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AA

ATP

ATPase

BCIP, X-phosphate

bp
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D EPC
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DNase I

dATP

dC T P

dG TP

dN T P

dTTP

dU TP

D T T

EDTA

EtBr

h

HEPES

IPTG

kb

kDa

amino acid(s) 

adenosine triphosphate 

ATP hydrolysing enzyme 
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base pair(s)

bovine serum albumin 

complementary DNA 

diethyl pyrocarbonate 

digoxigenin

2' deoxyribonucleic acid 

deoxyribonuclease I 

2' deoxyadenosine triphosphate 

2' deoxycytidine triphosphate 

2' deoxyguanosine triphosphate 

2 ’ deoxy (nucleotide) triphosphate 

2' deoxy thymidine triphosphate 

2' deoxyuridine triphosphate 

dithiothreitol

ethylene diamine tetra-acetic acid (disodium salt)

ethidium bromide

gram

centrifugal force equal to gravitational acceleration 

hour

4-(2-hydroxyethyl) piperazine-1-ethanesulfbnic acid
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kilobases

kiloDaltons
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Klenow Klenow fragment of E, coli polymerase I

1 litres

M molar

m g milligram

mM milliMolar

min minutes

ml millilitres

MOPS 3-morpholinopropanesulfonic acid

m RNA messager RNA

ng nanograms

nM nanmolar

nm nanometres

NTB 4-nitro blue etrazolium chloride

C D optical density

ORF open reading frame

PGR Polymerase chain reaction

PEG polyethylene glycol

pH acidity [-loglQ(Molar concentration of ions)]

polyA+ poly adenosine tailed RNA molecule

Ppi pyrophosphate

RNA ribonucleic acid

RNase A ribonuclease A

RP49 ribosomal protein 49 {Drosophild)

rpm revolutions per minute

SDS sodium dodecyl sulphate

Tris Tris (hydroxymethyl) amino methane

tRNA transfer RNA

U TR untranslated region

U units
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V-ATPase
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vha26
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Vol
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Pg

3'
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Summary

Over the last few years, thousands of lines carrying lethal P-element insertions have 

been produced by the Drosophila community, which must presumably have inactivated 

a large number of essential genes. This thesis describes a fast and efficient approach to 

correlating cloned genes with mutant fly lines cariying P[/4cW] insertions in the second 

chromosome (Torok et a l, 1993). We have made use of the fact that VilacW] contains 

a plasmid replicon to establish a collection of rescued plasmids containing genomic 

DNA flanking sites of transposon insertion. Plasmids representing a total of 1836 lines 

were individually rescued, and pooled in batches of 10 and 100, Pools of 100 plasmids 

were screened by hybridisation with cDNAs corresponding to cloned second 

chromosome loci. Hybridising pools were then narrowed down to single plasmids by a 

process of subdivision and rehybridisation, and corresponding m utant lines were 

obtained. Initial screening with 40 cDNAs has detected positive hybridisation for 

more than 10 genes. Mutations for 7 genes have been confirmed, of which insertions in 

genes encoding the A and c subunits of Drosophila V-ATPase are included.

V-ATPase is a proton pump made of multiple subunits. The genes and cDNAs for A,

E, and F subunits of V-ATPase have been cloned from Drosophila melanogaster via 

homology with the corresponding Manduca sexta genes. vha68-l and vha68-2, genes 

encoding two isoforms of V-ATPase A subunit, have also been isolated and sequenced.

Both isoforms are composed of a polypeptide of 614 amino acids with a predicted 

molecular mass of 68.4 kDa and 68.3 kDa respectively. The vha68-2  gene is 

punctuated by four introns. The chromosomal location of both genes is at 34A on the 

second chromosome. Northern analysis of total RNA reveals that both isoforms are 

expressed in a similar pattern. They are ubiquitously expressed in head, thorax and 

abdomen of the adult fly. Developmental Northern blots of embryo, larvae, pupae and 

adult total RNA show general expression, but at a much reduced level during 

metamorphosis. A fly line (25/8) carrying a single 2[lacW\ insertion in vha68~2 was
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isolated by screening pools of rescued plasmids. The transposon is inserted into the 

first intron, in front of the translation start codon of vha68-2. The enhancer detector 

reporter gene carried by the P-element (|3-galactosidase) was generally activated, but 

particularly strongly in the gut and Malpighian tubes of both larvae and adults. The 

insertion largely reduces the transcript o f the vha68-2  isoform which leads to a 

homozygous lethal phenotype at first instar larvae. The homozygous lethal phenotype 

can be reverted by 'jumping out' the insertion. Imprecise excision or internal deletion 

of the P-element created a set of novel hypomorphic or null alleles, with phenotypes 

which range from the first instar larvae lethal, as in the original P-element insertion 

line, to sub-lethals of different phenotype.

A gene and a cDNA encoding the E subunit of V-ATPase have been characterised. 

The gene contains three small introns. Its deduced translation product has 226 amino 

acids and a molecular weight of 26.1 kDa, vha26  is present as a single copy at 

cytological position 83B1-4 on the third chromosome and gives rise to an mRNA 

species of 2.3 kb, with an expression pattern similar to that of vha68. A fly line carrying 

a single lethal V{lacW\ insertion within vha26gene has been identified.

The deduced translation product of the cDNA {vhal4) for the F subunit is a 124 

amino acid polypeptide with a molecular mass of 14 kDa. vh a l4  is present as a single 

copy at cytological position 52B on the second chromosome, and gives rise to an 

mRNA species of 0,65 kb. Unlike vha68  and vha26, the v h a l4  transcript shows 

relatively little variation during development and between adult head, thorax and 

abdomen, suggesting that the F subunit is a relatively ubiquitous component of the 

V-ATPase.
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Chapter 1

Introduction

1.1 Drosophila melanogaster

The fruit fly Drosophila melanogaster has a lot to offer as an experimental organism. It has 

a distinguished history as a subject of classical genetic analysis. Many of the major 

principles of genetics, principles that we tend to take for granted, were established by 

work with D. melanogaster (Ashburner, 1989b). A large number of easily recognisable 

genetic markers, a generation time of only 10 days, simple culture methods and a large 

body of literature and technical information are readily available to the investigator. 

Additionally, establishing the chromosomal location o f a newly-cloned gene is 

particularly straightford, as the salivary gland polytene chromosomes are large and easy to 

map. This means that a newly discovered gene can be reconciled rapidly with the sum of 

existing knowledge of the Drosophila genome (Dow, 1994; Dow et al.^ 1996). 

Transposable elements, and in particular the enhancer trap P-element, have played a 

pivotal role as mutagens, as molecular tags, and as germ-line transformation vectors 

(Rubin, 1988; Kaiser, 1995; Sentry and Kaiser, 1995). D. menalogaster is now widely 

used not only in classical and molecular genetics but also in research on more complex 

phenomena, such as those of developmental biology and neurobiology.

My PhD project will use Drosophila to address the issues of (i) systematic site-selected P- 

element mutagenesis of second chromosome genes and (Ü) the molecular genetic analysis 

of genes encoding V-ATPase subunits.

. .1 ' ’



1 .2  T h e  P -e le m e n t  o f  Drosophila

A large number of transposable elements are known to exist in Drosophila melanogaster y 

of which the P-element family is the most heavily exploited. P-element technology has 

revolutionised Drosophila molecular genetics, not only in terms of providing important 

insights into the mechanism of eukaryotic transposition, but also use as important tools 

for gene transfer, insertional mutagenesis, enhancer trapping and gene cloning (See 

Kaiser, 1990; Kaiser, 1993 and Kaiser et aL, 1995 for recent reviews).

1,2,1 P-element Biology

P-elements are a family of transposable elements found in Drosophila melanogaster. They 

have been shown to be the causal agents of P-M hybrid dysgenesis, a syndrome whose 

traits include high rates of sterility, mutation, and chromosomal rearrangements (Engels, 

1987; Engels, 1989; Rio, 1990). P-element transposition is genetically regulated, 

occurring at very high frequency only in the progeny from a cross between males of a P 

strain' and females of an 'M strain'. The distinguishing characteristics of P strains are that 

their eggs have "P cytotype", a condition that results in repression of P-element 

transposition, and that they carry autonomous 2.9 kb full-length P-elements which 

encode transposase. Transposition in a P- strain is repressed by a product of the full- 

length P-element itself, thus the P-element is normally quiescent but becomes highly 

mobile in the progeny of females that lacks repressor (Black et aLy 1987; Engles et al. y 

1990). M strains, by contrast, lack autonomous P-elements, and lay eggs that are 

permissive for P-element transposition (M cytotype). No dysgenic traits are observed in 

the progeny of the reciprocal M male by P female cross or in the progeny from P x P or 

M X M crosses. Moreover, as transposition is restricted to cells o f the germline, 

phenotypic results are not observed until further generations.



The first P-element to be cloned was a defective element, identified by virtue of having 

disrupted the white locus. The defective element was then used as a molecular probe to 

clone a complete element which was further confirmed for its transpositional activity 

when injected into embryos of a M  strain - it transposed from a plasmid into the 

Drosophila genome (Spradling et aL, 1982). Molecular analysis indicated that the P- 

elements present in P- strains could be divided into two classes; a class of full-length 

2.9kb elements and a heterogeneous class of internally deleted P-elements (Figure 1.1). P- 

element sequences required in cis for transposition are contained within 138 bp at the 5' 

end and 150 bp at the 3' end. These include 31 bp terminal inverted repeats. Full-length 

P-elements Include four long open reading frames encoding an 87 kDa transposase, the 

activity of which is restricted to the germline due to differential splicing because the third 

intron is not removed in somatic cells. (Rio, 1991; Handler et aL, 1993). An element 

with the third intron removed (A2,3) is able to transpose in somatic cells but lacks the 

capacity to establish a P- cytotype (Laski, et aL, 1986). Internally deleted elements of 

various lengths can occur in both P- strain and M strains as well. Though unable to 

produce active transposase, such elements can nonetheless be mobilised in the presence of 

full-length elements.

W hen P-elements transpose they excise from the donor site and leave behind a double­

stranded break, repair of which appears to require a template (Figure 1.2; Engels et aL, 

1990; reviewed by Sentry and Kaiser, 1992; Weaver, 1995). Excision of the P-element 

can either be 'precise' or 'imprecise'. The phenomenon of precise and imprecise excision 

could be explained by a double-stranded break repair model (Engels et al, 1990; Gloor et 

aL, 1991; Daniels and Chovnick, 1993). Sister chromatids or homologous chromosomes 

of the broken molecule are used as templates for repair. If  the template contains the P- 

element, double stranded repair will mostly produce a chromosome identical in 

appearance to the donor chromosome prior to transposition. In such a case, P-element 

sequences seem to have been retained at the donor site. In a few cases, however, repair 

can be interrupted, resulting in the generation of nonautonomous P-element deletion

Ml
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Figure 1.1 Structure of P-elements. The full length 2.9 kb P-element has four long ORFs 

separated by introns. The P-element is bounded by 31 bp inverted repeats (large 

arrowheads). Insertion of a P-element causes an 8 bp target site duplication (Small 

arrowheads). Germline transcripts, spliced as shown, provide functional transposase. 

Somatic transcripts, which retain the intron between exon 2 and 3, encode a prematurely 

truncated and thus non-functional transposase. Internally deleted P-elements do not 

produce functional transposase and thus non-autonomous, but they retain cw-acting 

determinants that allow their mobilisation in the presence of a transposase source. A2,3 

elements, from which the third intron has been removed by in vitro manipulation and 

produce transposase in both germline and somatic tissues (Diagram kindly provided by 

Dr. Kim Kaiser).
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Figure 1.2 Model for template-dependent gap repair following P-element excision. 

Excision of a P-element (open bars) induces a double-strand break that can be subject to 

widening by exonucleases. Free 3' ends invade tbe template duplex, which serves as a 

substrate for DNA synthesis. In the left panel, the template is a second copy of the P- 

induced allele, most commonly provided by a sister chromatid. The result is restoration 

of a P-element at the locus. Less frequently, the template can be a wild-type allele present 

on a homologous chromosome (centre panel). This will give the impression of precise 

excision. Interruption of the repair process, in this case where the sister chromatid is the 

template, followed by pairing of partially extended 3' ends, may give the impression of an 

'imprecise excision' (right panel). This can take the form of internal deletion o f the P- 

element, or more extremely a deletion that extends into flanking DNA, usually when the 

template is a wild-type allele present on a homologous chromosome. (Diagram kindly 

provided by Dr. Kim Kaiser).



derivatives. A different result is obtained if the template does not contain the P-element 

(i.e. is a wild-type allele) at the site corresponding to the P-element donor site. In this 

case, double stranded break repair restores the donor site to its wild-type pre-insertion 

sequence; thus appearing as if the P-element had excised precisely from the donor site. 

Loss of sequences flanking a P-element, together with some or all of the element itself, 

would result from incomplete repair of a gap that had been widened by exonuclease 

activity. The involvement of double-strand gap repair was also suggested by the fact that 

reversion frequencies for heterozygous P-element insertion mutants are 100 times higher 

than those for homozygous mutants (Engels et ai, 1990).

1.2,2 Germ-line transformation

Introduction of cloned and manipulated genes into the germline DNA is a valuable tool 

for analysing many problems in Drosophila molecular genetics. The P-element transposon 

was first engineered as a transformation vector and used for the generation of transgenic 

flies by Rubin and Spradling in 1982. A plasmid construct bearing a nonautonomous P- 

element, into which the gene of interest had been inserted, was injected into embryos 

undergoing the transition between syncitiai and cellular blastoderm (Figure 1.3). P- 

element DNA injected into the pole region can become internalised during 

cellularisation, and can transpose to the genome. Transposition is not frequent on a per 

molecular basis, but nonetheless provides acceptable transformation efficiencies. Newly 

integrated elements in the germ cells will be inherited by the progeny of individuals that 

survive the injection.

An autonomous P-element provides its own transposase. P-elements engineered as vectors 

dispense with this ability, but retain sequences required in cis for transposition. In this 

respect they resemble the defective elements (Kaiser et at,, 1995). It is therefore necessary 

to provide transposase from another source. Transpose can be supplied in a number of 

ways; co-injection o f an element that produces transposase but that cannot itself
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Figure 1.3 Germ-line transformation. A plasmid construct bearing a nonautonomous P- 

element, into which the gene of interest has been inserted, is injected into young M 

cytotype embryos prior to the cellularisation of the germline. P-element DNA injected 

into the embryo can become internalised during cellularisation, and can transpose to the 

genome. Transformed individuals can then be recovered in the surviving progeny; usually 

the transposon of interest carries a phenotypic marker to allow identification of 

transformations. (Diagram kindly provided by Dr. Kim Kaiser).



transpose - e.g. a wings-ciipped element (Karess et al., 1984); co-injection of purified 

transposase (Kaufman et at., 1991); injection of the a construct into embryos that express 

transposase endogenously, such as the carrying the A2,3] (99B) element which

generates high levels of transposase activity without establishing a P cytotype. Generation 

of a line with a stable insertion of the construct requires selection against A2,3 in a 

subsequent generation. A dominant marker on the P[ry+A2,3] (99B) chromosome makes 

it possible to select stable transformed progeny that have lost the transpose source by 

segregation. Transformed individuals can then be recovered in the surviving progeny, and 

usually the transposon of interest carries a phenotypic marker to allow identification of 

transformants. Markers that rescue a visible phenotypic defect, such as loss of eye colour 

(rosy, white, vermilion), loss of body pigmentation (yellow), or abnormal eye 

morphology (rough) are easily scored (Bingham et at., 1989; Ashburner, 1989b; Frideil et 

at., 1991; Patton et aL, 1992; Lockett et a i, 1992). Alternatively, adh and neomycin- 

resistance genes confer the ability to survive on selective media (Goldberg et aL, 1983; 

Steller et aL, 1985). The frequency with which transformants are recovered appears 

inversely related to transposon length (Spradling, 1986). Nonetheless, transformation 

with cosmid sized pieces greater than 40 kb can achieved (Haenlin et aL, 1985).

There can be pronounced position effects on the expression of genes contained within a 

P-element transformation construct. It is advisable to obtain lines containing a number of 

independent insertions. These can be generated either as primary transformants, or 

via remobilisation of a construct by a cross that provides A2,3. P-element transposition is 

non-random with respect to insertion site. Moreover, sequences contained within a P- 

element construct can have a pronounced effect on insertion specificity (Kassis et aL, 

1992). Markers in the P-element can themselves be sensitive to position effects. Levels of 

marker expression may be a useful guide to whether a transgene will be expressed at a 

reasonable level (Kaiser et at., 1995).



Other transposable elements, such as hobo, minos, have been successfully transferred into 

germ-line o f Drosophila (Blackman et aL, 1989; Loukeris et aL, 1995a). And a 

transposable element in Drosophila hydi has been transferred into medfly (Loukeris et aL, 

1995b).

Germ-line transformation experiments have had two major impact on Drosophila 

molecular genetics: firstly, P-element vectors can be used to transform cloned genes to 

rescue a mutant phenotype to prove that a DNA fragment carries the corresponding 

gene; secondly, genes manipulated in vitro can be reintroduced into the animal and its 

biological consequences assayed in vivo.

1.2.3 Remobiiisation of P-elements

Three events (local jumping, precise and imprecise excision) would happen when the P- 

element was supplied with a transposase:

Local jumping

Recent evidence indicates that mobilisation of P-elements in the female germline leads to 

a high frequency of insertion within a hundred kb or so of the donor site (Tower et aL, 

1993; Zhang et aL, 1993). P-element transposition is not always accompanied by loss of 

the donor element (Gollc, 1994; Johnsonschlitz et aL, 1993). It may thus not be easy to 

score a local jump based on the marker that the transposon contains. Site-selected 

mutagenesis by PGR may be the most efficient approach (Kaiser et aL, 1990; Littleton et 

aL, 1993). In case of more than one P-element, segregation might separate the insertion 

of interest from others (Kaiser et aL, 1995).
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Figure 1.4 Enhancer-trapping. (A) A first generation enhancer-trap element inserted 

within a Drosophila gene. The pattern and timing of expression of the reporter, lacZ, is 

dependent upon the specific genomic context in which it is integrated, white'^ is a marker 

that confers red eye colour in a white' genetic background, and thus allows files 

containing new insertions to be recognised. The ampicillin resistance determinant {amp^ 

and E. coli origin of replication {Ort) facilitate plasmid rescue of flanking sequences. (B) 

A GAL4 enhancer trap element. The pattern and timing of GAL4 expression is similarly 

context dependent, and can be used to drive expression of a secondary reporter gene 

linked to the GAL4-responsive promoter, UASg (Diagram kindly provided by Dr. Kim 

Kaiser).
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Precise and imprecise excision

Reversion of a P-induced. mutation by precise loss of the transposon may be the only 

unambiguous means of demonstrating that a phenotypic change is indeed the 

consequence of a lesion in a tagged or targeted gene (Kaiser et aL, 1995). Such losses can 

be selected following remobilisation of the P-element, preferably from a background in 

which it is the only P-element remaining. Remobilisation can also result in imprecise 

excision, leading to the generation of a range of new alleles of varying severity (Voelker et 

aL, 1984; Tsubota et aL, 1986; O 'Hare et aL, 1987; Salz et aL, 1987). Once a P-element 

lies close to rather than within genes of the interest, imprecise excision may be a necessary 

step in further analysis ( Kaiser, 1990).

1.2.4 Enhancer-trap element

An enhancer-trap element is a modified P-element, close to one end of which lies a 

'reporter' gene (Figure 1.4). Due to the lack of a transcriptional enhancer, the reporter 

has a negligible level of intrinsic expression. In order for it to be expressed at a significant 

level, the transposon must insert close to an endogenous Drosophila enhancer. Reporter 

activity in a line with only one insertion thus reflects the temporal and spatial expression 

characteristics of a flanking gene (O'Kane and Gehring, 1987; Dorn et aL, 1993).

First generation enhancer-trap elements contain the reporter gene lacZ, encoding the 

enzyme j3-galactosidase. The presence of p-galactosidase activity in a tissue can be 

detected simply by its conversion of the chromogenic substrate X-gal. In addition to the 

reporter gene, enhancer trap elements carrying a marker gene such as white enables flies 

with insertions to be recognised, and most include sequences that allow plasmid rescue of 

the flanking DNA.

I I
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P[/æcW] is a widely used enhancer-trap element of the first generation. It is 10.6 kb long 

which carries the laclL, beta-lactamase and mini white genes (Bier et aL, 1989). The LacZ 

gene permits detection of gene expression pattern by staining with X-gal. The mini-white 

gene permits rapid scoring of flies heterozygous or homozygous for a V{lacW\ insertion. 

V[lacW\ contains a bacterial origin of replication and the beta-lactamase gene coding for 

ampicillin resistance at the 3' end - this feature permits easy cloning of DNA flanking the 

insertion site (Cooley 6"̂ 1988; Hamilton et al, 1991; Guo et aL, 1996c).

One potential disadvantage of the first generation enhancer trap elements is that they 

express p-galactosidase fused to the N-terminal nuclear localisation signal o f the P- 

element transposase (Bier et aL, 1989). Nuclear staining has its uses but precludes 

visualisation of cell architecture, a particular problem in the study of cells with long 

processes, such as neurons (Kaiser etaL, 1995; Yang et aL, 1995).

A second generation enhancer-trap element P[GAL4] has now been developed (Fisher et 

aL, 1988). Instead of |3-galactosidase the reporter of P[GAL4] is a yeast transcription 

factor that is functional in Drosophila, and that can be used to direct expression of other 

transgenes placed under the control of a GAL4-dependent promoter (UASg). A cross 

between a fly with a P[GAL4] insertion and a fly containing UASG-lacZ, for example, 

causes P-galactosidase to be expressed in a pattern that reflects GAL4 activity. Unlike the 7

nuclear localisation signal in the first generation enhancer trap, GAL4 can nicely detect 

the signals in whole cells, including the long processes in neurons (Yang et aL, 1996). A 

another particularly attractive feature of this system is that any UASG-transgene 

construct can be used in conjunction with any P[GAL4] line. (Sentry et aL, 1993; Sentry 

etaL, 1994a; Sentry e taL, 1994b; Sweeney 1995).

'
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Figure 1.5 P-element mutagenesis. P strain males, carrying autonomous and non­

autonomous P-elements, are mated with M strain females. The fertilised eggs are o f M 

cytotype, allowing P-element transposition to occur in the developing germline. As a 

result, each germline cell contains a new configuration o f P-elements. Phenotypic 

consequences are observed in subsequent generations. (Diagram kindly provided by Dr. 

Kim Kaiser).

13



Birm-2

FO

F1

F2

c
Q l l  1 X III 3  )C

X

CXP ftrrrrrp

Tnansposaæ souiœ

L ... . J  LkM,W,M,M, A ................)  k , .......U,m J

Wild type

mmm cnxrz)

-10  new inserts per 
hapldd genome

Figure 1.6 A controlled P-element mutagenesis strategy. B irm -l, a strain with 17 

internally deleted P-elements on each of its second chromosomes, mated with a strain 

containing the A2,3 element. The P-elements are mobilised hy the A2,3 transposase in 

germline cells of Fi males. Each of their sperm has a different spectrum of new insertions. 

Selection against the transposase source in the F] generation ensures that new insertions 

remain stable (Diagram kindly provided by Dr. Kim Kaiser).
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P-elements are particularly useful as mutagens because o f their high transposition 

frequency and. the availability of strains without P-elements. The latter property allows 

backcrossing to eliminate all P-elements from a line other than the one in the gene of 

interest. A typical protocol would be as follows: P strain males and M strain females are 

mated, leading to the induction of P-element transpositions in the germline of their 

progeny. These progeny are bred and their offspring are screened or selected for 

mutations in the gene of interest (Kidwell, 1987; Figure 1.5 ).

The most efficient general mutagenesis strategy (Figure 1.6) involves crossing 

Birmingham 2, a strain with 17 internally deleted P-elements on each of its second 

chromosome (Engels et a l, 1987), with a strain in which A2,3 has become irreversibly 

inserted near to the dom inant eye phenotype locus Dr (Robertson et a l, 1988); an 

immobile source of transposase linked to a dominant marker simplifies selection for loss 

of transposase in subsequent generations. Unlike crosses involving wild-type strains, the 

direction of the above cross is irrelevant. Eggs laid by A2,3 females have M cytotype. One 

disadvantage of using A2,3 is transposase activity in the soma. This reduces the viability

of dysgenic individuals. The problem can be minimised by performing the cross at 16°C.

The generation of strains containing only a single marked P-element has many

advantages as a method of mutagenesis (Zhang and Spradling, 1994). Phenotypic and

molecular analyses of new mutations are greatly simplified. The mutant gene can be

mapped, cloned and reverted. New alleles could be generated by imprecise excision of the

P-element. A drawback with marked elements is their size; they are invariably much

larger than unmarked elements, and so transpose at lower frequencies. In addition, the

one or few copies of the marked P-element per genome make the target-mutagenesis less
.efficient. Nonetheless, large collections of single P-element insertions, many plasmid- 

rescuable, are being assembled through the collective efforts of the international



Drosophila community (e.g. Cooley et al., 1988; Torok et al., 1993; P. Deak, personal 

communication). It is thus increasingly likely that a colleague or stock centre will hold a 

line with a marked P-element in the region of one's target gene. Site-selected 

mutagenesis, either by PGR or by plasmid rescue, provides a means of screening such 

collections en masse. In situ hybridisation to polytene chromosome can be used to 

confirm that a P-element indeed lies in the region to which a mutant maps. Sequencing 

the rescued plasmids would reveal the exact position of the P-element insertion.

1.2.6 Site-selected mutagenesis

Although traditional genetics relies on the cloning and characterisation of a pertinent 

gene after a recognition of a mutant phenotype, a large number of novel genes have been 

cloned by virtue of their DNA sequence homology to a already known genes or on the 

basis of an interesting expression pattern. Only rarely, however, has such a gene been 

found to correspond to a pre-existing Drosophila mutation. It is therefore desirable for a 

reverse genetics approach to find a corresponding mutant from the cloned gene. One 

such approach is site-selected mutagenesis, a means of identifying Drosophila lines with P- 

element transposons inserted within or near to target genes by either PGR ( Ballinger et al 

1989; Kaiser et al, 1990) or plasmid rescue (Hamilton etaL, 1991; Hamilton, 1994; 

Guo et a l, 1996c)

PGR-based screen for P-element insertion events

The PGR method amplifies a specific region of the target gene lying between a gene 

specific primer and a newly inserted transposon (defined by a transposon-specific primer) 

(Figure 1.7). Insertions are detected initially within a population of flies, and are then 

followed as specific amplification products while the population is subdivided. Detection 

at the molecular rather than the phenotypic level facilitates fast and efficient screening 

and can be performed on heterozygous individuals (Ballinger et al 1989; Kaiser et al, 

1990; Banga et al., 1992). A similar approach has been adapted for screening natural

16
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Figure 1.7 Site-selected mutagenesis. Juxtaposition of a P-element and a target gene 

uniquely provides a template for amplification between a gene-specific primer (GSP) and 

a transposon-specific primer based on the P-element 31 bp inverted repeat. Open boxes 

represent exons of a hypothetical Drosophila gene (Diagram kindly provided by Dr. Kim 

Kaiser).
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Figure 1.8 Plasmid rescue. DNA is isolated from a line with a single engineered P- 

element (here an enhancer-trap element) containing an E. coli origin of replication {ori) 

and a drug-resistance determinant {amp^. The DNA is cleaved with an appropriate 

restriction enzyme, ligated under conditions that favour intra-molecular ligation, and 

used to transform E. coli. Plasmids recovered from ampicillin-resistant colonies contain 

Drosophila DNA from adjacent to the site of P-element insertion (Diagram kindly 

provided by Dr. Kim Kaiser).
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1.3 V-ATPase

1.3.1 Proton pumps

Proton, pumps (H+-ATPases) function in biological energy conversion in every known 

living cells and they fall into three types. One belongs to the family of P-ATPases which 

is integral membrane proteins and operates with a phospho-enzyme intermediate (Nelson 

1992a). Na+/K+-ATPases and gastric H+-ATPases are notable members of the P-ATPase 

family. The function of this proton pump is primarily in the plasma membrane o f plant 

and fungal cells and in specialised mammalian cells such as partietal cells in the stomach.
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populations of D. melanogaster to obtain P-element insertions in or near the target gene 

(Clark et al., 1994).

Site- selected mutagenesis via Plasmid rescue

P-elements engineered to contain a plasmid origin of replication and a drug-resistance 

determinant allow one-step recovery of Drosophila genomic DNA flanking the site of 

insertion (Figure 1.8). This procedure is known as plasmid rescue (Pirrotta et al., 1986; 

Steller et al., 1986). Genomic DNA from the flies with the engineered P-element such as

V{lacW\ and P[GAL4], is digested with an appropriate enzyme that cuts the polylinker in 

the P-element and somewhere in the flanking DNA. This enzyme is subsequently 

inactivated and the fragments are cloned as plasmids allowing them to be transformed 

into E. coli. Only those E. coli containing the plasmids can survive in the medium with 

antibiotics. Such rescued plasmids can also be used for a form of site-selected mutagenesis 

(Hamilton et a l, 1991; Guo et al., 1996c). A pool of plasmids rescued from a population 

o f flies with different insertion sites contains sequences representative of every flanking 

region. Hybridisation between the pool and a specific cDNA/genomic DNA clone is 

diagnostic of an insertion in or near the gene of interest.



The other families of F-and V-ATPases operate without an apparent phospho-enzyme 

intermediate (Pedersen etaL , 1987; Nelson, H. et a i, 1989; Nelson et al., 1992a; 

Bowman et a i, 1993). F- and V-ATPases are more universal proton pumps and at least 

one of them is present in every living cell (Nelson, 1992a).

F-ATPase and V-ATPase share a common structure and mechanism of action and have a 

common evolutionary ancestry. F-ATPases function in eubacteria, chloropiasts and 

mitochondria, and V-ATPase is present in archaebacteria and the vacuolar system of 

eukaryotic cells. Eukaryotic F-ATPases are confined to the semiautonomous organelles, 

chloropiasts and mitochondria that contain their own genes encoding some of the F- 

ATPase subunits. F-ATPase is also vital for every known eubacterium acting in 

photosynthetic or respiratory ATP formation and/or in generating proton-motive-force 

(pmf) by the reaction of ATP dependent proton pumping. In contrast, V-ATPases are 

composed only of nuclear gene products and are present in organelles of the vacuolar 

system and in the plasma membrane of specialised cells (Nelson, 1992a).

One of the most notable distinctions between F- and V-ATPases is in their function in 

ATP formation. While the primary function of F-ATPases in eukaryotic cells is to form 

ATP at the expense of pm f generated by electron transport chains, the main function of 

V-ATPases is to generate a pm f at the expense of ATP and to cause limited acidification 

of the internal space of several organelles of the vacuolar system. The pm f generated by 

V-ATPases in organelles is utilised as a driving force for numerous secondary uptake 

processes. Several metabolic processes that take place in the internal membrane network 

of eukaryotic cells may be dependent or influenced by the function of V-ATPase (Nelson 

1994).

2 0



1 .3 .2  S tru ctu re  o f  V -A T P a se

V-ATPases are m ulti-subunit protein complexes built from distinct catalytic and 

membrane sectors (Figure 1.9). The catalytic sector (Vl) contains six different 

polypeptide donated as A, B, C, D, E and F (Nelson, 1992a; Nelson, 1994; Nelson et al., 

1994; Graf etaL, 1994a; Graham 1994b; Nelson / /̂., 1995; Guo etaL, 1996b). 

The stoichiometry of these subunits excluding F was determined to be 3:3:1:1:1, 

respectively (Aral et al., 1988; Supek et al., 1994). The function of the catalytic sector is 

to provide the ATP binding site and to catalyse the ATP formation and/or ATPase 

activities of the enzymes. The main function of the membrane sectors is to conduct 

protons across the membrane. A proteolipid (subunit c) is confirmed to present in the 

membrane sector of all the V-ATPase. A stoichiometry of six proteolipids per enzyme has 

been reported for V-ATPases from clathrin-coated vesicles and plant vacuoles (Aral et al., 

1988; Jones etaL, 1995).

It was only since 1988 that cDNAs and genes encoding subunits o f V-ATPases were 

cloned and sequenced (Bowman et al, 1988; Zimniak et al., 1988; Hirsch et al., 1988; 

Mandel et al., 1988). The sequences revealed valuable information on the structure, 

function and evolution of the various subunits as well as the evolution of F- and V- 

ATPases (Nelson, N. et al., 1989; Nelson 1994). It became apparent that subunits A and 

B of V-ATPases and subunit b and a  of F-ATPases evolved from a common ancestral 

gene.

The proteolipids of F- and V-ATPases also evolved from a common ancestral gene. The 

proteolipid has been found to be the principal protein component of gap junctions, at 

least in invertebrates. (Finbow et al., 1992; Finbow and Pitts, 1993; Finbow et al., 

1994a), thus subunit c of V-ATPase was also called ductin. Gap junctions are aggregates 

of paired connexon channels that allow the intercellular movement of cytoplasmic solutes 

up to Mr. 1000 within tissues of metazoan animals (Finbow et al., 1994b).
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Figure 1.9 Schematic subunit structure o f V-ATPase. The catalytic vector (VO) is 

composed of A, B, C, D, E, F, G subunits, the membrane sector (VI) is composed of 

subunit a, c, Ac 115, Ac 48 and Ac 39. Genes encoding subunit A, B, C, D, E, Acl 15, 

Ac 48, Ac39 and tbe proteolipid (subunit c) has been cloned from chromaffin granules. 

Genes encoding subunit A, B, C, D, E, F, G and c has been cloned from M. sexta. More 

V-ATPase subunits are likely to exist. (This diagram is modified from Nelson's (1994) 

and Dow's).
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An analogy to the membrane sector of F-ATPases suggests that additional subunits 

should function in tbe membrane sector of V-ATPases. While tbe membrane sector of 

tbe archaebacterial V-ATPase may be composed only of tbe proteolipid (Denda et a l, 

1990) tbe membrane sector of mammalian V-ATPase may composed of at least five 

different subunits (Zhang et aiy 1992; Nelson, 1992a). Tbe genes or cDNAs encoding 

four o f tbe subunits (M l 15, M 45, M39 and proteolipid) have been cloned and 

sequenced from bovine, yeast and several other sources (Wang et al., 1990; Perin et a i, 

1991; Bauerle et a i, 1993). More subunits may function in proton conduction through 

tbe membrane and/or in tbe assembly of tbe V-ATPase membrane sector.

A novel 13 kDa subunit o f V-ATPase has been cloned from yeast {VmalOp) Manduca 

(subunit G), and bovine (M l6) (Lepier et a l, 1996; Supekova et a l, 1996). Tbe deduced 

protein is significantly homologous to tbe b subunit of bacterial F-ATPases, but contains 

no apparent transmembrane segment in its N  terminus. While VmalOp in yeast behaved 

like a V-0 subunit, tbe Manduca sexta 13 kDa subunit behaved like a VI subunit, since it 

could be stripped from tbe membrane by treatment with tbe cbaotropic salt KÎ and by 

cold inactivation, thus this subunit was considered to be a new member of tbe catalytic 

sector (Vl) and was designated as subunit G (Lepier et a l, 1996)

Gene disruption experiments in yeast that led to a complete loss of V-ATPase activity 

gave no indications for multiple isoforms in Saccharomyces cerevisiae (e.g. Nuomi et a l, 

1991; Foury, 1990). Also, in other fungi only one gene per subunit has been identified 

(Gogarten et a l, 1992b). However, In tbe case of human, animal and higher plants, 

different genes encoding tbe same subunit type have been found. Two isoforms have 

been reported for A subunit from bunan, chicken and plants (van Hille et a l, 1993b; 

H ernando et a l, 1995; Gogarten et a i, 1992b); B subunit in human and bovine 

(Bernasconi et a l, 1990; Puopolo et a l, 1992; Nelson et a l 1992; Berkelman et a l, 

1994); E subunit in Mammal (Hemken et a l,  1991), c subunit in yeast and maize 

(Umemoto et a l, 1991; Vieveck et al, 1996) and 100-kDa subunit in bovine (Peng et a l,
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1994). The presence of different isoforms might allow differential targeting and 

regulation of cell-, organelle- or plasma membrane- specific V-ATPases.

1..3.3 Plasma membrane V-ATPase

V-ATPases usually reside in tbe membranes of acidic organelles. However, they are also 

present in tbe plasma membrane of several cell type. Although having a similar structure 

and subunit constitutes as that of endomembrane V-ATPase, tbe plasmid membrane V- 

ATPases in arthropod and vertebrate cells share several features that are not generally 

observed in tbe V-ATPases in intracellular membranes (Bowman et al., 1993; Gluck, 

1992). Plasmid membrane V-ATPases are present at high densities, far greater than tbe 

densities on intracellular membranes. However, tbe amplification of plasma membrane 

V-ATPase is limited to specific cell types. In insects, high densities of V-ATPase on tbe 

plasma membrane are observed in tbe midgut goblet cell and tbe enveloping cells of 

sensilla (Klein et al., 1991a, 1991b). Similarly, high densities of plasma membrane V- 

ATPase are found in tbe mitocbodria-rich cell of toad bladder (Brown et al., 1987) and 

frog skin (Harvey, 1992), in tbe intercalated cells of the mammalian kidney collecting 

tubule (Brown et al., 1988; Brown, 1992; Gluck et a l, 1992a; Gluck et al., 1992b; Gluck 

et al., 1994), in insect Malpighian tubules (Dow, 1994; Garoyoa et al., 1995) and In 

insect midgut (Wieczorek et al., 1989). In bone only tbe osteoclast cells have tbe 

immunocytocbemicaliy detectable plasma membrane V-ATPase (Baron, 1994).

1.3.4 Functions of V-ATPase

V-ATPase is a proton pump required for acidification of many types of eukaryotic 

vacuole. These include lysosomes, plant and fungal vacuoles, synaptic vesicles, coated 

vesicles and Golgi (Nelson, 1992a). Tbe participation of V-ATPases in numerous aspects 

of endocytosis, secretion and sorting has been amply recognised (Forgac, 1989; Mellman 

et al., 1986; Lukacs et al., 1996). In fungi, plants and most animal cells, V-ATPases
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energise selected intracellular membrane compartments of the vacuolar system, acidifying 

the interior of these compartments and providing an electrochemical driving force for the 

transport of solutes (reviewed by Nelson, 1992a; Nelson, 1994).

V-ATPase functions not only in the vacuolar system but also in the plasma membrane of 

specialised cells. The roles of V-ATPase in kidney function and bone reabsorption is well 

understood. The kidney plays a vital role not only in cleaning the body of waste products 

but also in the acid-base balance o f mammals. Hydrogen ion excretion involves several 

processes including bicarbonate reabsorption, carbonic anhydrase activity and regulated 

pumping of protons across the plasma membrane by V-ATPase. In epithelial cells o f the 

proximal urinary tubule, V-ATPase is present in the apical membrane and functions in 

proton secretion. In the collecting duct V-ATPase may be found either in apical or 

basolateral membranes of specialised intercalated cells. These cells shuttle V-ATPase 

between intracellular vesicles and the plasma membrane in response to changes in the 

acid-base balance of the animal. It was shown that the distribution of V-ATPase, in apical 

or basolateral membranes of intercalated cells, changes during adaptation to acidosis or 

alkalosis. The cells increase the number of V-ATPase enzymes in their apical membrane 

during acidosis and decrease their number during alkalosis. Therefore, V-ATPase plays a 

major role in maintaining pH homeostasis in mammals and other animals (Gluck, 1992).

The involvement of V-ATPase in bone reabsorption has been well reviewed by Baron et 

al. (1994). Bone reabsorption is necessary for bone growth, remodelling and repair. 

Osteoclasts are multinucleated and highly motile cells that migrate between the bone and 

bone marrow and function in bone reabsorption. They attach to the mineralised bone 

matrix forming a close space to which hydrolytic enzymes are secreted. The optimal 

activity of these enzymes require low pH which is provided by V-ATPase located in the 

part of the plasma membrane in contact with the bone. And protons are required for the 

release of each calcium ion from the mineral. The osteoclast V-ATPase provides all 

protons necessary for calcium reabsorption. The pharmacological value of studying the
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Figure 1.10 Generalised model for insect epithelia. An apical plasma-membrane V- 

ATPase pumps proton out of the cell. These are exchanged for alkali metal cations (Na+ 

or K+) to produce a net ATP-dependent flux. Entry through the basal plasma membrane 

is not defined in the basic model, but is thought to be via channels, cotransports or 

ATPases in various insect tissues (Diagram kindly provided by Dr. Julian A. T. Dow).
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osteoclast V-ATPase is apparent because a specific slow down in its activity may prevent 

the onset of osteoporosis.

The plasma membrane V-ATPase in vertebrate cells functions primarily for proton 

transport. In contrast, The plasma membrane V-ATPases of Insects generate a membrane 

potential, which is used to drives an electrogenic K+/H+ antiporter operating in parallel 

in the same membrane (Wieczorek, 1991; Wieczorek, 1992; Klein, 1992; Wleczorek and 

Harvey, 1995), This "Wieczorek model" for the K+ pump in insect midgut is now 

generally accepted for all insect epithelia which appear to have an apical, electrogenic 

pump for sodium or potassium. Essentially, it is that an apical plasma membrane V- 

ATPase energises an exchanger more or less similar to the vertebrate Na+/H+ exchanger, 

and that this coupling is normally so tight that on a macroscopic scale, the ion pumped 

appears to be the metal ion, rather than the proton (Figure 1.10). Unlike the vertebrate 

use of the pump in kidney epithelium and plasma membrane, the V-ATPase does not 

appear to be used directly to acidify the extracellular space; rather, it is used as a driving 

force, employed to move a different ion (Dow, 1994; Azuma et al., 1995). In M. sexta 

midgut this results in extreme alkalisation of the lumen of the midgut to pH> 11 (Dow, 

1984; Dow, 1986; Dow, 1989; Dow, 1992). Similarly, V-ATPases are the primary 

driving force generating a membrane potential which drive salt and water fluxes in the 

Malpighian tubules and the rectum (Moffett, 1992) .The V-ATPase-generated membrane 

potential in the enveloping cells of the sens ilium drives the signalling currents initiated by 

activation of the sensory cells (Klein, 1992).

However, the 'Wieczorek' model has recently been challenged by an alternative 

explanation, based on the insensitivity of electrical measurements of the insect trichogen 

sensilla to amiloride or harmaline (Küppers and Bunse, 1996). O n this basis, they argue 

that no exchanger exists and that the apical V-ATPase is primarily a proton ATPase, but 

with the additional ability to transport alkali metal cations. Given that the intracellular 

pH is 7, and that intracellular K+ is around lOOmM, even if the pump were 10^:1
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selective in favour of H+ over K+, under normal conditions the two ions would be 

transported at nearly equal rates (Dow et al., 1996). However, given that an exchanger 

has been demonstrated functionally in Manduca midgut (Azuma et al., 1995), this 

alternative model requires further supporting evidence.

In addition to the straightward endosomal acidification, an increasing number of cellular 

processes are being shown to be dependent on V-ATPase function (reviewed by Dow et 

a l, 1996). Polycomb may be modulated by hemizygosity for vha55, a gene encoding a 

proton pump B subunit (Davies et al., 1996); V-ATPases have been implicated in the 

regulation of cytoplasmic pH (Dow et a l, 1996); the proteolipid subunit of V-ATPase 

was implicated as the main structural protein in gap junctions (Finbow, 1992) and in 

neurosecretion of acetycholine (Birman et a l, 1990); V-ATPases have also been found to 

colocalise with calcineurin, an important Ca^+-sensitive phosphatase, suggesting an 

important role for V-ATPases in regulating intracellular calcium (Garrettengele et a l, 

1995; Tanida et a l, 1995). Three transmembrane subunits of the V-ATPase (proteolipid, 

Ac39 and Acl 16) were found to coexist with synaptobrevin and synaptophysin in rat 

synaptosome (Galli et a l, 1996), and the 39 kDa subunit of the V-ATPase has been 

identified as a synaptic-vesicle binding protein (Siebert et a l, 1994). These observations 

further suggest a role of V-ATPase in the neurotransmission. It is also possible that some 

human genetic disease may be associated with haploabnormality for a V-ATPase gene 

(Goldstein et a l, 1991; Baud et a l, 1994; Meats et a l, 1995; Gottlieb et a l,  1995; 

Koralnik, 1995; DeFranco et a l, 1995).

1.3.5 Mutational analysis of V-ATPases

The yeast S. cerevisiae V-ATPase closely resembles the V-ATPases from other fungi, 

plants and animals, both in its overall structure and in the sequences of the subunit genes 

that have been cloned (Anraku et a l, 1992; Kane, 1992). Yeast has been used as a model 

system for mutational analysis of V-ATPase. Mutation for the 100, 69, 60, 42, 27, and
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17 kDa subunits have been constructed (Kane, 1992; Liu et al., 1996). Deletions in any 

of these subunit genes yield a well-defined set of phenotypes, which includes a complete 

loss of vacuolar acidification, absence of all ATPase activity in isolated vacuoles and 

failure to grow in media buffered to neutral pH (Nelson and Nelson, 1990). Mutations 

in the ATPase subunits also result in precursor accumulation and missorting o f both 

soluble and membrane vacuolar proteins (Yaver et a l, 1993; Ho et al., 1993).

Gene replacement in yeast has been a powerful method to generate V-ATPase null 

mutants, but such approaches are not yet feasible in higher eukaryotes (Gogarten et al., 

1992a), and yeast V-ATPases mainly play endomembrane role (Dow, 1994). As an 

alternative approach, Gogarten et al (1992a) used antisense mRNA to inhibit gene 

expression of V-ATPase A subunit in higher plants. Carrot root cells were transformed 

with the coding or 5' noncoding regions of the carrot V-ATPase A subunit cDNA cloned 

in the antisense orientation. Regenerated plants containing the antisense constructs 

exhibited altered leaf morphologies and reduced cell expansion. It was inferred that the 

antisense constructs specifically blocked expression of a tonoplast-specific isoform of the 

V-ATPase A subunit in carrot. The degree of antisense mRNA inhibition is variable in 

different tissues and rarely completely block the gene. Moreover, in some animals, 

antisense mRNA has not been so successful. As a solution to this problem, Drosophila 

may provide an ideal model organism for mutational analysis of genes encoding different 

subunits of V-ATPases (Dow, 1994; Davies et a l, 1996, Dow et a l, 1996). A pilot study 

for gene inactivation shows that transposable P-elements can be easily inserted into the 

Drosophila ductin vh a l6  gene. Although without phenotypic consequences, these can 

serve as a starting point for generation of null alleles (Finbow et a l, 1994a). vha55, the 

gene encoding the B-subunit o f Drosophila V-ATPase has been cloned recently. 

Inactivation of the gene reveals a larval lethal phenotype (Davies et a l, 1996).
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1 .4  T h e  a im  o f  th is  p ro ject

The aim of this project is to clone and characterise genes encoding A, E, F subunits in 

Drosophila V-ATPase and subsequently inactivate these genes. The mutagenesis work 

began with a large scale plasmid rescue of V[lacW\ lethal insertion lines (generated by the 

laboratories of Istvan Kiss and Peter Deck in Hungary) and was followed by screening for 

the specific mutations. The target genes, apart from components of V-ATPase, will also 

include a range of neurotransmitter receptors, neuronal kinases, et a l . Once a mutation is 

isolated, a detailed molecular, physiological and behavioural study will subsequently 

follow to address the functions of the genes.
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Chapter 2

Materials and Methods

2.1 Drosophila

The main Drosophila stocks used in this work are described below:

Strain/Genotype

Oregon R 

Canton S

w; Sb P[ ry+A2,3)/TM6

Reference

Lindsley and Zimm, 1992 

Lindsley and Zimm, 1992 

Robertson et ah, 1988

Mutations used are listed in Appendix 3.

Flies were routinely raised on Glasgow medium. Culture temperature was 25 °C, unless 

otherwise stated. A grape juice agarose medium was used to obtain eggs. Third instar 

larvae, used for in situ hybridisation to polytene chromosomes, were reared on a rich 

medium.

Glasgow medium: 10 g agar, 15 g sucrose, 30 g glucose, 35 g dried yeast, 15 g maize 

meal, 10 g wheat germ, 30 g treacle, 10 g soya flour per litre of water.

Grape juice agarose medium: 19.8 g agarose, 52.2 g glucose, 26 g sucrose, 7 g dried 

yeast, 9% (v/v) red grape juice (Safeway) per litre of water.

Rich medium: 100 g glucose, 100 g dried yeast, 20 g agar per litre of water.
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2.2 E. colù plasmids and bacteriophages

The E. coli strains used in this work are all derivatives of E. coli K12. They are listed 

below with their genotypes:

strain Genotype Reference

XLl-Blue recAl, endAl, gryA96, thi-1, hsdR17, supE44. Bullock (1987)

NM621 hsdRy mcrA, mcrB>supE44, recDl009. Whittaker et al,

1988

D H 5 a F") deo9..,phoA, sup E44, hsdR ll, recAly endAl, Gibco BRL

gyrA96y thiA, relAl

Plasmids and bacteriophages used in this study, other than those whose construction is

described elsewhere, are listed below.

Plasmids/ Description Source/ Reference

Bacteriophage

EcolAl-Hindlll fragment of the O'Connell &

Drosophila ribosomal protein Rosbash, 1984

49 gene in pBR322

pBluescript®IISK+/' Mead et al., 1985

V[lacW\ Whole 9[lacW\ sequence Bier et a l, 1989

EMBL3 X Vector for genomic DNA Frischauf et a l.,\^ ^ ‘̂

2 3  E. coli Growth medium

L-Broth:

L-Agar

10 g BactO'tryptone (Difco), 5 g yeast extract (Difco), 10 g 

NaCl, per litre of water and adjust to pH  7.0 with NaOH. 

As L-broth with the addition of Bacto-agar (Difco) to 1.5%.
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BBL Broth

BBL agar:

BBL top agarose 

2xYT Broth:

(p-Broth

10 g trypticase peptone (BBL), 5 g sodium citrate, made up to 

1 litre with distilled H 2 O.

As BBL broth with the addition of Bacto-agar to 1.5%.

As BBL broth with the addition of gel quality agarose to 0.7%. 

10 g Bacto-tryptone (Difco), 10 g yeast extract (Difco), 5 g 

NaCl made up to 1 litre with distilled H 2 O 

20 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 4.93 g 

M gS04, 0.58 g, NaCl, 0.37 g KCl, made up to 1 litre with 

distilled H 2 O

All culture media was sterilised by autoclaving at 120^C for 15 min at 15 psi. Where 

required, L-broth and BBL top agar were supplemented with 10 mM M gS04 for growth 

of bacteriophage lambda and its derivatives.

2.4 Antibiotics and indicators

Ampicillin, at a final concentration of 100 pg/ml (100 mg/ml stock solution in sterile 

distilled water) was added to broth or agar to select transformed E, co/7 When necessary, 

tetracycline, at a final concentration of 7.5 pg/ml (15 mg/ml stock solution in absolute 

ethanol), was added to broth or agar. 5-bromo-4-chloro-3-indolyl-|3-D-galactopyranoside 

(X-gal) and isopropyl-p-D-thiogalactopyranoslde (IPTG) were added to molten agar 

(50°C) in order to detect recombinant clones. X-gal was dissolved in dimethylformamide 

and IPTG in sterile distilled water. Both were stored at -20°C as 20 mg/ml solutions, and 

used at a final concentration of 20 pg/ml.
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2.5 Competent cells and. transformation

2.5.1 Preparation of competent cell

CaCl2 method

This method is modified from that of Hanahan (1985). 20 ml of L-broth was inoculated 

with 0.4 ml of an overnight culture of XLl-Blue, and grown with aeration at 37“C until 

cells had entered the logarithmic growth phase (00^00=0.4-0.6). The cells were then 

pelleted at 4000 g for 5 min at 4 “C in a bench-top centrifuge, the supernatant removed, 

and the resulting pellet resuspended in 10 ml ice-cold 100 mM CaCl2 solution. After a 

20 min incubation on ice, the cells were repelleted as above, and then suspended in 2 mi 

ice-cold 100 mM CaCl2 . Competent cells were either used fresh, or frozen for later use 

after adding 25% of glycerol.

RbCl method

A single colony was picked off a freshly streaked LB agar plate and dispersed in 20 ml of 

(p-broth. The culture was incubated with agitation overnight. 4 ml of the overnight 

culture was added to 200 ml of (p—Broth and incubated at 37“C with agitation in a 2 litre 

flask until OD(goo=0.5. The cells were then pelleted at 1300 g for 10 min at 4“C. The 

pellet was resuspended by gently shaking in 50 ml pre-chilled RFl buffer and incubated 

on ice for 30 min. Cells were pelleted again as above and then resuspended in 15 ml of 

chilled RF2 buffer. The competent cells, after being flash frozen in liquid nitrogen, were 

stored at -70°C for later use.

RFl

Compound Concentration Amount/litre

RbCl 100 mM 12 g

M nC l2.4H 20 50 mM 9.9 g

Potassium acetate 30 mM 30 ml (1 M stock pH 7.5)

CaCl2.2H20 10 mM 1-5 g

Glycerol 15% (W/V) 150 g
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Adjust the pH  to 5.8 with 0.2 M acetic acid. Sterilise by filtration through a pre-rinsed 

0.22 p membrane.

RF2

Compound ___________ Concentration_____________ Amount/litre____________

MOPs 10 mM 20 ml (0.5M stock pH7.5)

RbCl 10 mM 1.2 g

CaCl2.2H 20 75 mM 11 g

Glycerol_______ ____________ 15% (W/V)________________ 150 g___________________

Adjust pH to final pH 6.8 with N aO H  (if necessary) and sterilise by filtration through a 

pre-rinsed 0.22 p membrane.

Competent cells for eletroporation

4 ml of fresh overnight culture was added to 400 ml of L Broth at 37“C with vigorous 

shaking to an OD=0.5-0.7. The cells were pelleted at 4"C in cold centrifuge bottles in a 

cold rotor at 2000 g for 10 min. The pellets were gently resuspended in 400 ml of ice- 

cold 10% glycerol and repelleted as above. The step was repeated twice with the pellet 

being resuspended in 200 ml of ice-cold 10% glycerol for the first repeat, and in 100 ml 

of ice-cold 10% glycerol for the second repeat. Finally the cells were resuspended in 1.5-2 

ml of ice-cold 10% glycerol. This suspension of competent cells can be used fresh or can 

be frozen in aliquots in liquid nitrogen and stored at -70 °C.

2.5.2 Transformation of E. colt

50-100 ng of DNA in a volume up to 10 pi was added to 200 pi of competent cells and 

left on ice for 15 min. The mixture was subjected to a heat-shock at 42°C for 90 seconds 

and quickly chilled on ice for a few mininutes. The cells were either plated immediately, 

or after incubation in 800 pi 2XYT with agitation at 37“C for 0.5 -1 hr., onto L-agar 

plates containing the appropriate antibiotics and indicators. The plates were incubated 

overnight at 37“C to select for transformants.
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Electroplation was performed according to the manual provided with that E. coli Puiser 

apparatus (BIO-RAD). 40 pi of the cell suspension was mixed with 1 to 2 pi of DNA in 

a cold, 1.5 ml polypropylene tube and left on ice for 0.5-1 min. Immediately after 

electroplation the mixture was plated on an ampicillin selective plate.

2.6 Nucleic Acid Isolation

2.6.1 Plasmid DNA

Large scale plasmid isolation was carried out by the alkaline-lysis method of Birnboim 

and Doly (1979) as described in Sambrook et al. (1989). Small scale plasmid preparations 

were made by the alkaline-lysis or boiling method (Sambrook et a l, 1989), or with the 

M agic^^ DNA purification system (Promega) using the protocol recommended by the 

manufacturer.

2 .6 .2  Bacteriophage X DNA

Isolation of X DNA was performed by a modification of the protocol of D. Chisholm 

(1989).

H ost Cell Preparation

1 ml of an overnight culture of NM621 was added into 1 0 0  ml of L-broth to grow until 

OD(5oo was —0.3 (about 3 hrs). The cells were pelleted and resuspended in 1 0  mM 

MgS0 4  to a final OD^oo^k

Growing Lamda Lysates

2X10^ phage was added to 500 pi (4X10®) of plating cells. The culture was incubated at 

37°C for 30 min to allow the phage to be absorbed to the bacteria. The mixture was then

3 6



added to 37 ml of NZCYM in a 250 ml flask and grown with vigorous shaking until lysis 

was apparent (12-15 hrs).

Isolation of Phage

The above mixture was transferred to Falcon tubes containing 100 pi chloroform with 

thorough shaking. 370 pi of nuclease solution ( 50 mg DNAse 1, 50 mg RNAse A, in 10 -

ml o f 5 0 % glycerol, 30 mM NaOAc, pFI 6 .8 ; stored at -2 0 °C) was added and the 

mixture was incubated at 37°C for 30 min. 2.1 g of NaCl was added and the mixture 

shaken gently until the salt was dissolved. Debris was pelleted (4000 rpm, 20 min, 4”C) 

and 3.7 g PEG8000 was added to the supernatant. The sample was placed on ice for 1 

hr after the PEG had dissolved at room temperature. The phage were pelleted (10,000 

rpm for 20 min at 4°C ) and resuspended in 500 pi o f phage buffer. This phage 

suspension was mixed with an equal volume of chloroform and the phases separated by 

centrifugation.

Isolation of Phage DNA

The aqueous layer was transferred into a new Eppendorf and 20 pi 0.5M EDTA, 5 ui of 

2 0 % SDS, and 2.5 pi proteinase K (10 mg/ml) were added. After incubation at 65°C for 

30 min, the supernant was extracted with phenol and then with chloroform. DNA was 

precipitated and dissolved in 300 pi of TE. Yields for EMBL3 derivatives were generally

50-100 pg.

2.6.3 Drosophila DNA

Rapid single fly DNA isolation for PCR

Single-fly DNA was prepared by the method modified from Gloor, G and Engels, W 

(1991). A single fly was homogenised in an 1.5 ml Eppendorf microcentrifuge tube with >

an micropestle in 50 pi of homogenisation buffer (1 0  mM Tris-HCl, pH  8.3, 1 mM h

EDTA, 25 mM NaCl, 200 pg/ml Proteinase K, from a 20 mg/ml stock solution in sterile
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distilled water). And after incubation for 30 mins at 37°C, the homogenate was then 

heated to 9 5 °C for 2  min, 2  pi of the homogenate was used directly in a 2 0  pi volume of 

PCR reaction.

Genomic DNA isolation from adult flies

Adult genomic DNA was prepared by a modification of the method of Hamilton et al. 

(1991). 15-20 flies were homogenised in a 1.5 ml Eppendorf microcentrifuge tube with a 

motorised pestle in 400 pi of lysis buffer (80 mM NaCl, 5% sucrose, 0.5% SDS, 50 mM 

EDTA, 1 0 0  mM Tris-HCl pH 8 .5). Following 30 min at 70°C, KOAc was added to a 

final concentration of 0 .6  M, and the tube was placed on ice for 30 min. Debris was 

pelleted by centrifugation at 4°C for 15 min, and genomic D NA  present in the 

supernatant was carefully removed to a fresh tube. The following stage (A, B, or C) is 

slightly variable according to the quality requirements for the DNA:

(A) The supernant was extracted once with an equal volume of phenol, once with an 

equal volume of phenol/CHClg (1:1) and finally with an equal volume of CHCI3 . The 

DNA was then precipitated with 0 .6  volume of isopropanol. The pellet was washed with 

70% ethanol, dried and resuspended in 50 pi of TE with RNase A at 20 pg/ml.

(B) 0 .5  volume of PEG solution (13% PEG8000, 1.6 M NaCl) was added to the 

supernant, mixed well and centrifuged at 4°C for 5 min. The pellet was washed with 

7 0 % ethanol, dried and resuspended in 1 0 0  pi of TE.

(C) The supernant was pelleted with 0 .6  volume of isopropanol and washed with 70% 

ethanol, dried and resuspended in 1 0 0  pi of TE.

Genomic DNA purified by either method (A) or method (B) can be cleaved by 

restriction enzymes for genomic Southern blot analysis. Genomic DNA prepared using 

(C) suffices for plasmid rescue.
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2 .6 .4  Drosophila R N A

Total RNA was isolated using TRIzol^M (Gibco BRL). 40 adult flies (or the same 

volume of larvae, pupae or embryos) were homogenised in a 1.5 ml Eppendorf with 1ml 

of trizo IT M  reagent and left at room temperature for 5 min. 0 .2  ml of chloroform was 

added, mixed well and incubated at room temperature for 2-3 min. The mixture was 

centrifuged at 12000 g at room temperature for 15 min. The aqueous phase (about 600 

pi ) was carefully removed to a fresh 1.5 ml Eppendorf and 500 pi of iso-propanol was 

added. After incubation at room temperature for 10 min, the sample was centrifuged at 

4 “C for 10 min and washed with 70% EtOH. The pellet of total RNA was dissolved in 

40 pi of RFW (RNase free water). 40 adult flies can result in 200 -300 pg of total RNA.

2.7 Quantification of nucleic acids

For quantitating the amount of DNA or RNA in a sample, reading# were taken at
i

wavelengths of 260 nm or 280 nm. An O D 2 6 O corresponds to 50 pg/ml for double 

stranded DNA, 40 pg/ml for RNA and 33 ug/ml for oligonucleotides. When samples had 

limiting concentrations of DNA (<250 ng/ml), the quantity of DNA was estimated by 

spotting the sample and known standards onto the surface of a 1% (W/V) agarose gel 

containing EtBr (0.5 pg/ml). The gel was photographed using short-wavelength UV 

illumination (254 nm) and the concentration of the DNA sample was estimated by 

comparing the intensity of fluorescence in the sample with those of known DNA 

concentration standards.
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2.8 Labelling nucleic acids

2.8.1 labelling of DNA

Labelled gel-purified fragments or linearised plasmids were prepared by random priming, 

a method slightly modified from Feinberg and Vogelstein (1984). Briefly, to 5-100 ng of 

denatured DNA (in 27 pi of distilled water), lOpl of 4X random priming buffer, 3 pi of 

[a-^2 p] dCTP (30pCi; 3000 Ci/mmole ) and 1 pi of Klenow DNA polymerase (5 U/pl) 

were added. The mixture was then incubated for 1 to 4 hr. Probes were purified by 

Sephadex G50 (Pharmacia) chromatography, in columns prepared from disposable 1 ml 

syringes (Sambrook #<3:/., 1989).

The 4x Random priming buffer is "home -made" based on the original recipe. The 

random priming mix is made from three individual components (solutions 1 to 3). 

These are mixed together to make a batch of random priming buffer that is then 

aliquoted and stored at -20“C.

Solution 1: Mix<I>=>=

P—mercaptoethanol 

lOOmM each of dA, dG, dT

1 ml

5 pi 

5 pi

O k 1.25 M Tris HCl pH  8 .0  and 0.125 M MgCl2 .

Solution 2: 2 M Hepes pH 6 .6

Solution 3: Hexanucleotides at 90 OD units per ml. The 

Pharmacia 50 OD unit aliquots of hexanucleotides were 

dissolved in 0 .5 5  ml water.

4 0



4x buffer solution 1 solution 2  solution 3

ratio 2 : 5: 3

for 0 .5  ml 1 0 0  pi 250 pi 150 pi

2.8.2 DIG-labelling o f DNA

Fragments used to generate probes were excised from the appropriate vector and 

separated by agarose electrophoresis. 200 ng o f this gel purified fragment (See Section

2.9.1) was then used to produce each DIG labelled probe. Briefly, the DNA was 

denatured at 1 0 0 °C for 5  min and quickly chilled on ice before addition to the labelling 

mixture. Distilled water was added to make a volume of 2 0  pi and the sample incubated 

at 3 7 “C overnight. The reaction was stopped by the addition of 2  pi of 0.2 M EDTA 

(pHB.O) solution. The probe was precipitated by adding 2.5 pi of 4 M LiCl and 75 pi 

prechilled (-20“C) ethanol followed by incubation at -70°C for 30 min. The probe was 

then pelleted and resuspended in TE (pH8.0).

2.8.3 Nick translation

Labelled plasmid DNA was prepared by nick translation (Sambrook et aL, 1989). Briefly,

2.5 pi of lOX Nick Translation Buffer (0.5 M Tris-HCl, pH 7.5, 0.1 M MgS04, 1 M 

D TT, 500 pg bovine serum albumin; fraction V; Sigma), 2 0  nmole each of dATP, 

dGTP and dTTP (Pharmacia) and 50 pCi; 3000 Ci/mmole of [a—̂^P] dCTP were 

added to approx 0.5 pg of plasmid DNA and the volume was made up to 21.5 pi with 

distilled water. After chilling (0°C) the mixture, 2.5 pi of DNase I (10 ng/ml in ice-cold 

IX  Nick Translation Buffer containing 50% glycerol) and 2.5 U o f E. coli DNA 

polymerase I were added. The reaction was then incubated for 60 min at 16“C and 

stopped by the addition of 0.04 volume of 0.5 M EDTA, pH  8.0. For probes for 

chromosomal in situ hybridisation the reaction was performed in the presence of 1 mM 

biotin 16 dUTP (Boeringer Mannheim). A trace [a—̂ ^P]dCTP (10 pCi) was also added
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progression of the synthesis reaction. The precipitated, probe from 500 ng of cDNA 

plasmid was resuspended in 75 pi of chromosomal in situ hybridisation solution (0.6 M 

NaCl, 50 mM N aP 04 , pH  6 .8 , 5 mM MgCl2 , 0 .0 2 % ficoll, 0.02% bovine serum 

albumin, 0 .0 2 % polyvinylpyrrolidone).

2.9 Electrophoresis

2.9.1 Agarose gel electrophoresis for DNA

This method was performed as described in Sambrook et al., 1989. D NA was 

electrophoresed in agarose in IX TBE (90 mM Tris, 90 mM boric acid, pH8.3, 2 mM 

EDTA). The marker was a 1 kb ladder (Gibco BRL). DNA fragments were purified 

from 1% (w/v) LMP (Low Melting Point agarose, Gibco BRL) agarose gel in IX TAE 

(40 mM Tris-acetate, pH  7.6, 1 mM EDTA), using the MagicTM DNA purification 

system from Promega, or by using the silica suspension method (Boyle and Lew, 1995).

2.9.2 Denaturing agarose gel electrophoresis for RNA

Prior to electrophoresis, RNA samples (up to 5 pi) were denatured by the addition o f 10 

pi of formamide, 2 pi of 5X MOPS buffer (200 mM MOPS, pH  7.0, 50 mM sodium 

acetate, 5 mM EDTA, 11 M formaldehyde), 3.5 pi of formaldehyde (12.3 M), 1 pi of 

EtBr (Img/ml stock), and heated to 70°C for 5 min. Prior to loading, 2.5 pi of loading 

dye (30% (w/v) Ficoll 400, 1 mM EDTA, 0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol) was added. The RNA was electrophoresed in 1% (w/v) agarose 

formaldehyde gel (Sambrook et al., 1989), using IX MOPS, with constant circulation 

from anode to cathode chambers in order to maintain a constant pH.
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2.9.3 Polyacrylamide gel for DNA sequencing

Products of DNA sequencing reactions were separated on denaturing polyacrylamide

gels: 6 % (w/v) acrylamide (Acrylamide: N, N'-methylenebisacrylamide, 19:1), 7 M urea,

in IX  TBE. Polymerisation was initiated by the addition of 1 ml of 10% (w/v) '

ammonium persulfate and 50 pi of TEMED (N, N, N ', N ', -tetramethylenediamine) to

150 ml of 6 % acrylamide/urea mixture. The gel was allowed to polymerise overnight

before use. Samples were denatured for 5 min at 80°C and then loaded onto the gel. Gels 
.were run for various lengths of time, depending on the size of DNA to be resolved, and

then dried for 1-2 hr at 80“C on W hatm an 3M M  paper under vacuum.
.Autoradiography was carried out without intensifying screens at room temperature.

2.10 Nucleic acid hybridisation 

.
2 . 1 0 .1  Southern blotting and hybridisation

. .. . sAgarose gels containing DNA were transferred to nylon membranes (Hybond-N), by

capillary action and fixed to the membrane by UV treatment as instructed by the

manufacturer (Amersham UK). DNA/DNA hybridisation was carried out at 65°C in

hybridisation solution (5X SSPE, lOX Denhart's solution, 1% SDS, 0.005% sodium
.pyrophosphate and lOOpg/ml of denatured sonicated salmon sperm DNA) or in Church 

buffer (7% SDS, 1% BSA, 1 mM EDTA, 0.25 M N aiH P O ^ pH 7.2). Filters were pre­

hybridised at 65“C for at least Ihr before addition of the denatured radioactive probe 

(10^-10^ cpm/ml of hybridisation solution) and hybridised for between 4 hr and 

overnight according to the type and amount of DNA on the filters. After hybridisation, 

the blot was then washed at 65°C in 2x SSPE, 0.1% SDS for 30 min; 0.5x SSPE, 0.1% 

SDS for 30 min; and finally in O.lx SSPE, 0.1 % SDS for 30 min. The washed filters
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were covered in Saran WrapkM then subjected to autoradiography between 

intensifying screens at -70“C.

2.10.2 Northern blotting and hybridisation

Agarose formaldehyde gels containing RNA were transferred to reinforced nitrocellulose 

(Hybond C+) by capillary action. RNA was fixed to the membrane by UV treatment as 

instructed by the manufacturer (Amersham UK). Pre-hybridisation and hybridisation was 

carried out at 42“C in RNA hybridisation buffer (50% formamide, 5X SSPE, 2X 

Denhardt's solution and 0.1% SDS) or at 55“C in Church buffer (7% SDS, 1% BSA, 1 

mM  EDTA, 0.25 M Na^HPO^^ pH 7.2). Filters were pre-hybridised for at least 3 hr 

before addition o f the denatured radioactive probe (lO ^-loQ pm /m l hybridisation 

solution) and then hybridised for a minimum of 16hr. The blots were washed at 42“C 

(or 55°C if the hybridisation was in Church buffer) in 2x SSC, 0.1% SDS for 30 min; 

0.5x SSC, 0.1% SDS for 30 min; and finally in O.lx SSC, 0.1% SDS for 30 min. The 

washed filters were then covered in Saran WrapkM and exposed to Fuji X-ray film for 1-3

days. Size was determined with respect to an RNA ladder (Gibco BRL).

2.11 Oligonucleotide synthesis

Oligonucleotides were synthesised by the solid state method on an Applied Biosystems 

Inc. PCR-MATE 391 DNA Synthesiser, employing phosphoramidite chemistry. After 

ammonium hydroxide cleavage and deprotection, oligonucleotides were evaporated to 

dryness under vacuum and resuspended in water or TE. Typically primers were 18-31 nt 

in length having about 50% G+C composition (Appendix 2 )
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2.12 DNA sequencing

Sequencing of double-stranded DNA was carried out by the dideoxy chain-termination 

m ethod recommended in the Sequenase Version 2 .0  manual supplied by the 

manufacturers (United States Biochemical Corporation).

2.13 PCR

Generally PCR reactions were carried out on 100-200 ng of template DNA in 20 pi of 

50 mM KCl, 1 0  mM Tris-HCl (pH 8.3 at room temperature), 1.5 mM MgCfy' 0.01% 

(w/v) Triton X-100®, 2 0 0  nm dATP, 200 nm dCTP, 200 nm dGTP, 200nm dTTP, 

primers (each at between 0.33-1 pM) and 1 unit of polymerase (Promega). Samples 

were overlaid with an equal volume of mineral oil (Sigma) and PCRs were performed in a 

Hybaid Thermal Reactor (Hybaid) with an initial dénaturation step o f 3 min at 94 “C, 

followed by a three step routine that consisted of 1 min annealing at 55-60“C, extension 

at 72“C for 3 min and dénaturation at 94°C for 1 min. A total of 30 cycles were carried 

out, followed by a return to 55-60°C for 5 min, a further 20 min extension step at 72“C, 

and a return to room temperature.

2.14 /w situ hybridization to polytene chromosomes

Salivary gland chromosome squashes were prepared as described by Ashburner (1989). 

Chromosomes were probed with a biotinylated, random-primed DNA probe, and 

hybridisation was detected using streptavidin-conjugated alkaline phosphatase.
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2.15 Isolation of cDNA and genomic clone

A AZapII (Stratagene) and a NM1149 (Dorssers and Postmes, 1987) oiigo-dT primed 

cDNA library representing the heads o f eyes absent Drosophila (S.R.H. Russell, 

unpublished) was used to screen for cDNAs encoding Drosophila V-ATPase A, E, and F 

subunit. Probes were either Dig-labelled or [ a —^2p] labelled, random-primed probes of 

the cDNAs encoding the A, E, and F subunit of Maduca V-ATPas, To isolate genomic 

DNA clones a D. melanogaster genomic DNA library in the vector EMBL3 was screened 

by plaque hybridisation with an [ a —^2p] labelled random-primed cDNA probe. Positives 

were purified by second or third round of screening. Genomic DNA fragments were 

subcloned in pBluescript SK-.

2.16 Generation of unidirectional deletions for rapid DNA sequencing

Generation of unidirectional deletions was with the Erase-a-Base system (Promega), using 

the method described by the manufacturer. The Erase-a-Base system is designed for the 

rapid construction of plasmid subclones containing progressive unidirectional deletions 

of inserted DNA, thus allowing efficient sequencing of large DNA fragments. The 

system makes use of the ability of exonucleaselll {ExoWX) to digest DNA from a 5' 

protruding or blunt end, while leaving a 4 base 3' protruding end or an a — 

phosphorothioate filled end Intact. The uniform rate of digestion of the enzyme allows a 

series of deletions of increasing size to be made by removing timed aliquots from the 

reaction. See Section 6.3.2 and Promega's protocols for detailed procedures.
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2 .1 7  P la sm id  rescu e  an d  m u ta t io n  scr ee n in g

The laboratory of Istvan Kiss in Szeged (Hungary) has generated approximately 2300 fly 

lines with homozygous lethal mutant of a V[lacW\ element on the second chromosome, 

which were balanced over CyO (Torok et al., 1993)

Genomic DNA was prepared by a modification of the method o f Ham ilton et al.,

(1991) (see Section 2.6.3) and resuspended in 50 pi of IX React 2 buffer (50 mM Tris- 

HCl, pH  8.0, 1 0  mM MgCfy, 50 mM NaCfy) by heating at 70“C for 15 min. After 

cooling to room temperature, another 50 pi of React 2 buffer was added, together with 

10 units of Ac<3RI, and the tube was placed at 37“C for 3-4 hours. Digestion was halted

by heat-inactivation at 70° C for 15 min, and, after cooling to room temperature, ligation
'}

was initiated by adding an equal volume of 2 x modified ligase buffer (1 0  mM MgCfy, 4 

mM ATP, 20 mM D TT, 30 mM Tris-HCl pH 7.4) and 0.5 pi T4 DNA ligase 

(Promega, 3 u/pl).

Competent E. coli (DH5oc or XL 1-blue) were prepared using the RbCl method (Section

2.5.1). 200 pi of competent cells were mixed with 40pl of ligated DNA, placed on ice for 

15min, heat-shocked at 42°C for 90 sec, again placed on ice for 5 min, and then mixed 

with 0.5 ml of 2 xYT broth. The culture was shaken at 37°C for 1 hr, diluted into 25 ml 

o f LB containing ampicillin at 150 pg/ml, and then shaken overnight at 37°C. 

Approximately 80% of overnight cultures showed evidence of growth. 1 ml from each 

25ml culture was stored at -70 °C in the presence of 20% glycerol. As a check on 

contamination, plasmid DNA isolated from 50pl of sampled overnight cultures was 

characterised by gel electrophoresis.

The remainder of the overnight culture (24 ml) was mixed with cultures representing 

nine other VYlacW] lines, and plasmid DNA was prepared by the alkaline lysis method 

and the resulted DNA was resuspended in 1 ml of TE. Portions of each pool were then
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mixed to make pool of plasmids representing 100 lines for screening (See Chapter 3 for 

detail).

2.18 Histochemical Staining and Immunocytochemistry

|3-Galactosidase expression in larval and adult tissues was detected by X-Gal staining 

(method modified from Bellen et al., 1989). Adults or larvae were dissected in IX  PBS 

and tissues were fixed in 1% glutaraldyde for 10-15 min. After washing with IX  PBS 

twice, tissues were stained in X-gal solution overnight.

Embryo staining required more steps. Embryos were collected from yeasted apple/grape 

juice agar plates and dechorionated by dipping into 50% bleach (sodium hypochlorite 

solution, Safeway's bleach, freshly diluted 1:1) for 90 seconds. After washing with water, 

the embryos were fixed in a mixture of 0.35 ml 4% paraformaldehyde in IX PBS and 

0.7 ml n-heptane for 15-20 minutes at room temperature. The embryos were then 

washed at least twice with 800 pi IXPBS + 0 . 1%Triton X-100 and stained in X-gal 

solution until the colour appeared.

For staining with anti [3-Galactosidase primary antibodies the tissue was fixed in 4% 

paraformaldehyde (in 1 X PBS) for 15 mins and washed twice in 1 X PBS, 3% triton X- 

100 and then preincubated in PAT (1 X PBS, 1% BSA, 1% Triton X-100) for 1 hour. 

The primary antibody, at a dilution of 1:2000 In PAT and 3% normal goat serum, was 

added and incubated overnight. The tissue was rinsed several times in PBS then reacted 

with an FITC-cojugated secondary antibody (1:250 for 1 hour). After washing in PAT, 

the tissue was then mounted in VectaShield for detection.

2.19 Isolation of viable revertants and new alleles with P-element excision

Once a specific mutation line is isolated, it is necessary to isolate a viable revertant to 

prove the lethality is due to the insertion. If the insertion is on the 2 nd chromosome,
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female mutants are crossed to males carrying Sb, A2,3 on their third chromosome over 

the T M 6 b balancer. This cross yields FO "jumpstart" male carrying both V\lacW\ and the 

A2,3 element, and thus the V[lacW\ will be mobilised. The crossing scheme is shown in 

Figure 2.1. Where the insertion is not within the gene, but at a site near the gene, local 

jum ping combined with the strategy of PCR screening can identify other insertions 

within the target gene. The P-element loss may be precise or imprecise (Klambt et al, 

1992; Tower et al, 1993). The identification of viable revertants proves that lethality was 

due to the P-element insertion.

Sb, P[A2-5, ry506\y w
X  cfc?

CyOCyO TM6B

P[iv+] Sb, P[A2-i, ryS06\

CyOCyOy  w

y  w

CyO CyOy w

A = B =
CyO

Figure 2 .1  Scheme for isolation of viable revertants and deficiency strains. P[W+] stands 

for the ^\lacW], [u>~\ stands for loss of the iu+ marker.

The numbers of adults with phenotypes A, B and C were recorded.



cross.

y w  [wT +  _ y w  [w T  +
2  g  --------  ;   ; —  X  ( / u    ;   ; —

y w CyO y w CyO

[MT] _ [wr]
D = — —  E = --------

CyO [W-]

The number of adults with phenotypes D and E was recorded.

If  E=D/2, there has been clean reversion.

If 0<E<D/2; then the excision event has had some deleterious effects.

If E=0; then it is a new lethal allele with imprecise deletion or internal deletion of the P* 

element.

5 0

If  the numbers of A, B and C are equal, there has been a clean reversion o f the 

homozygous lethal phenotype.

If  the number of type C is less than A and B, it suggests that type C are suffering 

deleterious effects following remobilisation, i.e. a new allele with internal deletion within 

the original P-element or imprecise deletion of the gene.

If C=0, it is likely to be a new lethal allele due to deletion caused by imprecise excision or 

by internal deletion within V{lacW\.

The survival efficiency of homozygous [w-]/[w-]can be further evaluated by the following



2 .2 0  D e te r m in a t io n  o f  le th a l p h a se  o f  th e  m u ta tio n s

In order to determin the developmental phase for lethalities the original OyO balancer 

was replaced with a modified CyO balancer marked with a copy of Embryos were 

collected overnight from w; V{lacW\!y'^CyO females crossed with yw; P[ZtzcW]/y+Cj/0 

males (See the following cross scheme). Eggs were laid out on an apple juice agar plate 

and incubated at 25 °C. At regular intervals over a 48 hour period, the plate was 

examined to determine how many larvae had hatched. The phenotype of the larvae was 

determined by examination of their mouth hooks, homozygous y larvae possessing gold

brown mouth hooks while heterozygous larvae have brown/black mouth hooks.

Scoy w

CyOy w

[W^[ ^ 1 y wy w

y w

[1^1

y+CyO

Hence, offsprings with phenotype D and E can be distinguished as early as first instar 

larvae, allowing the lethal stage of the homozygous flies to be determined.



Chapter 3

Site-S elected M utagenesis o f the Drosophila  Second- 
Chromosome via Plasmid Rescue o f Lethal P-Element 
Insertions

3.1 Summary

This chapter describes a fast and efficient approach to correlating cloned genes with 

mutant phenotypes in Drosophila, We make use of a large collection D. melanogaster lines 

with recessive lethal insertions of a V\lacW\ transposon on their second chromosome. 

W ithin this collection there must clearly be many insertions corresponding to Drosophila 

genes that have been cloned and characterised, but for which mutant phenotypes have yet 

to be identified. We have made use of the fact that V\lacW\ contains a plasmid replicon 

to establish a collection of rescued plasmids containing genomic DNA flanking the sites 

of transposon insertion. Plasmids representing a total of 1836 lines were independently 

rescued, and pooled in batches of 10 and 100. Pools of 100 plasmids were screened by 

hybridisation with cDNAs corresponding to cloned second chromosome loci. 

Hybridising pools were then narrowed down to single plasmids by a process of 

subdivision and rehybridisation, and corresponding mutant lines were obtained.

3.2 Introduction

Many cloned Drosophila genes have yet to be correlated with a m utant phenotype. Site-

selected transposon mutagenesis (SSM) is a reverse genetics solution to this problem. As

originally described it involves the use of PCR between gene- and transposon-specific

primers to identify individuals in which a P element transposon had inserted in or close

to a target gene (Ballinger and Benzer, 1989; Kaiser and Goodwin, 1990; Banga et al.^

1992). The sensitivity of PCR allows a new insertion to be detected initially within a
52



population of mutagenised flies, after which it can be followed, as a specific amplification 

product, while the population is sub-divided. A similar strategy has been applied to 

mutagenesis of Caenorhabditis elegans (Rushforth et a i, 1993; Zwaal et a i, 1993) and 

maize (Das and Martienssen, 1995).

P elements engineered to contain a plasmid origin of replication and a drug-resistance 

determinant allow a different form of SSM, involving plasmid rescue of DNA flanking 

the site of insertion (Figure 3.1; Hamilton et al., 1991; Hamilton and Zinn 1994; Guo et 

al., 1996c). Pools o f plasmids are created, each representing a population of flies with 

different insertion sites. Hybridisation between a pool and a specific cDNA/genomic 

DNA fragment is diagnostic of an insertion in or near to the gene of interest. The 

relevant pool is then narrowed down to a single hybridising plasmid, and thus to the 

corresponding Drosophila line, by a process of subdivision and re-hybridisation 

(Hamilton et al, 1991; Qxxoetal., 1996c).

Generation of large numbers of P element insertion lines is labour-intensive, as is their 

maintenance. In any case, only a small fraction of all new P element insertions is 

associated with phenotypic consequences. Thus, SSM tends to involve relatively transient 

collections of lines that are discarded or dispersed soon after screening. Even allowing for 

simultaneous screening with a number of target genes, this tends to reduce the generality 

of SSM. Further, plasmid rescue SSM tends to be performed on pools of lines (Hamilton 

et al., 1991; K. Easier and E. Hafen, personal communication), rather limiting the 

amount of plasmid DNA that can be generated per individual line, and inevitably leading 

to misrepresentation of the individual plasmids. If time and resources allowed, it would 

clearly be preferable to rescue each line independently.

A recent large scale screen for V\lacW\ transposon insertions on the D. melanogaster 

second chromosome forms the background to a means by which some of the above
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F [lac W] line (10-15 flies) 
CyO
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~/h
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EcoRI EcoRI

*
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O
a

C 5  ampK ori

Û  0 ^ 0  0

25 ml culture
(1 ml for glycerol stock)

10 X 1 ^  single
W Ê  run gel/blot/probe fly line
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plasmid DNA t

Pool o f  10 plasmids

Pool o f  100 plasmids

t

_____ lO x  ] _ 0 _ ^

run gel/blot/probe

4

19 X 100
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Figure 3.1 Overview of the plasmid rescue strategy. The essential structure of the l?[lacW\

.transposon is shown at the top of the figure. Each line is maintained as a 'balanced lethal'

in which only one of the pair of second chromosomes carries a recessive lethal V[lacW\
.insertion. The other second chromosome, the balancer CyO, confers a dominant visible 

phenotype (curly wings), is homozygous lethal, and suppresses recombination. Balanced 

lethal lines are thus easily maintained, since viable progeny have the same chromosomal 

constitution as their parents (see Ashburner 1989). V[lacW\ contains an ampicillin 

resistance determinant {amp^) and a plasmid origin of replication {ort). This plasmid 

replicon is separated from the rest o f the transposon by a unique site for AcoRI. Rescued

plasmids therefore contain DNA extending to the right of the transposon up to the

nearest flanking AcoRI site (complete digestion), or to a more distant site (partial 
.digestion). Full arrows in anticlockwise direction show the order in which particular steps 

.were carried out. Dashed arrows show source of plasmid DNA for second and third 

rounds.



problems can be overcome. 2308 independent recessive lethal mutations and 403 'semi- 

lethal' mutations were generated, each of which was saved in the form of a balanced lethal 

stock, and the lethal phase determined (Torok et al, 1993). P-induced lethals, though 

infrequent, must almost by definition correspond to Insertions within genes. Inevitably 

the collection is likely to include many examples of genes that have been 'hit' more than 

once. There is also an unexpectedly high frequency (~ 50%) o f lethals that do not 

coincide with an inserted P element (Kiss, I person. Com., 1996). Nevertheless, the 

collection represents a substantial proportion of the 2 0 0 0  or so lethal complementation 

groups estimated to be present on the second chromosome (13/48 o f the lethal 

complementation groups within the 1.8 Mb 34D-36A region, for example; Spradling et 

a i,  1995). Moreover, even non-lethal insertions are useful starting points for the 

secondary mutagenesis of flanking loci. The lines will be maintained in Szeged 

(Hungary), and possibly in other stock centres, for the conceivable future.

3.3 Plasmid Rescue

'9[lacW\, a modified P element transposon 10.6 kb in length, was designed as an 

enhancer-trap element (Bier et aL, 1989). It carries a lacZ reporter gene, the eye-colour 

marker white'^, and a plasmid replicon with poly-linker (Figure 3.1). Insertion within a 

Drosophila gene of such a large element might be expected often to have significant 

consequences for gene expression (Spradling æ/.,1995). Plasmid rescue using the 

enzyme E’coRI was attempted independently for 2 2 1 0  of the lines of Torok et at., (1993), 

as described in Materials and Methods.

Independent rescue and transformation allowed each transformant to be propagated 

without the risk of competitive growth. Rescue was successful in the case of 1836 of the 

2210 lines (83%). Recalculated in the context of available in situ hybridisation data 

(Refer Encyclopaedia of Drosophila) ̂ this corresponds to 77% rescue of lines containing a 

single V[lacW\ element, and 89% rescue o f lines containing more than one V[lacW\
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element. Because we were concerned that such a large series of transformations could 

present a contamination problem, small scale plasmid preparations of at least 500 

transformants were analysed by agarose gel electrophoresis. Plasmid sizes varied 

considerably, with no evidence of contamination at any stage (not shown). Since most 

lines contain just one V[lacW\ transposon (data not shown; Torok et al., 1993), rescue 

usually involved a single flanking region. Partial cleavage of genomic DNA by E coVJl can 

give rise to a series of related plasmids, however, and it is also possible for unrelated EcoBJ 

fragments to be 'co-cloned'.

5 7

A 25 ml culture was generated for each V[lacW\ line, and a small quantity was put into 

long-term storage in the form of a glycerol stock. The remainder was pooled together 

with cultures representing nine other lines, and plasmid DNA was isolated. Equal volume 

samples of ten such plasmid preparations were then mixed to create effective pool sizes of 

100 plasmids. The amount o f plasmid DNA generated will be sufficient for many 

screenings.

' I
I

3.4 Screening

Plasmid DNAs in each of the 19 pools of 100 plasmids are separated in twenty slot 

agarose gels (Figure 3 .2 ). The final slot is used for hybridisation controls and size 

markers. To screen for an insertion in the vicinity of a cloned gene, a blot of the gel is 

hybridised with a relevant cDNA or genomic DNA fragment. If  the fragment has been 

cloned using a vector that contains plasmid sequences, it is essential that the fragment be 

gel-isolated before use. Here we show the results of screening several interesting 

Drosophila genes, of which vha68-2 and ductin are the genes encoding Drosophila V- 

ATPase subunit A and c respectively.



1 2 3 4 5 6 7 8 9 1011 1213141516171819

##

Figure 3.2 19 pools of 100 plasmids separated by electrophoresis in a 0.8% agarose gel.
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3.4.1 vha68-2, the gene encoding V-ATPase A-subunk

Figure 3.3 are results of screening with a vha68-2 cDNA fragment representing the gene 

encoding subunit A of the Drosophila vacuolar ATPase (See Chapter 5). Bands of 

hybridisation are seen in three lanes of 100 plasmids (Figure 3.3A). One such band was 

followed through subdivision to the relevant ten batches o f ten plasmids (Figure 3.3B), 

and was eventually narrowed down to a single glycerol stock (Figure 3.3C). Detailed 

analysis of this V[lacW] insertion line is reported in Chapter 5.

3.4.2 Ductin, the gene encoding the V-ATPase c-subunit

Ductin, the 16 kDa proteolipid c-subunit of V-ATPase is the major component of the 

vacuolar H'*'-ATPase membrane sector, responsible for proton translocation (Meagher et 

al., 1990; F inbow et a l, 1994). Screening the pool of rescued plasmids found lines 16/1 

and 76/16 hybridised to the genomic DNA probe (Figure 3.4). Line 16/1 has an 

insertion in the second intron (Figure 3 .7A). Although the rescued plasmids from line 

76/16 can hybridise to the ductin probe, the sequence near the P element do not align to 

ductin genomic DNA sequence. It is likely that the insertion in line 76/16 is near the 

gene, but outside of the reported genomic DNA sequence (GenBank accession no. 

X77936). Further analysis of these two lines is being carried out by Miss Shirley Graham 

in this department.

1

3.4.3 CalpA, the gene encoding calpain

CalpA is a highly tissue-specific calpain gene from Drosophila, specifically expressed in a

small set of nerve, midgut and blood cells ( Theopold et a i, 1995). This calpain is

involved in the dynamic changes in the embryonic cytoskeleton, especially actin-related

structures, during early embryogenesis prior to cellularization (Emori and Saigo, 1994).

The gene is located at 56C-D on the second chromosome. Using CalpA cDNA as a

60
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9  10 11

1 2 3 4 5 7 8 9 10 11

1 5 5

Figure 3.5 Screening for insertions in CalpA, a Drosophila calpain homolog. (A) Two 

pools of 100 plasmids showed cross-hybridisation with CalpA cDNA probe (lanes 15, 

17). (B) Screening the ten pools of ten plasmids corresponding to lane 15 and 17 by dot 

hybridisation, further narrowed down these particular insertions to dots 5 and 1 

respectively. Dot 11 is the former pooled 100 as control. (C) A further round o f dot 

hybridisation eventually identified two single glycerol stocks (Dot 4 and dot 6 ). Dot 11 

is the former pooled 1 0  as a control.
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probe to screen the pool of rescued plasmids found the 15th and 17th lanes showed 

positive hybridisation (Figure 3.5 A). Subdivision by DNA dot hybridisation assigned the 

two positive bands to two individual lines: 145/23 and 169/13 (Figure 3.5 B, C). Line 

162/14 has an insertion between CalpA and hu~li~taishao (Ding et al, 1993) It is likely 

the insertion is at the regulatory region of CalpA. However, insertion in line 145/23 is in 

the nearby gene, hu-li-tai-shao (Figure 3.7 B). Further analysis is carried out by Dr. 

Philippe Rosay in this laboratory. He is trying to remobilise the P-eiements into the 

CalpA gene.

3.4.4 DCO the catalytic subunit o f cAMP-dependent protein kinase

DCO is the gene encoding the catalytic subunit of cAMP-dependent protein kinase 

(Kalderon and Rubin 1987; Figure 3.6). The DCO cDNA was used as probe to screen 

the pool of rescued plasmids and bands of hybridisation are seen in three lanes of 1 0 0  

plasmids. One such band was followed through subdivision to the relevant ten batches of 

ten plasmids, and was eventually narrowed down to a single glycerol stock from line 

8/4. The insertion is within the first intron. (Figure 3.7C).

3.4.5 Syb, a gene encoding synaptobrevin

Synaptobrevin is a major constituent of the membranes of synaptic vesicles. Syb is a 

Drosophila gene encoding an isoform o f synaptobrevin that abounds in non-neuronal 

cells. The Syb transcripts show no enrichment in the nervous system and are present in 

very early embryos, well before neurogenesis. The greatest concentration of Syb 

transcripts has been found in cells of the gut and Malpighian tubules. It has been 

suggested that Syb may be involved in membrane trafficking and in the secretion of 

digestive enzymes (Chin et al, 1993). However, the precise function oîSyb  is unknown.
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(A)

ATG

5'
t i

C A G C C C A A T T A G C A G A C A A C T T A T G T A T G A C C C A A T G T A A A T G A T C G T C G T T A A T C A C A T G C C C

Hu-li Tai Shao Calpain

(C)

T G C A T C A G C T G T T T G A C A C T T G A C A C G A T C G A A A G T C G C C T C C T C T C G C T C T C T T T G C C A

Figure 3.7 Insertion in ductin, CalpA and DCO. (A) Insertion in gene of ductin, the 

subunit c of V-ATPase (GenBank accession no. X77936); (B) Insertions in or near gene 

encoding calpain. ( GenBank accession no. X78555, Z46891, Z46892) (C) insertion in 

DCO, the catalytic subunit of cAMP-dependent protein kinase (GenBank accession no. 

X I6969). Arrow on P-element denotes the sense oïV-lacZ  reporter gene.
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(A)

1 2 3 4 5 6 7 8 9  1011 12 13 14 15 16 1 7 1 8  1 9 2 0

1 2 3 4 5 6 7 8 9  10 1 2 3 4 5 6 7 8 9  10

(B) (C)

Figure 3.8 Screening for insertion in syb, the gene encoding synaptobrevin (A) One 

pool of 100 plasmids showed cross-hybridisation with a syb cDNA probe (Lane 8). (B) 

Screening the ten pools of ten plasmids corresponding to lane 8 further narrowed down 

this particular insertion to two pools of 10 (Lane 3 and 5). (C) Subdivision of the pool 

of 10 in lane 5 eventually assigned the positive band to a plasmid isolated from a single 

glycerol stock (lane 5).
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(A )
10 20 30

p 9 5 8  . s TTGTTATTTCATCATGGCTCAGCGCACAAAAGCAAGGA

1 1 4 2 7 0  ACAACGAGTAAGTGGTGGAAGTCCATCGAATCAACAGGCTCAGCGCACAAAAGCAAGGA
9 1 0 9 2 0 9 3 0 9 4 0 9 5 0 9 6 0

4 0 5 0 6 0 7 0 8 0 9 0
p 9  5 8 . s  AAATCCCATACAGTGACGTCACCTGCGTCATATGGGCCACAGCGAACCGGAAGTAAAGTC

i l l l l l l l l l l l l l l l l l l l l l M I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
1 1 4 2 7 0  AAATCCCATACAGTGACGTCACCTGCGTCATATGGGCCACAGCGAACCGGAAGTAAAGTC

9 7 0 9 8 0 9 9 0 1000 1010 1020

100 110 120 1 3 0 1 4 0 1 5 0
p  9 5 8 . s  TTCGGACTTCACTTTCGGACATTGGAATACCGTAAACGTATGCTGCTGCCCAAGCGGTAG

l l l l l l l l l l l l l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
1 1 4 2 7 0  TTCGGACTTCACTTTCGGACATTGGAATACCGTAAACGTATGCTGCTGCCCAAGCGGTAG

1 0 3 0 1 0 4 0 1 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0

1 6 0 1 7 0 1 8 0 1 9 0 200 21 0
p 9  5 8 . S CTTCAGTTGTAGTTTTGAAAATCAATTAGGGTCATTTAAAAGCATTCAGTTAAGTT

M M M M I I I M M I M M M M I M I M M I I I M M M I M M M M M M M
1 1 4 2 7 0  CTTCAGTTGTAGTTTTGAAAATCAATTAGGGTCATTTAAAAGCATTCAGTTAAGTTGAGA 

1 0 9 0  1 1 0 0  1 1 1 0  1 1 2 0  1 1 3 0  1 1 4 0

1 1 4 2 7 0  TAGTGTAGAGTCAGCTGCTATCTTAGATGGAATATTAATGTGAAATGGCAAATTAACTCG  
1 1 5 0  1 1 6 0  1 1 7 0  1 1 8 0  1 1 9 0  1 2 0 0

(B)

ATG

5 ’

I
CAAGTCCATCGAATCAACAÆGCTCAGCGCACAAAAGCAAGGAAAATCCCATACAGTGACGTCACCTGCGTCA

Figure 3.9 Insertion in Syb. (A). Alignment of sequence of rescued plasmid p958 from 

mutant line 77/5 to syb genomic DNA sequence. (B) Position o f insertion in syb, the 

gene encoding synaptobrevin (Chin et al., 1993; GenBank accession no. L14270)
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The filter with rescued plasmids was screened with a Syb cDNA probe (provided by Dr. 

Cahir O'Kane in Cambridge) and lane 8 showed positive hybridisation (Figure 3.8A). 

After subdivision of this pool of plasmids of 100 plasmids, lanes 3 and 5 show positive 

hybridisation (Figure 3.8B). Subdivision of the two lanes identified that the two plasmids 

from line 75/2 and 77/5 showed cross-hybridisation to the Syb probe. The sequence 

flanking the site of insertion in line 77/5 is identical to part o f Syb gene. The exact 

position of p[/^cW] is in the second intron (Figure 3.9A, B; Chin et al ., 1993). 

However, the insertion in line 75/2 is not relevant to Syb. The hybridisation of the 

plasmid from line 75/2 is due to a Syb fragment co-cloned during plasmid rescue. 

Repeated rescued plasmids from this line do not hybridise to the Syb probe.

Southern blotting of 77/5 and Canton S genomic DNA probed with Syb cDNA detected 

a 3.4 kb Eco¥l band in addition to the wild type 5.1 kb band (Figure 3.10A). The band 

shift is due to the P-element insertion. Northern blotting showed a reduction of Syb 

RNA in the V[lacW\i + heterozygotes (Figure 3.10 B). Homozygous flies usually died 

shortly during the stage of the first instar larvae. Remobilising of the P-element produced 

many revertants and new alleles. Reversion indicated that the lethal phenotype was 

indeed caused by the P-element insertion. Further examination of the defect of the Syb 

m utant is being carrying out collaboratively with Dr. Cahir O 'Kane's group in 

Cambridge.

3.4,6 KLP38B, a mitotic kinesin-related protein

KLP38B (Kinesin-Like-Protein-at-38B) is a new member of the kinesin superfamily in 

Drosophila. KLP38B  was isolated through its binding to the catalytic subunit of type 1 

serine/threonine phosphatase (PPl) in the two-hybrid interaction trap. Seven lines with 

Ÿ[lacW\ insertions in the intron of KLP38B were isolated (Figure 3. 11). See Alphey et al 

. (1996) for detailed analysis of these mutants.
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.Figure 3.10 Southern blot and Northern blot analysis Syb mutant (A) Southern blot 

of Syb mutant line 77/5 showing a band shift due to V{lacV(/\ insertion. The first lane is 

Canton S genomic DNA, the second lane is line 77/5 genomic DNA, cut by AcoRI, 

probed with Syb cDNA. (B) Northern analysis of Syb mutant line to show the reduction 

of RNA transcript. Total RNA, isolated from adult Canton S and 77/5, was hybridised 

with Syb cDNA and rp49 as a control for loading. Lane 1, Canton S 15 Rg; Lane 2,

Canton S 30 |Ig; Lane 3, 77/5 15 Rg; Lane 4, 77/5 30 Rg; Lane 5, 25/8 15 Rg; Lane 6,

25/8 30 R g .
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Figure 3.11 Screening for insertions in the gene of KLP38B. Six pools of 100 plasmids 

showed cross-hybridisation with KLP8B probe (lane 1,3,4,  5, 6, 10). Subdivision of the 

pools of plasmids with positive hybridisation signals further narrowed down these 

positive signals to 7 particular insertion lines: 8/2 (lane 1), 49/13 (lane 1), 39/3 (lane 3), 

48/5 (lane 4), 57/2 (lane 5), 86/23 (lane 10).
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3.4.7 PP2A-28D, the gene encoding protein phosphatase 2A

PP2A-28D  is a gene encoding protein phosphatase 2A in Drosophila. The line 98/22 

which carried a V[lacW\ insertion in 251 bp upstream of the initiating ATG. By excision 

of the P-element, it has been proved that this insertion had caused the lethality . A 

mutational analysis has been performed in Dr. Partritia Cohen's group in Dundee 

{Siidlth. et a l 1996).

3.4.8 Mutations in other genes

Apart from the mutations reported above, we have presently correlated each of the 

following cloned genes to V[lacW\ mutant lines. D~Gjl, a gene encoding a G protein y 

subunit (Ray et a l ., 1994); shaw, a Shaker cognate gene (Butler et a l ., 1989: Butler et al 

., 1990); Drongo and 5 other genes.

3.5 One-step screening

As an alternative to screening pools of plasmids, we have used a one-step screening 

procedure involving grids of colonies created by a robotic device. The entire grid is 

visualised by hybridisation with a probe for the plasmid replicon, while individual 

colonies corresponding to particular insertion sites are visualised with a ^^P probe specific 

to the gene of interest (not shown). This one step screening work was done by Mrs. Ann 

Gillan in collaboration with Zeneca.

3.6 Verification

Once an individual glycerol stock has been identified as containing the hybridising

plasmid, the corresponding balanced lethal line is obtained from the stock collection in

Szeged. At this stage it is crucial to verify that the plasmid and Drosophila line do indeed

correspond. This can be easily done by repetition of plasmid rescue. In the case of the
71



I

insertion reported in this chapter, plasmids of identical size and hybridisation
.characteristics were rescued again from the identified fly lines (data not shown). Were 

some unrelated AcoRI fragment to have been 'co-cloned' during the initial rescue, it is 

highly unlikely that the same event would occur a second time.

i':
To confirm that identified lines each contain only a single insertion, we hybridised the 

blot o f m utant genomic DNA with a V[lacW\ specific probe. All the 4 lines tested 

appeared to contain only one insertion (Figure 3.12).

■!'S

Other important concerns are whether the P element has indeed inserted within the 

target gene (a 'gene-specific' probe may unexpectedly hybridise to other sites in the

genome), and whether insertion is truly the cause of lethality. In the case of the gene for

subunit A of the Drosophila vacuolar ATPase, the rescued plasmid hybridised in situ to a

single polytene chromosome band corresponding to the known location of the gene and

sequencing of the rescued plasmid showed insertion within the first intron of vha68-2

gene, loss of which is associated with reversion of lethality (see Chapter 7). Similar work 
.was or is being carried out for other mutant lines.

In total, approximately 40 cDNA fragments corresponding to second chromosome genes

have been used as probes. Positive hybridisation signals were seen in 13 cases and in seven

cases shown to represent genuine insertions within or near to target genes (Table 3.1). In

five of the seven cases, V{lacW\ insertion had occurred 5* to the reported coding

sequence. In the other two cases, insertion occured within the intron. That P elements

prefer to insert near to the 5' ends of genes has been observed in other studies (Spradling

et a l 1995).
.
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1 2 3 4 5

9.1 kb

6.1 kb

4.1 kb

Figure 3.12 Southern blot of genomic DNA of the V{lacW\ insertional lines to show 

the single insertion. Each lane is genomic DNA isolated from 10 flies, digested by AcoRl, 

hybridised with the 1.9 kb fragment o^V[lacW\ that correspond to pBluescript. lane 1: 

Canton S wild type; lane 2: 25/8, with insertion in vha68-2\ the gene encoding subunit 

A of V-ATPase; lane 3: 16/1, with insertion in ductin, the gene encoding subunit c of V- 

ATPase; lane 4, 77/5, with insertion in Syb, the gene encoding synaptobrevin; lane 5, 

8/4, with insertion in DCO, the gene encoding the catalytic subunit of cAMP-dependent 

protein kinase.
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T a b le  3 .1  S u m m ary  o f  screen in g  results

Target gene Accession
no.

First
round

Vérifié
d

Reference

vha68-2 U59147 3 3 Chapter 3, 4
ductin^ X77936 2 2 Chapter 3

DCO^ X I 6969 6 N Chapter 3
PP2A-28D X55199 1 1 Snaith et a l ., 1996.
KLP38B 7 7 Alphey et a l ., in 

preparation
Syb L 14270 2 lb M cCabe et a l 1996.
CalpA Z46891 2 2 Rosay et a l ., unpublished
vhal4 Z26918 1 Qb Guo et a l 1996.

D -G y^l 4 Ray et a l 1994

Shaw 3 Butler et a l 1989
a —adaption 1 1 Nick Gay in Cam bradge

Cliper 1 1 Chunyang Bai in New York
La 1 P. Tolias in New York
? gene 1 1 P. W es in Crag M ontell lab
3 gene 5 M yles Axton in Oxfod
A21 2 B. Srinivasan in Purdue
A l l 1 B. Srinivasan in Purdue
6356 DNA 0 B. Retinker
L R L l-5  5 genes 0 M. Cann in Cornell
2a9 0 C. Coelho in Koln
32c2 0 C. Coelho in Koln
47c 1 0 C. Coelho in Koln
0 8 0 8 0 Y. Grau in France
CAM -kinase-like gene 0
Sim on's 51 0
Sim on's 123 0
Serotonin recepter 2A 0
Serotonin recepter 2A 0
O f alfa 0
Gs alfa 0
Igloo 0
pbprp-5 0
PKC 0
PKG-2cDNA 0
PLC 0
NPY recepter 0
m uscarinic
acetylcholine recepter

0

 ̂ Only one of the six putative insertions was chosen for further subdivision. ^ One first 

round hybridisation signal was a ‘co-cloning’ artefact.  ̂No first round signal. ^ Genes for 

which P element insertions has been previously described (Finbow et a l 1994; Skoulakis 

eta l., 1993).
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3 .7  D isc u s s io n

The strategy described here permits rapid identification of mutant lines corresponding to 

specific cloned genes. This is illustrated by Figure 3.3, detailing the identification of a 

line with a P element insertion in the gene for subunit A of the Drosophila vacuolar 

ATPase. Three novel and important features of this strategy are as follows. First, we 

carried out plasmid rescue independently for each of many lines. Plasmid rescue from 

pools o f lines (e.g. Hamilton e ta l . ,  1991) leads to misrepresentation both because 

transformation efficiency varies with the size of rescued plasmid, and because it is difficult 

to avoid competitive growth. By allowing each transformant to grow independently we 

avoided misrepresentation, and were able to generate sufficient plasmid DNA for 

screening with any number of target genes. Second, unlike previous examples of SSM by 

plasmid rescue, the lines described here were generated with the intention of creating and 

maintaining only lethal insertions of PfTsicW] (lethals represent only a small proportion of 

all P element insertions). Though homozygous chromosomal lethality turned out to be 

associated with P element insertion in only approximately half of the lines, even non- 

lethal insertions can be useful for secondary mutagenesis. Third, there is a commitment 

to maintain the entire collection of balanced lethal lines in Szeged for the conceivable 

future. This is unlike most previous site-selected mutagenesis experiments, in which lines 

were discarded soon after screening, and were thus unavailable to the wider research 

community.

Approximately one in four cases of screening with cDNA probes has proved successful. 

cDNA probes will often fail to detect an insertion in a target gene, merely because the 

rescued plasmid contains no transcribed sequences. Such occasions will arise when an 

E c o ^  site lies between the transposon and the nearest exon. It would of course have been 

preferable to rescue each line using a range of different enzymes, and to rescue DNA on 

both sides of the transposon. This would have been prohibitively laborious, however. A 

simpler way to increase the probability of a 'hit' is via screening with genomic DNA

7 5



fragments representing non-transcribed in addition to transcribed sequences (though not 

a fragment that contains repetitive DNA sequences).

Even so, one should not expect all second chromosome genes to be represented by 

V[lacW\ insertions within the Szeged collection since; a) V[lacW\ mutagenesis was not 

carried out to saturation; b) not all Drosophila genes are good targets for P element 

insertion; c) not all Drosophila genes correspond to lethal complementation groups. 

Where a pre-existing mutation cannot be found, it may prove fruitful to probe with 

genomic DNA more distant to the gene of interest, and thereby detect an insertion in a 

nearby gene. Such an insertion could be used for 'local jumping', an elevated rate of 

transposition within 100 kb or so on either side of a ‘donor’ P element (Tower et al 

1993; Zhang and Spradling, 1993).

Once one has obtained a line with a single V[lacW\ transposon within the gene of 

interest, it is necessary to verify that the insertion is indeed the cause of the mutant 

phenotype. Spontaneous recessive lethal mutations are common within Drosophila 

populations and can become fixed on the same balanced chromosome as a P element. It 

is thus essential to demonstrate, as for the vha68-2 insertion, that remobilisation of the 

inserted transposon can lead to reversion of the phenotype. Even then it may not be a 

simple matter to deduce, just from a single allele, the precise role of the gene and its 

product in Drosophila development or physiology. Remobilisation can also result in 

imprecise 'excision', however, and thus generation of a range of new alleles of varying 

severity (e.g. Klambt et a l 1992). The presence of an eye colour marker {white) on 

V[lacW\ makes loss of the transposon easy to score. Further, V[lacW\ was designed as an 

enhancer-trap element, the lacZ component serving as a reporter for gene expression in 

the vicinity of the insertion site (Bier et al ., 1989). The pattern and timing of (3- 

galactosidase expression may provide useful information concerning the tissue-specificicy 

and developmental regulation of gene expression.
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The collection of P element lethal mutants generated by Torok et a l . (1993) is finding 

many uses in Drosophila genetics and genome mapping. As described here, it provides a 

simple means of correlating a cloned Drosophila gene with a m utant phenotype.

Sufficient plasmid DNA has been prepared to allow screening for many targets. An added 
.dimension would be provided by performing large scale correlation of cDNA library

clones with the Szeged lines. This would provide access to many as yet unknown, but 

nonetheless essential, Drosophila genetic loci.

One simple way this could be carried out is as follows. Probes of rescued plasmids could

be labelled and used to screen a cDNA library to correlate individual clones within the

Drosophila cDNA library to the corresponding fly lines bearing V[lacW\ insertions. The 
.whole rescued plasmids could be labelled for screening cDNA library in vector, such as 

.lambda NM1149, which shares no sequence homology with the P-element sequence in 

the rescued plasmids. Each pair is highly likely to represent a mutation of a gene, and, 

alternatively, imprecise excision will generate mutations where the initial insertion does 

not. The cDNA library can be screened as arrays of plaques laid out in a rectangular grid 

by a robotic device. I

I
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Chapter 4
Characterisation o f vha68-l and vha68-2^ the Genes 
Encoding Two Isoforms o f V-ATPase A Subunit in 
Drosophila

4.1 Summary

vha68~l and vha68-2, genes encoding two isoforms o f the V-ATPase A subunit in 

Drosophila melanogaster, have been cloned and sequenced. Both isoforms are composed 

of a polypeptide of 614 amino acids with a predicted molecular mass of 68417 Da and 

68338 Da respectively. The coding sequences of the cDNAs for the two isoforms share 

85.5% identity while the translated proteins are 90.7% identical. The gene vha68-2 is 

punctuated by four introns. In situ hybridisation of the cDNA of vha68~l to salivary 

gland chromosome squashes reveals only one band at 34A on the second chromosome, 

suggesting that the two genes are at the same location. Northern analysis of total RNA 

reveals that both isoforms are expressed in a similar pattern. They are expressed in head, 

thorax and abdomen of the adult fly. Developmental Northern blots of embryo, larvae, 

pupae and adult total RNA show general expression, but at a much reduced level during 

metamorphosis.

4.2 Introduction

V-ATPases, found in all eukaryotic cells, are required for the acidification of intracellular 

organelles such as lysosomes, endosomes, the Golgi apparatus, secretary vesicles, and 

clathrin-coated vesicles, as well as plant and fungal vacuoles (Nelson, 1992a). They are 

also located in the apical membrane of cells specialised in secretion, such as 

osteoclasts (OCs), kidney intercalated cells, and insect midgut (Baron et a l, 1994;
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Brown, et a l, 1987; Blair et a l, 1989; Dow, 1994). Although the organelle and plasma 

V-ATPases appear similar in composition, it is clear that cells can differentially target 

these enzymes and thereby regulate the pH  of the various intracellular compartments 

and luminal spaces (Hernando et a l, 1995). The mechanisms for this targeting is 

accomplished remains unclear, but several hypotheses have been proposed. The simplest 

hypothesis is the putative existence of organelle- or cell-specific isoforms o f particular V- 

ATPase subunit. Only one gene per subunit and per genome has been identified in S. 

cerevisiae and other fungi (Gogarten et a l,  1992). Gene disruption experiments in yeast 

that led to a complete loss of V-ATPase activity gave no indications for multiple isoforms 

in S. cerevisiae (Umemoto et ah, 1990; Neumi et ah, 1991; Foury, 1990). And only a 

single gene encoding subunit A from M, sexta (Graf et a l, 1992) and bovine (Pan et aL,

1991). However, two isoforms of subunit A have been reported from plant, human and 

chicken (Gogarten et at., 1992b; van Hill et al, 1993; Hernando et a l, 1995). In higher 

plants, two genes encoding the A subunit differ by the size of an intervening sequence. 

The two genes exhibit a coding region of the same length but differ in the length of the 

intron (Gogarten et a l, 1992b; Stark et a l, 1995). In human the VA68 isoform of V- 

ATPase subunit A is expressed in all tissues whereas the expression of a second isoform, 

H 0 6 8 , has been found only in osteoclastomas, tumours enriched in osteoclasts (van Hill 

et a l, 1993). In chicken, alternative splicing of a single gene generates two polypeptide 

isoforms of the A subunit. However, both isoforms seems to be ubiquitously expressed 

(Hernando et a l, 1995). The putative existence of different isoforms of particular V- 

ATPase subunits and thus the specific assembly of different isoforms of some o f the 

subunits may allow differential targeting and the regulation o f cell-, organelle- or 

membrane-specific V-ATPases.

All of the V-ATPases purified to date share similar functions and structural features 

(Forgac, 1989). They are multimeric proteins with at least three common subunits: a 

catalytic subunit A, a regulatory subunit B, and a proton channel subunit c with relative 

molecular masses of approximately 70,000, 60,000 and 17,000 respectively (Graf et a l,
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1992). cDNAs and genes encoding subunit A were first cloned from plant (Zimniak et 

a l, 1988)) fungi (Bowman et al„ 1988) and the archaebacterium Sulfolobus acidocaldarius 

(Denda et al, 1988). It immediately became apparent that the enzyme that functions in 

ATP-synthesis in archaebacteria is also a V-ATPase, and that subunit A is homologous to 

the b subunit o f F-ATPases. It was also revealed that a S. cerevisiae gene involved in 

trifluoperazine resistance, cloned the same year, encodes a larger protein that undergoes 

protein splicing to give the mature subunit A (Shih et a l, 1988; Hirata et al., 1990; Kane 

et at., 1990). Aligning the amino acid sequences of A and p subunits from various sources 

produced a wealth of Information. The conserved glycine-rich loop in the A-subunit was 

implicated as a primordial common structure for nucleotide binding. It is thought that 

the A subunit, as the ^ subunit of F-ATPase, is the catalytic subunits of the V-ATPase.

A cDNA encoding an M. sexta V-ATPase A-subunit has been previously cloned by 

screening a larval midgut cDNA expression library with monoclonal antibodies to the 

midgut plasma membrane subunit A (Graf et al, 1992). It shared considerable homology 

to cDNAs encoding subunit A from other sources. Using Manduca cDNA as a probe, we 

have successfully isolated two corresponding Drosophila genes, vha68-l and vha68-2, 

which encode different isofbrms of the V-ATPase A subunit. This chapter will report the 

isolation and characterisation of cDNAs and genomic DNA of the two genes.

4.3 Isolation of two different cDNAs encoding the catalytic A subunit

4.3.1 Isolation o f vha68-l cDNA

A Drosophila head ZZap II cDNA library was screened by plaque hybridisation with a 

digoxygenin-random-primed probe of cDNA encoding the M anduca  V-ATPase A- 

subunit. Positives were obtained at approximately 1:10,000 and were purified by a 

further round of plating. Nineteen clones were obtained and inserts of four recombinant
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3 1
AAT TTT CAT AAG AGC TGG TGA AAC AAA TCC AAC GAA CGA TTT GAC CGT TAC CGA AGC AGA

6 1 9 1 / 3
AGA AGA AGA GCA GCA ACC GCG ACC ATG CCC AAC TTG AGG AAA TTC AAA GAC GAG GAG CGC

M P N L R K F K D E E R

1 2 1 / 1 3 1 5 1 / 2 3
GAG TCG GAA TAT GGC CGT GTC TAC GCG GTA TCC GGA CCA GTG GTC ACC GGT GAG GCC ATG

E  S E Y G R V Y A V S G P V V T A E A M
1 8 1 / 3 3 2 1 1 / 4 3
TCT GGA TCA GCT ATG TAC GAG TTG GTC CGC GTC GGC TAC TAC GAG CTG GTG GGC GAG ATC

S G S A M Y E L V R V  G Y Y E L V G E I
2 4 1 / 5 3 2 7 1 / 6 3
ATC CGT CTG GAG GGC GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TCT GGC TTG ACT
I  R L E G D M A T I Q V Y E E T S G L T
3 0 1 / 7 3 3 3 1 / 8 3
GTC GGC GAT CCG GTG CTG CGT ACC GGC AAA CCT CTT TCC GTG GAA CTT GGA CCC GGC ATT

V  G D P V L R T G K P L S V E L G P G I
3 6 1 / 9 3 3 9 1 / 1 0 3
ATG GGC AGC ATC TTC GAC GGC ATC CAA CGT CCT TTG CGG GAC ATT GGT GTC ATG ACC AAC

M G S I F D G I Q R P L R D I G V M T N
4 2 1 / 1 1 3 4 5 1 / 1 2 3
TCC ATC TAT ATA CCC AAA GGT GTC AAC ACA ACT GCT TTG TCG CGC TCG GAG ATG TGG GAA
S I Y I P K G V N T T A L S R S E M W E
4 8 1 / 1 3 3 5 1 1 / 1 4 3
TTT AAT CCG CTG AAT GTG CGG GTG GGA TCC CAC ATC ACC GGA GGA GAT CTG TAT GGA GTG

F  N P L N V R V G S H I T G G D L Y G V
5 4 1 / 1 5 3 5 7 1 / 1 6 3
GTA CAC GAG AAC ACG CTG GTG AAG CAG CGC ATG ATT GTG GCA CCG AGG GCT AAG GGA ACC

V  H E N T L V K Q R M I V A P R A K G T
6 0 1 / 1 7 3 6 3 1 / 1 8 3 ■5
GTT CGA TAC ATT GCC CCC GCG GGC AAC TAC AAC CTG GAG GAC ATT GTC CTG GAG ACG GAG : j

V  R Y I A P A G N Y N L E D I V L E T E

■'i6 6 1 / 1 9 3 6 9 1 / 2 0 3
TTC GAC GGC GAG ATC ACC AAG CAC ACC ATG TTG CAG GTC TGG CCA GTG CGG CAG GCA CGT

F  D G E I T K H T M L Q V W P V R Q A R
7 2 1 / 2 1 3 7 5 1 / 2 2 3
CCC GTC ACA GAG AAG CTG CCA GCC AAC CAT CCG CTC TTC ACG GGC CAA CGC GTC CTT GAC

P V T E K L P A N H P L F T G Q R V L D
7 8 1 / 2 3 3 8 1 1 / 2 4 3
TCG CTC TTC CCC TGC GTA CAG GGC GGC ACC ACT GCC ATC CCC GGT GCC TTT GGC TGC GGC

S L F P C V Q G G T T A I P G A F G C G
8 4 1 / 2 5 3 8 7 1 / 2 6 3 ...i

AAG ACC GTC ATT TCG GAG GCC CTG TCC AAG TAC TCC AAC TCT GAT GTG ATC ATC TAC GTC '1
K T V I S Q A L S K Y S N S D V I I Y V ■;S

9 0 1 / 2 7 3 9 3 1 / 2 8 3 :
GGT TGC GGC GAG CGC GGT AAC GAG ATG TCT GAG GTA CTG CGT GAC TTT CCC GAA CTG ACC

G C G E R G N E M S E V L R D F P E L T ;i
9 6 1 / 2 9 3 9 9 1 / 3 0 3 :.s
TGC GAC ATA GAT GGC GTC ACC GAG TCC ATT ATG AAG CGA ACT GCT CTG GTG GCC AAC ACC

C D I D G V T E S I M K R T A h V A N T i
1 0 2 1 / 3 1 3 1 0 5 1 / 3 2 3
TCC AAC ATG CCG GTG GCA GCT CGT GAG GCC TCC ATT TAC ACT GGT ATC ACT CTG TCT GAA

S  N M P V A A R E A S  I Y T G I T L S E
1 0 8 1 / 3 3 3 1 1 1 1 / 3 4 3
TAC TTC CGT GAT ATG GGC TAC AAC GTA GCC ATG ATG GCT GAT TCC ACC TCC CGT TGG GCT

Y F R D M G Y N V A M M A D S T S R W A
1 1 4 1 / 3 5 3 1 1 7 1 / 3 5 3
GAG GCA CTT CGT GAG ATT TCG GGT CGT TTG GCT GAG ATG CCT GCC GAT TCT GGC TAC CCG

E A L R E I S G R L A  E M P A D S G Y P /
1 2 0 1 / 3 7 3 1 2 3 1 / 3 8 3
GCT TAT CTA GGA GCT CGT CTG GCC ACA TTC TAC GAG CGT GCT GGG CGC GTC AAG TGC TTG ■S':

A  Y L G A R L A T F Y E R A G R V K C L
1 2 6 1 / 3 9 3 1 2 9 1 / 4 0 3
GGT AAC CCG GAG CGC GAG GGA TCC GTG TCC ATT GTC GGA GCT GTG TCT CCT CCT GGT GGT 4

G N P E R E G S V S I  V G A V S P P G G
1 3 2 1 / 4 1 3 1 3 5 1 / 4 2 3
GAC TTC TCC GAT CCC GTG ACC TCC GCC ACT TTG GGT ATC GTG CAG GTG TTC TGG GGT CTC

D F S D P V T S A T L  G I V Q V F W G L :
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1 3 8 1 / 4 3 3  
GAC AAG AAA TTG GCC CAG CGC AAG CAC TTC

1 4 1 1 / 4 4 3  
CCC TCG ATC AAC TGG CTC ATC TCC TAC TCG

D K K L A Q R K H F P S I N W L I S Y S
1 4 4 1 / 4 5 3  
AAG TAC ATG CGT GCT CTG GAT GAA TAC TAT

1 4 7 1 / 4 6 3  
GAC AAG AAC TAC CCC GAG TTC GTG CCA CTA

K Y M R A L D E Y Y D K N Y P E F V P L

1 5 0 1 / 4 7 3  
CGC ACC AAG GTC AAG GAG ATC CTG CAG GAG

1 5 3 1 / 4 8 3  
GAG GAG GAT CTG TCT GAG ATC GTT CAG CTG

R T K V K E I L Q E E E D L S E I V Q L
1 5 6 1 / 4 9 3  
GTG GGC AAA GCA TCA CTG GCC GAG ACC GAC

1 5 9 1 / 5 0 3  
AAG GTG ACC CTG GAA GTG GCA AAG CTG CTG

V  G K A S L A E T D K V  T L E V A K L L
1 6 2 1 / 5 1 3  
AAG GAC GAC TTT CTG CAA CAG AAC TCC TAC

1 6 5 1 / 5 2 3  
TCA CCA TAC GAT CGC GTT TGT CCC TTC TAC

K D D F L Q Q N S Y S P Y D R V C P F Y
1 6 8 1 / 5 3 3  
AAG ACC GTG GGC ATG CTG AGA AAC ATC ATG

1 7 1 1 / 5 4 3  
GCC TTC TAT GAG ACC GCC CGG CAT GCC GTT

K T V G M L R N I M A  F  Y E T A R H A V
1 7 4 1 / 5 5 3  
GAG TCC ACA GCC CAG TCG GAC AAC AAG ATC

1 7 7 1 / 5 6 3  
ACA TGG AAC ACC ATC AGG GAA TCG ATG GGC

E S T A Q S D N K I T W N T I R E S M G
1 8 0 1 / 5 7 3  
GGA ATT ATG TAC CAG CTG TCG TCG ATG AAG

1 8 3 1 / 5 8 3  
TTC AAG GAC CCT GTG ,AAA GAT GGC GAG CAA

G I M Y Q L S S M K F E D P V K D G E Q
1 8 6 1 / 5 9 3  
AAG ATC AAG GCG GAC TAC GAC CAG CTG TAC

1 8 9 1 / 6 0 3  
GAG GAT CTG CAG CAG GCC TTC CGA AAT CTG

K I K A D Y D Q L Y E D L Q Q A F R N L
1 9 2 1 / 6 1 3  
GAG GAC TAA GCG GAA ACG GCC AGA AAC CAT

1 9 5 1
CTG CGG GCT TTC CTA GCG GGA GGA ATG GAA

E D 
1 9 8 1  
AAT GAA GCA AAC CAA ACG AAA TAA GTA ACC

2 0 1 1
AAA ACT AGG TTA TTA TTC GAA TTC CCC ATT

2 0 4 1  
CAA TCT AGT CAT ATT TAC ATA ATG CAT AAT

2 0 7 1
AAG ATA TTT GAA TCC AAG TTT ACT TAT AAG

2 1 0 1  
TTT AAC AAA CAG TTT GGC CCG CTT CAG GTC

2 1 3 1
TAG TCA GGT CAG AAT CGA ATC ACC AGA AGA

2 1 6 1  
TAC GCA AAA CGA AAG GAA AGA CGA ACA ATA

2 1 9 1
ATT AGT CGG TAG CGC AAA TGG AAC GCA GTT

2 2 2 1  
AAA CCA GCC ATA TAC ATA AAT ACC ATA CAT

2 2 5 1
ATA TGA CAC ATA TGT ATA ATT ATC TAT GTT

2 2 8 1  
GAT ATA TAA ATA TAA TTC ACA GCT ATG TAT

2 3 1 1
TGG TAG TAA ATT TTC ATA TAG TTA TCG ATT

2 3 4 1  
GTG TTC GTT ACC CTA TTG TGT GAA ACT AAA

2 3 7 1
CCA ACT AAA CGA CGA GTC TAA AGG GCG TTT

2 4 0 1  
GAA TCT TTA CGA AAT TAC AAA ATA TTA TAT

2 4 3 1
TCC TAC ATA TTA TAG ACC TTT AAA GAA CGC

2 4 6 1  
AAT AAC AAC GTA GCC CCA AAA GCA TGT ACC

2 4 9 1
TCT ACT ACC AAA GGA TAG CTA TTT CAG TAA

2 5 2 1  
CTT GTG TGT GTT GCA AAT GGA GCT ATG GAA

2 5 5 1
ATA AAA TGT ATT ATG AAT GTT ACA AA

Figure 4.1 cDNA and putative aa sequence of vha68-l. The presumed poiyadenylation 

signal is underlined. The start of the poly A tail is marked in bold. This cDNA sequence 

has been published in the GenBank database under the accession number U19745.
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phages were excised as pBluescript plasmids. Double-stranded sequencing was performed 

according to the Sequenase™ II protocol (US Biochemical, Cleveland, O H), with the 

aid of synthetic oligo primers. All of the four clones have the same 3' end, except for 

differing lengths of the poly A tails. The 5' end sequence of three cDNA clones, p68Al, 

p68Bl and p68El, were found to be Identical, except for small differences in the length of 

the 5' end. However, p68C l is the shortest o f the four clones beginning at nucleotide 

663. The longest cDNA p68Al was sequenced from both DNA strands, using synthetic 

oligonucleotides to extend the reading. The resulting sequence consists of 2576 bp. A 

long open reading frame encodes a putative polypeptide of 614 amino acids (Figure 4.1) 

with a of 68417 Da which is clearly a V-ATPase A subunit. The gene has been 

named vha68-l. The open reading frame is preceded by a 5' untranslated region (UTR) 

of 84 bp. The 3' U TR  of 644 bp long contains a poly A addition signal between 

nucleotides 2550-2556, 19 bases upstream of the poly A tail.

4.3.2 Isolation of vha68-2 cDNA

A NM1149 cDNA library representing adult heads of the D. melanogaster eyes absent 

{eya) mutant was screened by plaque hybridisation with the genomic DNA fragment of 

the plasmid rescued from the fly line l(2)k02508 (See Figure 3.3 in Chapter 3). Plaques 

giving both strong and weak hybridising signals were picked. More than 20 positive 

plaques were obtained, of which five recombinant phages were purified. cDNA inserts in 

the recombinant phages were excised by EcoRl and HineHll. There were three types of 

cDNAs according to digestion map and the intensity of the hybridisation to the genomic 

DNA probe (Figure 4.2). The inserts were subcloned into pBluescript SK" and sequenced 

by the universal primers T3 and T7 from the both ends. While the sequence of p68c-5 

was identical to that of vha68~l cDNA, the digestion maps and sequences o f p68c-l, 

p68c-2 and p68c-3 are different from vha68~l cDNA. Sequences of the three inserts are 

identical except for small length differences at the 5' end. The longest cDNA, p68c-l, 

was sequenced from both strands, using synthetic oligonucleotides to extend
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Figure 4.2 Three types of cDNA inserts hybridised to vha68 probes. cDNA inserts in the 

recombinant phages were excised by EcoRl and HindiW. The Southern blot was probed 

with the genomic DNA fragment of the plasmid rescued from the fly line l(2)k02508.
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1  3 1  :
GTT CGT TCT GTT GGA GAA AAG CAG CAA TCA CAC GTT CGC AAG GTG AAC GCG AAG ACA CAG
6 1  9 1 / 2  j
CAA ATC GAA AAA ACA GAA TAA AGC AAA ATG TCC AAC CTT AAG CGT TTC GAT GAT GAG GAG

M S N L K R F D D E E  
1 2 1 / 1 2  1 5 1 / 2 2  i
CGT GAG TCC AAA TAT GGA CGT GTC TTC GCT GTC TCC GGT CCT GTC GTC ACC GCC GAG GCC J
R E S K Y G R V F A V S G P V V T A E A  
1 8 1 / 3 2  2 1 1 / 4 2
ATG TCT GGA TCA GCT ATG TAC GAG TTG GTC CGC GTC GGC TAC TAC GAG CTG GTG GGC GAG
M S G S A M Y E L V R V G Y Y E L V G E
2 4 1 / 5 2  2 7 1 / 6 2  |
ATC ATC CGT CTG GAG GGT GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TCT GGC GTA ■
I I R L E G D M A T I Q V Y E E T S G V
3 0 1 / 7 2  3 3 1 / 8 2
ACT GTC GGA GAT CCG GTG CTG CGT ACC GGC AAG CCT CTT TCC GTG GAG CTG GGA CCC GGT ■
T V G D P V L R T G K P L S V E L G P G
3 6 1 / 9 2  3 9 1 / 1 0 2
ATC ATG GGC AGC ATC TTT GAC GGT ATC CAG CGT CCC CTG AAG GAC ATT AAC GAG CTG ACC 0
I M G S I F D G I Q R P L K D I N E L T  ■ Î
4 2 1 / 1 1 2  4 5 1 / 1 2 2
GAA TCC ATC TAC ATT CCC AAG GGT GTG AAC GTG CCC AGT TTG TCC CGC GTG GCC AGC TGG
E S  l Y I P K G V N V P S L S R V A S W  
4 8 1 / 1 3 2  5 1 1 / 1 4 2
GAG TTC AAC CCC CTG AAC GTC AAG GTC GGC TCC CAC ATC ACC GGA GGT GAC CTG TAC GGT |
E F N P L N V K V G S H I T G G D L Y G  
5 4 1 / 1 5 2  5 7 1 / 1 6 2  7
CTG GTG CAT GAG AAC ACT CTG GTC AAG CAC AAG ATG ATT GTG AAC CCC CGC GCC AAG GGA
L V H E N T L V K H K M I V N P R A K G  •
6 0 1 / 1 7 2  6 3 1 / 1 8 2
ACA GTG CGC TAC ATC GCC CCC TCC GGC AAC TAC AAG GTC GAC GAT GTC GTC CTG GAG ACC
T V R Y I A P S G N Y K V D D V V L E T  
6 6 1 / 1 9 2  6 9 1 / 2 0 2
GAG TTC GAT GGA GAG ATC ACC AAG CAC ACC ATG TTG CAG GTG TGG CCA GTG CGT CAC CAC /
E F D G E I T K H T M L Q V W P V R H H  /
7 2 1 / 2 1 2  7 5 1 / 2 2 2
GCT CCC GTG ACC GAG AAG CTG CCC GCC AAC CAC CCC CTG CTC ACC GGA CAG CGT GTG CTC
A P V T E K L P A N H P L L T G Q R V L  ÿ
7 8 1 / 2 3 2  8 1 1 / 2 4 2 i';iGAC TCG CTC TTC CCC TGT GTC CAG GGC GGT ACC ACC GCC ATT CCC GGA GCT TTC GGT TGC 
D S L F P C V Q G G T T A I P G A F G C  
8 4 1 / 2 5 2  8 7 1 / 2 5 2  7
GGC AAG ACT GTG ATC TCG CAG GCT CTG TCC AAG TAC TCC AAC TCC GAT GTC ATC ATC TAC
G K T V I S Q A L S K Y S N S D V I  I  Y  
9 0 1 / 2 7 2  9 3 1 / 2 8 2  ;
GTC GGT TGC GGT GAG CGT GGT AAC GAG ATG TCT GAG GTA CTG CGT GAC TTC CCC GAG CTG
V G C G E R G N E M S E V L R D F P E L  ;
9 6 1 / 2 9 2  9 9 1 / 3 0 2
TCC GTG GAG ATC GAT GGT GTG ACC GAG TCC ATC ATG AAG CGT ACC GCC CTT GTG GCC AAC
S V E I D G V T E S I M K R T A L V A N  /
1 0 2 1 / 3 1 2  1 0 5 1 / 3 2 2
ACC TCC AAC ATG CCT GTG GCT GCT CGA GAG GCC TCC ATC TAC ACT GGT ATC ACC TTG TCC i
T S N M P V A A R E A S I Y T G I T L S
1 0 8 1 / 3 3 2  1 1 1 1 / 3 4 2  t
GAA TAC TTC CGT GAT ATG GGT TAC AAC GTG TCC ATG ATG GCT GAT TCC ACC TCC CGT TGG
E Y F R D M G Y N V S M M A D S T S R W
1 1 4 1 / 3 5 2  1 1 7 1 / 3 6 2  7
GCT GAG GCT CTT CGT GAA ATT TCT GGT CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC TAC
A E A L R E I S G R L A E M P R D S G Y
1 2 0 1 / 3 7 2  1 2 3 1 / 3 8 2
CCA GCC TAC TTG GGA GCT CGT CTG GCC TCC TTC TAC GAG CGT GCC GGT CGC GTT AAG TGC <
P A Y L G A R L A S F Y E R A G R V K C  1
1 2 6 1 / 3 9 2  1 2 9 1 / 4 0 2
TTG GGT AAC CCC GAG CGC GAG GGA TCC GTG TCC ATT GTC GGA GCT GTG TCT CCT CCT GGT
L G N P E R E G S V S I V G A V S P P G  i
1 3 2 1 / 4 1 2  1 3 5 1 / 4 2 2  %
GGT GAC TTC TCC GAT CCC GTA ACC TCC GCC ACT CTG GGT ATC GTG CAG GTG TTC TGG GGT
G D F S D P V T S A T L G I V Q V F W G

85 Ï



1 3 8 1 / 4 3 2  
CTC GAC AAG AAG TTG GCC CAG CGC AAG CAT

1 4 1 1 / 4 4 2  
TTC CCC TCG ATC AAC TGG CTC ATC TCC TAC

L D K K L A Q R K H F  P S I N W L I S Y
1 4 4 1 / 4 5 2  
TCG AAG TAC ATG CGT GCT CTG GAT GAC TTC

1 4 7 1 / 4 6 2  
TAT GAC AAG AAC TTC CCG GAA TTC GTG CCG

S K Y M R A L D D F Y D K N F P E F V P
1 5 0 1 / 4 7 2  
CTG CGT ACC AAG GTC AAG GAG ATC CTG CAG

1 5 3 1 / 4 8 2  
GAG GAG GAG GAT CTG TCT GAG ATC GTG CAA

L  R T K V K E I L Q E E E D L S E I V Q
1 5 6 1 / 4 9 2  
CTG GTC GGC AAG GCC TCT CTC GCC GAA ACC

1 5 9 1 / 5 0 2  
GAC AAG ATC ACG CTG GAG GTG GCC AAG CTG

L V  G K A S L A E T D K I T L E V A K L
1 6 2 1 / 5 1 2  
CTG AAG GAC GAT TTC CTG CAG CAG AAC TCC

1 6 5 1 / 5 2 2  
TAC TCC TCG TAC GAT CGC TTC TGC CCC TTC

L K D D F L Q Q N S Y S S Y D R F C P F
1 6 8 1 / 5 3 2  
TAC AAG ACC GTG GGC ATG TTG AGG AAC ATC

1 7 1 1 / 5 4 2  
ATC GAC TTC TAC GAC ATG GCC CGT CAC TCC

Y K T V G M L R N I I  D F Y D M A R H 8
1 7 4 1 / 5 5 2  
GTG GAG TCT ACG GCT CAG TCT GAG AAC AAG

1 7 7 1 / 5 6 2  
ATC ACC TGG AAC GTG ATT CGT GAG GCA ATG

V  E S T A Q S E N K I  T W N V I R E A M
1 8 0 1 / 5 7 2  
GGC AAC ATT ATG TAC CAG CTG TCA TCC ATG

1 8 3 1 / 5 8 2  
AAG TTC AAG GAC CCC GTT AAG GAT GGT GAG

G N I M Y Q L S S M K F K D P V K D G E
1 8 6 1 / 5 9 2  
GCC AAG ATC AAG GCT GAC TTC GAG CAG CTG

1 8 9 1 / 6 0 2  
CAC GAG GAC CTG CAG CAG GCC TTC AGA AAT

A  K I K A D F E Q L H E D L Q Q A F R N
1 9 2 1 / 6 1 2  
CTG GAG GAC TAG AGA CCG ACG ACT GGC CCT

1 9 5 1  
ACT TTT ACA CTC TAA TCT TAT ATT TGT TAT

L E D
1 9 8 1
ATA GTT AAC GTT TAA AAA TGA AAG CAG TCA

2 0 1 1  
AAA ACC ATC CGA AAA AGC CTA ATC AAA CAC

2 0 4 1
CAA CAA TTC CAG CTG CAT TCG ATG AAA AAC

2 0 7 1  
AAA AGT CCA ACA AAT ACC ATA ACT TCT TGG

2 1 0 1
TGC CTG CGA GAG ATG TAA ACA TTC CGG CCT

2 1 3 1  
GCG GTT AAT ACT TTC CCC TAA CCA CGC CCC

2 1 6 1
CTC CGC CCC TTG AAG GGC AAC TCT AGG CAA

2 1 9 1  
CAG CAA CTA CAA CGT CCT GCT ATG TAC TTC

2 2 2 1
CAT TTA CAA CAA CAA CAC CAA CAT ACA CTT

2 2 5 1  
GAA TAA AAG TAC ACG GAC ACT GGC GCA CAC

2 2 8 1
ACA ACA CAT ACA TAA AAG ACA CAA ATA CAA

2 3 1 1  
ATG CAT GCA TAA ATA GTA TTA TTG TTT AAT

2 3 4 1
GAA TGG AAA TTC TTG TTT ATT TGT GAA AAA

2 3 7 1  
AGT CAT GTT TTC TCC CTG TTT GTT TGT TAA

2 4 0 1
ATT TAT GTA AAT ATT TAA AGT ATG AAA TAT

2 4 3 1  
TAA ATG TAC GAA TAA AGT GCA ACA ACA AAT

2 4 6 1
ACA TTT AAT GTA AA

Figure 4.3 cDNA and predicted amino acid sequence for vha68~2. The presumed 

polyadenylation signal is underlined. The beginning of the poly A tail is marked in bold. 

The cDNA sequence has been published in the GenBank database under the accession 

number U59146.
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readings. It is 2474 bp long. The long open reading frame encoded a putative 

polypeptide of 614 amino acids (Figure 4.3) with a molecular mass of 68338 Da. The 

high homology of this cDNA sequence with that of vha68~l cDNA (Figure 4.4) and 

with sequences for A subunits from other sources in the GenBank database (Figure 4.5) 

suggests that this new cDNA encodes a second isoform of the catalytic A subunit o f the 

Drosophila V-ATPase. Accordingly, the gene was named as vha68-2. The 5' U TR  of 

vha68-2 cDNA is 88 bp long, the 3' UTR 542 bp. There is a poly A addition signal 

between nucleotides 2446-2451, 24 bp upstream of the poly A tail.

The digestion map of p68c-4 is different from both vha68~ l and vha68-2  cDNA. 

W hether this insert represents a third vha68 cDNA awaits confirmation by sequencing 

the insert.

4.3.3 Comparison o f the two isoforms

The length of the two cDNAs are similar. vha68-l is 2576 bp while vha68~2 is 2474 bp, 

about 100 bp shorter. Both cDNAs have a long open reading frame of 1842 bp which 

encodes a polypeptide of 614 amino acids »68 kDa. The two polypeptides share 91% aa 

identity. The coding DNA sequences share 85.5% identity. However, the homology 

between the 5' and 3' noncoding sequence is very low or without homology (Figure 4.4). 

The 5' UTRs in the two longest cDNA of vha68-l and vha68-2 are almost of the same 

size, but the 3' U TR of vha68~l is 102 bp longer than that of vha68-l. The poly A tail 

signal AATAAA was found near the poly A tails of both cDNAs,

The predicted translation start site of vha68-2 CAAAATG is the same as that o f vha26  

(Sec chapter 6) which is in perfect match with this consensus start site 

(C/A)AA(A/C)ATG (Cavener, 1987). However, vha68-l has a different start site 

GACCATG. vha68~l uses TAA for the translation stop codon but vha68~2 uses TAG as 

the stop codon.
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I n i t l

v h a 6 8

vh a 6 8

5 4 4 8  I n i t n :  5 4 4 8  O p t :  5 4 9 4
8 4 .1 %  i d e n t i t y  i n  1 9 2 4  tap o v e r l a p

1 0  2 0  3 0  4 0  5 0

-1 AATTTTCATAAGAGCTGGTGAAA--CA- -  AAT V  CCAACGAACG— ATTTGACCGTTA— CC

I I I I  I N I  I I  I I I  I I I I  I I  I I I I  I I  I I
■2 GTTCGTTCTGTTGGAGAAAAGCAGCAAT CACACGTTCGCAAGGTGAACGCGAAGAC

10 20 3 0 4 0 5 0

6 0 7 0 8 0 9 0 100 110
v h a 6 8 - l  GAAGCAGAA GAAGAAGAGCAGCAACCGCGACCATGCCCAACTTGAGGAAATTCAAAGACG

v h a 6 8 - 2  ACAGCA-aaV TCGAAAAAACAGAATAAAGCAAAATGTCCAACCTTAAGCGTTTCGATGATG

6 0

120

120

1 8 0

1 8 0

2 4 0

2 4 0

3 0 0

3 0 0

3 6 0

3 6 0

4 2 0

4 2 0

4 8 0

4 8 0

7 0 8 0 9 0 100 110

1 3 0 1 4 0 1 5 0 1 6 0 1 7 0

v h a 6 8 - l  AGGAGCGCGAGTCGGAATATGGCCGTGTCTACGCGGTATCCGGACCAG V TGGTCACCGCTG

v h a 6 8 - 2  AGGAGCGTGAGTCCAAATATGGACGTGTCTTCGCTGTCTCCGGTCCTG V  TCGTCACCGCCG

1 3 0 1 4 0 1 5 0 1 6 0

1 9 0 200 210 220

1 9 0 200 210 220

2 5 0 2 6 0 2 7 0 2 8 0

2 5 0 2 6 0 2 7 0 2 8 0

3 1 0 3 2 0 3 3 0 3 4 0

3 1 0 3 2 0 3 3 0 3 4 0

3 7 0 3 8 0 3 9 0 4 0 0

3 7 0 3 8 0 3 9 0 4 0 0

4 3 0 4 4 0 4 5 0 4 6 0

4 3 0 4 4 0 4 5 0 4 6 0

4 9 0 5 0 0 5 1 0 5 2 0

4 9 0 5 0 0 5 1 0 5 2 0

1 7 0

2 3 0
v h a 6 8 -1  AGGCCATGTCTGGATCAGCTATGTACGAGTTGGTCCGCGTCGGCTACTACGAGCTGGTGG

l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l
v h a 6 8 - 2  AGGCCATGTCTGGATCAGCTATGTACGAGTTGGTCCGCGTCGGCTACTACGAGCTGGTGG

2 3 0

2 9 0
v h a 6 8 -1  GCGAGATCATCCGTCTGGAGGGCGACATGGCCACCATCCAGGTGTACGAGGAGACCTCTG

l l l l l l l l l l l l l l l l l l l l l l  I I I I I I I I I I I M I i l l l l l l l l l l l l l l l l i l l i l l
v h a 6 8 - 2  GCGAGATCATCCGTCTGGAGGGTGACATGGCCACCATCCAGGTGTACGAGGAGACCTCTG

2 9 0

3 5 0
v h a 6 8 - l  GCTTGACTGTCGGCGATCCGGTGCTGCGTACCGGCAAACCTCTTTCCGTGGAACTTGGAC

I I  I l l l l l i l l  I I I I I I I I I I I I I M I I I I I I I I  l l l l l l l l l l l l l l  I I  n i l
v h a 6 8 - 2  GCGTAACTGTCGGAGATCCGGTGCTGCGTACCGGCAAGCCTCTTTCCGTGGAGCTGGGAC

3 5 0

4 1 0
v h a 6 8 - l  CCGGCATTATGGGCAGCATCTTCGACGGCATCCAACGTCCTTTGCGGGACATTGGTGTCA

n i l  I I  i i i i i i i i i i i i i i  i n n  i n n  i n n  n  n n n i  i
v h a 6 8 - 2  CCGGTATCATGGGCAGCATCTTTGACGGTATCCAGCGTCCCCTGAAGGACATTAACGAGC

4 1 0

4 7 0
V h a68-1  TGACCAACTCCATCTATATACCCAAAGGTGTCAACACAACTGCTTTGTCGCGCTCGGAGA

i n n  I l l l l l i l l  II i n n  i n n  i n  i n n n  i n  n  i
v h a 6 8 - 2  TGACCGAATCCATCTACATTCCCAAGGGTGTGAACGTGCCCAGTTTGTCCCGCGTGGCCA

4 7 0

5 3 0
v h a 6 8 -1  TGTGGGAATTTAATCCGCTGAATGTGCGGGTGGGATCCCACATCACCGGAGGAGATCTGT

i n n  II II II i n n  n  i n  n  n n n n n n n n i  n  n n
v h a 6 8 - 2  GCTGGGAGTTCAACCCCCTGAACGTCAAGGTCGGCTCCCACATCACCGGAGGTGACCTGT

5 3 0

88



540 550 560 570 580 590
v h a 6 8 -1  ATGGAGTGGTACACGAGAACACGCTGGTGAAGCAGCGCATGATTGTGGCACCGAGGGCTA

I I I  M i l  I I  l l l l l i l l  M i l l  M i l l  l l l l l l l l l  I I  I I I  I
v h a 6 8 - 2  ACGGTCTGGTGCATGAGAACACTCTGGTCAAGCACAAGATGATTGTGAACCCCCGCGCCA

5 4 0 5 5 0 5 6 0 5 7 0 5 8 0 5 9 0

6 0 0 6 1 0 6 2 0 6 3 0 6 4 0 6 5 0
v h a 6 8 -1  AGGGAACCGTTCGATACATTGCCCCCGCGGGCAACTACAACCTGGAGGACATTGTCCTGGi i i i i i i  I I  I I  i n n  n n n  i n n n n n i  i n n  i n n n i
v h a 6 8 - 2  AGGGAACAGTGCGCTACATCGCCCCCTCCGGCAACTACAAGGTCGACGATGTCGTCCTGG

6 0 0 6 1 0 6 2 0 6 3 0 6 4 0 6 5 0

6 6 0 6 7 0 6 8 0 6 9 0 7 0 0 7 1 0
v h a 6 8 -1  AGACGGAGTTCGACGGCGAGATCACCAAGCACACCATGTTGCAGGTCTGGCCAGTGCGGCni l  l l l l l i l l  I I  n n n n n n n n n n n n n n i  n n n n i n  i
v h a 6 8 - 2  AGACCGAGTTCGATGGAGAGATCACCAAGCACACCATGTTGCAGGTGTGGCCAGTGCGTC

6 6 0 6 7 0 6 8 0 6 9 0 7 0 0 7 1 0

7 2 0 7 3 0 7 4 0 7 5 0 7 6 0 7 7 0
v h a 6 8 - l  AGGCACG-TCCCGTCACAGAGAAGCTGCCAGCCAACCATCCGCTCTTCACGGGCCAACGC

I n i l  n n n  n n n n n n i  n n n n  n n n n  n n n
v h a 6 8 - 2  A-CCACGCTCCCGTGACCGAGAAGCTGCCCGCCAACCACCCCCTGCTCACCGGACAGCGT

7 2 0 7 3 0 7 4 0 7 5 0 7 6 0

7 8 0 7 9 0 8 0 0 8 1 0 820

7 8 0 7 9 0 8 0 0 8 1 0 8 2 0

8 4 0 8 5 0 8 6 0 8 7 0 8 8 0

V<
8 4 0 8 5 0 8 6 0 8 7 0 8 8 0

9 0 0 9 1 0 9 2 0 9 3 0 9 4 0

9 0 0 9 1 0 9 2 0 9 3 0 9 4 0

9 6 0 9 7 0 9 8 0 9 9 0 1000

9 6 0 9 7 0 180 9 9 0 1000

1020 1 0 3 0 1 0 4 0 1 0 5 0 1 0 6 0

1020 1 0 3 0 1 0 4 0 1 0 5 0 1 0 6 0

1 0 8 0 1 0 9 0 1100 1110 1120

1080 1090 1100 1110 1120

7 7 0

8 3 0
v h a 6 8 - l  GTCCTTGACTCGCTCTTCCCCTGCGTACAGGGCGGCACCACTGCCATCCCCGGTGCCTTT

I I  II n n n n n n n n i  n n n n i i  i n n  i n n  i n n  n n
v h a 6 8 - 2  GTGCTCGACTCGCTCTTCCCCTGTGTCCAGGGCGGTACCACCGCCATTCCCGGAGCTTTC

8 3 0

8 9 0
v h a 6 8 -1  GGCTGCGGCAAGACCGTCATTTCGCAG GCCCTGTCCAAGTACTCCAACTCTGATGTGATC

v h a 6 8 - 2  GGTTGCGGCAAGACTGTGATCTCGCAG V  GCTCTGTCCAAGTACTCCAACTCCGATGTCATC

8 9 0

9 5 0
v h a 6 8 -1  ATCTACGTCGGTTGCGGCGAGCGCGGTAACGAGATGTCTGAGGTACTGCGTGACTTTCCCn n n n n n n n i i n n  n n n n n n n n n n n n n n n n  i n
v h a 6 8 - l  ATCTACGTCGGTTGCGGTGAGCGTGGTAACGAGATGTCTGAGGTACTGCGTGACTTCCCC

9 5 0

1010
v h a 6 8 -1  GAACTGACCTGCGACATAGATGGCGTCACCGAGTCCATTATGAAGCGAACTGCTCTGGTG

I I  I I I  I I  I I  n i n n  n i i i i i n n n  n n n n  n n n i n
v h a 6 8 - 2  GAGCTGTCCGTGGAGATCGATGGTGTGACCGAGTCCATCATGAAGCGTACCGCCCTTGTG

1010

1 0 7 0
v h a 6 8 - l  GCCAACACCTCCAACATGCCGGTGGCAGCTCGTGAGGCCTCCATTTACACTGGTATCACTi i i i i i i i n n i i i i i i i i  i n n  i n n  n n n n n i  n n n n n n n
v h a 6 8 - 2  GCCAACACCTCCAACATGCCTGTGGCTGCTCGAGAGGCCTCCATCTACACTGGTATCACC

1 0 7 0

1 1 3 0
v h a 6 8 -1  CTGTCTGAATACTTCCGTGATATGGGCTACAACGTAGCCATGATGGCTGATTCCACCTCCn i l  n n n n n n n n n n  n n n n  n n n n n n n n n n n i
v h a 6 8 - 2  TTGTCCGAATACTTCCGTGATATGGGTTACAACGTGTCCATGATGGCTGATTCCACCTCC

1130
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1140 1150 1160 1170 1180

1 1 4 0
1200

1 1 5 0
1210

1 1 6 0
1220

1 1 7 0
1 2 3 0

1 1 8 0
1 2 4 0

1200 1210 1220 1 2 3 0 1 2 4 0

1 2 6 0 1270 1280 1 2 9 0 1 3 0 0

1 2 6 0 1 2 7 0 1 2 8 0 1 2 9 0 1 3 0 0

1 3 2 0 1 3 3 0 1 3 4 0 1 3 5 0 1 3 6 0

1 3 2 0 1 3 3 0 1 3 4 0 1 3 5 0 1 3 6 0

1 3 8 0 1 3 9 0 1 4 0 0 1 4 1 0 1 4 2 0

1 3 8 0 1 3 9 0 1 4 0 0 1 4 1 0 1 4 2 0

1 4 4 0 1 4 5 0 1 4 6 0 1 4 7 0 1 4 8 0

1 4 4 0 1 4 5 0 1 4 6 0 1 4 7 0 1 4 8 0

1 5 0 0 1 5 1 0 1 5 2 0 1 5 3 0 1 5 4 0

1 5 0 0 1 5 1 0 1 5 2 0 1 5 3 0 1 5 4 0

1 5 6 0 1 5 7 0 1 5 8 0 1 5 9 0 1 6 0 0

1 5 6 0 1 5 7 0 1 5 8 0 1 5 9 0 1 6 0 0

1 6 2 0 1 6 3 0 1 6 4 0 1 6 5 0 1 6 6 0

1190
v h a 6 8 - 1 CGTTGGGCTGAGGCACTTCGTGAGATTTCGGGTCGTTTGGCTGAGATGCCTGCCGATTCT

l l l l l l l l l l l l l l  l l l l l i l l  m i l  m i l l  I m m m m  m m
v h a 6 8 - 2  CGTTGGGCTGAGGCTCTTCGTGAAATTTCTGGTCGTCTCGCTGAGATGCCTCGCGATTCC

1 1 9 0
1 2 5 0

v h a 6 8 - l  GGCTACCCGGCTTATCTAGGAGCTCGTCTGGCCACATTCTACGAGCGTGCTGGGCGCGTCi i i Mi i i  II II I m m m m m  i m m m i i m  ii m u
v h a 6 8 - 2  GGCTACCCAGCCTACTTGGGAGCTCGTCTGGCCTCCTTCTACGAGCGTGCCGGTCGCGTT

1 2 5 0

1 3 1 0
v h a 6 8 -1  AAGTGCTTGGGTAACCCGGAGCGCGAGGGATCCGTGTCCATTGTCGGAGCTGTGTCTCCT

i i i i i i i i i i i i i i i i i  i i i i i i m m i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
v h a 6 8 - 2  AAGTGCTTGGGTAACCCCGAGCGCGAGGGATCCGTGTCCATTGTCGGAGCTGTGTCTCCT

1 3 1 0

1 3 7 0
v h a 6 8 - l  CCTGGTGGTGACTTCTCCGATCCCGTGACCTCCGCCACTTTGGGTATCGTGCAGGTGTTCi i i i i i i i i i i i i i i i i i i i i i i m m m m m  m m m m m m i i
v h a 6 8 - 2  CCTGGTGGTGACTTCTCCGATCCCGTAACCTCCGCCACTCTGGGTATCGTGCAGGTGTTC

1 3 7 0

1 4 3 0
v h a 6 8 -1  TGGGGTCTCGACAAGAAATTGGCCCAGCGCAAGCACTTCCCCTCGATCAACTGGCTCATC

I I I I I I I I I I I I I I I I I  i i i i i i i i i i mi i i i  m m m m m m m m
v h a 6 8 - 2  TGGGGTCTCGACAAGAAGTTGGCCCAGCGCAAGCATTTCCCCTCGATCAACTGGCTCATC

1 4 3 0

1 4 9 0
v h a 6 8 - l  TCCTACTCGAAGTACATGCGTGCTCTGGATGAATACTATGACAAGAACTACCCCGAGTTC

i i i i i i i i i i i mi i i i i i i i i i i mi i i i  I l l l l l l l l l l l l l l  I I I  I I  I I I
v h a 6 8 - 2  TCCTACTCGAAGTACATGCGTGCTCTGGATGACTTCTATGACAAGAACTTCCCGGAATTC

1 4 9 0

1 5 5 0
v h a 6 8 -1  GTGCCACTACGCACCAAGGTCAAGGAGATCCTGCAGGAGGAGGAGGATCTGTCTGAGATCm i l  II II m m m m m m m m m m m m m m m m
v h a 6 8 - 2  GTGCCGCTGCGTACCAAGGTCAAGGAGATCCTGCAGGAGGAGGAGGATCTGTCTGAGATC

1 5 5 0

1 6 1 0
v h a 6 8 -1  GTTCAGCTGGTGGGCAAAGCATCACTGGCCGAGACCGACAAGGTGACCCTGGAAGTGGCA

I I  I I  Mi l l  m i l  I I  I I  I I  Mi l l  l l l l l l l l l  I I I  m i l  m i l
v h a 6 8 - 2  GTGCAACTGGTCGGCAAGGCCTCTCTCGCCGAAACCGACAAGATCACGCTGGAGGTGGCC

1 6 1 0

1 6 7 0
v h a 6 8 - l  AAGCTGCTGAAGGACGACTTTCTGCAACAGAACTCCTACTCACCATACGATCGCGTTTGT

I I I I I I I I I I I I I I I I I  I I  M i l l  i i i i i i i i i i i i i i  I i i i i i i m  I I I
v h a 6 8 - 2  AAGCTGCTGAAGGACGATTTCCTGCAGCAGAACTCCTACTCCTCGTACGATCGCTTCTGC 

1 6 2 0  1 6 3 0  1 6 4 0  1 6 5 0  1 6 6 0  1 6 7 0

1 6 8 0  1 6 9 0  1 7 0 0  1 7 1 0  1 7 2 0  1 7 3 0
V h a 6 8 -1  CCCTTCTACAAGACCGTGGGCATGCTGAGAAACATCATGGCCTTCTATGAGACCGCCCGGm m m m m m m m  m i  m u m  i m m  ii i m u
v h a 6 8 - 2  CCCTTCTACAAGACCGTGGGCATGTTGAGGAACATCATCGACTTCTACGACATGGCCCGT 

1 6 8 0  1 6 9 0  1 7 0 0  1 7 1 0  1 7 2 0  1 7 3 0
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1740 1750 1760 1770 1780 1790
v h a 6 8 - l  CATGCCGTTGAGTCCACAGCCCAGTCGGACAACAAGATCACATGGAACACCATCAGGGAA

I I  n i l  M i l l  I I  I I  M i l l  I I  M M M M M I  M M M  I I  I I I
vh a 6 8 ~ 2  CACTCCGTGGAGTCTACGGCTCAGTCTGAGAACAAGATCACCTGGAACGTGATTCGTGAG

1 7 4 0
1 8 0 0

1 7 5 0
1 8 1 0

1 7 6 0
1 8 2 0

1 7 7 0
1 8 3 0

1 7 8 0
1 8 4 0

1 7 9 0
1 8 5 0

v h a 6 8 - l  TCGATGGGCGGAATTATGTACCAGCTGTCGTCGATGAAGTTCAAG V GACCCTGTGAAAGATV<

v h a 6 8 - 2  GCAATGGGCAACATTATGTACCAGCTGTCATCCATGAAGTTCAAG V GACCCCGTTAAGGAT

1 8 0 0 1 8 1 0 1 8 2 0 1 8 3 0 1 8 4 0 1 8 5 0

1 8 6 0 1 8 7 0 1 8 8 0 1 8 9 0 1 9 0 0

1 8 6 0 1 8 7 0 1 8 8 0 1 8 9 0 1 9 0 0

1 9 1 0
v h a 6 8 -1  GGCGAGCAAAAGATCAAGGCGGACTACGACCAGCTGTACGAGGATCTGCAGCAGGCCTTC

I I  M l  M M M M M I  M M  M l  M M M  I I I I I I I  M M M M M M I M
v h a 6 8 - 2  GGTGAGGCCAAGATCAAGGCTGACTTCGAGCAGCTGCACGAGGACCTGCAGCAGGCCTTC

1 9 1 0

1 9 2 0 1 9 3 0 1 9 4 0 1 9 5 0 1 9 6 0

1 9 2 0 1 9 3 0 1 9 4 0 1 9 5 0 1 9 6 0

1 9 7 0
v h a 6 8 -1  CGAAATCTGGAGGACTAAGCGGAAACGGCCAGAAACCATCTGCGGGCTTTCCTAGCGGGA

M M M M M M M M
v h a 6 8 - 2  AGAAATCTGGAGGACTAGAGACCGACGACTGGCCCTACTTTTACACTCTAATCTTATATT

1 9 7 0

Figure 4.4 Alignment of the two cDNA by PASTA in GCG. The positions of the introns 

were marked by according the information of the genomic sequence. See Section

4.4 for genomic sequence of vha68-2. Refer Accession number: U19742 in GenBank 

database for genomic sequence of vha68~l.
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VA_SCHPO 1
VA_NEUCR 1
VA BOVIN 1
VA_PIG 1
VA_HUMAN 1
VA_MUSMU 1
VA_CHIC2 1
VA_CHIC1 1
VA_DROMl 1
VA_DR0M1• 1
VA_DROM2 1
HO_HUMAN 1
VA.MANSE 1
VA^HORVU 1
VA^MAIZE 1
VA^BRANA 1
VA_CARRO 1
VA_VIGRA 1
VA^GOSHI 1
VA^BETVU 1
VA_ACEAC 1
VA_CYACA 1
VA_ENTHI 1
VA_TRYCO 1
VA_PLAFA 1

VA^SCHPO 91
VA^NEUCR 81
VA^BOVIN 85
VA^PIG 85
VA_HUMAN 84
VA^MUSMU 84
VA_CHIC2 84
VA_CHIC1 84
VA^DROMl 82
VA_DR0M1• 82
VA_DR0M2 82
HO HUMAN 83
VA_MANSE 85
VA^HORVU 44
VA_MAIZE 25
VA_BRANA 87
VA^CARRO 87
VA_VIGRA 87
VA^GOSHI 87
VA-BETVU 87
VA^ACEAC 75
VA^CYACA 77
VA^ENTHI 78
VA_TRYCO 80
VA_PLAFA 77

VA^SCHPO 181
VA_NEUCR 169
VA_BOVIN 174
V A .PIG 174
VA_HUMAN 173
VA_MUSMU 173
VA_CHIC2 173
VA_CHIC1 173
VA_DR0M1 170
VA^DROMl■ 170
VA_DROM2 170
HO HUMAN 171
VA_MANSE 173
VA_HORVU 132
VA^MAIZE 113
VA_BRANA 175
VA_CARRO 175
VA_VIGRA 175
VA_GOSHI 175
VA^BETVU 175
VA^ACEAC 162
VA_CYACA 166
VA^ENTHI 165
VA_TRYCO 168
VA^PLAFA 167

VA_SCHPO 270
VA^NEUCR 258
VA^BOVIN 263
VA^PIG 263
VA_HUMAN 262
VA^MUSMU 262
VA_CHIC2 262
VA_CHIC1 255
VA_DR0M1 259
VA^DROMl' 259
VA_DROM2 259
HO HUMAN 260
VA_MANSE 262
VA^HORVU 221
VA^MAIZE 202
VA^BRANA 264
VA^CARRO 264
VA^VIGRA 264
VA^GOSHI 264
VA_BETVU 264
VA^ACEAC 250
VA^CYACA 255
VA^ENTHI 254
VA^TRYCO 257
VA_PLAFA 256

MREELNWPRRLSGASKITTSMKTDMDLFSAFLVLVWAANMLGCSMYELVRVGHEELVGEVIRIHQDKCTIQVYEETSGLTVGDPVQRTG
.........................MAPQ<3«ÎAEVDGIHTGKIYSVSGPVWAEDMIGVAMYELVKVGHDQLVGEVIRINGDQATIQVYEETAGVMVGDPVLRTG
............. MMDFSKLPKIRDEDKESTFGYVHGVSGFWTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIQVYEETSGVSVGDPVLRTG
............. MMDFSKLPKILDEDKESTFGYVHGVSGFWTAC33MAGAAMYELVRVGHSELVGEIIRLEGDMATIQVYEETSGVSVGDPVLRTG
................MDFSKLPKILDEDKESTFGYVHGVSGPWTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIQVYEETCGVSVGDPVLRTG
................MDFSKLPKIRDEDKESTPGYVHGVSGPWTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIQVYEETSGVSVGDPVLRTG
................MDFSKLPKIRDEDREAFVGYVQGVSGPWTACNMAGAAMYELVRVGHSELVGEIIRLEGDLATVQVYEETSGVSVGDPVLRTG
................MDFSKLPKIRDEDREAFVGYVQGVSGPWTAOWAGAAMYELVRVGHSELVGEIIRLEGDLATVQVYEETSGVSVGDPVLRTG
...................... MPNIRKFKDEERESEYGRVYAVSGPWTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGLTVGDPVLRTG
...................... MSNLRKFKDEERf;SEYGRVYAVSGPWSAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGVTVGDRVLRTG
..................... MSNLKRFDDEERESKYGRVFAVSGPWTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGVTVGDPVLRTG
...................MTSTLIKTSDEDRESKFGFVFAVSGPWTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDTSGVTVGDPVLRTG
..............MASKGGIRTIANEENEERF-GYVFAVSGPWTAEKMSGSAMYELVRVGYNELVGEIIRLEGDMATIQVYEETSGVTVGDPVLRTG
......................................................................................................................... ELVRVGHDSLIGEIIRLEGDSATIQVYEETAGLTVNDPVLRTK
............................................................................................................................................................................ARATIQVYEETAGLMVNDPVLRTR
. . . .MPAFYGGKLTTFEDDEKESEYGYVRKVSGPVWADGMAGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETAGLTVNDPVLRTH 
. . . .MPSVYGDRLTTFEDSEKESEYGYVRKVSGPWVADGMGGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTH
 MPAVYGARLTTFEDSEKESEYGYVRKVSGPVWADGMAGAAMYELV'RVGRDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTH
. . . .MPAVYGSRLTTFEDSEKESEYGYVRKVSGPVWADGMAGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETAGLMVNDPVLRTH 
. . . .MPAVYGDRMTTFEDSEKESEYGYIRKVSGPVWADGMNGAAMYELVRVGHDNLIGEIIRLEGDSATIQVYEETGGLTVNDPVLRTH
........................................ MSKAKEGDYGSIKKVSGPVWAENMGGSAMYELVRVGTGELIGEIIRLEGDTATIQVYEETSGLTVGDGVLRTK
............................. MTTVRVNGMKN. . GIIKKVSGPWSAENMDGAAMYELVRVOJEQLVGEIIRLEGSVATIQVYEETSGLTIGDPVLCTG
................................MNFDTDKKEKEFGKVYSVSGPWIAENMLGAAMNELVRVGSRGLMGEIIRLEGTTATIQVYEETAGLQLGDMVERTM
.......................... MTSDKNPYKTEQRMGAV'KAVSGPWIAENMGGSAMYELVQVGSFRLVGEIIRLEGDTATIQVYEETGGLTVGDPVYCTG
............................. MTKVAVEKEEP. . GWYlO/AGSLVIAENMSGTRm'ELAKVGWNKLVGEI IRLEGNYAYIQVYEDTSGLSVGDPVIKTG

KPLSVELGPGLAETIYDGIQRPLKQIFDKSQSIYIPRGINTESLNREHKWDFTPNKDLRIGDHVSGGDVFGSVFENSLFNDHKIMLPPRA 
KPLSVELGPGLU®JIYDGIQRPLEKIAEASNSIYIPRGIATPALDRKKKWEFTP..TMKVGDHIAGGDVWGTVYENSFISVHKILLPPRA 
KPLSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDVKWDFTPCKNLRVGSHITGGDIYGIVNENSLI.KHKIMLPPRN 
KPLSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDVKWEFTPSKNLRVGSHITGGDIYGIVNENSLI.KHRIMLPPRN 
KPLSVDVGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENSLI.KHKIMLPPRN 
KPRSVELGPGIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWEFIPSKNLRVGSHITGGDIYGIVNENSLI.KHKIMLPPRN 
KPLSVELGPGIMGAIFDGIQRPLSDISTLTKSIYIPRGVNVSALSRDVKWDFTPSKNLRVGSHITGGDIYGWNENSLI.KHKIMLPPRN 
KPLSVELGPGIHGAIFDGIQRPLSDISTLTKSIYIPRGVNVSALSRDVKWDFTPSKNLRVGSHITGGDIYGWNENSLI. KHKIMLPPRN 
KPLSVELGPGIMGSIFDGIQRPLRDIGVMTOSIYIPKGVNTTALSRSEMWEFNP. LNVRVGSHITGGDLYGWHENTLV. KQRMIVAPRA 
KPLSVELGPGIMGSIFDGIQRPLRDIGVMTNSIYIPKGVNTTALSRSEMWEFNP.LNVRVGSHITGGDLYGWHENTLV.KQRMIVAPRA 
KPLSVELGPGIMGSIFDGIQRPLKDINELTESIYIPKGVNVPSLSRVASWEFNP.LNVKVGSHITGGDLYGLVHENTLV.KHKMIVNPRA 
KPLSVELGPGIMGSIFDGIQRPLKDINELSNSIYIPKGVNVPALSRTAQWDFSP. VSVKVGSHITGGDLYGLVHENTLV. KHKLLLPPRA 
K PLSVELGPGILGSIFDGIQRPLKD: NELTQSIYIPKGVNVPSLAREVDWEFNP. LNVKVGSHITGGDLYGIVHENTLV. KHKMLMPPRA 
KPLSCELGPGIU Ï J I FDGIQRPLKTIAIKSRDVYIPRGVSVPALDKDQLWEFQP. NKLGVGENITOGDLYATVFENTLM. KHHIALPPGA 
KPLSVELGPGILGNIFDGIQRPLKTIAIKSGD\A'IPRGVSVPALDKDVLWEFQP. TKLGVGDVITGGDLYATVFENTLM. QHHVALPPGS 
KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDCLKEFQP. KDFVEGDTITGGDLYATVFENSLM. QHHVALPPDA 
KPLSVELGPGI UTNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP. KKIGEGDLLTGGDLYATVFENSLM. QHHVALPPDA 
KPLSVELGPGILCÏlIFDGIQRPLKTIAKRSGDVi'IPRGVSVPALDKDTLWEFQP. KKIGEGDLLTGGDLYATVFENTLM. QHHIALPPDA 
KPLSVELGPGIU34IFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDALWDFQP. KKIGEGDLLTGGDLYATVFENSLM. QHHVALPPDA 
KPLSVELGPGIL04IFDGIQRPLKTIAKRSGDV\'I PRGVSVPPLDKDTQWDFQP. KKLGVGDLLTGGDLYAIVDENSLM. QHHWLPPDA
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VA_SCHPO 358  STSRWAEALREISGRLAEMPADSGYPAYLGAKLASFYERAGRARCLGSPDREGTVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_NEUCR 346  SSSRWAEALREISGRLGEMPADQGFPAYLGAKLASFYERAGKVQALGSPPREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_BOVIN 351 STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_PIG 351  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_HUMAN 35 0  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATU3IVQVFWGLDKKL
VA_MUSMU 35 0  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA^CHIC2 350  STSRWAEALREISGRIAEMPADSGYPAYU3ARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_CHIC1 344 STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA^DROMl 347  STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCU3NPEREGSVSIVGAVSPPGGDFSDPVTSATU3IVQVFWGLDKKL
VA^DROMl ' 347  STSRWAEALREISGRLAEMPADSGYPAYU3ARLATFYERAGRVKCLOJPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA^DR0M2 347  STSRWAEALREISGRLAEMPRDSGYPAYU3ARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWSLDKKL
HO_HUMAN 348  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTTATLGIVQVFWGLDKKL
VA_MANSE 350  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL
VA_HORVU 310  STSRWAEALREISGRIAEMPADSGYPAYLASRLASFYERAGKVQCLGSPDRTGSVTIVGAVSPPGGDFSDPVTSATLSIVOVFWGLDKKL
VA_MAIZE 291 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGSPDRNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL
VA_BRANA 353 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSlVQVFWGLDKKL
VA_CARRO 353 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL
VA_VIGRA 3 53 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERPGKVKCLGGPERTGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL
VA_GOSHI 353 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVKCLGGPERTGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL
VA^BETVU 353 SGSRWAEALREISGRLAEMPADSGYPAYLAARLASFYEAAGKVKCLGGPERNGSVTIVGAVSPPGGDFSDPVTSATLSIVQVFWGLDKKL
VA_ACEAC 338  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERSGRVACIGSPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_CYACA 343 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGKVSCLGSPNRQGSITIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL
VA_ENTHI 342 STSRWAEALREISGRLAEMPADSGYPAYLAARLASFYERAGMVECLGSPKRIGSVSIVGAVSPPGGDFSDPVTTSTLNXVQVFWGLDKKL
VA^TRYCO 345  STSRWAEALREISGRLAEMPADGGYPAYLSARLASFYERAGRVTCIGGPKREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLEKRL
VA_PLAFA 344 STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGKVKCIGSPSRIGSITIVGAVSPPGGDFSDPVTTATMSIVQAFWGLDKKL

VA_SCHPO 44 8  AQRKHFPSINTSLSYSKYINALQPWYEERVPGFNTLRDQIKQIIQQEDSMLEIIQLVGKSALSETDKVTLDIAGIIKNDFLQQNGYSDYD
VA_NEUCR 436 AQRKHFPSINTSVSYSKYLTILDKWYEREYPDFPRLRDRIRQLLSDSEELDQWQLVGKSALSDPDKITLDMATLIKEDFLQQNGYSDYD
VA_BOVIN 441 AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA_PIG 441 AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA_HUMAN 44 0  AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA_MUSMU 440  AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEGDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA^CHIC2 440  AQRKHFPSVNWLISYSKYTRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA^CHICl 434 AQRKHFPSVNWLISYSKYTRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITLEVAKLIKDDFLQQNGYTPYD
VA_DR0M1 437 AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSYSPYD
VA^DROMl• 437  AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTLEVAKLLKDDFLQQNSYSPYD
VA_DR0M2 437  AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYD
HO_HUMAN 438  AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSPYD
VA^MANSE 440  AQRKHFPSINWLISYSKYMRALDDFYEKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQQNSYSSYD
VA_HORVU 400  AQRKHFPSVNWLISYSKYSTALEGYYEKFDPGFIDMRTKAREVLQREDDLNEIVQLVGKDALGESDKITLETAKLLREDYLAQNAFTPYD
VA_MAIZE 381 AQRKHFPSVNWLISYSKYSKALESFYEKFDPDFIDIRTKAREVLQREDDLNEIVQLVGKDALAESDKITLETAKLLREDYLAQNAFTPYD
VA_BRANA 443 AQRKHFPSVNWLISYSKYSTALESFYEKFDSDFIDIRTKAREVLQREDDLNEIVQLVGKDALAEGDKITLETAKLLREDYLAQNAFTPYD
VA_CARRO 443 AQRKHFPSVNWLISYSKYSTALESFYEKFDSDFIDIRTKAREVLQREDDLNEIVQLVGKDALAETDKITLETAKLLREDYLAQNAFTPYD
VA_VIGRA 443 AQRKHFPSVNWLISYSKYSTALESFYEQFDPDFINIRTKAREVLQREDDLNEIVQLVGKDALAEGDKITLETAKLLREDYLAQNAFTPYD
VA^GOSHI 443 AQRKHFPSVNWLISYSKYSGALESFYEKFDPDFISIRTKAREVLQREDDLNEIVQLVGKDALAETDKITLETAKLLREDYLAQNAFTPYD
VA^BETVU 443 AQRKHFPSVNWLISYSKYSGALESFYEKFDSEFIDIRTKAREVLQREDDLNEIVQLVGKDALAETDKITLDTAKLLREDYLAQNAFTAYD
VA_ACEAC 428  AQRKHFPSVNWLISYSKYU4ALEPFYEKFDSDFVTLRQVARBVLQKEDELNEIVQLVGKDALAESDKIILETARFLKEDYLQQNSFTKYD
VA_CYACA 433 a q r k h f p s v n w l is y s k y m k a l e p y y e e r f p e f l n y q q k a r e il q t e d d l m e iv q l v g k d s l a e n d k it l e v a k m ir e d f l a q n s f t e y d
VA_ENTHi 432 a q r k h f p a v n w n is f s k y ik s l d s y y n s k d e e f v p l r d k ik e il q m e e g l l q iv q l v g q d s l a e t d k l t l e ia r v ik d d f l q q n s y t p y d
VA^TRYCO 435  AQRKHFPSVNWLISYSKYUJALEPFFNTLDPDYMRLRSVAAEILQREEELQEIVQLVGKDSLSESDKIILETAKVIREEFLQQNAFTPYD
VA-PLAFA 434 AQRKHFPSVNWSTSFSKYVRQLEQYFDNFDQDFLSLRQKISDILQQESDLNDIVQLVGKDSLSEDQKWMEVAKIIREDFLQQNAFSD'iT:'

VAL-SCHPO
VA_NEUCR
VA_BOVIN
VA^PIG
VA_HUMAN
VA^MUSMU
VA_CHIC2
VA_CHIC1
VA^DROMl
VA_DR0M1’
VA_DR0M2
HO_HUMAN
VA_MANSE
VA_HORVU
VA_MAIZE
VA_BRANA
VA^CARRO
VA^VIGRA
VA_GOSHI
VA^BETVU
VA.ACEAC
VA_CYACA
VA^ENTHI
VA^TRYCO
VA_PLAFA

VA_SCHPO
VA_NEUCR
VA_BOVIN
VA_PIG
VA_HUMAN
VA_MUSMU
VA_CHIC2
VA^CHICl
VA_DR0M1
VA^DROMl'
VA_DR0M2
HO_HUMAN
VA^MANSE
VA^HORVU
VA_MAIZE
VA^BRANA
VA_CARRO
VA_VIGRA
VA^GOSHI
VA_BETVU
VA^ACEAC
VA^CYACA
VA_ENTHI
VA_TRYCO
VA PLAFA

538 RCC PLWTYHMMRNMIAYYTKAKSAVETG...................SVPWSKIKESTSDIFYELTSMKFENP. NEGEKEIVEHYETLHKKI EDKFHTL,T
526  QFCPIWKTEWMMKLMMGFHDEAQKAIAQG...................Q .NWNKVREATQDLQAQLKSLKFEVP. SEGQEKICKKYEAIQQQMLDKFASVI
531 RFCPF't'KTOGMLSNMIAFYDMARRAVETTAQ. . . SI»4KITOSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE
531 RFCPFWTVGMLSNMIAFYDLARRAVETTAQ. 
530 RFCPFYKTVGMLSNMIAFYDMARRAVETTAQ. 
530 RFCPFYKTVGMLSNMISFYDMARRAVETTAQ. 
530 RFCPFYKTVGMLSNMIAFYtOTRRRAVENTAQ. 
524 RFCPF'i'KTVGMLSNMIAFYDMRRRAVENTAQ. 
527  RVC PFYKTVGMLRNIMAFYETARHAVESTAQ. 
527 RVCPFYKTVGMLRNIMAFYETARHCLESTAQ.
527 RFCPFYKTVGMLRNIIDFYDMARHSVESTAQ.
528 RFCPFYKTVGMLKNMIAFYDMSRHAVESTAQ. 
530  RFCPFYKTVGMLKNIISFYDMSRHAVESTAQ.-

. S im iT W S I  IREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDVQNAFRSLE 

. SmxiTWSIIREHMGDILYKLSSMKFKDPLKDGEAKIKSDYAQLLEDMQNAFRSLE 

. SE»n<ITWSIIREHMGEILYKLSSMKFKDPVKDGEAKIKADYAQLLEDMQNAFRSLE 

. SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE 

. SDNKITWSIIRENMSEILYRLTSMKFKDPVKDGETKIKADYAQLFEDMQNAFRSLE 

.SIS4KITWNTIRESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRNLE 

. SraiKITWNTIKESMGGIMYQLSSMKFKDPVKDGEOKIKADYDQLYEDLQQAFRNLE 

. SENKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRNLE 

. SENKITWNVIRDSMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRNLE 

. SDNKVTWNVIRDAMC3JVLYQLSSMKFKDPVKDGEAKIKADFDQLLEDMSAAFRNLE 
490  KYCPFYKSVWMMRNIIHFNQLANQAVERAAN. . ADGHKITYAWKSRMGDLFY-RLVSQKFEDPA. EGEDVLVAKPQKLYDDLTAGFRNLE 
471 KFCPFYKSVWMMRNIIHFNTLANQAVERAAG. . TDGHKITYSVIKHRLGDLFYRLVSQKFEDPA. EGEEALVGKFKKLYDDLTTGFRNLE 
533 KFCPFY'KSVWMMRNIIHFYNLANQAVERGAG..MDGQKISYSLIKHRLGDLFYRLVSQKFEDPA. EGEDVLVGKFKKIRDDLTSGFRNLE 
533 KFCPFYKSVWMMRN11HFYNLANQAVERGAG. .MDGQKISYTLIKHRLGDLFYRLVSQKFEDPA.EGEDVLVGKFKKIRDDLTSGFRNLE 
533 KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.. SDGQKITYSLIKHRVGDLFYRLVSQKFEDPA. EGEAALVGQFQKLHEDLSTGFRNLE 
533 KFCPFYKSVWMMRNIVHFNAIiANQAVEKAAG.. MDGQKITYSLIKHRLGDLFY"RLVSQKFEDPA. EGEEALVAKFKKU4EDLTAGFRALE 
533 KFCPFYKSVWMMRNIIHFYNLANQAVERGAG. . SDGQKITYSLIKLRLGDLFYRLVSQKFEDPA. EGEDALVAKFKKLNEDLTAAFRNLE 
518  KYCPF’ï'KSVGMMRNIVTFHRLATQAIERTAAGNVDGQKITFNI IKAKLGDLLYKVSS*KFEDPS . DGEGWTAHLNELNEELKEKFRALE
523 RFCPFYKSVLMLRNMIHFYELANKAVE GSGEQHLTLAQIKEQMGETIYKISGMKFLDPA. QGWSLF................................................
522 FSCPFYKTCGIIRNIIHFYNEAFQALSVD. . . . YEDHKITWATIKSAMSDLLVRISRMKYEEPS. QGEQVINEKYGELYRDITTRFATLL 
525  KYCPPYKTCWMLRNIVAFYEESQRWAESA____ GELKITWNYIREMIPHIYTGLTEMKFRDP. QEGEEANVEFYRKQNEEIVSAFASLL
524 YMCPLQKTVGMMRIICHFYAQCLRTLQ.. .EYDSRERKIGWGSIYNTLRPTINKITHMKFENP.KNSDEYFKKYFKALEF.EITVGLRNLM

619 
606 
618 
618 
617 
617 
617 
611 
614 
614
614
615 
617 
577 
558
620 
620 
620 
620 
620 
606

E . . 
DE.
D. .
D. .
D* .
D. .
D. .
D. .
D. .
D. .
D. .
D. .
D. .
DEAR
DEAR
DETR
DETR
DETR
DETR
DETR
DEYR*

607 E . . .  
610 Q * . . 
610 E K ..
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Figure 4.5A. Alignment of known V-ATPase A subunits (VA) aa sequences. All 

sequences are deduced from cDNAs. The source tissues, accession number and references 

for each sequences are list below:

YA3^2H20\î^ionysaSi,Schiwsmhmmycespombe, X68580(Ghislaiuat1992);

VAJSIEUCR: J03955 (Bowman 1988);

VABOVOSf: BœprimigermsMmis,Yô%Wci (Panatig/, 1991);

VA_PIG: Susscmfi, X62338 (Sander et aL, 1992);

VA_HTJMAN1: Homosqkm, isoform VA68, L09235 (van Hille etÂ, 1993b); 

VAMUSMU:A&^fmm?A*;U13837 (Laitalaâ ,̂ /, 1986);

VAjCHICl: Chicken, GaUusgaîks, Al isoform, U22077 (Hernando, 1995);

VACHIC2: Chicken, GdusgaSm, A2 isoform, U22076 (Hernando, 1995);

VAJDROMl: Dmsophikmdamgaster, isoform U19745 (Guo etd, 1996d);

VA_DROM2: Dmsiphik mdcmogaster, isoform U59146 (Guo etd, 1996d);

YAAJ&SDyiV:Drm]fhêirridamgasù^ isoform vho68~2, U19742 (Chio &td, 1995);

HOJHUMAN: homo sapiens, isoform H068, L09234 (van H ie  a d , 1993b);

VA„MANSE: Manducasexia, X64233 (Qa ia d , 1992);

VABRANA Brasùatncpus, U15604 (Orra âZ, 1995);

VAJ2ARRO: canot, J03769 (Zimniak 1988);

VAVIGRA V ^ r n d m  U26709 {Q iaetd, 1995);

VA_GOSHI: Goss)pium hhsuium, L03186 (Vldns, 1993);

VAJdORVU: Bailey, Hordeumvulggre, U36939;

VAjMATZF: Zea map, U36436; VAACEAG Acaéuhiaaœiabukm D50528; 

YKJE2SMEA:ddndamacebànÂmi D50528;

VACYAGA Cyanidiwn cddamm, U17100 (Zi^er ad , 1995);

VATNTHI: U04849 (Yi a d , 1994).

VA_PLAFA Plasrnocliumfelciparum, A48582 (Karcz et al, 1993);

VA_BETVU: Beta vtdgaris, X98767;

VAJTRYGO: Trpmosomacoygolense, Z25814.
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Figure 4.5B Phylogenetic tree o f V-ATPase A subunits. This figure was generated by 

ClustalW and N-J plot from the multiple alignment in Figure 4.5A.. See the legend of 

Figure 4.5A for the sources of aa sequence.
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4.3.4 Homology o f vha68 to subunit A of V-ATPases from other sources

The alignment in figure 4.5A showed both isoforms share high homology with V-ATPase 

A subunit of other organisms. There is greater than 60% identity at the aa level for all the 

compared sequence of the V-ATPase A-subunits. Figure 4.4B is the phylogenetic tree of 

the V-ATPase A-subunits generated by GCG, ClustalW and N-J plot.

4 .3 .5  Comparison of vha68 to (3 chain of F-ATPase

A ignm ent of the two isoforms of Drosophila V-ATPase A subunit with several (3-chains 

o f F-ATPases, including that o f Drosophila, is shown in Figure 4.7 In general, the V- 

ATPase subunit shows significant homology to that of F-ATPases.

The homology is remarkably evident in the region that has already been identified in 

FOFl-ATPases as areas of probable importance for function or assembly (Zimniak, et a l, 

1988; Taiz et a l, 1994). The most important of these is the proposed nucleotide binding 

site; GXXXXGKT and RXXXGXXXX***D. (* represents hydrophobic residents) are well 

conserved in both isoform (marked in bold in Figure 4.6). The homology between V- 

ATPase and F-ATPase of Drosophila proved again that the catalytic subunits from the 

two classes of ATPase share similar structure for the catalytic domain.

4.4 Genomic structure analysis o f vha68~2

4.4.1 Restriction mapping of genomic DNA and subcloning

Four recombinant phage were isolated from an EMBL3 genomic DNA library by 

hybridisation with a vha68-l cDNA prohe. DNAs prepared from each recombinant 

phage were cleaved first with SaH and it was found that the four clones contain an

9 6



FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VA_DR0M1
VA_DR0M2
VA^MANSE
HO_human
VA_human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VA_DROMl
VA_DR0M2
VA_MANSE
HO_human
VA^human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VAJDROMl
VA_DROM2
VA^MANSE
HO_human
VA_human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VAJDROMl
VA.DR0M2
VA_MANSE
HO_human
VA^human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VAJDROMl
VA^DR0M2
VA^MANSE
HO_human
VA_human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VA_DR0M1
VA_DR0M2
VA_MANSE
HO_human
VA^human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VAJDROMl
VA^DR0M2
VA^MANSE
HO_human
VA^human

FB_HUMAN
FB_BOVIN
FB_RAT
FB_DROME
VA_DR0M1
VA_DR0M2
VA_MANSE
HO_hurnan
VA^human

1 .....................................................MLGFVGRVAAAP. . ASGALRRLTPSA. . SLPPAQLLLRAAPTAVHPVRDYAAQTS................PSPKAGAA
1 .....................................................MLGLVGRWAAS. . ASGALRGLSPSA. . PLPQAQLLLRAAPAALQPARDYAAQAS................PSPKAGAT
1 .....................................................MLSLVGRVASAS . . ASGALRGLNPLA. . ALPQAHLLLRTAPAGVHPARDYAAQSS............... AAPKAGTA
1 .............................................................................................................................................MFALRAASKADKNLLPFLGQLSRSHAAKAAKAAAAA
1 . . .MPNLRKFKDEERESEYGRVYAVSGPWTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGLTVGDPVLRTGKPLSVE 
1 . . .MSNLKRFDDEERESKYGRVFAVSGPWTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGVTVGDPVLRTGKPLSVE 
1 MASKGGLKTIANEENEERFGYVFAVSGPWTAEKMSGSAMYELVRVGYNELVGEIIRLEGDMATIQVYEETSGVTVGDPVIRTGKPLSVE 
1 . .MTSTLIKTSDEDRESKFGFVFAVSGPWTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDTSGVTVGDPVliRTGKPLSVE 
1 . MDFSKLPKILDEDKESTFGYVHGVSGPWTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIOVYEETCGVSVGDPVLRTGKPLSVD

60 TGRIVAVIGAWDV..............QFDEGLPPILNALEVQGR..........................ETRLVLEVAQHLGESTVRTIAMDGTEGLVRGQKVLDSGAPIK
60 TGRIVAVIGAWDV............. QFDEGLPPILNALEVQGR..........................ETRLVLEVAQHLGESTVRTIAMDGTEGLVRGQKVUJSGAPIR
60 TGQIVAVIGAWDV............. QFDEGLPPILNALEVQGR..........................ESRLVLEVAQHLGESTVRTIAMDGTEGLVRGQKVLDSGAPIK
37 NGKIVAVIGAWDV............. QFDDNLPPILNALEVDNR.......................... SPRLVLEVAQHLGENTVRTIAMDGTEGLVRGQKVLDTGYPIR
88 LGP.-GIMGSIFDGIQRPLRDIGVMTNSIYlPKGVNTTALSRSEMWEFNP.LNVRVGSHITGGDLYGWHENT.. LVKQRMIVAPRAKGT
88 L G P .. GIMGSIFDGIQRPLKDINELTESIYIPKGVNVPSLSRVASWEFNP. LNVKVGSHITGGDLYGLVHENT. . LVKHKMIVNPRAKGT 
91 LGP..GILGSIFDGIQRPLKDINELTQSIYIPKGVNVPSLAREVDWEFNP.LNVKVGSHITGGDLYGIVHENT.. LVKHKMLMPPRAKGT
89 LGP..GIMGSIFDGIQRPLKDINELSNSIYIPKGVNVPALSRTAQWDFSP.VSVKVGSHITGGDLYGLVHENT.. LVKHKLLLPPRAKGT
90 VGP..GIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENS.. LIKHKIMLPPRNRGT

134 IP.VGPETLGRIM NVIGEP.. IDERGPIKTKQFAPIHAEAPEFMEMSVEQEILVTGIKWDLLAPYAKGGKIGLFOOAOVaKTVLIMEI.I 
134 IP.VGPETLGRIM NVIGEP.. IDERGPIKTKQFAAIHAEAPEFVEMSVEQEILVTGIKWDLLAPYAKGGKIGLFOOAQVCKTVLIMEI,I 
134 IP.VGPETLGRIM NVIGEP.. IDERGPIKTKOFAPIHAEAPEFIEMSVEQEILVTGIKWDLLAPYAKGGKIGLFOQAaVOKTVLIMELI 
111 IP.VGAETLGRIXNVIGEP.. IDERGPIDTDKTAAIHAEAPEFVQMSVEQEILVTGIKWDLLAPYAKGGKIGLFOOAOVaKTVLIMELI
173 v r y ia p a g n y n l e d iv l e t e f d g e it k h t m l q v w p v r q a r p v t e k l p a n h p l f . t g q r v l d s l f p c v q g g t t a ip g a f o c o k t v is q a l s
173 VRYIAPSGNYKVDDWLETEFDGEITKHTMLQVWPVRHHAPVTEKLPANHPLL. TGQRVLDSLFPCVQGGTTAIPOATQCOKTVISQALS 
176 VTYIAPAGNYKVTDWLETEFDGEKAQYTMLQVWPVRQPRPVTEKLPANH PLL. TGQRVLDSLFPCVQGGTTAIPOAFOCQKTVISQALS
174 VTYIAEPGNYTVDDWLETEFDGERSKFTMLQVWPVRQPRPVTEKLPANYPLL.TGQRVLDSLFPCVQGGTTAIPQAFOCGKTVISQSLS 
176 VTYIAPPGNYDTSDWLELEFEGVKEKFTMVQVWPARQVRPVTEKLPANHPLL. TGQRVLDALFPCVQGGTTAIPOAFOCOKTVISQSLS

2 21  NNVAKAHGGYSVFAGVGERTREGNDLYHEMI ESGVINLKDATSKV ALVYGQMNEPPGARARVALTGLTVAEYI’RDQWaQDVI.LFID
2 21  NNVAKAHGGYSVFAGVGERTREGNDLYHEMI ESGVINLKDATSKV ALVYGQMNEPPGARARVALTGLTVAEYFRDQW3QDVLLFID
2 21  NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV ALVYGQMNEPPGARARVALTGLTVAF:YFRDa»3QDVLLriD
198 NNVAKAHGGYSVFAGVGERTREOJDLYNEMIEGGVISLKDKTSKV ALVYGQMNEPPGARARVALTGLTVAEYFRD0»3QDVLLriD
262 K Y .. .SNSDVIIYVGCGERGNEMSEVLRDFPELTC.DIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFREM.OYMVAMMAD
2 62 KY. . .SNSDVIIYVGCGERGNEMSEVLRDFPELSV.EIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFKDM.OYHVSMMAD 
2 65  K Y .. .SNSDVIIYVGCGEROJEMSEVLRDFPELTV.EIEGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFHDK.OYMVSMMAX)
263 K Y .. . SNSDVIIYVGCGERGNEMSEVLRDFPQLSL. EIDGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRCM.OYNVSMMAD 
2 6 5  K Y .. .SNSDVIIYVGCGERaNEMSEVLRDFPELTM.EVDGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRBM.OYHVSMMAD

3 07  NIFRFTQAGSEVSALLGRIPSAVGYQPTLATEMGTMQERITTTK.................k g s it s v q a iy v p a d d l t d p a p a t t f a h l d a t t v l s r a i
307  NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTK.................k g s it s v q a iy v p a d d l t d p a p a t t f a h l d a t t v l s r a i
307 N IFRFTQAGSEVSALLGRIPSAVGYOPTLATDMGTMQERITTTK.................KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI
2 84  NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITTTK.................KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI
347  STSRWAEALREISGRLAEMPADSGYPAYLGARLATFYERAGRVKCLGNPEREGSVSIVGAVS PPGGDFSDPVTSATLGIVQVFWGLDKKL
347  STSRWAEALREISGRLAEMPRDSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL 
35 0  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTAATLGIVQVFWGLDKKL
348  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPDREGSVSIVGAVSPPGGDFSDPVTTATLGIVQVFW3LDKKL 
35 0  STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCUaqPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL

39 0  AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF
390  AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF
39 0  AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF
367  AELGIYPAVDPLDSTSRIMDP NIIGQEHYNVARGVQKILQDYKSLQDIIAILGMDELSEEDKLTVARARKIQRFLSQPFQVAEVF
437  AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTL EVAKLLKDDFLQQNSY
437  AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL 
440  AQRKHFPSINWLISYSKYMRALDDFYEKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL
438 AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL 
44 0  AQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITL

EVAKLLKDDFLQQNSY 
. EVAKLLKDDFLQQNSY 
. EVAKLLKDDFLQQNSY 
. EVAKLIKDDFLQQNGY

475  TGHMGKLVPLKETIKGFQQI............................................................................ LAGEYDHLPEQAFYMVGPIEEAVAKAD. .KLAEEHSS____
475  TGHLGKLVPLKETIKGFQQI............................................................................ LAGEYDHLPEQAFYMVGPIEEAVAKAD. .KLAEEHS..........
475  TGHMGKLVPLKETIKGFQQI............................................................................ LAGDYDHLPEQAFYMVGPIEEAVAKAD. .KLAEEHGS____
452 TGHAGKLVPLEQTIKGFSAI............................................................................ LAGDYDHLPEVAFYMVGPIEEVCRKAD. . RLAKEAA..........
523 SPY . DRVCPFYKTVGMIJWIMAFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRN
523 SSY . DRFCPFYKTVGMLRNIIDFYDMARHSVESTAQSENKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRN 
526  SSY . DRFCPFYKTVGMLKNIISFYDMSRHAVESTAQSDNKVTWNVIRDAMGNVLYQLSSMKFKDPVKDGEAKIKADFDQLLEDMSAAFRN
524  SPY . DRFCPFYKTVGMLKNMIAFYEMSRHAVESTAQSENKITWNVIRDSMGNILYQLSSMKFKDPVKDGEAKIKADFEQLHEDIQQAFRN 
526 TPY. DRFCPFYKTVGMLSNMIAFYDMARRAVETTAQSHTKITWS11REHMGDILYKLSSMKFKDPLKDGEAKIKSDYAQLLEDMQNAFRS

612 LED.
612 LED. 
615 LED.
613 LED. 
615 LED*

Figure 4.6 Alignment of the V-ATPase A subunit (VA) and F-ATPase P subunit (FB). 

All sequences are deduced from cDNA: The source tissues, accession number of FB and 

references are listed below: FB_HUMAN: P06576; FB_BOVIN: Bœprim^ermis tmavs,

P00829;FB_RAT: P10719, Dnwphilarnelanogaster, Q05825. Seethe legend of Figure

4.5 for those of V-ATPase. The proposed nucleotide binding sites are marked in bold.
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- I  I I

Figure 4.7 Restriction map of genomic ph68A . (A) photo of agarose gel in which the 

phage ph68A was cleaved by various enzymes. S, Sal\\ E, F̂ coRI; B, BamWl', S/E, Sal 

I/FcoRI; S/B, SalllBamWl', E/B, EcofllBamWl. (B) The blot of the gel A hybridised 

with vha68-l cDNA. (C) Digestion map of ph68A deduced from the (A) and (B). 

Fragments which hybridised to the probe were subcloned into pBluescript SK". Black 

indicated hybridising fragments
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identical genomic fragment of 12 kb long. pb68A was tben chosen for constructing the 

restriction map. The DNA was cleaved with Sail, E co fl, Bam Yil and every possible 

double digestion of the three enzymes (Figure 4.6). Fragments that hybridised to vha68-l 

cDNA were subcloned into pBluescript SK". (See Figure 4.7).

4.4.2 Genomic DNA analysis

The four subclones of genomic DNA shown in Figure 4.7 were sequenced, first by T3 

and T7, then with synthesised oligo nucleotide primers. 4405 bp of genomic DNA has 

been sequenced, comprising 68kg-5, 68kg-7 and part of 68kg-9 sequences (Figure 4.8). 

Although ph68A was identified by a vha68-l cDNA probe, the genomic sequence 

actually appears to be correspond to vha68-2 (Figure 4.8). Moreover, the digestion map 

and the sequence of ph68A is corresponded to the genomic DNA in the rescued plasmid 

from fly line l(2)k02508, suggesting that the V[lacW\ insertion in this line is in vha68-2 , 

rather than in vha68-l (See Chapter 5).

4.4.3 A comparison o f the vha68-l and vha68~2 genes.

It is clear from this work and from Choi et al (1995) that there are two vha68 genes 

encoding the D. melanogaster V-ATPase A subunit. vha68~2 cDNA was punctured by 4 

introns of 1165, 405, 108 and 66 bp at nucleotides 66-67, 166-167, 864-865 and 1843- 

1844 of the cDNA (Figure 4.4, 4.8and 4.9). The first intron is at 23 bp upstream of the 

ATG translation start site. The other three introns are within the coding sequence. 

Unfortunately, among the 4 genomic fragments identified by a vha68-l probe, none of 

them corresponded to vha68-L  However, a partial genomic sequence corresponding to 

vha68~l has been reported (Choi et a l, 1995; GenBank accession number: U 19742), 

whicb makes it possible to compare the genomic structure of the two different genes. 

Instead of having 4 introns vha68-l has 3 introns at nucleotides 31-32, 163-164 and 

1840-1841 of the cDNA (Figure 4.4, 4.9). The first intron is at 59 bp upstream of the

9 9



1 3 1
g t c  g a c g t t t t a t t t c t g e g g e t c a g t e g g t t t t a G TTC G TT CTG TTG GAG AAA AGC AGC
6 1 9 1
AAT CAC ACG TTC GCA AGG TGA ACG CGA AGA CAC AGC AAA g t a a g e c e t t e e e e e e a e e a a
1 2 1 1 5 1
c a c  a c a e a e e e a e e e a a a g e a a a t a a g t a a a a a t a a a t a a t g g a a t g g e t g g a a g a e g g t

1 8 1 2 1 1
t c t  g g g e g a t t t a a a e a a t t a g c g a a a g a a a g e g g e a t t g a a a t e e g t e t t g a a t t e g e e
2 4 1 2 7 1
c c g  a a a a a g t g a e g a a g e a g e g a t e a a a g e g e a g a g e a a a a e a e g e a e a e a g a e t g c a a g
3 0 1 3 3 1
t g t  g t t a c a t a a t a a g t g e a g e a e a a g t e e a e a e t t g a g t a a a a t a a t e c c t a a a a a a g e
3 6 1 3 9 1
c g a  a t a t e a a t t a g t t t t e e a a g g a g e t t g a a a a a g t g c e g g t a t g a a a a e g t g a a a a t t
4 2 1 4 5 1
t c c  g c g t g g a a a a t t a t e t t e c e t t g t e a g c t g a c e e e e t t e e e e g t g t t e g e t e c a t e e
4 8 1 5 1 1
c t g  t e g e a e c g e g g g t e t t g t g a t e g e e g e e g e t e t t g e g e t c g e t t g e t c t e e e a t t t e
5 4 1 5 7 1
g a a  a c t e g a a a e a g a a g t ggg a g t t a t t e g t a t t c c g a t a a t g a a a a a e e a a t a t g g a g a
6 0 1 6 3 1
a c g  a g e g a e g t a  a a a a a g g c g g e e e a a a g a t t t t t a e e a t t t e e e t t a c a c a c t t t t t t t
6 6 1 6 9 1

t e a  t t t g t c a g e t g a egg e a a t g a e a g t a g t c t t g t g a t e a a c i g t  e a a  a a g  e a a  t t g  t e a

7 2 1 7 5 1
a a t  a t t c g a a c t e g a a t g g a g a g e g a g a g a g e e a g a g c g a g a g t t g e t e t c e c a e t c e a e
7 8 1 8 1 1
c e t  e t c t t g t t t t t e t t t g e t g a t a a t t a t g a a a a e c e g e a t a t t t t g a a a a a e a t g e a t
8 4 1 8 7 1
t t e  a g t t a e a t t c e t c e g t t g  a a t t t g t e a a c e t g t g g t t g t t t t t t e a e a g e t e t t a t t
9 0 1 9 3 1
t t a  t t t a t t t a g e g a t t a g t t t g a e a a a t t g e t t t e t t e g a a e t t t e a a a g e t c t g t e a e
9 6 1 9 9 1
g t g  a a a e g a a a g e t c t g c t t t t a a a g t t t t a e g e a g c a t a a t e a a a g a a g g g g a g t t a a a
1 0 2 1 1 0 5 1
a a a  a a t a a t t a a a t e a a t e g a a a t t a t t a g e t g e t a a e e t a e a a e t t t a t a a e e t a t a a t
1 0 8 1 1 1 1 1
e g a  a a a t t t ggg a g e t g t ggg c t g t a e a a a a a e t t a a e e t g t a a a t g t a g e a g a t a e a e e
1 1 4 1 1 1 7 1
t g c  e c c t t g e e a  g e t g a c a g a ggg e t g a g e a a g a a a t t a g t g a t a a g a a a a t g t t e a c e t
1 2 0 1 1 2 3 1
t t a  t e t t e g e e e t t t t g e a g e e a g e a t t t a a e a a t t t t e e t c t t e t a t t t t e e e t e e a t t
1 2 6 1 1 2 9 1 / 2
g e a  gT C GAA AAA ACA GAA TAA AGC AAA ATG TCC AAC CTT AAG CGT TTC GAT GAT GAG GAG

M S N L K R F D D E E
1 3 2 1 / 1 2 1 3 5 1 / 2 2
CGT GAG TCC AAA TAT GGA CGT GTC TTC GCT GTC TCC GGT CCT G g t a a g e a e e t a a c t a t a

R  E S K Y G R V F A V S G P
1 3 8 1 1 4 1 1
c t g  a g t a a e e a t a a e t e a t g e t a t e t a a a a g t t a a t a a a a a t a a a t t a a t a a t a c e t g t g
1 4 4 1 1 4 7 1
a a e  t e a a a e e t a g t e t a g a a e t t a e a e t t e t g t g t g a a a t a a t g g e a a e t t t a g a a a t g t
1 5 0 1 / 5 0 1 1 5 3 1 / 5 1 1
g t c  c a c e t a t t t g t g a t t a a t a t t e a a a e a a c t e a a a e a t t g g t t t e a t t a t t e a a a a t t
1 5 6 1 / 5 2 1 1 5 9 1 / 5 3 1
a a a  t g t g a a t a a t t t t a a t a a t t a a t t a a t t g t t t e t t t a a a e t t t t t t e t a t a a t t e t a
1 6 2 1 / 5 4 1 1 6 5 1 / 5 5 1
a c a  a a a a c a t e a t e a  a g t a t e a t a a a t a a t a a a a a a t t t t a a a a g a a a a t g t t e a a g g e e
1 6 8 1 / 5 6 1 1 7 1 1 / 5 7 1
g a a  a t g g a a c e t a t e t t g g t t g g e a a a g t t a t a a a a a c t t c t t g a a t g a a a t g t a t e e e e
1 7 4 1 / 5 8 1 1 7 7 1 / 2 7
c e t  a a e e c a a e c a a e e g t t t e a t t e e a gT C GTC ACC GCC GAG GCC ATG TC T GGA TCA GCT

V V T A E A M S G S A
1 8 0 1 / 3 7 1 8 3 1 / 4 7
ATG TAC GAG TTG GTC CGC GTC GGC TAC TAC GAG CTG GTG GGC GAG ATC ATC CGT CTG GAG

M Y E L V R V G Y Y E L V G E I I R L E
1 8 6 1 / 5 7 1 8 9 1 / 6 7
GGT GAC ATG GCC ACC ATC CAG GTG TAC GAG GAG ACC TC T GGC GTA ACT GTC GGA GAT CCG

G D M A T I Q V Y E E T S G V T V G D P

1 0 0



1 9 2 1 / 7 7 1 9 5 1 / 8 7
GTG CTG CGT ACC GGC AAG C CT CTT TCC GTG GAG CTG GGA CCC GGT ATC ATG GGC AGC ATC

V  L  R T G K P L S V E  L  G P G I M G S I

1 9 8 1 / 9 7 2 0 1 1 / 1 0 7
T T T  GAC GGT ATC CAG CGT CCC CTG AAG GAC A TT AAC GAG CTG ACC GAA TCC ATC TAC A TT

F D G I Q R P L K D I  N E L T E S I Y I

2 0 4 1 / 1 1 7 2 0 7 1 / 1 2 7
CCC AAG GGT GTG AAC GTG CCC AGT TTG TCC CGC GTG GCC AGC TGG GAG TTC AAC CCC CTG

P  K G V N V P S L S R V  A S W E F N P L

2 1 0 1 / 1 3 7 2 1 3 1 / 1 4 7
AAC GTC AAG GTC GGC TCC CAC ATC ACC GGA GGT GAC CTG TAC GGT CTG GTG CAT GAG AAC

N V K V G S H I T G G D L Y G L V H E N

2 1 6 1 / 1 5 7 2 1 9 1 / 1 6 7
ACT CTG GTC AAG CAC AAG ATG A TT GTG AAC CCC CGC GCC AAG GGA ACA GTG CGC TAC ATC

T  L  V K H K M I V N P  R  A K G T V R Y I

2 2 2 1 / 1 7 7 2 2 5 1 / 1 8 7
GCC CCC TCC GGC AAC TAC AAG GTC GAC GAT GTC GTC CTG GAG ACC GAG TTC GAT GGA GAG

A P S G N Y K V D D V  V  L E T E F D G E

2 2 8 1 / 1 9 7 2 3 1 1 / 2 0 7
ATC ACC AAG CAC ACC ATG TT G CAG GTG TGG CCA GTG CGT CAC CAC GCT CCC GTG ACC GAG

I  T  K H T M L Q V W P V R H H A P V T E

2 3 4 1 / 2 1 7 2 3 7 1 / 2 2 7
AAG CTG CCC GCC AAC CAC CCC CTG CTC ACC GGA CAG CGT GTG CTC GAC TCG CTC TTC CCC

K L  P A N H P L L T G Q R V L D S L F P

2 4 0 1 / 2 3 7 2 4 3 1 / 2 4 7
TG T GTC CAG GGC GGT ACC ACC GCC A TT CCC GGA GCT TTC GGT TGC GGC AAG ACT GTG ATC

C V  Q G G T T A I P G A  F G C G K T V I
2 4 6 1 / 2 5 7 2 4 9 1
TCG CAG g t g a g a g t c e e a e a a a t t g a g a a t t t a  a g g  a g e g a t g e e t e g t g t a g e c t e c a t

S  Q
2 5 2 1 2 5 5 1
a c a  e t c  a a g t t t e a t a a a a a e a c a a t e c e t a a t  a a a  t e a t t t a c t t g e t t g e a g GCT

A
CTG

L
2 5 8 1 / 2 6 1 2 6 1 1 / 2 7 1
TCC AAG TAC TCC AAC TCC GAT GTC ATC ATC TAC GTC GGT TGC GGT GAG CGT GGT AAC GAG

S K Y S N S D V I I Y V  G C G E R G N E
2 6 4 1 / 2 8 1 2 6 7 1 / 2 9 1
ATG TC T GAG GTA CTG CGT GAC TTC CCC GAG CTG TCC GTG GAG ATC GAT GGT GTG ACC GAG

M S E V L R D F P E L  S  V E I D G V T E
2 7 0 1 / 3 0 1 2 7 3 1 / 3 1 1
TCC ATC ATG AAG CGT ACC GCC C TT GTG GCC AAC ACC TCC AAC ATG CCT GTG GCT GCT CGA

S I M K R T A L V A N T S N M P V A A R
2 7 6 1 / 3 2 1 2 7 9 1 / 3 3 1
GAG GCC TCC ATC TAC ACT GGT ATC ACC TTG TCC GAA TAC TTC CGT GAT ATG GGT TAC AAC

E  A  S I Y T G I T L S E Y F R D M G Y N
2 8 2 1 / 3 4 1 2 8 5 1 / 3 5 1
GTG TCC ATG ATG GCT GAT TCC ACC TCC CGT TGG GCT GAG GCT CTT CGT GAA A TT TC T GGT

V  S M M A D S T S R W A  E A L R E I S G
2 8 8 1 / 3 6 1 2 9 1 1 / 3 7 1
CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC TAC CCA GCC TAC TTG GGA GCT CGT CTG GCC

R  L  A E M P R D S G Y P  A Y L G A R L A
2 9 4 1 / 3 8 1 2 9 7 1 / 3 9 1
TC C  TTC TAC GAG CGT GCC GGT CGC GTT AAG TGC TTG  GGT AAC CCC GAG CGC GAG GGA TCC

S F  Y E R A G R V K C L G N P E R E G S
3 0 0 1 / 4 0 1 3 0 3 1 / 4 1 1
GTG TCC A TT GTC GGA GCT GTG TC T CCT CCT GGT GGT GAC TTC TCC GAT CCC GTA ACC TCC

V  S  I V G A V S P P G G D F S D P V T S
3 0 6 1 / 4 2 1 3 0 9 1 / 4 3 1
GCC ACT CTG GGT ATC GTG CAG GTG TTC TGG GGT CTC GAC AAG AAG TTG GCC CAG CGC AAG

A  T  L G I V Q V F W G L  D K K L A Q R K
3 1 2 1 / 4 4 1 3 1 5 1 / 4 5 1
CAT TTC CCC TCG ATC AAC TGG CTC ATC TCC TAC TCG AAG TAC ATG CGT GCT CTG GAT GAC

H F  P S I N W L I S Y S  K Y M R A L D D
3 1 8 1 / 4 6 1 3 2 1 1 / 4 7 1
T T C  TAT GAC AAG AAC TTC CCG GAA TTC GTG CCG CTG CGT ACC AAG GTC AAG GAG ATC CTG

F  Y D K N F P E F V P E R T K V K E I L
3 2 4 1 / 4 8 1 3 2 7 1 / 4 9 1
CAG GAG GAG GAG GAT CTG TC T GAG ATC GTG CAA CTG GTC GGC AAG GCC T C T CTC GCC GAA

Q E  E E D L S E I V Q L V G K A S L A E
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3 3 0 1 / 5 0 1 3 3 3 1 / 5 1 1
ACC GAC AAG ATC ACG CTG GAG GTG GCC AAG CTG CTG AAG GAC GAT TTC CTG CAG CAG AAC

T D K
3 3 6 1 / 5 2 1

I T L E V A K L  L 
3 3 9 1 / 5 3 1

K D D F L Q Q N

TCC TAC TCC TCG TAC GAT CGC TTC TGC CCC TTC  TAC AAG ACC GTG GGC ATG TTG AGG AAC
S Y S

3 4 2 1 / 5 4 1
S Y D R F C P F  Y 

3 4 5 1 / 5 5 1
K T V G M L R N

ATC ATC GAC TTC TAC GAC ATG GCC CGT CAC TCC GTG GAG TC T ACG GCT CAG TC T GAG AAC
I  I  D 

3 4 8 1 / 5 6 1
F Y D M A R H S  V 

3 5 1 1 / 5 7 1
E S T A Q S E N

AAG ATC ACC TGG AAC GTG A TT CGT GAG GCA ATG GGC AAC A TT ATG TAC CAG CTG TCA TCC
K I T

3 5 4 1 / 5 8 1
W N V I R E A M G 

3 5 7 1 / 5 9 1
N I M Y Q L S S

ATG AAG TTC  
M K F  

3 6 0 1

AAG
K

g t g g g t t a a e a e g e a a a e t t a  g e e  

3 6 3 1 / 5 8 9

a t t g e e t a g a e a e g g g t g a e e a e a

t t t  t t e  a a t  

3 6 6 1 / 5 9 9

e e a t t t e a g GAC
D

CCC
P

G TT
V

AAG
K

GAT GGT 
D G 

3 6 9 1 / 6 0 9

GAG
E

GCC
A

AAG
K

ATC
I

AAG
K

GCT
A

GAC
D

TTC
F

GAG CAG CTG 
E  Q L 

3 7 2 1

CAC
H

GAG
E

GAC
D

CTG
L

CAG
Q

CAG
Q

GCC
A

TTC AGA 
F  R 

3 7 5 1

AAT
N

CTG
L

GAG
E

GAC
D

TAG a g a e e g a e g

A C T GGC CCT 
3 7 8 1

ACT T T T ACA CTC TAA TCT TAT A TT TGT 
3 8 1 1

TAT ATA G TT AAC G TT TAA AAA TGA

AAG CAG TCA  
3 8 4 1

AAA ACC ATC CGA AAA AGC CTA ATC AAA 
3 8 7 1

CAC CAA CAA TTC CAG CTG CAT TCG

ATG AAA AAC 
3 9 0 1

AAA AGT CCA ACA AAT ACC ATA ACT TC T 
3 9 3 1

TGG TGC CTG CGA GAG ATG TAA ACA

T T C  CGG CCT 
3 9 5 1

GCG G TT AAT ACT TTC CCC TAA CCA CGC 
3 9 9 1

CCC CTC CGC CCC TTG AAG GGC AAC

T C T  AGG CAA 
4 0 2 1

CAG CAA CTA CAA CGT CCT GCT ATG TAC 
4 0 5 1

TTC CAT TTA CAA CAA CAA CAC CAA

CAT ACA C TT 
4 0 8 1

GAA TAA AAG TAC ACG GAC ACT GGC GCA 
4 1 1 1

CAC ACA ACA CAT ACA TAA AAG ACA

CAA ATA CAA 
4 1 4 1

ATG CAT GCA TAA ATA GTA TTA TTG  T T T  
4 1 7 1

AAT GAA TGG AAA TT C TT G T T T A TT

T G T GAA AAA 
4 2 0 1

AGT CAT GTT TTC TCC CTG T T T G TT TGT 
4 2 3 1

TAA A TT TAT GTA AAT A TT TAA AGT

ATG AAA TAT 
4 2 6 1

TAA ATG TAC GAA TAA AGT GCA ACA ACA 
4 2 9 1

AAT ACA T T T AAT G T a a t t g a a a g t

g a a  t t t  e a e  
4 3 2 1

t g g e a g e a g a a t g g a t a t t a a a a a  t g t  
4 3 5 1

g t c a a e t e g a t a a a a a g a t a a t a a

g t t  a a a  a t a  
4 3 8 1
a g e  t a a  g a a

t t t

a a t

t t t

ggg

t g a

a a t

a t t

a t a

t t g

t t g

a a a

t

e e t t e a  t t a t a t a a a e a t a e t t g a e t a t a t g a a

Figure 4.8 Genomic DNA and putative aa sequence of vha68~2. (GenBank accession 

no.: U59147). cDNA sequence is shown in upper case.
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ATG translation start site. The other two introns are within the coding sequence at 

exactly the same sites as the two introns of the vha68-2 gene.

4.4.4 Evidence for additional complexity at the vha6S~2 locus

A genomic DNA fragment just 3 'to vha68~2 gene also shows hybridisation to the vha68 

probe (Figure 4.7). 68kg-R, a partial sequence around the EcoRl site in subclone p68g-4 

has been obtained (Figure 4.10). The DNA sequence is 61% identical with the genomic 

sequence of vha68-2 (Figure 4.11), which contains a long open reading frame with a 

translated polypeptide 73% identical to vha68-2 (Figure 4.12). Thus this may be a gene 

encoding another isoform of V-ATPase A subunit. However, it is also possible that this 

fragment offers an alternative splicing as it is very close to vha68~2\ or it is a pseudggene 

w ithout^anscription. Hopefully, information of longer sequence of 68kg-R and the 

sequence of p68c-4 cDNA clone (See section 4.2) would help to answer this question.

4.5 Southern blot analysis o f genomic DNA with vha68-l and vha68-2 cDNA probes

D. melanogaster (CS) genomic DNA was cleaved with a range o f restriction 

endonucleases. Southern blots were probed with the coding region of vha68-l cDNA . 

After hybridisation and washing at high stringency, more than one band was revealed at 

each of the lanes (Figure 4.13A). The band sizes were same as that predicted from the 

digestion map of vha68-l and vha68-2 genomic DNA clones. However, probing with 

the 3' non-coding sequence of either vha68~l or vha68-2, which is gene-specific, reveals 

only one band in most of the lanes (Figure 4.13B, C), suggesting that the two cDNAs 

are the products of two different genes and each gene has only one copy.
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dvha
5‘ ATG

1 kb
I---------------------------- ^

5' ATG
vha68-1

. , / / ...... 1rr
1

ATG
vha68-2

SE

68kg-R

Figure 4.9 Structure of the genes encoding the two isoforms of the D. melanogaster N- 

ATPase A subunit. The exons are represented as rectangles of which coding regions are in 

dark, dvha is the partial genomic sequence for vha68-l from Chio et al (1995). As the 

genomic sequence is incomplete, the length of the first intron in vha68-l is uncertain, 

and whether the 3' U TR has an intron or not awaits confirmation. Here we assume there 

is no intron in the 3' U TR of vha68~l. As 68kg-R has not been completely sequenced, 

here it is presented as a small filled rectangle. E: EcoR I; B, BamHi\ S, SaB.

1 0 4



1  3 1
CGG TAC CGC CTC CGC GTG AAT GAG GCA AGG GTG TAG GGG AGG CGG AAA GCG GGG ATG ATA
6 1  9 1
GAG TGA ATG AGG AGG AGA G TT TGA AGG AGT TGA GAG GTT GGA GGG AGG AAT CGC AGA AGA
1 2 1  1 5 1
GCG GTG AGA TCG GGT TGG AGA AGA ATG AGG ACT GGG G TT TTG TGA TGG AGG AGG TGG TT G
1 8 1  2 1 1
A TA GGG AGA AAT A TT GGT GGG ATG AAG AAG AGG AGG AGG GGA GGA TGG GTG GCA T T T  TGG
2 4 1  2 7 1
GAT GTG CGC GGG GGG GTG GTG AAT GGG GAG GAG ATG GGG GGG GCA GGG ATG TAC GAG GTG
3 0 1  3 3 1
G TT GGG GTT GGA GAG TGG GAG GTT G TT GGT GAG ATG A TT GGA GTG GAG GGT GAT ATG GCG
3 6 1  3 9 1
AGG A TT GAG G TT TAC GAG GAT AGT TGG GGT GTG AGG GTG GGT GAT CGG GTG TAC GAG AGG
4 2 1  4 5 1
GGA AAG GGA GTG TGG GTT GAA TTG  GGA GGG GGG ATG ATG GGG AGG ATG T T T  GAT GGT ATG
4 8 1  5 1 1
GAG GGA GGA TTG  AGG TCG ATG AGT GAA GTA AGG AAG TGG ATA TAC GTG GGG AAG GGG ATG
5 4 1  5 7 1
GAT AGG GGG TGG GTG GGG AGG AAG A TT GGG TAC GAA TTC AGA GGG GGA AAA TTG  AAG ATG 
6 0 1  6 3 1
GAT GGT GTG ATG AGG GGG GGA GAG ATG TAC GGA TGT GTT TTG GAA AAG AGG ATG ATG GAG
6 6 1  6 9 1
GAT GAG CGC GTG ATA GTA GCG GGG CGC AGG AAG GGG GGG ATG CGG TGG TTG  GGA GCG CGC
7 2 1  7 5 1
GGG AAG TAC TGG GTG GAG GAG GTG ATG GTG GAG AGG GAG TTG AAG GAG GAG ATG AGG AAG
7 8 1  8 1 1
GAG AGG ATG GTG GAG GTG TGG CGC GTA GGG AGG TGT GGT GGG TGG AGG ATA AGG TCG CGC
8 4 1  8 7 1
AGG AAT TGA GGA GTG TTG  AGT GGG GAG CGC GTG GTG GAG GGA TTC  T T T  GCA TGT GTG GAG
9 0 1  9 3 1
GGG GGA AGG AGT GGG A TT GCA GGA GGG T T T  GGA TGT GGA AAG AGG GTG ATG TGG GAG GTG
9 6 1  9 9 1
AGA GGG T T T  GTA AGA G TT TAG TTG  AGA AAT GAT TAC A TT GCA ATG AAG T T A  TAC GGG TAG
1 0 2 1  1 0 5 1
GGG GTG TCG AAA TAC TGG AAG TGA GAT GTG ATG ATG TAC GTG GGG TGG GGT GAG GTG GGG
1 0 8 1
AAG GAA ATG TGG GAG G TT G TT ATG GAG T T T  GG

Figure 4.10 Partial sequence of 68kg-R. The £'coÆ site is marked in bold.
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Gap Weight: 5.000
Length Weight; 0.3 00

Average Match: 1.000
Average Mismatch: 0.0 00

Q u a l i t y :  6 2  6 . 8
R a t i o :  0 . 5 6 4

P e r c e n t  S i m i l a r i t y :  6 0 . 9 5 6

v h a 6 S - 2 . g . s e g  x  6 8 k g - R .  s e q

L e n g t h :  4 4 0  8
G a p s  : 6

P e r c e n t  I d e n t i t y :  6 0 . 9 5 6

v h a 6 8 -2 1 4 5 1  t a g t c t a g a a c t t a c a c t t c t g t g t g a a a t a a t g g c a a c t t t a g a a a t g t  1 5 0 0
! 1

6 8 k g -R 1

v h a 6 8 -2 1 5 0 1  g t c c a c c t a t t t g t g a t t a a t a t t c a a a c a a c t c a a a c a t t g g t t t c a t t  
H I  I I I  1 I I I  1

1 5 5 0

68kg~R 5 a c c c c c t c c c c c t c a a t c a c g c a a g c c t g t a g c c g a g c c g g a a a g c c c c c 5 4

v h a 6 8 -2 1 5 5 1 a t t c a a a a t t a a a t g t g a a t a a t t t t a a t a a t t a a t t a a t t g t t t c t t t a
I I  1 1 1 1111 1 1 1 I I  1 I I  1 I I I

1 6 0 0

6 8 k g -R 5 5
I I  1 1 1 1 1 1 1 1 1 1 I I  1 I 1 1 I I I  

a t g a t a c a g t c a a t g a c g a g g a c a g t t t g a a g g a c t t g a g a c g t t c g a c g 1 0 4

v h a 6 8 -2 1 6 0 1 a a c t t t t t t c t a t a a t t c t a a c a a a a a c a t c a t c a a g t a t c a t a a a t a a t  
I I  I 1 1 1 1 I I I  I I  I I I  I I I  I I

1 6 5 0

6 8 k g -R 1 0 5
I I  [ I I I !  I l l  I I  I I I  I I I  I I  

g a c , c a a t c c c a c a a g a g c g c t c a c a t c g c c t t g g a g a a g a a t g a g g a c t 1 5 3

v h a 6 8 -2 1 6 5 1 a a a a a a t t t t a a a a g a a a a t g t t c a a g g c c g a a a t g g a a c c t a t c t t g g t  
1 I 1 1 II  I I I  I I  11 1 1 1 I I

1 7 0 0

6 8 k g -R 1 5 4
I I  1 1 II  I I I  I I  1 1 1 1 1 I I  

c g g g t t t t g t g a t c g a g c a g g t . . . . g g t t g a t a c g c a c a a a t a t t c g t c 1 9 9

v h a 6 8 -2 1 7 0 1 t g g c a a a g t t a t a a a a a c t t c t t g a a t g a a a t g t a t c c c c c c t a a c c c a a  
1 I I I  1 1 I I I  I I I  1 II

1 7 5 0

6 8 k g -R 2 0 0
1 I I I  1 1 I I I  I I I  1 II  

g g a t g a a g a a g a g g a g g a g g c g a c g a t g g g t c g c a t t t t c g g a t g t c c . . 2 4 7

v h a 6 8 -2 1 7 5 1 C c a a c c g 1 1  tea11CC agTCGTCACCGCCGAGGCCATGTCTGGATCAGCT 
1 II  I I  1 1 1 1 1 1 1 1 1 1 1 I I I  1 I I  I I  1 1

1 8 0 0

6 8 k g -R 2 4 8
1 I I  I I  1 1 1 1 1 1 1 1 1 I I  I I I  1 11 1 1 1 1 

.........................CCGGCCCGGTGGTCAATGCCGAGGAGATGGCCGGCGCAGCC 2 8 8

v h a 6 8 -2 1 8 0 1 ATGTACGAGTTGGTCCGCGTCGGCTACTACGAGCTGGTGGGCGAGATCAT

l l l l l l l l l  Mil Mill II Ml 1 MM II II MMMM
ATGTACGAGCTGGTTCGCGTTGGACACTCCCAGCTTGTTGGTGAGATCAT

1 8 5 0

6 8 k g -R 2 8 9 3 3 8

v h a 6 8 -2 1 8 5 1 CCGTCTGGAGGGTGACATGGCCACCATCCAGGTGTACGAGGAGACCTCTG 
I I  1 1 1 1 I I  1 1 1 1 1 1 II I !  1 1 1 i 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 I I  I I  1

1 9 0 0

6 8 k g -R 3 3 9
II 1 1 1 II 1 1 1 1 1 1 1 1 1 11 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II II 1

TCGACTGGAGGGTGATATGGCCACCATTCAGGTTTACGAGGATACTTCGG 3 8 8

v h a 6 8 - l 1 9 0 1 GCGTAACTGTCGGAGATCCGGTGCTGCGTACCGGCAAGCCTCTTTCCGTG 
1 I I  1 I I  1! I I  1 I I  11 1 1 1 II  1 1 1 1 1 I I  M i l l

1 9 5 0

6 8 k g -R 3 8 9
1 I I  1 I I  II  M i l l  I I  1 1 1 II  M i l l  I I  1 1 M 1

GTGTGAGCGTGGGTGATCCCGTCTACCAGACGGGAAAGCCACTCTCCGTT 4 3 8

v h a 6 8 -2 1 9 5 1 GAGCTGGGACCCGGTATCATGGGCAGCATCTTTGACGGTATCCAGCGTCC 
M I I  M M 1 I I  1 1 M II  I I  1 I I  I I  II  I I  I I  M II  I I  II  1 II  1 1 M

2 0 0 0

6 8 k g -R 4 3 9
M II M M II M 1 1 I 1 1 I I 1 1 1 II 1 1 1 II  1 M 1 1 I I I I 1 1 1 1 1  11

GAATTGGGACCCGGCATCATGGGCAGCATCTTTGATGGTATCCAGCGACC 4 8 8

v h a 6 8 -2 2 0 0 1 CCTGAAGGACATTAACGAGCTGACCGAATCCATCTACATTCGCAAGGGTG

Ml 1 Ml 1 II II Ml 1 Mill Ml 1 MMMM
ATTGAGGTCCATCAGTGAACTAACCAACTCCATATACGTGCCCAAGGGCA

2 0 5 0

6 8 k g -R 4 8 9 5 3 8

v h a 6 8 -2 2 0 5 1 TGAACGTGCCCAGTTTGTCCCGCGTGGCCAGCTGGGAGTTCAACCCCCTG 
1 1 I I I !  I I  I I  1 1 II  I I  I I  I I  1

2 1 0 0

68kg~R 5 3 9
1 1 M M  M i l l  1 I I  Mi l  1 1 1

TCGATACGCCCTCCCTGCCCAGGAACATTGCGTACGAATTCACACCCGGA 5 8 8

v h a 6 8 -2 2 1 0 1 AACGTCAAGGTCGGCTCCCACATCACCGGAGGTGACCTGTACGGTCTGGT 
I I  1 I I I  I I I  I I  M II  M II  II  I I  1 1 M II  1 II

2 1 5 0

v h a 6 8 -2 5 8 9
II 1 III 1 1 1 1 1 M M M M  II III 1 II 1 1 1 II

AAATTGAAGATCGATGCTCTGATCACCGGCGGAGACATCTACGGATCTGT 6 3 8
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6 8 k g -R 2 1 5 1 GCATGAGAACACTCTGGT.. . CAAGCACAAGATGATTGTGAACCCCCGCG 
1 1 1 1 1 1 M l  1 1 I I I  1 ! I I  1 1 M I I  1

2 1 9 7

vh a 6 8 ~ 2 6 3 9
II t i l l  1 1 1  1 1 III 1 II 1 1 II 1 II 1

TTTCGAAAACAGCATGATGCACGATCACCGCCTGATACTACCGCCCCGCA 6 8 8

6 8 k g -R 2 1 9 8 CCAAGGGAACAGTGCGCTACATCGCCCCCTCCGGCAACTACAAGGTCGAC 
II  I I  1 I I  1 I I  1 1 I I  I I  1 II  1 I I  I I  1 1 I I  I I  1

2 2 4 7

v h a 6 8 -2 6 8 9
1 1 II M 1 1 ! 1 1 1 II I I  Mi l  II 1 II 1 II 1 1 1

CCAAGGGGCGCATCCGGTGGTTGGCACCGCCCGGGAACTACTGCGTGGAC 7 3 8

68kg~R 2 2 4 8 GATGTCGTCCTGGAGACCGAGTTCGATGGAGAGATCACCAAGCACACCAT 
I I  I I  I I  II  I I  I I  1 I I  1 I I  1 1 1 1 1 I I  M II  I I  1 I I  1 I I  1 1 II

2 2 9 7

v h a 6 8 -2 7 3 9
1! II II 1 II 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 II 1 II 1 1 II 1 1 1 1 II

GAGGTGATCGTGGAGACGGAGTTCAACGACGAGATCACCAAGCACACCAT 7 8 8

6 8 k g -R 2 2 9 8 GTTGCAGGTGTGGCCAGTGCGTCACCACGCTCCCGTGACCGAGAAGCTGC 
1 1 I I  I I  I I  M 1 I I  I I  1 1 I I  I I  1 1

2 3 4 7

v h a 6 8 ~ 2 7 8 9
1 1 1 1 1 1 1 1 M 1 II 1 1 1 1 II II i 1

GCTCCAGGTGTGGCCCGTACGGAGGTGTCGTCGGTGGAGGATAAGCTCCC 8 3 8

vh a 6 8 ~ 2 2 3 4 8 CCGCCAACCACCCCCTGCTCACCGGACAGCGTGTGCTCGACTCGCTCTTC 
II  I I  1 I I  I I  1 I I  M M i l l  I I  I I  I I  1 1 I I  1

2 3 9 7

6 8 k g -R 8 3 9
II 1 1 1 II II 1 II M II 1 1 1 II II Ml  Mi l

CCAGCAATTCACCACTCTTGACTGGCCAGCGCGTCCTGGACCGATTCTTT 8 8 8

vh a 6 8 ~ 2 2 3 9 8 CCCTGTGTCCAGGGCGGTACCACCGCCATTCCCGGAGCTTTCGGTTGCGG 
II  I I  I I  I I  I I  I I  M 1 1 I I  1 M 1 M II  I I  1 M i l l  I I  I I  I I  I I

2 4 4 7

6 8 k g -R 8 8 9
1 1 M M M M M M M M M i II M II II Mi l l  II II II II

CCATGTGTCCAGGGCGGAACCACTGCCATTCCAGGAGCGTTTGGATGTGG 9 3 8

v h a 6 8 -2 2 4 4 8 C A A G A C T G T G A T C T C G C A G g tg a g a g tc c c a c a a a t tg a g a a t t t a a g g a  
Mi l l  II I I I I I I I I M I I I I 11 I I I  1 1 II 1 1

2 4 9 7

6 6 k g -R 9 3 9
Mi l l  I I  1 II II II M II II II 1 1 I I  1 1 I I  1 1 

A A A G A C C G T C A T C T C G C A G g t g a g a g g g t t t c t a a g a g t t t a g t t g a c a a 9 8 8

v h a 6 8 -2 2 4 9 8 g c g a t g c c t c g t g t a g c c t c c a t a c a c t c a a g t t t c a t a a a a a c a c a a t c  
II 1 Mi l  II 1 1 1 1 1 1 1

2 5 4 7

6 8 k g -R 9 8 9
II  1 II  I I  I I  1 1 1 1 1 1 1 

a t g a t ................................................. t a c a t t c c a a t c a a c t t a t a c c c c . . . . 1 0 1 7

v h a 6 8 -2 2 5 4 8 c c t a a t a a a t c a t t t a c t t g c t t g c a g G C T C T G T C C A A G T A C T C C A A C T C
M M  M M M M  II  M M II  I I  1

2 5 9 7

6 8 k g -R 1 0 1 8
1 1 II M M M M  II M 1 M 1 1 1 1 

.......................................................................tagGCCCTGTCCAAATACTCCAACTC 1 0 4 3

v h a 6 8 -2 2 5 9 8 CGATGTCATCATCTACGTCGGTTGCGGTGAGCGTGGTAACGAGATGTCTG 
I I  I I  I I  I 1! 1! I I  I I  I I  I I  1! 1 1 M II  1 1 I I  M i l l  1 1 M 1 1

2 6 4 7

68kg~R 1 0 4 4
II 1 II 1 1 1 1 1 1 1 1 11 1 1 II 1 M 1 1 1 1 1 1 1 II Mi l l  Mi l l  1

AGATGTCATCATCTACGTGGGCTGCGGTGAGCTCGGGAACGAAATGTCCG 1 0 9 3

v h a 6 8 -2 2 6 4 8 AGGTACTGCGTGACTTCCCCGAGCTGTCCGTGGAGATCGATGGTGTGACC 
II 1 1 II Mi l l  1 1

2 6 9 7

68kg~R 1 0 9 4
Mi l  II II 1 II II

AGGTTCTTATGGACTTTCC............................................................................................ 1 1 1 2

Figure 4.11 Homology between vha68-2 genomic DNA and partial 68kg-R sequence.
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Gap Weight: 3.000
Length Weight: 0.100

Average Match: 0.540
Average Mismatch: -0.396

Q u a l i t y :  
R a t i o  :

3 1 3 - 2
1 . 1 8 6

L e n g t h  : 
G a p s  :

6 1 5
1

P e r c e n t  S i m i l a r i t y :  8 3 . 6 5 0  

v h a 6 8 - 2  x  6 8 k g - R  . .

P e r c e n t  I d e n t i t y :  7 3 . 3  8 4

v h a 6 8 -2 1 M SNLKRFDDEERESKYGRVFAVSGPWTAEAMSGSAMYELVRVGYYELVG
II  I 1 1 1 l l l l l l l l l  . H I

5 0

6 8 k g -R 1
1 1 • 1 1 • 1 • 1 • 1 1 1 M 1 1 1 1 • • i l l  

..........................................................................WNAEEMAGAAMYELVRVGHSQLVG 2 5

v h a 6 8 -2 5 1 E IIR L E G D M A TIQ V Y E ETSG V T V G D PV LR TG K PL SV EL G PG IM G SIFD G I 
1 1 1 1 1 1 1 1 1 1 II  1 1 1 1 • 1 1 I I  1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1

1 0 0

68kg~R 2 6
1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 * 1 1 1 1 ‘ 1 1 I I  1 ‘ ' 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

E l  IR LEGDM ATIQVYEDTSGVSVGDPVYQTGKPLSVELGPGIM GSIFDGI 7 5

v h a 6 8 -2 1 0 1 QRPLK D IN ELTESIY IPK G V NV PSLSRV A SW EFN PLN V K V G SH ITG GD LY  
1 1 1 1 . 1 1 1 1 . 1 1 I . 1 1 1 . . I l l  1 . 1 1 I . 1 . . 1 I 1 1 1 • 1

1 5 0

68kg~R 7 6
1 1 1 1 ' • 1 • 1 1 1 • 1 1 I * 1 1 1 ■ * • 1 1 1 • 1 • • 1 1 • ! • • 1 * • • 1 1 I I  1 • 1 

Q R PL R S IS E L T N S IY V P K G ID T P S L P R N IA Y E F T P G K L K ID A L IT G G D IY 1 2 5

v h a 6 8 -2 1 5 1 GLVHENTLV. KHKMIVNPRAKGTVRYIAPSGNYKVDDVVLETEFDGEITK 
1 1 I I  • . 1 . . 1 . I I  I I  . 1 . . 1 1 I I I  1 1 . 1 . . 1 1 1 1 . . 1 1 1 1

1 9 9

6 8 k g -R 1 2 6
1 1 ! 1 • • •  • 1 • • 1 • 1 1 ' 1 1 • 1 • • 1 1 * ! 1 1 1 1 * 1 • •  1 1 1 1 1 1 1 1

GSVFENSM M HDHRLILPPRTKGRIRW LAPPGNYCVDEVIVETEFNDEITK 1 7 5

vh a 6 8 ~ 2 2 0 0 HTMLQVW PVRHHAPVTEKLPANHPLLTGQRVLDSLFPCVQGGTTAIPGAF
U  1 1 1 1 1 1 I I  • 1 1 1 1 1 1 1 1 1 1 1 1 • 1 1 1 1 M 1 II 1 II II 1

2 4 9

6 8 k g -R 1 7 6
I 1 1 1 1 1 1 1 11 * * ‘ 1 ' 1 1 1 1 1 1 1 1 1 1 1 ‘ * 1 i 1 1 1 I 1 1 1 1 II 1 1 1

HTM LQVW PVRRCRRW RISSPSNSPLLTGQRVLDRFFPCVQGGTTAIPGAF 2 2 5

v h a 6 8 -2 2 5 0 G C GK TVISQALSKYSNSDVIIYVGCGERGNEM SEVLRDFPELSVEIDGVT 
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Figure 4.12 Homology between the translated, proteins of vha68-2 and 68kg-R partial 
sequence.
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Figure 4.13 Southern blots of genomic D. melanogaster DNA. (A) Probed with 

vha68-l coding sequence; (B) probed with vha68-2 3' isoform-specific sequence; (C) 

Probed with vha68-l 3' isoform-specific sequences. E, E’coRI; EV, Ac<?RV; Xh, Xho\\ B, 

BamYW\ H, H inàlll', P, Pst\\ Sc, Sac\\ Xb, Xba\\ Bg, B^/II; Si, SaH\ Sm, Sma\.
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4.6 Chromosomal location

Salivary gland chromosome squashes probed with vha68-l cDNA revealed only one 

site of hybridisation band at polytene chromosome 34A (Figure 4.14), As both vha68- 

1 and vha68-2  share significant homology and cross hybridise in Southern blots, the 

vha68-l cDNA probe should also hybridise to vha68-2. Thus, vha68~2 may also be at 

34A. This has been further supported by the localisation at 34A of the P-element in fly 

line l(2)k02508 (Refer to Encyclopaedia of Drosophila). In next chapter we will show 

that this P-element is in the first intron of vha68-2.

4.7 Northern blot analysis of vha68-l and vha68-2

N orthern blots of total RNA, using the whole vha68 -1 cDNA as a probe, detected 

only a single band equivalent to mRNA(s) o f —2.6 kb. The single band probably 

corresponds to both vha68~l and vha68 '2  transcripts. A developmental N orthern of 

embryo, larval, pupal and adult total RNAs showed that the genes are almost equally 

expressed at embryo, larval and adult stages, but at much reduced level at the pupal 

stage (Figure 4.15). Tissue-based N orthern analysis o f adult head, thorax and 

abdomen total RNAs showed the genes to be almost equally expressed (Figure 4.16) as 

would be expected for a putative housekeeping gene. The same blots, probed with 

vha68-l or vha68-2 specific 3' prime non-coding fragments, found that both genes to 

be similarly expressed (Figure 4.15 & 4.16).

4.8 Discussion

The V-ATPase A subunit has been previously reported to be encoded by a single gene 

in all the animals and microorganisms studied. Although multiple genes have been ?■

jfbund in plants only a single type mRNA has been reported. Therefore, it has been y

originally concluded that there is just a single isoform of the A subunit (Bowman et ah,

1988; Hirata et a l, 1990; Puopolo et al> 1991; Zimnlak et al, 1988; Graf et a l, 1992).
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Figure 4.14 Chromosomal localisation of vha68. Salivary gland chromosome 

squashes were prepared by standard techniques (Ashburner, 1989). 

Chromosomes were probed with biotinylated, random-primed vhd68~l cDN A  

and hybridisation was detected using streptavidin-conjugated peroxidase and 

diaminobenzidine.
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Figure 4.15 Developmental N orthern blot analysis of the vha68 genes. Total RNA 

was isolated, from Canton S embryos, larvae, pupae and adults. The RNA was 

separated by electrophoresis in a 1% formaldehyde-agarose/MOPS gel, blotted to 

nitrocellulose and hybridised with ^^P-labelled random-primed probes. The filters 

was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respect 

to an RNA ladder (Gibco BRL). E, Embryo; L, third instar larva; P, pupa; Ad, adult. 

The filter was first hybridised with whole vha68-l cDNA, then stripped and reprobed 

with isoform-specific cDNA fragments and rp49 as a control for differences in RNA 

loading.
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Figure 4.16 Tissue specific Northern blot analysis of the vha68 genes. Total RNA of 

adult head, thoraces and abdomens, as well as male and female adults was isolated. 

The RNA was separated by electrophoresis in a 1% formaldehyde-agarose/MOPS 

gels, blotted to nitrocellulose, and hybridised with ^^P-labelled random -prim ed 

probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were 

determined with respected to an RNA ladder (Gibco BRL). H, head; T, thorax, Ab, 

abdomen; M, males; F, females. The filter was first hybridised with whole vh a 6 8 -l 

cDNA, then stripped and reprobed with isoform-specific cDNA fragments and rp49  

as a control for differences in RNA loading.
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The existence of two isoforms of the A subunit was first reported in human (van Hille, 

1993). The VA68 isoform is expressed in all tissues whereas the H 0 6 8  isoform was 

detected only in osteoclastoma, a tum our enriched in osteoclasts (Chambers et al., 

1985). In chicken, two isoforms of the A subunit are generated by differently splicing 

o f two mutually exclusive exons from the same gene. Unlike the classical A l isoform, 

the chicken A2 isoform does not contain either the ATP-binding consensus sequences 

(the p-loop) or the pharmacologically relevant Cys^54 in its polypeptide. Both isoforms 

appear to be ubiquitously expressed (Hernando et al., 1995). In this chapter two D. 

melanogaster A subunit genes, vha68~l and vha68-2, have been described. The two 

isoforms share 91% identity at the polypeptide level. A genomic DNA fragment 

correspond to vha68~2 was identified and sequenced. A partial genomic DNA 

fragment for vha68~l was already available (Chio et al, 1995). Both genes are found to 

have a similar structure, the two introns are at the exact same sites but vha68-2  has a 

small extra intron. Sequences of introns and of 3' and 5' prime non-coding fragments 

are different. However, since the coding sequence and corresponding polypeptides 

share high homology, the two genes presumably arise from a duplication o f a single 

gene present in an ancestor. If the two isoforms have the same function the purpose of 

the two copies of the gene might be to compensate for an increased need for the 

protein product. The presence of two isoforms could also impart different properties or 

provide alternative sorting to cell compartments (such as vacuolar or plasma 

membrane). Although Northern blot of D. melanogaster total RNA suggests both 

genes are ubiquitously expressed, this does not necessary mean that both isoforms are 

present in the same cellular population or subcellular compartment. It is still possible 

one o f the isoforms might be involved in plasma membrane V-ATPase while another 

may be implicated in endomembrane V-ATPase function. The reporter detector of 

P[Za;c'W] insertion in vha68-2 reveals this gene is highly expressed in Malpighan tubules, 

midgut etc. where the plasma membrane V-ATPase should have a role (See Chapter 

5). However, the functional implications of the presence of two isoforms o f the V- 

ATPase A subunit are still not clear.
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Chapter 5
Mutational Analysis o f vha68-2, a Gene Encoding One o f  
the Two Isoforms o f the Drosophila V-ATPase A-subunit

5.1 Summary

A Drosophila line (l(2)k02508) carrying a single V[lacW\ insertion in vha68-2, a gene 

encoding one of the two isoforms of the Drosophila V-ATPase A subunit, was isolated by 

screening pools of rescued plasmids. Molecular characterisation demonstrates that the 

transposon is inserted within the first intron, and thus lies 5' to vha68-2 translation start 

codon. Expression of the enhancer detector reporter gene carried by the lacZ  (p- 

galactosidase) was widespread, but was particularly strong in the gut and Malpighian 

tubules of both larvae and adults. The insertion significantly reduces the accumulation of 

vha68-2 mRNAs and causes homozygous lethality durng the first larval instar. The lethal 

phenotype can be reverted by excision of the inserted P-element. Imprecise excision or 

internal deletion of the P-element created a set of novel hypomorphic or null alleles, with 

phenotypes ranging from first instar lethality to sub-lethals of various classes.

5.2 Introduction

Chapter 4 described the identification and characterisation of two genes, vha68~l and 

vha68~2, both of which encode V-ATPase A subunits. Both vha68-l and vha68-2  are 

widely expressed. In order to address the in vivo functions of the two genes, it would be 

useful to partially or entirely inactivate them. For this purpose, Drosophila had the 

considerable advantages that it is genetically well characterised and amenable in several 

ways to mutational analysis. Once the chromosomal location of a gene has been specified, 

there is often a large am ount o f available information related to that chromosome 

location that can help with the analysis. For example, the P-element insertions in vha26  

(Chapter 6) and vha55 (Davies et a l, 1996) were identified by screening available P-
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element lines corresponding to the approximate locations of the genes. In the case of 

vha68 gene, no such lines had been described. Fortunately, however, a collection of more 

than 2000 lines with recessive lethal V[lacW\ insertions on the Drosophila second 

chromosome was available (Torok, 1993) and plasmids representing the insertion sites of 

1864 of these had been rescued (See Chapter 3). Southern blotting of the rescued 

plasmids and hybridisation with vha68~l cDNA identified 3 lanes containing related 

plasmids. One o f these plasmids was traced to a single rescued plasmid (P I84) 

corresponding to fly line l(2)k02508 (See Figure 3.3). A "m m i-white" (Pirrotta, 

1988) has been inserted in the middle of V[lacW\. As a genetic marker, m ini-w hite  

provides advantages. First, flies heterozygous for mxni-white in a genetic background null 

for the white locus generally have orange eyes, whereas flies homozygous for the same 

element have red eye pigmentation. Eye colour also tend to be darker in flies with 

multiple insertions (Kiss, 1996, Personal com.). Second, once P-element has been 

detected in a region of interest, it can be remobilised in the presence of transposase, and 

by screening for loss of eye pigmentation one can isolate revertants (precise excision) or 

new alleles (imprecise excision). At the 5' end o^^[lacW \ is the lacZ reporter gene which 

may give clues to the expression pattern of the target gene.

5.3 l(2)k02508 contains a single insertion in vha68-2

Southern blotting of genomic DNA from fly line l(2)k02508, cleaved by EcoRi and 

probed with vha68-l cDNA, shows band shifts due to V[lacW\ insertion (Figure 5.1A). 

Probing with a 1.9 kb V[lacW\ fragment corresponding to the plasmid replicon detected 

only a single band (Figure 5 .IB), suggesting that line l(2)k02508 contains a single 

V{lacW\ insertion in or near one of the two vha68 genes. This is supported by in situ 

hybridisation to polytene chromosomes with a P-element probe, which shows line 

l(2)k02508 to contain a single insertion at 34A3-4 (refer to Encyclopaedia of Drosophila 

for information on l(2)k02508). As reported in Chapter 4, in situ hybridisation to
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polytene chromosomes with vha68-l cDNA also detects a single band at 34A, the 

probable location of both A subunit genes.

5.4 The insertion in l(2)k02508 lies within vha68~2

Comparison of the restriction maps of the plasmid P I 84 and vha68-2  showed the 

insertion to be in the first intron, less than 1 kb 5' to the translation start site (Figure 

5.2). Sequencing of the rescued plasmid produced unequivocal evidence for the insertion 

within the vha68-2 gene. The insertion has occured between 703 and 704 in the vha68~2 

genomic DNA sequence (Figure 5.3). The sequence generated by primer PR is exactly 

the same as a region of the first intron of vha.68-2. PR is a P-element primer reading out 

of the P-element into flanking DNA, i.e. into the rescued DNA (Figure 5.3 A). Sequence 

generated by primer 68T7-6 shared more than 97% homology among the 218 base pairs 

(Figure 5.3 B), with no changes found in the coding sequences.

5.5 Lethality in l(2)k02508 is caused by insertion of the V[lacW\ element

That the V[lacW\ insertion is indeed responsible for the homozygous lethality o f the 

l(2)k02508 was shown by the generation of viable revertants following precise P-element 

excision. V[lacW\ was remoblised by the cross shown in Figure 2.1. w hite ' progeny of 

various classes was generated (Table 5.1). One class was homozygous viable for the 

original second chromosome. Lethality in the l(2)k02508 was then due to P-element 

insertion rather than to some other accidently fixed events elsewhere on the same 

chromosome.
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(A) (B)

Figure 5.1 Southern blotting of genomic DNAs confirms that line l(2)k02508 contains a 

single V[lacW\ insertion in vha68. (A) Canton S (lane 1) and l(2)k02508 (lane 2) DNAs 

cleaved by EcoRI and hybridised with vha68-L  (B) Probed with the 1.9 kb V[lacW\ 

fragment corresponding to the plasmid replican.

PR

5'

S
1

BE
1 1 i_

ATG 68T7-6

BE

Figure 5.2 Correspondance of the rescued plasmid and vha68-2 genomic DNA fragment. 

S, Sail', B, BamWl', E, EroRl.
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Figure 5.3 Sequence homology of rescued plasmid and vha68-2. (A) 68k-PR is the 

sequence reading out of rescued plasmid from primer PR. Bold indicates the end of the 

V[lacW\ insertion. (B) 68T7-6 is the sequence of rescued plasmid generated by primer 

68T7-6 which is in vha68-2 gene.
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5.6 Imprecise excision generates a range o f new alleles

Remobiiisation of a P-element, apart from the precise excision, often generates flanking 

sequence deletions by imprecise excision (Daniels et aL, 1994; Salz et al., 1987; Voelker et 

a i, 1984). Remobilisation may also generate local reinsertions that can often be selected 

by scoring the dominant marker on the transposon (Tower, etal., 1993).

About 200 lines which lost eye colours were selected and backcrossed to the original line 

l(2)k02508 to test survival to the adult stage. The survival rate showed a range of 

differences (Table 5.1 and Figure 5.4). Interestingly, several lines showed a temperature- 

sensitive phenotype. The homozygous flies of these lines can survive at high temperature 

(25'-30“C) but they die before reaching adult stage if they are reared at 16“C (Table 5.1 

and Figure 5.5). A genomic Southern blot of the new alleles found that alleles 68S-6 and 

68S-10 are likely to have deletions in gene vha68-2 (Figure 5.6). O f the five temperature- 

depedent alleles, 68S-27 has an internal deletion with the plasmid replicon still there. 

However, the hybridisation patterns of other three alleles, 68S-22, 68S-25 and 68S-38, 

looks the same as that of Canton S. It Is possible that these alleles still contain deletions 

but the deletions are too small to be detected by genomic Southern blot.

5.7 Reporter gene expression

Line l(2)k02508 contains a single V\_lacW\ insertion, located in the first intron of vha68- 

2. Since lacZ enhancer detector element is in the same orientation as vha68-2 transcript, 

it might be expected that the lacZ expression pattern would mirror at least in part the 

expression pattern of vha68-2.

The first evidence for lacZ expression was in gastrulating embryos (Figure 5.7) The 

heaviest staining was initially in a loop o f embryonic midgut, with staining soon 

becoming general. In larvae, pupae and adults, most or all tissues eventually stain, as
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would be expected for a ubiquitously expressed gene; however, staining in shorter time 

showed certain tissues, the labial palps, a region of the midgut, the main segments of the 

Malpighian tubules and rectal pads to be conspicuously labelled. This is significant, 

because it neatly delineates those tissues in which V-ATPases play a plasma-membrane, 

rather than an endomembrane role (Davies et ah, 1996). Although P-element enhancer 

detectors do not necessarily report faithfully the entire expression pattern of their 

neighbouringtranscription units, as they may be unduly influenced by short-range

Table 5.1 New alleles and revertants after excision of the 9\lacW\ in line l(2)k025Q8

fliy
lines

25% 30% 16%
A B C D E D E D E

SI 24 46 5 156 9 65 3 69 1
S2 25 26 14 97 52 42 31 36 21

S3 20 16 10 137 30 32 ■ 22 52 4

S4 14 18 19 78 56 18 24 39 23

S6 30 32 0 131 0 108 0 74 0

S8 22 29 19 96 19 39 16 67 1

S9 19 21 11 97 33 62 37 79 41

SIO 40 45 0 163 1 71 0 25 0

S ll 17 28 2 166 14 33 4 60 3

S13 15 36 21 45 16 50 21 65 37

S22 48 48 54 67 11 17 8 83 0

S25 23 23 6 112 21 40 5 74 0

S27 27 81 18 85 10 81 18 181 2

S29 13 19 7 92 28 59 15 110 27

S33 15 23 1 191 7 35 12 86 3

S35 13 13 12 58 24 64 24 50 21

S36 20 32 0 138 0 77 0 89 0

S37 21 48 24 89 26 22 5 75 24

S38 28 68 28 122 21 16 3 108 3

A, B, C, D, E, F stand for different phenotypes, See M ethod section 2.18 

for the meaning.
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Figure 5.4 New alleles with different survival efficiency after remoblisation of the P- 

element in strain l(2)k02508. Filled boxes show the % survival when heterozygous with 

the l(2)k02508 chromosome; Empty boxes show % survival when homozygous for a 

new allele.

Actual ratio of certain progeny
Survival efficiency (%) = _____________________________________________________

Expected ratio of certain progeny if without detrimental effects
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Temperature-sensitive vha68-2 alleles
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Figure 5.5 Alleles with temperature-dependent survival. Filled boxes show survival at

30°C, empty boxes show the sumval at 16°C.

Actual ratio of certain progeny
Survival efficiency (%) = _____________________________________________________

Expected ratio of certain progeny if without detrimental effects
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Figure 5.6 G enom ic Southern blot o f vha68-2 m utant flies. Genom ic DNA was digested 

with EcoRl, run out on a 1% agarose gel and blotted to H ybond N. The both filters were 

hybridised with probe o f vha68-l cDNA.
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Figure 5.7 lacZ expression patterns of l(2)k02508. (A) embryonic, showing a loop of 

the midgut staining; (B) embryonic, showing Malpighian tubule and midgut staining; 

(C) embryonic with longer staining; (D) Larval gut showing the mid gut and 

Malpighian tubule staining; (E) Adult gut showing the Malpighian tubules and midgut 

staining; (F) Adult Malpighian tubules, showing staining confined to nuclei of main 

segment; (G) Enlarged view of the adult Malpighian tube staining; (H) Front view of 

adult head, showing staining of antennal bases and labial palps; (I) Side view of adult 

head, showing the staining of antennae and labial palps.
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enhancers, the pattern of expression reported here is precisely what would be expected for
.a V-ATPase gene (Figure 5.7). Antibody staining for p-galactosidase shows a similar 

expression pattern. Figure 5.8 shows the antibody staining of Malpighian tubules in 

larvae.

5.8 Phenotypic analysis of l(2)k02508 and new alleles

The original P-element strain l(2)k02508 and the two new alleles 67S-6 and 67S-10 are 

homozygous lethal and are maintained over balancer CyO. Flies homozygous for

balancer CyO are lethal at late embryo or early larvae stage, but flies heterozygous for

CyO are viable with curly wings (Lindsley and Zimm, 1992). If  flies homozygous for the 

vha68" could survive to adult stage they should have distinctive straight wings. However, 

it is difficult to distinguish the difference earlier than the adult stage. To facilitate the 

analysis of lethal phase the CyO balancer chromosome was first replaced with wild type 

to observe whether embryos homozygous for the P-element can hatch. 468 larvae 

hatched from 483 eggs laid by parents l?[lacW\l+. The hatch rate is 97%, approximately 

the same hatch rate for the wild type flies. O f the 15 unhatched eggs, 7 eggs are 

unfertilised. This high hatch rate means that the homozygous V{lacW\ can survive to 

larval stage. To distinguish the homozygous \vha6S-2~hha68-2‘]  larvae from the 

heterozygous larvae the original balancer CyO was replaced by the CyO chromosome

w hich then could distinguish  the homozygotes \vha68-2~hha.68-2'] from
4

heterozygotes as early as the first instar larvae. The heterozygous fly has

a black hook while the homozygous flies have yellow hooks (figure 5.9A).

For the three mutant lines, l(2)k02508, 68S-6, and 68S-10, the homozygotes can survive 

the embryo stage. The new hatched larvae wiggled around slowly and were not as active 

as the healthy one. The homozygous \vha68~2'/vha68~2~\ larvae were observed dying in 

first instar larvae.
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Figure 5.8 Antibody staining of p-galactocidase in the Malpighian tubules. (A) Third 

instar larval Malpighian tubules showing nuclear staining in the principal cells. (B) 

Malpighian tubules and gut of third instar larvae showing the nuclear staining of gut and 

Malpighian tubules, and the unstaining junction.
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Examination of the Malpighian tubules in the homozygous larvae indicates the mutation 

affects the morphology o f this organ, especially the anterior segment. Tubules are 

responsible for the clearance of the waste products. The anterior segment o f the 

M alpighian tubules normally stores the primary urine in the form o f crystalline 

concrements of uric acid, calcium phosphate, etc (Maddrell and O 'Donnell, 1992). The 

concrement play an important role in the process of osmoregulation and they are either 

absent or severely reduced in the original P-element mutant and the two deletion alleles 

(Figure 5.9B).

5.9 Northern blot analysis of mutant flies

The above results indicated that the l(2)k02508 strain and the two alleles 68S-6 and 68S- 

10 were hypomorphic for V-ATPase function. I therefore was interested to test whether a 

decrease also occurred at the level o f transcription of the vha68 gene in line I(2)k02508. 

Total RNA was isolated from adult of wild-type Canton S, the heterozygous P-element 

insertional line l(2)k02508, two homozygous revertants, 67R-2 and 67R-4. The RNA 

was separated by electrophoresis in 1% formaldehyde-agarose/MOPS gels and blotted to 

nitrocellulose. The blot was probed with vha68~l cDNA (Figure 5.10). For comparison 

of RNA loading, the blots were stripped and probed with Rp49 cDNA. All the 4 lines has 

the same 2.6 transcript of vha68, but fly strain l(2)k02508, even being heterozygous and 

that the probe used here can be expected to hybridise to transcripts o f both vha68'l and 

vha68-2, shows an appreciable reduction in overall vha68 levels in the mutant lines. The 

revertant line 67R-4 has the same RNA level as that of wild type, but The revertant line 

67R-2 has less RNA Itranscript which is the same level as that of the heterozygous 

l(2)k02508. Thus, it can be strongly suggested that the l(2)k02508 are also a 

hypomorphic mutation at the level of transcription.
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(A)

(B)

Figure 5.9 Phenotype o f 68S-6. (A ) D ifference o f hook colour betw een hom ozygous and 

heterozygous larvae o f 68S-6. (1) and (3) are hom ozygous dying larvae w ith yellow  hook, 

(2) is heterozygous larvae w ith black hook.(B) defects in M alpighian tubules in dying 

hom ozygous larvae o f 68S-6, (1) is the dying hom ozygous the larvae in which the white 

precipitates are reduced or absent. (2) is the heterozygous larvae w ith norm al M alpighian 

tubules which contain a white precipitate o f uric acid and calcium  salts, (here seen as black by 

transm itted light).
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Figure 5.10 Northern blot analysis of the mutant flies of vha68-2. Total RNA was 

isolated from the adult flies using T R IzoI^^  (Gibco BRL). The RNA was separated by 

electrophoresis in 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose, and 

hybridised with ^^P-labelled random-primed probes. The filters was then exposed to 

Fuji X-ray film for 1-3 days. Sizes were determined with respected to an RNA ladder 

(Gibco BRL). The filters were first hybridised with whole vha68-l cDNA, then the same 

blots were stripped and reprobed with rp49 to control for differences in RNA loading. 

Lane 1. Canton S; Lane 2, P-element insertional m utant l(2)k02508; lane 3, 

homozygous revertant 68R-2; Lane 4, homozygous revertant 68R-4.
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5.10 Discussion

The identification of a P[/czcW] insertion in vha68-2 is of great help in addressing the 

function of the gene. Inactivation of just vha68~2 leads to the homozygous lethality at 

first instar larvae, which suggests vha68-2 to be an essential gene. Although the sequence 

of the two isoforms is highly homologous at DNA and protein levels, the presence of 

only vha68-l is insufficient for proper function. The Northern blots of total RNA of 

both isoforms detected a very similar pattern of ubiquitous expression. However, this 

does not necessarily mean that both isoforms are present in the same cellular population 

or subcellular compartment. The X-gal staining of the strain l(2)k02508 with a P- 

element in vha68-2 reveals a general expression pattern, but highly enriched in the 

midgut and Malpighian tubules, suggesting a plasma membrane role for the vha68-2 

isoform. This staining pattern is similar to the x-gal staining pattern of fly lines with a P- 

element in genes encoding other subunits, such as the E, B and c subunits of Drosophila 

V-ATPases. Such a expression pattern may be applied to other subunits of V-ATPase 

and thus may provide a general means of screening P-element for mutations for V- 

ATPases and related genes.

The new alleles generated by excision of P-element in l(2)k02508 show phenotypes with 

different severity; and in particular, five temperature-sensitive alleles. However, the 

molecular mechanism underlying these potentially im portant alleles needs further 

investigation.

As vha68~l and vha68-2  are both at 34A and remobilisation o f P-element tends to

reinsert into the local sites around the original P-element, it should not be too difficult to

identify a fly carrying a '2[lacW\ in vha68-l by the PCR strategy (Kaiser and Goodwin,

1990) following the local jumping of the P-element in line l(2)k02508. Analysis of the

mutants of both vha68~l and Yha68-2 should help in elucidation of the function

differentiation of the two isoforms of the V-ATPase A subunit in Drosophila.
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chapter 6
Characterisation and Inactivation o f vha26^ the Gene 
Encoding an E-Subunit o f the V-ATPase

6.1 Summary

A D, melanogaster gene and a cDNA for the 26 kDa E subunit have been cloned utilising 

homology with the corresponding M. sexta gene. The Drosophila gene contains three 

small introns. Its deduced translation product has 226 amino acids and a molecular 

weight of 26.1 kD. The polypeptide shares 76.5% identity with the M. sexta 

polypeptide, 62.8% with that of human and 34.3% with that o f yeast. The Drosophila 

gene {vha26) is present as a single copy at cytological position 83B1-4 on the third 

chromosome and gives rise to an mRNA species of 2.3 kb. Abundance of the latter, 

relative to an rp49 control, shows relatively little variation within adult head, thorax and 

abdomen, suggesting that the E subunit is a relatively ubiquitous component of the 

V-ATPase. vha26 is, however, relatively less expressed during metamorphosis, as is also 

the case for the D. melanogaster V-ATPase A subunit (Chapter 4). A fly line carrying a 

single lethal V[lacW\ insertion within vha26  gene has been identified. This will greatly 

facilitate study of the in vivo function of the E subunit.

6.2 Introduction

Subunit E is a constituent of the catalytic sector of the V-ATPase. It was one of the first 

subunits to be identified in kidney V-ATPase by immunological studies, and the cDNA 

encoding the kidney subunit has been cloned and sequenced (Hirsh et a i, 1988). Studies 

with monoclonal antibodies, supported by partial DNA sequencing, reveal the existence 

of at least two isoforms of subunit E in the kidney. While V-ATPase isolated from kidney
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microsomes contains one form of subunit E, the enzyme from the kidney brush-border

contains at least one additional form of subunit E. Presently a cDNA for subunit E has

been cloned and sequenced from M. sexta. The deduced polypeptides show high

homology with the E subunit from other sources. Although at least two isoforms for the

E subunit may exist in human, only one gene encoding the M. sexta E subunit has been

detected in Southern and Northern blots (Graf et al.., 1994a). The precise function of the

E subunit is unknown but it has been suggested that E subunit may play an analogous 
.role in the V-ATPase to the y—subunit in F-ATPases (Bowman et a l, 1995) and as such

should be considered to form part of the catalytic headgroup. The corresponding yeast

gene vma4, has been cloned, sequenced and mutagenised (Foury, 1990). The mutant

exhibits a similar phenotype to all other yeast V-ATPase nulls. While the proteolipid 
.assembles into the membrane, all subunits of the catalytic sector did not assemble.

.Consequently, the mutant is unable to grow in medium buffered at pH  7.5 (Ho et al.^

1993). This suggests that subunit E may be necessary for the functional assembly of the

enzyme. In vertebrates, it has been suggested that E subunit co-localises

immunocytochemically with plasma membranes, rather than microsomes in kidney

(Hemken, et al., 1992), implying that E subunit may be important in assembly of the

lioloenzyme on the plasma membrane of certain epithelia. Here, as first step to clarify this 
.
issue, I report the cloning, characterisation and mutagenesis of the gene encoding 

subunit E o f V-ATPase in D, melanogaster, a species which is particularly suited to 

genetic analysis.

Î

6.3 Identification o f a cDNA encoding a 26 kD E-subunit

6.3.1 cDNA cloning

A D. melanogaster head A,—ZapII cDNA libraiy was screened by plaque hybridisation with 

a M. sexta E-subunit cDNA probe and one positive plaque was purified by successive 

rounds of screening. The purified clone was excised as pBluescript and the cDNA insert
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cDNA clones were obtained and subcloned into pBluescript SK". Sequences from both
, :

ends of all five clones were identical except for differences in length at the 5' end. The 

longest insert (p26CD) was 2.1 kb long.

6.3.2 Generation of unidirectional deletions o f p26CD for sequencing

p26CD was isolated and purified on a Promega column. ExoWl was used to generate a set 

o f deletions of p26CD DNA for sequencing. Two pairs of enzyme (Sad /BcoBJ and 

HindlllfKpnl) were selected for digesting DNA which can then be further digested by 

ExolW to make deletions from both ends (Figure 6.2A). The cDNA insertion has no 

digestion site for any o f the 4 enzymes. S ad  and Kpnl can generate the 3' ExoWl- 

protected end, while EcoBl and H indlll generate the 5' overhang which is digested by 

ExoWl. In the case of making deletions which can be sequenced by primer T3, 20 Jig of 

p26CD plasmid was first digested with 50 units of Sad  for 3 hours. A sample of this 

digest was electrophoretlcally separated on a 1% agarose TBE gel to assess the extent of 

digestion. After completion of the digestion, buffer condition was adjusted with NaCl for 

EcoKi digestion for another 3 hours. Double digested DNA was digested by Exolll at 

37°C and samples were taken every 30 seconds. The first 15 samples were treated with SI 

nuclease and were electrophoretlcally separated through an agarose gel (Figure 6.2B).

From the figure we can see the digestion rate was about 200 bp/min. This rate of 

digestion is less than described by the manufacturer of Erase-a-Base system (Promega).

However the Exolll digestion indeed produced progressive deletions.

Each timepoint sample was treated with the Klenow fragment of E. coli DNA polymerise 

to generate flush DNA termini and was then recircularised with DNA ligase. Ligation 

products were used to transform DH5CX competent cells (see methods section). 50 to 

1000 colonies were obtained for each timepoint transformation. Three colonies from 

each o f the first 12 transformations were selected at random and miniprep DNAs
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Figure 6.1 ExdlW deletion of the p26CD insert. (A) p26CD structure showing the 

restriction enzymes selected to make ExoWl protected and unprotected termini. EcoRl 

and HindWl generate 5' overhanging termini, Sad  and Kpnl generate protected termini. 

(B) The products of Exolll and SI nuclease digestion oïSadIEcoKi digested p26CD. 

Samples of the Exolll reaction were removed at intervals of 30 seconds. (C) Plasmid 

minipreps from the deletion experiment after digestion with and Xbal.
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(Method Section) were digested with Xho\ dtXidXbdi (Figure 6.1C). Subclones with

different size of deletions were selected for sequencing by primer T3.

3

Similarly, DNA from the double digestion of p26CD by H indlll and Kpnl was digested 

by Exolll to generate deletions which can be sequenced from the opposite end using 

primer T7. The 2.1 kb cDNA insert o f p26CD was completely sequenced from both 

directions.

1 3 6

6.3.3 DNA sequence analysis of vha26  cDNA

The 2.1 kb contig of p26CD has an open reading frame corresponding to a 226 amino 

acid polypeptide of M^ 26.1 kDa (Figure 6.3). This is clearly a V-ATPase E-subunit, 

sharing 76.5% amino acid identity with the E-subunit of M. sexta, 62.8% with that of 

human, but only 34.3% identity with that of S. cerevisiae (Figure 6.3). In accordance 

with the nomenclature for other D. melanogaster V-ATPase loci, the gene has been 

named vha26. Although we cannot at present exclude the possibility that longer 

transcripts exist, the longest 5' U TR of the 5 cDNA clones is 77 bp. This is in good 

agreement with the length of 5' UTRs reported for other V-ATPase subunits in 

Drosophila, 84 and 88 bp for the two genes encoding 67 kDa A-subunit (see Chapter 4); 

86 bp for the 55 kDa B-subunit (Davis, et aL, 1996); 116 bp for the 17 kDa c-subunit 

(Meagher, et al., 1990); and 42 bp for the 14 kDa F-subunit (see Chapter 7). The 

sequence o f the start site CAAAATG matches the consensus start site 

(C/A)AA(A/C)ATG perfectly (Calvener, 1987). The 3' U TR is 1307 bp long, with a 

canonical AATAAA signal centred 26 bases upstream of the polyA tail.
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CAC CCT CAT ATA ACT ACT TAA AGA AAA TAT AGA AAA ATG GAA ATT AGT TTT GCA ATT TAG
1 7 4 0  1 7 7 0
GCC ACT GCC GAA CTG CCA CCG TTT CCA CCT GAC GTG CGC CAT CAT ATC AGG CTC TAA AAA
1 8 0 0  1 8 3 0
TCA ACA CAC CAT GTT CAA ACA CAC GAC TAG CAT ACA GGA GCA GGA GCT ACA GTA AAT TTG
1 8 6 0  1 8 9 0
AAC CTT GTA TTC GCA TGT TCG CCA ATG TTC ATA GTG TAT TCT TCA AGC TCA TTT TCT AAC
1 9 2 0  1 9 5 0
CAA GTT ACC AAG TTC AAT ATG ATG AAT AAC TAC AAG ATT AGC AAA CAA ATA CAA GTA GCA
1 9 8 0  2 0 1 0
TAT GCG TTA TTA TAT AAC ATC GAG TAC TAT ATA CAT TAC ATG AAA TAC AAA ATG CAA GAA
2 0 4 0  2 0 7 0
AAA TTA CTT TTA AAC AAA ATT TAT GTT GAA TAA AAA ACA GTA TTT CCA AAA ACT AAA

Figure 6.2 Sequence of a vha26 cDNA (p26CD) and deduced amino acid sequence of 

the Drosophila E-subunit (GenBank accession no. is U 38198). Double-stranded 

sequencing of the cloned genomic DNA fragment was performed according to the 

Sequenase^^ II protocol (USB) by generation of unidirectional deletions with the Erase- 

a-Base system (Promega), and with the aid of synthetic oligo primers when required. The 

putative polyadenylation signal is underlined. The start of poly A is marked as bold.
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6 .4  G e n o m ic  stru ctu re  o f  vha26

6.4.1 Genomic DNA clones corresponding to vha26

An Oregon R genomic DNA library in vector EMBL3 was used to isolate the gene 

represented by the vha26  cDNA. Approximately 40,000 phage from the library were 

plated on four Petri dishes (150mmX150mm). Plaque-lifts probed with random-primed 

p26CD cDNA, revealed three "positive" signals. Plaques from the corresponding spots 

were re-plated at 50-200 pfu per 90 mm Petri dish and re-screened; two individual and 

overlapping positive clones were obtained (ph26A and ph26B). Restriction digests of 

ph26A are shown in Figure 6.3A. The deduced map is shown in Figure 6.4. Probing of 

ph26A with vha26 cDNA reveals the sequence homology between the genomic fragment 

and vha26  (Figure 6.3B). A 5 kb Bam ldl fragment that hybridises with the cDNA was 

subcloned into pBluescript SK“, and named p26kg.

6.4.2 vha26  is a single copy gene

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and 

probed at high stringency with the part of vha26 cDNA (1183-2096 bp in Figure 6.2). 

The single band of hybridisation seen in each lane suggests a single genetic locus. This is 

consistent with the structure and sequence of cloned genomic DNA and in situ 

hybridisation to polytene chromosome squashes which identifies a single locus at 83B1-4 

on the right arm of chromosome 3 (Figure 6.10). The 188 kb 83B interval contains three 

identified genes: gorp, a gene implicated in meiosis (Castrillon et al., 1993), nmdaR , a 

glutamate receptor (Ultsch et al,, 1993), and a tRNA gene ( D unn, et al., 1979). 

However, there are also several lethal P-element insertions, suggesting that inactivation of 

the vha26  locus by "local jumping" of the P-element may be feasible, or even that an 

existing P-element insertion might already represent a lethal allele of this gene.
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Figure 6.3 A: Agarose gel of ph26A phage DNA cleaved with B am lil (B), £’ĉ ?RI (E) , 

5^/r(S),SalI/Ac<?RI (S/E), BamHl/EcoRl (B/E) and SaH/BamHl (S/B). B: A blot of the 

above gel probed with vha26 cDNA.
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Figure 6.4 Genomic organisation of the vha26 locus. Above: Restriction map of ph26A 

DNA. The estimated length of the insert is 10 kb? Below: map of p26kg and p26CD 

subclone of p26kg. S; SaK, B; BamWl', E: Ac^RI; P:Prd; X: Xbal.
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Figure 6.5 ExoWl deletion of the p26kg insert. (A) p26kg structure showing the 

restriction enzymes selected to make ExoWl protected and unprotected termini. Notl and 

Smal generate 5' overhanging and thus unprotected termini; Sad  and Kpnl generated 

protected termini. (B) The first 10 samples of ExoWl and SI nuclease digestion of 

Sad! Notl digested p26kg. (C) The first 10 samples of ExoWl and SI nuclease digestion of 

Snial IKpnl digested p26kg. Samples of the ExoWl reaction were in both cases, removed 

at interval of 30 second.
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Figure 6.6 (A). Plasmid minipreps from theSacl/Notl deletion experiment digested with 

and Pstl. (B) Plasmid minipreps from the5w^I/ii^«I deletion experiment digested 

with Xhal and Kpnl.
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In Section 6.8 we will see that a fly line with a P[UcW] insertion in the first intron of 

vha26 can indeed be identified.

6.4.3 Generation of unidirectional deletions of p26kg DNA for sequencing

Two pairs of enzyme (SacHNoii and SmallKpnV) were selected for digesting p26kg, and 

the resulting DNA fragments are treated with Exolll to make deletions from each end 

(Figure 6.5A). p26kg has no digestion site for any of the four enzymes. 20 timepoints 

were taken for each Exolll digestion. Figure 6.5B and 6.5C shows the first 10 digestions 

by Exolll from either ends. Two colonies from each of the first 9 transformations were 

selected at random, and plasmid DNAs were digested with Xbal and Pstl (Figure 6.6 A, 

B). From the size o f the bands we know how far the DNA has been deleted. A set of 

subclones with different sizes of deletions (Figure 6.6A) were selected for sequencing 

using primer T3. Another set of subclones was sequenced using primer T7. A genomic 

DNA fragment covering all of the vha26cDNA was sequenced on both strands.

6.4.4 Correlation o f genomic and cDNA sequences

The cDNA sequence of p26CD is contained within the 5 kb BamEW fragment of p26kg. 

It is punctuated by three small introns with in-frame boundaries (Figure 6.7). This is the 

first description of a genomic DNA sequence, and thus of intron placement in the gene 

for an in animal E subunit. Intron placement frequently marks functional boundaries 

w ithin proteins; however, the only other genomic DNA sequence available, for 

Neurospora crassa vma4  (Bowman, et a i, 1995), shows that intron placement is not 

precisely conserved between animals and fungi; however, as further genomic sequences 

are obtained, they may be informative. As with the N. crassa gene vma4, no TATA or 

CAAT boxes could be seen upstream of the putative transcriptional start site in the 

available sequence for vha26. This is commonly the case for ubiquitously expressed genes.
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1 31
c a a  c a a  a t a  c a c  a t t  t t t  a c c  e t c  g c a  a t e  g e a  g g g  t e a  c a e  t t t  c g t  g a a  a t e  a t a  t g a
6 1  9 1
t e g  a t t  t g e  a g t  g a a  a a t  t t t  c a g  a c g  t t g  g g c  a g a  a g g  e a a  a a g  t a a  e t t  a t e  g t t  t t c
1 2 1  1 5 1
e a c  t t t  c e t  c g t  g t t  g g g  c e g  e c g  t t t  e e a  a c t  e a g  t t e  g g c  t g t  g a a  t g t  a t t  a g o  t t a
1 8 1  2 1 1
a t t  a a a  t t t  c a a  t t a  t t t  e e a  gGC ACG GTT GTT GTA CGT GGG CTT CTT TAA AAC ACT TGA
2 4 1  2 7 1
ATT TCC TTT CGG TTT GTG CAG TGA AAA AAA TCA GTC AAA ATG GCA CTG AGC GAT GCT GAT

M A L S D A D
3 0 1 / 8  3 3 1
GTA CAA AAG CAG g t a  a t t  g a a  a a e  t t g  g a t  t g g  g a a  e g g  g e a  g g c  g a t  c a a  g g t  c g t  a g g

V Q K Q
3 6 1  3 9 1
g a a  a e a  a g e  a a a  a c g  a g a  g g c  t t c  g t t  t g e  e t t  t t t  g e e  t t t  g e a  a t t  t g e  e t t  t g e  a a t
4 2 1  4 5 1
a a a  g a t  g g c  g a a  g t e  a t g  g g a  t c t  e e e  a g g  t e a  t g t  g a a  e t t  t t e  a c e  g e e  a g t  a g t  e e a
4 8 1  5 1 1
a t t  a g a  e t g  a e a  t e e  t t e  e a a  a t e  g g c  c e g  g t e  a t t  t g g  g a g  t t g  e c g  g a g  t t t  t g a  e a t
5 4 1  5 7 1
a t t  t g t  t g g  e t a  a t g  a a g  a e a  e a t  e a a  t t t  a t t  t g t  e e a  g a t  a g t  t t g  c g t  a a a  a a g  t g a
6 0 1  6 3 1
g t a  a a a  a t t  c g t  g e t  g g t  e a t  g t g  a e a  e g g  e e e  e c g  e a t  t g g  a g e  a a t  g t g  t t g  g a g  e g a
6 6 1  6 9 1
g a e  g a e  t a g  e e e  t g e  a c e  e e a  c a c  t e g  t a e  t e t  e t g  t e a  c a c  g a c  e a g  c g a  e e e  c e t  t a e
7 2 1  7 5 1
g t t  a t e  a a a  a c t  t t a  a e g  a a a  a t a  a a t  a g a  g g c  t a g  g g t  e t t  g g a  c g t  e t c  e c t  t t t  e e a
7 8 1  8 1 1
t t t  a t e  a t g  t e c  a g t  t a t  c a t  g t g  a e a  c a e  a g g  e a a  e t a  e t a  a a c  a g g  a c g  a c t  g t t  t e a
8 4 1 / 1 2  8 7 1 / 2 1
gATC AAG CAC ATG ATG GCG TTC ATT GAG CAG GAG GCC AAT GAG AAA GCC GAG GAG ATC GAT 

I K H M M A F I E Q E A N E K A E E I D  
9 0 2 / 3 2  9 3 2 / 4 2
GCC AAG GCC GAG GAG GAG TTC AAC ATT GAG AAG GGA CGC CTG GTC CAG CAG CAG CGT CTC

A K A E E E F N I E K G R L V Q Q Q R L  
9 6 2 / 5 2  9 9 2 / 6 2
AAG ATC ATG GAA TAC TAC GAG AAG AAG GAG AAG CAA GTT GAG CTG CAG AAG AAG ATT CAG

K I M E Y Y E K K E K Q V E L Q K K I Q  
1 0 2 2 / 7 2  1 0 5 2 / 8 2
TCC TCC AAC ATG CTC AAC CAG GCT CGT CTG AAG g t g  c g t  g t c  g t e  c a g  t t g  g t g  g e e  e t a

S S N M L N Q A R L K  
1 0 8 2  1 1 1 2
a e a  t a t  a e c  g g a  a a a  c a c  e t t  a t t  t t t  a a t  c a t  t e g  t a a  t g t  a c c  e t g  t a g  GTG CTG AAA

V L K
1 1 4 2 / 8 6  1 1 7 2 / 9 3
GTG CGC GAG GAC CAT GTG AGC AGC GTG CTG GAT GAT GCC CGC AAG CGT CTC GGC GAG GTC

V R E D H V S S V L D D A R K R L G E V  
1 2 0 2 / 1 0 6  1 2 3 2 / 1 1 6
ACC AAG AAT CAG TCC GAG TAC GAG ACT GTG CTG ACC AAG CTC ATC GTC CAG GGC CTG TTC 

T K M Q S E Y E T V L T K L I V Q G L F  
1 2 6 2 / 1 2 6  1 2 9 3 / 1 3 6
CAG ATC ATG GAG CCC AAG GTG ATC CTG CGC TGC CGC GAG GTG GAC GTC CCC CTG GTA CGT

Q I M E P K V I L R C R E V D V P L V R  
1 3 2 2 / 1 4 6  1 3 5 2 / 1 5 6
AAC GTC CTG CCT GCC GCT GTG GAG CAA TAC AAG GCC CAG ATC AAT CAG AAC GTC GAG CTG 

N V L P A A V E Q Y K A Q I N Q N V E L  
1 3 8 2 / 1 6 6  1 4 1 2 / 1 7 6
TTC ATC GAC GAG AAA GAC TTC CTC TCT GCT GAT ACC TGC GGT GGT GTT GAG CTG CTG GCC 

F I D E K D F L S A D T C G G V E L L A  
1 4 4 2 / 1 8 5  1 4 7 2
CTC AAC GGA CGC ATC AAG g t g  a g t  a c t  g t e  e t t  t e g  g t g  g a g  a g a  g a g  c a a  t c c  c a a  e t g

L N G R I  K
1 5 0 2  1 5 3 3 / 1 9 6
a t e  t a a  c a a  a c c  a c t  t e a  g  GTG CCC AAT ACG CTG GAG TCC AGA TTA GAC CTC ATT TCG CAG

V P N T L E S R L D L I S Q

145



■-

1 5 6 3 / 2 0 6  1 5 5 1 / 2 1 3
CAG CTG GTG CCC GAG ATT CGT AAC GCA CTT TTC GGC CGC AAC GTC AAT CGC AAA TTC ACC 

Q L V P E I R N A L F G R N V N R K F T  
1 6 2 3 / 2 2 6  1 6 5 3
GAC TAA AT TCT ATA AGT GCA AAA CAA AAC ATA ACT AAC CAG AAA GAG AAC CAG CAT CAA 

D *
1 6 8 2  1 7 1 2
CAC CTA TTC AGC AGG AAC AGT TCA AGT TAT TAC ACA GAG CTC CAC CCA CTA AAT ATT GAA
1 7 4 2  1 7 7 2
CCC AAG TAA ACT TAT CCT TTG GCA GTC AGG AGG CAA CAG CTA GGA TAT ATT GAT TGT CAA
1 8 0 2  1 8 3 2
AAT ACT TTT GCC GTT GTC TTG TAA AGT GAA ATT GAA ACA CTC AAG AAC ATT TCG GTC CTT
1 8 6 2  1 8 9 2
GTG TAC GCA ACA GTT TTA ATA GTA ACC ACA CTA AAC GCG CAT ATA TAT TCT CCG ATA TAT
1 9 2 2  1 9 5 2
ATG TCT GTA TGC CAA TAC TTA TTA TAT AGT TTA GAG GAC ACG ATC CTA GGA GCA TAC GAA
1 9 8 2  2 0 1 2
AGC ATA ATA CGA AGT TTG TTA AAG TTT GTT CGT TTT TTT TTT ACA TAT GCA CAT GTT TCT
2 0 4 2  2 0 7 2
GAG CAG TAG GTC TAG ATA TGT GCT TAT ATT GTA TAC ATA CAC TTT AAA ATT TTG CAT ACA
2 1 0 2  2 1 3 2
TTC CTG TCC AAG AAT TTT TAT TTC AGT TTT CCC CTT GTT TAT TGT ACA TTA TTT TCT GTA
2 1 5 2  2 1 9 2
GTC TTT GTT AAC TTT TTA TAT GTC TAT GTC GTT TAT GTT CGT AAT TAT CAA GTG CAC GTT
2 2 2 2  2 2 5 2
CAG GAG GAA CAA CGG CAG TGG ATC GCC CCT TTT ACA GAC CGC TGG CAG GTT GCG ATG CGA
2 2 8 2  2 3 1 2
CCA CAC AGC ATT GTT GCT CAG CGA AGC ACC GAA ATG GAC CTA AAC CCC CGA TTT CGC TTC
2 3 4 2  2 3 7 2
TTC GAG GGC AAC GGA CGC TTG TGC AAC TGC CAC TGG CTC AAC GAA AGC CCC GAA AAT CAT
2 4 0 2  2 4 3 2
CAA TGT CTG TTG TTG TTG AGA TAC CGA GAG TAG AGA ATA CAC ACT GCT TAG CAC GCG ACA
2 4 6 2  2 4 9 2
CTT AAT ACC CAT TCA TTA CAC ATG CAC CAC GAC GAT GAA GTT TGC CAA GTA GCT AAG TTG
2 5 2 2  2 5 5 2
TTG ACC TGA CCA TCA AGT GCA GCT TTC ACA CCC TCA TAT AAC TAC TTA AAG AAA ATA TAG
2 5 8 2  2 6 1 2
AAA AAT GGA AAT TAG TTT TGC AAT TTA GGC CAC TGC CGA ACT GCC ACC GTT TCC ACC TGA
2 6 4 2  2 6 7 2
CGT GCG CCA TCA TAT CAG GCT CTA AAA ATC AAC ACA CCA TGT TCA AAC ACA CGA CTA GCA
2 7 0 2  2 7 3 2
TAC AGG AGC AGG AGC TAC AGT AAA TTT GAA CCT TGT ATT CGC ATG TTC GCC AAT GTT CAT
2 7 6 2  2 7 9 2
AGT GTA TTC TTC AAG CTC ATT TTC TAA CCA AGT TAC CAA GTT CAA TAT GAT GAA TAA CTA
2 8 2 2  2 8 5 2
CAA GAT TAG CAA ACA AAT ACA AGT AGC ATA TGC GTT ATT ATA TAA CAT CGA GTA CTA TAT
2 8 8 2  2 9 1 2
ACA TTA CAT GAA ATA CAA AAT GCA AGA AAA ATT ACT TTT AAA CAA AAT TTA TGT TGA ATA
2 9 4 2  2 9 7 2
AAA AAC AGT ATT TCC AAA AAC TAA A c t  t a a  c t g  t a t  a a c  a a c  t t c  e t t  t t g  c a a  t g t  t e t
3 0 0 2  3 0 3 2
a a t  g a t  e c t  a a a  a a c  a a g  a c a  t g g  g g t  a a a  e t a  t t t  t a a  g a a  a t t  c a a  t c t  a g g  a c t  e a a
3 0 6 2
t a g  t e t  a t a  g t a  e e a

Figure 6.7 Sequence of vha26 genomic DNA and deduced amino acid sequence of the 

Drosophila E-subunit (GenBank accession No. is U389510. Double-stranded sequencing 

of the cloned genomic DNA fragment was performed according to the Sequenase^^ II 

protocol (USB) by generation of unidirectional deletions with the Erase-a-Base system 

(Promega) and also with the aid of synthetic oligo primers when required. The putative 

polyadenylation signal is underlined.
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Although the cDNA (Canton S) and genomic DNA (Oregon R) came from different D. 

melanogaster strains, apart from the genomic DNA having three small introns, the 

sequences are identical.

14 7

6.5 Phylogenetic analysis of the E subunit

The recent availability of deduced sequence from a broad range of phyla allows new 

insights into the structure of the E subunit. Although the primary sequence is poorly 

conserved across phyla, the substitutions are generally conservative, even in the distantly 

related halophilic archaebacterial Haloferax volcanii gene. Similarly, the predicted 

secondary structure is conserved; all members of the family appear to encode 

predominantly hydrophilic a-helical proteins with conserved N- and C-termini, as noted 

previously (Bowman, et al., 1995). However, there is a clearer dichotomy between animal 

and plant/fungal sequences than we have observed for other D. melanogaster V-ATPase 

subunits, suggesting that the E-subunit may have a distinctive role in animals (perhaps 

plasma membrane or epithelial targeting), which requires the conservation of regions of 

primary sequence. As the gene appears to be single-copy both in Manduca (Graf, et al.,

1994) and Drosophila, it is likely that the same gene product serves both endomembrane 

and plasma membrane roles, so we speculate that in epithelia there may be as yet 

unidentified conserved accessory proteins which bind conserved domains. For example, 

an extended 22-aa N -term inal m otif DVQKQIKHM M AFIEQEANEKAEE is 

absolutely conserved in all known animal sequences across a 400 million year 

evolutionary span, but only 15 residues are conserved in plants, 11 in fungi and 6 in H. 

volcanii (Figure 6.8). Further in the sequence, the motifs QRLKIMEYYEKKEKQ and 

QKKIQ(S/M)SN(L/M)(L/M)NQARLKVL are absolutely conserved in animals, while 

being poorly conserved in plants; they also have a particularly high surface probability (as 

calculated by M ac Vector, IBI). Similarly, at the C -term inus, the m o tif 

NTLESRL(D/E)LI(A/S)QQis conserved only in animals.



(A )

V E _ a r a t h
V E _ m e s c r
V E _ h u m a l
V E _ h u m a 2
V E _ h u m a 3
V E _ b o v in
V E _ m a n s l
V E _ m a n s 2
V E _ d r o m e
V E _ y e a s l
V E _ y e a s 2
V E n e u c r

................. MNDGDVSRQIQQMVRFIRQEAEEKANEISVPAEEEFNIEKLQLVEAEKKKIRQ

.................MNETDVQNQIQQMVRFMRQEAEEKANEISVSAEEEFNIEKLQLVEAEKKKIRQ
 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME
 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME
 MALSDADVQKQIPCHMMAFIEQEANEKAEEIDRKAEEEFNIEKGRLVQTQRLKIME
 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME
 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME
.......................DADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME
 MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME

MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG 
MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG 
• MSQVHALSDDQVGQELRKiyiTAFIKQEAEEKAREIQIKADEEFAIEKSKLVRQETDAIDS

V E _ a r a t h  5 4  DYEKKEKQAEIVRKKIDYSMQLNASRIKVLQAQDDIVNAMKDQAAKDLLNVSRDEYAYKQL
V E _ m e s c r  5 4  EYERKAKQVDVRRKIEYSMQLNASRIKVLQAQDDLVNAMKEAASKELLLVSGDHHQYRNL
V E _ h u m a l  5 6  YYEKKEKQIEQQKKIQM SNU4NQARLKVLRARDDLITDLLNEAKQRLSKW KDTTRYQVL
V E _ h u m a 2  5 6  YYEKKEKQIEQQKKIQMSNLMNQARLKVLRGRDDLITDLLNEAKQRLSKVVKDTTRYQVL
V E _ h u m a 3  5 6  YYEKKEKQIEQQKKIQM SNLM NQARLKVLRARDDLITDLLNEAKQRLSKW KDTTRYQVL
V E _ b o v i n  5 6  YYEKKEKQIEQQKKIQMSNLMNQARLKVLRARDDLITDLLNEAKQRLSKVVKDrTRYQVL
V E _ m a n s l  5 6  YYEKKEKQVELQKKIQSSNMLNQARLKVLKVREDHVRNVLDEARKRLAEVPKDIKLYSDL
V E _ m a n s 2  5 2  YYEKKEKQVELQKKIQSSNM LNQARLKVLKVREDHVRNVLDEARKRIAEVPKDIKLYSDL
V E _ d r o m e  5 6  YYEKKEKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVTKNQSEYETV
V E _ y e a s l  6 1  NFKSK LK KA M LSQQ ITK STIA N K M R LK V LSA REQ SLD G IFEETK EK LSG IA N N RD EY KPI
V E _ y e a s 2  6 1  N FK SK LK KA M LSQQ ITK STIA N K M R LK V LSA REQ SLERIFEETK EKLSG IA N N R D EY K PI
V E _ n e u c r  6 0  AYAKKFKQAÇ^QQITRSTM ANKTRLRVLGARQELLDEIFEAASAQLGQATHDLGRYKDI

V E _ a ra th
V E _m escr
V E _ h u m a l
V E _ h u m a 2
V E _ h u in a 3
V E _ b o v in
V E _m ansl
V E _ jtv an s2
V E _drom e
V E _ y e a s l
V E _ y e a s 2
V E _ n e u c r

V E _ a r a t h
V E _ m escr
V E _ h u i t ia l
V E _ h u m a 2
V E _ h u in a 3
V E _ b o v in
V E _m ansl
V E _ jn a n s 2
V E _drom e
V E _ y e a s l
V E _ y e a s 2
V E n e u c r

14 LKDLIVQCLLRLKEPSVLLRCREEDLGLVEAVLDDAKEEYAGKAKVHA.PEVAVDTKIFL 
14 LKELIVQSLLRLKEPAVLLRCREEDKHHVHRVLHSAREEYGEKACVSH. PEVXVD. DIHL 
16 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV..DVQIDQESYL 
16 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV. .DVQIDQESYL 
16 LDGLVLQGLYQLLEPPMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV. . DVQIDQESYL 
16 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPVYKVATKRDV. . DVQIDQEAYL 
16 LVTLIVQALFQLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV. .VLKIDNENFL 
12 LVTLIVQALFQLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV..VLKIDNENFL 
16 LTKLIVQGLFQIMEPKVILRCREVDVPLVRNVLPAAVEQYKAQINQNV.. ELFIDEKDFL 
21 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN 
21 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEErVISNDYLN 
20 LRDLILEGFYAMNEPELVIRARQADYDAVREAAGWASAQYKHKTDKDVKATIDAENPV. .

73 PPPPKSNDPHGLHCSGGWLASRDGKIVCENTLDARLDVAFRMKLPVIRKSLFGQVTA. . 
72 PPAPTSYDSHELSCSGGWMASRDGKIVFENTLDARLEVAFRKKLPQIRKQLFAV...........
74 P E ......................... DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK
74 P E ......................... DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK
74 P E ......................... DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK
74 PE ......................... EIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK
74 P P ......................... DTCGGIELIAAKGRIKISNTLESRLELIAQQLLPEIRNALFGRNPNRK
70 P P ......................... DTCGGIELIAAKGRIKISNTLESRLELIAQQLLPEIRNALFGRNPNRK
74 SA......................... DTCGGVELLALNGRIKVPNTLESRLDLISQQLVPEIRNALFGRNVNRK
81 KD......................... LVSGGVWSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK
81 KD......................... LVSGGVWSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK
78 PE ......................... GSAGGIirVGGNGKIDIDNTFEARLTLLKDSALPAMRKALFGENPNRK

V E _ a r a t h
V E _ m e s c r
V E _ h u m a l
V E _ h u m a 2
V E _ h u m a 3
V E _ b o v in
V E _ m a n s l
V E _ m a n s 2
V E _ d r o m e
V E _ y e a s l
V E _ y e a s 2
V E n e u c r

2 2 4  FLD 
2 2 4  FLD 
2 2 4  FLD 
2 2 4  FLD 
2 2 4  FTD 
2 2 0  FTD 
2 2 4  FTD 
2 3 1  FFD 
2 3 1  FFD 
2 2 8  FFD
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(B)

% identity

VE neucr 39

VE_yeas2 34

'VE_yeasl 34

VE huma2

VE humai

VE humaS

VE bovin

63

63

62

62

-VE drome (100)

VE mans2

VE mansl

76

76

VE_mescr 47

VE_arath 4 9

1 4 9



Figure 6.8 A: PILEUP (GCG) of polypeptides related to the Drosophila E subunit. All 

sequences are deduced from cDNA. B: Phylogenetic tree o f V-ATPase E-subunits 

generated by ClustalW and N-J plot using the PILEUP data.. GenBank accession 

numbers are as follows.

VE_drome Drosophila melanogaster ACCESSION NO.:U38198 and U38951

VE_mansl Manduca sexta accession no.: P31402

VE_mans2 Manduca sexta accession no.: S25014

VE-humal Homo sapiens accession no.: P36543

VE„huma2 Homo sapiens accession no.: A42666

VE_huma3 Homo sapiens accession no.: JN0909

VE-bovin Bos taurus accession no.: PI 1019

VE„arath Arabidopsis thaliana accession no.: X92117

VE_neucr Neurospora crassa accession no.: U 17641

\B_jn.Qscr: Mesembryanthemum crysta accession no.: X92118

VE_yeasl Saccharomyces cerevisiae accession no.: Z49821

VE_yeas2 Saccharomyces cerevisiae accession no..: P22203

1 5 0
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Figure 6.9 Genomic Southern blot of the vha26 locus. Southern blot of genomic D. 

melanogaster DNA. Genomic DNA purified from wild-type D. melanogaster (Canton 

S) was cleaved with a range of restriction endonucleases, separated by electrophoresis in 

a 0.8% agarose gel, blotted to Hybond N (Amersham), and hybridised with a 32p_ 

labelled random-primed probe of vha26 cDNA. Prehybridisation was in Church buffer 

(7% SDS, 1% BSA, 1 mM EDTA, 0.25 M Na2H P04, pH 7.2) at 65 °C for 3 hours, 

and hybridisation was in Church buffer overnight. The filter was then washed at 65 °C 

in 2XSSPE, 0.1% SDS for 30 min; 0.5X SSPE, 0.1% SDS for 30 min; and finally in 

O.IXSSPE, 0.1% SDS for 30 min and exposed to X-ray film for 1-2 days.

1 5 1
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Figure 6 .10 Chromosomal localisation o f vha26. Salivary gland 

chromosome squashes were prepared by standard techniques (Ashburner, 

1989). Chromosomes were probed with biotinylated, random-primed 

vh a 2 6  cDNA and hybridisation was detected using streptavidin- 

conjugated peroxidase and diaminobenzidine (Courtesy o f  Ms. 

Zhongsheng Wang).
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rp49

Figure 6.11 Northern blot analysis of vha26 gene expression. Total RNA was isolated 

using RNA zol^^ from Canton S embryos, larvae, pupae and adults; from adult head, 

thoraces and abdomens; and from male and female adults. The RNA was separated by 

electrophoresis in 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose and 

hybridised with ^^P-labelled random-primed probes. (A) Adult tissues. H, head; T, 

thorax, Ab, abdomen; M, males; F, females. (B) Developmental Northern. E, embryo; 

L, third instar larva; P, pupa; Ad, adult. The filter was first hybridised with a vha26  

cDNA probe, then the same blot was stripped and reprobed with rp49 as a control for 

differences in RNA loading.
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Recently, it has been shown in M. sexta that V-ATPase activity can be controlled 

hormonally via reversible association and dissociation of the V I headgroups from the 

VO transm em brane sector (Sumner, et a i ,  1995), and that V-ATPases in D . 

melanogaster tubules are controlled by cAMP and cGMP ( Dow, et al., 1994), In this 

context, it is interesting to note that the insect genes share a C-terminal PKA/PKG 

phosphorylation site consensus (RKFT) at residues 222-5, although the target 

threonine is not preserved in other phyla.

6.6 Gene expression

1 5 4

N orthern blots of total RNA probed with vha26 cDNA identify a single band 

equivalent to a transcript (s) o f approximately 2.3kb (Figure 6.11). Different cloned 

cDNAs differed only in the length of their 5' UTRs, and the genomic sequence 

identified so far does not contain alternative exons that could be spliced to yield a 

product of the same size. The simplest interpretation is therefore that a single mRNA 

species is transcribed from the gene. Equivalent levels of expression are found in adult 

head, thorax and abdomen (Figure 6.11A) as might be expected for a "housekeeping" 

gene. The RNA is, however, much reduced during pupation (Figure 6.1 IB), as is the 

case with RNA for the D. melanogaster 68 kD A subunit (See Chapter 4). In contrast, 

the 14 kD V-ATPase F subunit RNA is expressed at similar levels during all 

development (Chapter 7; Cuo et al., 1995). In M. sexta, it has been suggested that 

some o f the V-ATPase subunits disappear as the midgut pump shuts down during 

larval moults (Sumner, et al., 1995); it is possible that downregulation of certain critical 

mRNA species may be involved.

6.7 Identification of a fly line carrying a V[lacW\ insertion in vha26

In situ hybridisation for polytene chromosome places vha26  at 83B1-4 in chromosome 

3. From the Bloomington Drosophila Stock Center and the Drosophila Genome Center
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1kb 1 2 3 4 5 6 7 8 9101112 1kb 1 2 3 4 5 6 7 8 9101112

— 13.5 kb

— 5.0 kb

— 1.8 kb

Figure 6.12 Southern blotting of gemonic DNA identified a line carrying a V[lacW\ 

insertion in or near the vha26 gene. (A) Photo of Agarose gel of genomic DNA cleaved 

by Bam W l, each lane containing genomic DNA from 10 adult flies. Each lane 

represents a line with a P-element insertion at 83B. 1, p i 560; 2, p i 581; 3, p i 520; 4, 

p l609 ; 5, p l636; 6, p l540; 7, p l644; 8, p l529; 9, l(3)sl938; 10, l(3)j3E7; 11, 

l(3)j9B6;12, l(3)j5E7. Lines 1-8 were provided by the Bloomington stock centre; Lines 

9-12 were from the Drosophila Genome Centre at the Carnegie Institute o f 

Washington. (B) Southern blot of the genomic DNA gel (A) probed with p26kg, the 

4 kb genomic fragment that includes vha26.
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(B)

1kb E BB

i-aVïU,' *; i f  1'. % ,

N̂- /Z

(C)

1kbE BB

* vttii^:SVv, 
’ :

«B

\%î

NNjÊ

—  14.0 kb

—  1.9kb

Figure 6.13 Plasmid rescue of DNA flanking the V[lacW\ element in l(3)j3E7. The 

restriction enzyme for plasmid rescue was ÆcoRI. (A) Restriction digests of rescued 

plasmid. (B) Southern blot of gel (A) probed with p26kg. (C) Same filter as (B) 

stripped and reprobed with the 1.9 kb V[lacW\ fragment corresponding to the plasmid 

sequences. E, EcoBl ; B, BamWl.
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(A)

1  3 1
TTA ACT GGA TGT CTC TTG CCG ACG GGA CCA CCT TAT GTT ATT TCA TCA TGQ ATC ATA TGA
6 1  9 1
TTT CAC GAA AGT GTG ACC CTG CGA TTG CGA GGG TAA AAA TGT GTA TTT GTT GTC GCT GTC
1 2 1  1 5 1
AGA CCA CCG ATA GAC GAT GTA ATT GTT ATC GCA TTT GTA ACA GAG GCT TCA CTT TAA TCG
1 8 1  2 1 1
ACT AGG TAG AAA AAT CAT GCG ATA TAA TCT ATA TAT GAT AAT GAA AAA TCA ATT TGG CTC
2 4 1  2 7 1
TTT AAA TAT CAT TAT TAT ATT ACT CGA ATA ATC GAG CGT TAA TTT ATA CAT CTG CAT TCC
3 0 1  3 3 1
CGA AAT CCA CAT TAA TTG CCA GTG TGA TCG GAG TAT AAT AAC CTG ACA ATA ATA TGA TGT
3 6 1  3 9 1
GAC AAT ATA AGG CAT CCC TGC TTT ATT GTA AGT GTA TTT TTT AAT GTA CAC ACG CTG ACA
4 2 1
AAA GTT GTG TTT CCT TCG GGA TTT CGC TAA GT

S C O R E S

1 3 9

(B )
I n i t l : 2 4 8  I n i t n :  2 4 8  O p t :

9 8 .5 %  i d e n t i t y  i n  6 5  b p  o v e r l a p
2 5 3

1 2 9 1 1 9 1 0 9 9 9 8 9
p  2 6 k . p r  TTACATCGTCTATCGGTGGTCTGACAGCGACAACAAATACACATTTTTACCCTCGCAATC

v h a 2  6 . g CAACAAATACACATTTTTACCCTCGCAATC
10 20 3 0

7 9 6 9 5 9 4 9 3 9 2 9
p 2  6 k . p r  GCAGGGTCACACTTTCGTGAAATCATATGATCCATGATGAAATAACATAAGGTGGTCCCG

I I I I I I M I I M I I I i l l M I M I I M I I I I I
v h a 2  6 . g  GCAGGGTCACACTTTCGTGAAATCATATGATCGATTTGCAGTGAAAATTTTCAGACGTTG

4 0 5 0 6 0 7 0 8 0 9 0
1 9

p 2  6 k . p r  TCGGCAAGAGACATCCACTTAA

v h a 2 6 . g  GGCAGAAGGCAAAAGTAACTTATCGTTTTCCACTTTCCTCGTGTTGGGCCGCCGTTTCCA
100 110 120 1 3 0

(C)

B

P[lacW \

X

1 4 0

1 kb
I ------1

B

1 5 0

p26kg

‘\ z n r
p26CD

TTCGTGAAATCATATGATCGATTTGCAGTGAAAATTTTCAGACGTTGGGCAGAAGG

Figure 6.14 (A) Sequence reading out of the rescued plasmid from primer PR-1. (B) 

Sequence homology of rescued plasmid from line l(3)j3E7 and vha26. Underlined 

indicates the end of the V[lacW\ insertion. (C) Position of the V[lacW\ insertion in line 

l(3)j3E7.

1 5 7

I

»

Î

3
f

:
3

■a
S;

.lb



at the Carnegie Institute of Washington, 12 fly lines carrying P-element insertions in 

this region were obtained. Adult genomic DNA isolated from each line was cleaved by 

BamYM and separated in 0.8% agrose gel (Figure 6.12 A). A Southern blot of this gel 

was hybridised with a dro26kg fragment probe (Figure 6.12B) All lanes exhibited a 

~5kb band which hybridised with the 5 kb vha26  genomic fragment (See Figure 6.4). 

However, Lane 10 corresponding to fly line l(3)j3E7, exhibited two extra bands of 

«1.8 kb and «13.5 kb. This fly line carries a single Pf/zaicW] insertion at 83B1-2 

(Refer to Encyclopaedia o f Drosophila). The 5 kb size band in this lane was from the 

balancer chromosome. The other two extra bands were likely come from the 

chromosome with the P-element which inserted in gene vha26.

V[lacW] is an enhancer-trap element that which includes a lacZ reporter and bacterial 

plasmid sequences for rapid plasmid rescue (Bier et at., 1989). A'coRI was chosen for 

digestion of the genomic DNA used for plasmid rescue of line l(3)j3E7 (See Chapter 

2 and 3 for methods). Figure 6.13 A shows the rescued plasmid digested with AcoRl 

(lane 1) and doubly digested with EcoKl and BamYil (lane 2). The plasmid digested 

with E c o ^  produced two bands of «14 kb and «4.1 kb. Hybridisation with a 

dro26kg probe (Figure 6.13B) and with plasmid sequence (Figure 6.13C) shows that 

the 14 kb band contains both the 1.9 kb plasmid sequence and flanking genomic DNA 

which hybridises to vha26  genomic DNA. The 4.1 kb fragment comes either from 

incomplete digestion or from "co-cloning" in the process of plasmid rescue. The 

plasmid after double digestion with A’c‘<?RI and Bam)r{l released a 1.8 kb v h a 2 6  

genomic fragment which is of a same size as the band found in the genomic Southern 

blot (Figure 6.12).

Figures 6.12 and 6.13 strongly suggested that the VllacW) insertion in line l(3)j3E7 is 

in the vha26  gene. As the rescued plasmid by AfoRI was 14+4.1 kb, the orientation of 

the insertion should be opposite to vha26^cn.Q, otherwise the rescued plasmids should 

be much smaller because there are several Ac<?RI sites immediately 3' prime to the
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dro26kg fragment (See Figure 6.4). Sequencing the rescued plasmid specified the 

V[lacW\ insertion to the 5' of vha26 (Figure 6.14).

6.8 Discussion

This chapter reports the first genomic sequence and chromosomal localisation for a V- 

ATPase E-subunit in an animal. Alignment with a few E subunit sequences clearly 

shows that Drosophila gene to be conserved across eukaryote and prokaryote phyla. It 

has been possible to identify extended motifs diagnostic of either all members or 

merely animal members of the family. Expression studies suggest that vha26  m RN A  

may fall into a subclass of V-ATPase subunits which is not expressed continually 

during the life of the insect. This characterisation of vha26  is the first step to elucidate 

further the function of the subunit in an organismal context by Drosophila genetics.

The isolation of a V[lacW\ insertion in gene vha26 might be of great use for analysis the 

function of V-ATPase E-subunit in Drosophila. The lacZ gene in V{lacW\ may allow 

detection of the domain o f expression of the gene. Precise and imprecise excision of 

the P-element will generate new alleles. More detailed mutational analysis based on 

the V[lacW\ insertion line will be carried out in the near future. See chapter 5 for 

examples of this kind of analysis.
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Chapter 7
vhal4^ the Gene Encoding a 14 kPa F Subunit o f the V- 
ATPase

7.1 Summary

A Drosophila melanogaster cDNA for the 14 kDa F-subunit has been cloned, via homology 

with the corresponding M. sexta gene. Its deduced translation product is a 124 amino 

acid polypeptide sharing 90% identity with the M. sexta polypeptide and 50% identity 

with an analogous polypeptide of Saccharomyces cerevisiae. Homology was also found with 

expressed sequence tags from a variety of other species, indicating that the subunit is 

phylogenetically conserved. The Drosophila gene {vhal4) is present as a single copy at 

cytological position 52B on the second chromosome, and gives rise to an mRNA species 

o f 0.65 kb. Abundance o f the vh a l4  transcript, relative to an rp49  control, shows 

relatively little variation during development and between adult head, thorax and 

abdomen, suggesting that the F-subunit is a relatively ubiquitous component of the 

V-ATPase.

7.2 Introduction

The gene encoding F-subunit of V-ATPases was first identified from Tobacco hornworm 

midgut {Manduca sexta) and subsequently from yeast and mammalian. Cloning o f a 

cDNA for the F-subunit and demonstration that the polypeptide is indeed a component 

of the M. sexta V-ATPase, was carried out as follows (Graf et al., 1994b). A polyclonal 

antiserum against M. sexta plasma membrane V-ATPase was used to screen a cDNA 

expression library, leading to characterisation of a gene that encodes a 14 kDa 

polypeptide (Graf et aL, 1994). A fusion protein was then used to purify monospecific
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antibodies against the gene product. Such antibodies both cross-reacted with the F- 

subunit on a Western blot and were able to abolish M , sexta V-ATPase activity in vitro 

(Graf et a l, 1994). Though Western blotting failed to detect membrane components 

from other species (Graf et a l,  1994), a related S. cerevisiae gene iyM A T) was 

subsequently described, null mutations of which show properties characteristic of other 

classes of V-ATPase null (Graham et a l, 1994; Nelson et a l, 1994). Another related 

gene {NtpG) appears to encode a component of the Na+-pump from the microbe 

Enterococcus hirae (Tabase et a l, 1994). While these results confirm the F subunit as an 

essential component of some V-ATPases, it is not clear whether it is a general 

component, or instead serves a specialised role in holoenzymes from particular tissues. In 

principle, the powerful genetic tools unique to Drosophila (Rubin, 1988) may allow a 

more detailed resolution of this question. As a first step to such an analysis, this chapter 

reports the cloning and characterisation of vhal4, the D. melanogaster gene encoding the 

F-subunit.

7.3 cDNA cloning and DNA sequence analysis

A D. melanogaster head /IZapII cDNA library was screened by plaque hybridisation with 

a cloned cDNA for the M. sexta F-subunit. Hybridisation signals were obtained at 

approx. 1:10,000 and three plaques were purified by successive rounds of screening. One 

of these cDNAs was excised as pBluescript and sequenced on both strands, using 

synthetic oligonucleotides to extend the reading. The 595 bp contig contains an open 

reading frame corresponding to a 124 amino acid polypeptide of «  13.9 kDa (Figure 

7.1), which is clearly a V-ATPase F-subunit, sharing 90.3% identity with the F-subunit 

o f Af. sexta (insect), and 49.6% identity with that o f S. cerevisiae (Figure 7.2). In 

accordance with the nomenclature for other D, melanogaster V-ATPase loci, the gene has 

been named vhal4.
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TCCACATCGCTCGTAAGAAAAAATTAGAAAAAACCAATCGAAA.TGGCTCTGCACTCGGCA 6 0

M A L H S A 6

ATCAAGGGAAAACTGATCAGCGTTATCGGCGACGAGGACACCTGTGTGGGCTTTCTGCTC 1 2  0 

I K G K L I S V I G D E D T C V G F L L  2 6  

GGCGGAGTGGGCGAGATCAACAAGAATCGCCATCCCAACTTTATGGTGGTCGACAAAAAT 1 8 0  

G G V G E I N K N R H P N F M V V D K N  4 6  

ACGGCCGTCAGCGAACTGGAGGACTGTTTCAAGCGTTTCCTTAAGCGGGACGATATCGAC 2 4 0  

T A V S E L E D C F K R F L K R D D I D  6 6  

ATCATTCTAATCAACCAGAACTGCGCCGAGCTTATTCGTCATGTGATCGATGCCCATACG 3 0 0  

I I L I N Q N C A E L I R H V I D A H T  8 6  

TCGCCCGTGCCCGCTGTTTTGGAGATTCCCTCCAAGGACCATCCGTACGACGCCAGCAAG 3 6 0  

S P V P A V L E I P S K D H P Y D A S K  1 0 6  

GACTCCATTCTGCGTCGCGCCCGCGGCATGTTCAATCCGGAGGATCTGGTGCGCTAATTC 4 2 0  

D S I L R R A R G M F N P E D L V R *  1 2 4

CTCGAATTCTGCTCGAGGACACTGTTTCGTATTGCTGCAACCGCCAGAGTATTGCTTTAC 4 8 0  

ACCCTGTAAACAACTATCCATAGATTCAGTGCTTCGCCTTTGTTCTTATCGTGTATTTAA 5 4 0  

AGACATTTATTAAATGGTTTTCGTTGTATAAATAGATTAAA 5 8 1

Figure 7.1 Sequence of a vha l4  cDNA, and deduced amino acid sequence of the 

Drosophila F-subunit (GenBank accession no. Z26918).
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The putative start codon between nucleotides 43-45 is embedded within a region of 

perfect agreement with the canonical eukaryotic translation initiation sequence, 

RNNM TGG. A 3’ UTR of 164 bp separates the stop codon at nucleotide position 415- 

417 from a 16 residue poly(A) tract. As in the case of the cloned cDNA for the 

D. melanogaster 16 kDa subunit (Meagher et al., 1990), there is no canonical 

polyadenyiation signal. There is, however, the motif ATTAAA between nucleotides 548- 

552, centred 26 bp before the start of the poly-A tract. In M. sexta, there are two F- 

subunit transcripts, distinguished by the length of 3’ UTR (Graf et al., 1994). The 

shorter of the two has a AATAAA motif, though unusually close to its poly (A) tract, 

whereas the longer has in addition an ATTAAA motif centred 17 bp before the poly(A) 

trac t. Thus this may be a polyadenyiation signal for these RNAs.

7.4 Amino acid sequence comparisons

In addition to matches to M. sexta and S, cerevisiae F-subunit sequences, a search of the 

GenBank database using the programmes TFASTA (GCG) and BLAST (NCBI) revealed 

matches to expressed sequence tags (ESTs) from human fetal lung, spleen, and brain; 

from the plants Arabidopsis thaliana and Oryza sativa-, from the nematode worms 

Caenorhabditis elegans and briggsiae\ and from the malarial parasite Plasm odium  

falciparium  (Figure 7.2A). Probably due to EST sequencing errors, it was occasionally 

necessary to switch reading frames in order to maximise alignment (see legend to Figure 

7.2A). We can thus extend greatly the known phylogenetic base for the occurrence of the 

F-subunit, which is clearly distributed widely and conserved in plants, animals and fungi 

(Figure 7.2B). We can also add greatly to the authority o f the suggestion of similarity 

between the N a’*' ATPase of the bacterium Enterococcus hirae and the V-ATPases, as most 

o f the residues identified as matching the M. sexta sequence can now be seen to be 

conserved am ong all the V-ATPase subunits (Figures 7.2A  and 7.2B)
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(A)

VF_ATTS 1 MAGSSYIPARNSALIAMIADEEXTWGLLMAGVGNVDIREÎKTnYLIV. . DSKTTVXQIEDA
W _R IC C  1 MAGRPSIPTNSSALIAIIADEDTVTGFLLAGYGNVDLRKKTNYLIV. . DNKTTVKQIEDA
V F _C E L E G  1 .............. MASAAKGKILAVIGDErTTWGFLLGGVGELJSIKARKPNYLIV. .D K Q T T V Q E IE E A
V F _ R 0 2 8 9 1  1 ........................................................................................G GVGELNKARKPTTLIV. . D K Q T T IQ E IE D A
V F _ F 0 6 5 4 B  1 ........................A G R G K LIA V IG D ED TV TG FLLG G IG ELN K X R H PN FLW . . EK D T TX N EIE D T
V F „ F 0 7 8 3 6  1 ....................... A G R G K L IA V IG D EID T V TG FL LG G IG Em K X R H PN FL W . . EK D T TX N EIE D T
V F „ F 0 8 5 4 2  1  ....................... A G R G K L IA V IG D ED TV T G FLL G G IG EL N K X R H PN FL W . . E K D T T IX E IE D T
V F _ D 3 1 1 B 1  1 ______ A A G IM .G RGKLIAVIGDEDTVTGFLLGGIGELNKNRHPNFLW . . E K D T T IN X IE D T
VF_DROME 1  .,.M A i:JISA lK G ia^ISV IG D E O T a/G F IJ:iG G V G E IN K tm H PN îT m r..D ranîA V SE L E D C
VF_M ANSE 1 . . .M ALHAAVK G K LISVIG DED TC V G FLLG G IG EIN K N R H PN FM W . .D K N T F V S E IE E C
V F „ T 5 7 9 8 2  1  .......................................................................................................................................................................... lE D T
V F_Y E A S T  1 ....................M A E K R T LIA V IA D E D TT TG LL LA G IG Q IT PET Q EK N FFV yQ EG K T TK EE ITD K
V F _ T 0 2 5 1 9  1  ...................................................................................................................................................................... AREEV
V F_N T P G  1 ........................................................................O TY K IG W G D K D SV SPFRLFG FD V Q H G TTK TEIR K T

V F _A T T S  5 9 F K E F S . G X D D IA IIL S S H F IA N M IR F L V D S Y N K P V . PX IL E IPSK D H PY D PD H E S V L SR V
V F J R IC C  5 9  F K E F T . T R E D IA IV LISQ Y V A N M IR FLV D SY N R PV . PA ILEIHSKDHPYDQDRFCSFW VK
V F_C E L E G  5 4  F N G F C .A R D D IA IIL IN Q H IA E M IR Y A V D N H T Q S Ï. PA V L E IPS K E A PY D PS K D S IL N R A
V F „ R 0 2 8 9 1  3 0  F K G FC .A R D D . .X IL IN Q H IA E M IR Y A V D Q H T Q S I.P A V L E IP S K E A P Y D P S K D S IL N R A
V F _ F 0 6 5 4 8  5 1  F R Q F L .N R D D IG IIL IN Q Y IA E M V R H A L D A H Q Q S I. PA V L E IPS K E H PY D X .........................
V F _ F 0 7 8 3 6  5 1  FR Q F L .N R D D IG IIL IN Q Y IA E M V R H A L D A H Q Q S I. PA V L E IPSK E H PY D A A ......................
V F _ F 0 8 5 4 2  5 1  F R Q F L .N R D D IG IIL IN Q Y IA E M V R H A L D A H X Q S I.P A V L E IP S K E H P ..................................
V F „ D 3 1 1 8 1  5 5  F R Q F L .N R D D IG IIL IN Q Y IA E M V R H A L D G H Q Q S I.P A V L G IP F K E .........................................
VF_DROME 5 6  RKRZT.. KRIOIDIILINQM KZAELIRHVIDARTSFV. PAVIÆ:IPSKDHPYDASKDSILRRA
VF_M ANSE 5 6  F K R F V . K R D D ID IIL IN Q N V A E LV R H V ID A H T A PV . PS V L E IPSK D H PY D A SK D SIL R R A
V F _ T 5 7 9 B 2  5  FR Q FL .N R D D IG IIL IN Q Y IA E M V R H A L D A H Q Q SI.PA V L E IPS K E H PY D A A K D SIL R R A
V F_Y E A S T  5 4  FN H F T E E R D D IA IL L IN Q H IA E N IR A R V D S F T N A F . PA IL EIPSK D H PY D PE K D SV LK R V
V F _ T 0 2 5 1 9  6 F K E Y S . SK H D C G V IL IN Q Q IA D E IR Y L V D L H D K IL . PT V L E IP S K D K P F D P N K D S IIQ R V
VFJNTTPG 3 7  ID E M . . A K N E Y G V IY IT E Q C A N L V PE T IE R Y K G Q L T PA IIL IPS H Q G T L G IG L E E IQ N S V

VF_ATTS
VF_RICC
VF_CELEG
V F _ R 0 2 B 9 1
V F _ F 0 6 5 4 8
V F _ F 0 7 8 3 6
V F „ F 0 8 5 4 2
V F _ D 3 1 1 8 1
VPJDROME
VF_MANSE
V F _ T 5 7 9 B 2
VF_YEAST
V F _ T 0 2 5 1 9
VF_NTPG

1 1 7  KYLFSAESVSQR
1 1 7  NCFL*.............
1 1 2  RGLFNPEDFR. 

86 RGLFNPEGFR.

1 1 4  RGUFNPEDLVR
1 1 4  KGMFNPEDLVR

6 3  RXLFTAEDLR. 
1 1 3  RKLFGE...........

6 4  KLFFGGDISHL 
9 5  EKAVGQNIL..
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(B)

Arabidopsis thaiiana 
Rice
Caenorhabditis elegans 
Caenorhabditis briggsiae 
Manduca sexta 
Drosophila melanogaster 
Human f06548 

Human f07836 

Human f08542 

Human d31181 

Yeast 

Malaria

Figure 7.2 A: Alignment of known l4-kD a F-subunit aa sequences. All sequences are 

deduced from cDNA. GenBank accession numbers are as follows;

A. thaliana, ATTS2695 and ATTS 3474;

Oryza sativa (rice) callus, RICCI 365A;

C. elegans, Z49073;

C. briggsiae, R02891 and R02892;

H. sapiens infant human brain, F06548, F07836, F08542;

H. sapiens fetal lung, D 31181;

D. melanogaster h.Q̂ à, Z26918;

M. sexta midgut, X67130;

S. cerevisiae', UI0073; P. falciparum, T02519; ntpG, D17462.

B: Phylogenetic tree o f V-ATPase F-subunits generated by PILEUP using default 

parameters.
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The many human ESTs show some differences in amino-acid sequence (Figure 7.2A); 

but it should be noted that they are all at least 98% identical at the DNA level, with 

many of the differences being ambiguous nucleotides in their sequences. It seems likeliest 

at present that the human ESTs are all cDNAs from the same human gene.

In common with other F-subunits (Figure 7.2), the N-terminus o f the Drosophila 

polypeptide lacks a known membrane targeting sequence. Since the polypeptide is also 

hydrophilic and is accessible to antibodies (Graf et al., 1994), this would be compatible 

with it being synthesised cytoplasmically. A search of the Prosite polypeptide m otif 

database also revealed extended similarity to a casein kinase II phosphorylation site, 

beginning at amino acid 50 (SELED), and the motif is conserved in the F-subunit of M. 

sexta (though not in other F-subunits). Although there are few clues as to how V-ATPases 

might be regulated (Sumner et al., 1995), and there is not yet evidence for the action of 

any particular kinase, V-ATPases demand a large fraction of the cellular energy budget 

(Dow and Harvey, 1988), and are known to be hormonally regulated in both Manduca 

midgut et a i, 1995) Drosophila Malpighian tubules (O ’Donnell et a l,

1995).

7.5 vha l4  is a single copy gene

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and 

probed at high stringency with v h a l4  cDNA (Figure 7.3). The single band of 

hybridisation seen in each lane suggests a single genetic locus. This is consistent with in 

situ hybridisation to polytene chromosome squashes, which identifies a single locus at 

52B on the right arm of chromosome 2 (not shown). Several uncharacterised lethal alleles 

have been mapped to 52A-D as part of more detailed studies of two neighbouring loci, 

hexokinase~C andpox-N. For example, eight lethal complementation groups {l(2)52ACa- 

h) uncovered by Df(2R)XTE-18 have been documented (Davis and MacIntyre, 1988).

1 6 6



167

;îî;

Drosophila genes encoding several other V-ATPase subunits have recently been cloned 

and characterised. Chapter 4-6 has reported the characterisation and mutagenesis of the 

A and E subunit genes. Inactivation of vha26or vha68-2 lead to a homozygous lethal 

phenotype. This Glasgow group has also been working on the B and c subunits of 

Drosophila V-ATPase. vha55, the gene for the B-subunit, corresponds to a known lethal 

complementation group, SzA (Davies etal., 1995; Gausz etal., 1979), extreme alleles of 

which are recessive embryonic or early first instar larval lethals. Malpighian tubules of 

dying individuals are transparent, a defect that is cell-autonomous in transplants (Gausz 

et a l, 1979). Such a phenotype can be reconciled with the critical role of V-ATPases in 

transporting epithelia (Dow, 1994; Wieczorek, 1992). Since one might predict a similar 

phenotype associated with null alleles of other essential V-ATPase subunits, this may 

provide a way of screening candidate lethals at Aiç.vhal4 locus.

7.6 Gene expression

Northern blots of total RNA probed with vhal4  cDNA identify a single band equivalent 

to a transcript(s) of approximately 0.65 kb (Figure 7.4). Normalisation with respect to 

znrp49 control indicates little modulation during development (Fig. 7.4A)

Moreover, equivalent levels of expression are found in adult head, thorax and abdomen 

(Figure 7.4B), as might be expected for a gene involved in the basic aspects of function.

M. sexta cDNAs corresponding to the F-subunit differ by 97 bp in the length of their 3’ 

UTRs {QtiSet a l, 1994). While all three cDNAs isolated here have the same 3' end, it 

cannot be ruled out that the single band seen in chromosomal in situ hybridisation 

comprises more than one transcript class.
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El EV B H p kb

-  3.6
-  2.9

Figure 7.3 Southern blot of D. melanogaster genomic DNA cleaved with the following 

enzymes: lane 1, Ec<?RI; lane 2, EcoRV; lane 3, BamW\ \ lane 4, HinàlW', lane 5, Pst\. The 

blot was probed with a 400 bp Xho\!Xba\ fragment of vhal4  cDNA, which contains no 

sites for the above enzymes.
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kb H T Ab M F probes

0.65

0.6

ry>r

(A)

vha14

rp49

kb E L P Ad probes

0.65

0.6

vha14

rp49

(B)

Figure 7.4 Northern blot analysis of vha l4  gene expression. (A) Adult tissues. H, head; 

T, thorax; Ab, abdomen; M, adult males; F, adult females. (B) Developmental stages. E, 

embryo; L, third instar larva; P, pupa; Ad, adult. The lower panels in both (A) and (B) 

show the same blots, stripped and reprobed with cDNA for the ribosomal protein gene, 

rp49. This controls for differences in RNA loading.
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7 . 7  D i s c u s s io n

The Drosophila vh a l4  has been cloned by homology with a gene thought to encode a 

subunit of M. sexta V-ATPase, and that is expressed in M , sexta midgut. An analogous 

subunit has been identified by homology in another V-ATPase model, the yeast S. 

cerevisiae , and has been shown to be essential for proper assembly of the yeast V-ATPase 

holoenzyme (Graham et a l, 1994). Is the F-subunit a genuine V-ATPase subunit, or an 

accessory; and is it a specialisation for either a plasma membrane or endomembrane role 

o f the V-ATPase? The widespread tissue distribution implied by the human ESTs and 

the broad phylogenetic distribution implied by ESTs from other species would suggest 

that this cannot be uniquely a subunit of a plasma-membrane form of the V-ATPase. 

The ubiquitous spatial and temporal expression of vhal4'm  D. melanogaster reported here 

further supports the suggestion that this is a general subunit which exists in all 

V-ATPases. A definitive demonstration of an essential role of vhal4  in animal V-ATPase 

function will depend on the future identification of a null allele, for which Drosophila is 

likely to be a uniquely suitable model. Possibly a pre-existing m utant corresponding to 

the locus can be identified can be identified (as described earlier). Alternatively, a novel 

allele could be generated by P-element mutagenesis. Such studies should help in 

elucidating the function of F subunit in V-ATPase.
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Chapter 8

Discussion and Future Work

This thesis consists of two main parts: (i) a set up of a fast and efficient method to 

correlate cloned genes to P-element mutants and (ii) cloning, characterisation and 

mutagenesis of genes encoding Drosophila V-ATPase. Chapter 3 described the approach 

of site-selected mutagenesis of Drosophila genes via plasmid rescue, 1836 fly lines have 

been plasmid rescued individually and a simple procedure to screen mutants for a target 

genes has been set up. Initially screening has isolated mutations for more than 10 genes. 

Sufficient plasmid DNA has been prepared to allow screening for many targets.

8.1 One-step screening to correlate cloned gene to P-element lines

As an alternative to screening pools of plasmids, an one-step screening procedure involving 

grids of colonies created by a robotic device has been tried. The entire grid is visualised by 

hybridisation with a 35g probe for the plasmid replicon, whist individual colonies 

corresponding to particular insertion sites are visualised with a ^^P probe specific to the 

gene of interest. Unfortunately the robotic equipment is unavailable in Glasgow and the 

hybridisation to the grids was not as sensitive as that described in Chapter 3. Here, I 

propose an improved screening procedure which reduces the former three rounds o f 

screening to one single hybridisation while still retaining the sensitivity (Figure 8.1), A 

large cube made of 1000 small cubes each representing the plasmid(s) from a Drosophila 

line. The 1000 plasmids are pooled into 10 pools from each dimension of the cube with 

each pool containing 100 plasmids. By pooling from the three dimensions a total of 30 

pools o f plasmids are obtained which can be loaded into a gel of 30 lanes. A single 

hybridisation of the Southern blot could easily assign any positive signal to the 

corresponding fly line. Screening for the 1836 plasmids from the second chromosome
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2  2
j=1 k=1

Pi

i=i10 10

k1 k=1

I
30 pools o f plasm ids representing 1000 lines

I
A, B| Ck

1 2 3 4 5 6 7 8 9  10 1 2 3 4 5 6 7 8 9  10 1 2 3 4 5 6 7 8 9  10

Figure 8.1 A strategy of pooling plasmids for One-step screening. The cube represents

plasmids from 1000 individual Drosophila lines. Pi,j,k (i,j,k=l, 2, 3, ......   10) stand for

the individual plasmid. Pj, Pj and Pk (i, j, k=l, 2, 3, ......, 10)  stand for the pool of 100

plasmids pooling from each of the three dimensions. All the 30 pools of DNA could be 

loaded in a single gel. A single hybridisation of the Southern blot could easily assign any 

positive signal to the corresponding fly line.
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-I*::1
insertion line (see Chapter 3) could be simplified if the individual plasmids are re-pooled 

according to Figure 8.1. This pooling strategy will be applied to the work of the third 

chromosome lines. Approximately 2500 fly lines with P-element in third chromosome 

are being plasmid rescued individually (collaborated with Dr. Peter Deak). The resulting 

transformed E. coli will be pooled from three directions for maxi DNA preparation.

8.2 The correlation of cDNA library clones with the P-element lines

173

Except for the use in site-selected mutagenesis, the large amount of rescued plasmids can 

also be utilised in the correlation of individual clones within Drosophila cDNA library 

with the individual flies bearing a P-element. This would provide access to many 

unknown but essential Drosophila genetic loci. A procedure likely to be suitable for large 

scale screening for cDNA clones with our rescued plasmids is proposed (Figure 8.2). The

whole rescued plasmids (including the vector) can be directly labelled if the cDNA library ,

is in a vector such as lambda NM1149, which shares no sequence homology with the 

vector sequence of the rescued plasmids. The cDNA library are laid out as plaques in a 

rectangular grid by a robotic device constructed by this group (Mackenzie et al.^ 1989).

*
The device can easily generate 6 or more arrays of 1000 clones and produce as many filter

replicas o f each as desired. The filter can be screened by probes o f pooled plasmids

representing 10 or 100 lines depending on the sensitivity of the probe. As the plaque is

laid out individually in the grid, positive plaques will represent a single cDNA clone

without need for a further round of screening. However, as the probe is labelled from a

pool of plasmids, the cDNA clone needs to be further labelled to screen the filter of

plasmids (obtained as in figure 8.1) to be correlated to the mutant flies, thus a pair of 
.cDNA and mutant is obtained. This pair, very possibly, represents a mutation of a 

gene. In cases wherever insertion is near the gene, local jum ping or deletion could 

possibly mutate the gene. For flies being homozygous lethal there is high possibility for 

each of the rescued plasmid to detect one cDNA and hence one informative insertion. 

The resulting cDNA/P-element line pair would be subjected to preliminary studies: Lines
Î
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Drosophila
cDNA

filters

t

hybridisation

probe of 
Pool of plasmids

single cDNA

probe

single
Drosophila line

1

gel blot in 
Figure 8.1

hybridisation

Figure 8.2 Large scale correlation of Drosophila cDNA clones to P-element insertional 

mutants. The pools of plasmids are labelled to screen filters of cDNA clones. Any positive 

cDNA clone is further labelled to screen the gel blot of the pooled plasmids (as in Figure 

8.1) to identify the corresponding Drosophila line.
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could be examined initially for obvious phenotypes in the homozygote and for lacZ 

expression. Sequence of the cDNA and deduced peptide, in association with the 

phenotype exhibited by the mutant , provide valuable information in the study of gene 

function as well as other purposes such as in the searching for novel insecticides.

8.3 PCR amplification of cDNA corresponding to the rescued plasmids

Cloning cDNAs corresponding to the locus of P-element insertion in large scale can be

an arduous task. Here I suggest a simple strategy which is modified from Straus and

Ausubel (1990). The method is diagrammed in Figure 8.3. An excess of biotinylated

rescued plasmids is mixed with a small amount of purified cDNA library (in a vector

sharing no homology with that of P-element vector). The mixture is denatured and then 
.allowed to reassociate. The corresponding cDNA will hybridise to biotinylated strands of a

rescued plasmid. The biotinylated DNA, together with the cDNA reassociated with it, is 

bounded to avidin-coated polystyrene beads. The bound cDNA is thus separated from 

other cDNAs and is then released from the beads for PCR amplification.

8.4. The Drosophila V-ATPase

In this thesis I have reported the cloning and characterisation of genes and cDNA for 

subunit A, E and F of V-ATPases in Drosophila. Subunit c and B have also been cloned 

by the Glasgow research group (Meagher et al., 1990; Davies et al., 1996). Two further 

subunits have been cloned unintentionally, one from an enhancer-trap study (Harvie and 

Bryant, 1996), and one from a yeast two-hybrid study of cytoskeletal proteins (He and 

Kramer, 1996). Adding all this together, genes encoding seven subunits have been cloned 

(Table 8.1).

In spite of the overwhelming advantage (Rubin, 1988); ), Drosophila as a model system 

had a major drawback (Dow, 1994; Dow et a i, 1996). The extremely small size of the



c D N A  library

Denature
reassociate

b io tin y la ted  r escu ed  p la sm id

avidin-coated beads

PCR
amplification

#)

M .

cDNA con’esponding 
to the rescued plasmid

Figure 8,3 Schematic representation of PCR amplification of cDNA corresponding to 

the rescued plasmids. The biotinylated rescued plasmids are reassociared with the 

corresponding DNA in the cDNA library.The cDNAs hybridised to the biotinyted DNA 

are bound to avidin-coated heads and separated from the rest cDNAs. The bound cDNA 

is then released and is subject to PCR amplification.
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organism compared with vertebrate make it difficult to perform physiological analysis of 

the V-ATPase function. Nonetheless, a delicate assay of the Malpighian tubule has been 

developed (Dow, 1994; Dow et al., 1996). The insect Malpighian tubule performs a 

unction analogous to that of the vertebrate kidney tubule. Despite its small size, the D. 

melanogaster tubule is remarkably robust and provides a valuable physiological phenotype 

(Dow et al., 1994), Potentially, then the D. melanogaster tubule may prove a

useful tool for the study of plasma membrane V-ATPase function.

Table 8.1 Characterisation of D. melanogaster encoding V-ATPase subunits

subunit gene_______  transcript  deduced__peptide Citation

name location (kb) size identity identity

__________________________ (kb) {human )______ {Manduca)_____________

i

A vha68~l 34A 2.6 68 87.1 (VATO) 

81.9 (VATA)

87.4 Chapter 4

A vha68-2 34A 2.6 68 91.7 (VATO) 

82.4 (VATA) 91.2

Chapter 4 

Chapter 4

B vha55 87C 2.8, 2.3 55 93 (brain) 

8 9 (kidney)

97 Davies et al 

1996

C 1.8 66 Harvie etal. 

1996

D He et al. 

1996

E vha26 83B 2.3 26 63 77 Chapter 6

F vhal4 32B 0.65 14 71 90 Chapter 7

c vhal7 42B 1, 1.2 16 87 93 Meagher et al. 

1990
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8 .5  T h e  V -A T P a se  m u ta n ts  in  Drosophila

The cloning of a gene in D. melanogaster and identification of the chromosomal location 

unlocks a wealth of information. It is possible that the existing mutations in the region 

include alleles of the gene under study. Over the last few years, the probability of such 

findings has been increased greatly by the systematic physical mapping of the genome, 

the production of comprehensive panels of thousands of lines carrying lethal P-element 

insertions, which must presumably have inactivated a large number o f essential genes 

(Torok et al., 1993). The development of site-selected mutagenesis of target genes by 

PCR (Kaiser and Goodwin, 1990) and via plasmid rescue (Chapter 3) allow the easy 

identification o f candidate lines for a particular genes. This thesis reported the 

identification of V\lacW\ m utant lines for genes encoding subunit A, E and c of 

Drosophila V-ATPase. Together with mutations for genes encoding subunit B (Davies et 

al., 1996) and subunit C (Harvie et al., 1996), P-element mutations for five V-ATPase 

genes have been identified (Table 8.2).

Table 8.2 P-element mutations of genes encoding Drosophila V-ATPase

fI-.#

Î

subunit and 

gene name

fly No. position of 

the insertion

homozygous

phenotype

citation

A, vha68~2 25/8 before ATG, in intron. first instar larvae Chapter 5

lethal

B, vha55 l(3)j2E9 after ATG, in intron embryonic lethal to Davies etal

viable 1996

C before ATG second instar to Harvie et al.

pupal lethal 1996

E, vha26 1(3)]3E7 after ATG, in intron lethal Chapter 6

c, vhal7 16/1 after ATG, in intron third instar lethal Dow et al. ,1996

Chapter 3

;
.1

3

I

I
?

I
1?
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There is no detectable heterozygous phenotype of any of the available V-ATPase 

mutations, but total RNA reduction for vha68  has been observed even in the 

heterozygous mutant flies. The homozygous lethal phenotype has been observed in all the 

five P-element lines. Although the lethal phase is varied for mutations of different 

subunits (Dow et aL, 1996) all the null alleles seem to be able to live past the embryo 

stage. The V-ATPase needed is likely to be provided by their mother. It has been found 

that the mutation of vha68~2, as well as mutation in vha55-, shows a homozygous 

detectable tubule phenotype. The mutant homozygotes which survived to late embryonic 

or early larval stages showed transparent Malpighian tubules, without the luminal white 

material observed in healthy larvae. This phenotype is considered to be a characteristic of 

mutations of genes o f V-ATPase subunits and mutations in any genes essential for 

plasmid membrane V-ATPase function are likely to show this characteristic phenotype as 

well (Dow et al., 1996).

The LacZ expression in the P-element lines for vha68-2, vha55, vha26  and vha l7  seems 

to have a similar staining pattern (Chapter 5; Davies et al., 1996; Dow et al., 1996). The 

expression is strongly detected in epithelia known to be energised by V-ATPases, the 

Malpighian tubules, the antennal palps and rectum. If this expression is a general pattern 

for P-element insertion in genes encoding any of the V-ATPase subunits, it could be as a 

general marker to screen for P-element insertions in other V-ATPase genes. However, the 

lacZ expression of lines with a insertion in gene of sununit C gives a different pattern 

from the gene (Harvie et at., 1996), This lacZ expression may be affected by other nearby 

promoters.
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2. Yiquan Guo, Zhongsheng Wang, Andrew Carter, Kim Kaiser and Julian Dow. 
1996 . Characterisation of vha26, the Drosophila gene for a 26kDa E-subunit of 

the vacuolar ATPase. Biochemica et Biophisica Acta 1283, 4-9.

3 Yiquan Guo, Kim Kaiser, Helmut Wieczorek, and Julian A. T. Dow. 1996. The 
Drosophila melanogaster gene vhal4  encoding a 14-kDa F-subunit of the vacuolar 
ATPase. Gene 172: 239-243.
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Kim Kaiser and Gareth Morgan. 1996. KLP38B - a mitotic kinesin-related 

protein from Drosophila which associates with PPL Submitted to CelL
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Patricia T. W. Cohen. 1996. Deficiency of protein phosphatase 2A uncouples the 

nuclear and centrosome cycles in Drosophila embryos. Journal o f Cell Science (in 
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characterisation and inactivation of the 68 kDa A-subunit of V-ATPase in 
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7. B. McCabe, Y. Guo, S. Sweeney, E. Goldstein, K. Kaiser, C. O 'Kane 

Investigation of the function o f synaptobrevin proteins in Drosophila 
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8. Dow, J. A. T., Davis, S. A., Guo, Y., Graham, S., Finbow, M. and Kaiser, K. 
(1996). Molecular genetic analysis of V-ATPase function in Drosophila 
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Appendix 2 List of primers used in this study

primers sequences (5'-3') genes orientation position
P31 CGACGGGACCACCTTATGTTATTTCATCATG P-element + / -
PR AGCATACGTTAAGTGGATGTCTC P-element +
PL GTGTATACTTCGGTAAGCTTCGG P-element -
gtlOrev GGCTTATGAGTATTTCTTCCAGGGTA nm ll49 vector

nmll49him AACCTTCAGCCAGAATCCATTGCC nm ll49 vector

14KT3-1 AACTGGAGGACTGTTTCAAG ' vhal4c 194-213

14KT7-1 TGGCGTCGTACGGATGGTCC vhal4c - 336-354

G14T3-2 GGTGCGCTAATTCCTCGAAT vhal4c + 426-427

G14T7-2 TCGACCACCATAAAGTTGGG vhal4c - 154-172

28T3-1 GAAGAAGATTCAGTCCTCCA vha26g 1009-1028

28T3-2 GAACGTCGAGCTGTTCATCG vha26g + 1369-1388

28T3-3 CAGTCAGGACGCACAGCTAGGA vha26g + 1769-1786

28T3-5 AGTAGCTAAGTTTGTTGACCTG vha26g + 2509-2529

28T7-1 GTTATATAATAACGCATATGTAC vha26g " 2848-2866

28T7-2 CGATGAACAGCTCGACGTTC vha26g - 1369-1387

28T7-3 CACGCTGCTCACATGGTCCTC vha26g - 1148-1167

28T7-4 CGCATATGCTACTTGTATTTG vha26g - 2835-2854

28T7-6 TCCTAGCTGTGCGTCCTGACTG vha26g - 1764-1786

28T7-5 CAGGTCAACAAACTTAGCTACT vha26g - 2509-2528

28g-l CACTGCACAAACCGAAAGGAAA vha26g - 242-262

28g-2 CATCGAGTACTATATACATTA vha26g + 2867-2887

28g-3 GCAGGCGATCAGGTCGTA vha26g + 340-358

28g-4 CGTCCAAGACCCTAGCCTCTA vha26g - 747-766

28g-10 GATCCACTGCCGTTGTTCCTCC vha26g - 2224-2244

28g-4 CGTCCAAGACCCTAGCCTCTA vha26g - 747-766

G67T3-1 CGACATGGCCACCATCCAGG vha68-lc + 255-274

G67T3-2 AGATGGCGAGCAAAAGATCA vha68-lc + 1840-1867

G67T3-4 GAAAGTCACGCAGTACCTCA vha68-lc - 930-948

G67T3-3 CTACAACCTGGAGGACATTG vha68-lc + 627-646

G67T3-8 CGGTAGCTGAAATGGAACG vha68-lc + 2197-2215

G67T3-9 CTGTCCAAGTACTCCAACTC vha68-lc + 862-881

67T3-20 TCTGTCTGAATACTTCCGTG vha68-lc + 1071-1090

G67LT3-1 TTCAGCTGGTTGGCAAAGCA vha68-lc + 1553-1572
G67T7-1 GTCCTTTAGTCCCGCTTACC vha68-lc -

G67T7-2 TGATCTTTTGCTCGCCATCT vha68-lc — 1847-1866

G67T7-3 CAATGTCCTCCAGGTTGTAG vha68-lc - 627-645

G67T7-4 TGAGGTACTGCGTGACTTTC vha68-lc - 930-949

G67T7-5 AGGGTAACGAACACAATCGA vha68-lc - 2335-2353

G67T7-8 CGTTCCATTTCAGCTACCG vha68-lc - 2197-2234
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Appendix 2 List of primers used in this study, cont.

prim ers sequences (5'-3') genes orientation p o s itio n
67T7-10 CCCGTGAAGAGCGGATGGTT vha68-lc 745-763

67T7-20 TGCGTAGTGGCACGAACTCGG vha68-lc - 1484-1503

G67LT7-1 TCGGAGAAGTCACCACCAGG vha68-lc - 1332-1330

67LT7-2 GAACACCTGCACGATACCCAAA vha68-lc 1349-1370

PS67-1 GAGCTGGTGAAACAAATCCAACG vha68-lc + 12-34

PS67-2 GCGATTAGTTTGACAAATTGC vha68-2g + 912-932

PS67-3 TAACTCAGCAAACGAAGATAGG vha68-2g + 1690-1700

67T3-5 TCCATTTACACTGGTATCACT vha68-lc + 1051-1071

G67T7-6 TCCAAGTTCCACGGAAAGAG vha68-lc - 332-350

67CP-1 AGAAGAAGAAGAGCAGCAACCGCGACC 6vha68-lg

67GP-1 ATTGCAGTCGAAAAAACAGAATAAAGCAAA vha68-2g + 1258-1287

67CP-2 GTAACATTCATAATACATTTTATTTCC vha68-lc - 2547-2572

EHT7-1 GCATGCATTTGTATTTCTGTCT vha68-2g - 4076-4097

EHT7’ AAGTCATGTTTTCTCCCTGTTTG vha68-2c + 2370-2392

EHT7 GTTGCACTTTATTCGTACATT vha68-2c - 2432-2452
67KG-10 CACCAACAATTCCAGCTGCAT vha68-2g + 3817-3838

67KG-PS-2' CCTTCTTTGTTATGCTGCG vha68-2g - 991-1009

67KG-9-3-2 TTCAATCCATTTCAGGACC vha68-2g + 3604-3622

67KG-9-7-3 ATCCTCGGCATTGACCACCGG vha68-2g -
67KG-9-7-3 AACGCATAGTGCAGCAGCGAC vha68-2g -
PS-9’ AACATCATCAAGTATCAT vha68-2g + 1626-1643
5T3-r GGTATCATGGGCAGCATCTT vha68-2g + 1963-1982

67KR-1 ACCTGGCTCATCTCCTACTCG vha68-2g + 3136-3156

67KG-9-7-1 CGTCTGGTAGACGGATCACCA vha68-2g “
67KG7T3-1’ ACTTGCAGTCTGTGTGCGTGTT vha68-2g - 280-301

67KG9T7-2 ATGGACCTCAATGGTCGCTGGA vha68-2g

67KG9T7-1' TCCAGCGACCATTGAGGTCCAT vha68-2g

67KG9T3-1 CCTGCAGCAGAACTCCTACT vha68-2g + 3348-3367

67KG5T7-1 AGTGACGAAGCAGCGATCAA vha68-2g + 248-267

67KGT3-1 TGTAGATGGATTCGGTCAGC vha68-2g + 2018-1037

67KG-PS14 TCGATGATGAGGAGCGTGAGT vha68-2g + 1307-1327

67KG9T7-2' AGGTGTCGTCCGGTGGAGGATAA 67kg-mid + 813-834

PS-7 GACCGTTACCGAAGCAGAAGA vha68c-l + 43-63

PS-8 CGCGTAGACACGGCCATATT vha68-2g

PS-9 CCAACCAAGATAGGTTCCAT vha68-2g - 1683-1702

PS-10 TTGCCGTCAGCTGACAAATG vha68-2g - 661-682

PS-12 ATGTAGCAGATACACCTGCC vha68-2g + 1125-1144
PS-13 GTGCGGTATGAAAACGTGAA vha68-2g + 397-416
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Appendix 3. List of rescued plasmids with corresponding fly lines, lethal 

phases and chromosomal locations of the ]?{lacW\

Notes for some items in the table:

1. The Glycerol stock in the table is the rescued plasmid transformed in E. coli which was 

stored at -70“C. Plasmid DNAs were isolated by pool of 10 line.

2. Lethal phase and chromosomal sites of the P-elements were kindly provided by Dr. 

Istvan Kiss. P: Pupae; L: larvae; 8A: Pharate adult; A-- Adult (semi-lethal); E; Embryo; 

L<n : Larvae mailer than normal; L « n : Larvae much smaller than normal. L>n: Larvae 

larger than normal.
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