Lamour, V., Scamps, C., Duncan, A. M. V., McDermid, H. E. and Lipinski, M. (1994). The E subunit of vacuolar H+-ATPase localizes close to the centromere on human chromosome 22. *Human Molecular Genetics* 3, 335-339.

Bauerle, C., Ho, M. N., Lindorf er, M. A. and Stevens, T. H. (1993). The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H+-ATPase membrane sector. *J. Biol. Chem.* 268, 12749-12757.

Bellen, H. J., O'Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K. and Gehring,
W. J. (1989). P-clement-mediated enhancer detection: a versatile method to study development in *Drosophila*. *Genes Dev.* 3, 1288-1300.

Berkelman, T., Houtchens, K. A. and Dupont, F. M. (1994). 2 cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barley roots. *Plant Physiol.* 104, 287-288.

Bernasconi, P., Rausch, T., Struve, I., Morgan, L. and Taiz, L. (1990). An mRNA from human brain encodes an isoform of the B subunit of the vacuolar H<sup>+</sup>-ATPase. *J. Biol. Chem.* 265, 17428-17431.

Bier, E., Vaessin, H., Sheperd, S., Lee, K., McCall, K., Barbel, S., Ackerman, L., Caretto, R., Ucmura, T., Grell, E., Jan, L. Y. and Jan, Y. N. (1989). Searching for pattern and mutation with a *P-lacZ* vector. *Genes Dev.* 3, 1273-1287.

Birman, S., Meunier, F.-M., Lesbats, B., Lecaer, J. P., Rossier, J., Israel, M. (1990). A 15 kDa proteolipid found in mediatophore preparations from *Torpedo* electric organ presents high sequence homology with the bovine chromaffin granule protonophore. *FEBS Letters* 261, 303-306.

Bingham, P. M. (1981). Cloning of DNA sequences from the white locus of *D. melanogaster* by a novel and general method. *Cell* 25, 693-704.

Birnboim, H. C. and Doly, J. (1979). Rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucl. Acids. Res.* 7, 1513-1523.

Black, D. M., Jackson, M. S., Kidwell, M. G. and Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in *D. melanogaster. EMBO J.* 6, 4125-4135.

Blackman, R. K., Koehler, M. M. D., Grimaila, R. and Gelbart, W. M. (1989). Identification of a fully functional hobo transposable element and its use in germ-line transformation of *Drosophila*. *EMBO J.* 8, 211-217.

Blair, H., Teitelbaum, S., Ghiselli, R and Gluck, S. (1989). Osteoclastic bone reorption by a polarized vacuolar proton pump. *Science* 245, 855-857.

Bowman, E. J. (1983). Comparison of the vacuolar membrane ATPase of *Neurospora* crassa with the mitochondrial and plasma membrane ATPases. J. Biol. Chem. 258, 15238-15244.

Bowman, E. J., Tenney, K. and Bowman, B. J. (1988). Isolation of vma-1 Encoding the *Neurospora* Vacuolar ATPases. J. Biol. Chem. 263, 13994-14001.

Bowman, E. J., Steinhardt, A. and Bowman, B. J. (1995). Isolation of the vma-4 gene encoding the 26 kDa subunit of the *Neurospora crassa* vacuolar ATPase. *Biochim. Biophys. Acta* 1237, 95-98.

Boyle, J. S. and Lew, A. M. (1995). An inexpensive alternative to glassmilk for DNA purification. *TIG* 11.

Brown, D., Gluck, S. and Hartwig, J. (1987). Structure of the novel membrane-coating material in proton-secrecting cells and identification as an H+ATPase. *J. Cell Biol.* 105, 1637-1648.

Brown, D., Hirsch, S. and Gluck, S. (1988). An H+ATPase is inserted into opposite plasma membrane domains in subpopulations of kidney epithelial cells. *Nature* 331, 622-624.

Brown, D., Lui, B., Gluck, S. and Sabolic, I. A. (1992). plasma membrane proton ATPase in specialized cells of rat epididymis. *American Journal of Physiology - Cell Physiology*, 263, C913-C916.

Brennan, M. D., Rowan, R. G. and Dickinson, W. J. (1984). Introduction of a Functional P Element into Germ-Line of a *Drosophila hawaiiensis*. Cell 38, 147--151.

Bullock, W. O., Fernandez, J. M. and Short, J. M. (1987). XL1-Blue: A high effenciency plasmid transforming *recA Escherichia coli* strain with  $\beta$  Galactosidase slection. *Biotechniques* 5, 376-379.

Calvi, B. R., Hong, T. J., Findley, S. D. and Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in *Drosophila* and plants: hobo, Activator, and Tam3. *Cell* 66, 465-471.

Castrillon, D. H., Gonczy, P., Alexander, S., Rawson, R., Eberhart, C. G., Viswanathan, S., DiNardo, S. and Wasserman, S. A. (1993). Toward a molecular-genetic analysis of spermatogenesis in *Drosophila melanogaster* - Characterization of male-sterile mutants generated by single P element mutagenesis. *Genetics* 135, 489-505.

Cavener, D.R. (1987). Comparison of the consensus sequence flanking translational start sites in *Drosophila* and vertebrates. *Nucleic Acids Res.* 15, 1353--1361.

Chambers, T. J., Fuller, K., McSheehy, P. M. J. and Pringle, J. A. S. (1985). The effects of calcium regulating hormones on bone resorption by isolated human osteoclastoma cells. *Journal of Pathology* 145, 297-305.

Chin, A. C., Burgess, R. W., Wong, B. R., Schwarz, T. L. and Scheller, R. H. (1993). Differential expression of transcripts from *syb*, a *Drosophila melanogaster* gene encoding VAMP (synaptobrevin) that is abundant in non-neuronal cells. *Gene* 131, 175-181.

Chisholm, D. (1989). A convenient moderate-scale procedure for obtaining dna from bacteriophage-lambda. Biotechniques .7, .21-23.

Chiu, S.-J., Huang, S. -H., Lin, L. -Y. and Pan, R. L. (1995). A cDNA clone encoding the A subunit of the vacuolar H+-ATPase from etiolated mung bean seedlings. *Plant Physiol.* 109, 1125-

Choi, K. R., Lee, K. S., Oh, Y., Baek, K. and Yoon, J. (1995). Isolation and characterization of the *Drosophila-melanogaster* gene encoding the vacuolar ATPasc subunit-A. *Molecules and Cells* 5, 544-548.

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidium thicyanate phenol chloroform extraction. *Anal. Biochem.* 162, 156-159.

Clark, A. G., Silveria, S., Meyers, W. and Langley, C. H. (1994). Nature screen: An efficient method for screening natural-populations of *Drosophila* for target P-element inscrtions. *Proc. Natl. Acad. U.S.A.* 91, 719-722.

Cooley, L., Kelley, R. and Spradling, A. (1988). Insertional mutagenesis in the *Drosophila* genome with single p elements. *Science* 239, 1121-1128.

Daniels, S. B. and Chovnick, A. (1993). P-element transposition in *Drosophila* melanogaster -An analysis of sister-chromatid pairs and the formation of intragenic secondary insertions during meiosis. *Genetics* 133, 623-636.

Das, L. and Martienssen, R. (1995). Site-selected transposon mutagenesis at the HCF106 locus in maize. *Plant Cell* 7, 287-294.

Davis, M. B. and MacIntyre, R. J. (1988). A genetic analysis of the alphaglycerophosphate oxidase locus in *Drosophila melanogaster*. *Genetics* 120, 755-766.

Davies, S. A., Goodwin, S. F., Kelly, D. C., Wang, Z., Sozen, M. A., Kaiser, K. and Dow, J. A. T. (1996). Analysis and inactive of vha55, the gene encoding the V-ATPase B-subunit in *Drosophila melanogaster* reveals a larval lethal phenotype. *J. Biol. Chem.* (in press).

Denda, K., Konishi, J., Oshima, T., et al., Date, T. and Yoshida, M. (1988). The membrane-associated ATPase from *Sulfolobus acidocaldarius* is distantly related to F1-ATPase as assessed from the primary structure of its  $\alpha$ -subunit . *J. Biol. Chem.* 263, 6012-6015.

Denda, K., Konishi, J., Hajiro, K., Oshima, T., Date, T. and Yoshida, M. (1990). Structure of an ATPase operon of an acidothermophilic archaebacterium, *Sulfolobus acidocaldarius*. J. Biol. Chem. 265, 21509-21513.

DeFranco, P. E., Haragism, L., Schmitz, P. G., Bastani, B. and Li, J. P. (1995). Absence of vacuolar H<sup>+</sup>-ATPase pump in the collecting duct of a patient with hypokalemic distal renal tubular acidisis and Sjogren's syndrome. *J. American Society of Nephrology* 6, 1046-6673.

Dietz, K. J., Rudloff, S., Ageorges, A., Eckerskorn, C., Fischer, K. and Arbinger, B. (1995). Subunit E of the vacuolar H+-ATPase of *Hordeum vulgare* l - cDNA cloning, expression and immunological analysis. *Plant J.* 8, 521-529

Ding, D., Parkhurst, S.M. and Lipshitz, H.D. (1993). Different genetic requirements for anterior RNA localization revealed by the distribution of Adducin-like transcripts during Drosophila oogenesis. Proc. Natl. Acad. Sci. U.S.A. 90, 2512-1516. Dorn, R., Szidonya, J., Korge, G., Sehnert, M., Taubert, H., Archoukieh, E., Tschiersch, B., Morawietz, H., Wustmann, G., Hoffmann, G. and Reuter, G. (1993). P-transposoninduced dominant enhancer nutations of position-effect variegation in Drosophila Dorssers, L., and Postmes, A. M. E. A. (1987) A simplified orientation specific cDNA Dow, J. A. T. (1984). Extremely high pH in biological systems: a model for carbonate Dow, A. J. T. (1986). Insect midgut function. Adv. Incect Physiol. 19, 187-328. Dow, J. A. T. and Harvey, W. R. (1988). The role of midgut electrogenic K<sup>+</sup> pump potential difference in regulating lumen K<sup>+</sup> and pH in larval lepidoptera. J. Exp. Biol.

140, 455-463. Dow, J. A. T. and Peacock, J. M. (1989). Microelectrode evidence for the electrical isolation of goblet cavities of the middle midgut of Manduca sexta.. J. Exp. Biol. 143,

melanogaster. Genetics 133, 279-290.

cloning strategy. Nucl. Acids Res. 16, 3629.

transport. Amer. J. Physiol. 246, R633-R635.

101-104.

Dow, J. A. T. and O'Donnell, M. J. (1990). Reversible alkalinization by Manduca sexta midgut. J. Exp. Biol., 150, 247-256.

Dow, J. A. T., Goodwin, S. F. and Kaiser, K. (1992). Analysis of gene encoding a 16kDa proteolipid subunit of the vacuolar H+-ATPase from Manduca sexta midgut and tubulcs. Gene 122, 355-360.

Dow, J. A. T. (1992). pH gradients in lepidopteran midgut. J. Exp. Biol. 172, 355-376.

Dow, J. A. T. (1994). V-ATPase in insects. In Organellar proton-ATPase. (ed. Nelson, N.), pp. 75-102. Austin Texas: R. G. Landes Company.

Dow, J. A. T., Maddrell, S. H. P., Görtz, A., Skaer, N. J. V., Brogan, S. and Kaiser, K. (1994). The Malpighian tubules of *Drosophila melanogaster*. A novel phenotype for studies of fluid secretion and its control. *J. Exp. Biol.* 197, 421-428.

Dow, J. A. T., Davis, S. A., Guo, Y., Graham, S., Finbow, M. and Kaiser, K. (1996). Molecular genetics analysis of V-ATPase function in *Drosophila melanogaster*. J. Exp. Biol. 202 (in press).

Emori, Y. and Saigo, K. (1994). Calpain localization changes in coordination with actinrelated cytoskeletal changes during early embryonic development of *Drosophila*. J. Biol. Chem. 269, 25137--25142.

Engels, W. R. (1979). Hybrid dysgenesis in *Drosophila melanogaster*. Rule of inheritance of female sterility. *Genet. Res.* 32, 219-213.

Engels, W. R., Benz, W. K., Preston, C. R., Graham, P. L., Phillis, R. W. and H. M. Robertson (1987). Some effects of P element activity in *Drosophila melanogaster*: Pupal lethality. *Genetics* 117, 745-757.

Engels, W. R. (1989). P elements in *Drosophila melanogaster*. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437-484. Washington, DC.: American Society for Microbiology.

Engels, W. R., Johnson-Schlitz, D. M., Eggleston, W. B. and Sved, J. (1990). High-frequency P element loss in *Drosophila* is homolog dependent. *Cell* 62, 515-525.

Feinberg, A. P. and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. *Anal. Biochem.* 132, 6-13.

Finbow, M. E., Eliopoupos, E. E., Jackson, P. J., Keen, J. N., Meagher, L., Thompson, P., Jones, P. and Findlay, J. B. C. (1992). Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacular H<sup>+</sup>-ATPase. *Protein Engineering* 5, 7-15.

Finbow, M. E. and Pitts, J. D. (1993). Is the gap junction channel-the connexon-made of connexon or ductin? *J. Cell Sci.* 106, 463-472.

Finbow, M. E., Goodwin, S. F., Meagher, L., Lane, N. J., Keen, J., Findlay, J. B. C. and Kaiser, K. (1994a). Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H+-

ATPase and ductin from gap junctions are the same polypeptide in *Drosophila* and Manduca: molecular cloning of the Vha 16k gene fromm *Drosophila*. J. Cell Biol. 107, 1817-1824.

Finbow, M. E., Harrisons, M. and Jones, P. (1994b). Ductin -a proton pump component, a gap junction channel and a neurotransmitter release channel. *BioEssays* 17, 247-255.

Fischer, J. A., Giniger, E., Maniatis, T. and Ptashne, M. (1988). GAL 4 activates transcription in *Drosophila*. *Nature* 333, 853-856.

Forgac, A. H. (1989). Structure and function of a vacuolar class of ATP-driven proton pumps. *Physiol. Rev.* 69, 765-769.

Foury, F. (1990). The 31-kDa polypeptide is an essential subunit of the Vacuolar ATPase in Saccharomyces cerevisiae. *J. Biochem.* 265, 18554-18560.

Fridell. Y.W. and Scarles, L. L. (1991). Vermilion as a small selectable marker gene for Drosophila transformation. Nucleic Acids. Res., 19, 5082.

Frischauf, A. M., Lehrach, H., Poustka, A. and Murray, N. (1983). Lambda-replacement vectors carrying polylinker sequences. *J. Mol. Biol.* 170, 827-842.

Galli, T., Mcpherson, P. S. and Decamilli, P. (1996). The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a triton X-100-resistant, freeze-thawing sensitive, complex. *J. Biol. Chem.* 271, 2193-2198.

Garayoa, M., Villaro, A., Klein, U., Zimmermann, B. and Montuenga, L. (1995). Immunocytochemical localization of a vacuolar-type ATPase in Malpighian tubules of the ant Formica polyctena. *Cell and Tissue Research* 282, 343-350.

Garrettengele, P., Moilanen, B. and Cyert, M. S. (1995). Calcineurin, the Ca<sup>2+</sup>/calmodulin-depedent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H<sup>+</sup>-ATPase. *Mol. Cell. Biol.* 15, 4103-4114.

Gausz, J., Bencze, G., Gyurkovics, H., Ashburner, M., Ish-Horowitz, D. and Holden, J. J. (1979). Genetic characterization of the 87C region of the third chromosome of *Drosophila melanogaster. Genetics* 93, 917-934.

Gausz, J., Bencze, G., Gyurkovics, H., Ashburner, M., Ish-Horowicz, D. and Holden, J. J. (1979). Genetic characterization of the 87C region of the third chromosome of *Drosophila melanogaster*. *Genetics* 93, 917-934.

Ghislain, M. and Bowman, E. J. (1992). Sequence of the genes encoding subunits A and B of the vacuolar H+-ATPase of *Schizosaccharomyces pombe*. *Yeast* 8, 791-799.

Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R. and Engels, W. R. (1991a). target gene replacement in *Drosophila* via P element-induced gap repair. *Science* 253, 1110-1117.

Gloor, G. and Engels, W. (1991b). Single-fly DNA preps for PCR. D. I. S. 71:148--149.

Gluck, S. L., Nelson, R. D. Lee, B. S., Wang, Z.-Q., Guo, X.-L., Fu, J.-Y. and Zhang, K. (1992a). Biochemistry of the renal V-ATPase. *J. Exp. Biol.* 172, 219-229.

Gluck, S. and Nelson, R. (1992b). The role of the V-ATPase in renal epithelial H<sup>+</sup>-ATPase in renal epithelial H<sup>+</sup> transport. *J. Exp. Biol.* 172, 205-218.

Gluck, S. (1992). V-ATPases of the plasmid membrane. J. Exp. Biol. 172, 29-37.

Gluck, S. L., Nelson, R. D., Lee, B. S. M., Holliday, L. S. and Iyori, M. (1994). Properties of kidney plasma membrane vacuolar H<sup>+</sup>-ATPases: Proton pumps responsible for bicarbonate transport, urinary acidification, and acid-base homeostasis. In Organellar proton-ATPases (ed. Nelson, N.), pp. Austin, Texas: R. G. Landes Company.

Gogarten, J. P., l'ichmann, J., Braun, Y., Morgan, L., Styles, P., Taiz, S. L., Delapp, K. and Taiz, L. (1992a). The use of antisense mRNA to inhibit the tonoplast H+-ATPase in carrot. *The Plant Cell* 4, 851-864.

Gogarten, J. P., Starke, T., Kibak, H., Fishmann, J. and Taiz, L. (1992b). Evolution and isoforms of V-ATPase subunits. *J. Exp. Biol.* 172, 137-147.

Goldberg, D. A., Posakony, J. W., and Maniatis, T. (1983). Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the *Drosophila* germ line. *Cell* 34,59-

Goldstein, D. J., Finbow, M. E., Andresson, T., Mclean, P., Smith, K., Bubb, V. and Schlegel, R. (1991). Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases. *Nature* 352, 347-349.

Golic, K. G. (1994). Local transposition of P elements in *Drosophila melanogaster* and recombination between duplicated elements using a site-specific recombinase. *Genetics* 137, 551-563.

Gottlieb, R. A., Giesing, H. A., Zhu, J. Y., Engler, R. L. and Babior, B. M. (1995). Cell acidification in apoptosis-granulocyte-colony-stimulating factor delays programmed cell-death in neutrophils by up-regulating the vacuolar H+-ATPase. *Proc. Natl. Acad. U.S.A.* 92, 5965-5968.

Graham, L. A., Hill, K. J. and Stevens, T. H. (1994). VMA7 encodes a novel 14-kDa subunit of the *Saccharomyces cerevisiae* vacuolar H<sup>(+)</sup>-ATPase complex. *J. Biol. Chem.* 269, 25974-25977.

Gräf, R., Novak, F. J. S., Harvey, W. R. and Wieczorek, H. (1992). Cloning and sequencing of cDNA encoding the putative insect plasma membrane V-ATPase subunit A. *FEBS Letter* 300, 119-122.

Gräf, R., Harvey, W. R. and Wieczorek, H. (1994a). Cloning, sequencing and expression of cDNA encoding an insect V-ATPase subunit E. *Biochim. Biophys. Acta* 190, 193-196.

Gräf, R., Lepier, A., Harvey, W. R. and Wieczorek, H. (1994b). A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut . J. Biol. Chem. 269, 3767-3774.

Guo, Y., Wang, Z., Carter, A., Kaiser, K. and Dow, J. A. T. (1996a). Characterisation of *vha26*, the *Drosophila* gene for a 26kDa E-subunit of the vacular ATPase. *Biochem. Biophys. Acta* 1283, 4-9.

Guo, Y., Kaiser, K., Wieczorek, H. and Dow, J. A. T. (1996b). The Drosophila melanogaster gene vha14 encoding a 14-kDa F-subunit of the vacuolar ATPase. Gene 172, 239-243.

Guo, Y., Gillan, A., Török, T., Kiss, I., Dow, J. A. T. and Kaiser, K. (1996c). Siteselected mutagenesis of the *Drosophila* second chromosome via plasmid rescue of lethal Pelement insertions. *Genome Research* 6:972-979. Guo, Y., Dow, J. A. T., Gillan, A., Kiss, I. and Kaiser, K. (1996d). Molecular characterisation and inactivation of the 68kDa A-subunit of V-ATPase in *Drosophila*. A. Dros. Conf. Res. 37, 91.

Haenlin, M., Steller, H., Pirrotta, V. and Mohier, E. (1985). A 43 Kilobase cosmid P transposon rescues the fs(1)K10 morphogenetic locus and three adjacent *Drosophila* development mutants. *Cell* 40, 827-837.

Hamilton, B. A., Palazzolo, M. J., Chang, J. H., Raghavan, K. V., Mayeda, C. A., Whitney, M. A. and Meyerowitz, E. M. (1991). Large scale screen for transposon insertions into cloned genes. *Proc. Natl. Acad. Sci. USA.* 88, 2731-2735.

Hamilton, B. A. and Zinn, K. (1994). from clone to mutant gene. In Practical uses in cell and molecular biology. (cd. Goldstein, L. S. B.; Fyrberg, E. A..) .pp. 81-94. Academic Press.

Hanahan, D. (1985). Techniques for transformation of *E. Coli*. In DNA Cloning (ed. Glover, D. M.), pp. 109-135. IRL Press.

Handler, A. M., Gomez, S. P. and Obrochta, D. A. (1993). Negative regulation of Pelement excision by the somatic product and terminal sequences of P in *Drosophila melanogaster*. *Molecular & General Genetics* 237, 145-151.

Harvey, W. R. (1992). Physiology of V-ATPases. J. Exp. Biol. 172, 1-17.

Harvie, P. D. and Bryant, P. J. (1996). Cloning of the C subunit of V-ATPasefrom Drosophila melanogaster. A. Dros. Conf. Res. 37, 92.

He, J. and Kramer, H. (1996). Search for proteins that bind to Hook, a novel component of the endocytic compartment. *A. Dros. Conf. Res.* 37, 93.

Hemken, P., Guo, X.-L., Wang, Z.-Q., Zhang, K. and Gluck, S. (1992). Immunologic evidence that vacuolar H<sup>+</sup> ATPases with heterogeneous forms of Mr=31,000 subunit have different membrane distributions in Mammalian kidney. *J. Biol. Chem.* 267, 9948-9957.

Hernando, N., Bartkiewicz, M., Collin-Osdoby, P. and Osdoby, P. (1995). Alternative splicing generates a second isoform of the catalytic A subunit of the vacuolar H<sup>+</sup>-ATPase. *Proc. Natl. Acad. U.S.A.* 92, 6087-6091.

Hilario, E. and Gogarten, J. P. (1995). The V-ATPasde A-subunit gene (VMA-1) Giardia lamblia. Biochim. Biophys. Acta 1238, 94-98.

Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K. and Anraku, Y. (1990). Molecular structure of a gene, VMA1, encoding the catalytic subunit of H<sup>+</sup>-translocating adenosine triphosphatase from vacuolar membranes of *saccharomyces cerevisiae*. J. *Biochemestry* 265, 6726-6733.

Hirsch, S., Strauss, A., Masood, K., Lee, S., Sukhatme, V. and Gluck, S. (1988). Isolation and sequence of a cDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar H+-ATPase. *Proc. Natl. Acad. U.S.A.* 85, 3004-3008.

Ho, M. N., Hill, K. J., Lindorfer, M. A. and Stevens, T. II. (1993). Isolation of vacuolar membrane H<sup>+</sup>-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H<sup>+</sup>-ATPase. *J. Biol. Chem.* 268, 221-227.

Jager, D., Novac, F. J. S., Harvey, W. R., Wieczorek, H. and Klein, U. (1996). Temporal and spatial disturbution of V-ATPase and its mRNA in the midgut of molying *Manduca Sexta. J. Exp. Biol.* 199, 1019-1027.

Johnsonschlitz, D. M. and Engels, W. R. (1993). P-element-induced interallelic gene conversion of insertions and deletions in *Drosophila melanogaster*. *Mol. Cell. Biology* 13, 7006-7018.

Jones, P. C., Harrison, M. A., I., K. Y., Finbow, M. E. and Findlay, J. B. C. (1995). The first putative transmembrane helix of the 16 kDa proteolipid lines a pore in the V(0) sector of the vacuolar H<sup>+</sup>-ATPase. *Biochemical Journal* 312, 739-747.

Kaiser, K. (1990). From gene to phenotype in *Drosophila* and other organisms. *BioEssays* 12, 297-301.

Kaiser, K. and Goodwin, S. F. (1990). "Site-selected" transposon mutagenesis of *Drosophila. Proc. Nat. Acad. Sci. U. S. A.* 87, 1686-1690.

Kaiser, K. (1993). Second-generation enhancer traps. Current Biology 3, 560-562.

Kaiser, K., Sentry, J. and Finnegan, D. (1995). Eukaryotic transposable elements as tools to study gene structure and function. In Mobile *Gene*tic Elements (ed. Sherratt, D. J.), pp. 69-100. IRL Press.

Kalderon, D. and Rubin, G. M. (1988). Isolation and characterization of *Drosophila* cAMP-dependent protein kinase genes. *Genes Dev.* 2, 1539-1556.

Kane, P. M., Yamashiro, C. T., Wolczyk, D. R., Neff, N., Goebl, M. and Stevens, T. H.(1990). Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H<sup>+</sup>-adenosine triphosphatase. *Science* 250, 651-657.

Kane, P. M. (1992). Biogenesis of the yeast vacuolar I-I+-ATPase. J. Exp. Biol. 172, 93-103.

Kane, P. M. (1995). Disassembly and reassembly of the yeast vacuolar H<sup>+</sup>-ATPase in vivo. *J. Biol. Chem.* 270, 17025-17032.

Karcz, S. R., Herrmann, V. R. and Cowman, A. F. 1993. Cloning and characterization of a vacuolar ATPase A subunit homologue from *Plasmodium falciparum*. *Mol. Biochem*. *Parasitol.* 58:333-344.

Karess, R. E. and Rubin, G. M. (1984). Analysis of P transposable element function in *Drosophila*.

Kassis, J. A., Noll, E., Vansickle, E. P., Odenwald, W. F. and Perrimon, J. (1992). Altering the insertional specificity of a *Drosophila* transposable element. *Proc. Natl. Acad. Sci. USA* 89,1919-1923.

Kaufman, P. D. and Rio, D. C. (1991). Germline transformation of *Drosophila* melanogaster by purified P element transposase. *Nucleic Acids Res.*, 19, 6336.

Kidwell, M. G. (1986). P-M mutagenesis. In *Drosophila*, a practical approach. (ed. Roberts, D. B.) pp. 59-81. Oxford: IRL Press.

Kidwell, M. G. (1987). A survey of sucess rates using P element mutagenesis in Drosophila melanogaster. Drosophila Inf. Serv. 66, 81-86.

Klambt, C., L. Glazer, and Shilo, B. Z. 1992. *Breathless*, a *Drosophila* FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. *Genes Dev.* 6: 1668-1678.

Klein, U. and Zimmermann, B. (1991). The vacuolar-type ATPase from insect plasma membrane. Immunocytochemical localization in insect sensilla. *Cell and Tissue Res.* 266, 265-273.

Klein, U., Loffelmann, G. and Wieczorek, H. (1991). The midgut as a model system for insect K<sup>+</sup>-transporting epithelia: immunocytochemical localisation of a vacuolar type H<sup>+</sup> pump. *J. Exp. Biol.* 161, 61-75.

Klein, U. (1992). The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. *J. Exp. Biol.* 172, 345-354.

Koralnik, I. J., Mulloy, J. C., Andresson, T., Fullen, J. and Franchini, G. (1995). Mapping of the intermolecular association of the human T cell leukaemia/lymphotropic virus type I p12I and the vacuolar H+-Atpase 16 kDa subunit protein. *J. General Virology* 76, 1909-1916.

Kurkulos, M., Weinberg, J. M., Roy, D. and Mount, S. M. (1994). P-element-mediated in-vivo deletion analysis of white-apricot-deletions between direct repeats are strongly favored. *Genetics* 136, 1001-1011.

Küppers, J. and Bunss, I. (1996). A primary cation transport by a V-type ATPase of low specificity. *J. Exp. Biol.* 199, 1327-1334.

Laski, F. A., Rio, D. C. and Rubin, G. M. (1986). Tissue specificity of *Drosophila* P element transposition is regulated at the level of mRNA splicing. *Cell* 44, 7-19.

Lepier, A., Gräf, R., Azuma, M., Merzendorfer, H., Harvey, W. R. and Wieczorek, H. (1996). The periphral complex of the tobacco hornworm V-ATPase contains a novel 13-kDa subunit G. *J. Biol. Chem.* 271, 8502-8508.

Lindlsey, D. L. and Zimm, G. (1992). The genome of *Drosophila melanogaster*. Academic Press.

Littleton, J. T., Stern, M., Schulze., K., Perin, M. and Bellen, H. J. (1993). Mutational analysis of *Drosophila* synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. *Cell* 74, 1125-1134.

Liu, Q., Kane, P. M., Newman, P. R. and Forgae, M. (1996). Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). *J. Biol. Chem.* 271, 2018-2022.

Lockett, T. J., Lewy, D., Holmes, P., Medveczky, K. M. and Saint, R. (1992). The rough (ro<sup>+</sup>) gene as a dominant P-element marker in germ line transformation of *Drosophila melanogaster. Gene* 114, 187-193.

Loukeris, T. G., Arca, B., Livadaras, I., Dialektaki, G. and Savakis, C. (1995a). Introduction of the transposable element minos into the germ-line of *Drosophila melanogaster. Proc. Natl. Acad. Aci. U. S. A.* 92, 9485-9489.

Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S. and Savakis, C. (1995b). *Gene*transfer into the medfly, Ceratitis capitata, with a *Drosophila* hydei transposable element. *Sciences* 270, 2002-2005.

Lukacs, G., Rotsein, O. D. and Grinstein, S. (1994). An Overview of Intracellular pH regulation: Role of vacuolar H<sup>+</sup>-ATPases. In Organellar proton-ATPases (ed. Nelson, N.), pp 28-47. Austin, Texas: R. G. Landes Company.

Mackenzie, C., Stewart, B. and Kaiser, K. (1989). A device for creating and replicating ordered arrays of plaques or colonies. *Techniques-A journal of methods in cell and molecular biology* 1, 49-52.

Maddrell, S. H. P. and O'Donnell, M. J. (1992). Insect Malpighian tubules: V-ATPase action in ion and fluid transport. *J. Exp. Biol.* 172, 417-429.

Mandel, M., Moriyama, Y. and Hulmes, J. D. (1988). Cloning of cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-VATPases. *Proc. Natl. Acad. U.S.A.* 85, 5521-5524.

Marra, M., Ballio, A., Battirossi, P., Fogliano, V., Fullone, M. R., Slayman, C. L. and Aducci, P. (1995). The fungal H<sup>+</sup>-ATPase from *Neurospora crassa* reconstituted with fusicoccin receptors senses fusicoccin signal. *Proc. Natl. Acad. U.S.A.* 92, 1599-1603.

McCabe, B., Guo, Y., Sweeney, S., Goldstein, E., Kaiser, K. and O'Kane, C. (1996). Investigation of the function of synaptobrevin proteins in *Drosophila melanogaster*. A. Dros. Conf. Res. 37, 102.

McCarron, M., Duttaroy, A., Doughty, G. and Chovnick, A. (1994). *Drosophila* Pelement transposase induces male recombination additivelyand without a requirement for P-element excision or insertion. *Genetics* 136, 1013-1023.

Mead, D. A., Skorupa, E. S. and Kemper, B. (1985). Single-stranded "Blu" T7 protomoter plasmids: A versatile tandem promoter system for cloning and protein engeering. *Nucl. Acids. Res.* 13, 1103-1118.

Meagher, L., McLean, P. and Finbow, M. E. (1990). Sequence of a cDNA from *Drosophila* coding for the 16 kD proteolipid component of the vacuolar H+-ATPase. *Nucleic Acids Res.* 18, 6712.

Mears, A. J., ElShanti, H., Murray, J. C., McDermid, H. E. and Patil, S. R. (1995). Minute supernumerary ring chromosome 22 associated with cat eye syndrome: Further delineation of the critical region. *Amer. J. Human Genet.* 57, 667-673.

Mellman, I., Fuchs, R. and Helenius, A. (1986). Acidification of the endocytic and exocytic pathways. *Ann. Rev. Biochem.* 55, 663-700.

Merli, C., Bergstrom, D. E., Cygan, J. A. and Blackman, R. K. (1996). Promoter specificity midiates the independent regulation of neighboring genes. *Genes Devel.* t 10, 1260-1270.

Moffett, D. F. (1992). Driving forces and pathways of H<sup>+</sup> and K<sup>+</sup> transport in insect midgut goblet cells. *J. Exp. Biol.* 172, 403-416.

Nelson, N. and Taiz, L. (1989). The evolution of H+-ATPases. Trends In Biochemical Sciences 14, 113-116.

Nelson, H. and Nelson, N. (1989). The progenitor of ATP synthases was closely related to the current vacuolar H<sup>+</sup>-ATPase. *FEBS Letters* 247, 147-153.

Nelson, H. and Nelson, N. (1990). Disruption of genes encoding subunits of yeast vacuolar H<sup>+</sup>-ATPase causes conditional lethality. *Proc. Natl. Acad. U.S.A.* 87, 3503-3507.

Nelson, N. (1992a). The vacuolar H+-ATPase - one of the most fundamental ion pumps in nature. *J. exp. Biol.* 172, 19-27.

Nelson, N. (1992b). Evolution of organellar proton-ATPases. *Biochem. Biophys. Acta* 1100, 109-124.

Nelson, R. D., Guo, X.-L., Masood, K., Brown, D., Kalkbrenner, M. and Gluck, S. (1992). Selectively amplified expression of an isoform of the vacuolar H+-ATPase 56-kilo dalton subunit in renal intercalated cells. *Proc. Natl. Acad. U.S.A.* 89, 3541-3545.

Nelson, N. (1994). Molecular and cellular biology of F- and V- ATPases. In Organellar Proton-ATPases. (ed. Nelson, N.), pp. 1-27. Austin: R. G. Landes Company.

Nelson, H., Mandiyan, S. and Nelson, N. (1994). The Saccharomyces cerevisine VMA7 gene encodes a 14-kDa subunit of the vacuolar H(\*)-ATPase catalytic sector. J. Biol. Chem. 269, 24150-24155.

Nelson, H., Mandiyan, S. and Nelson, N. (1995). A bovine cDNA and a yeast gene (VMA8) encoding the subunit D of the vacuolar H-ATPase. *Proc. Natl. Acad. U.S.A.* 92, 497-501.

Nishihara, T., Akifusa, S., Koseki, T., Kato, S., Muro, M. and Hanada, N. (1995). Specific inhabitors of vacular type H-ATPases induce apoptotic cell death. *Biochemi.*. *Biophy. Res. Com.* 212 255-262.

Noumi, T., Beltrán, C., Nelson, H. and Nelson, N. (1991). Mutational analysis of yeast vacular H+-ATPase. *Proc. Natl. Acad. U.S.A.* 88, 1938-1942.

O'Connell, P. and Rosbash, M. (1984). Sequence, structure, and codon preference of the *Drosophila* ribosomal protein 49 gene. *Nucleic Acids Res.* 12, 5495-5513.

O'Donnell, M. J., Dow, J. A. T., Huesmann, G. R., Tublitz, N. J. and Maddrell, S. H. P. (1996). Separate control of anion and cation transport in Malpighian tubules of *Drosophila melanogaster. J. Exp. Biol.* 199, 1163-1175.

O'Hare, K. and Rubin, G. M. (1983). Structure of P transposable elements ans their sites of excision in the *Drosophila melanogaster* genome. *Cell* 34, 25-35.

O'Kane, C. J. and Gehring, W. J. (1987). Detection *in situ* of genomic regulatory elements in *Drosophila*. *Proc. Natl. Acad. U.S.A.* 84, 9123-9127.

Orr, W., White, T. C., Iu, B., Robert, L. and Singh, J. (1995). Characterisation of a low-temperature-induced cDNA from winter *Brassica napus* encoding the 70 kDa subunit of tonoplast ATPase. *Plant Mol. Biol.* 28, 943-948.

Pan, Y.-X., Xu, J., Strasser, J. E., Howell, M. and Dean, G. E. (1991). Structure and expression of subunit A from the bovine chromaffin cell. *FEBS Letters* 293, 89-92.

Paques, F., Bucheton, B. and Wegnez, W. (1996). Rearrangements involving repeated sequences within a P-element preferentially occur between units close to the transposon experiments. *Genetics* 142, 459-470.

Patton, J. S., Gomes, X. V. and Geyer, P. K. (1992). Position-independent germline transformation in *Drosophila* using a cuticle pigmentation gene as a selectable marker. *Nucleic Acids Res.* 20, 5859-

Pedersen, P. L. and Carafoli, E. (1987). Ion motive ATPases. II. Energy coupling and work output. *TIPS* 12, 186-189.

Pedersen, P. L. and Amzel, L. M. (1993). ATP synthases-structure, reaction center, mechanism, and regulation of one of nature's most unique machines. *J. Biol. Chem.* 268, 9937-9940.

Peng, S.-B. Crider, B. P., Zie, Z.-S. and Stone, D. K. (1994). Alternative mRNA splicing generates tissue-specific isoforms of 116- kDa polypeptide of vacuolar proton pump *J. Biol. Chem.* 269, 17262-17266.

Peng, S.-B. (1995). Nucleotide labelling and reconstitution of the recombinant 58-kDa subunit of the vacular proton-translocating ATPase. *J. Biol. Chem.* 279, 16926-16931.

Peng, S. B., Crider, B. P., Sue, J. T. Xie, X. S. and Stone, D.K. (1996). Identification of a 14-kDa subunit associated with the catalytic sector of clathrin-coated vesicle H+-ATPase. J. Biol. Chem. 271, .3324-3327.

Perin, M. S., Fried, V. A., Stone, D. K., Xie, X.-S. and Studhof, T. C. (1991). Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. *J. Biol. Chem.* 266, 3877-3881.

Puopolo, K., Kumamoto, C., Adachi, I. and Forgac, M. (1991). A single gene encodes the catalytic 'A' subunit of the bovine vacuolar H+-ATPase. *J. Biol. Chem.* 266, 24564-24572.

Puopolo, K., Kumamoto, C., Adachi, I., Magner, R. and Forgac, M. (1992). Differential expression of the 'B' subunit of the bovine vacuolar H+-ATPase in bovine tissues. J. Biol. Chem. 267, 3696-3706.

Ray, K. and Ganguly, R. (1994). Organisation and expression of the Drosophila melanogaster G protein gamma subunit gene. *FASEB J.* 8 A1399.

Rio, D. C., (1990). Molecular mechanisms regulating *Drosphila* P element transposition. *Annu. Rev. Genet.* 24, 543-578.

Rio, D. C. (1991). Regulation of *Drosophila* P-element transposition. *Trends Genet.* 7, 282-287.

Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K. and Engels, W. R. (1988). A stable genomic source of P element transposase in *Drosophila melanogaster. Genetics* 118, 461-470.

Rubin, G. M. and Spradling, A. C. (1982). *Genetic transformation of Drosophila* with transposable element vectors. *Science* 218, 348-353.

Rubin, G. M., Kidwell, M. G. and Bingham, P. M. (1982). The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. *Cell* 29, 987-994.

Rubin, G. M. (1988). *Drosophila melanogaster* as an experimental organism. *Science* 240, 1453-1459.

Rushforth, A. M., Saari, B. and Anderson, P. (1993). Site-selected insertion of the transposon Tc1 into a Caenorhabditis elegans myosin light chain gene. *Mol. Cell. Biol.* 13, 902.

Salz, H. K., Cline, T. W. and Schedl, P. (1987). Functional changes associated with structural alterations induced by mobilisation of a P element inserted in the Sex-lethal gene of *Drosophila. Genetics* 117, 221-231.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning: A laboratory manul. Cold Spring Harbor Laboratory Press.

Sander, I., Lottspeich, F., Appelhans, H., Kojro, E., Spangenberg, J., Weindel, C., Haase,
W. and Koepsell, H. (1992). Sequence analysis of the catalytic subunit of H\*-ATPase
from porcine renal brush-border membranes. *Biochem. Biophys. Acta* 1112, 129-141.

Sentry, J. W. and Kaiser, K. (1992). P element transposition and targeted manipulation of the *Drosophila* genome. *Trends Genet.* 8, 329-331.

Sentry, J. W., Yang, M. and Kaiser, K. (1993). Conditional cell abation in *Drosophila*. *Bioessays* 11, 491-493.

Sentry, J. W., Goodwin, S. F., Milligan, C. D., Duncanson, A., Yang, M. and Kaiser, K. (1994a). Reverse genetics of *Drosophila* brain structure and function. *Progress in Neurobiology* 42, 299-308.

Sentry, J. W. and Kaiser, K. (1994b). Application of inverse PCR to site-selected mutagenesis of *Drosophila*. *Nucleic Acids Res.* 22, 3429-3430.

Sentry, J. W. and Kaiser, K. (1995). Progress in *Drosophila* genome manipulation. *Transgenic Research* 4, 155-162.

Shih, C.-K., Wagner, R., Feinstein, S., Kanik-Ennulat, C. and Neff, N. (1988). A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with F0F1 ATP synthase and confers Calcium-sensitive growth. *Mol. Cell. Biol.* 8, 3094-3103.

Siebert, A., Lottspeich, F., Nelson, N. and Betz, H. (1994). Purification of the synaptic vesicle-binding protein physophilin. Identification as 39-kDa subunit of the vacuolar H<sup>+</sup>-ATPase. *J. Biol. Chem.* 269, 28329-28334.

Skoulakis, E. M. C., Kalderon, D. and Davis, R. L. (1993). Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. *Neuron* 11, 197-208.

Snaith, H. A., Armstrong, C. G., Guo, Y., Kaiser, K. and Cohen, P. T. W. (1996). Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles in *Drosophila* embryos, *J. Cell Sci.* (in press).

Spradling, A. and Rubin, G. M. (1982). Transposition of cloned P elements into *Drosophila* germ-line chromosomes. *Science* 218, 341-347.

Spradling, A. (1986). P-element mediated transformation of *Drosophila*. In *Drosophila*, a practical approach (ed. Robert, D. B.), pp 175-198. Oxford: IRL press.

Spradling, A. C., Stern, D. M., Kiss, I., Roote, J., Laverty, T. and Rubin, G. M. (1995). Gene disruptions using P transposable elements: An integral component of the *Drosophila* genome project. *Proc. Natl. Acad. U.S.A.* 92, 10824-10830.

Starke, T. and Gogarten, J. P. (1993). A conserved intron in the V-ATPase A subunit genes of plants and algae. *FEBS letters* 315, 252-258.

Stellar, H. and Pirrotta, V. (1985). A transposable P vector that confers selectable G418 resistance to *Drosophila* larvae. *EMBO J.* 4, 167-171.

Straus, D. and Ausubel, F. M. (1990). Genomic subtraction for cloning DNA corresponding to deletion mutations. *Proc. Natl. Acad. Sci. U.S.A*. 87, 1889-1893.

Sumner, J. P., Dow, J. A. T., Earley, F., Klein, U., Jäger, D. and Wieczorek, H. (1995). Regulation of plasma membrane H<sup>+</sup> V-ATPase activity by dissociation of peripheral subunits. *J. Biol. Chem.* 270, 5649-5653.

Supek, F., Supekova, L. and Nelson, N. (1994). Features of Vacular H+-ATPase revealed by yeast suppressor mutants. *J. Biol. Chem.* 269, 26479-26485.

Supekova, L., Supek, F. and Nelson, N. (1995). The *Saccharomyces cerevisiae* VMA10 is an intron -containing gene encoding a novel 13-kDa subunit of vacuolar H<sup>+</sup>-ATPase, *J. Biol. Chem.* 270, 13726-13732.

Supekova, L., Sbia, M., Supek, F., Ma, Y. and Nelson, N. (1996). A novel subunit of vacuolar H<sup>+</sup>-ATPase related to the b subunit of F-A'I'Pase. *J. Exp. Biol.* 199, 1147-1156.

Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. and O'Kane, C. J. (1995). Target expression of Tetanus Toxin light chain in *Drosophila* specifically eliminates synaptic transmission and causes behavioural defects. *Neuron* 14, 341-351.

Taiz, L., Nelson, H., Maggert, K., Morgan, L. and Yatabe, B. (1994). Functional analysis of conserved cystene residues in the catalytic subunit of the yeast vacuolar H+-ATPase. *Biochim. Biophy. Acta* 1194, 329-334.

Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K. and Kakinuma, Y. (1994). Sequencing and characterization of the ntp gene cluster for vacuolar- type Na(+)-translocating ATPase of *Enterococcus hirae. J. Biol. Chem.* 269, 11037-11044.

Tanida, L., Hasegawa, A., Iida, H., Ohya, Y. and Anraku, Y. (1995). Cooperation of calcineurin and vacuolar H<sub>4</sub>-ATPase in intracellular Ca<sup>2+</sup> homeostasis of yeast cells. *J. Biol. Chem.* 270, 10113-10119.

Theopold, U., Pintér, M., Daffre, S., Tryselius, Y., Friedrich, P., Nässel, D. R. and Hultmark, D. (1995). *CalpA*, a *Drosophila* calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. *Mol. Cell. Biol.* 15, 824-834.

Tower, J., Karpen, G. H., Craig, N. and Spradling, A. C. (1993). Preferential transposition of *Drosophila* P elements to nearby chromosomal sites. *Genetics* 133, 347-359.

Török, T., Tick, G., Alvarado, M. and Kiss, I. (1993). P-lacW insertional mutagenesis on the second chromosome of *Drosophila melanogaster*: Isolation of lethals with different overgrowth phenotypes. *Genetics* 135, 71-80.

Tsubota, S. and Schedl, P. (1986). Hybrid dysgenesis-induced revertants of insertions at the 5' end of the rudimentary gene in *Drosophila melanogaster*: Transposon-induced control mutations. *Genetics* 114, 165-182.

Umemoto, N., Yoshihisa, T., Hirata, R. and Anraku, Y. (1990). Roles of the VMA3 gene product, subunit c of the vacuolar membrane H+-ATPase on vacuolar acidification

and protein transport. A study with VMA3-disrupted mutants of *Saccharomyces cerevisiae*. J. Biol. Chem. 265, 18447-18453.

Umemoto, N., Ohya, Y. and Anrakyu, Y. (1991). VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H<sup>+</sup>-ATPase activity. *Biol. Chem.* 266, 24526-24532.

Ultsch, A., Schuster, C. M., Laube, B., Betz, H. and Schmitt, B. (1993). Glutamate receptors of *Drosophila melanogaster* - primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. *FEBS letters* 324, 171-177.

The state of the state of the

van Hille, B., Richener, H., Evans, D. B., Green, J. R. and Bilbe, G. (1993). Identification of 2 subunit A isoforms of the vacuolar H+-ATPase in human ostcoclastoma. *J. Biol. Chem.* 268, 7075-7080.

van Hille, B., Vanek, M., Richener, H., Green, J. R. and Bilbe, G. (1993). Cloning and tissue distribution of subunit C, D, and E Of the human. *Biochem. Biophys. Res. Commun.* 197, 15-21.

van Hille, B., Richener, H., Green, J. R. and Bilbe, G. (1995). The ubiquitous VA68 isoform of subunit A of the vacular H+-ATPase is highly expressed in human osteoclasts. *Biochem. Biophys. Res. Commun.* 214, 1108-1111.

Viereck, R., Kirsch, M., Low, R. and Rausch, T. (1996). Down-regulation of plant Vtype H<sup>+</sup>-ATPase genes after light-induced inhibition of growth. *FEBS letters* 384, 285-288.

Voelker, R. A., Greenleaf, A. L., Gyurkovics, H., Wisely, G. B., Huang, S. and Searles, L. L. (1984). Frequent imprecise excision among reversions of a P element-caused lethal mutations in *Drosophila. Genetics* 107, 279-294.

Weaver, D. T. (1995). What to do at an end: DNA double-strand-break repair. *TIG* 11, 388-391.

Wechser, M. A. and Bowman, B. J. (1995). Regulation of the expression of three housekeeping genes encoding subunits of the Neurospora crassa vacuolar ATPase. *Molecular and General Genetics* 249, 317-327.

Whittaker, P. A., Cambell, A. J. B., Southern, E, M. and Murray N. E. (1988). Enhanced recovery and restriction mapping of DNA fragments cloned in a new lambda vector. *Nucl. Acid. Res.* 16, 6725-6736.

Wieczorek, H., Weerth, S., Schindlebeck, M. and Klein, U. (1989). A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. *J. Biol. Chem.* 264, 11143-11148.

Wieczorek, H., Putzenlechner, M., Zeiske, W. and Klein, U. (1991). A vacular-type proton pump energizes K+/H+ anciport in an animal plasma membrane. *J. Biol. Chem.* 266, 15340-15347.

Wieczorek, H. (1992). The insect V-ATPase, a plasma-membrane proton pump energizing secondary active-transport - molecular analysis of electrogenic potassiumtransport in the tobacco hornworm midgut. J. Exp. Biol. 172, 335-343.

Wieczorek, H. and Harvey, W. R. (1995). Energization of animal plasma membrane by the proton -motive force. *Physiol. Zool.* 68, 15-23.

Wilkins, T. A. (1993). Vacuolar H+-ATPase 69-kiloDalton catalytic subunit cdna from developing cotton (gossypium-hirsutum) ovules. *Plant Physiology* 102, 679-680.

Wolfersberger, M. G. (1992). V-ATPase-energized epithelia and biological insect control. J. Exp. Biol. 172, 377-386.

Yang, M. Y., Armstrong, J. D., Vilinsky, I., Strausfeld, N. J. and Kaiser, K. (1995). Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. *Neuron*, 15, 45-54.

Yaver, D. S., Nelson, H., Nelson, N. and Klionsky, D. J. (1993). Vacuolar ATPase mutants accumulate precursor proteins in a pre-vacuolar compartment. *J. Biol. Chem.* 268, 10564-10572.

YI, Y. and Samuelson, J. (1994). Primary structure of the Entamoeba histolytica gene (Ehvma1) encoding the catalytic peptide of a putative vacuolar membrane protontransporting ATPase (V-ATPase). *Molecular and Biochemical Parasitology* 66, 165-169.

-š 200 V V. V. j and the second second

Zhang, J., Myers, M. and Forgac, M. (1992). Characterisation of the V0 domain of the coated vesicle (H<sup>+</sup>)-ATPase. *J. Biol. Chem.* 267, 9773-9778.

Zhang, P. and Spradling, A. C. (1993). Efficient and dispersed local P element transposition from *Drosophila* females. *Genetics* 133, 361-373.

Zhang, P. and Spradling, A. C. (1994). Insertional mutagenesis of *Drosophila* heterochromatin with single P elements. *Proc. Natl. Acad. U.S.A.* 91, 3539-3543.

Zhang, J., Vasilyeva, E., Feng, Y. and Forgae, M. (1995). Inhibition and labeling of the coated vesicale V-ATPase by 2-azido-[<sup>32</sup>P]ATP. *J. Biol. Chem.* 270, 15494-15500.

Ziegler, K., Hauska, G. and Nelson, N. (1995). Cyanidium-caldarium genes encoding subunit-A and subunit-B of V-ATPase. *Biochi. et Bioph. Acta-Bioenergetics*, 1230, 202-206.

Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. and Taiz, L. (1988). The cDNA sequences of the 69-kDa subunit of the carrot vacuolar H<sup>+</sup>-ATPase homology to the  $\beta$ -chain of F0F1-ATPases. *J. Biol. Chem.* 263, 9102-9112.

Zwaal, R. R., Broeks, A., Vanmeurs, J., Groehen, J. T. M. and Plasterk, R. H. A. (1993). Target-selected gene inactivation in *Caenorhabditis elegans* by using a frozen transposon insertion mutant bank. *Proc. Natl. Acad. U.S.A.* 90, 7431-7435.