https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Cloning, Characterisation and Site-selected P-element Mutagenesis of Genes Encoding V-ATPase in Drosophila

A thesis submitted for the degrec of Doctor of Philosophy at the University of Glasgow By

Yiquan Guo

Division of Molecular Genetics Institute of Biomedical and life scienccs University of Glasgow
Glasgow Gl1 6NU UK

September 1996

ProQuest Number: 10391285

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10391285
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abbreviations

AA	amino acid(s)
ATP	adenosine triphosphate
ATPasc	ATP hydrolysing enzyme
BCIP, X-phosphate	5-bromo-4-chloro-3-indoyl-phosphate
bp	base pair(s)
BSA	bovine scrum albumin
cDNA	complementary DNA
DEPC	dierhyl pyrocarbonate
DIG	digoxigenin
DNA	2' deoxyribonuclcic acid
DNase I	deoxyribonuclease I
dATP	2' deoxyadenosine triphosphate
dCTP	$2{ }^{\prime}$ deoxycytidine triphosphate
dGTP	2^{\prime} dcoxyguanosine triphosphate
dNTP	2' deoxy (nucleotide) triphosphate
dTTP	2 ' deoxythymidine triphosphate
dU'I'P	2 ' deoxyuridine triphosphate
DTT	dithiorhreitol
EDTA	ethylene diamine tetra-acetic acid (disodium salc)
EtBr	ethidium bromide
g	gram
g	centrifugal force equal to gravitational acceleration
h	hour
HEPES	4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid
IPTG	isopropyl-b-D-thio-galactopyranoside
kb	kilobases
kDa	kiloDaltons

Klenow	Klenow fragment of E, coli polymerase I
1	litres
M	molar
mg	milligram
mM	milliMolar
min	minutes
ml	millilitres
MOPS	3-morpholinopropanesulfonic acid
mRNA	messager RNA
ng	nanograms
nM	nanmolar
nm	nanometres
NTB	4-nitro blue etrazolium chloride
OD	optical density
ORF	open reading frame
PCR	Polymerase chain reaction
PEG	polyethylene glycol
pH	acidity $\left[-\log 10\right.$ (Molar concentration of H^{+}ions) $]$
polyA+	poly adenosine tailed RNA molecule
ppi	pyrophosphate
RNA	ribonucleic acid
RNasc A	ribonuclease A
RP49	ribosomal protein 49 (Drosophila)
rpm	revolutions per minute
SDS	sodium dodecyl sulphate
Tris	Tris (hydroxymethyl) aminomethanc
tRNA	transfer RNA
UTR	untranslated region
U	units

UV	ultraviolet
V-ATPase	vacuolar H^{+}-transporting adenosine triphosphatase
wha14	gene encoding V-ATPase F-subunit in Drosophila.
wha26	gene encoding V-ATPase E-subunit in Drosophila.
wha68-1	gene encoding V-ATPasc A-suburit in Drosophila.
wha68-2	gene encoding V-ATPase A-subunit in Drosophila.
Vol	volume
Xgal	S-bromo-4-chloro-3-indolyl-b-D-galactopyranoside
$\mu \mathrm{Ci}$	microCuries
$\mu \mathrm{I}$	microlitres
$\mu \mathrm{g}$	micrograms
3^{\prime}	three prime
5^{\prime}	five prime

Contents

Abbreviations I
Contents IV
List of figures
List of Tables. XIV
Acknowledgements XV
Summary. XVI
Chapter I Introduction. 1
1.1 Drosophila melanogaster. 1
1.2 The P-element of Drosopbila. 2
1.2.1 P-element Biology 2
1.2.2 Germ-line transformation. 6
1.2.3 Remobilisation of P-elements. 9
1.2.4 Enhancer-trap elements 11
1.2.5 P-element mutagenesis. 15
1.2.6 Site-sclccted mutagenesis 16
1.3 V-ATPase 19
1.3.1 Proton pumps 19
1.3.2 Structure of V-ATPase 22
1.3.3 Plasma membrane V-ATPase 24
1.3.4 Functions of V-ATPase 24
1.35 Mutational analysis of V-ATPase. 28
1.4 The aim of this projece 30
Chapter 2 Materials and Methods. 31
2.1 Drosophila 31
2.2 E. coli, plasmids and Bacteriophages. 32
2.3 E. coli Growth medium 32
2.4 Antibiotics and indicators 33
2.5 Comperent cells and transformation. 34
2.5.1 Preparation of competent cells 34
2.5.2 Transformation of E. coli. 35
2.6 Nucleic Acid Isolation 36
2.6.1 Plasmid DNA. 36
2.6.2 Bacteriophage $\lambda \mathrm{DNA}$ 36
2.6.3 Drosophila DNA 37
2.6.4 Drosophila IRNA. 39
2.7 Quantification of nucleic acids. 39
2.8 Labelling of nucleic acids 40
2.8.1 Random priming of 32 P 40
2.8.2 DIG random priming 41
2.8.3 Nick translation. 41
2.9 Electrophuresis 42
2.9.1 Agarose gel electrophoresis for DNA 42
2.9.2 Denaturing agarose gel electrophoresis for RNA 42
2.9.3 Polyacrylamide gel for DNA sequencing 43
2.10 Nucleic acid hybridisation. 43
2.10.1 Southern blotting and hybridisation 43
2.10.2 Northern blotting and hybridisation 44
2.11 Oligonucleotide synthesis. 44
2.12 DNA sequencing 45
2.13 PCR 45
2.14 In Situ hybridization to polytene chromosomes. 45
2.15 Isolation of cDNA and genomic clones 46
2.16 Generation of unidirectional deletions for rapid DNA sequencing. 46
2.17 Plasmid rescue and mucation screening. 47
2.18 Histochemical Staining and Immunocytochemistry 48
2.19 Isolation of viable revertants and new alleles by P-element excision. 48
2.20 Determination of lethal phase of the mutations 51
Chapter 3 Site-selected mutagenesis of the Drosophila second chromosome via plasmid rescue of lethal P-element insertions. 52
3.1 Summary 52
3.2 Introduction. 52
3.3 Plasmid Rescue. 56
3.4 Screening 57
3.4.I v ba68-2, the gene encoding V-ATPase A-subunit. 60
3.4.2 Ductin, the gene encoding the V-ATPase c-subunit, 60
3.4.3 CalpA, the gene encoding calpain 60
3.4.4 DCO, the catalytic subunit of cAMP-dependent protein kinase. 63
3.4.5 $S y b$, a gene encoding synaptobrevin 63
3.4.6 KLP38B, a mitotic kinesin-rclated protcin. 68
3.4.7 PP2A-28D, the gene encoding protein phosphatase 2 A 71
3.4.8 Mutations in other genes 71
3.5 One-step screcning 71
3.6 Veriffcation 71
3.7 Discussion 74
Chapter 4 Charactcrisation of $v h a 68-1$ and $v h a 68-2$, the genes encoding two isoforms of V-ATPase A subunit in Drosophila 78
4.1 Summary 78
4.2 Introduction 78
4.3 Isolation of two different cDNAs encoding the catalytic A subunit. 80
4.3.1 Isolation of vha68-1 cDNA. 80
4.3.2 Isolation of vha68-2 cDNA 83
4.3.3 Comparison of the two isoforms. 87
4.3.4 Homology of vha 68 to subunit A of V-ATPases from other sources. 96
4.3.5 Comparison of v ha 68 to β chain of F-ATPase 96
4.4 Genomic structure analysis of wha68-2 96
4.4.1 Restriction mapping of genomic DNA and subcloning. 96
4.42 Genomic DNA analysis. 99
4.4.3 A comparison of the wha68-1 and vha68-2 genes. 99
4.4.4 Evidence for additional complexity at the vha68-2 locus 103
4.6 Chromosomal location 110
4.7 Northern blot analysis of vha68-1 and vha68-2 110
4.8 Discussion 110
Chapter 5 Mutational analysis of vha68-2, a gene encoding one of the two isoforms of the Drosophila V-ATPase A-subunit 115
5.1 Summary 115
5.2 Introduction 115
$5.31(2) \mathrm{k} 02508$ contains a single insertion in $v h a 68-2$. 116
5.4 The insertion in $1(2) \mathrm{k} 02508$ lies within wha68-2. 117
5.5 Lethality in $\mathrm{I}(2) \mathbf{k} 02508$ is caused by insertion of the $\mathrm{P}[\mathrm{lac} \mathrm{W}]$ element. 117
5.6 Imprecise excision generates a range of new allcles. 120
5.7 Reporter gene expression 120
5.8 Phenotypic analysis of $1(2) \mathrm{k} 02508$ and new alleles. 126
5.9 Northern blot analysis of mutant flies. 128
5.10 Discussion 131
Chapter 6 Characterisation and inactivation of wha26, the gene encoding an E-subunit of the V-ATPase. 132
6.1 Summary 132
6.2 Introduction. 133
6.3 Identification of a cDNA encoding a 26 kD E-subunit 133
6.3.1 cDNA cloning. 133
6.3.2 Generation of unidirectional deletions of p26CD for sequencing 134
6.3.3 DNA sequence analysis of v ha 26 cDNA 136
6.4 Genomic structure of vha26. 139
6.4.1 Genomic DNA clones corresponding to wha26 139
6.4 .2 vha26 is a single copy gene. 139
6.4.3 Generation of unidirectional deletions of p 26 kg DNA for sequencing 144
6.4.4 Correlation of genomic and cDNA scquences. 144
6.5 Phylogenetic analysis of the E subunit. 147
6.6 Gene expression 154
6.7 Identification of a fly carrying a $\mathrm{P}[$ lac $W]$ insercion in wha26. 154
6.8 Discussion 159
Chapter 7 vha14, the gene encoding a 14 kDa F -subunit of the V-ATPase. 160
7.1 Summary 160
7.2 Introduction. 160
7.3 cDNA cloning and DNA sequence analysis 161
7.4 Amino acid scquence comparisons. 163
7.5 whal 14 is a single copy gene 166
7.6 Gene expression 167
7.7 Discussion 170
Chapter 8 Discussion and Future Work 171
8.1 One-step screening to correlate cloned gene to P -element lines 171
8.2 The correlation of cDNA library clones with the P-element lines. 173
8.3 PCR amplification of cDNA corresponding to the rescued plasmids 175
8.4. The Drosophila V-ATPase 175
8.5 The V-ATPase mutants in Drosophila. 179
Appendix 180

1. List of publications from or partially from this study 180
2. List of the primers used in this study 181
3. List of rescued plasmids 183
References. 207
List of Figures
Figure 1.1 Structure of P-elements 4
Figure 1.2 Model for template-dependent gap repair following P-element excision.5
Figure 1.3 Germ-line transformation.7
Figure 1.4 Enhancer-trapping 10
Figure 1.5 P-element mutagenesis 13
Figure 1.6 A controlled P-elcment mutagenesis strategy 14
Figure 1.7 Site-selected mutagenesis 17
Figure 1.8 Plasmid rescue. 18
Figure 1.9 Schematic subunic structure of V-ATPase. 22
Figure 1.10 Generalised model for insect cpithelia 26
Figure 2.1 Scheme for isolation of viable revertants and deficiency strains 49
Figure 3.1 Ovcrview of the plasmid rescue strategy 54Figure 3.219 pools of 100 plasmids separated by electrophoresis ina 0.8% agarose gel58Figure 3.3 Screening for insertions in wha68-2, the gene encodingsubunit A of the Drasophila V-ATPasc59Figure 3.4 Screcning for insertions in ductin, the gene encoding subunit cof Drosophila $\mathrm{V}-\Lambda$ TPase61
Figure 3.5 Screening for insertions in CalpA, a Drosophila calpain homolog 62
Figure 3.6 Screening for insertions in $D C O$, encoding a catalyticsubunit of cAMP depedent protein kinase.64
Figure 3.7 Insertion in ductin, CalpA and DCO 65
Figure 3.8 Screening for insertion in syb, the gene encoding synaptobrevin 66
Figure 3.9 Insertion in Syb 67
Figure 3.10 Southern blot and Northern blot analysis of Syb mutant 69
Figure 3.11 Screening for insertions in the gene of $K L P 3 B B$. 70
Figure 3.12 Southern blot of genomic DNA of the $\mathrm{P}[$ lac $W]$ insertional lines 73
Figure 1.1 cDNA and putative aa sequence of wha68-1 82
Figure 4.2. Three types of cDNA inserts hybridised to vha68 prokes. 84
Figure 4.3 cDNA and predicted amino acid sequence for wha68-2. 86
Figure 4.4 Alignment of the two cDNA by FASTA in GCG. 91
Figure 4.5A. Alignment of known V-ATPase A subunit (VA) a sequences 94
Figure 1.5B Phylogenetic tree of V-ATPase A subunits. 95
Figure 4.6 Alignment of the V-ATPase A subunit and F-ATPase β subunit. 97
Figure 4.7 Restriction map of genomic ph68A 98
Figure 4.8 Genomic DNA and putative aa sequence of u ha68-2. 102
Figure 4.9 Structure of the genes encoding the two isoforms of the
D. melanogaster V-ATPase A subunit. 104
Figure 4.10 Partial sequence of $68 \mathrm{~kg}-\mathrm{R}$. 105
Figure 4.11 Homology between wha68-2 genomic DNA and partial $68 \mathrm{~kg}-\mathrm{R}$ sequence. 107
Figure 4.12. Homology between the translated proteins of v ba68-2 and 68 kg -R partial sequence. 108
Figure 4.13 Southern blots of genomic D. melanogaster DNA. 109
Figure 4.14 Chromosomal localisation of vha68. 111
Figure 4.15 Developmental Northern blot analysis of the vha68 genes. 112
Figure 4.16 Tissue specific Northern blot analysis of the wha68 genes. 113
Figure 5.1 Sourhern blotting of genomic DNAs confirms that line $1(2) \mathrm{k} 02508$ contains a single $\mathrm{P}[$ lac $W]$ insertion in wha68. 118
Figure 5.2 Correspondance of the rescued plasmid and wha68-2 genomic DNA fragment. 118
Figure 5.3 Sequence homology of rescued plasmid and vha68-2. 119
Figure 5.4 Now alleles with different survival efficiency after remoblisation of the P-element in strain 1(2)k02508. 122
Figure 5.5 Alleles with temperature-dependent survival. 123
Figure 5.6 Genomic Southern blot of wha68-2 mutant flies 124
Figure 5.7 lac Z expression pattern of $1(2) \mathrm{k} 02508$ 125
Figute 5.8 Antibody staining of β-galactocidase in the Malpighian tubules. 127
Figure 5.9 Phenotype of 68S-6. 129
Figure 5.10 Northern blot analysis of the mutant flies of vha68-2. 130
Figure 6.1 ExoIfI dclation of the p 26 CD insert. 135
Figure 6.2 Sequence of a wha26 cDNA (p26CD) and deduced amino acid sequence of the Drosophila E-subunit. 138
Figure 6.3 Agarose gel and Southern blot of ph26A phage 140
Figure 6.4 Genomic organisation of the wha 26 locus. 141
Figure 6.5 ExolII deletion of the p 26 kg inscrt. 142
Figure 6.6 (1). Plasmid minipreps from delction experiment. 143
(B) Plasmid minipreps from the $S m a \mathrm{I} / \mathrm{Kp} n \mathrm{l}$ deletion experiment 143
Figure 6.7 Sequence of what 26 genomic DNA and deduced amino acid sequence of the Drosophila E-subunit. 116
Figure 6.8 PILEUP and Phylogeneric tree of V-ATPase E subunit. 150
Figure 6.9 Genomic Southern blot of the wha 26 locus. 151
Figure 6.10 Chromosomal localisation of vhaz6. 152
Figure 6.11 Northern blor analysis of wha26 gene expression 153
Figure 6.12 Southern blotting of gemonic DNA identified a line carrying a $\mathrm{P}[$ lac $W]$ 155
Figure 6.13 Plasmid rescue of DNA flanking the $\mathrm{P}[$ lacW] element in $1(3) \mathrm{j} 3 \mathrm{E} 7$ 156
Figure 6.14 Position of the $\mathrm{P}[$ lac $W]$ insertion in line $1(3)$ j3E7 157
Figure 7.1 Sequence of a vhal4 cDNA, and deduced amino acid sequence of the Drosophila F-subunit 162
Figure 7.2 Alignment and Phylogenetic tree of known $14-\mathrm{kDa}$ F-subunit aa sequences. 165
Figure 7.3 Southern blot of D. melanogaster genomic DNA 168
Figure 7.4 Northern blot analysis of vhal 14 gene expression 169
Figure 8.1 A strategy of pooling plasmids for One-step screening 172Figure 8.2 Large scale correlation of Drosophila cDNA clone to P-elementinsertional mutants.174
Figure 8.3 Schematic representation of PCR amplification of cDNAcorrcsponding to the escued plasmids.. 176
List of Tables Pages
Table 3.1 Summary of screening results 74
Table 5.1 New alleles and revertants after excision of the $\mathrm{P}[\mathrm{lac} W]$ in line l(2)k02508 121
Table 8.1 Characterisation of D. melanogaster genes encoding V-A'I Pase subunits. 177
Table 8.2 P-element mutations of genes encoding Drosophila V-ATPase 178

Acknowledgements

I wish to take this opportunity to thank Dr. Kim Kaiser and Dr. Julian A. T. Dow for the excellent supervision, the critical reading and correcting this thesis. Their patience and generosity throughout all the years is greatly appreciated.

I would like to thank the past and present members of KK group, JATD group and media ladies. Special thanks would go to Ann Gillan and Xueqiong (Sally) Zhang for help with plasmid rescue; Zhongsheng (Susan) Wang for in situ hybridisation of polytene chromosomc; Pcggy Ennis for mutanc screening; and James Clark for reading the manuscript. Great thanks are also due to Dr. Kevin O'Dell, Dr. Minyao Yang, Dr. Yong Yu, Dr. Douglas Amstrong, Andy Mousey, Xin (Cindy) An, Audrey Davidson, Dr. Philippe Rosay, Dr. Shireen Divies, David Kelly, Ali Sozen and Shirley Graham for the many valuable discussions and technical tips.

I thank Professor Helmut Wieczorek (in Germany) for kindly providing the Manduca cDNAs; Dr. Istvan Kiss and Dr. Peter Deck (in Huangary) for providing the thousands of P-clement fly lines.

Thanks also go to Professor R. Wayne Davies and Dr. Richard Wilson for being my Auditors, their suggestion "you should stop bench work as soon as possible" is highly appreciated.

Thanks all those people in the Division of Molecular Genetics, IBLS, University of Glasgow, who provide help and support during this work.

Summary

Over the last few years, thousands of lines carrying lethal P-element insertions have been produced by the Drosophila community, which must presumably have inactivared a large number of essential genes. This thesis describes a fast and efficient approach to correlating cloned genes with mutant fly lines carrying $\mathrm{P}[$ lac $W]$ insertions in the second chromosome (Förök et al., 1993). We have made use of the fact that P[lacW] contains a plasmid replicon to cstablish a collection of rescued plasmids containing genomic DNA flanking sites of transposon insertion. Plasmids representing a total of 1836 lines were individually rescued, and pooled in barches of 10 and 100 . Pools of 100 plasmids were screened by hybridisation with cDNAs corresponding to cloned second chromosome loci. Hybridising pools were then narrowed down to single plasmids by a process of subdivision and rehybridisation, and corresponding mutant lines were obtaincd. Initial screening with 40 cDNAs has detected positive hybridisation for more than 10 genes. Mutations for 7 genes have been confirmed, of which insertions in genes encoding the A and c subunits of Drosopbila V-ATPase are included.

V-ATPase is a proton pump made of multiple subunits. The genes and cDNAs for A, E , and F subunits of V-ATPase have been cloned from Drosophila melanogaster via homology with the corresponding Manduca sexta genes, wha68-1 and wha68-2, genes encoding two isoforms of V- Λ TPase A subunit, have also becn isolated and sequenced. Both isoforms are composed of a polypeptide of 614 amino acids with a predicted molecular mass of 68.4 kDa and 68.3 kDa respectively. The wha68-2 gene is punctuated by four introns. The chromosomal location of both genes is at 34Λ on the second chromosome. Northern analysis of total RNA reveals that both isoforms are expressed in a similar pattern. 'They are ubiquitously expressed in head, thorax and abdomen of the adult fly. Developmental Northern blots of embryo, larvae, pupae and adult total RNA show general expression, but at a much reduced level during metamorphosis. A fly line (25/8) carrying a single $\mathrm{P}[$ lac $W]$ insertion in vha68-2 was
isolated by screening pools of rescued plasmids. The transposon is inserted into the first intron, in front of the translation start codon of pha68-2. The enhancer detector reporter gene carried by the P-element (β-galactosidase) was gencrally activated, but particularly strongly in the gut and Malpighian tubes of both larvae and adults. The insertion largely reduces the transcript of the wha68-2 isoform which leads to a homozygous lethal phenotype at first instar larvae. The homozygous lethal phenotype can be reverted by 'jumping out' the insertion. Imprecise excision or internal deletion of the P-clement created a set of novel hypomorphic or null alleles, with phenotypes which range from the first instar larvae lethal, as in the original P-element insertion line, to sub-lethals of different phenotype.

A gene and a cDNA encoding the E subunit of V-ATPase have been characterised. The gene contains three smali introns. Its deduced translation product has 226 amino acids and a molecular weight of 26.1 kDa . wha 26 is present as a single copy at cytological position 83B1-4 on the third chromosome and gives rise to an mRNA species of 2.3 kb , with an expression patrern similar to that of vba68. A fly line carrying a single lethal $\mathrm{P}[$ lac $W]$ insertion within wha 26 gene has been identified.

The deduced translation produce of the cDNA (vha14) for the F subunit is a 124 amino acid polypeptide with a molecular mass of 14 kDa , vhat 14 is present as a single copy at cytological position 52B on the second chromosome, and gives rise to an mRNA species of 0.65 kb . Unlike vha 68 and vha26, the vhalf transcript shows relatively little variation during development and between adult head, thorax and abdomen, suggesting that the F subunit is a relatively ubiquitous component of the V-ATPase.

Chapter 1

Introduction

1.1 Drosophila melanogaster

The fruit fly Drosophilat melanogaster has a lot to offer as an experimental organism. It has a distinguished history as a subject of classical genetic analysis. Many of the major principles of generics, principles that we tend to take for granted, were established by work with D. melanogaster (Ashburner, 1989b). A large number of easily recognisable genetic markers, a generation time of only 10 days, simple culture methods and a large body of literature and technical information are readily available to the investigator. Additionally, establishing the chromosomal location of a newly-cloned gene is particularly straightford, as the salivary gland polytene chromosomes are large and easy to map. This means that a newly discovered gene can be reconciled rapidly with the sum of existing knowledge of the Drosophila genome (Dow, 1994; Dow et al., 1996). Transposable elements, and in particular the enhancer trap P-element, have played a pivotal role as mutagens, as molecular tags, and as germ-line transformation vectors (Rubin, 1988; Kaiser, 1995; Sentry and Kaiser, 1995). D. menalogaster is now widely used not only in classical and molecular genetics but also in research on more complex phenomena, such as those of developmental biology and neturobiology.

My PhD project will use Drosophila to address the issues of (i) systematic site-selected Pelement mutagenesis of second chromosome genes and (ii) the molecular genetic analysis of genes encoding V-ATPase subunits.

1.2 The P-element of Drosopbila

A large number of transposable elements are known to exist in Drosophila melanogaster, of which the P-element family is the most heavily exploited. P-element technology has revolutionised Drosophila molecular genetics, not only in terms of providing important insights into the mechanism of eukaryotic transposition, but also use as important tools for gene transfer, insertional mutagenesis, enhancer trapping and genc cloning (See Kaiser, 1990; Kaiser, 1993 and Kaiser et al., 1995 for recent reviews).

1.2.1 P-element Biology

P-clements are a family of transposable elements found in Drosophila melanogaster. They have been shown to be the causal agents of $\mathrm{P}-\mathrm{M}$ hybrid dysgenesis, a syndrome whose traits include high rates of sterility, mutation, and chromosomal rearrangements (Fngels, 1987; Fngels, 1989; Rio, 1990). P-element transposition is genetically regulated, occurring at very high frequency only in the progeny from a cross betwecn males of a ' P strain' and females of an ' M strain'. The distinguishing characteristics of P strains are that their eggs have "P cytotype", a condition that results in repression of P-element transposition, and that they carry autonomous 2.9 kb full-length P-elements which encode transposase. Transposition in a P-strain is repressed by a product of the fulllength P-element itself, thus the P-element is normally quiescent but becomes highly mobile in the progeny of females that lacks repressor (Black et al., 1987; Engles et al., 1990). M strains, by contrast, lack autonomous P-elements, and lay eggs that are permissive for P-element transposition (M cytotype). No dysgenic traits are observed in the progeny of the reciprocal M malc by P female cross or in the progeny from $\mathrm{P} \times \mathrm{P}$ or $\mathrm{M} \times \mathrm{M}$ crosses. Morcover, as transposition is restricted to cells of the germline, phenotypic results are not observed until further generations.

The first P-element to be cloned was a defective element, identified by virtuc of having distupted the white locus. The defective element was then used as a molecular probe to clone a complete element which was further confirmed for its transpositional activity when injected into embryos of a M strain - it transposed from a plasmid into the Drosaphila genome (Spradling et al., 1982). Molecular analysis indicated that the Pelements present in P -strains could be divided into two classes; a class of full-length 2.9 kb elements and a heterogeneous class of internally deleted P-elements (Figure 1.1), Pelement sequences required in cis for transposition are contained within 138 bp at the 5^{\prime} end and 150 bp at the 3^{\prime} end. These include 31 bp terminal inverted repeats. Full-length P-elements include four long open reading frames encoding an 87 kDa transposase, the activity of which is restricted to the germline due to differential splicing because the third intron is not removed in somatic cells. (Rio, 1991; Handler at al., 1993). An element with the third intron removed ($\Delta 2,3$) is able to transpose in somatic cells but lacks the capacity to establish a P- cytotype (Laski, et al., 1986). Internally deleted clements of various lengths can occur in both P- strain and M strains as weil. Though unable to produce active transposasc, such cicments can nonetheless be mobilised in the presence of full-length elements.

When P-elements transpose they excise from the donor site and leave behind a doublcstranded break, repair of which appears to require a template (Figure 1.2; Fingels $e t$ al., 1.990; reviewed by Sentry and Kaiser, 1992; Weaver, 1995). Excision of the P-clement can either be 'precise' or 'imprecise'. The phenomenon of precise and imprecise excision could be explained by a doublc-stranded break repair model (Engels et al, 1990; Gloor et al., 1991; Daniels and Chovnick, 1993). Sister chromatids or homologous chromosomes of the broken molecule are used as templates for repair. If the template contains the P element, double stranded repair will mostly produce a chromosome identical in appearance to the donor chromosome prior to transposition. In such a case, P-element sequences seem to have becn rerained at the donor site. In a few cases, however, repair can be interrupted, resulting in the generation of nonautonomous P-element deletion

Full length P element

Internally deleted \mathbf{P} element

Figure 1.1 Structure of P-elements. The full length 2.9 kb P -element has four long ORP's separated by introns. The P-element is boundcd by 31 bp inverted repeats (large arrowheads). Insertion of a P-element causes an 8 bp targer site duplication (Small arrowheads). Germline transcripts, spliced as shown, provide functional transposasc. Somatic transcripts, which retain the intron between exon 2 and 3 , encode a promaturely truncated and thus non-functional transposasc. Internally deleted P-elements do not produce functional transposase and thus non-autonomous, but they retain cis-acting determinants that allow their mobilisation in the presence of a transposase source. $\Delta 2,3$ elements, from which the third intron has been removed by in vitro manipulation and produce transposase in both germline and somatic tissues (Diagram kindly provided by Dr. Kim Kaiser).

Figure 1.2 Model for template-dependent gap repair following P-element excision. Excision of a P-element (open bars) induces a double-strand break that can be subject to widening by exonucleases. Frec 3^{\prime} ends invade the template duplex, which scrves as a substrate for DNA synthesis. In the left panel, the template is a second copy of the P induced allelc, most commonly provided by a sister chromatid. The result is restoration of a P-element at the locus. Less frequently, the template can be a wild-type allele present on a homologous chromosome (centre panel). This will give the impression of precise excision. Interruption of the repair process, in this case where the sister chromatid is the template, followed by pairing of partially extended 3^{\prime} ends, may give the impression of an 'imprecise excision' (right panel). This can take the form of internal deletion of the Pelement, or more extremely a deletion that extends into flanking DNA, usually when the template is a wild-type allele present on a homologous chromosome. (Diagram kindly provided by Dr. Kim Kaiser).
derivatives. A different result is obtained if the template does not contain the P-element (i.e. is a wild-type allele) at the site corresponding to the P-element donor site. In this case, double stranded break repair restores the donor site to its wild-type pre-insertion sequence; thus appearing as if the P-element had excised precisely from the donor site. Loss of sequences flanking a P-element, together with some or all of the element itself, would result from incomplete repair of a gap that had been widened by exonuclease activity. The involvement of double-strand gap repair was also suggested by the fact that reversion frequencies for hetcrozygous P-element insertion mutants are 100 times higher than those for homozygous mutants (Engels et al., 1990).

1.2.2 Germ-line transformation

Introduction of cloned and manipulated genes into the germline DNA is a valuable tool for analysing many problems in Drosophila molecular genctics. The P-element transposon was first engineered as a transformation vector and used for the generation of transgenic flies by Rubin and Spradling in 1982. A plasmid construct bearing a nonautonomous Pelement, into which the gene of interest had been inserted, was injected into embryos undergoing the transition between syncitial and cellular blastoderm (Figure 1.3). Pelement DNA injected into the pole region can become internalised during cellularisation, and can transpose to the genome. Transposition is not frequent on a per molecular basis, but nonetheless provides acceptable transformation efficiencies. Newly integrated elements in the germ cells will be inherited by the progeny of individuals that survive the injection.

An autonomous P -element provides its own transposase. P-elements engineered as vectors dispense with this ability, but retain sequences required in cis for transposition. In this respect they resemble the defective elements (Kaiser et al, 1995). It is therefore necessary to provide transposase from another source. 'Iranspose can be supplied in a number of ways: co-injection of an element that produces transposase but that cannot itself

Germline transformation

Figure 1.3 Germ-line transformation. A plasmid construct bearing a nonautonomous Pelement, into which the gene of interest has been inserted, is injected into young M cytotype embryos prior to the cellularisation of the germline. P-element DNA injected into the embryo can become internalised during cellularisation, and can transpose to the genome. Transformed individuals can then be recovered in the surviving progeny; usually the transposon of interest carries a phenotypic marker to allow identification of transformations. (Diagram kindly provided by Dr. Kim Kaiser).
transpose - e.g. a wings-clipped element (Karess at al, 1984); co-injection of purified transposase (Kaufman et al., 1991); injection of the a construct into embryos that express cransposase endogenously, such as the carrying the $\mathrm{P}\left[\mathrm{ry}^{+} \mathrm{A} 2,3\right]$ (99B) element which generates high levels of transposase activity without establishing a P cytotype. Generation of a line with a stable insertion of the construct requires selection against $\Delta 2,3$ in a subsequent generation. A dominant marker on the $\mathrm{P}[\mathrm{ry}+\Delta 2,3]$ (99B) chromosome makes it possible to select stable transformed progeny that have lost the transpose source by segregation. Transformed individuals can then be recovered in the surviving progeny, and usually the transposon of interest carries a phenotypic marker to allow identification of transformants. Markers that rescue a visible phenotypic defect, such as loss of eye colour (rosy, white, vermilion), loss of body pigmentation (yellow), or abnormal eye morphology (rough) are easily scored (Bingham et al., 1989; Ashburner, 1989b; Fridell et al., 1991; Patton et al, 1992; Lockett et al., 1992). Aiternatively, adh and neomycinresistance genes confer the ability to survive on selective media (Goldberg et al., 1983; Steller at al., 1985). The frequency with which transformants are recovered appears inversely related to cransposon length (Spradling, 1986). Nonetheless, transformation with cosmid sized pieces grearer than 40 kb can achieved (Haenlin et al., 1985).

There can be pronounced position effects on the expression of genes contained within a P-element transformation construct. It is advisable to obtain lines containing a number of independent insertions. These can be generated either as primary transformants, or via remobilisation of a construct by a cross that provides $\Delta 2,3$. P-element transposition is non-random with respect to insertion site. Morcover, sequences contained within a Pelement conscruct can have a pronounced effect on insection specificity (Kassis et al, 1992). Markers in the P-element can themselves be sensitive to position effects. Levels of marker expression may be a useful guide to whether a transgene will be expressed at a reasonable level (Kaiser et al., 1995).

Other transposable elements, such as bobo, minos, have been successfully transferred into germ-line of Drosophila (Blackman et al., 1989; Loukeris et al., 1995a). And a transposable element in Drosophila hydi has been transferred into medfly (Loukeris et al., 1995b).

Germ-line transformation experiments have had two major impact on Drosophild molecular genctics: firsty, P-element vectors can be used to transform cloned genes to rescue a mutant phenotype to prove that a DNA fragment carries the corresponding gene; secondly, genes manipulated in vitro can be reintroduced into the animal and its biological consequences assayed in vivo.

1.2.3 Remobilisation of P-elements

Three events (local jumping, precise and imprecise excision) would happen when the P element was supplied with a transposase:

Local jumping

Recent evidence indicates that mobilisation of P-elements in the female germine leads to a high frequency of insertion within a hundred kb or so of the donor site (Tower et al., 1993; Chang et al., 1993). P-element transposition is not always accompanied by loss of the donor element (Golic, 1994; Johnsonschlitz et al., 1993). It may thus not be easy to score a local jump based on the marker that the transposon contains. Site-sclected mutagenesis by PCR may be the most efficient approach (Kaiser et al., 1990; Littleton et al., 1993). In case of more than one P-element, segregation might separate the insertion of intercst from others (Kaiser et al., 1995).

b

Figure 1.4 Enhancer-trapping. (A) A first generation enhancer-trap element inserted within a Drosophila gene. The pattern and timing of expression of the reporter, lacZ, is dependent upon the specific genomic context in which it is integrated. whitet is a marker that confors red eye colour in a white genetic background, and thus allows flies containing new insertions to be recognised. The ampicillin resistance determinant ($a m p^{R}$) and E. coli origin of replication (Ori) facilitate plasmid rescue of flanking sequences. (B) A GAL4 enhancer trap element. The pattern and timing of GAL4 expression is simitarly context dependent, and can be used to drive expression of a secondary reporter gene linked to the GALA-responsive promoter, UAS $_{\mathrm{G}}$ (Diagram kindly provided by Dr, Kim Kaiser).

Precise and imprecise excision

Reversion of a P-induced mutation by precise loss of the transposon may be the only unambiguous means of demonstrating that a phenotypic change is indeed the consequence of a lesion in a tagged or targeted gene (Kaiser et ad., 1995). Such losses can be selected following remobilisation of the P-element, preferably from a background in which it is the only P-element remaining. Remobilisation can also result in imprecise excision, leading to the generation of a range of new alleles of varying severity (Vocker et al., 1984; Tsubota et al., 1986; O'Hare ct al., 1987; Salz et al., 1987). Once a P-element lies close to racher than within genes of the interest, imprecise excision may be a necessary step in further analysis (Kaiser, 1990).

1.2.4 Enhancer-trap element

An enhancer-trap element is a modified P-element, close to one end of which lies a 'reporter' gene (Figure 1.4). Due to the lack of a rranscriptional enhancer, the reporter has a negligible level of intrinsic expression. In order for it to be expressed at a significant level, the transposon must insert close to an endogenous Drosophila enhancer. Reporter activity in a line with only one insertion thus reflects the temporal and spatial expression characteristics of a flanking gene (O'Kane and Gehring, 1987; Dorn et al., 1993).

First generation enhancer-trap elements contain the reporter gene lac Z, encoding the enzyme β-galactosidase. The presence of β-galactosidase activity in a tissue can be detected simply by its conversion of the chromogenic substrate X -gal. In addition to the reporter gene, enhancer trap elements carrying a marker gene such as white enables flies with insertions to be recognised, and most include sequences that allow plasmid rescue of the flanking DNA.
$\mathrm{P}[$ lac $W]$ is a widely used enhancer-trap element of the first generation. It is 10.6 kb long which carries the lačZ, beta-lactamase and mini white genes (Bier et al., 1989). The LacZ gene permits detection of gene expression pattern by staining with X -gal. The mini-white gene permits rapid scoring of flies heterozygous or homozygous for a $\mathrm{P}[$ lac W$]$ insertion. $\mathrm{P}[$ lac $W]$ contains a bacterial origin of replication and the beta-lactamase gene coding for ampicillin resistance at the 3^{\prime} end - this feature permits easy cloning of DNA flanking the insertion site (Cooley et al, 1988; Hamilton et al, 1991; Guo et al, 1996c).

One potential disadvantage of the first generation enhancer trap elements is that they express β-galactosidase fused to the N -terminal nuclear localisation signal of the P element transposase (Bier et al., 1989). Nuclear staining has its uscs but precludes visualisation of cell architecturc, a particular problem in the study of cells with long processes, such as ncurons (Kaiser et al., 1995; Yang et al., 1995).
A. second generation enhancer-trap element P[GAL4] has now been developed (Fisher et al., 1988). Instead of β-galactosidase the reporter of P[GAL4] is a yeast transcription factor that is functional in Drosophila, and that can be used to direct expression of other transgenes placed under the control of a GAL4-dependent promoter ($\mathrm{UAS}_{\mathrm{G}}$). A cross between a fly with a P[GAL4] insertion and a fly containing UASG-lacZ, for cxample, causes β-galactosidase to be expressed in a pattern that reflects GAL4 activity. Unlike the nuclear localisation signal in the first generation enhancer trap, GAL4 can nicely detect the signals in whole cells, including the long processes in neurons (Yang et al., 1996). A. another particularly attractive feature of this system is that any UASG-transgene construct can be used in conjunction with any P[GAL4] line. (Sentry et al., 1993; Sentry et al., 1994a; Sentry et al., 1994b; Sweeney et al., 1995).

Figure 1.5 P-element mutagenesis. P strain males, carrying autonomous and nonautonomous P-elements, are mated with M strain females. The fertilised eggs are of M cytotype, allowing P-element transposition to occur in the developing germlinc. As a result, each germline coll contains a new configuration of P-elements. Phenotypic consequences are observed in subsequent generations. (Diagram kindly provided by Dr. Kim Kaiser).

Birm-2

Figure 1.6 A controlled P-element mutagenesis strategy. Birm-2, a strain with 17 internally deleted P-elements on each of its second chromosomes, mated with a strain containing the $\Delta 2,3$ element. The P-elements are mobilised by the $\Delta 2,3$ transposase in germline cells of F_{1} males. Each of their sperm has a different spectrum of new insertions. Selection against the transposase source in the F_{2} generation ensures that new insertions remain stable (Diagram kindly provided by Dr. Kim Kaiscr).

1.2.5 P-element mutagenesis

P-elements are particularly useful as mutagens because of their high transposition frequency and the availability of strains without P-elements. The latter property allows backerossing to eliminate all P-elements from a line other than the one in the gene of interest. A typical protocol would be as follows: P strain males and M strain females are mated, leading to the induction of P-element transpositions in the germline of their progeny. These progeny are bred and their offspring are screened or sclected for mutations in the gene of interest (Kidwell, 1987; Figure 1.5).

The most efficient general mutagenesis strategy (Figure 1.6) involves crossing Birmingham 2, a strain with 17 internally deleted Pelements on each of its second chromosome (Engels et al., 1987), with a strain in which $\Delta 2,3$ has become irreversibly inserted near to the dominant eye phenotype locus Dr (Robertson et all, 1988); an immobile source of transposase linked to a dominant marker simplifies selection for loss of transposase in subsequent generations. Unlike crosses involving wild-type strains, the direction of the above cross is irrelevant. Eggs laid by $\Delta 2,3$ females have M cytotype. One disadvantage of using $\Delta 2,3$ is transposase activity in the soma. This reduces the viability of dysgenic individuals. The problem can be minimised by performing the cross at $16^{\circ} \mathrm{C}$.

The generation of strains containing only a single marked P-element has many advantages as a method of mutagencsis (Zhang and Spradling, 1994). Phenotypic and molecular analyses of new mutations are greatly simplified. The mutant gene can be mapped, cloned and reverted. New alleles could be generated by imprecise excision of the P-element. A drawback with marked elements is their size; they are invariably much larger than unmarked elements, and so transpose at lower frequencies. In addition, the one or fcw copics of the marked P-element per genome make the target-mutagenesis less efficient. Nonetheless, large collections of single P-element insertions, many plasmidrescuable, are being assembled through the collective efforts of the international

Drosaphila community (e.g. Cooley et al., 1988; Török et al., 1993; P. Deak, personal communication). It is thus increasingly likely that a colleague or stock centre will hold a line with a marked P-element in the region of one's target gene. Site-selected mutagencsis, either by PCR or by plasmid rescue, provides a means of screening such collections en masse. In situ hybridisacion to polytene chromosome can be used to confirm that a P-element indeed lies in the region to which a mutant maps. Sequencing the rescued plasmids would reveal the exact position of the P-element insertion.

1.2.6 Site-selected mutagenesis

Although traditional genctics relies on the cloning and characterisation of a pertinent gene after a recognition of a mutant phenotype, a large number of novel genes have been cloned by virtue of their DNA sequence homology to a already known genes or on the basis of an interesting expression pattern. Only rarely, however, has such a gene been found to correspond to a pre-existing Drosophila mutation. It is cherefore desirable for a reverse genetics approach to find a corresponding mutant from the cloned gene. One such approach is site-selected mutagenesis, a means of identifying Drosophila lines with P. element cransposons inserted within or near to target gencs by either PCR (Ballinger et ad 1989; Kaiscr et al, 1990) or via plasmid rescuc (Hamilton et al., 1991; Hamilton, 1994; Guo et al., 1996c)

PCR-based screen for P-element insertion events

The PCR method amplifies a specific region of the target gene lying between a gene specific primer and a newly inserted transposon (defined by a transposon-specific primer) (Figure 1.7). Insertions arc detected initially within a population of flics, and are then followed as specific amplification products while the population is subdivided. Detection at the molecular rather than the phenotypic level facilitates fast and efficient screening and can be performed on heterozygous individuals (Ballinger et al 1989; Kaiser et al, 1990; Banga et al., 1992). A similar approach has been adapted for screcning natural

Figure 1.7 Site-selected mutagenesis. Juxtaposition of a P-element and a target gene uniquely provides a template for amplification between a gene-specific primer (GSP) and a transposon-specific primer based on the P-element 31 bp inverted repeat. Open boxes represent cxons of a hypothetical Drosophila gene (Diagram kindly provided by Dr. Kim Kaiser).

Plasmid rescue of integrated transposon

Isolate DNA and digest with restriction enzyme
Enchancer trap fiy line

Ligate DNA under conditions favouring circularisation

Figure 1.8 Plasmid rescue. DNA is isolated from a line with a single engineered P element (here an enhanccr-trap clement) containing an E. coli origin of replication (ori) and a drug-resistance determinant ($a m p^{\mathrm{R}}$). The DNA is cleaved with an approptiate restriction enzyme, ligated under conditions that favour intra-molecular ligation, and used to transform E. coli. Plasmids recovered from ampicillin-resistant colonies contain Drosopbila DNA from adjacent to the site of P-element insertion (Diagram kindly provided by Dr. Kim Kaiser).
populations of D. melanogaster to obtain P -elernemt insertions in or near the target gene (Clark et al., 1994).

Sitc- selected mutagenesis via Plasmid rescue

P -elements engineered to contain a plasmid origin of replication and a drug-resistance determinant allow one-step recovery of Drosopbila genomic DNA flanking the site of insertion (Figure 1.8). This procedure is known as plasmid rescue (Pirrotta et al., 1986; Steller et al., 1986). Genomic DNA from the flies with the engineered P-element such as
$\mathrm{P}[$ lac $W]$ and $\mathrm{P}[G A L 4]$, is digested with an appropriate enzyme that cuts the polylinker in the P-element and somewhere in the flanking DNA. This enzyme is subsequently inactivated and the fragments are cloned as plasmids allowing them to be transformed into E. coli. Only those E. coli containing the plasmids can survive in the medium with antibiotics. Such rescued plasmids can also be used for a form of site-selected mutagenesis (Hamilton at al., 1991; Guo et all, 1996c). A pool of plasmids rescued from a population of flies with different insertion sites contains sequences representative of every flanking region. Hybridisation between the pool and a specific cDNA/genomic DNA clone is diagnostic of an insertion in or near che gene of interest.
1.3 V-ATPase

1.3.1 Proton pumps

Proton pumps (H^{+}-ATPases) function in biological energy conversion in every known living colls and they fall into three types. One belongs to the family of P-ATPases which is integral membrane proteins and operates with a phospho-enzyme intermediate (Nelson 1992a). $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPases and gastric $\mathrm{H}^{+}-$ATPascs are notable members of the P-ATPase family. The function of this proton pump is primarily in the plasma membrane of plant and fungal cells and in specialised mammalian cells such as partietal cells in the stomach.

The other families of F-and V-ATPases operatc without an appatent phospho-enzyme intermediate (Pedersen et al., 1987; Nelson, H. et al., 1989; Nelson et al., 1992a; Bowman et al., 1993). F- and V-ATPases are more universal proton pumps and at least one of them is present in every living cell (Nelson, 1992a).

F-ATPase and V-ATPase share a common structure and mechanism of action and have a common evolutionary ancestry. F-ATPases function in eubacteria, chloroplasts and mitochondria, and V-ATPase is present in archaebacteria and the vacuolar system of eukaryotic colls. Eukaryotic F-ATPases are confined to the serniautonomous organelles, chloroplasts and mitochondria that contain their own genes encoding some of the FATPase subunits. F-ATPase is also vital for every known eubacterium acting in photosynthetic or respiratory ATP formation and/or in generating proton-motive-force (pmf) by the reaction of ATP dependent proton pumping. In contrast, V-ATPases are composed only of nuclear gene products and are present in organelles of the vacuolar system and in che plasma membrane of specialised cells (Nelson, 1992a).

One of the most notable distinctions between F- and V-ATPases is in their function in ATP formation. While the primary function of 1-ATPases in cukaryotic cells is to form AT'P at the expense of pmf generated by electron transpott chains, the main function of V-ATPases is to generate a pmf ar the expense of ATP and to cause limited acidification of the internal space of several organelles of the vacuolar system. The pmf generated by V-ATPases in organelles is utilised as a driving force for numerous secondary uptake processes. Several metabolic processes that take place in the internal membrane network of eukaryotic cells may be dependent or influenced by the function of V-ATPase (Nelson 1994).

1.3.2 Structure of V-ATPase

V-ATPases are multi-subunit protein complexes built from distinct catalytic and membrane sectors (Figure 1.9). The catalytic sector (V_{1}) contains six different polypeptide donated as A, B, C, D, E and F (Neison, 1992a; Nelson, 1994; Nelson et al, 1994; Gräf et al., 1994a; Graham et cll, 1994b; Netson et al., 1995; Guo et al., 1996b). The stoichiometry of these subunits excluding F was determined to be 3:3:1:1:1, respectively (Arai et al., 1988; Supek et al., 1994). The function of the catalytic sector is to provide the ATP binding site and to catalyse the ATP formation and/or ATPase activitics of the enzymes. The main function of the membrane sectors is to conduct protons across the mombranc. A proteolipid (subunit c) is confirmed to present in the membranc scctor of all the V-ATPase. A stoichiomerry of six proteolipids per enzyme has been reported for V-ATPases from clathrin-coated vesicles and plant vacuoles (Arai et al., 1988; Jones et al., 1995).

It was only since 1988 that cDNAs and genes encoding subunits of V-ATPases were cloned and sequenced (Bowman et al, 1988; Zimniak at al., 1988; Hirsch et al, 1988; Mandel et al., 1988). The sequences revealed valuable information on the structure, function and evolution of the various subunits as well as the evolution of F - and V ATPascs (Nclson, N. et al., 1989; Nelson 1994). It became apparent that subunits Λ and B of V-ATPases and subunit β and α of F-ATPases evolved from a common ancestral gene.

The protcolipids of F - and V -ATPases alsn evolved from a common ancestral gene. The proteolipid has been found to be the principal protein component of gap junctions, at least in invertebrates. (Finbow et al., 1992; Finbow and Pitts, 1993; Finbow et al., 1994a), thus subunit c of V-ATPase was also called ductin. Gap junctions are aggregates of paired connexon channels that allow the intercellular movement of cytoplasmic solutes up to Mr. 1000 within tissues of metazoan animals (Finbow et al., 1994b).

Figure 1.9 Schematic subunit structure of V-ATPase. The catalytic vector (V0) is composed of A, B, C, D, E, F, G subunits, the membrane sector (V1) is composed of subunit a, c, Ac 115, Ac 48 and Ac 39. Genes encoding subunit A, B, C, D, E, Ac115, Ac 48, Ac39 and the proteolipid (subunit c) has been cloned from chromaffin granules. Genes encoding subunit A, B, C, D, E, F, G and chas been cloned from M. sexta. More V-ATPase subunits are likelyto exist. (This diagram is modified from Nelson's (1994) and Dow's).

An antalogy to the membrane sector of F-ATPases suggests that additional subunits should function in the membrane sector of V-ATPases. While the membrane sector of the archaebacterial V-ATPase may be composed only of the protcolipid (Denda et al., 1990) the membrane sector of mammalian V-ATPase may composed of at least five different subunits (Zhang et al., 1992; Nelson, 1992a). The genes or cDNAs encoding four of the subunits (M115, M45, M39 and proteolipid) have been cloned and sequenced from bovine, yeast and several other sources (Wang et al., 1990; Perin et al., 1991; Bauerle et al., 1993). More subunits may function in proton conduction through the membrane and/or in the assembly of the V-ATPase membrane sector.

A novel 13 kDa subunir of V-ATPase has been cloned from yeast (Vma10p) Manduca (subunit G), and bovine (M16) (I epier et al., 1996; Supekova et al., 1996). The deduced protcin is significantly homologous to the b subunit of bacterial F-ATPases, but contains no apparent transmembrane segment in its N terminus. While Vmalop in yeast behaved like a V-0 subunit, the Manduca sexta 13 kDa subunit behaved like a V1 subunit, since it could be stripped from the membrane by treatment with the chaotropic salt KI and by cold inactivation, thus this subunit was considered to be a new member of the catalytic sector (V_{1}) and was designated as subunit G (Lepier et al., 1996)

Gene disruption experiments in yeast that led to a complete loss of V-ATPase activity gave no indications for multiple isoforms in Saccharomyces cerevisiae (c.g. Nuomi et al., 1991; Foury, 1990). Also, in other fungi only one gene per subunit has been identified (Gogarten et al., 1992b). However, In the case of human, animal and higher plants, different genes encoding the same subunit type have been found. Two isoforms have been reported for A subunit from hunan, chicken and plants (van Hille et al, 1993b; Hernando et al., 1995; Gogarten et al., 1992b); B subunit in human and bovine (Bernasconi et al., 1990; Puopolo et al., 1992; Nelson et al. 1992; Berkelman et al., 1994); E subunit in Mammal (Hemken et al., 1991), c subunit in yeast and maize (Umemoto et al., 1991; Vieveck et al., 1996) and $100-\mathrm{kDa}$ subunit in bovine (Peng et al.,
1994). The presence of different isoforms might allow differential targeting and regulation of cell-, organelle- or plasma membrane- specific V-ATPases.

1.3.3 Plasma membrane V-ATPase

V-ATPases usually reside in the membranes of acidic organelles. However, they are also present in the plasma membrane of several cell type. Although having a similar structure and subunit constitutes as that of endomembranc V-ATPase, the plasmid membrane VATPases in arthropod and vertebrate cells share several features that are not generally observed in the V-ATPases in intracellular membranes (Rowman et al., 1993; Gluck, 1992). Plasmid membrane V-A'llases are present at high densities, far greater than the densities on intracellular membranes. However, the amplification of plasma membrane V-A'TPase is limited to specific cell types. In insects, high densities of V-ATPase on the plasma membrane are observed in the midgut goblet cell and the enveloping cells of sensilla (Klein et al., 1991a, 1991b). Similarly, high densities of plasma membrane VATPase are found in the mitochodria-rich cell of toad bladder (Brown et al., 1987) and frog skin (Harvey, 1992), in the intercalated cells of the mammalian kidney collecting tubule (Brown et al., 1988; Brown, 1992; Gluck et al., 1992a; Gluck et al., 1992b; Gluck et al., 1994), in insect Malpighian tubules (Dow, 1994; Garoyoa et al., 1995) and in insect midgut (Wieczorek et al., 1989). In bone only the osteoclast cells have the immunocytochemically detectable plasma membrane V-ATPase (Baron, 1994).

1.3.4 Functions of V-ATPase

V-All'Pase is a proton pump required for acidification of many types of eukaryotic vacuole. These include lysosomes, plant and fungal vacuoles, synaptic vesicles, coated vesicles and Golgi (Nelson, 1992a). The participation of V-ATPases in numerous aspects of endocytosis, secretion and sorting has been amply recognised (Forgac, 1989; Mellman et al., 1986; Lukacs et al., 1996). In fungi, plants and most animal cells, V-ATPases
energise selected intracellular membrane compartments of the vactuolar system, acidifying the interior of these compartments and providing an electrochemical driving force for the cransport of solutes (reviewed by Nelson, 1992a; Nelson, 1994).

V-ATPase functions not only in the vacuolar system but also in the plasma membrane of specialised cells. The roles of V-ATPase in kidney function and bonc reabsorption is well understood. The kidney plays a vital role not only in clcaning the body of waste products but also in the acid-base balance of mammals. Hydrogen ion excretion involves several processes including bicarbonate reabsorption, carbonic anhydrase activity and regulated pumping of protons across the plasma membrane by V-ATPase. In epithelial cells of the proximal urinary tubule, V-ATPase is present in the apical membrane and functions in proton secretion. In the collecting duct V-ATPase may be found either in apical or basolatcral membranes of specialised intercalated cells. These cells shuttle V-ATPase berween intracellular vesicles and the plasma membrane in response to changes in the acid-base balance of the animal. It was shown that the distribution of V-ATPase, in apical or basolateral membranes of intercalated cells, changes during adaptation to acidosis or alkalosis. The cells increase the number of V-ATPase enzymes in their apical membranc during acidosis and decrease their number during alkalosis. Therefore, V-ATPase plays a major role in maintaining pH homeostasis in mammals and other animals (Gluck, 1992).

The involvement of V-ATPase in bone reabsorption has been well reviewed by Baron et al. (1994). Bone reabsorption is necessary for bone growth, remodelling and repair. Osteoclasts are multinucleated and highly motile cells that migrate between the bone and bone marrow and function in bone reabsorption. They attach to the mineralised bone matrix forming a close space to which hydrolytic enzymes are secreted. The optimal activity of these enzymes require low pH which is provided by V -A'Pase located in the part of the plasma membrane in contact with the bone. And protons are required for the release of each calcium ion from the mineral. The osteoclast V-ATPase provides all protons necessary for calcium reabsorption. The pharmacological value of studying the

Figure 1.10 Generalised model for insect epithelia. An apical plasma-membrane VATPase pumps proton out of the cell. These are exchanged for alkali metal cations $\left(\mathrm{Na}^{+}\right.$ or K^{+}) to produce a net ATP-dependent flux. Entry through the basal plasma membrane is not defined in the basic model, but is thought to be via channels, cotransports or ATPases in various insect tissues (Diagram kindly provided by Dr. Julian A. T. Dow).
ostcoclast V-ATPase is apparent because a specific slow down in its activity may prevent the onset of osteoporosis.

The plasma membrane V-ATPase in vertebrate cells functions primarily for proton transport. In contrast, The plasma membrane V-ATPases of insects generate a membrane potential, which is used to drives an electrogenic $\mathrm{K}^{+} / \mathrm{FI}^{+}$antiporter operating in parallel in the same membrane (Wieczorek, 1991; Wieczorek, 1992; Klein, 1992; Wieczorek and Harvey, 1995), This "Wieczorek model" for the K^{+}pump in insect midgut is now generally accepted for all insect epithelia which appear to have an apical, electrogenic pump for sodium or potassium. Essentially, it is that an apical plasma mombrane V ATPase energises an exchanger more or less similar to the vertebrate $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchanger, and that this coupling is normally so tight that on a macroscopic scale, the ion pumped appears to be the metal ion, rather than the proton (Figure 1.10). Unlike the vertebrate use of the pump in kidney epithelium and plasma membrane, the V-ATPase does not appear to be used directly to acidify the extracellular space; rather, it is used as a driving force, employed to move a different ion (Dow, 1994; Azuma et al., 1995). In M. sexta midgut this results in extreme alkalisation of the lumen of the midgut to $\mathrm{pH}>11$ (Dow, 1984; Dow, 1986; Dow, 1989; Dow, 1992). Similarly, V-A'P'Pases are the primary driving force generating a membrane potential which drive salt and water fluxes in the Malpighian tubules and the rectum (Moffett, 1992). The V-ATPase-generated membrane potential in the enveloping cells of the sensillum drives the signalling currents initiaced by activation of the sensory cells (Klein, 1992).

However, the 'Wieczorek' model has recently been challenged by an alternative explanation, based on the insensitivity of electrical measurements of the insect trichogen sensilla to amiloride or hatmaline (Küppers and Bunse, 1996). On this basis, they argue that no exchanger exists and that the apical V-ATPase is primarily a proton ATPasc, but with the additional ability to transport alkali metal cations. Given that the intracellular pH is 7 , and that intracellular K^{+}is around 100 mM , even if the pump were $10^{5}: 1$
selective in favour of H^{+}over K^{+}, under normal conditions the two ions would be transported at nearly equal rates (Dow et al., 1996). However, given that an exchanger has been demonstrated functionally in Manduca midgut (Azuma et al., 1995), this alternative model requires further supporting evidence.

In addition to the straightward endosomal acidification, an increasing number of cellular processes are being shown to be dependent on V-ATPase function (reviewed by Dowet al., 1996). Polycomb may be modulated by hemizygosity for wha55, a gene encoding a proton pump B subunit (Davies et al., 1996); V-ATPases have been implicated in the regulation of cytoplasmic pH (Dow et al., 1996); the protcolipid subunit of V-ATPase was implicated as the main structural protein in gap junctions (Finbow, 1992) and in neurosecretion of acetycholine (Birman et al., 1990); V-ATPases have also been found to colocalise with calcineutin, an important Ca^{2+}-sensitive phosphatase, suggesting an importanc role for V-ATPases in regulating intracellular calcium (Garrettengele et al., 1995; Tanida et al., 1995). Three transmembrane subunits of the V-ATPase (proteolipid, Ac39 and Acl16) were found to coexist with synaptobrevin and synaptophysin in rat synaptosome (Galli et al., 1996), and the 39 kDa subunit of the V-ATPase has been identified as a synaptic-vesicle binding protein (Siebert et al., 1994). These observations further suggest a role of V-ATPase in the neurotransmission. It is also possible that some human genctic discase may be associated with haploabnormality for a V-ATPase gene (Goldstein et al., 1991; Baud et al., 1994; Mears et al., 1995; Gottlieb et al., 1995; Koralnik, 1995; DeFranco et al., 1995).

1.3.5 Mutational analysis of V-ATPases

The yeast S. cerevisiae V-ATPase closely rescmbles the V-ATPascs from other fungi, plants and animals, both in its overall structure and in the sequences of the subunit genes that have been cloned (Anraku et al., 1992; Kane, 1992). Yeast has been used as a model system for mutational analysis of V-ATPasc. Mutation for the $100,69,60,42,27$, and

17 kDa subunits have been constructed (Kane, 1992; Liu ct al., 1996). Deletions in any of these subunit genes yield a well-defined set of phenotypes, which includes a complete loss of vacuolar acidification, absence of all ATPase activity in isolated vacuoles and failure to grow in media buffered to neutral pH (Nelson and Nelson, 1990). Mutations in the A'TPase subunits also result in precursor accumulation and missorting of both soluble and membrane vacuolar proteins (Yaver et al., 1993; Ho et al., 1993).

Gene replacemont in yeast has been a powerful method to generate V-ATPase null mutants, but such approaches are not yet feasible in higher eukaryotes (Gogarten et al., 1992a), and yeast V-ATPases mainly play endomembrane role (Dow, 1994). As an alternative approach, Gogarten et al (1992a) used antisense mRNA to inhibit genc expression of V-ATPase A subunit in higher plants. Carrot root cells were transformed with the coding or 5 ' noncoding regions of the carrot V-ATPase A subunit cDNA cloned in the antisense orientation. Regenerated plants containing the antisense constructs exhibited altered leaf morphologies and reduced cell expansion. It was inferred that the antisense constructs specifically blocked expression of a conoplast-specific isoform of the V-ATPase A subunit in carrot. The degree of antisense mRNA inhibition is variable in different tissues and rarely completely block the genc. Moreover, in some animals, antisense mRNA has not been so successful. As a solution to this problem, Drosophila may provide an ideal model organism for murational analysis of genes encoding different subunits of V-ATPases (Dow, 1994; Davies et al., 1996, Dow et al., 1996). A pilot study for gene inactivation shows that transposable P-elements can be casily inserted into the Drospphila ductin vha16 gene. Although without phenorypic consequences, these can serve as a starcing point for generation of null alleles (Finbow et al., 1994a). wha55, the gene encoding the B-subunit of Drosophila V-ATPasc has been cloned recently. Inactivation of the gene reveals a larval lethal phenotype (Davies et al., 1996).

1.4 The aim of this project

The aim of this project is to clone and characterise genes encoding A, E, F subunits in Drosopbila V-ATPase and subsequently inactivate these genes. The mutagenesis work began with a large scale plasmid rcscue of $\mathrm{P}[$ lac $W]$ lethal insertion lines (generated by the laboratories of Istvan Kiss and Pcter Deck in Hungary) and was followed by screening for the specific mutations. The target genes, apart from components of V-ATPase, will also include a range of neurotransmitter receptors, neuronal kinases, et al. Once a muration is isolated, a detailed molecular, physiological and behavioural study will subsequently follow to address the functions of the genes.

Chapter 2

Materials and Methods

2.1 Drosophila

The main Drosophila stocks used in this work are described below:

Strain/Genotype	Reference
Oregon R	Lindsley and Zimm, 1992
Canton S	Lindsley and Zimm, 1992
w; Sb P[ry $\Delta \Delta 2,3) / \mathrm{TM} 6$	Robertson ct al., 1988

Mutations used are listed in Appendix 3.

Flies werc routindy raised on Glasgow medium. Culture temperature was $25^{\circ} \mathrm{C}$, unless otherwise stated. A grape juice agarose medium was used to obtain eggs. Third instar larvae, used for in situ hybridisation to polytene chromosomes, were reared on a rich medium.

Glasgow medium: 10 g agar, 15 g sucrose, 30 g glucose, 35 g dried yeast, 15 g maize meal, 10 g wheat germ, 30 g treacle, 10 g soya flour pcr litre of water.

Grape juice agarose medium: 19.8 g agarose, 52.2 g glucose, 26 g sucrose, 7 g dried yeast, 9% (v/v) red grape juice (Safeway) per litre of water.

Rich medium: 100 g glucose, 100 g dried yeast, 20 g agar per litre of water.

2.2 E. coli, plasmids and bacteriophages

The E. coli strains used in this work are all derivatives of E. coli K 12 . They are listed below with their genotypcs:

strain	Genotype	Reference
XL1-Blue	recA1, endA1, gryA96, thi-1, hsdR17, supE44.	Bullock (1987)
NM621	bsdR,mcrA, morB,supE44, recD1009.	Whitraker et al,
		1988
DH50	F-, deoR, phoA, sup E44, hsdR17, recA1, endA1,	Gibco BRL
	gyrA96, thi-1, relA1	

Plasmids and bacteriophages used in this study, other than those whose construction is described elsewhere, are listed below.

Plasmids/	Description	Source/ Reference
Bacteriophage		
$\mathrm{pBR} r p 49$	EcoRI-HindIII fragment of the	
	Drosophila ribosomal protein 49 gene in pBR322	Rosbash, 1984
$\mathrm{p}^{\text {Bluescript }}{ }^{(1)} \mathrm{IISK}^{+/-}$		Mead et al., 1985
$\mathrm{P}[$ lac W]	Whole P[lat $\left.{ }^{\text {W }}\right]$ sequence	Bier et al., 1989
EMBL3	λ Vector for genomic DNA	Frischauf et al., 1983

2.3 E. coli Growth medium

L-Broth: $\quad 10 \mathrm{~g}$ Bacto-tryptone (Difco), 5 g yeast extract (Difco), 10 g NaCl , per litee of water and adjust to pH 7.0 with NaOH .

L-Agar As L-broth with the addition of Bacto-agar (Difco) to 1.5%.

BBL Broth	10 g trypticase peptone (BBL), 5 g sodium citrate, made up to
	1 litre with distilled $\mathrm{H}_{2} \mathrm{O}$.
BBL agar:	As BBL broth with the addition of Bacto-agar to 1.5%.
BBL top agarose	As BBL broth with the addition of gel quality agarose to 0.7%.
2xY'I Broth:	10 g Bacto-tryptone (Difco), 10 g yeast extract (Difco), 5 g
	NaCl made up to 1 litre with distilled $\mathrm{H}_{2} \mathrm{O}$
φ-Broth	20 g Bacto-tryptone (Difco), 5 g yeast extract (Difco), 4.93 g
	$\mathrm{MgSO} 4,0.58 \mathrm{~g}, \mathrm{NaCl}, 0.37 \mathrm{~g} \mathrm{KCl}$, made up to 1 litre with distilled $\mathrm{H}_{2} \mathrm{O}$

All culcure media was sterilised by autoclaving at $120^{\circ} \mathrm{C}$ for 15 min at 15 psi . Where required, L-broth and BBL top agar were supplemented with 10 mM MgSO 4 for growth of bacteriophage lambda and its derivatives.

2.4 Antibiotics and indicators

Ampicillin, at a final concentration of $100 \mu \mathrm{~g} / \mathrm{ml}(100 \mathrm{mg} / \mathrm{ml}$ stock solution in sterile distilled water) was added to broth or agar to select transformed F. coli. When necessary, tetracycline, at a final concentration of $7.5 \mu \mathrm{~g} / \mathrm{ml}(15 \mathrm{mg} / \mathrm{ml}$ stock solution in absolute ethanol), was added to broth or agar. 5-bromo-4-chloro-3-indolyl- β-D-galactopyranoside (X-gal) and isopropyl- β-D-thiogalactopyranoside (IPTG) were added to molten agar $\left(50^{\circ} \mathrm{C}\right)$ in order to detect recombinant clones. X-gal was dissolved in dimethylformamide and IPTG in stcrile distilled water. Both were stored at $-20^{\circ} \mathrm{C}$ as $20 \mathrm{mg} / \mathrm{ml}$ solutions, and used at a final concentration of $20 \mu \mathrm{~g} / \mathrm{ml}$.

2.5 Competent cells and transformation

2.5.1 Preparation of competent cell

CaCl_{2} method

This method is modificd from that of Hanahan (1985). 20 ml of L-broth was inoculated with 0.4 ml of an overnight culture of XL1-Blue, and grown with aeration at $37^{\circ} \mathrm{C}$ until cells had entered the logarithmic growth phase ($\mathrm{OD}_{600}=0.4-0.6$. The cells were then pelleted at 4000 g for 5 min at $4^{\circ} \mathrm{C}$ in a bench-top centrifuge, the supernatant removed, and the resulting pellet resuspended in 10 ml icc-cold $100 \mathrm{mM} \mathrm{CaCl}_{2}$ solution. After a 20 min incubation on icc, the cells were repelleted as above, and then suspended in 2 ml ice-cold 100 mM CaCl . Competent cells were either used fresh, or frozen for later use after adding 25% of glycerol.

RbCl method

A single colony was picked off a freshly streaked LB agar plate and dispersed in 20 ml of φ-broth. The culture was incubated with agitation overnight. 4 ml of the overnight culture was added to 200 ml of $\varphi-$ Rroth and incubated at $37^{\circ} \mathrm{C}$ with agitation in a 2 litre flask until $\mathrm{OD}_{600}=0.5$. The cells were then pelleted at 1300 g for 10 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended by gently shaking in 50 ml pre-chilled RF1 buffer and incubated on ice for 30 min . Cells were pelleted again as above and then resuspended in 15 ml of chilled RF2 buffer. The competent colls, after being flash frozen in liquid nitrogen, were stored at $-70^{\circ} \mathrm{C}$ for later use.

RF1

Compound	Concentration	Amount/litre
RbCl	100 mM	12 g
$\mathrm{MnCl}_{2} .4 \mathrm{H} 2 \mathrm{O}$	50 mM	9.9 g
Potassium acetate	30 mM	$30 \mathrm{ml}(1 \mathrm{M}$ stock pH 7.5$)$
$\mathrm{CaCl}_{2}, 2 \mathrm{H}_{2} \mathrm{O}$	10 mM	1.5 g
Glycerol	$15 \%(\mathrm{~W} / \mathrm{V})$	150 g

Adjust the pH to 5.8 with 0.2 M acetic acid. Sterilise by filtration through a pre-rinsed 0.22μ membrane.

RF2

Compound	Concentration	Amount/litre
MOP's	10 mM	20 ml (0.5M stock pH 7.5)
RbCl	10 mM	1.2 g
$\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	75 mM	11 g
Glyccrol	15\% (W/V)	150 g

Adjust pH to final pH 6.8 with NaOH (if necessary) and sterilise by filtration through a pre-rinsed 0.22μ membrane.

Competent cells for eletroporation

4 ml of fresh overnight culture was added to 400 ml of L Broth at $37^{\circ} \mathrm{C}$ with vigorous shaking to an $\mathrm{OD}=0.5-0.7$. The cells were pelleted at $4^{\circ} \mathrm{C}$ in cold centrifuge bottles in a cold rotor at 2000 g for 10 min . The pellets were gently resuspended in 400 ml of icecold 10% glycerol and repelleted as above. The step was repeated twice with the pellet being resuspended in 200 ml of ice-cold 10% glycerol for the first repeat, and in 100 ml of ice-cold 10% glycerol for the second repeat. Finally the cells were resuspended in 1.5-2 ml of ice-cold 10% glycerol. This suspension of competent cells can be used fresh or can be frozen in aliquots in liquid nitrogen and stored at $-70^{\circ} \mathrm{C}$.

2.5.2 Transformation of E. coli

$50-100 \mathrm{ng}$ of DNA in a volume up to $10 \mu \mathrm{l}$ was added to $200 \mu \mathrm{l}$ of competent cells and left on ice for 15 min . The mixture was stbjected to a heat-shock at $42^{\circ} \mathrm{C}$ for 90 seconds and quickly chilled on ice for a few mininutes. The cells were either plated immediately, or after incubation in $800 \mu \mathrm{~L} \quad 2 \mathrm{XYT}$ with agitation at $37^{\circ} \mathrm{C}$ for $0.5-1 \mathrm{hr}$., onto L -agar plates containing the appropriate antibiotics and indicators. The plates were incubated overnight at $37^{\circ} \mathrm{C}$ to select for transformants.

Electroplation was performed according to the manual provided with that E. coli Puiser apparatus (BIO-RAD). $40 \mu \mathrm{l}$ of the cell suspension was mixed with 1 to $2 \mu \mathrm{l}$ of DNA in a cold, 1.5 ml polypropylene tube and left on ice for $0.5-1$ min. Immediarely after electroplation the mixture was plated on an ampicillin selective plate.

2.6 Nucleic Acid Isolation

2.6.1 Plasmid DNA

Large scale plasmid isolation was carried out by the alkaline-lysis method of Birnboim and Doly (1979) as described in Sambrook et al. (1989). Small scale plasmid preparations were made by the alkaline-lysis or boiling method (Sambrook et al., 1989), or with the Magic ${ }^{\text {TM }}$ DNA purification system (Promega) using the protocol recommended by the manufacturer.

2.6.2 Bacteriophage λ DNA

Isolation of λ DNA was performed by a modification of the protocol of D . Chisholm (1989).

Host Cell Preparation

1 ml of an overnight culture of NM621 was added into 100 ml of L-broth to grow until OD_{600} was ≈ 0.3 (about 3 hrs). The cells were pelleted and resuspended in 10 mM MgSO_{4} to a final $\mathrm{OD}_{600}=1$.

Growing Lamda Lysates

2×10^{6} phage was added to $500 \mu \mathrm{l}\left(4 \times 10^{8}\right)$ of plating cells. The culture was incubated at $37^{\circ} \mathrm{C}$ for 30 min to allow the phage to be absorbed to the bacteria. The mixture was then
added to 37 ml of $\mathrm{N} Z \mathrm{CYM}$ in a 250 ml flask and grown with vigorous shaking until lysis was apparent (12-15 hrs).

Isolation of Phage

'The above mixture was transferred to Falcon tubes containing $100 \mu \mathrm{l}$ chloroform with thorough shaking. $370 \mu \mathrm{l}$ of nuclease solution (50 mg DNAse $1,50 \mathrm{mg}$ RNAse A, in 10 ml of 50% glycerol, $30 \mathrm{mM} \mathrm{NaOAc}, \mathrm{pH} 6.8$; stored at $-20^{\circ} \mathrm{C}$) was added and the mixture was incubated at $37^{\circ} \mathrm{C}$ for 30 min .2 .1 g of NaCl was added and the mixture shaken gently until the salt was dissolved. Debris was pelleted (4000 rpm, $20 \mathrm{~min}, 4^{\circ} \mathrm{C}$) and 3.7 g PEG8000 was added to the supernatant. The sample was placed on ice for 1 hr after the PEG had dissolved at room temperature. The phage were pellered (10,000 rpm for 20 min at $4^{\circ} \mathrm{C}$) and resuspended in $500 \mu \mathrm{l}$ of phage buffer. This phage suspension was mixed with an equal volume of chloroform and the phases separated by centrifugation.

Isolation of Phage DNA

The aqueous layer was transferred into a new Eppendorf and $20 \mu 0.5 \mathrm{M}$ EDTA, 5 ul of $20 \% \mathrm{SDS}$, and $2.5 \mu \mathrm{l}$ proteinase $\mathrm{K}(10 \mathrm{mg} / \mathrm{ml})$ were added. After incubation at $65^{\circ} \mathrm{C}$ for 30 min , the supernant was extracted with phenol and then with chloroform. DNA was precipitated and dissolved in $300 \mu \mathrm{l}$ of TE. Yields for EMBL3 derivatives were generally 50-100 $\mu \mathrm{g}$.

2.6.3 Drosophila DNA

Rapid single fly DNA isolation for PCR

Single-fly DNA was prepared by the method modified from Gloor, G and Engels, W (1991). A single fly was homogenised in an 1.5 ml Eppendorf microcentrifuge tube with an micropestle in 50μ of homogenisation buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.3,1 \mathrm{mM}$ EDTA, $25 \mathrm{mM} \mathrm{NaCl}, 200 \mu \mathrm{~g} / \mathrm{ml}$ Proteinase K, from a $20 \mathrm{mg} / \mathrm{ml}$ stock solution in sterile
distilled water). And after incubation for 30 mins at $37^{\circ} \mathrm{C}$, the homogenate was then heated to $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 2 \mu \mathrm{l}$ of the homogenate was used directly in a $20 \mu \mathrm{l}$ volume of PCR reaction.

Genomic DNA isolation from adult flies

Adult genomic DNA was prepared by a modification of the method of Hamilton et al. (1991). 15-20 flies were homogeniscd in a 1.5 ml Eppendorf microcentrifuge tube with a motorised pestle in 400μ l of lysis buffer ($80 \mathrm{mM} \mathrm{NaCl}, 5 \%$ sucrose, 0.5% SDS, 50 mM EDTA, 100 mM Tris- HCl pH 8.5). Kollowing 30 min at $70^{\circ} \mathrm{C}, \mathrm{KOAc}$ was added to a final concentration of 0.6 M , and the tube was placed on ice for 30 min . Debris was pelleted by centrifugation at $4^{\circ} \mathrm{C}$ for 15 min , and genomic DNA present in the supernatant was carefully removed to a fresh tube. The following stage $(A, B$, or $C)$ is slightly variable according to the quality requirements for the DNA:
(A) The supernant was extracted once with an equal volume of phenol, once with an equal volume of phenol/ CHCl_{3} (1:1) and finally with an equal volume of CHCl_{3}. The DNA was then precipitated with 0.6 volume of isopropanol. The pellet was washed with 70% ethanol, dried and resuspended in $50 \mu \mathrm{l}$ of T E with RNase A at $20 \mu \mathrm{~g} / \mathrm{ml}$.
(B) 0.5 volume of PEG solution (13% PEG $8000,1.6 \mathrm{M} \mathrm{NaCl}$) was added to the supernant, mixed well and centrifuged at $4^{\circ} \mathrm{C}$ for 5 min . The pellet was washed with 70% ethanol, dried and resuspended in $100 \mu \mathrm{l}$ of TE.
(C) The supernant was pelleted with 0.6 volume of isopropanol and washed with 70% ethanol, dried and resuspended in $100 \mu \mathrm{l}$ of TE.

Genomic DNA purified by either method (A) or method (B) can be cleaved by restriction enzymes for genomic Southern blot analysis, Genomic DNA prepared using (C) suffices for plasmid rescue.

2.6.4 Drosophila RNA

Total RNA was isolated using TRIzolTM (Gibco BRL). 40 adult flies (or the same volume of larvae, pupae or embryos) were homogenised in a 1.5 ml Eppendorf with 1 ml of 'TRIzol ${ }^{\text {TM }}$ reagent and left at room temperature for 5 min .0 .2 ml of chloroform was added, mixed well and incubated at room temperature for $2-3 \mathrm{~min}$. The mixture was centrifuged at 12000 g at room temperature for 15 min . The aqucous phase (about 600 $\mu \mathrm{l}$) was carefully cemoved to a fresh 1.5 ml Eppendorf and $500 \mu \mathrm{l}$ of iso-propanol was added. After incubation at room temperature for 10 min, the sample was contrifuged at $4^{\circ} \mathrm{C}$ for 10 min and washed with $70 \% \mathrm{EtOH}$. The peller of total RNA was dissolved in $40 \mu \mathrm{l}$ of RFW (RNase free waccr). 40 adult flies can result in $200-300 \mu \mathrm{~g}$ of total RNA.

2.7 Quantification of nucleic acids

For quantitating the amount of DNA or RNA in a sample, reading were taken at wayclengths of 260 nm or 280 nm . An OD 260 corresponds to $50 \mu \mathrm{~g} / \mathrm{ml}$ for double stranded DNA, $40 \mu \mathrm{~g} / \mathrm{ml}$ for RNA and $33 \mathrm{ug} / \mathrm{ml}$ for oligonucleotides. When samples had limiting concentrations of DNA ($<250 \mathrm{ng} / \mathrm{ml}$), the quantity of DNA was estimated by spotting the sample and known standards onto the surface of a 1% (W/V) agarose gel containing EtBr ($0.5 \mu \mathrm{~g} / \mathrm{ml})$. The gel was photographed using short-wavelength UV illumination (254 nm) and the concentration of the DNA sample was estimated by comparing the intensity of fluorescence in the sample with those of known DNA concentration standards.

2.8 Labelling nucleic acids

2.8.1 ${ }^{32} \mathrm{P}$ labelling of DNA

Labelled gel-purified fragments or linearised plasmids werc prepared by random priming, a mothod slightly modified from Feinberg and Vogelstein (1984). Briefly, to 5-100 ng of denatured DNA (in 27μ of distilled water), 10 $\mu \mathrm{l}$ of 4 X random priming buffer, $3 \mu \mathrm{l}$ of $[\alpha-32 \mathrm{P}] \mathrm{dCTP}(30 \mu \mathrm{Ci} ; 3000 \mathrm{Ci} / \mathrm{mmole})$ and $1 \mu \mathrm{l}$ of Klenow DNA polymerase ($5 \mathrm{U} / \mu \mathrm{l}$) were added. The mixture was then incubated for 1 to 4 hr . Probes were purified by Sephadcx G50 (Pharmacia) chromatography, in columns prcpared from disposable 1 ml syringes (Sarnbrook et al., 1989).

The 4x Random priming buffer is "home -made" based on the original recipe. The random priming mix is made from three individual components (solutions 1 to 3). These are mixed together to make a batch of random priming buffer that is then aliquoted and stored at $-20^{\circ} \mathrm{C}$.

4x buffer	solution 1	solution 2	solution 3
ratio	$2:$	$5:$	3
for 0.5 ml	$100 \mu \mathrm{l}$	$250 \mu \mathrm{l}$	$150 \mu \mathrm{l}$

2.8.2 DIG-labelling of DNA

Fragments used to generate probes were excised from the appropriate vector and separated by agatose electrophoresis. 200 ng of this gel purified fragment (See Section 2.9.1) was then used to produce each DIG labelled probe. Briefly, the DNA was denatured at $100^{\circ} \mathrm{C}$ for 5 min and quickly chilled on ice before addition to the labelling mixture. Distilled water was added to make a volume of $20 \mu \mathrm{l}$ and the sample incubated at $37^{\circ} \mathrm{C}$ overnight. The reaction was stopped by the addition of $2 \mu \mathrm{l}$ of 0.2 M EDTA (pH 8.0) solution. The probe was precipitated by adding $2.5 \mu \mathrm{l}$ of 4 M LiCl and $75 \mu \mathrm{l}$ prechilled $\left(-20^{\circ} \mathrm{C}\right)$ ethanol followed by incubation at $-70^{\circ} \mathrm{C}$ for 30 min . The probe was then pelleted and resuspended in TE (pH 8.0).

2.8.3 Nick translation

Labelled plasmid DNA was prepared by nick translation (Sambrook et al., 1989). Briefly, $2.5 \mu \mathrm{l}$ of 10 X Nick Translation Buffer (0.5 M Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,0.1 \mathrm{M} \mathrm{MgSO}_{4}$, I M DTT, $500 \mu \mathrm{~g}$ bovine serum albumin; fraction V; Sigma), 20 nmole each of dATP, dGTP and dTTP (Pharmacia) and $50 \mu \mathrm{Ci} ; 3000 \mathrm{Ci} /$ mmole of $[\alpha-32 \mathrm{P}] \mathrm{dCTP}$ were added to approx $0.5 \mu \mathrm{~g}$ of plasmid DNA and the volume was made up to $21.5 \mu \mathrm{l}$ with distilled water. After chilling $\left(0^{\circ} \mathrm{C}\right)$ the mixture, $2.5 \mu \mathrm{l}$ of DNase I ($10 \mathrm{ng} / \mathrm{ml}$ in ice-cold 1X Nick Translation Buffer containing 50% glycerol) and 2.5 U of E. coli DNA polymerase I were added. The reaction was then incubated for 60 min at $16^{\circ} \mathrm{C}$ and stopped by the addition of 0.04 volume of 0.5 M EDTA, pH 8.0. For probes for chromosomal in situ hybridisation the reaction was performed in the presence of 1 mM biotin 16 dUTP (Boeringer Mannheim). A trace $[\alpha-32 \mathrm{P}] \mathrm{dCIP}(10 \mu \mathrm{Ci})$ was also added
progression of the synthesis reaction. The precipitated probe from 500 ng of CDNA plasmid was resuspended in 75 Hl of chromosomal in situ hybridisation solution (0.6 M $\mathrm{NaCl}, 50 \mathrm{mM} \mathrm{NaPO} 4$, pH $6.8,5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.02 \%$ ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone).

2.9 Electrophoresis

2.9.1 Agarose gel electrophoresis for DNA

This method was performed as described in Sambrook et al., 1989. DNA was electrophoresed in agarose in 1 X TBE (90 mM Tris, 90 mM boric acid, $\mathrm{pH} 8.3,2 \mathrm{mM}$ EDTA). The marker was a 1 kb ladder (Gibco BRL). DNA fragments were purified from 1\% (w/v) LMP (Low Melting Point agarose, Gibco BRL) agarose gel in 1X TAE (40 mM Tris-acetate, $\mathrm{pH} 7.6,1 \mathrm{mM}$ EDTA), using the Magic TM DNA purification system from Promega, or by using the silica suspension method (Boyle and Lew, 1995).

2.9.2 Denaturing agarose gel electrophoresis for RNA

Prior to electrophoresis, RNA samples (up to $5 \mu \mathrm{l}$) were denatured by the addition of 10 $\mu \mathrm{l}$ of formamide, $2 \mu \mathrm{l}$ of 5 X MOPS buffer (200 mM MOPS, $\mathrm{pH} 7.0,50 \mathrm{mM}$ sodium acetate, 5 mM EDTA, 11 M formaldehyde), $3.5 \mu \mathrm{l}$ of formaldehyde (12.3 M) , $1 \mu \mathrm{l}$ of $\mathrm{EtBr}_{\mathrm{t}}\left(1 \mathrm{mg} / \mathrm{ml}\right.$ stock), and heated to $70^{\circ} \mathrm{C}$ for 5 min . Prior to loading, $2.5 \mu \mathrm{l}$ of loading dye (30% (w/v) Ficoll 400, 1 mM EDTA, 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylenc cyanol) was added. The RNA was electrophoresed in 1% (w/v) agarose formaldehyde gel (Sambrook et al., 1989), using 1X MOPS, with constant circulation from anode to cathode chambers in order to maintain a constant pH .

2.9.3 Polyacrylamide gel for DNA sequencing

Products of DNA sequencing reactions were separated on denaturing polyacrylamide gels: 6% (w / v) acrylamide (Acrylamide: N , N^{\prime}--methylenebisacrylamide, $19: 1$), 7 M urea, in 1X TBE. Polymerisation was initiated by the addition of 1 ml of $10 \%(\mathrm{w} / \mathrm{v})$ ammonium persulfate and $50 \mu \mathrm{l}$ of TEMED ($\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$, -tetramethylenediamine) to 150 ml of 6% acrylamide/urea mixture. The gel was allowed to polymerise overnight before use. Samples were denatured for 5 min at $80^{\circ} \mathrm{C}$ and then loaded ono the gel. Gels were run for various lengths of time, depending on the size of DNA to be resolved, and then dried for $1-2$ hr at $80^{\circ} \mathrm{C}$ on Whatman 3 MM paper under vacuum. Autoradiography was carried out without intensifying screens at room temperature.

2.10 Nucleic acid hybridisation

2.10.1 Sourhern blocting and hybridisation

Agarose gels containing DNA were transferred to nylon membranes (Hybond-N), by capillary action and fixed to the membrane by UV treatment as instructed by the manufacrurer (Amersham UK). DNA/DNA hybridisation was carricd out at $65^{\circ} \mathrm{C}$ in hybridisation solution (5 X SSPE, 10X Denhart's solution, 1% SDS, 0.005% sodiumr pyrophosphate and $100 \mu \mathrm{~g} / \mathrm{ml}$ of denatured sonicated salmon sperm DNA) or in Church buffer (7% SDS, 1% BSA, 1 mM EDTA, $0.25 \mathrm{M} \mathrm{Na} \mathrm{HPO}_{4} \mathrm{pH} 7.2$). Filters were prehybridised at $65^{\circ} \mathrm{C}$ for at least 1 hr before addition of the denatured radioactive probe ($10^{5}-10^{6} \mathrm{cpm} / \mathrm{ml}$ of hybridisation solution) and hybridised for between 4 hr and overnight according to the type and amount of DNA on the filters. After hybridisation, the blot was then washed at $65^{\circ} \mathrm{C}$ in $2 \mathrm{xSSPE}, 0.1 \%$ SDS for $30 \mathrm{~min} ; 0.5 \times$ SSPE, 0.1% SDS for 30 min ; and finally in $0.1 \times$ SSPE, 0.1% SDS for 30 min . The washed filters
were covered in Saran WrapTM and then subjected to autoradiography between intensifying screens at $-70^{\circ} \mathrm{C}$.

2.10.2 Northern blotting and hybridisation

Agarose formaidehyde gels containing RNA were transferred to reinforced uitrocctlulose (Hybond C^{+}) by capillary action. RNA was fixed to the membranc by UV treatment as instructed by the manufacturer (Amersham UK). Pre-hybridisation and hybridisation was carried out at $42^{\circ} \mathrm{C}$ in RNA hybridisation buffer (50% formamide, 5X SSPE, 2X Denhardt's solution and $0.1 \% \mathrm{SDS}$) or at $55^{\circ} \mathrm{C}$ in Church buffer ($7 \% \mathrm{SDS}, 1 \% \mathrm{BSA}, 1$ mM EDTA, $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH} 7.2$). Filters were pre-hybridised for at least 3 hr before addition of the denatured radioactive probe $\left(10^{5}-10^{6} \mathrm{cpm} / \mathrm{ml}\right.$ hybridisation solution) and then hybridised for a minimum of 16 hr . The blots were washed at $42^{\circ} \mathrm{C}$ (or $55^{\circ} \mathrm{C}$ if the hybridisation was in Church buffer) in $2 \mathrm{xSSC}, 0.1 \%$ SDS for 30 mit ; $0.5 x$ SSC, 0.1% SDS for 30 min ; and finally in $0.1 \mathrm{xSC}, 0.1 \%$ SDS for 30 min . The washed filters were then covered in Saran Wrap TM and exposed to Fuji X-ray film for 1-3 days. Size was determined with respect to an RNA ladder (Gibco BRL).

2.11 Oligonucleotide synthesis

Oligonucleotides were synthesised by the solid state method on an Applied Biosystems Inc. PCR-MATE 391 DNA Synthesiser, employing phosphoramidite chemistry. After ammonium hydroxide cleavage and deprotection, oligonuclcotides were evaporated to dryness under vacuum and resuspended in water or TE. Typically primers were 18-31 nt in length having about $50 \% \mathrm{G}+\mathrm{C}$ composition (Appendix 2)

2.12 DNA sequencing

Sequencing of double-stranded DNA was carried out by the dideoxy chain-termination method recommended in the Sequenase Version 2.0 manual supplied by the manufacturers (United States Biochemical Corporation).

2.13 PCR

Gencrally PCR reactions were carried out on 100-200 ng of template DNA in $20 \mu \mathrm{l}$ of $50 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ Tris -HCl (pH 8.3 at room temperature), $1.5 \mathrm{mM} \mathrm{MgCl} 2,0.01 \%$ (w/v) Triton X-100 ${ }^{(B)}, 200 \mu \mathrm{~m}$ dATP, $200 \mu \mathrm{~m}$ dCTP, $200 \mu \mathrm{~m}$ dGTP, $200 \mu \mathrm{~m} \mathrm{dTTP}$, primers (each ar between $0.33-1 \mu \mathrm{M}$) and 1 unit of Taq polymerase (Promega). Samples were overlaid with an equal volume of minerat oil (Sigma) and PCRs were performed in a Hybaid Thermal Reactor (Hybaid) with an initial denaturation step of 3 min at $94^{\circ} \mathrm{C}$, followed by a three step routine that consisted of 1 min annealing at $55-60^{\circ} \mathrm{C}$, extension at $72^{\circ} \mathrm{C}$ for 3 min and denaturation at $94^{\circ} \mathrm{C}$ for 1 min . A total of 30 cycles were carried out, followed by a return to $55-60^{\circ} \mathrm{C}$ for 5 min , a further 20 min extension step at $72^{\circ} \mathrm{C}$, and a return to room remperature.

2.14 In situ hybridization to polytene chromosomes

Salivary gland chromosome squashes were prepared as described by Ashburncr (1989). Chromosomes were probed with a biotinylated, random-primed DNA probe, and hybridisation was detected using streptavidin-conjugated alkaline phosphatase.

2.15 Isolation of cDNA and genomic clone

A λ ZapII (Stratagene) and a NM1149 (Dorssers and Postmes, 1987) oligo-dT primed cDNA library representing the heads of eyes absent Drosophila (S.R.H. Russell, unpublished) was used to screen for cDNAs encoding Drosophila V-ATPase A, E, and F subunit. Probes were cither Dig-labelled or [$\alpha-32 \mathrm{p}]$ labelled, random-primed probes of the cDNAs encoding the A, E, and F subunit of Maduca V-ATPas. To isolate genomic. DNA clones a D. melanogaster genomic DNA library in the vector EMBL 3 was screencd by plaque hybridisation with an $[\alpha-32 \mathrm{P}]$ labelled random-primed cDNA probe. Positives were purified by second or third round of screening. Genomic DNA fragments were subcloned in PB Bluescript SK-.

2.16 Generation of unidirectional deletions for rapid DNA sequencing

Generation of unidirectional deletions was with the Erase-a-Base system (Promega), using the method described by the manufacturer. The Erase-a-Base system is designed for the rapid construction of plasmid subclones containing progressive unidirectional deletions of inserted DNA, thus allowing efficient sequencing of large DNA fragments. The system makes use of the ability of exonucleaseIII (ExoIII) to digest DNA from a 5^{\prime} protruding or blunt end, while leaving a 4 base 3^{\prime} protruding end or an $\alpha-$ phosphorothioate filled end intact. The uniform rate of digestion of the enzyme allows a series of deletions of increasing size to be made by removing timed aliquots from the reaction. See Section 6.3.2 and Promega's protocols for detailed procedures.

2.17 Plasmid rescuc and mutation screening

The laboratory of Istvan Kiss in Szeged (Hungary) has generated approximately 2300 fly lines with homozygous lethal mutant of a $\mathrm{P}[$ lac $W]$ clement on the second chtomosome, which were balanced over CyO (Török et al., 1993)

Genomic DNA was prcpared by a modification of the method of Hamilton et al., (1991) (see Scction 2.6.3) and resuspended in $50 \mu \mathrm{~L}$ of 1 X React 2 buffer (50 mM Tris$\mathrm{HCl}, \mathrm{pH} 8.0,10 \mathrm{mMM} \mathrm{MgCl}_{2}, 50 \mathrm{mM} \mathrm{NaCl} 2$) by heating at $70^{\circ} \mathrm{C}$ for 15 mitr. After cooling to room temperature, another $50 \mu \mathrm{l}$ of React 2 buffer was added, together with 10 units of EcoRI, and the tube was placed at $37^{\circ} \mathrm{C}$ for $3-4$ hours. Digestion was halted by heat-inactivation at $70^{\circ} \mathrm{C}$ for 15 main , and, after cooling to room temperature, ligation was initiated by adding an equal volume of 2 x modified ligase buffer ($10 \mathrm{mM} \mathrm{MgCl} \mathrm{M}_{2}, 4$ mM ATP, 20 mM DTT, 30 mM Tris -HCl pH 7.4) and $0.5 \mu \mathrm{~T} 4$ DNA ligase (Promega, $3 \mathrm{u} / \mu \mathrm{l}$).

Competent E. coli (DH5o or XL1-blue) were prepared using the RbCl method (Section 2.5.1). $200 \mu \mathrm{l}$ of comperent cells were mixed with $40 \mu \mathrm{l}$ of ligated DNA, placed on ice for 15 min , heat-shocked at $42^{\circ} \mathrm{C}$ for 90 sec , again placed on ice for 5 min , and then mixed with 0.5 ml of 2 xYT broth. The culture was shaken at $37^{\circ} \mathrm{C}$ for 1 hr , diluted into 25 ml of LB containing ampicillin at $150 \mu \mathrm{~g} / \mathrm{ml}$, and then shaken overnight at $37^{\circ} \mathrm{C}$. Approximately 80% of overnight cultures showed evidence of growth. 1 ml from cach 25 ml culture was stored at $-70^{\circ} \mathrm{C}$ in the presence of 20% glycerol. As a check on contamination, plasmid DNA isolated from 50μ of sampled overnight cultures was charactcrised by gel electrophoresis.

The remainder of the overnight culture (24 ml) was mixed with cultures representing nine ocher P[lacW] lines, and plasmid DNA was prepared by the alkaline lysis method and the resulted DNA was resuspended in 1 ml of TE. Portions of each pool were then
mixed to make pool of plasmids representing 100 lincs for screening (See Chapter 3 for detail).

2.18 Histochemical Staining and Immunocytochemistry

β-Galactosidase expression in larval and adult tissues was detected by X-Gal staining (method modified from Bellen et al., 1989). Adults or larvae were dissected in 1X PBS and tissues were fixed in 1% glutaraldyde for $10-15 \mathrm{~min}$. After washing with 1X PBS twice, tissues were stained in X-gal solution overnight.

Embryo staining required more steps. Embryos were collected from yeasted apple/grape juice agar plates and dechorionated by dipping into 50% bleach (sodium hypochloritc solution, Safeway's bleach, freshly diluted 1:1) for 90 seconds. After washing with water, the embryos were fixed in a mixturc of $0.35 \mathrm{ml} 4 \%$ paraformaldehyde in 1X PBS and 0.7 ml n -heptanc for $15-20$ minutes at room temperature. The embryos were then washed at least twice with $800 \mu \mathrm{I} 1$ XPBS $+0.1 \%$ Triton $\mathrm{X}-100$ and stained in X-gal solution until the colour appcared.

For staining with anti β-Galactosidase primary antibodies the tissue was fixed in 4% paraformaldehyde (in $1 \times$ PBS) for 15 mins and washed twice in $1 \mathrm{XPBS}, 3 \%$ triton X 100 and then preincubated in PAT (1 X PBS, 1\% BSA, 1\% Triton X-100) for 1 hour. The primary antibody, at a dilution of 1:2000 in PAT and 3\% normal goat serum, was added and incubated overnight. The tissue was tinsed several times in PBS then reacted with an FITC-cojugated secondary antibody (1:250 for 1 hour). After washing in PAT, the tissue was then mounted in VectaShield for detection.

2.19 Isolation of viable revertants and new alfeles with P-element excision

Once a specific mutation line is isolated, it is necessary to isolate a viable revertant to prove the lethality is due to the insertion. If the insertion is on the 2nd chromosome,
female mutants are crossed to males carrying $\mathrm{Sb}, \Delta 2,3$ on their third chromosome over the TM6b balancer. This cross yiclds F0 "jumpstart" male carrying both P[lacW] and the $\Delta 2,3$ element, and thus the $\mathrm{P}[$ lac $W]$ will be mobilised. The crossing scheme is shown in Figure 2.1. Where the insertion is not within the gene, but at a sitc ncar the gene, local jumping combined with the strategy of PCR screening can identify other insertions within the targer gene. The P-element loss may be precise or imprecise (Klambt et al, 1992; 'Iower et al, 1993). The identification of viable revertants proves that lethality was due to the P-element insertion.

Figure 2.1 Scheme for isolation of viable revertants and deficiency strains. $\left.\mathrm{P}^{\left[W^{\top}\right]}\right]$ stands for the $\mathrm{P}[l a c W],[w-]$ stands for loss of the $w+$ marker.

The numbers of adults with phenotypes A, B and C were recorded.

If the numbers of A, B and C are equal, there has been a clcan reversion of the homozygous lethal phenotype.

If the number of type C is less than A and B, it suggests that type C are suffering deleterious effects following remobilisation, i.e. a new allele with internal deletion within the original P-element or imprecise deletion of the gente.

If $\mathrm{C}=0$, it is likely to be a new lethal allele due to deletion caused by imprecise excision or by internal deletion within $P[$ $l a c W]$.

The survival efficiency of homozygous $[w-] /[w-]$ can be further cvaluated by the following cross.

The number of adults with phenotypes D and E was recorded.

If $\mathrm{E}=\mathrm{D} / 2$, there has been clean reversion.

If $0<\mathrm{E}<\mathrm{D} / 2$; then the excision event has had some deleterious cffccts,

If $\mathrm{E}=0$; then it is a new lethal allele with imprecise deletion or internal deletion of the P element.
2.20 Determination of lethal phase of the mutations

In order to determin the developmental phase for lethalities the original CyO balancer was replaced with a modified CyO balancer marked with a copy of y^{+}. Embryos were collected overnight from $y w ; \mathrm{P}[\operatorname{lac} \mathrm{W}] / y^{+} \mathrm{CyO}$ females crossed with yw; $\mathrm{P}[\operatorname{lac} \mathrm{W}] / y^{+} \mathrm{CyO}$ males (See the following cross scheme). Eggs were laid out on an apple juice agar plate and incubated at $25^{\circ} \mathrm{C}$. At regular intervals over a 48 hour period, the plate was examined to determine how many larvae had hatched. The phenotype of the larvae was determined by cxamination of their mouth hooks, homozygous y larvae possessing gold brown mouth hooks while heterozygous y^{+}larvae have brown/black mouth hooks.

$$
\text { 후 } \frac{y w}{y w} ; \frac{\mathrm{Sco}}{y^{+} \mathrm{CyO}} ; \frac{+}{+} \boldsymbol{\chi} \boldsymbol{O}^{7} \mathbf{O}^{7} \frac{y w}{\mathrm{Y}} ; \frac{[w]}{C y O} ; \frac{+}{+}
$$

Hence, offsprings with phenotype D and E can be distinguished as early as first instar larvae, allowing the lethal stage of the homozygous flies to be determined.

Chapter 3

Site-Selected Mutagenesis of the Drosophila Second Chromosome via Plasmid Rescue of Lethal P-Element Insertions

3.1 Summary

This chapter describes a fast and efficient approach to correlating cloned genes with mutant phenotypes in Drosophilla. We make use of a large collection D. melanogater lines with reccssive lethal insertions of a $\mathrm{P}[$ lac $W]$ transposon on their second chromosome. Within this collection there must clearly be many insertions corresponding to Drosophila genes that have been cloned and characterised, but for which mutant phenotypes have yet to be identified. We have made use of the fact that $\mathrm{P}[$ lac $W]$ contains a plasmid replicon to establish a collection of rescued plasmids containing genomic DNA flanking the sites of transposon insertion. Plasmids representing a total of 1836 lines were independently rescued, and pooled in batches of 10 and 100 . Pools of 100 plasmids were screened by hybridisation with cDNAs corresponding to cloned second chromosome loci. Hybridising pools were then narrowed down to single plasmids by a process of subdivision and rehybridisation, and corresponding mutant lines were obtained.

3.2 Introduction

Many cloned Drosopbila genes have yet to be correlated with a mutant phenotype. Sitcselected transposon mutagenesis (SSM) is a reverse genetics solution to this problem. As originally described it involves the use of PCR between gene- and transposon-specific primers to identify individuals in which a P' element transposon had inserted in or close to a target gene (Ballinger and Benzer, 1989; Kaiser and Goodwin, 1990; Banga et al, 1992). The sensitivity of PCR allows a new insertion to be detected initially within a
population of mutagenised flies, after which it can be followed, as a specific amplification product, while the population is sub-divided. A similar strategy has been applied to mutagenesis of Caenorbabditis elegans (Rushforth et al., 1993; Zwaal et al., 1993) and maize (Das and Martienssen, 1995).

Pelements engineered to contain a plasmid origin of replication and a drug-resistance determinant allow a different form of SSM, involving plasmid rescue of DNA flanking the site of insertion (Figure 3.1; Hamilton et al., 1991; Hamilton and Zinn 1994; Guo et al., 1996c). Pools of plasmids are created, each representing a population of flies with different insertion sites. Hybridisation between a pool and a specific cDNA/genomic DNA fragment is diagnostic of an insertion in or near to the gene of interest. The relevant pool is then narrowed down to a single hybridising plasmid, and thus to the corresponding Drosophila line, by a process of subdivision and re-hybridisation (Hamilton et al., 1991; Guo et al., 1996c).

Generation of large numbers of P element insertion lines is labour-intensive, as is their maintenance. In any case, only a small fraction of all new P elcment insertions is associated with phenotypic consequences. Thus, SSM tends to involve relatively transient collections of lines that are discarded or dispersed soon after screening. Even allowing for simultaneous screening with a number of target genes, this tends to reduce the generality of SSM. Further, plasmid rescue SSM tends to be performed on pools of lines (Hamilton et al., 1991; K. Basler and E. Hafen, personal communication), rather limiting the amount of plasmid DNA that can be generated per individual line, and inevitably leading to misrepresentation of the individual plasmids. If time and resources allowed, it would clearly be preferable to rescue cach line independently.

A recent large scale screen for $\mathrm{P}[$ lac $W \mathrm{~W}]$ transposon insertions on the D. melanogaster second chromosome forms the background to a means by which some of the above
$\frac{\mathrm{P}[\mathrm{lac} W]}{\mathrm{CyO}}$ line (10-15 flies)

Figure 3.1 Overview of the plasmid rescue strategy. The essential structure of the $\mathrm{P}[\operatorname{lac} W]$ transposon is shown at the top of the figure. Each line is maintained as a 'balanced lethal' in which only one of the pair of second chromosomes carries a recessive lethal $\mathrm{P}[\mathrm{lac}[\mathrm{W}]$ insertion. The other second chromosome, the balancer $C y O$, confers a dominant visible phenotype (curly wings), is homozygous lechal, and suppresses recombination. Balanced lethal lines are thus easily maintained, since viable progeny have the same chromosomal constitution as their parents (see Ashburner 1989). P[lacW] contains an ampicillin resistance determinant $\left(a m p p^{\mathrm{R}}\right.$) and a plasmid origin of replication (ori). This plasmid replicon is scparated from the rest of the transposon by a unique site for EcoRI. Rescued plasmids therefore contain DNA extending to the right of the transposon up to the nearest flanking EcoRI site (complete digestion), or to a more distant site (partial digestion). Full arrows in anticlockwise direction show the order in which parricular steps were carried out. Dashed arrows show source of plasmid DNA for second and third rounds.
problems can be overcome. 2308 independent recessive lethal mutations and 403 'semilethal' mutations were generated, each of which was saved in the form of a balanced lethal stock, and the lethal phase determined (Török et al., 1993). P-induced lethals, though infrequent, must almost by definition correspond to insertions within genes. Inevitably the collection is likely to include many cxamples of genes that have been 'bit' more than once. There is also an unexpectedly high frequency ($\approx 50 \%$) of lethals that do not coincide with an inserted P element (Kiss, I person, Com., 1996). Nevertheless, the collection represents a substantial proportion of the 2000 or so lethal complementation groups estimated to be present on the second chromosome (13/48 of the lethal complementation groups within the $1.8 \mathrm{Mb} 34 \mathrm{D}-36 \mathrm{~A}$ region, for cxample; Spradling et al., 1995). Morcover, even non-lethal insertions are useful starting points for the secondary mutagenesis of flanking loci. The lines will be maintained in Szeged (Hungary), and possibly in other stock centres, for the conceivable future.

3.3 Plasmid Rescue

$\mathrm{P}[$ lac $W]$, a modified P element transposon 10.6 kb in lengrth, was designed as an enhancer-trap element (Bier et al., 1989). It carries a lac\% reporter gene, the eye-colour marker white ${ }^{+}$, and a plasmid replicon with poly-linker (Figure 3.1). Insertion within a Drosophila gene of such a large element might be expected often to have significant consequences for gene expression (Spradling et al.,1995). Plasmid rescue using the enzyme EcoRI was attempted independently for 2210 of the lines of Török et al., (1993), as described in Materials and Methods.

Independent rescue and transformation allowed each transformant to be propagated without the risk of compctitive growth. Rescue was successful in the case of 1836 of the 2210 lines (83%). Recalculated in the context of available in situ hybridisation data (Refer Encyclopaedia of Drosophila), this corresponds to 77% rescue of lines containing a single $\mathrm{P}[$ lac $W]$ element, and 89% rescue of lines containing more than one P[lac $W]$
element. Because we were concerned that such a large scrics of transformations could present a contamination problem, small scale plasmid preparations of at least 500 transformants were analysed by agarose gel electrophoresis. Plasmid sizes varied considerably, with no evidence of contamination at any stage (not shown). Since most lines contain just one P[lac WW] transposon (data not shown; Török et al., 1993), rescue usually involved a single flanking region. Partial cleavage of genomic DNA by EcoRI can give risc to a series of related plasmids, however, and it is also possible for unrelated EcoRI fragments to be 'co-cloned'.

A 25 ml culture was generated for each $\mathrm{P}[$ lac $W]$ line, and a small quancity was put into long-term storage in the form of a glycerol stock. The remainder was pooled together with cultures representing nine other lines, and plasmid DN Λ was isolated. Equal volume samples of ten such plasmid preparations were then mixed to create effective pool sizes of 100 plasmids. The amount of plasmid DNA generated will be sufficient for many screenings.

3.4 Screening

Plasmid DNAs in each of the 19 pools of 100 plasmids are separated in twenty slot agarose gels (Figure 3.2). The final slot is used for hybridisation controls and size markers. To screen for an insertion in the vicinity of a cloned gene, a blot of the gel is hybridised with a relevant cDNA or genomic DNA fragment. If the fragment has been cloned using a vector that contains plasmid sequences, it is cssential that the fragment be gel-isolated before use. Here we show the results of screening several interesting Drosophila genes, of which wha68-2 and ductin are the genes encoding Drosophila VATPase subunit A and c respectively.

12345678910111213141516171819

Figure 3.219 pools of 100 plasmids separated by electrophoresis in a 0.8% agarose gel.

©

Figure 3.3 Screening for insertions in vha68-2 the gene encoding subunit A of the Drosophila V-ATPase. (A) Three pools of 100 plasmids
showed cross-hybridisation with wha68-1 cDNA probe (lanes 2, 16, and 17). (B) Screening the ten pools of ten plasmids corresponding to lane
2 further narrowed down this particular insertion (lane 3). (C) Hybridisation was eventually assigned to a plasmid isolated from a single
glycerol stock (lane 10). C indicates a positive hybridisation control (vha68-1 cDNA).

3.4.1 wha68-2, the gene encoding V-ATPase A-subunit

Figure 3.3 are results of screening with a wha $68-2 \mathrm{cDNA}$ fragment representing the gene encoding subunit A of the Drosophila vacuolar ATPase (See Chapter 5). Bands of hybridisation are seen in three lanes of 100 plasmids (Figure 3.3A). Onc such band was followed through subdivision to the relevant ten batches of ten plasmids (Figure 3.3B), and was eventually narrowed down to a single glycerol stock (Figure 3.3C). Detailed analysis of this $\mathrm{P}[$ lac $W]$ insertion line is reported in Chapter 5.

3.4.2 Ductin, the gene encoding the V-ATPase c-subunit

Ductin, the 16 kDa proteolipid c-subunit of V-ATPase is the major component of the vacuolar H^{+}-ATPase membrane sector, responsible for proton translocation (Meagher et al., 1990; Finbow et al., 1994). Screcning the pool of rescued plasmids found lines 16/1 and $76 / 16$ hybridised to the genomic DNA probe (Figure 3.4). Line $16 / 1$ has an inscrtion in the second intron (Figure 3.7A). Although the rescued plasmids from linc $76 / 16$ can hybridise to the ductin probe, the sequence near the P clemcat do not align to ductin genomic DNA sequence. It is likely that the inscrtion in line $76 / 16$ is near the gene, bur outside of the reportcd genomic DNA sequence (GenBank accession no. X77936). Further analysis of these two lines is being carried out by Miss Shirley Graham in this deparment.

3.4.3 CalpA, the gene encoding calpain

CalpA is a highly tissue-specific calpain gene from Drosophila, specifically expressed in a small set of nerve, midgut and blood cells (Theopold et al., 1995). This calpain is involved in the dynamic changes in the embryonic cytoskeleton, especially actin-related structurcs, during early embryogenesis prior to cellularization (Emori and Saigo, 1994). The gene is located at $56 \mathrm{C}-\mathrm{D}$ on the second chromosome. Using CalpA cDNA as a

Figure 3.4. Screening for insertions in ductin, encoding subunit c of Drosophila V-ATPase. (A) Two pools of 100 plasmids showed cross-
hybridisation with a ductin cDNA probe (lanes 3 and 9). Lane C did not contain a control for the ductin probe (blots are reused). (B)
Screening the ten pools of ten plasmids corresponding to lane 3 further narrowed down this particular insertion (lane 3). Lane 11 represents the
previous pool of 100 . (C) Hybridisation was eventually assigned to a plasmid isolated from a single glycerol stock (lane 8). Lane 11 represents
the previous pool of 10 .

Figure 3.5 Screening for insertions in CalpA, a Drosophila calpain homolog. (A) Two pools of 100 plasmids showed cross-hybridisation with $\operatorname{Calp} A$ cDNA probe (lanes 15, 17). (B) Screening the ten pools of ten plasmids corresponding to lane 15 and 17 by dot hybridisation, further narrowed down these particular insertions to dots 5 and 1 respectively. Dot 11 is the former pooled 100 as control. (C) A further round of dot hybridisation eventually identified two single glycerol stocks (Dot 4 and dot 6). Dot 11 is the former pooled 10 as a control.
probe to screen the pool of rescued plasmids found the 15 th and 17 th lanes showed positive hybridisation (Figure 3.5 A). Subdivision by DNA dot hybridisation assigned the two positive bands to two individual lincs: 145/23 and 169/13 (Figurc 3.5 B, C). Line 162/14 has an insertion between CalpA and bu-li-tai-shao (Ding et al., 1993) It is likely the insertion is at the regulatory region of CalpA. However, insertion in line 145/23 is in the nearby gene, hu-li-tai-shao (Figure 3.7 B). Further analysis is carried out by Dr. Philippe Rosay in this laboratory. He is trying to remobilise the P-elements into the CaipA gene.

3.4.4 DCO the catalytic subunit of cAMP-dependent protein kinase

$D C O$ is the gene encoding the catalytic subunit of cAMP-dependent protein kinase (Kalderon and Rubin 1987; Figure 3.6). The DCO cDNA was used as probe to screen the pool of rescued plasmids and bands of hybridisation are seen in three lanes of 100 plasmids. One such band was followed through subdivision to the relevant ten batches of ten plasmids, and was eventually narrowed down to a single glycerol stock from line 8/4. The insertion is within the first intron. (Figure 3.7C).

3.4.5 Syb, a gene encoding synaptobrevin

Synaptobrevin is a major constituent of the membranes of syoaptic vesicles. Syb is a Drosophila gene encoding an isoform of synaptobrevin that abounds in non-neuronal cells. The Syb transcripts show no entichment in the nervous system and are present in very carly embryos, well before neurogenesis. The greatest coneentration of Syb transcripts has been found in cells of the gut and Malpighian tubules. It has been suggested that Syb may be involved in membrane trafficking and in the secretion of digestive enzymes (Chin at al, 1993). I lowever, the precise function of Syb is unknown.
 Figure 3.6 Screening for insertions in $D C O$, encoding a catalytic subunit of cAMP-dependent protein kinase. (A) Several pools of 100
plasmids showed cross-hybridisation with a $D C O$ cDNA probe. (B) Screening the ten pools of ten plasmids corresponding to lane 1 further narrowed down this particular insertion (lane 6). Lane 11 represents the previous pool of 100. (C) Hybridisation was eventually assigned to a
plasmid isolated from a single glycerol stock (lane 3). Lane 11 represents the previous pool of 10.

(C)

Figure 3.7 Insertion in ductin, CalpA and $D C O$. (A) Insertion in gene of ductin, the subunit c of V-ATPase (GenBank accession no. X77936); (B) Insertions in or near gene encoding calpain. (GenBank accession no. X78555, 'Z46891, Z46892) (C) insertion in $D C O$, the catalytic subunit of cAMP-dependent protein kinase (GenBank accession no. X 16969). Arrow on P-element denotes the sense of P -lac Z reporter gene.
(A)

12345678910

(B)

(C)

Figure 3.8 Screening for insertion in $s y b$, the gene encoding synaptobrevin (A) One pool of 100 plasmids showed cross-hybridisation with a syb cDNA probe (Lane 8). (B) Screening the ten pools of ten plasmids corresponding to lane 8 further narrowed down this particular insertion to two pools of 10 (Lane 3 and 5). (C) Subdivision of the pool of 10 in lane 5 eventually assigned the positive band to a plasmid isolated from a single glycerol stock (lane 5).
(A)
$10 \quad 20 \quad 30$
p958.s
TTGTTATTTCATCATGGCTCAGCGCACAAAAGCAAGGA

114270	ACAACGAGTAAGTGGTGGAAGTCCATCGAATCAACAGGCTCAGCGCACAAAAGCAAGGA				
	910	920	930	940	950

(B)

Figure 3.9 Insertion in Syb. (A). Alignment of sequence of rescued plasmid p958 from mutant line $77 / 5$ to $s y b$ genomic DNA sequence. (B) Position of insertion in $s y b$, the gene encoding synaptobrevin (Chin et al., 1993; GenBank accession no. L14270)

The filter with rescued plasmids was screened with a Syb cDNA probe (provided by Dr. Cahir O'Kane in Cambridge) and lane 8 showed positive hybridisation (Figure 3.8A). After subdivision of this pool of plasmids of 100 plasmids, lanes 3 and 5 show positive hybridisation (Figure 3.8B). Subdivision of the two lanes identified that the two plasmids from line $75 / 2$ and $77 / 5$ showed cross-hybridisation to the $S y b$ probe. The sequence flanking the site of insertion in line $77 / 5$ is identical to part of $S y b$ gene. The exact position of placW] is in the second intron (Figure 3.9A, B; Chin et al, 1993). However, the insertion in line $75 / 2$ is not relevant to Syb. 'The hybridisation of the plasmid from line $75 / 2$ is due to a $S y b$ fragment co-cloned during plasmid rescue. Repeated rescued plasmids from this line do not hybridise to the Syb probe.

Southern blotting of $77 / 5$ and Canton S genomic DNA probed with Syb cDNA detected a 3.4 kb EcoRI band in addition to the wild type 5.1 kb band (Figure 3.10A). The band shift is due to the P-element insertion. Northern blotting showed a reduction of Syb RNA in the $\mathrm{P}[$ lac $W] /+$ heterozygotes (Figure 3.10 B). Homozygous flies usually died shortly during the stage of the first instar larvae. Remobilising of the P-element produced many revertants and now allelcs. Reversion indicated that the lethal phenotype was indecd caused by the P-clement insertion. Further examination of the defect of the Syb mutant is being carrying out collaboratively with Dr. Cahir O'Kane's group in Cambridge.

3.4.6 KLP38B, a mitotic kinesin-related protein

KLP38B (Kinesin-Like-Protein-at-38B) is a new member of the kinesin superfamily in Drosophila. KLP38B was isolated through its binding to the catalytic subunit of type 1 serine/threonine phosphatase (PPI) in the two-fybrid interaction trap. Seven lines with $\mathrm{P}[$ lac $W]$ insertions in the intron of $K L P .38 B$ were isolated (Figure 3. 1.1). See Alphey et al . (1996) for detailed analysis of these mutants.
(A)

数
(B)

$$
123456
$$

Figure 3.10 Southern blot and Northern blot analysis of Syb mutant (A) Southern blot of $S y b$ mutant line $77 / 5$ showing a band shift duc to $\mathrm{P}[\operatorname{lac} W]$ inscrtion. The first lanc is Canton S genomic DNA, the second lane is line $77 / 5$ genomic DNA, cut by EcoRI, probed with Syb cDNA. (B) Northern analysis of Syb mutant line to show the reduction of RNA transcript. Total RNA, isolated from adult Canton S and 77/5, was hybridised with $S y b$ cDNA and $r p 49$ as a control for loading. Lanc 1, Cantons $S 15 \mu \mathrm{~g}$; Lanc 2, Canton S $30 \mu \mathrm{~g}$; Lane 3, 77/5 $15 \mu \mathrm{~g}$; Lane 4, 77/5 $30 \mu \mathrm{~g} ;$ Lane 5, 25/8 $15 \mu \mathrm{~g}$; Lane 6, $25 / 830 \mu \mathrm{~g}$.

Figure 3.11 Screening for insertions in the gene of KLP38B. Six pools of 100 plasmids showed cross-hybridisation with $K L P 8 B$ probe (lane 1, 3, 4, 5, 6, 10). Subdivision of the pools of plasmids with positive hybridisation signals further narrowed down these positive signals to 7 particular insertion lines: $8 / 2$ (lane 1), 49/13 (lane 1), 39/3 (lane 3), 48/5 (lane 4), 57/2 (lane 5), 86/23 (lane 10).

3.4.7 PP2A-28D, the genc encoding protein phosphatase 2 A

PP2A-28D is a gene encoding protein phosphatase 2A in Drosophila. The line 98/22 which carricd a P[lacW] insertion in 251 bp upstream of the initiating ATG. By excision of the Q -element, it has been proved that this insertion had caused the lethatity. A mutational analysis has been performed in Dr. Partritia Cohen's group in Dundee (Snaith et al., 1996).

3.4.8 Mutations in other genes

Apart from the mutations reported above, we have presently correlated each of the following cloned genes to $P[$ lacW $]$ mutant lines. $D-G \gamma I$, a gene encoding a G protein γ subunit (Ray et al., 1994); shaw, a Shaker cognate gene (Butler et al., 1989: Butler et al ., 1990); Drongo and 5 other genes.

3.5 One-step screening

As an alternative to screening pools of plasmids, we have used a one-step screening procedure involving grids of colonies created by a robotic devicc. The entire grid is visualised by hybridisation with a ${ }^{35} \mathrm{~S}$ probe for the plasmid replicon, while individual colonies corresponding to particular inscrtion sites are visualised with a ${ }^{32} \mathrm{P}$ probe specific to the gene of interest (not shown). This one step screening work was done by Mrs. Anrn Gillan in collaboration with Zeneca.

3.6 Verification

Once an individual glycerol stock has been identificd as containing the hybridising plasmid, the corresponding balanced lethal line is obtained from the stock collection in Szeged. At this stage it is crucial to verify that the plasmid and Drosophila line do indeed correspond. This can be easily done by repetition of plasmid rescue. In the case of the
insertion reported in this chapter, plasmids of identical size and hybridisation characteristics were rescued again from the identified fly lines (data not shown). Were some unrelated EcoRl fragment to have been 'co-cloned' during the initial rescue, it is highly unlikely that the same event would occur a second time.

To confirm that identified lines each contain only a single insertion, we hybridised the blot of mutant genomic DNA with a $P[$ lac $W]$ specific probe. All the 4 lines tested appeared to contain only one insertion (Figure 3.12).

Other important concerns are whether the P element has indeed inserted within the target gene (a 'gene-specific' probe may unexpectedly hybridise to other sites in the genome), and whecher insertion is truly the cause of lethality. In the case of the gene for subunit A of the Drosophila vacuolar ATPase, the rescued plasmid hybridised in situ to a single polytene chromosome band corresponding to the known location of the gene and sequencing of the rescued plasmid showed insertion within the first intron of wha68-2 gene, loss of which is associated with reversion of lethality (see Chapter 7). Similar work was or is being carried out for other mutant lines.

In total, approximately 40 cDNA fragments corresponding to sccond chromosome gencs have been used as probes. Positive hybridisation signals were seen in 13 cases and in seven cases shown to represent genuine insertions within or neat to target genes (I'able 3.1). In five of the seven cases, P[lac W] insertion had occurred 5 ' to the reported coding sequence. In the other two cases, insertion occured widhin the intron. That P elements prefer to insert near to the 5^{\prime} ends of genes has been observed in other studies (Sprading ct al., 1995).

12345

9.1 kb
 6.1 kb
 4.1 kb

Figure 3.12 Southern blot of genomic DNA of the $\mathrm{P}[$ lac W $]$ insertional lines to show the single insertion. Each lane is genomic DNA isolated from 10 flies, digested by EcoRI, hybridised with the 1.9 kb fragment of $\mathrm{P}[\operatorname{lac} W]$ that correspond to p Bluescript. lane 1: Canton S wild type; lane 2: 25/8, with insertion in vha68-2; the gene encoding subunit A of V-ATPase; lane 3: 16/1, with insertion in ductin, the gene encoding subunit cof VATPase; lane 4, 77/5, with insertion in Syb, the gene encoding synaptobrevin; lane 5, 8/4, with insertion in $D C O$, the gene encoding the catalytic subunit of cAMP-dependent protein kinase.

Table 3.1 Summary of screening results

Target gene	Accession no.	First	Verifie	Reference
vha68-2	U59147	3	3	Chapter 3, 4
ductin $^{\text {d }}$	X77936	2	2	Chapter 3
$D C O{ }^{\text {d }}$	X16969	6	$1^{\text {a }}$	Chapter 3
PP2A-28D	X55199	1	1	Snaith et al ., 1996.
KLP38B		7	7	Alphey et al., in preparation
Syb	L14270	2	$1{ }^{\text {b }}$	McCabe et al ., 1996.
CalpA	Z46891	2	2	Rosay et al ., unpublished
vhal4	Z26918	1	$0^{\text {b }}$	Guo et al., 1996.
$D-G \gamma-1$		4		Ray et al ., 1994
Shaw		3		Butler et al., 1989
α-adaption		1	1	Nick Gay in Cambradge
Cliper		1	1	Chunyang Bai in New York
La		1		P. Tolias in New York
? gene		1	1	P. Wes in Crag Montell lab
3 gene		5		Myles Axton in Oxfod
A21		2		B. Srinivasan in Purdue
A22		1		B. Srinivasan in Purdue
6356 DNA		0		B. Retinker
LRL1-5 5 genes		0		M. Cann in Cornell
2a9		0		C. Coelho in Koln
32c2		0		C. Coelho in Koln
47 cl		0		C. Coelho in Koln
G808		0		Y. Grau in France
CAM-kinase-like gene		0		
Simon's 51		0		
Simon's 123		0		
Serotonin recepter 2A		0		
Serotonin recepter 2A		0		
Gf alfa		0		
Gs alfa		0		
Igloo		0		
pbprp-5		0		
PKC		0		
PKG-2cDNA		0		
PLC		0		
NPY recepter		0		
muscarinic acetylcholine recepter		0		

a Only one of the six putative insertions was chosen for further subdivision. b One first round hybridisation signal was a 'co-cloning' artefact. ${ }^{c}$ No first round signal. ${ }^{d}$ Genes for which P element insertions has been previously described (Finbow et al ., 1994; Skoulakis et al., 1993).

3.7 Discussion

The strategy described here permits rapid identification of mutant lines corresponding to specific cloned genes. This is illustrated by Figure 3.3, detailing the identification of a line with a P element insertion in the gene for subunit A of the Drosophith vacuolar ATPase. Three novel and important features of this strategy are as follows. First, we carried out plasmid reseue independently for each of many lines. Plasmid rescue from pools of lines (e.g. Hamilton at al., 1991) leads to misrepresentation both because transformation efficiency varies with the size of rescued plasmid, and because it is difficult to avoid competitive growth. By allowing each transformant to grow independently we avoided misrepresentation, and were able to generate sufficient plasmid DNA for screcning with any number of target genes. Second, unlike previous examples of SSM by plasmid rescue, the lines described here were generated with the intention of creating and maintaining only lethal insertions of $\mathrm{P}[$ Lac W] (lethals represent only a small proportion of all P element insertions). Though homozygous chromosomal lethality turned out to be associated with P element insertion in only approximately half of the lines, even nonlethal insertions can be useful for secondary mutagenesis. Third, there is a commitment to maintain the entire collection of balanced lethal lines in Szeged for the conceivable future. This is unlike most previous site-selected mutagenesis experiments, in which lines were discarded soon after screening, and were thus unavailable to the wider research community.

Approximately one in four cases of screening with cDNA probes has proved successful. cDNA probes will ofren fail to derect an insertion in a targer gene, merely because the rescucd plasmid contains no transcribed sequences. Such occasions will arise when an EcoRI site lies between the transposon and the nearest exon. It would of course have been preferable to rescue each line using a range of different enzymes, and to rescue DNA on both sides of the transposon. This would have been prohibitively laborious, however. A simpler way to increase the probability of a 'hit' is via screening with genomic DNA
fragments representing non-transcribed in addition to transcribed sequences (though not a fragment that contains repetitive DNA sequences).

Even so, one should not expect all second chromosome genes to be represented by $\mathrm{P}[l a c W]$ insertions within the Szeged collection since: a) $\mathrm{P}[$ lac $W]$ mutagenesis was not carried out to saturation; b) not all Drosophila genes are good targets for P element insertion; c) not all Drosophila genes correspond to lethal complementation groups. Where a pre-existing mutation cannot be found, it may prove fruitful to probe with genomic DNA more distant to the gene of interest, and thereby detect an insertion in a nearby gene. Such an insertion could be used for 'local jumping', an elevated rate of transposition within 100 kb or so on either side of a 'donor' P element (Tower et al., 1993; Zhang and Spradling, 1993).

Once one has obtained a line with a single $P[$ lac $W]$ transposon within the gene of interest, it is necessary to verify that the insertion is indeed the cause of the mutant phenotype. Spontaneous recessive lethal mutations are common within Drasophila populations and can become fixed on the same balanced chromosome as a P elamenc. It is thus essential to demonstrate, as for the vha68-2 insertion, that remobilisation of the inserted transposon can lead to reversion of the phenotype. Even then it may not be a simple matter to deduce, just from a single allele, the precise role of the gene and irs product in Drosophila development or physiology. Remobilisation can also result in imprecise 'excision', however, and thus generation of a range of new alleles of varying severity (c.g. Klambt ct al, 1992). The presence of an eye colour marker (white) on $\mathrm{P}[$ lac W] makes loss of the cransposon easy to score. Further, $\mathrm{P}[$ lac $W]$ was designed as an enhancer-trap element, the lacZ component serving as a reporter for gene expression in the vicinity of the insertion site (Bier et $a l$., 1989). The pattern and timing of β galactosidase expression may provide useful information concerning the tissue-specificity and developmental regulation of gene expression.

The collection of Pelement lethal mutants gencrated by Török at al . (1993) is finding many uses in Drosophila genetics and genome mapping. As described here, it provides a simple means of correlating a cloned Drosophila gene with a mutant phenotype. Sufficient plasmid DNA has been prepared to allow screening for many targets. An added dimension would be provided by performing large scale correlation of cDNA library clones with the Szeged lines. This would provide access to many as yet unknown, but nonetheless essential, Drosopbila genetic loci,

One simple way this could be carried out is as follows. Probes of rescued plasmids could be labelled and used to screen a cDNA library to correlate individual clones within the Drosophila cDNA library to the corresponding fly lines bearing $P[$ lac $W]$ insertions. The whole rescued plasmids could be labelled for screcning cDNA library in vector, such as lambda NM1149, which shares no sequence homology with the P-element sequence in the rescued plasmids. Each pair is highly likely to represent a mutation of a gene, and, alternatively, imprecise excision will generate mutations where the initial insertion does not. The cDNA library can be screened as arrays of plaques laid out in a rectangular grid by a robotic device.

Chapter 4

Characterisation of vha68-1 and vha68-2, the Genes Encoding Two Isoforms of V-ATPase A Subunit in Drosophila

4.1 Summary

wha68-1 and wha68-2, genes encoding two isoforms of the V-ATPasc A subunit in Drosophila melanogaster, have been cloned and sequenced. Both isoforms are composed of a polypeptide of 614 amino acids with a predicted molecular mass of 68417 Da and 68338 Da respectively. The coding sequences of the cDNAs for the two isoforms share 85.5% identity while the translated proteins are 90.7% identical. The gene vha68-2 is punctuated by four introns. In situ hybridisation of the cDNA of vha68-1 to salivary gland chromosome squashes reveals only one band at 34 A on the second chromosome, suggesting that the two genes are at the same location. Northern analysis of total RNA reveals that both isoforms are expressed in a similar pattern. They are expressed in head, thorax and abdomen of the adult fly. Developmental Northern blots of embryo, larvae, pupae and adult total RNA show general expression, but at a much reduced level during metamorphosis.

4.2 Introduction

V-ATPases, found in all eukaryotic cells, are required for the acidification of intracellular organelles such as lysosomes, endosomes, the Golgi apparatus, secretary vesicles, and clathrin-coated vesicles, as well as plant and fungal vacuoles (Nelson, 1992a). They are also located in the apical membrane of cells specialised in H^{+}secretion, such as ostenclasts (OCs), kidney intercalated cells, and insect midgut (Baton et al., 1994;

Brown, et al., 1987; Blair et al., 1989; Dow, 1994). Although the organclle and plasma V-ATPases appear similar in composition, it is clear that cells can differcntially target these enzymes and thereby regulate the pH of the various intracellular comparments and luminal spaces (Hernando et al., 1995). The mechanisms for this targeting is accomplished remains unclear, but several hypotheses have been proposed. The simplest hypothesis is the putative existence of organelle- or cell-specific isoforms of particular V ATPase subunit. Only one gene per subunit and per genome has been identified in S. cerevisiae and other fungi (Gogarten et al., 1992). Gene disruption experiments in yeast that led to a complete loss of V-ATPase activity gave no indications for multiple isoforms in S. cerevisiae (Umemoto et al., 1990; Neumi et al., 1991; Foury, 1990), And only a single gene encoding subunit A from M. sexta (Gräf et al., 1992) and bovine (Pan et al., 1991). However, two isoforms of subunit A have been reported from plant, human and chicken (Gogarten et al., 1992b; van Hill et al,, 1993; Hernando et al, 1995). In higher plants, two genes encoding the A subunit differ by the size of an intervening sequence. The two genes exhibit a coding region of the same length but differ in the length of the intron (Gogarten et al., 1992b; Stark et al., 1995). In human the VA68 isoform of VATPase subunit A is expressed in all tissues whereas the expression of a second isoform, HO68, has been found only in osteoclastomas, tumours enriched in osteoclasts (van Hill et al., 1993). In chicken, alternative splicing of a single gene generates two polypeptide isoforms of the A subunit. However, both isoforms seems to be ubiquitously expressed (Hernando et al., 1995). The putative existence of different isoforms of particular VATPase subunits and thus the spccific assembly of different isoforms of some of the subunits may allow differential targeting and the regulation of cell-, organelle- or mombrane-specific V-ATPases.

All of the V-ATPases purified to date share similar functions and structural features (Forgac, 1989). They are multimeric proteins with at least three common subunits: a catalytic subunit A, a regulatory subunit B, and a proton channel subuait c with relative molccular masses of approximately $70,000,60,000$ and 17,000 respectively (Gräf et al.,
1992). cDNAs and genes encoding subunit A were first cloned from plant (Zimnials et al., 1988), fungi (Bowman et al., 1988) and the archaebacterium Sulfolobus acidocaldarius (Denda et al., 1988). It immediately became apparent that the enzyme that functions in ATP-synchesis in archacbacterin is also a V-ATPase, and that subunit A is homologous to the β subunit of F-ATPases. It was also revealed that a S. cerevisiae gene involved in trifluoperazine resistance, cloned the same year, encodes a larger protein that undergoes protein splicing to give the mature subunit A (Shih et al., 1988; Hirata et al., 1990; Kane ct al, 1990). Aligning the amino acid sequences of A and β subunits from various sources produced a wealth of information. The conserved glycine-rich loop in the Λ-subunit was implicated as a primordial common structure for nucleotide binding. It is thought that the A subunit, as the β subunit of F-ATPase, is the catalytic subunits of the V-ATPase.

A cDNA encoding an M. sexta V-ATPase A-subunit has been previously cloned by screening a larval midgut cDNA expression library with monoclonal antibodies to the midgut plasma membrane subunit A (Gräf et al., 1992). It shared considerable homology to cDNAs encoding subunit A from other sources. Using Manduca cDNA as a probe, we have successfully isolated two corresponding Drosophila genes, wha68-1 and wha68-2, which encode different isoforms of the V-ATl ${ }^{\prime}$ ase A subunit. This chapter will report the isolation and characterisation of cDNAs and genomic DNA of the two gencs.

4.3 Isolation of two different cDNAs encoding the catalytic A subunit

4.3.1 Isolation of wha68-1 cDNA

A Drosophila head $\lambda 7$ ap II cDNA library was screened by plaque hybridisation with a digoxygenin-random-primed probe of cDNA encoding the Manduca V-ATPase Asubunit. Positives were obtained at approximately $1: 10,000$ and were purified by a further round of plating. Nineteen clones were obtained and inserts of four recombinant

1
31
AAT rITT CAT AAG AGC TGG 'UGA AAC AAA TCC AAC GAA GGA IUM' GAC CGT tac CGA AGC AGA 61 11/3
AGA AGA AGA GCA GCA ACC GCG ACC ATG CCC AAC mTG AGG AAA TEC AAA GAC GAG GAG CGC $\begin{array}{llllllllllll}M & \mathrm{P} & \mathrm{N} & \mathrm{L} & \mathrm{R} & \mathrm{K} & \mathrm{F} & \mathrm{K} & \mathrm{D} & \mathrm{B} & \mathrm{E} & \mathrm{R}\end{array}$ 151/23
121/:13
GAG TCG GAA TAT GGC CGT GIC TAC GCG GIA TCC GGA CCA GIK GIC NCC GCT GAG GCC ATG $\begin{array}{llllllllllllllllll}\mathrm{E} & \mathrm{S} & \mathrm{E} & \mathrm{Y} & \mathrm{G} & \mathrm{R} & \mathrm{V} & \mathrm{Y} & \mathrm{A} & \mathrm{V} & \mathrm{S} & \mathrm{G} & \mathrm{F} & \mathrm{V} & \mathrm{V} & \mathrm{T} & \mathrm{A} & \mathrm{E} \\ \mathrm{A} & \mathrm{M}\end{array}$ 181/33 211/43
TCT GGA TCA GCT ATG TAC GAG THG GRC COC GTC GGC TAC TAC GAG GTG GTG GGC GAG MYC $\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{G} & \mathrm{S} & \mathrm{A} & \mathrm{M} & \mathrm{Y} & \mathrm{E} & \mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{V} & \mathrm{G} & \mathrm{Y} & \mathrm{Y} & \mathrm{E} & \mathrm{L} & \mathrm{V} & \mathrm{G} & \mathrm{E} & \mathrm{I}\end{array}$ 241/53 271/63 ATC OGT CTG GAG GGC gac atg goc acc atc cag gig tac gac gag acc tet gac tug act $\begin{array}{llllllllllllllllllll}\mathrm{I} & \mathrm{R} & \mathrm{L} & \mathrm{E} & \mathrm{G} & \mathrm{D} & \mathrm{M} & \mathrm{A} & \mathrm{F} & \mathrm{L} & \mathrm{Q} & \mathrm{V} & \mathrm{Y} & \mathrm{E} & \mathrm{E} & \mathrm{T} & \mathrm{S} & \mathrm{G} & \mathrm{Z} & \mathrm{T}\end{array}$ 301/73 331/83
gTC GGC GAT CCG GTG CIE CGI ACC GGC AAA CCT CTT TCC GTG GAA CTH GGA CCC GGC ATt $\begin{array}{llllllllllllllllll}V & G & D & P & V & L & R & T & G & K & P & L_{1} & S & V & E & L & G & P\end{array}$ 361/93 391/103 ATG GGC hGC ATC TTC GAC GGC ATC CAA CGT COT TTC CGG GAC ATT GGT GTC ATG ACC AAC

| M | G | S | I | F | D | G | I | Q | R | P | L | R | D | I | G | V | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |T

421/113 151/123
TCC ATC tat ATA CCC AAA GGT GTC AAC ACA ACT GCT TTG TCG GGC TCG GAG ATG TGG GAA
$\begin{array}{llllllllllllllllllll}S & I & Y & I & P & K & G & V & N & T & T & A & L & S & R & S & E & M & W & E\end{array}$
481/133 511/143
tty ant cog ctg ant grg ceg gig gga tcc cac atc acc gea gad gat cto tat gga gig $\begin{array}{lllllllllllllllllllll} & \mathrm{N} & \mathrm{P} & \mathrm{L} & \mathrm{N} & \mathrm{V} & \mathrm{R} & \mathrm{V} & \mathrm{G} & \mathrm{S} & \mathrm{H} & \mathrm{I} & \mathrm{T} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{L} & \mathrm{Y} & \mathrm{G} & \mathrm{V}\end{array}$ $541 / 153 \quad 571 / 1.63$
GIRA CAC gag anc acg ctg grg ang cag cge alg att gig gca ccg age gct adg gga ace
$\begin{array}{lllllllllllllllllll}V & H & E & N & \mathrm{I} & \mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{Q} & \mathrm{R} & \mathrm{M} & \mathrm{I} & \mathrm{V} & \mathrm{A} & \mathrm{P} & \mathrm{R} & \mathrm{A} & \mathrm{K} & \mathrm{G}\end{array} \mathrm{T}$
601.173 631/183

GTt CGA tAC ATU GCC CCC gCG gGC MAC tac AAC CIG GAG GAC ATT GTC CTG GAG ACG GAG $\begin{array}{llllllllllllllllllll}V & R & Y & I & A & P & A & G & N & Y & N & L & E & D & I & V & L & E & T & E\end{array}$ 661/1.93 691/203
TTC GAC GGC gag atc acc adg cac acc atg tig chg gic teg oca gic cgg cag gca cgi
 $721 / 213$ 751/223
CCC GHC ACA GAG AAG CTG CCA GCC AAC CAT CCG CTC TTC ACG GGC CAA CGC GTC CTTT GAC $\begin{array}{llllllllllllllllllll}P & V & \mathrm{~T} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{N} & \mathrm{H} & \mathrm{P} & \mathrm{L} & \mathrm{F} & \mathrm{T} & \mathrm{G} & \mathrm{Q} & \mathrm{R} & \mathrm{V} & \mathrm{L} & \mathrm{D}\end{array}$ 781/233 811/243
TCG CRC TMC COC TGC gTA CAG GGC GGC ACC ACT GCC ATC CCC GGT GCC THT GGC TGC GGC
 841/253 871/253
 901/273 931/283
get mge gge gag cge ggr afc gag atg tct grg gTa ctg cgi gac tut cec gan cic acc
 961/293 991/303

TEC GAC ATA GAT GCC GTC ACC GAG TCC ATT ATG AAG CGA ACT GCT CTG GTG GCC AAC ACC | $C_{1021 / 313}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TCC AAC ATG COG GTE GCA GCT CGT GAG GCC TCC ATT TAC ACT CGT ATC ACT CIC MCT GAA
 1081/333 1111/343

 1141/353 1171/363
gag gea ctt cgr gag air tcg ggt cgi tug gct gac aig cct gec gat tet gge tac ccg
$\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{R} & \mathrm{E} & \mathrm{I} & \mathrm{S} & \mathrm{G} & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{E} & \mathrm{M} & \mathrm{P} & \mathrm{A} & \mathrm{D} & \mathrm{S} & \mathrm{G} & \mathrm{Y} & \mathrm{P}\end{array}$ 1201/373 1231/383
 $\begin{array}{llllllllllllllllllll}\text { A } & \mathrm{Y} & \mathrm{L} & \mathrm{G} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{T} & \mathrm{F} & \mathrm{Y} & \mathrm{E} & \mathrm{R} & \mathrm{A} & \mathrm{G} & \mathrm{R} & \mathrm{V} & \mathrm{K} & \mathrm{C} & \mathrm{L}\end{array}$ 1261/393 1291/403
GgT AAC CCG GAG CGC gAG GGA TCC GTG TCC ATP GTC GGA GCT GTG DCT CCT CCT GGT GGT
 1321/413 1351/423
GAC TTC TCC GAT CCC GTG ACC TCC GCC ACT TTG GGT ATC GTG CAG GTG TTC IGG GGI OIC

Figure 4.1 cDNA and putative aa sequence of wha68-1. The presumed polyadenylation signal is underlined. The start of the poly A tail is marked in bold. This cDNA sequence has been published in the GenBank database under the accession number U19745.
phages were excised as pBluescript plasmids. Double-stranded sequencing was performed according to the Sequenase ${ }^{T M}$ II protocol (US Biochemical, Cleveland, OH), with the aid of synthetic oligo primers. All of the four clones have the same 3^{\prime} end, except for differing lengths of the poly A tails. The 5 ' end sequence of three cDNA clones, p 68 A 1 , p68B1 and p68El, were found to be identical, except for small differences in the length of the 5^{\prime} end. However, p 68 C 1 is the shortest of the four clones beginning at nucleoticle 663. The longcse c.DNA p68A1 was sequenced from both DNA strands, using synthetic oligonucleotides to extend the reading. The resulting sequence consists of 2576 bp . A long open reading frame encodes a putarive polypeptide of 614 amino acids (Figure 4.1) with a M_{r} of 68417 Da which is clearly a V-ATPase A subunit. The gene has been named wha68-1. The open reading frame is preceded by a 5 ' untranslated region (UTR) of 84 bp . The 3' UTR of 644 bp long contains a poly A addition signal between nuclentides 2550-2556, 19 bases upstream of the poly A tail.

4.3.2 Isolation of vha68-2 cDNA

A NM1 149 cDNA library representing adult heads of the D. melanogaster eyes absent (eya) mutant was screened by plaque hybridisation with the genomic DNA fragment of the plasmid rescued from the fly line l(2)k02508 (See Figure 3.3 in Chapter 3). Plaques giving both strong and weak hybridising signals were picked. More than 20 positive plaques ware obtained, of which five recombinant phages were purified. cDNA inserts in the recombinant phages were excised by EcoRI and FindIII. There were three types of cDNAs accorcling to digestion map and the intensity of the hybridisation to the genomic DNA probe (Figure 4.2). The inscrts were subcloned into pBluescript SK ${ }^{-}$and sequenced by the universal primers $T 3$ and $T 7$ from the both ends. While the sequence of $\mathrm{p} 68 \mathrm{c}-5$ was identical to that of vha68-1 cDNA, the digestion maps and sequences of p68c-1, p68c-2 and p68c-3 are different from vha68-1 cDNA. Sequences of the three inserts are identical except for small length differences at the 5 ' end. 'Ihe longest cDNA, p68c-1, was sequenced from both strands, using synthetic oligonucleotides to extend

givily

Figure 4.2 Three types of cDNA inserts hybridised to vha 68 probes. cDNA inserts in the recombinant phages were excised by EcoRI and HindIII. The Southern blot was probed with the genomic DNA fragment of the plasmid rescued from the fly line $1(2) \mathrm{k} 02508$.

1131
GTV CGT TCT GTT GGA GAA AAG CAG CAA TCA CAC GTT CGC AAG GIG AAC GCG AAG ACA CAG 61 91/2
CAA ATC GAA AAA ACA GAA TAA AGC AAA ATG TCC AAC CTT AAG GGT TTC GAT GAT GAG GAG

121/12
$\begin{array}{lllllllllll}M & S & N & L & K & R & F & D & D & E & E\end{array}$ 151/22
CGT GAG TCC AAA TAT GGA CGT GTC TPC GCT GTC TCC GGL CCI GRC GTC ACC GCC GAG GCC
 こ81/32 211/42
ATG TCT GGA ICA GCT ATG TAC GAG TTG GTC CGC GTC GGC JAC TAC GAG CTG GTG GGC GAG $\begin{array}{lllllllllllllllllllll}M & \mathrm{~S} & \mathrm{G} & \mathrm{B} & \mathrm{A} & \mathrm{M} & \mathrm{Y} & \mathrm{E} & \mathrm{L} & \mathrm{V} & \mathrm{R} & \mathrm{V} & \mathrm{G} & \mathrm{Y} & \mathrm{Y} & \mathrm{B} & \mathrm{I} & \mathrm{V} & \mathrm{G} & \mathrm{E}\end{array}$ 2.11/52 271/62 ATC ATC CGT CTG GAG GGT GAC ATM GCC ACC ACC CAG GTG TAC GAG GAG ACC TCT GGC GTA
 301/72 331/82
ACT GTC GGA GAT CCG GTG CTG CGT ACC GGC AAG CCT CTT TCC GTG GAG CTG GGA CCC GGT
 $361 / 92 \quad 391 / 102$
AIC ATG GGC AGC ADC TXT GAC GGT ATC CAG CGT CCC CTG AAG GAC ATY AAC GAG CDG ACC
 421/112 $\quad 451 / 122$
GAA TCC ATC TAC ATT CCC AAG GGT GTG AAC GIG CCC AGT TTG ICC OGC GDG GCC AGC TGG
 481/132 511/142
$G A G T C X A C$ CCC CTG AAC GTC AAG GTC GGC TCC CAC ACC ACC GGA CGT GAC CTG TAC GGT
 541/152 571/162

 $601 / 172 \quad 631 / 182$ $A C A$ GTG CGC TAC ATC GCC CCC TCC GGC AAC TAC AAG GTC GAC GAT GTC GTC CTG GAG ACC $\begin{array}{llllllllllllllllllll}T & V & R & Y & I & A & P & S & G & N & Y & K & V & D & D & V & V & L & E & T\end{array}$ 661/192 691/202
GAG TTC GAT GGA GAG ATC ACC AAG CAC ACC AIKG IMG CAG GIG rGG CCA CTG CGT CAC CAC
 721/212 751/222
$G C T E C C$ GTE ACC GAG AAG CTG CCC GCC $A N C$ OIC CCC CTG CTC ACC GGA CAG CGP GTG CTC $\begin{array}{llllllllllllllllllll}A & P & V & T & \mathrm{~F} & \mathrm{~K} & \mathrm{I} & \mathrm{F} & \mathrm{A} & \mathrm{N} & \mathrm{I} & \mathrm{P} & \mathrm{L} & \mathrm{J} & \mathrm{T} & \mathrm{G} & \mathrm{Q} & \mathrm{R} & \mathrm{V} & \mathrm{L}\end{array}$ $781 / 232 \quad 811 / 242$
GAC TCG CTC TTC CCC TGT GTC GAG GGC GGT ACC ACC GCC ATT CCC GGA GCT TEC GGT TGC
 841/252 371/252
GGC AAG ACT GTG ATC TCG CAG GCT CTG TCC AAG TAC TCC ARC 'LCC GAll GTC ATC ATC TAC
 901/272 931/282
GTC CGT TGC EGT GAG CGT GGT AAC GAG ATG TCT GAG GRA CTG CGT GAC TTC CCC GAG CTG
 961/292 991/302 TCC GTG GAG RTC GAT GGT GTG NCC GAG TCC ATC ATG ANC CGT ACC GCC CTU GTG GCC AAC
 $1021 / 312 \quad 105 \mathrm{~L} / 32 \%$
$A C C$ TCC AAC ATG CCT GIG GCT GCT CGA GAC GCC TCC ATC TAC ACT GGT ATC ACC TTG TCC
 $1081 / 332 \quad$ 1.1.1./342
GAA 'LAC 'IN'C CG' GAC ACG GGT TAC AAC GIG TCC ANG ABG GCIN GAN TCC ACC TCC CGR TGE $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{Y} & \mathrm{F} & \mathrm{R} & \mathrm{D} & \mathrm{M} & \mathrm{G} & \mathrm{Y} & \mathrm{N} & \mathrm{V} & \mathrm{S} & \mathrm{M} & \mathrm{M} & \mathrm{A} & \mathrm{D} & \mathrm{S} & \mathrm{T} & \mathrm{S} & \mathrm{R} & \mathrm{W}\end{array}$ 1141/352 1171/362
GCT GAG GCT CTT GGT GAA ATT TCT GGT CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC TAC
 1201./372 1231.382 CCA GCC TAC THG GGA GCT CGT CTG GCC TCC TTC TAC GAG CGT GCC GGT CGC GIT AAG TGC
 1261/392 1291/402
$T H G$ GGT AAC CCC GAG CGC GAG GGA TCC GTG TCC ATT GTC GGA GCT GTC TCT CCT CCT ©TT
 1321/412 1351/422 GGT GAC TRC TCC GAT CCC GTA ACC TCC GCC ACP CTG GGT ATC GTG CAG GIG TTC TGG GGT

1381/432								141	/442								
CTC GAC AAG	AAG	TTG	GCC	cag	CGC	ABG	CAT	TTC	CCC	TCG	ATC'	AAC	TGG	CTC	APC	TCC	tac
L. D K	K	L	A	2	R	K.	F		P	s	I	N	W	L	I	S	χ
1.441/452								147	1/462								
TCG AAS TAC	Alg	CGr	GCT	CTG	GAT	GAC	-TC	TAT	GAC	ARG	APC	ITCC	CCG	GAA	TTC	GTG	CCG
S K Y	M	R	A	I	D	D	F		D	K	N	F	P	E	F	V	P
1501/472								153	1/482								
CTG CGT ACC	AAG	ETC	AAG	GAG	ATC	CTG	cag	GAG	GAG	GAG	GAI	Crg	TCT	GAG	ATC	GTG	CAA
L R T	K	V	K	E	\pm	L	Q		E	E	D	L	5	E	I	V	Q
1561/492								159	1/502								
CTG GTC Gce	AAG	GCC	тСт	orc	scc	GAAA	ACO	Cac	Ma	ATC	ACG	01 C	GAG	GTG	GCC	AAG	OTG
L V G	K	A	5	I	A	E	T		K	I	T	L	E	v	A	K	L
1621/512								165	1/522								
CTG AAG GAC	gat	TTC	CTG	CAG	cag	AMC.	TCC	tac	TCC	TCG	TAC	GAE	CGO	TTC	TGC	CCO	ITC
L K D	D	F	L	Q	Q	N	S		S	S	Y	1	K	F	C	P	F
1681/532								171	1/542								
TAC AAG ACC	GTG	GGC	ATG	TTG	A.GG	AAC	ATC	ATC	GAC	TTC	TAC	GAC	ATG	GCC	CGT	cac	TCC
Y X ${ }^{1}$	v	G	M	L	R	N	I		D	F	Y	D	M	A	R	II	S
1741/552								177	1/562								
GTG GAG TCT	ACG	GCT	CAG	TCT	GAG	AAC	AAG	ATC	ACC	TGG	AAC	OTg	AT'	CCT	GAG	GCA	AIC
$\checkmark \mathrm{E} \quad \mathrm{S}$	T	A	Q	S	E	N	K		T	W	N	v	I	R	E	A	M
1801/572								183	1/582								
GGC AAC ATT	ATG	tac	cag	CTG	TCA	TCC	ATG	AAC	TTC	AAG	GP.C	ccc	GTP	AAG	GAT	GGI	GAS
G N I	M	Y	9	L	s	5	M	K	F	K	D	P	V	K	D	G	E
1861/592								189	1/602								
GCC AAC ATC	AAG	GCT	GAC	TRC	gag	CAG	CTG	CAC	GAG	GAC	CIG	CAG	CAG	GCC	TTC	AGA	AAT
A K I	F	A	D	F	E	Q	L		E	D	L	Q	Q	A	${ }^{\prime}$	R	N
1921/612								195									
Cig gag gac	tag	zag	CCG	ITCO	nct	GGC	CCI	ACI	[${ }^{\text {PTH' }}$	ACA	CIC	TA		IIAI	Als	TGST	IAT
L E D																	
1981								201									
ATA GIT AAC	GTT	TAA	AAA	TGA	AAG	CAG	TCA	AAA	ACC	$A T C$	CGA	AAA	AGC	HA	TC	AA.	CAC
2041								207									
CAA CAA TTC	CAG	CTG	CAT	TCG	ATG	AAA	AAC	AAA	AGT	CCA	ACA	AAT	ACC	AtA	Cr	T	TGG
2101								213									
TGC CTG CGA	gac	AI'G	TAA	ACA	TTP	CGG	CCT	GOG	GTT	AAT	ACT	TTTC	CCC	taz	CCA	CEC	ccc
2161								219									
CTC COC CCC	TTG	AAG	GGC	AAC	тCT	AGG	caá	Cag	CAA	CTA	САД	GT	CCT	GCT	ATG	HC	TTC
2221								225									
CAT TUTA CAA	CAA	CAA	CAC	CAA	CAT	ACA	CTT	GAA	TAA	AAG	TAC	ACG	GAC	ACT	GGC	CA	CAC
2281								231									
ACA ACA CAT	ACA	TAA	AAG	ACA	cas	ATA	CAA	ATG	CAT	GCA	TAA	ATA	GTA	TA	TG	Tr	AAT
2341								237									
GAA TGG AAA	TTC	TTG	TPT	ATT	TGT	GAA	AAA	ACT	CAT	GT-	TT	TCC	CTG	TTY	Grir	1	THA
2401								213									
ATTM TART GTA	AAT	ATT	TAA	ng	NT:	AAA	IAAS	tas	AIg	LAC	GAA	TAA	AGT	GCA	ACA	ACA	AAT
2461																	
ACA TTTT ART	GT	AA															

Figure 4.3 cDNA and predicted amino acid sequence for wha68-2. The presumed polyadenylation signal is underlined. The beginning of the poly A tail is marked in bold. The cDNA sequence has been published in the GenBank database under the accession number U59146.
readings. It is 2474 bp long. The long open reading frame encoded a putative polypeptide of 614 amino acids (Figure 4.3) with a molecular mass of 68338 Da . The high homology of this cDNA sequence with that of wha68-1 cDNA (Figure 4.4) and with sequences for A subunits from other sources in the GenBank database (Figure 4.5) suggests that this new cDNA encodes a second isoform of the catalytic A subunit of the Drosophila V-ATPase. Accordingly, the gene was named as wha68-2. The 5' UTR of vha68-2 cDNA is 88 bp long, the 3^{\prime} UTR 542 bp . There is a poly A addition signal between nucleotides 2446-2451, 24 bp upstream of the poly A tail.

The digestion map of $\mathrm{p} 68 \mathrm{c}-1$ is different from both wha68-1 and wha68-2 cDNA. Whether this insert represents a third wha 68 cDNA awaits confirmation by sequencing the insert.

4.3.3 Comparison of the two isoforms

The length of the two cDNAs arc similar. wha68-1 is 2576 bp while wha68-2 is 2474 bp , about 100 bp shorter. Both cDNAs have a long open reading frame of 1842 bp which encodes a polypeptide of 614 amino acids $\approx 68 \mathrm{kDa}$. The two polypeprides share 91% aa identity. The coding DNA sequences share 85.5% identity. However, the homology between the 5^{\prime} and 3^{\prime} noncoding sequence is very low or without homology (Figure 4.4). The 5 ' UTRs in the two longest cDNA of vha68-1 and wha68-2 are almost of the same size, but the 3' UTR of vha68-1 is 102 bp longer than that of wha68-1. The poly A tail signal AATAAA was found near the poly A tails of both cDNAs.

The predicted translation start site of vha68-2 CAAAAT'G is the same as that of vha26 (See chapter 6) which is in perfect march with this consensus start site (C/A)AA(A/C)ATG (Cavener, 1987). However, wha68-1 has a different start site GACCATG. wha68-1 uses TAA for the translation stop codon but vha68-2 uses TAG as the stop codon.

Init1: 5448 Initn: 5448 Opt: 5494
84.1% identity in 1924 bp overlap
10
20
30
40
50
vha68-1 AATMTTCATAAGAGCTGGTGAAA--CA--AAT V CCAACGMACG--ATTTGACCGTTA--CC
vina 68 - 2 GTTCGTTCTGTTGGAGAAAAGCAGCAAT $\begin{array}{lllll}10 & 20 & 30 & 40 & 50\end{array}$

60	70	80	90	100	110

vha68-1 GAAGCAGAA GAAGAAGAGCAGCAACCGCGACCATGCCCAACTTGAGGAAATTCAAAGACE
 vha68-2 ACAGCA-AA $\nabla_{\text {TCGAAAAAACAGAATAAAGCAAAATGTCCAACCTTAAGCGTTTCGATGATVG }}$

60	70	80	90	100	110
120	130	140	150	160	1.70

vha68-1 AGGAGCGCGAGTCGGAATATGGCCGTGTCTACGCGGTATCCGGACCAG $\nabla_{\text {TGGTCACCGCTG }}$
 vha68-1 AGGCCATGTCTGGATCACCTATGTACGAGIMGGMCCGCGDCGGCTACTACGAGCTGGIGG
 wha68-2 AGGCCATGTCTGGATCAGCTATGCACGAGTTGGTCCGCGTCGGCTACTACGAGCTGGTGG $\begin{array}{lllll}180 & 190 & 200 & 210 & 220\end{array}$ $240 \quad 250 \quad 260 \quad 270 \quad 280 \quad 290$ Wha6g-1 GCGACATCAICCKICTGGAGGGCGACATGGCCACCATCCAGGTGTACGAGGAGACCTCTG

Wha68-2 GCGAGATCATCCGTCTGGAGGGTGACATGGCCACCALCCAGGIMIACGAGGAGACCTCTG $\begin{array}{llllll}240 & 250 & 260 & 270 & 280 & 290\end{array}$ $\begin{array}{llllll}300 & 310 & 320 & 330 & 340 & 350\end{array}$

 vha68-2 GCGTAACTGTCGGAGATCCGGTGCTGCGTACCGGCAAGCCTCTTTCCGTGGAGCTGGGAC $\begin{array}{llllll}30 \mathrm{C} & 310 & 320 & 330 & 340 & 350\end{array}$ $360 \quad 370 \quad 380 \quad 390 \quad 400 \quad 4 \div 0$ Wha68-1 CCCOCATWATGGGCAECATCIPCCACGGCATCCAACGTCCTTTGCGGGACATMGGTGTCA $\begin{array}{llllll}360 & 370 & 380 & 390 & 400 & 410\end{array}$ $420 \quad 430 \quad 440 \quad 450 \quad 460 \quad 40$
vha6ß-1 TGACCAACTCCATCTATATACCCAAAGGTGTCAACACAACTGCTTTGTCGCGCTCGGAGA vha68-2 TGACCGAATCCATCTACATTCCCAAGGGTGTCAACGTCCCCACTMTGTCCCGCGCGGCCA $\begin{array}{llllll}420 & 430 & 440 & 450 & 460 & 470\end{array}$ $480 \quad 490 \quad 500$ 510 520 530
wha68-1 TGTGGGAATTTAATCCGCTGAATGTGCGGGTGGGATCCCACARCACCGGAGGAGATCTGT
|||| || || || || || || ||| || ||||||||| |||||| || |||| Wha68-2 GCHGGGAGTTCARCCCCCTGAACGTCAAGGTCGGCICCCACATCACCGGAGGTGACCIGT
vha68-1 AGACGGAGTTCGACGGCGAGATCACCAAGCACACCATGTTGCACGTCHGGCCAGTGCGGC
111 |111111 | 1111111111111111111111111111:11111 vha68-2 AGACCGAGMTCGATGGAGAGATCACCAAGCACACCATGTTGCAGGTGTGGCCAGTGCGTC $\begin{array}{llllll}660 & 670 & 680 & 690 & 700 & 710\end{array}$ $\begin{array}{llllll}720 & 730 & 710 & 750 & 760 & 770\end{array}$
 vha68-1 GTCCTTGACTCGCTCTTCCCCTGCGTACAGGGCGGCACCACHGCCATCCCCGGIGCCUTP vha69-2 GTGCTCGACTCGCSCTTCCCCTGTGTCCAGGGCGGTACCACCGCCATTCCCGGAGCTTTE $\begin{array}{llllll}780 & 790 & 800 & 810 & 820 & 830\end{array}$ $840 \quad 850 \quad 860 \quad 870 \quad 880 \quad 890$ Wha68-1 GGCTGCGGCAAGACCGTCATTMCGCAG GCCCIMCCAAGMACTCCAACTCTGATGTGATC
 vha68-2 GGTTGCGGCAAGACTGTGATCTCGCAG $\nabla_{\text {GCTCTETCCAAGTACTCCAACTCCGATGTCATC }}$

840	850	860	870	880	890
900	910	920	930	940	950

vha68-1 ATCTACGTCGGTTGCEGCGAGCGCGGTAACGAGATGTCTGAGGTACTGCGTGACTMTCCC
 wha63-1 ATCTACCTCGGULGCGGTGAGCGIGGTAACGAGATGTCMGAGGTACTGCGTGACTTCCCC $\begin{array}{llllll}900 & 910 & 925 & 930 & 940 & 950\end{array}$ $960 \quad 970 \quad 980 \quad 990 \quad 1000 \quad 1010$ wha68-1 GAACTGACCTGCGACATAGATGGCGTCACCGAGTCCATTATGAAGCGAACTGCICTGGIG wha68-2 GAGCTGTCCGTGGAGATCGATGGTGTGACCGAGTCCATCATGAAGCGRACCGCCCTTGTG $\begin{array}{llllll}960 & 970 & 980 & 990 & 1000 & 1010\end{array}$ $1020 \quad 1030 \quad 1010 \quad 1050 \quad 1060 \quad 1070$ vhä68-1 GCCAACACCTCCAACATGCCGGTGGCAGCTCGTGAGGCCTCCATTTACACIGGTATCACT
 vha68-2 GCCAACACCTCCAACATGCCTGTGGCTGCTCGAGAGGCCTCCATCTACACTGGTATCACC $\begin{array}{llllll}1020 & 1030 & 10<0 & 1050 & 1060 & 1070\end{array}$ $10801090 \quad 1100 \quad 1110 \quad 1120$ 1130
vha68-1 CTGTCTGAATACTTCCGTGATATGGGCTACAACGTAGCCATGATGGCTGATMCCACCLCC Vha68-2 TTGTCCGAATACTTCCGTGATATGGGTTACAACGTGCCCATGATGGCTGATTCCACCTCC $\begin{array}{llllll}1080 & 1090 & 1100 & 1110 & 1120 & 1130\end{array}$

	1140	1150	11601170		1180	1190																													
vha68-1	CGIMGGGC	GGCACTI	GAGATTT	GTCGTTT	GAgATGCCTGCCGATJCT																														
	\|								\|							\|					\|					\|						\|			
vha68-2	Cgreggac	AGGCTCP14C	GAAAATT	GGTCGTC	tgagat	CGCGATICC																													
	1140	1150	1160	1170	1180	1190																													
	1200	1210	1220	1230	1240	1250																													

vha68-1 GGCTACCCGGC1"1AMCHAGGAGCTCGSCTGGCCACATTCTACGAGCGTGCTGGGCGCGTC

vha68-2 GGCTACCCAGCCTACTTGGGAGCTCGTCTGGCCTCCTTCTACGAGCGTGCCGGTCGCGTT $\begin{array}{llllll}2 & 200 & 1210 & 1220 & 1230 & 1240\end{array}$ 12601270128013001310
Vha68-1 AAGTGCTTGGGTRACCCGGAGCGCGAGGGATCCGTGTCCATTGTCGGAGCTGTGTCTCCT

vha68-2 AAGTGCTTGGGTAACCCCGAGCGCGAGGGATCCGTGTCCATPGTCGGAGCTGTGTCTCCT $\begin{array}{llllll}1260 & 1270 & 1280 & 1290 & 1300 & 1310\end{array}$
$13201330 \quad 1340 \quad 1350 \quad 1360 \quad 1370$

Wha68-1 CCTGGTGGTGACTTCTCCGATCCCGTGACCTCCGCCACTMTGGGTATCGTGCAGGTGTTC wha68-2 CCTGGTGGTGACTTCTCCGATCCCGIAACCTCCGCCACTCTGGGTATCGTGCAGGTGTTC $\begin{array}{llllll}1320 & 1330 & 1340 & 1350 & 1360 & 1370\end{array}$
$1380 \quad 1390 \quad 1400 \quad 1410 \quad 1420 \quad 1430$
vha68-1 TGGGGTCTCGACAAGAAATTGGCCCAGCGCAACCACTTCCCCTCGATCAACTGCCTCATC
 vina58-2 TGGGGTCTCGACAAGAAGTTGGCCCAGCGCAAGCATTPCCCCTCGATCAACTGECTCATC $\begin{array}{llllll}1380 & 1390 & 1400 & 1420 & 1430\end{array}$
$1440 \quad 1450 \quad 1460 \quad 1470 \quad 1480 \quad 1490$
vha68-1 TCCTACTCGAAGTACATGCGTGCTCTGGATGAATACTATGACAAGAACTACCCCGAGTMC

vha 58-2 TCCTACTCGAAGTACATGCGTGCTCTGGATGACTTCTATGACAAGAACTTCCCGGAATTC $\begin{array}{llllll}1440 & 1450 & 1460 & 1470 & 1480 & 1490\end{array}$
$1500 \quad 1510 \quad 1520 \quad 1530 \quad 1540 \quad 1550$
vha68-1 GTGCCACTACGCACCAAGGTCAAGGAGATCCTGCAGGAGGAGGAGGATCTGTCTGAGATC
 vha68-2 GTGCCGCTGCGTACCAAGGTCAAGGAGATCCTGCAGGAGGAGGAGGATCTGTCTGAGATC $\begin{array}{llllll}1500 & 1510 & 1520 & 153 \mathrm{C} & 1540 & 1550\end{array}$ $15601570 \quad 1580 \quad 1590 \quad 1600 \quad 1610$ Vhá8-1 GTTCAGCTGGTGGGCAAAGCATCACTGGCCGAGACCGACAAGGTGACCCTGGAAGTGGCA
 vha68-2 GTGCAACTGGTCGGCAAGGCCTCTCTCGCCGAAACCGACAAGATCACGCIGGAGGTGGCC $\begin{array}{llllll}1560 & 1570 & 1580 & 1590 & 1600 & 1610\end{array}$
$1620 \quad 1630 \quad 1640$ 2650 1660 1670

Vha68-1 AAGCTGCTGAAGGACGACTTTTCTGCAACAGAACTCCTACTCACCATACGATCGCGTTTGT wha68-2 AAGCTGCTGANGGACGATTTCCTGCAGCAGAACTCC1ACMCOTCGTACGATCGCRICTGC $\begin{array}{llllll}1620 & 1630 & 1640 & 1650 & 1660 & 1670\end{array}$
$1680 \quad 1690 \quad 1700 \quad 1710 \quad 1720 \quad$ 730
vha68-1 CCCTTCTACAAGACCGTGGGCATGCTGAGAAACATCATGGCCTTCTATGAGACCGCCCGG vhár8-2 CCCTTCTACAAGACCGTGGGCATGTTGAGGAACATCATCGACTTCTACGACATGGCCCGT $\begin{array}{llllll}1680 & 1690 & 1700 & 1710 & 1720 & 1730\end{array}$

Figure 4.4 Alignment of the two cDNA by FASTA in GCG. The positions of the introns were marked by " ∇^{\prime} " according the information of the genomic sequence. See Section 4.4 for genomic sequence of wha68-2. Refer Accession number: U19742 in GenBank database for genomic sequence of vha68-1.

MREELNWPRRLSGASKITTSMKTDMDLFSAFLVLVVVAANMLGCSMYELVRVGHEELVGEVIRIHQDKCTIQVYEETSGLTVGDPVQRTG

 MAPQQNGAEVDGIHTGKIYSVSGPVVVAEDMIGVAMYELVKVGHDQLVGEVIRINGDQATIQVYEETAGVMVGDPVLRTG MMDFSKL PKIRDEDKESTFGYVHGVSGPVVTACDMAGAAMYELVRVGHSELVGEI IRLEGDMATIOVYEETSGVSVGDPVLRTG MMDFSKL PKILDEDKFSTFGYVHGVSGPVVTACDMAGAAMYELVRVGHSELVGEI IRLEGDMATIOVYEETSGVSVGDPVLRTG MDFSKL PKTLDEDKESTFGYVHGVSGPVVTACDMAGAAMYEL VRVGHSELVGEI IRLEGDMATIOVYEETCGVSVGDPVI RTG MDFSKLPKIRDEDKESTFGYVHGVSGPVVTACDMAGAAMYELVRVGHSELVGEI IRLEGDMATIQVYEETSGVSVGDPVLRTG MDFSKL.PKIRDEDREAFVGYVQGVSGPVVTACNMAGAAMYEL VRVGHSELVGEI IRLEGDLATVQVYEETSGVSVGDPVLRTG MDFSKL.PKIRDEDREAFVGYVQGVSGPVVTACNMAGAAMYELVRVGHSELVGEI IRLEGDLATVQVYEETSGVSVGDPVLRTG MPNL RKFKDEERESEYGRVYAVSGPVVTAEAMSGSAMYELVRVGYYELVGEI IRLEGDMATIQVYEETSGLTVGDPVLRTG MSNL RKFKDEERESEYGRVYAVSGPVVSAEAMSGSAMYELVRVGYYELVGEI IRLEGDMATIQVYEETSGVTVGDRVLRTG MSNLKRFDDEERESKYGRVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEETSGVTVGDPVLRTG MTSTLIKTSDEDRESKFGFVFAVSGPVVTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDTSGVTVGDPVLRTG MASKGGLKTIANEENEERFGYVFAVSGPVVTAEKMSGSAMYELVRVGYNELVGEI IRLEGDMATIQVYEETSGVTVGDPVLRTGELVRVGHDSLIGEI IRLEGDSATIQVYEETAGLTVNDPVLRTK ARATIQVYEETAGLMVNDPVLRTR MPAFYGGKLTTFEDDEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGHDNLIGEI IRLEGDSATIOVYEETAGLTVNDPVLRTH MPSVYGDRLTTFEDSEKESEYGYVRKVSGPVVVADGMGGAAMYELVRVGHDNLIGEI IRLEGDSAT IQVYEETAGLMVNDPVLRTH MPAVYGARLTTFEDSEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGRDNLIGEI IRLEGDSATIOVYEETAGLMVNDPVLRTH MPAVYGSRLTTFEDSEKESEYGYVRKVSGPVVVADGMAGAAMYELVRVGHDNLIGEI IRLEGDSATIQVYEETAGLMVNDPVLRTH MPAVYGDRMTTFEDSEKESEYGYIRKVSGPVVVADGMNGAAMYELVRVGHDNLIGEI IRLEGDSATIQVYEETGGLTVNDPVLRTH MSEEKESEYGYIRKVSGPVVVADGMNGAAMYELVRVGHDNLIGEI IRLEGDSATIQVYEETGGLTVNDPVLRTH TVRVNGMKN . . GI IKKVSGPVVSAENMDGAAMYELVRVGNEQLVGEI IRLEGSVATIQVYEETSGLTIGDPVLCTG .MNFDTDKKEKEFGKVYSVSGPVVI AENMLGAAMNELVRVGSRGL MGEI IRLEGTTATIQVYEETAGLQLGDMVERTM MTSDKNPYKTEQRMGAVKAVSGPVVIAENMGGSAMYELVQVGSFRLVGEI IRLEGDTATIQVYEETGGLTVGDPVYCTG MTKVAVEKEEP . . GVVYKVAGSLVIAENMSGTRMYELAKVGWNKLVGEI IRLEGNYAYIQVYEDTSGLSVGDPVIKTG

VA_SCHPO
VA NEUCR
VA NEUCR
VA_BOVI
VA HUMAN
VA_MUSMU
VA_CHIC2
VA_CHICl
VA_DROM
VA_DROM1
VA_DROM2
HO_HUMAN
VA MANSE
VA_HORVU
VA_MAIZE
VA MAIZE
VA-BRANA
VA_CARRO
VA_VIGRA
VA_GOSHI
VA BETVI
VA_ACEAC
VA_CYACA
VA_ENTHI VA TRYCO
VA PLAFA
VA SCHPO
VA_NEUCR
VA BOVIN
VA PIG
VA HUMAN
VA_MUSMU
VA_CHIC2
VA_CHICl
VA_DROMI
VA DROM1
VA DROM2
HO HUMAN
HO_HUMAN
VA MANSE
VA MAIT
VA MAIZE
VA_BRANA
VA_CARRO
VA_VIGRA
VA_GOSHI
VA_BETVU
VA ACEAC
VA_CYACA
VA_ENTHI
VA_TRYCO
VA_TRYCO
VA_SCHPO
VA_NEUCR
VA_BOVIN
VA_PIG
VA_HUMAN
VA MUSMU
VA_CHIC2
VA CHICl
VA DROM
VA-DROM
VA-DROM1
VA DROM2
HO _HUMAN
VA MANSE
VA_HORVU
VA MAIZE
VA BRANA
VA_CARRO
VA_VIGRA
VA GOSHI
VA BETVU
VA ACEAC
VA CYAC
VA ENTHI
VA ENTHI
VA_PLAFA

1 GGDVWTVYENSFISVHKILLPPPRA KPL SVEIGPGIMGAIFDGIQRPLSDISSQTQSIYI PRGVNVSALSRDVKWDFTPCINLRVGSHITGGDIYGIVNENSLI. KHKIMLPPRN KPLSVEI GPGIMGA IFDGIORPLSDI SSQTQSIYI PRGVNVSALSRDVKWEFTPSKNLRVGSHITGGDIYGIVNENSLI. KHRIMLPPRN KPLSVDVGPGIMGAIFDGIQRPLSDI SSQTQSIYI PRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENSLI. KHKIMLPPRN KPRSVELGPGIMGAIFDGIQRPLSDISSQTQSIYI PRGVNVSALSRDIKWEFIPSIKNLRVGSHITGGDIYGIVNENSLI.KHKIMLPPRN KPLSVELGPGIMGAIFDGIQRPLSDISTLTKSIYIPRGVNVSALSRDVKWDFTPSKNLRVGSHITGGDIYGVVNENSLI.KHKIMLPPRN KPLSSVELGPGIMGAIFDGIQRPLSDI STLTKSIYI PRGVNVSALSRDVKWDFTPSKNLRVGSHITGGDIYGVVNENSLI. KHKIMLPPRN KPLSVELGPGIMGSIFDGIQRPLRDIGVMTNSIYI PKGVNTTALSRSEMWEFNP. LNVRVGSHITGGDLYGVVHENTLV.KQRMIVAPRA KPLSVELGPGIMGSIFDGIQRPLRDIGVMTNSIYI PKGVNTTALSRSEMWEFNP. LNVRVGSHITGGDLYGVVHENTLV.KQRMIVAPRA KPLSVELGPGIMGSIFDGIQRPLKDINELTESIYI PKGVNVPSLSRVASWEFNP. LNVKVGSHITGGDLYGLVHENTLV.KHKMIVNPRA KPLSVELGPGIMGSIFDGIQRPL.KDINELSNSIYI PKGVNVPALSRTAQWDFSP.VSVKVGSHITGGDLYGLVHENTLV,KHKLLLPPRA KPLSVEL.GPGILGSIFDGIORPL KDINELTQSIYI PKGVNVPSIAREVDWEFNP. LNVKVGSHITGGDLYGIVHENTLV. KHKMLMPPRA KPL SCEIGPGILGNTFDGIORPI KTTATK SRDVYI PRGVSVPALDKDOLWEPQP. NKI GVGDNITNGDLYATVFENTI M KHHIALPPGA KPLSVELGPGILGNIFDGIORPLKTIAIKSGDVYI PRGVSVPALDKDVLWEFQP. TKLGVGDVITGGDLYATVFENTLM.QHHVALPPGS KPLSVELGPGILGNIFDGIORPLKTIAKRSGDVYI PRGVSVPALDKDCLWEFQP. KDFVEGDTITGGDLYATVFENSLM.QHHVALPPDA KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP. KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYI PRGVSVPALDKDTLWEFQP.KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA
KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP.KKIGEGDLLTGGDLYATVFENTLM.QHHIALPPDA KPLISVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDTLWEFQP. KKIGEGDLLTGGDLYATVFENTLM.QHHIALPPDA
KPLSVELGPGILGNIFDGIQRPLKTIAKRSGDVYIPRGVSVPALDKDALWDFQP.KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA KPLSVELGPGILGNIFDGIQRPLKTI AKRSGDVYI PRGVSVPALDKDALWDFQP. KKIGEGDLLTGGDLYATVFENSLM.QHHVALPPDA KPL.SVELGPGILGNIFDGIQRPLKTI AKRSGDVYI PRGVSVPPLDKDTQWDFQP. KKLGVGDLLIGGDLYAIVDENSLM.QHHVVLPPDA
QPL SVDLGPGILGNIFDGIORPLKAIADVSGDVFI PRGVNVPSLDQTK*WEFRP.SAFKVGDRVTGGDIIGIVPENSLL.DHKVMLLPQA SPLSVELGPGLMGNIFDGIQRPLEKIAERSNSVFI PRGVNVPALDRKKVWEFRPADNLKVGDPITAGDIYGIVPETPLI.DHKIMLPPNQ KPLSVELGPPGIMTSIFDGIQRPLVSIAEKSGSIFI PRGISVASLDHQREWEFTPL . .VKKGDHVSGGDIIGTVPESALV.VHKILVPPTV KPLSLEL/GPGIMSEIFDGIQRPLDTIYRMVENVFIPRGVQVKSLNDQKQWDFKPC . .LKVGDLVSGGDIIGSVVENSLMYNHSIMIPPNV NAL SVELGPGILDNIYDGIQRPLERI ANVCGDVYIYKGIDMTSL DHDKQWQFYADKKLKLNDIVTGGDIFGFVDENKL FKEHKIMAPPNA

181 RGTVTYIAEAGSYHVDEKLLEVEFNGKKHSFSML.HTWPVRAARPVADNLTANQPLLTGGRVLDALYP.CVQGGTTAIPGAFGCGKTVISQ

169 RGTITRTA KKEYTVEEKIUEVEDGKITEYPIMOTVPURVRPAADKHSANOPFUVGORVITATFP SVOGGTVAIPGAFGCGKIVISQ RGTVTYIA APGNYDTSDVVLELEFEGIKEKFSMVOVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP. CVQGGTTAIPGAFGCGKTVISQ RGTVTYIAPPGNYDTSDVVLELEFEGVKEKFSMVOVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTA IPGAFGCGKTVISQ RGTVTYIAPPGNYDTSDVVLELEFEGVKEKFTMVQVWPARQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ RGSVTYIAPPGNYDASNVVLELEFEGVKEKFSMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP.CVQGGTTAIPGAFGCGKTVISQ RGTVTYIAPPGNYDTSDVVLELEFEGVKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFP, CVQGGTTAIPGAFGCGKIVISQ RGTVTYIAPPGNYDTSDVVLELEFEGVKEKFTMVQVWPVRQVRPVTEKLPANHPLLTGQRVLDALFPKHILRWKRAVFEFLA KGIVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGITAIPGAFGCGKTVISQ KGTVRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRHARPVTEKLPANHPLFTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVI SQ KGTVRYIAPSGNYKVDDVVLETEFDGEITKHTMLOVWPVRHHAPVTEKLPANHPLLTGORVLDSLFP, CVOGGTTAIPGAFGCGKTVISQ KGTVTYI AEPGNYTVDDVVLETEFDGERSKFTMLOVWPVRQPRPVTEKLPANYPLLTGQRVLDSLFP.CVQGGTTAIPGAFGCGKTVISQ KGTVTYIAPAGNYKVTDVVIETEFDGEKAOYTMLOVWPVRQPRPVTEKLPANHPLLTGQRVLDSLFP. CVQGGTTAIPGAFGCGKTVISO MGKISYIAPAGQYSLODTVLELEFOGIKKEFTMI HTWPVRTPRPVASKI AADTPLLTGQRVLDALFP. SVLGGTCAIPGAFGCGKTVISQ MGKISYIAPAGQYNLODTVI EL EFQGIKKKFTMI OTWPVR SPRPVASKI AADTPLLTGQRVIDALFP, SVLGGTCAIPGAFGCGKTVISQ MGKITYLAPAGQYSLKDTVLELEFQGVKKSFTMLQTWPVRTPRPVASKIAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ MGKITYLAPAGQYSLKDTVLELEFQGVKKSFTMLQTWPVRTPRPVASKLAADTPLLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ
MGKITYVAPAGQYSLKDTVLELEFQGVKKQFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ MGKITYVAPAGQYSLKDTVLELEFQGVKKQFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ MGKITYIAPPGQYSITDTVLELEFQGVKKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDAL.FP. SVLGGTCAIPGAFGCGKTVISQ
MGKITYIAPPGQYSLKDTVLELEFQGVKKQFTMLQTWPVRTPRPVATKIAADTPLLTGQRVLDALFP.SVLGGTCAIPGAFGCGKTVISQ MGKITYIAPAGNYTIQDTVLELEFQGVVKKFTMLQTWPVRTPRPVASKLAADTPLLTGQRVLDALFP.SVLGGTCAILGAFGCGKTVISQ KGTVTYIAAPGNYTINEKIIEVEF*GAKYEYSMKQSWPVRSPRPVVEKLLADTPLLTGQRVLDSLFP.GVRGGTCAIPGAFGCGKIVISQ MGKIVFLAPPGDYTLEDTVLEIDFNGQKKKFSMVHQWPVRLPRPVTEKLRADKPLLTGQRVLDALFP. SVQGGTCAIPGAFGCGKTVISQ MGTVTWVAEAGNYTLDDKVIGIEFNGKTEELSMAHHWPVRKPRPTAEKITSTTPLVTGQRILDSLFP.CIQGGTCAIPGAFGCGKTVISQ RGRVTSIVPSGNYTLQDDIIELEYNGTVKSLKLMHRWPVRTPRPVASKESGNHPLLTGQRVLDALFP.SVQGGTCAIPGAFGCGKTVISQ KGRLTYIAPDGSYTLKDKIFELEYQGKKYTYGLSHLWPVRDPRPVLEKVTGDTLLLTGQRVLDSLFP.TVQGGTCAIPGAFGCGKTCVSQ

270 SLSKYS.NSDLIVYVGCGERGNEMAEVLMDFPELTIDI .NGKPEPIMKRTTLVANTSNMPVAAREASIYTGITLAEYYRDQGKNVSMMAD 258 SVSKFS. NSDVIVYVGCGERGNEMAEVLKDFPELSIEV. DGRKEPIMKRTTLIANTSNMPVAAREASIYTGITVAEYFRDQGMNVAMMAD 258 SVSKFS. NSDVIVYVGCGERGNEMAEVLKDFPELSIEV. DGRKEPIMKRTTLIANTSNMPVAAREASIYTGITVAEYFRDQGMNVAMMAD 263 SL.SKYS. NSDVIIYVGCGERGNEMSEVLRDFPELTMEV. DGKVESIMKRTALVANTSNMPVAAREAS IYTGITLSEYFRDMGYHVSMMAD 263 SLSKYS. NSDVIIYVGCGERVNEMSEVLRDFPELTMEV. DGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYHVSMMAN 262 SLSKYS. NSDVIIYVGCGERGNEMSEVLRDFPELTMEV. DGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYHVSMMAD 262 SLSKYS. NSDVIIYVGCGERGNEMSEVLRDFPELTMEV. DGKAESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYHVSMMAL 262 SLSKYS.NSDVIIYVGCGERGNEMSEVLRDFPELTMEV. DGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYHVSMMAD 255 NQSPFSLLSDVIIYVGCGERGNEMSEVLRDFPELTMEV.DGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYHVSMMAD 259 ALSKYS. NSDVI IYVGCGERGNEMSEVLRDFPELTCDI . DGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVAMMAD 259 AL.SKYS, NSDVIIYVGCGERGNEMSEVI RDFPEITCEI, DGVTESIMKRTALVANTSNMPVAAREASIYTGITL SEYFRDMGYNVAMMAD 259 A SKYS NSDVIIYVGCGERGNEMSEV RDFPEL SVEI DGVTESTMKRTALVMNTSNMPVAREASTYTGITU SEYFRDMGYNVSMMAD 260 S! SKYS, NSDVI IYVGCGERGNEMSEVI RDFPOL SLEI. DGVTESTMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMAD 262 ALSKYS, NSDVI IYVGCGERGNEMSEVLRDFPELTVEI. EGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDMGYNVSMMAL 221 ALSKYS .NSDTVVYVGCGERGNEMAEVLMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMAI 202 AL.SKYS. NSEAVVYVGCGERGNEMAEVIMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMAD 264 AL.SKYS .NSDAVVYVGCGERGNEMAEVLMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMAD 264 AL.SKYS. NSDTVVYVGCGERGNEMAEVIMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMAD 264 ALSKYS . NSDAVVYVGCGERGNEMAEVLMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITLAEYFRDMGYNVSMMAD 264 ALSKYS.NSDAVVYVGCGERGNEMAEVIMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYTGITIAEYFRDMGYNVSMMAD 264 ALSKYS.NSDAVVYVGCGERGNEMAEVLMDFPQLTMTLPDGREESVMKRTTLVANTSNMPVAAREASIYIGITIAEYFRDMGYNVSMMAD 250 ALSKYS.NSDGIVYVGCGERGNEMAEVLMDFP*LTMTMPDGREESIMKRTTLVANTSNMPVAAREAS IYTGITLSEYFRDMGYNFAMMAD 255 ALSKFS.NSDGIVYVGCGERGNEMAEVLKDFPELTMTVGD.REESIMKRTLLVANTSNMPVAAREASIYTGITVSEYYRDMGLNISMMAD 254 AL.SKYS. NSDVIIYVGCGERGNEMAEVLRDFPAI SIKVGD. KEESIMTRTALVANTSNMPVAAREASIYTGITLSEYYRDMGYNVAMMAD ALSKFS. NSDAVIYVGCGERGNEMAEVI MDFPTLTT. TVIDGREESIMKRTCLVANTSNMPVAAREASIYTGITLAEYYRDMGKHIAMMAD AL.SKYS. NSEVIIYVGCGERGNEMAEILSDFPEL/TTKV. DNEDVGIMQRTCLVANTSNMPVAAREASIYTGITLCEYFRDMGYNATMMAI

VA_SCHPO
VA_SCHPO
VA NEUCR VA PIG
VA_HUMAN
VA MUSMU
VA_CHIC2
VA CHIC1
VA_DROM1
VA DROM1
VA DROM2
HO HUMAN
VA MANSE
VA MANSE
VA HORVU
VA MAIZE
VA BRANA
VA_CARRO
VA_VIGRA
VA_GOSHI
VA BETVU
VA_ACEAC
VA_CYACA
VA_ENTHI
VA_TRYCO
VA PLAFA
VA_SCHPO
VA NEUCR
VA BOVIN
VA $_$PIG
VA HUMAN
VA MUSMU
VA CHIC2
VA_CHICl
VA DROM1
VA DROM1
VA DROM2
HO HUMAN
HO_HUMAN
VA MANSE
VA HORVU
VA MAIZE
VA BRANA
VA_CARRO
VA_VIGRA
VA_GOSHI
VA_BETVU
VA ACEAC
VA CYACA
VA ENACA
VA ENTHI
VA PLAFA
VA_SCHPO
VA_NEUCR
VA_BOVIN
VA_PIG
VA_HUMAN
VA MUSMU
VA_CHIC2
VA_CHIC1
VA CHIC1
VA-DROMI
VA DROM1
VA DROM2
HO_HUMAN VA_MANSE VA_HORVU VA MAIZE VA_BRANA VA_CARRO VA_VIGRA VA_GOSHI VA_BOSTVI VA-BETVU VA ACEAC VA_CYACA VA_ENTHI VA_TRYCO
VA_PLAFA

VA_SCHPO VA NEUCR
VA BOVIN
VA PIG
VA_HUMAN
VA_MUSMU
VA CHIC2
VA CHIC1
VA DROMI
VA DROM1
VA DROM2
HO HUMAN
VA MANSE
VA HORVU
VA MAIZE
VA BRANA
VA CARRO
VA VIGRA
VA_VIGRA
VA_GOSHI
VA BETVU
VA ACEAC VA_CYACA VA ENTHI VA_TRYCO
VA_PLAFA

358
346 351 STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKL 351 STSRWAEALREISGRL,AEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVTIVGAVSPPGGDFSDPVTSATLGIVQVFWGLDKKL, 440 AORKHFPSTNLTSYSKYMRALDDFYKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLOQNSYSPYD 400 AQRKHFPSVNWLISYSKYSTALEGYYEKFDPGFIDMRTKAREVLQREDDLNEIVQLVGKDALGESDKITLETAKLLREDYLAQNAFTPYD381443
443 443 AQRKHFPSVNWLISYSKYSTALESFYEKFDSDFIDIRTKAREVLOREDDLNEIVQLVGKDALAEGDKITLETAKLLREDYLAQNAFTPYD 443 AQRKHFPSVNWLISYSKYSTALESFYEKFDSDFIDIRTKAREVLOREDDLNEIVQLVGKDALAETDKITLETAKLLREDYLAQNAFTPYD 443 AQRKHFPSVNWLISYSKYSTALESFYEQFDPDFINIRTKAREVLOREDDLNEIVOLVGKDALAEGDKITLETAKLLREDYLAQNAFTPYD 443 AQRKHFPSVNWLISYSKYSGALESFYEKFDPDFISIRTKAREVLQREDDLNEIVQLVGKDALAETDKITLETAKLLREDYLAQNAFTPYD
\qquad 435 AQRKHFPAVNWNISFSKYIKSLDSYYNSKDEEFVPLRDKIKEILQMEEGLLQIVQLVGQDSLAETDKLTLEIARVIKDDFLQQNSYTPYD 434 AQRKHFPSVNWSTSFSKYVRQLEQYFDNFDQDFLSLRQKISDILQQESDLNDIVQLVGKDSLSEDQKVVMEVAKIIREDFLQQNAFSDYD

538 RCCPLYKTYHMMRNMIAYYTKAKSAVETG 26 QFCPIWKTEWMMKLMMGFHDEAQKAIAQG. Q 531 RFCPFYKTVGMLSNMIAFYDMARRAVETTAQ. . SDNKITWSI IREHMGEILYKLSSMKFKDPVKDGEAKIKADYAOIQEMLDKFASVI 531 RFCPFYKTVGMLSNMIAFYDLARRAVETTAQ...SD
 530 RFCPFYKTVGMLSNMISFYDMARRAVETTAQ. . SDNKITWSITREHMGETLYKISCMKFKDPVKDGEAKIKADYAOL 530 RFCPFYKTVGML SNMIAFYDMRRRAVENTAQ , SDNKTTWSI TRENMSEILYRLTSMKFKDPVKDGETKTKADYAOLFEDMONAFRSLE 524 RFCPFYKTVGM SNMTAFYDMPRRAVTNTAO 527 RVCPFYKTVGML RNIMAFYETARHAVESTAQ. 527 RVCPFYKTVGMLRNIMAFYETARHAVESTAQ. 527 RVCPFYKTVGMLRNIMAFYETARHCLESTAQ. 527 RFCPFYKTVGMLRNI IDFYDMARHSVESTAQ. 528 RFCPFYKTVGMLKKNMIAFYDMSRHAVESTAQ. 530 RFCPFYKTVGMLKNIISFYDMSRHAVESTAQ. 490 KYCPFYKSUWMMRNI IHFNQLANQAVERAAN. 471 KFCPFYKSVWMMRNIIHFNTLANQAVERAAG. 533 KFCPFYKSVWMMRNIIHFYNLLANQAVERGAG. 533 KFCPFYKSVWMMRNIIHFYNLANQAVERGAG.
\qquad

\qquad

\qquad CPFYKSVWMMRNIVHFNALANQAVEKAAG, 53 KFCPEYKSVWMMRNI THFYNL ANOAVERGAG 518 KYCPFYK SVGMMRNIIFTFHRLANQAVERGAG. 518 KYCPFYKSVGMMRNIVTFHRLATQAIERTAAGNVDGQK TTFNI IKAKIGDLLYKVSS*KFEDPS. DGEGVVTAHI NEI NEEIKEKFRALE 523 RFCPFYKSVLMLRNMTHFYELANKAVE, . . . GSGEQHLTLAQIKEQMGETIYKISGMKFLDPA.QGWSLF
522 FSCPFYKTCGIIRNI IHFYNEAFQALSVD. . . YEDHKITWATIKSAMSDLLVRISRMKYEEPS.QGEQVINEKYGEL YRDITTRFATLL

Figure 4.5A. Alignment of known V-Al'Pase A subunits (VA) aa sequences. All sequences are deduced from cDNAs. The source tissues, accession number and references for each sequences are list below:

VA_SCHPO: fision yeast, Shdzoxachanomycesponbe, X68580 (Ghislain et th, 1992);
VA_NEUCR: Netuoponacmasz J03955 (Bowman etol, 1988);
VA_BOVIN: Bospminiygeniustaurus X58386 (Pan etal, 1991);
VA PIG: Suscmpfa, X62338 (Sander et al., 1992);
VA_HUMAN: Homosquizens, isofomVA68, I. 09235 (vanHille etall, 1993b);
VA_MUSMU: MAs muxulus, U13837 (Laitala etal, 1986);
VA_CHIC1:Chicken, Gellesgalhes Al isofom, U22077 (Hernando, 1995);
VA_CHIC2: Chicken, Githesgallus, A2 isoform, U22076 (Hernando, 1995);
VA DROMI: Dmosphila melanngaser, isoform rha68-1, U19745 (Guo etch, 1996d);
VA DROM2: Drasquilumeluogater, isoform vhu682, U59146(Guo etal, 1996d);
VA DROM1': Drosophila melonogater, isoform 2 h668-2, U19742 (Chio etal, 1995);
HO_HUMAN: homostpiens, isofoum HO68, L09234 (vanHille etch, 1993b);
VA_MANSE: Manducasextr X64233 (Cuä fetal, 1992);
VA BRANA: Braxica napus, U15604 (Onetal, 1995);
VA_CARRO: cartot, Daucus catobt, 103769 (Zimnialk etd, 1988);
VA_VIGRA: Vignamoliatu, U26709 (Chinetal, 1995);
VA_GOSHI: Gnsyphum hinsutum, L03186 (Vilkins, 1993);
VA HORVU: Barky, Hordeum vulyyre, U36939;
VA_MAIZE: Zatwass, U36436;VA_ACEAC: Acoubullaria tatatamuthom D50528;
VA_ACEAC. Actabulariacuexbulum D50528;
VA CYACA: Cjuniditun ouldarum, U17100 (Ziegere etch, 1995);
VA_ENTH: Entamaebahisthyiacll U04849 (Yi etal, 1994).
VA_PLAFA: Plasmodiumfalciperum, A48582 (Karzetal, 1993);
VA_BETVU: Beala vulararis X98767;
VA_TRYCO: Typanosoma comolene, Z25814.

Figure 4.5B Phylogenetic tree of V-ATPase A subunits. This figure was generated by ClustalW and N -J plot from the multiple alignment in Figure 4.5A.. See the legend of Figure 4.5 A for the sources of aa sequence.

4.3.4 Homology of wha68 to subunit A of V-ATPases from other sources

The alignment in figure 4.5A showed both isoforms share high homology with V-A'T'Pase A subunit of other organisms. There is greater than 60% identity at the aa level for all the compared scquence of the V-ATPase A-subunits. Figure 4.4B is the phylogenetic tree of the V-ATPase A-subunits generated by GCG, ClustalW and N-J plot.

4.3.5 Comparison of vha68 to β chain of F-ATPase

Alignment of the two isoforms of Drosophila V-ATPase A subunit with several β-chains of F-ATPascs, including that of Drosophila, is shown in Figure 4.7 In general, the VATPase subunit shows significant homology to that of F-ATPases.

The homology is remarkably evident in the region that has already been identified in F0F1-A I' Pases as areas of probable importance for function or assembly (Zimniak, et at., 1988; Taiz et al., 1994). The most important of these is the proposed nucleotide binding site; GXXXXGKT and RXXXGXXXX***D. (* represents hydrophobic residents) are well conserved in both isoform (marked in bold in Figure 4.6). The homology between VATPase and F-ATPase of Drosopbila proved again that the catalytic subunits from the two classes of ATPase share similar structure for the catalytic domain.

4.4 Genomic structure analysis of wha68-2

4.4.1 Restriction mapping of genomic DNA and subcloning

Four recombinant phage were isolated from an EMBL3 genomic DNA library by hybridisation with a wha68-1 cDNA probe. DNAs prepared from each recombinant phage were cleaved first with $S a l I$ and it was found that the four clones contain an

FB HUMAN FB BOVIN FB_RAT FB_DROME VA DROM1 VA DROM2 VA MANSE HO_human VA human

FB_HUMAN FB_BOVIN FB_RAT FB_DROME VA_DROM1 VA DROM2 VA MANSE HO_human VA human

B BOVIN FB RAT FB_RAT FB_DROME VA - DROM1 VA_DROM2 VA MANSE HO_human VA human

FB_HUMAN FB_BOVIN FB_RAT FB_DROME FB_DROME VA_DROM1 VA_DROM2 VA_MANSE HO human VA human FB_HUMAN FB_BOVIN FB_RAT FB_DROME VA DROMI VA DROM2 VA MANSE VA_MANSE HO human VA_human FB_HUMAN FB_BOVIN FB_RAT FB_DROME VA DROM1 VA DROM2 VA MANSE HO human VA human FB HUMAN FB_BOVIN FB_RAT FB_DROME VA DROM1 VA_DROM2 VA MANSE HO human VA human

FB_HUMAN FB BOVIN FB RAT FB_DROME VA DROM1 VA DROM2 VA MANSE HO_human VA human

Abstract

 MLGLVGRVVAAS . . ASGALRGLSPSA . .PLPQAQLLLRAAPAALQPARDYAAQAS PSPKAGAT MLSLVGRVASAS . ASGALRGLNPLAA . ALPQAHLLLIRTAPAGVHPARDYAAQSS AAPKAGTA MLSLVGRVASAS . ASGALRGLNPLA. . ALPQAHLLLIRTAPAGVHPARDYAAQSS AAPKAGTA MSNLKRFDDEERESKYGRVFAVSGPVVTAEAMSGSAMYELVRVGYYELVGEIIRLEGDMATIOVYEETSGVTVGDPVLRTGKPLSVE MASKGGLKTIANEENEERFGYVFAVSGPVVTAEKMSGSAMYELVRVGYNELVGEIIRLEGDMATIQVYEETSGVTVGDPVLRTGKPLSVE .MTSTLIKTSDEDRESKFGFVFAVSGPVVTAERMAGSAMYELVRVGYYELVGEIIRLEGDMATIQVYEDTSGVTVGDPVLRTGKPLSVE .MDFSKLPKILDEDKESTFGYVHGVSGPVVTACDMAGAAMYELVRVGHSELVGEIIRLEGDMATIOVYEETCGVSVGDPVLRTGKPLSVD

60 TGRIVAVIGAVVDV 60 TGQIVAVIGAVVDV. QFDEGLPPILNALEVQGR 7 NGKIVAVIGAVVDVOFDDNLPPILNALEVQGR NGKIVAVIGAVVDV QFDDNLPPILNALEVDNR. LGP, GIMGSIFDGIORPLRDIGVMTNSIYIPKGVIT.SPRLVLEVAOHLGENTVRTIAMDGTEGLVRGOKVIDTGYPIR LGP.GMI LGP.. GIMGSIFDGIQRPLKDINELTESIYIPKGVNVPSLSRVASWEFNP, LNVKVGSHITGGDLYGLVHENT . . LVKHKMIVNPRAKGI LGP . .GILGSIFDGIQRPLKDINELTQSIYIPKGVNVPSLAREVDWEFNP. LNVKVGSHITGGDLYGIVHENT . . LVKHKMLMPPRAKGI LGP. .GIMGSIFDGIQRPLKDINELSNSIYIPKGVNVPALSRTAQWDFSP.VSVKVGSHITGGDLYGLVHENT . .LVKHKLLLPPRAKGT VGP. . GIMGAIFDGIQRPLSDISSQTQSIYIPRGVNVSALSRDIKWDFTPCKNLRVGSHITGGDIYGIVSENS . .LIKHKIMLPPRNRGT

134 IP.VGPETLGRIMNVIGEP. .IDERGPIKTKQFAPIHAEAPEFMEMSVEQEILVTGIKVVDLLAPYAKGGKIGLFGGAGVGKTVLTMEL I 134 IP.VGPETLGRIMNVIGEP. .IDERGPIKTKQFAAIHAEAPEFVEMSVEQEILVIGIKVVDLLAPYAKGGKIGLFGGAGVGKTVLIMEL.I 134 IP.VGPETLGRIMNVIGEP. .IDERGPIKTKQFAPIHAEAPEFIEMSVEQEILVIGIKVVDLLAPYAKGGKIGLFGGAGVGKTVLIMELI 111 IP,VGAETLGRIINVIGEP. . IDERGPIDTDKTAAIHAEAPEFVQMSVEQEILVTGIKVVDLLAPYAKGGKIGLFGGAGVGKTVLIMELI 173 VRYIAPAGNYNLEDIVLETEFDGEITKHTMLQVWPVRQARPVTEKLPANHPLF.TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQALS 173 VRYIAPSGNYKVDDVVLETEFDGEITKHTMLQVWPVRHHAPVTEKLPANHPLL.'TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVI SQALS 176 VTYIAPAGNYKVTDVVLETEFDGEKAQYTMLQVWPVRQPRPVTEKLPANHPLL. TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQALS 174 VTYIAEPGNYTVDDVVLETEFDGERSKFTMLQVWPVRQPRPVTEKLPANYPLL. TGQRVLDSLFPCVQGGTTAIPGAFGCGKTVISQSLS 176 VTYIAPPGNYDTSDVVLELEFEGVKEKFTMVQVWPARQVRPVTEKLPANHPLLL. TGQRVLDALFPCVQGGTTAI PGAFGCGKTVI SQSLS

21 NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV. 1 NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV. 221 NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV.
. ALVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFID NNVAKAHGGYSVFAGVGERTREGNDLYHEMIESGVINLKDATSKV ALVYGQMNEPPGARARVALTGLTVAEYFRDQEGQDVLLFID 262 KY . 262 KY . 265 KY... SNSDVIIYVGCGERGNEMSEVLRDFELSV.EIDGVYESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYNVSMMAD $265 \mathrm{KY} \ldots$. .SNSDVIIYVGCGERGNEMSEVL.RDFPELTV. EIEGVTESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYNVSMMAD 265 KY . . SNSDVIIYVGCGERGNEMSEVLRDFPELTM. EVDGKVESIMKRTALVANTSNMPVAAREASIYTGITLSEYFRDM.GYRVSMMAD

307 NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITMTK... 307 NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTKK.. . 307 NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGTMQERITTTTK.
284 NIFRFTQAGSEVSALIGRIPSAVGYQPTLATDMGSMQERITTTK.
284 NIFRFTQAGSEVSALLGRIPSAVGYQPTLATDMGSMQERITITK. KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI KGSITSVQAIYVPADDLTDPAPATTFAHLDATTVLSRAI , 347 STSRWAEAL RET SGRT AEMPRDSGYPAYTGARI A SFYERAGRVKCI GNPEREGSVSIVGAVSPPGGDFSDPUTSATLGTVQVIVG
 348 STSRWAEALREI SGRLAEMPADSGYPAYLGARLASFYERAGRVKCL/GNPDREGSVSIVGAVSPPGGDFSDPVTTATLGIVOVFWGLDKKL 350 STSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLGIVOVFWGLDKKL

390 AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDI IAILGMDEL.SEEDKLTVSRARKIQRFLSQPFQVAEVF 390 AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDI IAILGMDELSEEDKLTVSRARKIQRFLSQPFQVAEVF 390 AELGIYPAVDPLDSTSRIMDP NIVGSEHYDVARGVQKILQDYKSLQDI IAILGMDEL SEEDKLTVSRARKIQRFLSQPFQVAEVF 367 AELGIYPAVDPLDSTSRIMDP. . . . NIIGQEHYNVARGVQKILQDYKSLQDI IAILGMDELSEEDKLTVARARKIQRFLSQPFQVAEVF 437 AQRKHFPSINWLISYSKYMRALDEYYDKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKVTL EVAKLLKDDFLQQNSY 437 AQRKHFPSINVLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITLEVAKLLKDDFLQONSY 440 AQRKHFPSINVLISYSKYMRALDDFYEKNYPEFVPLRTKVKEILQEEEDLSEIVQLVGKASLAETDKITL. . . . EVAKLIKDDFLQONSY 438 AQRKHFPSINWLISYSKYMRALDDFYDKNFPEFVPLRTKVKEILQEEEDLSEIVOLVGKASLAETDKITL. . . .EVAKLLKDDFLQQNSY 440 AQRKHFPSVNWLISYSKYMRAL.DEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKITL EVAKLIKDDFLQQNGY

475 TGHMGKLVPLKETIKGFQQI . LAGEYDHLPEQAFYMVGPIEEAVAKAD. .KLAEEHSS .
475 TGHLGKLVPLKETIKGFQQI. LAGEYDHLPEQAFYMVGPIEEAVAKAD. .KLAEEHS.
475 TGHMGKLVPLKETIKGFQQI. LAGDYDHLPEQAFYMVGPIEEAVAKAD. .KIAEEHGS. 452 TGHAGKLVPLEQTIKGFSAI. LAGDYDHLPEVAFYMVGPIEEVCRKAD. .RIAKEAA. 523 SPY. DRVCPFYKTVGMLRNIMAFYETARHAVESTAQSDNKITWNTIRESMGGIMYQLSSMKFKDPVKDGEQKIKADYDQLYEDLQQAFRN 523 SSY. DRFCPFYKTVGMLRNIIDFYDMARHSVESTAQSENKITWNVIREAMGNIMYQLSSMKFKDPVKDGEAKIKADFEQLHEDLQQAFRN 526 SSY. DRFCPFYKTVGMLKNIISFYDMSRHAVESTAQSDNKVTWNVIRDAMGNVLYQLSSMKFKDPVKDGEAKIKADFDQLLEDMSAAFRN 524 SPY. DRFCPFYKTVGMLKNMIAFYDMSRHAVESTAQSENKITVNVIRDSMGNILYQLSSMKFKDPVIKDGEAKIKADFEQLHEDIQQAFRN 526 TPY.DRFCPFYKTVGML SNMI AFYDMARRAVETTAQSDNKITWSIIREHMGDILYKLSSMKFKDPLKDGEAKIKSDYAOL LEDMQNAFRS

612 LED.
612 LED.
615 LED.
613 LED.
615 LED*

Figure 4.6 Alignment of the V-ATPase A subunit (VA) and F-ATPase β subunit (FB).
All sequences are deduced from cDNA: The source tissues, accession number of FB and references are listed below: FB_HUMAN: homosppiers, P06576; FB_BOVIN: Bos primigenius taurus

P00829; FB_RAT: P10719, FB_DROME: Dmosphilamelonogater, Q05825. Seethe legend of Figure 4.5 for those of V-ATPase. The proposed nucleotide binding sites are marked in bold.

Figure 4.7 Restriction map of genomic ph68A. (A) photo of agarose gel in which the phage ph68A was cleaved by various enzymes. S, Sal1; E, EcoRI; B, BamHI; S/E, Sal I/EcoRI; S/B, Sal1/BamH1; E/B, EcoRI/BamHI. (B) The blot of the gel A hybridised with wha68-1 cDNA. (C) Digestion map of ph68A deduced from the (A) and (B). Fragments which hybridised to the probe were subcloned into pBluescript SK^{-}. Black indicated hybridising fragments
identical genomic fragment of 12 kb long. ph68A was then chosen for constructing the restriction map. The DNA was cleaved with SalI, EcoRI, BamHI and every possible double digestion of the three enzymes (Figure 4.6). Fragments that hybridised to wha68-1 cDNA were subcloned into pBluescript SK-. (See Figure 4.7).

4.4.2 Genomic DNA analysis

The four subcloncs of genomic DNA shown in Figure 4.7 were sequenced, first by T3 and T7, then with synthesised oligo nucleotide primers. 4405 bp of genomic DNA has been sequenced, comprising $68 \mathrm{~kg}-5,68 \mathrm{~kg}-7$ and part of $68 \mathrm{~kg}-9$ sequences (Figure 4.8). Although ph68A was identified by a wha68-1 cDNA probe, the genomic sequence actually appears to be correspond to vha68-2 (Figure 4.8). Moreover, the digestion map and the sequence of ph68A is corresponded to the genomic DNA in the rescued plasmid from fly line $\mathrm{l}(2) \mathrm{k} 02508$, suggesting that the $\mathrm{P}[$ lac $W]$ insertion in this line is in wha68-2, rather than in vha68-1 (See Chapter 5).

4.4.3 A comparison of the $w h a 68-1$ and $w h a 68-2$ genes.

It is clear from this work and from Choi et al (1995) that there are two wha68 genes encoding the D. melanogaster V-ATPase A subunit. wha68-2 cDNA was punctured by 4 introns of $1165,405,108$ and 66 bp at nucleotides 66-67, 166-167, 864-865 and 18431844 of the cDNA (Figure 4.4, 4.8and 4.9). The first intron is at 23 bp upstrcam of the ATG translation start sitc. The other three introns are within the coding sequence. Unfortunately, among the 4 genomic fragments identified by a wha68-1 probe, none of them corresponded to wha68-1. However, a partial genomic sequence corresponding to vha68-1 has been reported (Choi et al., 1995; GenBank accession number: U19742), which makes it possible to compare the genonnic structure of the two different genes. Instead of having 4 introns wha68-1 has 3 introns at nucleocides 31-32, 163-164 and 1840-1841 of the cDNA. (Figure 4.4, 4.9). The first intron is at 59 bp upstream of the
gtc gac gtt tta tet ctg egg ctc agt cgg tet tag THC GTT CNG TTG GAG AAA RGC AGC 61 91. AAT CAC ACG TTC GCA AGG TGA ACG CGA AGA CAC AGC AAA gta age cet tcc scc cac caa 121 151 cac aca cac sca coc ada gca aat dag taa aaa taa ata atg gaa tgg ctor gaa gac ggt 181211 tet ggg cga ttt aaa caa tea gcg aan gaa agc ggc att gaa atc cgt ctt gaa btc gec 241 271
cag aad adg tga cga age age gat bad agc gca gag caa aac acg cac aca gac tgc aag 301 331
tgt gtt aca taa taa gty cag cac ang tcc aca ctt gag taj aat aat cece taa aaa age 361391
cya ata tca att agt tht cca agg age tog aaa aag tge cgg tat gaa aac gtg aaa att 421451
toc geg tgg ana att ate tec cot tgt cag etg acc esc the ecc gtg tec get coa toc
481 511
etg teg cac cge ggg tet tgt gat ege ege cge tet tge get egc the cicc tec cat tec
541. 571
gaa act oga aac aga agt ggg agt tat teg tat toc gat dat gan ana coa ata tgg aga
601631
acg age gac gta daa aag gag gec caa aga tet tha cca ttt coc tta cac act tte tet
$661 \quad 691$
tca ttt gtc age lga cgg caa tga cag tag tct tgt gat caa cogt daa aag caa tig taa
72 J 751
aat att dga act cga atg gag age gag aga gce aga gog aga gtt get etce cca ctc cac 7B1 811
cet ctc ttg tet tec ttt get gat aat tat gaa aace ecg cat att trg aaa aac atg cat 841871
ttc agt tac att cet ceg teg aat thg tca acc tgt ggt tgt tht ttc aca get ctt att 901931
tta tet att tag cga tea get tga caa a't got toc toc gaa ctt tea aag ctc tgt cac 961991
gtg aaa cga aag ctc tgc tot taa agt tit acg cag cat akt caa aga agg gga gtt aae
10211051
aaa aat aat taa atc aat cga at tat tag stg cta acc tac aac tot ata acc tat ant $1081 \quad 1111$
cga aad ttt ggg age tut ggg etg tac aad aac tha ace tgt ada tgt agc aga tac acc 11411171
 12011231
 1261. 1291/2
gCa gTC GAA AAA ACA GAA TAA AGC AAA ATG TCC AAC CTT AAG DOT TTC GAT GAT GAG GAG 1321/1.2 1351/22
CGT GAG TCC AAA TAT GGA CGT GIC TYC GCT GTC TCC GGi cCT Ggt aag cac cta act ata $\begin{array}{llllllllllllll}R & E & S & K & Y & G & R & V & F & A & V & S & G & P\end{array}$ 1381 1411
otg agt anc cat ade tca tge tat cta aax gtt adt aad ant aaa tha ata ata cot gtg 1441147.
aac tea aac cta gic tag aac sta cac bic lgi glg aaa taa tgg caa ct: tag aaa togt 1501/501 1531/511
gtc cac cta tet gtg att act att caa aca act coa aca tog gtt toa tha toc aaa att 1561/521 1591/531
aad tgt gaa taa tet taa taa tha att aat tgt ttc tet aaa ote tut tct ata att cta 1621/541 1651/551
 1681/561 1711/571
gaa atg gaa cot atc ttg gtt gge aan gtt ata ana act tct tga atg aaa tgt atc ccc $1741 / 581$ 1771/27
cct aac cca acc adc egt the att cen gTC GTC ACC GCC GAG GCC NTCG TCT GGA TCA GC1 $\begin{array}{lllllllll}V & V & T & A & \mathrm{E} & \mathrm{A} & \mathrm{M} & \mathrm{G} & \mathrm{G} \\ \mathrm{S} & \mathrm{A}\end{array}$ 1831/47
ATG TAC GAG TTG GTC CGC GRC GGC TAC TAC GAG CTE GTG GCK GAG ATC ATC CGT CTG GAG
 1861/57 1891/67

1921/77
GRG CIG CGT ACC GGC AAG CCT CTT TCC GTG GAG CTG GGA CCC GGT ATC ATG GGC AGC ATC
 1981/97 2011/107
TTT GAC GGT ATC CAG CGT CCC CTG AAG GAC ATT AAC GAG CTG ACC GAA TCC AIC TAC ATM $\begin{array}{lllllllllllllllllll}\mathrm{F} & \mathrm{D} & \mathrm{G} & \mathrm{I} & \mathrm{Q} & \mathrm{R} & \mathrm{P} & \mathrm{L} & \mathrm{K} & \mathrm{D} & \mathrm{I} & \mathrm{N} & \mathrm{E} & \mathrm{L} & \mathrm{O} & \mathrm{E} & \mathrm{S} & \mathrm{I} & Y \\ \mathrm{I}\end{array}$ 2041/117 2071/127
CCC AAG GGT GTG AAC GRG CCC AGM IU'G ICCC CGC GTG CCC AGC tGG GAG THC AAC CCC CTG 2101/137 2131/147
AAC GTC AAG GTC GGC TCC CAC ATC ACC GGA GGT GAC CTG TAC GGT CTG GIG CAT GAC AAC
 21.61/157 2191/167

ACT CTG GTC AAG CAC AAG ATG ATT GTE AAC CCC CGC GCC AAG GGA ACA GTG CGC TAC ATC
 2221/177 2251/1.87
GCC CCC TCC GGC AAC TAC AAG GTC GAC GAE GTC ETC CTG GAG ACC GAG TTC GAT GGA GAG $\begin{array}{lllllllllllllllllllll}\text { A } & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{N} & \mathrm{Y} & \mathrm{K} & \mathrm{V} & \mathrm{D} & \mathrm{D} & \mathrm{V} & \mathrm{V} & \mathrm{L} & \mathrm{B} & \mathrm{T} & \mathrm{E} & \mathrm{F} & \mathrm{D} & \mathrm{G} & \mathrm{E}\end{array}$ 2281/197 2311/207 atc acc ang cac ace alg dut cag grg tge cca gtg cat cac cac gct cec grg acc gat $\begin{array}{lllllllllllllllll}\mathrm{I} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{T} & \mathrm{M} & \mathrm{L} & \mathrm{Q} & \mathrm{V} & \mathrm{W} & \mathrm{P} & \mathrm{V} & \mathrm{R} & \mathrm{H} & \mathrm{H} & \mathrm{A} & \mathrm{F} \\ \mathrm{V} & \mathrm{V} & \mathrm{T} & \mathrm{E}\end{array}$ 2341/217 2371/227
AAG CTG CCC GUC AAC CAC CCC CTG CTC ACC GGA CAG CGT GTG CTC GAC TCG CTC 'VIC CCC

```
2401/237 2431/247
```

HGT GTC CAG OCC GGT ACC ACC GCC NTT CCC GGA GCT TUC GGT TGC GGC ADG ACT GTG ATC
 2461/257 2491
TCG CAG gtg aga gte cea caa att gag aat tta agg agc gat gce teg tgt agc cte cat S Q
25212551
aca cte aag tot cat aaa aac aca ate cet aat aaa tea tht act tge thg cacg GeT CTG
2581/261 2611/271
tCC AAG tac tcc anc tcc gat grc atc atc tac gic ggi tgc ggr gag cgi ggt anc gag

ATG ACT GAG GNA CTG CGI GAC TUTC CCC GAG CTG 'ICC GIG GAG ARC GAT GGT GTG ACC GAG
 2701/301 2731/311
rec Aic ATg Ang CGT ACC GCC CIT GIG GCC AAC ACC TCC AAC ATG CCT GTG GCT GCT CGA $\begin{array}{lllllllllllllllllllll}\mathrm{S} & \mathrm{I} & \mathrm{M} & \mathrm{K} & \mathrm{R} & \mathrm{T} & \mathrm{A} & \mathrm{L} & \mathrm{V} & \mathrm{A} & \mathrm{N} & \mathrm{T} & \mathrm{S} & \mathrm{N} & \mathrm{M} & \mathrm{Z} & \mathrm{V} & \mathrm{A} & \mathrm{A} & \mathrm{R}\end{array}$ 2761/321 2791/331
GAC GCC TCC ATC TAC ACT GGT NTC JCC TUG TCC GAA TAC TTC CGT GAT ATG GGT TAC AAC
 2821/341 2851/351
gTo tce atg atg gct gat tce acc tcc cgr tge gcl gag get ctr cgr gai att tct get $\begin{array}{llllllllllllllllllll}V & S & M & M & A & D & S & T & S & R & W & A & E & A & L & R & E & I & S & G\end{array}$ 2881/361 2911/371 CGT CTC GCT GAG ATG CCT CGC GAT TCC GGC mAC CCA GCC TAC TTG GGA GCl CGU ClG GCC
 2941/381 2971/391
TCC TTC THC GAG CGT GCC GGT CGC GTT NAG TGC TTG GGT NAC CCC GAG CGC GAG GGA TCC
 $3001 / 4013031 / 411$
GTG TCC ATT GTC GGA GCT GTG TCR COT CCT GGT GGE CAC TRC TCC GAT CCC GTA ACC TCC $\begin{array}{lllllllllllllllllll}V & S & I & V & G & \mathrm{~A} & \mathrm{~S} & \mathrm{P} & \mathrm{F} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{F} & \mathrm{S} & \mathrm{D} & \mathrm{P} & \mathrm{V} & \mathrm{T} & \mathrm{S}\end{array}$ 3061/421 3091/431
GCC ACT CTE GGT ATC GTG CAG GTG TTC TGG GGT CTC GAC AAG AAG TTG GCC CAG CGC AAG

3121/441 3151/451
cat trc ccc tcg atc adc tgg otc atc tcc tac tog afg tac atg cgi gct cing gat gac

| | |
| :---: | :---: | $3181 / 461 \quad 3211 / 471$

mTC TAT GAC AAG AAC TTC CCG GAA FTC GTG CCG OTG CGT ACC AAG GTC AAG GAG ATC CTG $\begin{array}{llllllllllllllllllll}\mathrm{F} & \mathrm{Y} & \mathrm{D} & \mathrm{K} & \mathbb{N} & \mathrm{F} & \mathrm{P} & \mathrm{E} & \mathrm{F} & \mathrm{V} & \mathrm{P} & \mathrm{L} & \mathrm{R} & \mathrm{T} & \mathrm{K} & \mathrm{V} & \mathrm{K} & \mathrm{E} & \mathrm{I} & \mathrm{L}\end{array}$ 3241/481 3271/491 cag gag gag gag gat cte tct gag atc gig can ctg gTc gGc anc goc tct ctc gec gat

3301/501								33	1/511								
ACC GAC AAG	ATC	ACG	crg	gAG	GTG	GCC	AAG	CTG	CTG	Aag	GAC	gat	TTC	CTG	CAG	CAG	$\mathrm{A} A \mathrm{C}$
T D K	I	T	L	E	V	A	K		L	K	D	D	F	ப	\bigcirc	Q	N
3361/521								339	/ 531								
TCC TAC TCC	TCG	TAC	GAT	CGC	TTC	TGC	CCC	тTC	tac	AAG	ACC	grg	GGC	Ar'g	TTG	AgG	AAC
$5 \mathrm{Y} \quad \mathrm{S}$	s	Y	1	R	F	c	P	F	Y	K	T	V	G	M	L	\square	N
3421/541								345	1/551								
ATC ATC GAC	$1{ }^{1} 1 \mathrm{C}$	PAC	GAC:	ATG	GCC	CGT	cac	тCC	GTG	GAG	TCT	RCG	GCT	CAG	TCT	GMG	AAC
I I D	F	Y	D	M	A	R	H	5	V	E	5	T	A	Q	\$	E	N
3481/561								351	1/571								
AAg AmC ACC	TGG	AAC	GTG	ATT	CGT	GAG	GCA	ATG	GGC	AAC	ATT	ATG	TAC	CAG	CTG	TCA	TCC
K I T	W	N	V	I	R	E	A	M		N	I	M	X	Q	,	S	S
3541/58:								357	1/591								
ATG AAG TTC	AAG	gtg	ggt	a	cac	gca	aac	tea	gce	att	gce	tag	aca	cgg	tor	acc	aca
M K F	K																
3601								363	1/589								
tett ttc aat	cca	ttt	cag	CAC	CCC	GTT	AAG	Gat	GGT	GAG	GCC	AAG	ATC	AAG	GCT	GAC	${ }^{14 \mathrm{LIC}}$
				D	P	v	K	L		E	A	K	I	K	A	D	F
3661/599								369	1/609								
gag cag ctg	CAC	GAG	GAC	CTG	CAG	CAG	GCC	TTC	AGA	AAT	CTG	gag	GAC	TAG	aga	ccg	acg
E Q	H	E	1	L	\bigcirc	Q	A	F	R	N	L	E	D	*			
3721								375									
ACT GBC CCT	ACT	TTT	ACA	CTC	TAA	TCT	TAT	ATT	TGP	TAT	Ata	GTT	AAC	GTV	A	π a	GA
3781								381.									
AACE CAG TCA	AAA	C	ATC	CGA	AAA	AGC	CTA	ATC	AAA	CAC	CAA	CAA	TC	CAG	Crg	CAT	FC
3841								387									
ATC ARA AAC	Aı̈à	AgT	CCA	ACA	AA.	ACC	ATA	ACT	TCT	TCG	TGC	CTG	CGA	gac	TG	AA	ACA
3901								393									
TTTC CGG CCT	GCG	GIT	AT	ACT	c	CC	taA	CCA	CGC	C	c	C	CC	TTG	$A G$	GC	AAC
3961								399									
TC'1' AGG CAA	CAG	$C A M$	C.TA	CAA	CGI	CCT	GCT	ATG	TAC	ITC	CAT	rTA	CAA	AA	AA	CAC	cad
4021								405									
CAT ACA CIT	CAA	TAA	AAG	PAC	ACG	GAC	ACT	GGC	GCA	CAC	ACH	Aca	CAT	ACA	TAB	Aach	ACA
4081								411									
CAA ATA CAA	ATG	CAT	GCA	TMA	29n	GTM	TTIA	TTG	TJT	T	GAA	G	12,	TTC	TTG	PTT	ATT
4141								417									
TGT GAA AAA	AGT	CAT	GTT	TTC	TCC	CTG	TTT	GTT	IGT	TAA	ATMT	TAT	gna	AAT	AT'T	TAA	AGTI
4201								423									
ATG AAA TAT	TAA	ATG	TAC	GAA	TAA	AGT	GCA	ACA	ACA	ART	ACA	rit	AAT	GTa	tt	gaa	agt
4261								429									
caa tet cac								aaa	$2 \text { tgt }$								taa
gtt aaa ata	ttt		a	atc	ttg	a	cat	tc	tta	tat	a		ct	,		tat	gaa
4381																	
ge taa gaa	a	ggg	aat	ata	tt	t											

Figure 4.8 Genomic DNA and putative aa sequence of vha68-2. (GenBank accession no.: U59147). cDNA sequence is shown in upper case.

ATG translation start site. The other two introns are within the coding sequence at exactly the same sites as the two introns of the vha68-2 gene.

4.4.4 Evidence for additional complexity at the wha68-2 locus

A genomic DNA fragment just 3'to wha68-2 gene also shows hybridisation to the wha68 probe (Figure 4.7). $68 \mathrm{~kg}-\mathrm{R}$, a partial sequence around the $E c o \mathrm{RI}$ site in subclone $\mathrm{p} 68 \mathrm{~g}-4$ has been obtained (Figure 4.10). The DNA sequence is 61% identical with the genomic sequence of ν ba68-2 (Figure 4.11), which contains a long open reading frame with a translated polypeptide 73% identical to wha68-2 (Figure 4.12). Thus this may be a gene encoding another isoform of V-ATPase A subunit. However, it is also possible that this fragment offers an alternative splicing as it is very close to wha68-2; or it is a pseudogene ? Hopefully, information of longer sequence of $68 \mathrm{~kg}-\mathrm{R}$ and the without transcription. Hopefully, information of longer sequence of $68 \mathrm{~kg}-\mathrm{R}$ and the sequence of $\mathrm{p} 68 \mathrm{c}-4 \mathrm{c}$ DNA clone (See section 4.2) would help to answer this question.

4.5 Southern blot analysis of genomic DNA with v ba68- 1 and $v h a 68-2$ cDNA probes

D. melanogaster (CS) genomic DNA was cleaved with a range of restriction endonucleascs. Southern blots were probed with the coding region of wha68-1 cDNA. After hybridisation and washing at high stringency, more than one band was revealed at each of the lanes (Figure 4.13A). The band sizes were same as that predicted from the digestion map of wha68-1 and wha68-2 genomic DNA clones. However, probing with the 3^{\prime} non-coding sequence of either vha68-1 or wha68-2, which is gene-specific, reveals only one band in most of the lancs (Figure 4.13B, C), suggesting that the two cDNAs are the products of two different genes and each gene has only one copy.

dvha

vha68-1

Figure 4.9 Structure of the genes encoding the two isoforms of the D. melanagaster V ATPase A subunir. The exons are represented as rectangles of which coding regions are in dark. duha is the partial genomic sequence for what68-1 from Chio et al (1995). As the genomic sequence is incomplete, the length of the first intron in vha68-1 is uncertain, and whether the 3^{\prime} UTR has an intron or not awaits confirmation. Here we assume there is no intron in the 3^{\prime} UTR of wha $68-1$. As $68 \mathrm{~kg}-\mathrm{R}$ has not been completely sequenced, here it is presented as a small filled rectangle. E: EcoR I; B, BamHI; S, Sall.

CGG TAC CCC CMC CCC CTC AAI CAC GCA AGC CTG TAG CCG ACC CGG AAA GCC CCC AIG ATA 61 CAG TCA ATG ACG AGG ACA GIPT TGA AGG ACI' ICA GAC GIT CGA CGG ACC AAT CCC ACA AGA 121151 GCG CTC ACA TCG CCI TGG AGA AGA ATG AGG ACT CGG GTT ETG TGA TCG AGC AGG TGG TMG 181211 ATA CCG ACA AAT ITT CGT COG ATE AAG AAG AGG AGG AGG CGA CGA TGG GTC GCA TTT TCG 241. 271 GAT GTC CCC GGC CCG GTG GTC AAT GCC GAG GAG ATG GCC GGC GCA GCC ATG TAC GAG CTG 301331 GLI CGC GTY GGA CAC TCC CAG CTT GTT GGT GAG ATC ATT CGA CTG GAG GGT GAT ATG GCC 361391 ACC ATT CAG GTT TAC GAG GAT ACP TCG GGT GTG AGC GTG GGT GAT OCC GTC IAC CNG ACG 421451 GGA AAG CCA CTC TCC GTF GAA TTE GGA CCC GGC ATC ATG GGC NGC ATC LWM GAT GGT ATC 481 511 CAG CGA CCA TTG AGG TCC ATC AGT GAA CTA ACC ABC TCC ATA TAC GTG CCC ZAC GGC ATC 541 571
GAT ACG CCC TCC CTG CCC AGG AAC ATT GCG TAC GAA TTC ACA CCC GGA AAA TTG AAG ATC 601631
GAT GCT CTG ATC ACC GGC GGA GAC ATC MAC GGA TCT GTN TTC GAA AAC AGC ATG ATG CAC
661691
GAT CAC CGC CTG ATA CTA CCG CCC CGC ACC AAG GGG CGC ATC CGG TGG TVG GCA CCO CCC 721751 GGG AAC TAC TGC GTG GAC GAG GTG ATC GTG GAG ACG GAG TTC AAC GAC GAG AlC ACC AAG 781811 CAC ACC ATG CTW CAG GTG TGG CCC GTM CGG AGG 'LQ1' COI CGG 'IGG AGG ATA AGC RCC CCC: 841871 AGC AAT TCA CCA CTC TTG ACT EGC CAG CGC GTC CTG GAC CGA TYC NTT CCA TGT GIC CAG 901931 GGC GGA ACC ACI GCC ATI CCA GGA GCG TTP GGA TGP GGA AAG ACC GMC ATC TCG CAG GIG 961 991 AGA GGG 'LWI' CTA AGA GTT TAG TTG ACA AAT GAT TAC ATT CCA ATC AAC TTA TAC CCC TAG $\because 021$ 1051
$G C C$ CTG TCC AAA UAC ICC AAC TCA GAT GTC ATC ATC TAC GNG GGC TGC GGT GAG CJC GGG 1081
AAC GAA ATG TCC GAG GTM CHT ATG GAC TTT CC

Figure 4.10 Partial sequence of $68 \mathrm{~kg}-\mathrm{R}$. The EcoRI site is marked in bold.

Figure 4.11 Homology between vha $68-2$ genomic DNA and partial 68 kg -R sequence.

Figure 4.12 Homology between the translated proteins of $v h a 68-2$ and $68 \mathrm{~kg} \cdot \mathrm{R}$ partial sequence.

Figure 4.13 Southern blots of genomic D. melanogaster DNA. (A) Probed with vha68-1 coding sequence; (B) probed with vha68-2 3 ' isoform-specific sequence; (C) Probed with vha68-1 3^{\prime} isoform-specific sequences. E, EcoRI; EV, EcoRV; Xh, XhoI; B, BamHI; H, HindIII; P, PstI; Sc, SacI; Xb, XbaI; Bg, BglII; Sl, SalI; Sm, SmaI.

4.6 Chromosomal location

Salivary gland chromosome squashes probed with wha68-1 cDNA revealed only one site of hybridisation band at polytene chromosome 34A (Figure 4.14). As both wha681 and vha68-2 share significant homology and cross hybridise in Southern blots, the wha68-1 cDNA probe should also hybridise to wha68-2. Thus, wha68-2 may also be at 34A. This has been further supported by the localisation at 34A of the P-element in fly line 1 (2) k 02508 (Refer to Encyclopaedia of Drosophila). In next chapter we will show that this P-element is in the first intron of vha68-2.

4.7 Northern blot analysis of $v h a 68-1$ and $v h a 68-2$

Northern blots of total RNA, using the whole vha $68-1$ cDNA as a probe, detected only a single band equivalent to $m R N A(s)$ of $\approx 2.6 \mathrm{~kb}$. The single band probably corresponds to both vha68-1 and wha68-2 transcripts. A developmental Northern of embryo, larval, pupal and adult total RNAs showed that the genes are almost equally expressed at embryo, larval and adult stages, but at much reduced lovel at the pupal stage (Figure 4.15). Tissue-based Northern analysis of adult head, thorax and abdomen total RNAs showed the genes to be almost equally expressed (Figure 4.16) as would be expected for a putative housekeeping gene. The same blots, probed with wha68-1 or wha68-2 specific 3^{\prime} prime non-coding fragments, found that both genes to be similarly expressed (Figure $4.15 \& 4.16$).

4.8 Discussion

The V-ATPase Λ subunit has been previously reported to be encoded by a single gene in all the animals and microorganisms studied. Although multiple genes have been found in plants only a single type mRNA has been reported. Therefore, it has been originally concluded that there is just a single isoform of the A subunit (Bowman et all, 1988; Hirata et al., 1990; Puopolo et al., 1991; Zimniak et al, 1988; Gräf et al., 1992).

Figure 4.14 Chromosomal localisation of wha68. Salivary gland chromosome squashes were prepared by standard rechniques (Ashburner, 1989). Chromosomes were probed with biotinylared, random-primed wha68-1 cDNA and hybridisation was detected using streptavidin-conjugated peroxidase and diaminobenzidinc.

Figure 4.15 Developmental Northern blot analysis of the vha 68 genes. Total RNA was isolated from Canton S embryos, larvae, pupae and adults. The RNA was separated by electrophoresis in a 1% formaldehyde-agarose/MOPS gel, blotted to nitrocellulose and hybridised with 32 P-labelled random-primed probes. The filters was then cxposed to Fuji X-ray film for 1-3 days. Sizes were determined with respect to an RNA ladder (Gibco BRL). E, Embryo; L, third instar larva; P, pupa; Ad, adult. The filter was first hybridised with whole wha68-1 cDNA, then stripped and reprobed with isoform-specific cDNA fragments and $r p 49$ as a control for differences in RNA loading.

Figure 4.16 Tissue specific Northern blot analysis of the vha68 genes. Total RNA of adult head, thoraces and abdomens, as well as male and female adults was isolated. The RNA was separated by electrophoresis in a 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose, and hybridised with 32 P -labelled random-primed probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respected to an RNA ladder (Gibco BRL). H , head; T , thorax, Ab , abdomen; M, males; F, females. The filter was first hybridised with whole vha68-1 cDNA, then stripped and reprobed with isoform-specific cDNA fragments and $r p 49$ as a control for differences in RNA loading.

The existence of two isoforms of the A subunit was first reported in human (van Hille, 1993). The VA68 isoform is expressed in all tissues whereas the HO68 isoform was detected only in osteoclastoma, a tumour enriched in osteoclasts (Chambers at al, 1985). In chicken, two isoforms of the A subunit are generated by differcntly splicing of two mutually exclusive exons from the same genc. Unlike the classical A1 isoform, the chicken A2 isoform docs not contain either the ATP-binding consensus sequences (the p-loop) or the pharmacologically relevant Cys ${ }^{254}$ in its polypeptide. Both isoforms appear to be ubiquitously expressed (Hernando at ah., 1995). In this chapter two D. melanogaster A subunit genes, wha68-1 and vha68-2, have been described. The two isoforms share 91% identity at the polypeptide level. A genomic DNA fragment correspond to wha68-2 was identified and sequenced. A partial genomic DNA fragment for wha68-1 was already available (Chio $c t a l$, 1995). Both genes are found to have a similar structure, the two introns are at the exact same sites but wha68-2 has a small extra intron. Sequences of introns and of 3^{\prime} and 5^{\prime} prime non-coding fragments are different. However, since the coding sequence and corresponding polypeptides share high homology, the two genes presumably arise from a duplication of a single genc present in an ancestor. If the two isoforms have the same function the purpose of the two copies of the gene might be to compensate for an increased need for the protein product. The presence of two isoforms could also impart different properties or provide alternative sorting to cell comparments (such as vacuolar or plasma membrane). Alchough Northern blot of D. melanogaster total RNA suggests both gencs are ubiquitously expressed, this does not necessary mean that both isoforms are present in the same cellular population or subcellular compartment. It is still possible one of the isoforms might be involved in plasma membrane V-ATPase while another may be implicated in endomembrane V-A'l'Pase function. The reporter detector of $\mathrm{P}[$ lac W$]$ insertion in wha68-2 reveals this gene is highly expressed in Malpighan tubulcs, midgut etc. where the plasma membrane V-ATPase should have a role (See Chapter 5). However, the functional implications of the presence of two isoforms of the V . ATPase A subunit are still not clear.

Chapter 5

Mutational Analysis of $u b a 68$-2, a Gene Encoding One of the Two Isoforms of the Drosophila V-ATPase A-subunit

5.1 Summary

A Drosophila line ($\mathrm{I}(2) \mathrm{k} 02508$) carrying a single $\mathrm{P}[$ lac $W]$ insertion in wha68-2, a gene encoding one of the two isoforms of the Drosophila V-ATPase A subunit, was isolated by screening pools of rescued plasmids. Molecular characterisation demonstrates that the transposon is inserted within the first intron, and thus lies 5^{\prime} to wha68-2 translation start codon. Expression of the enhancer detector reporter gene carricd by the lacZ (β galactosidase) was widespread, but was particularly strong in the gut and Malpighian tubules of both larvae and adults. The insertion significantly reduces the accumulation of wha68-2 mRNAs and causes homozygous lechality durng the first larval instar. The lethal phenotype can be reverted by excision of the inserted Pelement. Imprecise excision or internal deletion of the P-element created a set of novel hypomorphic or null alleles, with phenotypes ranging from first instar lechality to sub-lethals of various classes.

5.2 Introduction

Chapter 4 described the identification and characterisation of two gencs, wha68-1 and wha68-2, both of which encode V-ATPase A subunits. Both what68-1 and wha68-2 are widely expressed. In order to address the in vivo functions of the two genes, it would be uscful to partially or entirely inactivace them. For this purpose, Drosophila had the considerable advantages that it is genetically well characterised and amenable in several ways to mutational analysis. Once the chromosomal location of a gene has been specified, there is often a large amount of available information related to that chromosome location that can help with the analysis. For example, the P-element insertions in wha 26 (Chapter 6) and wha55 (Davics et al., 1996) were identified by screening available P-
element lines corresponding to the approximate locations of the genes. In the case of wha68 gene, no such lines had been described. Fortunately, however, a collection of more than 2000 lincs with recessive lethal $\mathrm{P}[$ lac $W]$ inscrtions on the Drosophila second chromosome was available (Török, 1993) and plasmids representing the insertion sites of 1864 of these had been rescued (See Chapter 3). Southern blotting of the rescued plasmids and hybridisation with wha68-1 cDNA identified 3 lanes containing related plasmids. Onc of these plasmids was traced to a single rescucd plasmid (P184) corresponding to fly line l(2)k02508 (See Figurc 3.3). A "mini-white" gene (Pirrotta, 1988) has been inserted in the middle of P [lac W]. As a genetic marker, mini-white provides advantages. First, flies heterozygous for mini-white in a genetic background null for the white locus generally have orange eyes, whereas flies homozygous for the same element have red eye pigmentation. Eye colour also tend to be darker in flies with multiple insections (Kiss, 1996, Personal com.). Second, once P-element has been detected in a region of interest, it can be remobilised in the presence of cransposase, and by screening for loss of eye pigmentation one can isolate revertants (precise excision) or new alleles (imprecise excision), At the 5 ' end of $\mathrm{P}[\mathrm{lac} \mathrm{W}]$ is the lac Z reporter gene which may give clues to the expression pattern of the target gene.

$5.31(2) \mathrm{k} 02508$ contains a single insertion in $v h a 68-2$

Southern blotting of genomic DNA from fly line 1(2)k02508, cleaved by EcoRI and probed with wha68-1 cDNA, shows band shifts due to $P[$ lac W] insertion (Figure 5.1 A). Probing with a $1.9 \mathrm{~kb} \mathrm{P}[$ lacW] fragment corresponding to the plasmid replicon detected only a single band (Figure 5.1B), suggesting that line $1(2) \mathrm{k} 02508$ contains a single $\mathrm{P}[$ lac $W]$ insertion in or near one of the two vha 68 genes. This is supported by in situ hybridisation to polytene chromosomes with a P-element probe, which shows line $\mathrm{I}(2) \mathrm{k} 02508$ to contain a single insertion at 34A3-4 (refer to Encyclopaedia of Drosophilat for information on $1(2) \mathrm{k} 02508$). As reported in Chapter 4, in situ hybridisation to
polytene chromosomes with wha68-1 cDNA also detects a single band at 34 A , the probable location of buth A subunit genes.

5.4 The insertion in $1(2) \mathrm{k} 02508$ lies within vha68-2

Compatison of the restriction maps of the plasmid P184 and vha68-2 showed the insertion to be in the first intron, less than $1 \mathrm{~kb} 5^{\prime}$ to the translation start site (Figure 5.2). Sequencing of the rescued plasmid produced unequivocal evidence for che inscrtion within the wha68-2 gene. The insertion has occured between 703 and 704 in the what $68-2$ genomic DNA sequence (Figure 5.3). The sequence gencrated by primer PR is exactly the same as a region of the first intron of v ba $68-2 . \mathrm{PR}$ is a P -element primer reading out of the P-element inco flanking DNA, i.e. into the rescued DNA (Figure 5.3 A). Sequence generated by primer $68 \mathrm{~T} 7-6$ shared more than 97% homology among the 218 base pairs (Figure S.3 B), with no changes found in the coding sequences.

5.5 Lethality in $1(2) \mathrm{k} 02508$ is caused by insertion of the $\mathrm{P}[$ lac $W]$ element

That the $\mathrm{P}[$ lac $W]$ insertion is indeed responsible for the homozygous lethality of the $1(2) \mathrm{k} 02508$ was shown by the generation of viable revertants following precise P -element excision. $\mathrm{P}[$ lac W was remoblised by the cross shown in Figure 2.1. white- progeny of various classes was generated (Table 5.1). One class was homozygous viable for the original second chromosome. Lethality in the $1(2) \mathrm{k} 02508$ was then due to P-element insertion rather than to some other accidently fixed events elsewhere on the same chromosome.

(A)

(B)

Figure 5.1 Southern blotting of genomic DNAs confirms that line $\mathrm{l}(2) \mathrm{k} 02508$ contains a single P $[$ lac W I insertion in wha68. (A) Canton S (lane 1) and $1(2) \mathrm{k} 02508$ (lane 2) DNAs cleaved by EcoRI and hybridised with vha68-1. (B) Probed with the $1.9 \mathrm{~kb} \mathrm{P}[$ lacW $]$ fragment corresponding to the plasmid replican.

Figure 5.2 Correspondance of the rescued plasmid and vha68-2 genomic DNA fragment. S, SalI; B, BamHI; E, EcoRI.
(A)

(B)

68T7-6			atggaacctatctesgtttgctgagttata																	
	16601670	1680	1690	1700	1710															
	4050	60	70	80	90															
6897-6																				
		\|				\|				\|					\|		1		1	
	17201730	1740	1750	1760	1770															
	$1.00 \quad 110$	120	:130	140	150															
68T7-6 ACCGCCGAGGCCATGTCTGGATCAGCTATGTACGAGTTGGTCCGCGTCCGCTACTACGAG																				
	\|													\|				$1 / 1$	$1]$	1
vha68-2g ACCGCCGAGCCCATMTCTGEATCAGCTHITTACGAGTIGGTCCGCGTCGGCTACTACGAG																				
	17801790	± 800	1810	1820	1830															
	$160 \quad 170$	180	190	200	210															
58T7-6 CTGGIGGGCGAGATCATCCGTCTGCAGGGTGMCATGGCCACCATCCAGGTGTACGAGGAG																				
		\|						11\|	il	\| $\|1\|$	$\therefore\|\|\|\|\|\mid$									
vha 68-2g CHGGlGGGCGAGANCALCCGTCTGGAGGGTGACATGGCCACCATCCAGGTGTACGAGGAG																				
	1840	1860	1870	1880	1890															
68T7.6 ACCTCTSG																				
	\|																			
Vha68-29 ACCTCTGGCGTAACTSTCGOAGATCCGGTGCTGCGRACOGGCAMECCTCTTHCCGTCGAG																				
	1.9001 .91 .0	1920	1930	1.940	1950															

Figure 5.3 Sequence homology of rescued plasmid and what68-2. (A) 68 k -PR is the sequence reading out of rescued plasmid from primer PR. Bold indicates the end of the $\mathrm{P}[$ lac $W]$ insertion. (B) 68T7-6 is the sequence of rescued plasmid generated by primer 68T7-6 which is in wha68-2 gene.

5.6 Imprecise excision generates a range of new alleles

Remobilisation of a P-element, apart from the precise excision, often gencrates flanking sequence deletions by imprecise excision (Daniels at al, 1994; Salz et al., 1987; Voelker $e t$ al. 1984). Remobilisation may also generate local reinsertions that can often be selected by scoring the dominant markcr on the transposon (Tower, et al, 1993).

About 200 lines which lost eye colours were selected and backcrossed to the original line $\mathrm{l}(2) \mathrm{k} 02508$ to tcst survival to the adult stage. The survival rate showed a range of differences (Table 5.1 and Figure 5.4). Interestingly, several lincs showed a temperaturesensitive phenotype. The homozygous flies of these lines can survive at high temperature $\left(25-30^{\circ} \mathrm{C}\right.$) but they die before reaching adult stage if they are reared at $16^{\circ} \mathrm{C}$ (Table 5.1 and Figure 5.5). A genomic Southern blot of the new alleles found that alleles 68S-6 and 68S-10 are likely to have deletions in gene $v h a 68-2$ (Figure 5.6). Of the five temperaturedepedent alleles, $685-27$ has an internal deletion with the plasmid replicon still there. However, the hybridisation patterns of other three alleles, 68S-22, 68S-25 and 68S-38, looks the same as that of Canton S. It is possible that these alleles still contain deletions but the deletions are too small to be detected by genomic Southern blot.

5.7 Reporter gene expression

Line $1(2) \mathrm{k} 02508$ contains a single $\mathrm{P}[$ lac $W]$ insertion, located in the first intron of wha682. Since lacZ enhancer detector element is in the same orientation as wha 68 - 2 transcript, it might be expected that the lac\% expression pattern would mirror at least in part the expression pattern of vha68-2.

The first cvidence for lac Z expression was in gastrulating embryos (Figure 5.7) 'the hcavicst staining was initially in a loop of embryonic midgut, with staining soon becoming general. In larvae, pupae and adults, most or all tissues eventually stain, as
would be expected for a ubiquitously expressed gene; however, staining in shorter time showed certain tissues, the labial palps, a region of the midgut, the main segments of the Malpighian tubules and rectal pads to be conspicuously labelled. This is significant, because it neatly delineates those tissucs in which V-ATPases play a plasma-membrane, rather than an endomembranc role (Davics ct al., 1996). Although P-element enhancer detectors do not necessarily report faithfully the entire expression pattern of their neighbouringtranscription units, as they may be unduly influenced by short-range

Table 5.1 New alleles and revertants after excision of the P [lac W] in linc $1(2) \mathrm{k} 02508$

fliy	$25^{\text {曲 }} \mathrm{C}$					$30^{\circ} \mathrm{C}$		$16^{\square} \mathrm{C}$	
lines	A	B	C	D	E	D	E	D	E
S1	24	46	5	156	9	65	3	69	1
S2	25	26	14	97	52	12	31	36	21
S3	20	16	10	137	30	32	22	52	4
S4	14	18	19	78	56	18	24	39	23
56	30	32	0	131	0	108	0	74	0
S8	22	29	19	96	19	39	16	67	1
59	19	21	11	97	33	62	37	79	41
S10	40	45	0	163	1	71	0	25	0
S11	17	28	2	166	14	33	4	60	3
S13	15	36	21	45	16	50	21	65	37
\$22	48	48	54	67	11	17	8	83	0
525	23	23	6	112	21	40	5	74	0
527	27	81	18	85	10	81	18	181	2
S29	13	19	7	92	28	59	15	110	27
S33	15	23	1	191.	7	35	12	86	3
S35	13	13	12	58	24	64	24	50	21
S36	20	32	0	138	0	77	0	89	0
S37	21	48	24	89	26	22	5	75	24
S38	28	68	28	122	21	16	3	108	3

A, B, C, D, E, F stand for different phenotypes, See Method section 2.18 for the meaning.

Fly line no.

Figure 5.4 New alleles with different survival efficiency after remoblisation of the Pelement in strain $\mathrm{l}(2) \mathrm{k} 02508$. Filled boxes show the \% survival when heterozygous with the l(2)k02508 chromosome; Empty boxes show \% survival when homozygous for a new allele.

[^0]Temperature-sensitive wha68-2 alleles

Fly line no.

Figure 5.5 Alleles with temperature-dependent survival. Filled boxes show survival at $30^{\circ} \mathrm{C}$, empty boxes show the survival at $16^{\circ} \mathrm{C}$.

Actual ratio of certain progeny
Survival efficiency (\%) =
Expected ratio of certain progeny if without detrimental effects

Figure 5.6 Genomic Southern blot of vha68-2 mutant flies. Genomic DNA was digested with EcoRI, run out on a 1% agarose gel and blotted to Hybond N. The both filters were hybridised with probe of vha68-1 cDNA.

Figure 5.7 lac Z expression patterns of $1(2) \mathrm{k} 02508$. (A) embryonic, showing a loop of the midgut staining; (B) embryonic, showing Malpighian tubule and midgut staining; (C) embryonic with longer staining; (D) Larval gut showing the mid gut and Malpighian tubule staining; (E) Adult gut showing the Malpighian tubules and midgut staining; (F) Adult Malpighian tubules, showing staining confined to nuclei of main segment; (G) Enlarged view of the adult Malpighian tube staining; (H) Front view of adult head, showing staining of antennal bases and labial palps; (I) Side view of adult head, showing the staining of antennae and labial palps.
enhancers, the pattern of expression teported here is precisely what would be expected for a V-ATPase gene (Figure 5.7). Antibody staining for β-galacrosidase shows a similar expression pattern. Figure 5.8 shows the antibody staining of Malpighian tubules in larvae.

5.8 Phenotypic aualysis of $1(2) \mathrm{k} 02508$ and new alleles

The original P-element strain 1 (2)k02508 and the two new alleles 67S-6 and 67S-10 are homozygous lethal and are maintained over balancer $C y O$. Flies homozygous for balancer CyO are lethal at late embryo or early larvae stage, but flies heterozygous for CyO are viable with curly wings (Lindsley and Zimm, 1992). If flies homozygous for the wha68 ${ }^{-}$could survive to adult stage they should have distinctive straight wings. However, it is difficult to distinguish the difference earlier than the adult stage. To facilitate the analysis of lethal phase the CyO balancer chromosome was first replaced with wild type to observe whether embryos homozygous for the P-element can hatch. 468 larvae hatched from 483 eggs laid by parents $\mathrm{P}[\operatorname{lac} W] /+$. The hatch rate is 97%, approximately the same hatch rate for the wild type flies. Of the 15 unhatched eggs, 7 eggs are unfertilised. This high hatch tate means that the homozygous $\mathrm{P}[$ lac $W]$ can survive to larval stage. To distinguish the homozygous [uba68-2\%ha68-2-] larvae from the heterozygous larvae the original balancer CyO was replaced by the $\mathrm{y}^{4} \mathrm{CyO}$ chromosome which then could distinguish the homozygores [oha68-2-/wha68-2] from heterozygotes $\left[v h a 68-2^{-} / y^{+} \mathrm{CyO}\right]$ as early as the first instar larvae. The heterozygous fly has a black hook while the homozygous flies have yellow hooks (figure 5.9A).

For the threc mutant lincs, 1(2)k02508, 68S-6, and 68S-10, the homozygotes can survive the embryo stage. The new hatched larvae wiggled around slowly and were not as active as the healthy one. The homozygous [uha68-2\%ha68-2-] larvae werc obscrved dying in first instar larvae.

Figure 5.8 Antibody staining of β-galactocidase in the Malpighian tubules. (A) Third instar larval Malpighian tubules showing nuclear staining in the principal cells. (B) Malpighian tubules and gut of third instar larvae showing the nuclear staining of gut and Malpighian tubules, and the unstaining junction.

Examination of the Malpighian tubules in the homozygous larvae indicates the mutation affects the morphology of this organ, especially the anterior segment. Tubules are responsible for the clearance of the waste products. The anterior segment of the Malpighian tubulcs normally stores the primary urine in the form of crystalline concrements of uric acid, calcium phosphatc, ctc (Maddrell and O'Donnell, 1992). The concrement play an important role in the process of osmoregulation and they are either absent or severely reduced in the original P-element mutant and the two deletion alleles (Figure 5.9 B).

5.9 Northern blot analysis of mutant flies

The above results indicated that the 1 (2)k02508 strain and the two allcles 68 S-6 and 68510 were hypomorphic for V-ATPase function. I therefore was interested to test whether a decrease also occurred at the level of transcription of the wha68 gene in line $\mathrm{l}(2) \mathrm{k} 02508$. T'otal RNA was isolated from adult of wild-type Canton S, the heterozygous P-element insertional line $1(2) \mathrm{k} 02508$, two homozygous revertants, $67 \mathrm{R}-2$ and $67 \mathrm{R}-4$. The RNA was scparated by electrophoresis in 1% formaldehyde-agarose/MOPS gels and blotted to nitrocellulose. The blot was probed with wha68-1 cDNA (Figure 5.10). For comparison of RNA loading, the blots were stripped and probed with $R p 49 \mathrm{cDNA}$. All the 4 lincs has the same 2.6 transcript of wha68, but fly strain $1(2) \mathrm{k} 02508$, even being heterozygous and that the probe uscd here can be expected to hybridise to transcripts of both wha68-1 and wha $68-2$, shows an appreciable reduction in overall wha 68 lcvels in che mutant lines. The revertant line 67R-1 has the same RNA level as that of wild type, but The revertant line 67R-2 has less RNA ltranscript which is the same level as that of the heterozygous $\mathrm{I}(2) \mathrm{k} 02508$. Thus, it can be strongly suggested that the $\mathrm{I}(2) \mathrm{k} 02508$ are also a hypomorphic mutation at the level of transcription.

Figure 5.9 Phenotype of 68S-6. (A) Difference of hook colour between homozygous and heterozygous larvae of 68S-6. (1) and (3) are homozygous dying larvae with yellow hook, (2) is heterozygous larvae with black hook.(B) defects in Malpighian tubules in dying homozygous larvae of 68S-6, (1) is the dying homozygous the larvae in which the white precipitates are reduced or absent. (2) is the heterozygous larvae with normal Malpighian tubules which contain a white precipitate of uric acid and calcium salts. (here seen as black by transmitted light).

Figure 5.10 Northern blot analysis of the mutant flies of vha68-2. Total RNA was isolated from the adult flies using TRIzoI ${ }^{T M}$ (Gibco BRL). The RNA was separated by electrophoresis in 1% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose, and hybridised with ${ }^{32} \mathrm{P}$-labelled random-primed probes. The filters was then exposed to Fuji X-ray film for 1-3 days. Sizes were determined with respected to an RNA ladder (Gibco BRL). The filters were first hybridised with whole vha68-1 cDNA, then the same blots were stripped and reprobed with $r p 49$ to control for differences in RNA loading. Lane 1. Canton S; Lane 2, P-element insertional mutant $\mathrm{l}(2) \mathrm{k} 02508$; lane 3, homozygous revertant 68R-2; Lane 4, homozygous revertant 68R-4.

5.10 Discussion

The identification of a $\mathrm{P}[$ lac $W]$ insertion in vha68-2 is of great help in addressing the function of the genc. Inactivation of just wha68-2 leads to the homozygous lethality at first instar larvae, which suggests wha68-2 to be an essential gene. Although the sequence of the two isoforms is highly homologous at DNA and protcin levels, the presence of only wha68-1 is insufficient for proper function. The Northern blots of total RNA of both isoforms detected a very similar pattern of ubiquitous expression. However, this docs not necessarily mean that both isoforms arc present in the same cellular population or subccllular compartment. The X-gal staining of the strain $1(2) \mathrm{k} 02508$ with a Pelement in wha68-2 reveals a general expression pattern, but highly entiched in the midgut and Malpighian tubules, suggesting a plasma membrane role for the wha68-2 isoform. This staining pattern is similar to the x -gal staining pattern of fly lines with a P element in genes encoding other subunits, such as the E, B and c subunits of Drosophila V-ATPases. Such a expression pattern may be applied to other subunits of V-ATPase and thus may provide a general means of screening P-element for mutations for V ATPases and related genes.
'I'he new alleles gencrated by excision of P-element in l(2)k02508 show phenotypes with different severity; and in particular, five temperature-sensitive alleles. However, the molecular mechanism underlying these potentially important alleles needs further investigation.

As wha68-1 and wha68-2 are both at 34 A and remobilisation of P-element tends to reinsert into the local sites around the original P-element, it should not be too difficult to identify a lly carrying a $\mathrm{P}[$ lacW $]$ in wha68-1 by the PCR strategy (Kaiser and Goodwin, 1990) following the local jumping of the P-element in line $I(2) \mathrm{k} 02508$. Analysis of the mutants of both vha68-1 and wha68-2 should help in elucidation of the function differenciation of the two isoforms of the V-ATPase A subunit in Drosophila.

Chapter 6

Characterisation and Inactivation of vha26, the Gene Encoding an E-Subunit of the V-ATPase

6.1 Summary

A. D. melanogaster gene and a cDNA for the 26 kDa E subunit have becr cloned utilising homology with the corresponding M. sexta gene. The Drosophila gene contains three small introns. Its deduced translation product has 226 amino acids and a molecular weight of 26.1 kD . The polypeptide shares 76.5% identity with the M. sexta polypeptide, 62.8% with that of human and 34.3% with that of yeast. 'The Drosophila gene (vha26) is present as a single copy at cytological position 83B1-4 on the third chromosome and gives rise to an mRNA species of 2.3 kb . Abundance of the latter, relative to an $r p 49$ control, shows relatively little variation within adult head, thorax and abdomen, suggesting that the E subunit is a relatively ubiquitous component of the V-ATPase. wha 26 is, however, relatively less expressed during metamorphosis, as is also the case for the D. melanogaster V-ATPase A subunit (Chapter 4). A fly line carrying a single lethal $\mathrm{P}[$ lac $W]$ insertion within vha26 gene has been identified. This will greatly facilitate study of the in vivo function of the E subunit.

6.2 Introduction

Subunit E is a constituent of the catalytic sector of the V-ATPase. It was one of the first subunits to be identified in kidncy V-ATPase by immunological studies, and the cDNA. encoding the kidney subunit has been cloned and sequenced (Hirsh et al., 1988). Studies with monoclonal antibodies, supported by partial DNA sequencing, reveal the existence of at least two isoforms of subunit E in the kidney. While V-ATPase isolated from kidney
microsomes contains one form of subunit E , the enzyme from the kidncy brush-border contains at least onc additional form of subunit E. Presently a cDNA for subunit E has been cloned and sequenced from M. sexta. The deduced polypeptides show high homology with the E subunit from orher sources. Although at least two isoforms for the E subunit may exist in human, only one gene encoding the M. sexta E subunit has bcon detected in Southern and Northern blots (Gräf et al., 1994a). 'The precise function of the E subunit is unknown but it has been suggested that E stubunit may play an analogous role in the V-A'IPase to the γ-subunit in F-ATPases (Bowman et al., 1995) and as such should be considered to form part of the catalytic headgroup. The corresponding yeast gene vmat, has been cloned, sequenced and mutagenised (Foury, 1990). The mutant exhibits a similar phenotype to all other yeast V-ATPase nulls. While the protcolipid assembles into the membrane, all subunits of the catalytic sector did not assemble. Consequently, the mutant is unable to grow in medium buffered at pH 7.5 (Ho et al., 1993). This suggests that subunit E may be necessary for the functional assembly of the enzyme. In vertebrates, it has been suggested that E subunit co-localises immunocytochemically with plasma membranes, rather than microsomes in kidney (Hemken, et all, 1992), implying that E subunit may be important in assembly of the holoenzyme on the plasma membrane of certain epithelia. Here, as first step to clarify this issue, I report the cloning, characterisation and mutagenesis of the gene encoding subunit E of V-ATPase in D. melanogaster, a species which is particularly suited to genetic analysis.

6.3 Identification of a cDNA encoding a 26 kD E-subunit

6.3.1 cDNA cloning

A D. melanogaster head λ-ZapII cDNA library was screened by plaque hybridisation with a M. sexta E-subunit cDNA probe and one positive plaque was purified by successive rounds of screening. The purified clone was excised as pBluescript and the cDNA insert
cDNA clones were obtained and subcloned into pBluescript SK-. Sequences from both ends of all five clones were identical except for differences in length at the 5' end. The longest insert (p26CD) was 2.1 kb long.

6.3.2 Generation of unidirectional deletions of p 26 CD for sequencing

p26CD was isolated and purified on a Promega column. ExoIII was used to generate a set of deletions of p 26 CD DNA for sequencing. Two pairs of enzyme (SacI/EcoRI and HindIII/KpnI) were selected for digesting DNA which can then be further digested by ExoIII to make deletions from both ends (Figure 6.2A). The cDNA insertion has no digestion site for any of the 4 enzymes, SacI and KpnI can generate the 3^{+}ExolIIprotected end, while EcoRI and HindIII generate the 5' overbang which is digested by Exolll. In the case of making deletions which can be sequenced by primer T3, $20 \mu \mathrm{~g}$ of p26CD plasmid was first digested with 50 units of SacI for 3 hours. A sample of this digest was clectrophoretically separated on a 1% agarose TBE gel to assess the extent of digestion. After completion of the digestion, buffer condition was adjusted with NaCl for Eco RI digestion for another 3 hours. Double digested DNA was digested by ExoIHI at $37^{\circ} \mathrm{C}$ and samples were taken every 30 seconds. The first 15 samples were treated with S 1 nuclease and werc elcctrophoretically separated through an agarose gel (Figure 6.2B). From the figure we can see the digestion rate was about $200 \mathrm{bp} / \mathrm{min}$. This rate of digestion is less than described by the manufacturer of Erase-a-Base system (Promega). However the ExoIII digestion indeed produced progressive deletions.

Each timepoint sample was treated with the Klenow fragment of E. coli DNA polymerise to generate flush DNA termini and was then recircularised with DNA ligase. Ligation products were used to transform DH5 α competent calls (see methods section). 50 to 1000 colonies were obtained for each timepoint transformation. Three colonies from each of the first 12 transformations were selected at random and miniprep DNAs

Figure 6.1 ExoIII deletion of the p26CD insert. (A) p26CD structure showing the restriction enzymes selected to make ExoIII protected and unprotected termini. EcoR1 and HindIII generate 5^{\prime} overhanging termini, SacI and KpnI generate protected termini. (B) The products of ExoIII and S1 nuclease digestion of SacI/EcoRI digested p26CD. Samples of the ExoIII reaction were removed at intervals of 30 seconds. (C) Plasmid minipreps from the deletion experiment after digestion with $X h o I$ and $X b a I$.
(Method Section) were digested with $X h o I$ and $X b a d$ (Figure 6.1C). Subclones with different size of deletions were selecred for sequencing by primer T3.

Similarly, DNA from the double digestion of p26CD by HindIII and Kp nI was digested by ExoIII to generate deletions which can be sequenced from the opposite cad using primer T7. The 2.1 kb cDNA insert of p 26 CD was completely sequenced from both directions.

6.3.3 DNA sequence analysis of pha26 cDNA

The 2.1 kb contig of p 26 CD has an open reading frame corresponding to a 226 amino acid polypeptide of $\mathrm{M}_{r} 26.1 \mathrm{kDa}$ (Figure 6.3). This is clearly a V-ATPase E-subunit, sharing 76.5% amino acid identity with the E-subunit of M. sexta, 62.8% with that of human, but only 34.3% identity with that of S. cerevisiae (Figure 6.3). In accordance with the nomenclature for other D. melanogaster V-ATPase loci, the genc has been named wha26. Although we cannot at present exclude the possibility that longer transcripts exist, the longest 5^{\prime} UTR of the 5 cDNA clones is 77 bp . This is in good agreement with the length of 5^{\prime} UTRs reported for other V-ATPase subunits in Drosophila, 84 and 88 bp for the two genes encoding 67 kDa A-subunit (see Chapter 4); 86 bp for the 55 kDa B-subunit (Davis, et al., 1996); 116 bp for the 17 kDa c-subunit (Meagher, et al., 1990); and 42 bp for the 14 kDa F-subunit (see Chapter 7). The sequence of the start site CAAAATG matches the consensus start site (C/A)AA(A/C)ATG perfectly (Calvener, 1987). The 3^{\prime} UTR is 1307 bp long, with a canonical AATAAA signal centred 26 bases upstream of the polyA tail.

GCA CGG THG TTG TAC GTG GGC TTC TTT AAA ACA CTY GAA FTT CCT TTC GYA ITG TGC AGT $6]$. $90 / 5$
GAA AAA AAT CAG TCA AA ATG GCA CTG AGC GAT GCT GAT GTA CAA AAG CAG ATC AAG CAC 120/15 150/25
ATG ATG GCG TTC ATM GAG CAG GAG GCC AAT GAG AAA GCC GAG GAG ATC GAT OCC AAG GCC

M	M	A	F	I	E	Q	E	A	N	E
$170 / 35$									$210 / 45$	

 $240 / 55 \quad 270 / 65$ GAA TAC TAC GAG MAG AAG GAG AAE CAA GTV GAG CIG CAG AAG AAG ATT CAG TCC TCC AAC $\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{Y} & \mathbf{Y} & \mathrm{E} & \mathrm{K} & \mathrm{K} & \mathrm{E} & \mathrm{K} & \mathrm{Q} & \mathrm{V} & \mathrm{E} & \mathrm{L} & \mathrm{C} & \mathrm{K} & \mathrm{K} & \mathrm{I} & Q & \mathrm{~S} & \mathrm{~S} & \mathrm{~N}\end{array}$ 200:75 $330 / 85$
ATG CTC AAC CAG GCP OGI GTG AAG GYG CTG AAA GTG CGC GAG GAC CAI GIG AGC AGC GTG
 $360 / 95$ 390/1.05
 420/115 450/125 GTG CTG ACC AAG CTC ATC GTC CAG GGC CTG TWC CAG ATC ATG GAG CCC AAG CTG ATC CTG
 $480 / 135 \quad 510 / 145$
CGC TGC CGC GAG GIG GAC GTC CCC CIG GIA CGT AAC GTC CTG CCT GCC GCT GTG GAG CAA
 $5120 / 155 \quad 570 / 165$
TAC AAG GCC GAG ATC AAT GAG AAC GTC GAG CIG THTC AIC GAC GAG AAA GAC HTC CIC TCT $\begin{array}{llllllllllllllllllll}Y & K & A & Q & I & N & Q & N & V & E & T & T & T & D & E & \mathbb{K} & \mathrm{D} & \mathrm{F} & \mathrm{L} & \mathrm{S}\end{array}$ 600/175 530/185
GCT GAT ACC TGC GGT GGT GTT GAG CTG CTG GCC GTC AAC GGA CGC $M C C$ AAG GTG CCC AAT
 660/195 690/205
AOG CIG GAG TCC AGA TTA GAC CTC ATT TCG CAG SAG CTG GIG CCC GAG ATI' SGT AAC GCA
 $720 / 215 \quad 7510 / 225$
CYI 'INC GGC CGC AAC' GTC AAT CCC AAA TTC ACC GAC TAA RUU' CTA TAA GLG CAA AAC AAA
$\begin{array}{llllllllllll}\mathrm{L} & \mathrm{F} & \mathrm{G} & \mathrm{R} & \mathrm{N} & \mathrm{V} & \mathrm{N} & \mathrm{R} & \mathrm{K} & \mathrm{F} & \mathrm{T} & \mathrm{D}\end{array}$
780810
ACA TAA CTA ACC AGA AAG AGA ACC AGC ATC AAC NCC TAT TCA GCA GGA ACA GTT CAA GTT 840870
ATT ACA CAG AGC TCC ACC CAC TAA ATA TTG AAC CCT $A G T ~ N A A ~ C M ~ A T C ~ C T T ~ T O G ~ C A G ~ T C A ~$ 900930
GGA GGC AAC AGC TAG GAT ATA TTG ATT GTC AAA ATA CIT TTG CGG TMG TCT TGT AAA GTG $960 \quad 990$
AAA TIG AAA CAC TCA AGA ACA TTI CGG TCC TTG TGT ACG CAA CAG TJT TAA TAG TAA CCA $1020 \quad 1050$
CAC 'LPA ACG CGC ADA TAT ATT CTC CGA TAT ATA TGT CTG TAT GCC AAT ACT TAT TAT ATA $1080 \quad 1110$
GTT WAG AGG ACA CGA TCC TAG GAG CAT ACG AAA GCA TAA TAC GAA GIT TGT TAA AGT TYT 1140 1170
TTC GTT, TTT TMT TTA CAT ATG CAC ATG TTT GTG AMC AGT AGG TCT AGA TAT GTG CTT ATA $1200 \quad 1230$
THG TIAT ACA TAC ACT TTA AAA THT TGC ATA CAT TCC TGT CCA AGA ATT TAT ATT TCA GTP 1260 1290
$T H C$ CCC TTG THT ATT GTA CAT TAT TIT CTG TAG TCT TTG TTA ACT TTY TAN ATG TCT ALG 1320 2350
TCG TXT ASG TTC GTA ATT AGC AAG TGC ACG TTC AGG AGG AAC AAC GGC AGT GGA GCG CCC 1380三410
CTM TTA CAG NCC GCT SGC AGG TQG CGA TGC GAC CAC ACA GCA IVG TTG CTC AGC GAA GCA 1440 1470
CCG AAA TGG ACC TAA ACC CCC GAT TTC GCT TCT TCG AGG GCA ACG GAC GCT TGT GCA ACT 1500 1530
GCC ACT GGC TCA NCG $\Lambda A M$ GCC CCG AAA ATC ATC AAT GTC TGT TGT TGT TGA GAT ACC GAG 1560 1590
AGM AGA GAA TAC ACA CTG CTF AGC ACG CGA CAC TTA ATA CCC ATI CAT TAC ACA TGC ACC 1620 1550
ACG ACG ATG AAG TTY GCC AAG TAG CTA AGT TGT TGA CCT GAC CAT CAA GTG GAC CTT TCA 1680 1710

```
CAC CCT CAT ATA ACT ACT TAM AGA AAA TAT AGA AAA ATG GAA ACT תGT TMT GCA AGT TAG
1740 1770
GCC AOT GCC GAA CTG SCA CCG TTT CCA CCT GAC GTG CCC CAP CAT ATC AGC CIC TAA ARA
1800
1830
TCA ACA CAC CAT GTT CAA ACA CAC GAC TAG CAT ACA GGN GCA GGA GCT ACA GTA AAT TTH
1860
1890
AAC CTT GRA TMO GCA TGT TCG CCA ATG \HC ATA GTG TRT TCT TCA ACC TCA TIT TCP AAC
1920
1950
CAA GTT ACC AAG TMC AAT ATG ATG AAT AAC TAC AAG ATT AGC AAA CAA ATA CAA GRA GCA
1980 2010
TAT GGG INLA THA TAT AAC ATC GAG TAC TAT ATA CAT OAC ATG AAA TAC AAA ATG CAA GAA
2040 2070
AAA TWA CTT TTA AAC AAA FIU' 'UAN GIN GAA TAA AAA ACA GTA THT CCA AAA ACT AAA
```

Figure 6.2 Sequence of a wha26 cDNA (p 26 CD) and deduced amino acid sequence of the Drosophila E-subunit (GenBank accession no. is U38198). Double-stranded sequencing of the cloned genomic DNA fragment was performed according to the Sequenase TM II protocol (USB) by generation of unidirectional deletions with the Erase-a-Base system (Promega), and with the aid of synthetic oligo primers when required. The putative polyadenylation signal is underlined. The start of poly A is marked as bold.

6.4 Genomic structure of vha26

6.4.1 Genomic DNA clones corresponding to vha26

An Oregon \mathbb{R} genomic DNA library in vector EMBL3 was used to isolate the gene represented by the vha26 cDNA. Approximately 40,000 phage from the library were plated on four Pctri dishes (150 mmX 150 mm). Plaque-lifts probed with random-primed p26CD cDNA, revcaled three "positive" signals. Plaques from the corresponding spots were re-plated at 50-200 pfu per 90 mm Petri dish and re-screened: two individual and overlapping positive clones were obtained (ph26A and ph26B). Restriction digests of ph 26 A are shown in Figure 6.3A. The deduced map is shown in Figure 6.4. Probing of ph26A with wha 26 cDNA reveals the sequence homology between the genomic fragment and wha26 (Figure 6.3B). A 5 kb BamHI fragment that hybridises with the cDNA was subcloned into pBluescript SK^{-}, and named p 26 kg .

6.4.2 vha26 is a single copy gene

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and probed at high stringency with the part of wha 26 cDNA (1183-2096 bp in Figure 6.2). The single band of hybridisation seen in each lane suggests a single generic locus. This is consistent with the structure and sequence of cloned genomic DNA and in situ hybridisation to polytenc chromosome squashes which identifies a single locus at $83 \mathrm{~B} 1-4$ on the right arm of chromosome 3 (Figure 6.10). The $188 \mathrm{~kb} \mathrm{83B}$ interval contains three identified genes: gorp, a gene implicated in meiosis (Castrillon et al., 1993), nmadaR, a glutamate receptor (Ultsch et al., 1993), and a tRNA gene (Dutn, at al., 1979). However, there are also several lethal P-element insertions, suggesting that inactivation of the vha 26 locus by "local jumping" of the P-element may be feasible, or even that an existing P-element insertion might already represent a lethal allele of this gene.

Figure 6.3 A: Agarose gel of ph26A phage DNA cleaved with BamHI (B), EcoRI (E), SalI(S),SalI/EcoRI (S/E), BamHI/EcoRI (B/E) and Sa\/BamHI (S/B). B: A blot of the above gel probed with vha 26 cDNA.

Figure 6.4 Genomic organisation of the wha 26 locus. Above: Restriction map of ph26A DNA. The estimated length of the insert is 10 kb ? Below: map of p 26 kg and p 26 CD subclone of p26kg. S; Sali; B; BamHI; E: EcoRI; P:PstI; X: XbaI.

Figure 6.5 ExoIII deletion of the p 26 kg insert. (A) p 26 kg structure showing the restriction enzymes selected to make ExoIII protected and unprotected termini. NotI and SmaI generate 5^{\prime} overhanging and thus unprotected termini; SacI and $K p n \mathrm{I}$ generated protected termini. (B) The first 10 samples of ExoIII and S1 nuclease digestion of SacI/NotI digested p26kg. (C) The first 10 samples of ExoIII and S 1 nuclease digestion of SmaI / KpnI digested p26kg. Samples of the ExoIII reaction were in both cases, removed at interval of 30 second.

Figure 6.6 (A). Plasmid minipreps from theSacI/NotI deletion experiment digested with $X b a \mathrm{I}$ and $P s t \mathrm{I}$. (B) Plasmid minipreps from the $S m a \mathrm{I} / K p n \mathrm{I}$ deletion experiment digested with $X b a \mathrm{I}$ and $K p n \mathrm{I}$.

In Section 6.8 we will see that a fly line with a $P[1 a c W]$ insertion in the first intron of wha 26 can indeed be identified.

6.4.3 Generation of unidirectional deletions of $\mathrm{p}^{26 \mathrm{~kg}}$ DNA for sequencing

Two pairs of enzyme ($\operatorname{Sacl} / \mathrm{Notl}$ and $S m a I / K p n \mathrm{I}$) were selected for digesting p 26 kg , and the resulting DNA fragments are treated with Exolll to make deletions from each end (Figure 6.5 A). p 26 kg has no digestion site for any of the four enzymes. 20 timepoints were taken for each ExoIII digestion. Figure 6.5B and 6.5C shows the first 10 digestions by Exolll from either ends. Two colonies from each of the first 9 transformations were selecred at random, and plasmid DNAs were digested with $X b a \mathrm{I}$ and $P_{s t I}$ (Figure 6.6 A, B). From the size of the bands we know how far the DNA has been deleted. A set of subclones with different sizes of deletions (Figure 6.6A) were selected for sequencing using primer T3. Another set of subclones was sequenced using primer T7. A genomic DNA fragment covering all of the wha 26 cDNA was sequenced on both strands.

6.4.4 Correlation of genomic and cDNA sequences

The $c \mathrm{DNA}$ sequence of p 26 CD is contained within the 5 kb BamHI fragment of p 26 kg . It is punctuated by three small introns with in-frame boundaries (Figure 6.7). This is the first description of a genomic DNA sequence, and thus of intron placement in the gene for an in animal E subunit. Intron placement frequently marks functional boundaries within proteins; however, the only other genomic DNA sequence available, for Neurospora crassa vma4 (Bowman, et al., 1995), shows that intron placement is not precisely conserved between animals and fungi; however, as further genomic sequences are obtained, they may be informative. As with the N. crassu gene vma4, no TATA or CAAT boxes could be seen upstream of the putative transcriptional start site in the available sequence for wha26. This is commonly the case for ubiquitously expressed genes.
31.
caa caa ata cac att ttt acc ctc gra ate gca ggg toa cac ttt cgt gea atc ata tga 61 91
tog att tge agt gaa aat ttt cag aig ieg gge aga agg caa aag taa ett atc gat tte $121 \quad 151$
cac tht cot agt gtt ggg ccg cog ttt cca act cag the ggc tgt gaa tgt att agc tha 181211
att aaa tit caa tha tht cca gGC AOG GTP GTr GTA CGT GCG CTT CTP TAA AAC MCT TGA $241 \quad 271$
ATT TCC THM CGG TPT GTG CAG TGA AÄA AAA TCA GTC AAA ATG GCA CTG AGC GAT GCT GAT $301 / 8 \quad 331$
GTA CAA AAG CAG gta att gaa axc ttg gat tgg gaa cgg gea gge gat caa ggt cgt agg $\forall \quad Q \quad K \quad Q$
361391
gaa aca age aaa acg aga ggc tice gtt tge cit tot gec ttt gea att tge ctt tge aat 421451
aaa gat gge gaa gtc atg gga tet cec agg tca tgt gaa stt tte dec gec agt agt dca 481511
att aga ctg aca tec tec caa atc ggc cog gtc att tgy gac ttg cog gag ttt tga cat
541571
att tgt tgg cta atg aag aca cat caa tot att tgt cca gat agt ttg cgt ana akg lga 601631
gta aad att cgt get ggt cat gtg aca cgg ccc cog cai tgg agc aat gitg tig gac cga 661691
gac gac tag coc tge acc coa cac tog tac tot otg toa cac cac sag cga ccc cet tac $721 \quad 751$
gtt atc aaa act tta acg aaa ata aat aga ggc tag ggt ett gga egt ctce cet tet cca 781 811
ttt ate aig tice agt tat cat gtg aca cac agg cat cta cta sac agg acg act gtt toa 841/12

871/21

 902/32 $932 / 42$
GCC AAG GCC GNG GAG GAG TTC AAC ATT GAG AAG GGA CGC CTG GTC CAG CAG CAG CGT CTC
 $962 / 52 \quad 992 / 62$
AAG ATC ATG GAA TAC TAC GAG AAG AAG GAG AAG CAA GTV GAG CTG CAG AAG AAG ATT CAG

1022/72 1052/82
$T C C$ TCC AAC ATG CTC AAC CAG GCT CGT CHG AAG gty cgt gic glc cag tig gtg gCc ota
$\mathrm{S} \quad \mathrm{S}$ N $\mathrm{M} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{Q} \quad \mathrm{A} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{K}$
10821112
aca tat ace gga aad cac ctit att ett ad cal tog tad tgt ace etg tag gTG cTG AAA
1142/86
1172/93
GTG CGC GAG GAC CAT GMG AGC AGC GTG CTG GAT GAT GCC CGC AAG CGT CTC GGC GAG GTC
 $1202 / 106 \quad 1732 / 516$
$A C C$ AAG AAT GAG TCC GAG TAC GAG ACT GLG CTG ACC AAG CTC ATC GTC CAG GGC CTG TTC
 1262/126 1293/136
CAG ATC ATG GAG CCC AAG GTO ATC CTG CGC TGC CGC GAG GTG GAC GTC CCC CTG GRA CGT $\left.\begin{array}{lllllllllllllllllll}Q & I & M & E & P & K & V & I & L & R & C & R & E & V & D & V & P & L & V\end{array}\right) R$ 1322/146 1352/156
$A A C$ GTC COG CCT GCC GCT GTG GAG CAA TAC AAG GCC CAG ATC AAT CAG AAC GTC GAG CTG $\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{V} & \mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{A} & \mathrm{V} & \mathrm{E} & \mathrm{Q} & \mathrm{Y} & \mathrm{K} & \mathrm{A} & \mathrm{Q} & \mathrm{I} & \mathrm{N} & \mathrm{Q} & \mathrm{N} & \mathrm{V} & \mathrm{E} & \mathrm{L}\end{array}$ $1382 / 165 \quad 1412 / 176$
TTC ATC GAC GAG AAA GAC TTC CTC TCT GCT GAT ACC TGC GGT GGT GTM GAG CTG CTG GCC
 1442/185 1472 CTC AAC GGA CGC ATC AAG Gtg agt act gtc ctt tcg gtg gag aga gag caa tec caa ctg L IV G $\quad \mathrm{R} \quad \mathrm{I} \quad \mathrm{K}$ 1502

1533/196

Figure 6.7 Sequence of tha 26 genomic DNA and deduced amino acid sequence of the Drosophila E-subunit (GenBank accession No. is U389510. Double-stranded sequencing of the cloned genomic DNA fragment was performed according to the Sequenase ${ }^{T M}$ II protocol (USB) by generation of unidirectional deletions with the Erase-a-Base system (Promega) and also with the aid of synthetic oligo primers when required. The putative polyadenylation signal is underlined.

Although the cDNA (Canton S) and genomic DNA (Oregon R) came from different D. melanogaster strains, apart from the genomic DNA having three small introns, the sequences are identical.

6.5 Phylogenetic analysis of the E subunit

The recent availability of deduced scquence from a broad range of phyla allows new insights into the structure of the E subunit. Although the primary sequence is poorly conserved across phyla, the substitutions are generally conservative, even in the distantly related halophilic archaebacterial Haloferax volcanii gene. Similarly, the predicted secondary structure is conserved; all members of the family appear to encode predominantly hydrophilic α-helical proteins with conserved N - and C-termini, as noted previously (Bowman, et al., 1995). However, therc is a clearer dichotomy between animal and plant/fungal sequences than we have observed for other D. melanagaster V-ATPase subunits, suggesting that the E-subunit may have a distinctive role in animals (perhaps plasma membrane or epithelial targeting), which requires the conservation of regions of primary sequence. As the gene appears to be single-copy both in Manduca (Gräf, et al., 1994) and Drosophila, it is likely that the same gene product serves both endomembrane and plasma membrane roles, so we speculate that in epithelia there may be as yet unidentified conserved accessory proteins which bind conserved domains. For example, an extended 22-aa N-terminal motif DVQKQIKHMMAFIEQEANEKAEE is absolutely conserved in all known animal sequences across a 400 million year cyolutionary span, but only 15 residues are conserved in plants, 11 in fungi and 6 in H. volcanii (Figure 6.8). Further in the sequence, the motifs QRLKIMEYYEKKEKQ and QKKIQ(S/M)SN(L/M)(L/M)NQARLKVL are absolutcly conscrved in animals, while being poorly conserved in plants; they also have a particularly high surface probability (as calculated by Mac Vector, IBI). Similarly, at the C-terminus, the motif NTLESRL(D/E)LI(A/S)QQ is conserved only in animals.

VE_arath VE_mescr VE_huma1 VE_huma2 VE_huma 3 VE_bovin VE_mans1 VE_mans 2 VE_drome VE_yeas1 VE_yeas2 VE_neucr

VE_arath VE_mescr VE_huma1 VE_huma2 VE_huma3 VE_bovin VE_mans 1 VE_mans 2 VE_drome VE_yeas 1 VE_yeas2 VE_neucr

VE_arath VE_mescr VE_huma1 VE_huma2 VE_huma3 VE_bovin VE_mans1 VE_mans2 VE_drome VE_yeas1 VE_yeas2 VE_neucr

VE_arath VE_mescr VE_huma1 VE_huma2 VE_huma3 VE_bovin VE_mans1 VE_mans 2 VE_drome VE_yeas1 VE_yeas2 VE_neucr
.MNDGDVSRQIQQMVRFIRQEAEEKANEISVPAEEEFNIEKLQLVEAEKKKIRQMNDTDVQNQIQQMVRFMRQEAEEKANEISVSAEEEFNIEKLQLVEAEKKKIRQMALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIME MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIMEMALSDADVQKQIKHMMAFIEQEANEKAEEIDRKAEEEFNIEKGRLVQTQRLKIME MALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQTQRLKIMEMALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME DADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIMEMALSDADVQKQIKHMMAFIEQEANEKAEEIDAKAEEEFNIEKGRLVQQQRLKIME MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG MSSAITALTPNQVNDELNKMQAFIRKEAEEKAKEIQLKADQEYEIEKTNIVRNETNNIDG
.MSQVHALSDDQVGQELRKMTAFIKQEAEEKAREIQIKADEEFAIEKSKLVRQETDAIDS
4 DYEKKEKQADVRKKIDYSMQLNASRIKVLQAQDDIVNAMKDQAAKDLLNVSRDEYAYKQL EYERKAKQVDVRRKIEYSMQLNASRIKVLQAQDDLVNAMKEAASKELLLVSGDHHQYRNL YYEKKEKQIEQQKKIQMSNLMNQARLKVLRARDDLITDLLNEAKQRLSKVVKDTTRYQVL YYEKKEKQIEQQKKIQMSNLMNQARLKVLRGRDDLITDLLNEAKQRLSKVVKDITRYQVL YYEKKEKQIEQQKKIQMSNLMNQARLKVLRARDDLITDLLNEAKQRLSKVVKDITRYQVL 6 YYEKKEKQIEQQKKIQMSNLMNQARLKVLRARDDLITDLLNEAKQRLSKVVKDITRYQVL 6 YYEKKEKQVELQKKIQSSNMLINQARLKVLKVREDHVRNVLDEARKRLAEVPKDIKLYSDL 52 YYEKKEKQVELQKKIQSSNMLNQARL_KVLKVREDHVRNVLDEARKRI_AEVPKDIKLYSDL 6 YYEKKEKQVELQKKIQSSNMLNQARLKVLKVREDHVSSVLDDARKRLGEVTKNQSEYETV 61 NFKSKLKKAMLSQQITKSTIANKMRLKVLSAREQSLDGIFEETKEKLSGIANNRDEYKPI 1 NFKSKLKKAMLSQQITKSTIANKMRLKVLSAREQSLERIFEETKEKLSGIANNRDEYKPI
0 AYAKKFKQAQMSQQITRSTMANKTRLRVLGARQELLDEIFEAASAQLGQATHDLGRYKDI
114 LKDLIVQCLLRLKEPSVLLRCREEDLGLVEAVLDDAKEEYAGKAKVHA. PEVAVDTKIFL 114 LKELIVQSLLRLKEPAVLLRCREEDKHHVHRVLHSAREEYGEKACVSH. PEVIVD.DIHL, 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV . .DVQIDQESYL 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV . .DVQIDQESYL 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPMYKIATKNDV . . DVQIDQESYL 116 LDGLVLQGLYQLLEPRMIVRCRKQDFPLVKAAVQKAIPVYKVATKRDV . .DVQIDQEAYL 116 LVTLIVQALFQLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV . .VLKIDNENFL 112 LVTLIVQALFQLVEPTVTLRVRQADKALVESLLGRAQQDYKAKIKKDV . .VLKIDNENFL 116 LTKLIVQGLFQIMEPKVILRCREVDVPLVRNVLPAAVEQYKAQINQNV . .ELFIDEKDFL 121 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN 121 LQSLIVEALLKLLEPKAIVKALERDVDLIESMKDDIMREYGEKAQRAPLEEIVISNDYLN 120 LRDLILEGFYAMNEPELVIRARQADYDAVREAAGWASAQYKHKTDKDVKATIDAENPV.

173 PPPPKSNDPHGLHCSGGVVLASRDGKIVCENTLDARLDVAFRMKLPVIRKSLFGQVTA. . 172 PPAPTSYDSHELSCSGGVVMASRDGKIVFENTLDARLEVAFRKKLPQIRKQLFAV 174 PE DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK 174 PE DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK 174 PE DIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK 174 PE.EIAGGVEIYNGDRKIKVSNTLESRLDLIAQQMMPEVRGALFGANANRK
174 PP. DTCGGIELIAAKGRIKISNTLESRLELIIAQQLLPEIRNALFGRNPNRK 170 PP. DTCGGIELIAAKGRIKISNTLESRLELIAQQLLPEIRNALFGRNPNRK 174 SA. DTCGGVELLALNGRIKVPNTLESRLDLISQQLVPEIRNALFGRNVNRK 181 KD. LVSGGVVVSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK 181 KD.LVSGGVVVSNASDKIEINNTLEERLKLLSEEALPAIRLELYGPSKTRK 178 PE. GSAGGIIIVGGNGKIDIDNTFEARLTLLKDSALPAMRKALFGENPNRK

VE_arath VE_mescr VE_huma1 VE_huma2 VE_huma3 VE_bovin VE_mans 1 VE_mans2 VE_drome VE yeas1 VE_yeas2 VE_neucr
...
224 FLD
224 FLD
224 FLD
224 FLD
224 FTD
220 FTD
224 FTD
231 FFD
231 FFD
228 FFD
(B)

Figure 6.8 A: PILEUP (GCG) of polypeptides related to the Drosophila E subunir. All sequences are deduced from cDNA. B: Phylogenetic tree of V-ATPase E-subunits generated by ClustalW and N-J plot using the PILEUP data.. GenBank accession numbers are as follows.

VE_drome Drosophila melanogaster ACCESSION NO.:U38198 and U38951
VE_mans1 Manduca sexta accession no.: P31402
VE_mans2 Manduca sexta accession no.: S25014
VE-humal Homo sapiens accession no.: P36543
VE_luma2 Homo supiens accession no.: A42666
VE_huma3 Homo sapiens accession no.: JN0909
VE-bovin Bos taurus accession no.: P1 1019
VE_arath Arabidopsis thaliand accession no.: X92117
VE_neucr Neurospora crassa accession no.: U17641
VE_mescr Mesembryanthemum crysta accession no.: X92118
VE_ycas1 Sacharomyces cerevisiae accession no.: Z49821
VE_yeas2 Saccharomyces cerevisiae accession no..: P22203

Figure 6.9 Genomic Southern blot of the vha 26 locus. Southern blot of genomic D. melanogaster DNA. Genomic DNA purified from wild-type D. melanogaster (Canton S) was cleaved with a range of restriction endonucleases, separated by electrophoresis in a 0.8% agarose gel, blotted to Hybond N (Amersham), and hybridised with a 32 P labelled random-primed probe of vha 26 cDNA. Prehybridisation was in Church buffer (7\% SDS, 1% BSA, 1 mM EDTA, $0.25 \mathrm{M} \mathrm{Na2HPO4} ,\mathrm{pH} \mathrm{7.2)} \mathrm{at} 65^{\circ} \mathrm{C}$ for 3 hours, and hybridisation was in Church buffer overnight. The filter was then washed at $65^{\circ} \mathrm{C}$ in 2XSSPE, 0.1% SDS for 30 min ; 0.5 X SSPE, 0.1% SDS for 30 min ; and finally in 0.1XSSPE, 0.1% SDS for 30 min and exposed to X-ray film for 1-2 days.

Figure 6.10 Chromosomal localisation of vha26. Salivary gland chromosome squashes were prepared by standard techniques (Ashburner, 1989). Chromosomes were probed with biotinylated, random-primed vha26 cDNA and hybridisation was detected using streptavidinconjugated peroxidase and diaminobenzidine (Courtesy of Ms. Zhongsheng Wang).

Figure 6.11 Northern blot analysis of vha26 gene expression. Total RNA was isolated using RNA zoI ${ }^{T M}$ from Canton S embryos, larvae, pupae and adults; from adult head, thoraces and abdomens; and from male and female adults. The RNA was separated by electrophoresis in 1\% formaldehyde-agarose/MOPS gels, blotted to nitrocellulose and hybridised with 32 p-labelled random-primed probes. (A) Adult tissues. H, head; T, thorax, Ab , abdomen; M, males; F, females. (B) Developmental Northern. E, embryo; L, third instar larva; P, pupa; Ad, adult. The filter was first hybridised with a vha26 cDNA probe, then the same blot was stripped and reprobed with $r p 49$ as a control for differences in RNA loading.

Recently, it has been shown in M. sexta that V-ATPase activity can be controlled hormonally via reversible association and dissociation of the V1 headgroups from the V0 transmembrane sector (Sumner, et al., 1995), and that V-ATPases in D. melanogaster tubules are controlled by cAMP and cGMP (Dow, et al., 1994). In this context, it is interesting to note that the insect genes share a C-terminal PKA/PKG phosphorylation site consensus (RKFT) at rcsiducs 222-5, athough the target threonine is not preserved in other phyla.

6.6 Gene expression

Northern blots of total RNA probed with wha26 cDNA identify a single band equivalent to a transcript (s) of approximately 2.3 kb (Figure 6.11). Different cioned cDNAs differed only in the length of their 5' UTRs, and the genomic sequence identified so far does not contain alternative exons that could be spliced to yield a product of the same size. The simplest interpretation is therefore that a single mRNA species is transcribed from the gene. Equivalent levels of expression are found in adult head, thorax and abdomen (Figure 6.11A) as might be expected for a "housekeeping" gene. The RNA is, however, much reduced during pupation (Figure 6.11B), as is the case with RNA for the D. melanogaster $68 \mathrm{kD} \mathrm{A} \mathrm{subunit} \mathrm{(See} \mathrm{Chapter} \mathrm{4)} .\mathrm{In} \mathrm{contrast}$, the 14 kD V-ATPase F subunit RNA is expressed at similar levels during all development (Chapter 7; Guo et al., 1995). In M. sexta, it has been suggested that some of the V-ATPase subunits disappear as the midgut pump shuts down during larval moults (Sumner, et al., 1995); it is possible that downregulation of certain critical mRNA species may be involved.

6.7 Identification of a fly line carrying a $\mathrm{P}[$ lac $W]$ insertion in wha26

In situ hybridisation for polytene chromosome places vha26 at 83131-4 in chromosome 3. From the Bloomington Drosophila Stock Center and the Drosophila Genome Center

Figure 6.12 Southern blotting of gemonic DNA identified a line carrying a $\mathrm{P}[$ lac $W]$ insertion in or near the wha26 gene. (A) Photo of Agarose gel of genomic DNA cleaved by BamHI, each lane containing genomic DNA from 10 adult flies. Each lane represents a line with a P-element insertion at 83B. 1, p1560; 2, p1581; 3, p1520; 4, p1609; 5, p1636; 6, p1540; 7, p1644; 8, p1529; 9, l(3)s1938; 10, l(3)j3E7; 11, 1(3)j9B6;12, l(3)j5E7. Lines 1-8 were provided by the Bloomington stock centre; Lines 9-12 were from the Drosophila Genome Centre at the Carnegie Institute of Washington. (B) Southern blot of the genomic DNA gel (A) probed with p26kg, the 4 kb genomic fragment that includes vha 26.
(A)

Figure 6.13 Plasmid rescue of DNA flanking the $\mathrm{P}[$ lac W $]$ element in $\mathrm{l}(3) \mathrm{j} 3 \mathrm{E} 7$. The restriction enzyme for plasmid rescue was EcoRI. (A) Restriction digests of rescued plasmid. (B) Southern blot of gel (A) probed with p26kg. (C) Same filter as (B) stripped and reprobed with the $1.9 \mathrm{~kb} \mathrm{P}[\mathrm{lacW}]$ fragment corresponding to the plasmid sequences. E, EcoRI ; B, BamHI.

(A)

1.3 .1

TTA AGT GGA TCT CTC TTG CCG ACG GGA CCA CCP TAT GT: ATY TCA TCA TCG ATC ATA TGA 61 G1 TTN CAC GAA AGT GTG ACC OTG CGA TTG CGA GGG TAA AAA TGT GPA TTP GTP GTC CCT GTC 121151
AGA CCA CCG ATA GAC GAT GTA ATP GTT ATC GCA TTT GHA ACA GAG GCT TCA CTR TAA TCG 181.211 ACT AGG TAG AAA AAT CAT GCG ATA TAA TCT ATA TAT GAT AAT GAA AAA TCA ATTP TGG CTC 241.271 TTT AAA TAT GAT TAT TAT ATT ACT CGA ATA ATC GAG OGT TAA TTT ATA CAT GTG CAT TCC 301 331. CGA AAT CCA CAT TAA TTG CCA GTG TGA TCG GAG TAN AAN AAC CIG ACA AXA AUA 'UGA 'JGI 361391
GAC AAT ATA AGC CAT CCC TGC TTP ATT GTA AGT GTA TTT TTT AAT GTA CAC ACG CTG ACA 421
AAA GIT GIG T"IL' CCI' TCG GGA 'IWM' CGC PAA GP
(B)

SCORES Initi: 248 Initn: 248 opt: 253
98.5\% idenciby in 65 kp overlap
$\begin{array}{llllll}139 & 129 & 119 & 109 & 99 & 89\end{array}$
p26k.pr TTACATCGTCTATCGGTGETCTGACAGCGACAACAAATACACATTTTTACCCTCGCAATC vha26.9
$49 \quad 39 \quad 29$
p26k.pr GCAGGG卫CACACTHTCGTGAAATCATATGATCCATGATGAAATAACATAAGGTGGTCCCG

$\begin{array}{ccccc}\text { vha26.g GCAGGGTCACACTTTCGTGAAATCATATGATCGATPTGCAGTGAAAATTMTCAGACGTTG } \\ & 40 & 50 & 60 & 70\end{array}$
$19 \quad 9$
p26k. $\mathrm{p}=\mathrm{TCGGCAAGAGACATCACTTAA}$
$\begin{array}{ccccc}\text { Vina } 25 . g & G G C A G A A G G C A A A A G T A A C T M A T C G T T T T C C A C T M I S C T C G T G T T G G C C C G C C G F T T C C A ~ \\ 100 & 110 & 120 & 130 & 140\end{array}$
(C)

Figure 6.14 (A) Sequence reading out of the rescued plasmid from primer PR-1. (B) Sequence homology of rescued plasmid from line 1(3)j3E7 and vha26. Underlined indicates the end of the $\mathrm{P}[l a c W]$ insertion. (C) Position of the $\mathrm{P}[\operatorname{lac} W]$ insertion in line 1(3) 3 E 7.
at the Carnegie Institute of Washington, 12 fly lines carrying P-element insertions in this region were obtained. Adult genomic DNA isolated from each line was cleaved by BamHI and separated in 0.8% agrose gel (Figurc 6.12 A). A Southern blot of this gel was hybridised with a dro26kg fragment probe (Figure 6.12B) All lanes exhibited a $\approx 5 \mathrm{~kb}$ band which hybridised with the 5 kb wha26 genomic fragment (See Figure 6.4). However, Lane 10 corresponding to fly line $1(3) j 3 E 7$, exhibited two extra bands of $\approx 1.8 \mathrm{~kb}$ and $\approx 13.5 \mathrm{~kb}$. This fly line carries a single $\mathrm{P}[$ lac W$]$ insertion at $83 \mathrm{Bl}-2$ (Refer to Encyclopaedia of Drosophila). The 5 kb size band in this lane was from the balancer chromosome. The other two extra bands were likely come from the chromosome with the P-element which inserted in gene wha 26.
$\mathrm{P}[l d c W]$ is an enhancer-trap element that which includes a lacZ reporter and bacterial plasmid sequences for rapid plasmid rescue (Bier et al., 1989). EcoRI was chosen for digestion of the genomic DNA used for plasmid rescue of line 1(3) 3 E7 (Sce Chapter 2 and 3 for methods). Figure 6.13 A shows the rescued plasmid digcsted with EcoR1 (lane 1) and doubly digested with EcoRI and BamHI (lane 2). The plasmid digested with EcoRI produced two bands of $\approx 14 \mathrm{~kb}$ and $\approx 1.1 \mathrm{~kb}$. Hybridisation with a dro26kg probe (Figure 6.13B) and with plasmid sequence (Figure 6.13C) shows that the 14 kb band contains both the 1.9 kb plasmid sequence and flanking genomic DNA which hybridises to wha26 genomic DNA. The 4.1 kb fragment comes either from incomplete digestion or from "co-cloning" in the process of plasmid rescuc. The plasmid after double digestion with EcoRI and BamHI released a 1.8 lab wha26 genomic fragment which is of a same size as the band found in the genomic Southern blot (Figure 6.12).

Figures 6.12 and 6.13 strongly suggested that the $\mathrm{P}[$ lac $W]$ insertion in line $1(3) \mathrm{j} 3 \mathrm{E} 7$ is in the wha 26 gene. As the rescued plasmid by EcoRI was $14+4.1 \mathrm{~kb}$, the orientation of the insertion should be opposite to wha26gene, otherwise the rescued plasmids should be much smaller because there are several EcoRI sites immediately 3^{\prime} prime to the
dro26kg fragment (Sce Figure 6.4). Sequencing the rescued plasmid speciffed the $\mathrm{P}[$ lac W $]$ insertion to the 5 ' of wha26 (Figure 6.14).

6.8 Discussion

This chapter reports the first genomic sequence and chromosomal localisation for a VATPase E-subunit in an animal. Alignment with a few E subunit sequences clearly shows that Drosophila gene to be conserved across eukaryoce and prokaryote phyla. It has been possible to identify extended motifs diagnostic of either all members or merely animal members of the family. Expression studies suggest that wha 26 mRNA may fall into a subclass of V-ATPase subunits which is not expressed continually during the life of the insect. This characterisation of pha 26 is the first step to elucidate further the function of the subunit in an organismal context by Drosophila genetics.

The isolation of a $\mathrm{P}[l a c W]$ insertion in gene vha 26 night be of great use for analysis the function of V-ATPase E-subunit in Drosophila. The lacZ gene in $\mathrm{P}[$ lac $W]$ may allow detcetion of the domain of expression of the gene. Precise and imprecise excision of the P-element will generate new alleles. More detailed mutational analysis based on the $\mathrm{P}[\operatorname{lac} W]$ insertion line will be carried out in the near future. See chapter 5 for examples of this kind of analysis.

Chapter 7

vha14, the Gene Encoding a 14 kDa F Subunit of the VATPase

7.1 Summary

A Drosophila melanogaster cDNA for the 14 kDa F -subunit has been cloned via homology with the corresponding M. sexta gene. Its deduced translation product is a 124 amino acid polypeptide sharing 90% identiry with the M. sexta polypeptide and 50% identity with an analogous polypeptide of Saccharomyees cerevisiae. Homology was also found with expressed sequence tags from a variety of other species, indicating that the subunit is phylogenetically conserved. The Drosophila gene (wha14) is present as a single copy at cytological position 52B on the second chromosome, and gives rise to an mRNA species of 0.65 kb . Abundance of the whal transcript, relative to an rp 49 control, shows relatively little variation during devclopment and between adult head, thorax and abdomen, suggesting that the F-subunit is a relatively ubiquitous component of the V-ATPase.

7.2 Introduction

The gene encoding F-subunit of V-ATPases was first identified from Tobacco hornworm midgut (Manduca sexta) and subsequently from yeast and mammalian. Cloning of a cDNA for the F-subunit and demonstration that the polypeptide is indeed a component of the M. sexita V-ATPase, was carried out as follows (Gräf et al., 1994b). A polyclonal antiserum against M. sexta plasma membrane V-ATPase was used to screen a cDNA cxpression library, leading to characterisation of a gene that encodes a 14 kDa polypeptide (Gräf et al., 1994). A fusion protein was then used to purify monospecific
antibodies against the gene product. Such antibodies both cross-reacted with the Fsubunit on a Western blot and were able to abolish M. sexta V-ATPase activity in vitro (Gräf et al, 1994). Though Western bloting failed to detect membrane components from other species (Gräf et al., 1994), a related S. cerevisiae gene (VMA7) was subsequently described, null mutations of which show properties characteristic of other classes of V-A'TPase nuil (Graham et al., 1994; Nelson et al., 1994). Another related gene ($N t_{p} G$) appears to encode a component of the Na^{+}-pump from the microbe Enterococcus hirae (Takase et al., 1994). While these results confirm the F subunit as an essential component of some V-ATPases, it is not clear whether it is a general component, or instead serves a specialised role in holocnzymes from particular tissues. In principle, the powerful genctic tools tnique to Drosophila (Rubin, 1988) may allow a more detailed resolution of this question. As a first step to such an analysis, this chapter: reports the cloning and characterisation of wha14, the D. melanogaster gene encoding the F-subunit.

7.3 cDNA cloning and DNA sequence analysis

A D. melanogaster head λ ZapII cDNA library was screened by plaque hybridisation with a cloned cDNA for the M. sexta F-subunit. Hybridisation signals were obtained at approx. 1:10,000 and three plaques were puified by successive rounds of screening. One of these cDNAs was excised as pBluescript and sequenced on both strands, using synthetic oligonucleotides to extend the reading. The 595 bp contig contains an open reading frame corresponding to a 124 amino acid polypeptide of $\mathrm{M}_{r} \approx 13.9 \mathrm{kDa}$ (Figure 7.1), which is clearly a V-ATPase F-subunit, sharing 90.3% identity with the F-subunit of M. sexta (insect), and 49.6% identity with that of S. cerevisiae (Figure 7.2). In accordance with the nomenclature for other D. melanogaster V-ATPase loci, the gene has been named vha14.
TCCACATCGCTCGTAAGAAAAAATTAGAAAAAACCAATCGAAATGGCTCTGCACTCGGCA 60
M A IL H $\quad \mathrm{S}$ A 6AUCAAGGGAAAACTGATCAGCGTMATCGGCGACGAGGACACCTGTGMGGGCTTTCTGCTC 120
$\begin{array}{lllllllllllllllllllll}\text { T. } & \mathrm{K} & \mathrm{G} & \mathrm{K} & \mathrm{I} . & \mathrm{I} & \mathrm{S} & \mathrm{V} & \mathrm{I} & \mathrm{G} & \mathrm{D} & \mathrm{E} & \mathrm{D} & \mathrm{T} & \mathrm{C} & \mathrm{V} & \mathrm{G} & \mathrm{F} & \mathrm{L} & \mathrm{L} & 26\end{array}$
GGCGGAGTGGGCGAGATCAACAAGAATCGCCATCCCAACrrTATGGTGG'CGACAAAAAT 180
$\begin{array}{lllllllllllllllllllll}G & G & V & G & E & I & N & K & N & R & H & P & N & F & M & V & V & D & Z & N & 46\end{array}$
ACGGCCGTCAGCGAACTGGAGGACTGTTTCAAGCGTTTCCTTAAGCGGGACGATATCGAC 240

ATCATTCTAATCAACCAGAACTGCGCCGAGCTTATTCGTCATGTGATCGATGCCCATACG 300
I I L I N Q N C A E L I R N I 86
rCGCCCGTGCCCGCTGTTTRGGAGATTCCCTCCAAGGACCATCCGRACGACGCCAGCAAG 360
$\begin{array}{lllllllllllllllllllll}\mathrm{S} & \mathrm{P} & \mathrm{V} & \mathrm{P} & \mathrm{A} & \mathrm{V} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{P} & \mathrm{S} & \mathrm{K} & \mathrm{D} & \mathrm{H} & \mathrm{P} & \mathrm{Y} & \mathrm{D} & \mathrm{A} & \mathrm{S} & \mathrm{K}\end{array}$ 105
GACTCCATTCTGCGYCGCGCCCGCGGCATGTTCAATCCGGAGGATCTGGTGCGCTAATTC 420
$\begin{array}{lllllllllllllllllll}D & S & I & L & R & R & A & R & G & M & \mathrm{~F} & \mathrm{~N} & \mathrm{P} & \mathrm{T} & \mathrm{D} & \mathrm{L} & \mathrm{V} & \mathrm{R} & \text { k }\end{array}$ 124
CTCGAATTCTGCTCGAGGACACTGTMTCGTATRGCRGCAACCGCCAGAGTATTGCYY"LAC 480
ACCCTGTAAACAACTATCCATACATTCAGTGCTTCGCCTMTGTTCTTATCGTGTATTTAA 540
AGACATTTATMAAATGGTTTTCGTTGMARAATAGATTAAA 581

Figure 7.1 Sequence of a wha 14 cDNA , and deduced amino acid sequence of the Drosophila F-subunit (GenBank accession no. Z26918).

The putative start codon between nuclcotides $43-45$ is embedded within a region of perfect agreement with the canonical cukaryotic translation initiation sequence, RNNMTGG. A 3' UTR of 164 bp separates the stop codon at nucleotide position 415417 from a 16 residue poly(A) tract. As in the case of the cloned cDNA for the D. melanogaster 16 kDa subunit (Meagher at al., 1990), there is no canonical polyadenylation signal. There is, however, the motif ATJAAA between nucleocides $548-$ 552 , centred 26 bp before the start of the poly-A tract. In M. sexta, there are two Fsubunit transcripts, distinguished by the length of 3' UTR (Gräf et al., 1994). The shorter of the two has a AATAAA motif, though unusually close to its poly (Λ) tract, whereas the longer has in addition an ATTAAA motif centred 17 bp before the poly(A) tract . Thus this may be a polyadenylation signal for these RNAs.

7.4 Amino acid sequence comparisons

In addition to matches to M. sexta and S. cerevisiae F -subunit sequences, a search of the GenBank database using the programmes TFASTA (GCG) and BLAST (NCBI) revealed matches to expressed sequence tags (ESTs) from human fetal lung, spleen, and brain; from the plants Arabidopsis thaliana and Oryza sativa; from the nematode worms Caenorhabditis elegans and briggsiae; and from the malarial parasite Plasmodium falciparium (Figure 7.2A). Probably due to EST sequencing errors, it was occasionaliy necessary to switch reading frames in order to maximise alignment (see legend to Figure 7.2A). We can thus extend greatly the known phylogenetic base for the occurrence of the F-subunit, which is clearly distributed widely and consetved in plants, animals and fungi (Figure 7.2B). We can also add greatly to the authority of the suggestion of similarity between the Na^{+}ATPase of the bacterium Enterococcus hirae and the V-ATPases, as most of the residues identified as matching the M. sexta sequence can now be seen to be conserved among all the V-ATPase subunits (Figures 7.2A and 7.2B)

VE_ATMS	1. IVAGSSYIPARNSALTAMTADEDTMVGLIMAGVGNOTTRRKTNYIJV. .DSKTTMXQIEDA
VF_KLCC	1 NAGRPS二PTNSSALIAITADEDTVIGFLLAGVGNVDLRKKTNYLIV . DNKIPKKKITELA
VF_CELEC	1 MASAAKGKTI AVTGDEDIVVGFLLGGVGELNKARKPNYLIV . DKXQTFVQETEFA
VF_R02891	1 . GGVGELNKARIKPTYLIV . .DKQTVIIQETEDA
VF_F06548	
VF F-707836	1 AGRTAKLIAVIGDEDTVTGFILGGIGELNKXRHPNPLVV . .EFDINTXNTETEDT
VF_F-08542	1 AGRGKLIAVIGDEDIVTGFILGGIGELKKXRHPNELVV . . BKDIPTXEIEDJ
VF_D31181	1 . . . AAGMAGRGKLIAVIGDELIVIGFLEGGIGELNKMRFPNFLVV . EFKDITIINXTEDT
VF_DROME	
VF_MANSE	$1 . .$. MATJHAAVKGKLISVIGDEDTCVGFLLGGIGEINKN2HPNFONV . .DKNTPVSEIEEC
VF_T57982	
VF_YEASTI	1 MAEKRTLIAVIADEDTMTGELLAGIGQITPETQEKNFFVYQEGKTMKEFTTDM
VE_T02519	1 .ardevi
VF NTPG	1 . MTYKIGVVGDKDSVSPFRLEGFDVQHGTUTKTETRKT
VF_Arwh	59 FKEFS.GXDDEAIILSShFIATMMRFLVDSYMKPV.PXILGIPSKEHPYDPDFESVLSRV
VF._RICC	59 FKIENT.TREDIATVLISQYYANMIR
VF..CELEC	
VF_R02891	30 FKGFC. ARDD. .XITINCHLAEMIRYAVDQHTQSI. PAVIJEIPSKEAPYDPSKDSJLNRA
VF_F0654B	51 FRQFL. NRDDIGIITINQYIAEMVRHALDAHQQSI. PAVEEIPSKEHPYDK.
VP_F07836	
VF_F08542	51 FRQFL. NRDUIGIILINQYIAEMVRHALDAHYQST. PAVLEIPSKEHP .
VF_-D31181	55 FRQFL.NRDDIGIITINQYIAENVRHALDGHQQSI. PAVLGLEEKE.
VF._DEOME	
VF_MANSE	56 FKRFV.KRDDTDTILIN@NVAELVRHVIDAHTAPV.PSVLEIPSKDHPYDASKDSILRト'A
VF_T57982	5 FRQFL.NRDDIG,TT,TNQYIMEMVRHMLDAHOQSI. PAVLEIPSKEIFPYDAAKDSILRRA
VF_YFAST	54 FNHFTEERDDIAILLINOHIAENISARVDSFTNAT. PATIEIPSKDHPYDPIKDSVLKRV
VF_T02519	6 FKEYS.SKHLXCGVILINQQIADELKYLUDLHDKIL.PTVUEIPSKDKPFDPNKDSIIQRV
VF__NTPG	37 IDEM. AKNEYGVIYITEQCANLVPETIERYKGQLTPAIILIPSHQGILGLGEEECSNSV
VF_ATTS	1.17 KYEPSAESVSQR
VE_RICC	117 NCFL**
V\%_CELEG	112 RGLF'NPwDFR, .
Vi'_R02891	86 RGLFNPEGFR.
VF_F06548	
VF_F07836	
VE_FO8542	
VF D31181	
Vr DRONE	114 RGWFNPEDLVR.
VF_MANSE	114 KGMENPEDLVR.
VF_T5'7982	63 RXIFTAEDLR..
VF_YEAST	113 RKLFGE,
VF_TO2519	64 KLFFGGDISHI.
VF_N1]	95 EKKAVGONIL.

(B)

Figure 7.2 A: Alignment of known $14-\mathrm{kDa}$ F-subunit aa sequences. All sequcnces are deduced from cDNA. GenBank accession numbers are as follows:
A. thaliana, ATTS2695 and ATTS 3474;

Oryza sativa (rice) callus, RICC1365A;
C. elegans, Z/49073;
C. briggsiae, R 02891 and R02892;
H. sapiens infant human brain, F06548, F07836, F08542;
H. sapiens fetal lung, D31181;
D. melanogaster head, Z26918;
M. sexta midgut, X67130;
S. cerevisiac; $\mathrm{U} 10073 ;$ P. fatciparum, $\mathrm{T} 02519 ; n t p G, \mathrm{D} 17462$.

B: Phylogenetic tree of V-ATPase F-subunits generated by PILEUP using default parameters.

The many human ESTs show some differences in amino-acid sequence (Figure 7.2A); but it should be noted that they are all at least 98% identical at the DNA level, with many of the differences being ambiguous nucleotides in their sequences. It seems likeliest at present that the human ESTs are all cONAs from the same human gene.

In common with other F -subunits (Figure 7.2), the N-terminus of the Drosophila polypeptide lacks a known membrane targeting sequence. Since the polypeptide is also hydrophilic and is accessible to antibodies (Gräf et al., 1994), this would be compatible with it being synthesised cytoplasmically. A search of the Prosite polypeptide motif database also revealed extended similarity to a casein kinase II phosphorylation site, beginning at amino acid 50 (SELED), and the motif is conserved in the F-subunit of M. sexta (though not in other F-subunits). Although there are few clues as to how V-ATPases might be regulated (Sumner et al., 1995), and there is not yet evidence for the action of any particular kinase, V-ATPases demand a large fraction of the cellular energy budget (Dow and Harvey, 1988), and are known to be hormonally regulated in both Manduca midgut (Sumneret al., 1995) and Drosophila Malpighian tubules (O'Donnell et al., 1995).

7.5 vhal 4 is a single copy genc

D. melanogaster genomic DNA, cleaved with various restriction enzymes, was blotted and probed at high stringency with whal4 cDNA (Figure 7.3). The single band of hybridisation seen in each lane suggests a single genetic locus. This is consistent with in situ hybridisation to polytene chromosome squashes, which identifies a single locus at 52B on the right arm of chromosome 2 (not shown). Several uncharacterised lethal alleles have been mapped to 52A-D as part of more detailed studies of two neighbouring loci, bexokinase-C and pox- N. For example, eight lethat complementation groups (l/2)52ACab) uncovered by Df(2R)XTE-18 have been documented (Davis and MacIntyre, 1988).

Drosophila genes encoding several other V-A'PPase subunits have recently been cloned and characterised. Chapter 4-6 has reported the characterisation and mutagenesis of the A and E subunit genes. Inactivation of wha26 or wha68-2 lead to a homozygous lethal phenotype. This Glasgow group has also been working on the B and c subunits of Drosophila V-ATPasc, wha55, the gene for the B-subunit, corresponds to a known lethal complementation group, SzA (Davies et al., 1995; Gausz et al., 1979), extreme alleles of which are recessive embryonic or early first instar larval lethals. Malpighian tubules of dying individuals are transparent, a defect that is cell-autonomous in transplants (Gausz et al., 1979). Such a phenotype can be reconciled with the critical role of V-ATPases in transporting epithelia (Dow, 1994; Wieczorek, 1992). Since one might predict a similar phenotype associated with null alleles of other essential V-ATPase subunits, this may provide a way of screening candidate lethals at thewhal 4 locus.

7.6 Gene expression

Northern blots of total RNA probed with wha 14 cDNA identify a single band cquivalent to a transcript(s) of approximately 0.65 kb (Figure 7.4). Normalisation with respect to anrp49 control indicates little modulation during development (Fig. 7.4A) Moreover, equivalent levels of expression are found in adult head, thorax and abdomen (Figure 7.4B), as might bc expected for a gene involved in the basic aspects of function.
M. sexta CDNAs corresponding to the F-subunit differ by 97 bp in the length of their 3 ' U'IRs (Gräfet al., 1994). Whilc all threc cDNAs isolated here have the same 3^{\prime} end, it cannot be ruled out that the single band seen in chromosomal in situ hybridisation comprises more than one transcript class.

Figure 7.3 Southern blot of D. melanogaster genomic DNA cleaved with the following enzymes: lane 1, EcoRI; lane 2, EcoRV; lane 3, BamH1; lane 4, HindIII; lane 5, PstI. The blot was probed with a $400 \mathrm{bp} \mathrm{XhoI} / X b a \mathrm{I}$ fragment of vhal4 cDNA, which contains no sites for the above enzymes.

Figure 7.4 Northern blot analysis of vha 14 gene expression. (A) Adult tissues. H, head; T, thorax; Ab , abdomen; M , adult males; F, adult females. (B) Developmental stages. E , embryo; L, third instar larva; P, pupa; Ad, adult. The lower panels in both (A) and (B) show the same blots, stripped and reprobed with cDNA for the ribosomal protein gene, $r p 49$, This controls for differences in RNA loading.

7.7 Discussion

The Drosophila whal 4 has been cloned by homology with a gene thought to cncode a subunit of M. sexta V-ATPase, and that is expressed in M. sexta midgut. An analogous subunit has been identified by homology in another V-ATPase model, the yeast S. cerevisiae, and has been shown to be essential for proper assembly of the yeast V-ATPase holoenzyme (Graham et al., 1994). Is the F-subunit a genuine V-ATPase subunit, or an accessory; and is it a specialisation for either a plasma membrane or endomembrane role of the V-ATPase? The widespread tissue distribution implied by the human EST's and the broad phylogenetic distribution implied by ESTs from other species would suggest that this cannot be uniquely a subunit of a plasma-membrane form of the V-ATPase. The ubiquitous spatial and temporal expression of wha14 in D. melanogatster teported here furcher supports the suggestion that this is a general subunit which exists in all V-ATPases. A definitive demonstration of an essential role of phalf in animal V-ATPase function will depend on the future identification of a null allele, for which Drosophila is likely to be a uniquely suitable model. Possibly a pre-existing mutant corrcsponding to the locus can be identified can be identified (as described carlier). Alternatively, a novel allele could be generated by P-clement mutagenesis. Such studies should help in elucidating the function of F subunit in V-ATPase.

Chapter 8

Discussion and Future Work

This thesis consists of two main parts: (i) a set up of a fast and efficient method to correlate cloned gencs to P-element mutants and (ii) cloning, characterisation and mutagenesis of genes encoding Drosophila V-ATPase. Chapter 3 described the approach of site-selected mutagenesis of Drosophila genes wia plasmid rescuc. 1836 fly hines have been plasmid rescued individually and a simple procedure to screcn mutants for a target genes has been set up. Initially screening has isolated mutations for more than 10 genes. Sufficient plasmid DNA has been prepared to allow screening for many targets.

8.1 One-step screening to correlate cloned gene to P-element lines

As an alternative to screening pools of plasmids, an one-step screening procedure involving grids of colonies created by a robotic device has been tried. The entire grid is visualised by hybridisation with a ${ }^{35} \mathrm{~S}$ probe for the plasmid replicon, whist individual colonies corresponding to particular insertion sites are visualised with a ${ }^{32} \mathrm{P}$ probe specific to the gene of interest. Unfortunately the robotic equipment is unavailable in Glasgow and the hybridisation to the grids was not as sensitive as that described in Chapter 3. Here, I propose an improved screening procedure which reduces the former three rounds of screening to one single hybridisation while still retaining the sensitivity (Figure 8.1). Λ large cube made of 1000 small cubes each representing the plasmid(s) from a Drosophila linc. The 1000 plasmids are pooled into 10 pools from each dimension of the cube with each pool containing 100 plasmids. By pooling from the threce dimensions a total of 30 pools of plasmids are obtaincd which can be loaded into a gel of 30 lanes. A single hybridisation of the Souchern blor could easily assign any positive signal to the corresponding fly line. Screening for the 1836 plasmids from the second chromosome

Figure 8.1 A strategy of pooling plasmids for One-step screening. The cube represents plasmids from 1000 individual Drosophila lines. $\mathrm{P}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}(\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3, \ldots \ldots, 10)$ stand for the individual plasmid. $\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{j}}$ and $\mathrm{P}_{\mathrm{k}}(\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3, \ldots \ldots, 10)$ stand for the pool of 100 plasmids pooling from each of the three dimensions. All the 30 pools of DNA could be loaded in a single gel. A single hybridisation of the Southern blot could easily assign any positive signal to the corresponding fly line.
insertion line (see Chapter 3) could be simplified if the individual plasmids arc re-pooled according to Figure 8.1. This pooling strategy will be applied to the work of the third chromosome lines. Approximately 2500 fly lines with P-element in third chromosome are being plasmid rescued individually (collaborated with Dr. Peter Deak). The resulting transformed E. coli will be pooled from three directions for maxi DNA preparation.

8.2 The correlation of cDNA tibrary clones with the P-element lines

Except for the use in site-selected mutagenesis, the large amount of rescued plasmids can also be utilised in the correlation of individual clones within Drosophila cDNA library with the individual flies bearing a P-element. This would provide access to many unknown but essential Drosophila genctic loci. A procedure likely to be suitable for large scale screening for cDNA clones with our rescued plasmids is proposed (Figure 8.2). The whole rescued plasmids (including the vector) can be directly labelled if the cDNA library is in a vector such as lambda NM1149, which shares no sequence homology with the vector sequence of the rescued plasmids. The cDNA library are laid out as plaques in a rectangular grid by a robotic device constructed by this group (Mackenzie et al., 1989). The device can easily generate 6 or more arrays of 1000 clones and produce as many filter replicas of each as desired. The filker can be screened by probes of pooled plasmids representing 10 or 100 lines depending on the sensitivicy of the probe. As the plaque is laid out individually in the grid, positive plaques will represent a single cDNA clone without need for a further round of screening. However, as the probe is labelled from a pool of plasmids, the cDNA clone needs to be further labelled to screen the filter of plasmids (obrained as in figure 8.1) to be correlated to the mutant flies, thus a pair of cDNA and mutant is obtained. This pair, very possibly, represents a mutation of a gene. In cases wherever insertion is near the gene, local jumping or delction could possibly mutate the gene. For flies being homozygous lertal there is high possibilicy for each of the rescucd plasmid to detect one cDNA and hence one informative insertion. The resulting cDNA/P-element line pair would be subjected to preliminary studies: Lines

Figure 8.2 Large scale correlation of Drosophila cDNA clones to P-element insertional mutants. The pools of plasmids are labelled to screen filters of cDNA clones. Any positive cDNA clone is further labelled to screen the gel blot of the pooled plasmids (as in Figure 8.1) to identify the corresponding Drosophila line.
could be examined initially for obvious phenotypes in the homozygote and for lacZ expression. Sequence of the cDNA and deduced peptide, in association with the phenotype exhibited by the mutant, provide valuable information in the study of gene function as well as other purposes such as in the scarching for novel insecticides.

8.3 PCR amplification of cDNA corresponding to the rescued plasmids

Cloning cDNAs corresponding to the locus of P-clement insertion in large scale can be an arduous task. Here I suggest a simple strategy which is modified from Straus and Ausubel (1990). The method is diagrammed in Figure 8.3. An excess of biotinylated rescued plasmids is mixed with a small amount of purified cDNA library (in a vector sharing no homology with that of P-element vector). The mixture is denatured and then allowed to reassociate. The corresponding cDNA will hybridise to biotinylated strands of rescucd plasmid. The biotinylated DNA, together with the cDNA reassociated with it, is bounded to avidin-coated polystyrene beads. The bound cDNA is thus separated from other CDNAs and is then released from the beads for PCR amplification.

8.4. The Drosaphila V-ATPase

In this thesis I have reported the cloning and characterisation of genes and cDNA for subunit A, E and F of V-ATPases in Drosophila. Subunit c and B have also been cloned by the Glasgow research group (Meagher et al., 1990; Davies et al., 1996). Two further subunits have been cloned unintentionally, one from an enhancer-trap study (Harvie and Bryant, 1996), and one from a yeast two-hybrid study of cytoskeletal proteins (He and Kramer, 1996). Adding all this together, genes encoding seven subunits have becn cloncd (Table 8.1).

In spite of the overwhelming advantage (Rubin, 1988); , Drosophila as a model system had a major drawback (Dow, 1994; Dow at al., 1996). The extremely small size of the

Figure 8.3 Schematic representation of PCR amplification of cDNA corresponding to the rescued plasmids. The biotinylated rescued plasmids are reassociared with the corresponding DNA in the cDNA library. The cDNAs hybridised to the biotinyred DNA are bound to avidin-coated heads and separated from the rest cDNAs. The bound cDNA is then released and is subject to PCR amplification.
organism compared with vertebrate make it difficult to perform physiological analysis of the V-ATPase function. Nonetheless, a delicate assay of the Malpighian tubule has been developed (Dow, 1994; Dow et al., 1996). The insect Malpighian tubule performs a unction analogous to that of the vertebrate kidney tubule. Despite its small size, the D. melanogaster tubulc is remarkably robust and provides a valuable physiological phenotype (Dow et al., 1994). Potentially, then the D. melanogaster Malpighian tubule may prove a useful tool for the study of plasma membrane V-ATPase function.

Table 8.1 Characterisation of D. melanogaster genes encoding V-ATPase subunits

	-_.gene		transcript (kb)	deduced peptide			Citation
	name 1	location		size (kb)	identity (human)	identity (Manduca)	
A	wha68-1	34A	2.6	68	87.1 (VATO)	87.4	Chapter 4
					81.9 (VATA)		
A	wha68-2	34A	2.6	68	91.7 (VATO)		Chapter 4
					82.4 (VATA)	91.2	Chapter 4
B	whas5	87C	2.8, 2.3	55	93 (brain)	97	Davies et al
					89 (kidney)		1996
C			1.8		66		Harvie et al.
							1996
D							He et al.
E	vha26	83 B	2.3	26	63	77	Chapter 6
F	vhat 4	52 B	0.65	14	71	90	Chapter 7
c	vbal7	42B	1,1.2	16	87	93	Meagher et al.

8.5 The V-ATPase mutants in Drosophila

The cloning of a gene in D. melanogaster and identification of the chromosomal location unlocks a wealth of information. It is possible that the existing mutations in the region include alleles of the gene under study. Over the last few years, the probability of such findings has been increased greatly by the systematic physical mapping of the genome, the production of comprchensive pancls of thousands of lines carrying lethal P-element insertions, which must presumably have inactivated a large number of essential genes (Török et al., 1993). The development of site-selected mutagenesis of target genes by PCR (Kaiser and Goodwin, 1990) and via plasmid rescue (Chapter 3) allow the easy identification of candidate lines for a particular genes. This thesis reported the identification of $\mathrm{P}[\operatorname{lac} W]$ mutant lines for genes encoding subunit A, E and c of Drosophila V-ATPase. Together with mutations for genes encoding subunit B (Davies et al., 1996) and subunit C (Harvie $c t$ al., 1996), P-element mutations for five V-ATPase genes have becn identificd (Table 8,2).

Table 8.2 P-element mutations of genes encoding Drosophild V-ATPase

subunit and gene name	fly No.	position of the insertion	homozygous phenotype	citation
A, wha68-2	$25 / 8$	before $A T G$, in intron.	first instar larvae	Chapter 5
			lethal	
B, vhas 5	1(3)j2E9	after ATG, in intron	embryonic lethal to	Davies et al
			viable	1996
C		before ATG	second instar to	Harvie et al.
			pupal lethal	1996
E, what 6	1(3) 3 E. 7	after ATG, in intron	lethal	Chapter 6
c, whal7	16/1	after ATG, in intron	third instar lethal	Dow et al. , 1996
				Chapter 3

There is no detectable heterozygous phenotype of any of the available V-ATPase mutations, but total RNA reduccion for wha68 has been observed even in the heterozygous mutant flies. The homozygous lethal phenotype has been obscrved in all the five P-element lines. Although the lethal phase is varied for mutations of different subunits (Dow et al., 1996) all the null alleles seem to be able to live past the embryo stage. The V-ATPase necded is likely to be provided by their mother. It has been found that the mutation of wha68-2, as well as mutation in wha55, shows a homozygous detcctable rubule phenotype. The mutant homozygotes which survived to late embryonic or early larval stages showed transparent Malpighian tubules, without the luminal white material observed in healthy larvae. This phenotype is considered to be a characteristic of mutations of genes of V-ATPase subunits and mutations in any genes essential for plasmid membranc V-ATPase function are likely to show this characteristic phenotype as wcll (Dow et al., 1996).

The LacZ expression in the P-element lines for wha68-2, wha55, wha26 and wha17 seems to have a similar staining patterm (Chapter 5; Davies et al., 1996; Dow at ah., 1996). The expression is strongly detected in epithelia known to be energised by V-ATPases, the Malpighian tubules, the antennal palps and rectum. If this expression is a general pattern for P-element insertion in genes encoding any of the V-ATPase subunits, it could be as a general marker to screen for P-element insertions in other V-ATPase genes. However, the lacz expression of lines with a insertion in gene of sununit C gives a different pattern from the gene (Harvie et al., 1996), This lacZ cxprcssion may be affected by other nearby promoters.

Appendix 1.

List of publications from or partially from this study

1. Yiquan Guo, Ann Gillan, Tibor Török, Istvan Kiss, Julian A. T. Dow and Kim Kaiser. 1996. Site-selected mutagenesis of the Drosophila second chromosome via plasmid rescue of lethal P-element insertions.Genome Research 6;972-979.
2. Yiquan Guo, Zhongsheng Wang, Andrew Carter, Kim Kaiser and Julian Dow. 1996. Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacuolar ATPase. Biochemica et Biophisica Acta 1283, 4-9.

3 Yiquan Guo, Kim Kaiser, Helmut Wieczorek, and Julian A. T. Dow. 1996. The Drosophila melanogaster gene vha14 encoding a $14-\mathrm{kDa}$ F-subunit of the vacuolar ATPase. Gene 172: 239-243.
4. Luke Alphey, Louise Parker, Gillian Hawcroft, Yiquan Guo, Stephen Elfedge, Kim Kaiser and Gareth Morgan. 1996. KLP38B - a mitotic kinesin-related protein from Drosophila which associates with PP1. Submitted to Cell.
5. Hilary A. Snaith, Christopher G. Armstrong, Yiquan Guo, Kim Kaiser and Patricia T. W. Cohen. 1996. Deficiency of protein phosphatase 2A uncouples the nuclear and centrosome cycles in Drosophila embryos. Journal of Cell Science (in press).
6. Y. Guo, J. A. T. Dow, A Gillan, I. Kiss and K. Kaiser. 1996. Molecular characterisation and inactivation of the 68 kDa A-subunit of V-ATPase in Drosophila. 37th American Drosophila Conference, San Dicgo. 91B.
7. B. McCabe, X. Guo, S. Sweeney, E. Goldstein, K. Kaiser, C. O'Kane Investigation of the function of synaptobrevin proteins in Drosophila melanogaster. 37th American Drosopbila Conference, San Diego. 102 B.
8. Dow, J. A. T., Davis, S. A., Guo, Y., Graham, S., Finbow, M. and Kaiser, K. (1996). Molecular genetic analysis of V-ATPase function in Drosophila melanogaster. J. Exp. Biol. 202 (in press).

Appendix 2. List of primers used in this study

primers	sequences (5'3')	genes	orientation	position
P31	CGACGGGACCACCTTATGTTATTTCATCATG	P-element	+ 1	
PR	AGCATACGTHAAGIGGATGTCTC	P-element	+	
PL	GTGTATACTTCGGTAAGCTTCGG	P-element	-	
gt10rev	GGCTTATGAGTATTTCTTCCAGGGTA	mim1149 vector		
nm1149him	AACCTTCAGCCAGAATCCATTGCC	nm1149 vector		
14KT3-1	AACTGGAGGACTGTTTCAAG	vhal 4 c	+	194-213
14KT7-1	TGGCGTCGTACGGATGGTCC	vha14c	-	336-354
G14T3-2	GGTGCGCTAATTCCTCGAAT	whal4c	$+$	426-427
G14'7-2	TCGACCACCATAAAGTTGGG	via14c	-	$154-172$
2873-1	G $\triangle \wedge$ GAAGATTCAGTCCTCCA	vha26g	+	1009-1028
28T3-2	GAACGTCGAGCTGTTCATCG	vha26g	+	1369-1388
28T3-3	CAGTCAGGACGCACAGCTAGGA	vha26g	$+$	1769-1786
28T3-5	AGTAGCTAAGTTTGTTGACCTG	vha26g	+	2509-2529
28T7-1	GTTATATAATAACGCATATGTAC	vha26g	-	2848-2866
28T7-2	CGATGAACAGCTCGACGTTC	vha26g	-	1369-1387
28T7-3	CACGCTGCTCACATGGTCCTC	vha26g	-	1148-1167
28T7-4	CGCATATGCTACTTGTATTTG	vha26g	-	2835-2854
28T7-6	TCCTAGCTGIGCGTCCTGACTG	vha26g	-	1764-1786
28T7-5	CAGGTCAACAAACTTAGCTACT	vha26g	-	2509-2528
28g-1	CACTGCACAAACCGAAAGGAAA	vha26g	-	242-262
28g-2	CATCGAGTACTATATACATTA	vha26g	$+$	2867-2887
$28 \mathrm{~g}-3$	GCAGGCGATCAGGTCGTA	vha26g	+	340-358
28g-4	CGTCCAAGACCCTAGCCTCTA	vha26g	-	747-766
$28 \mathrm{~g}-10$	GATCCACTGCCGTTGTTCCTCC	vha26g	\cdots	2224-2244
$28 \mathrm{~g}-4$	CGTCCAAGACCCTAGCCTCTA	vha26g	-	7477766
G67T3-1	CGACATGGCCACCATCCAGG	vha68-1c	+	255-274
G67T3-2	AGATGGCGAGCAAAAGATCA	vha68-1c	+	1840-1867
G67T3-4	GAAAGTCACGCAGTACCTCA	vha68-1c	-	930-948
G67T3-3	CTACAACCTGGAGGACATTG	vha68-1c	$+$	627-646
G67T3-8	CGGTAGCTGAAATGGAACG	vha68-16	+	2197-2215
G67T3-9	CTGTCCAAGTACTCCAACTC	vha68-1c	+	862-881
67T3-20	TCTGTCTGAATACTTCCGTG	vha68-1c	\pm	1071-1090
667LT3-1	7TCAGCTGGTTGGCAAAGCA	vha68-1c	+	1553-1572
G67T7-1	GTCCTTTAGTCCCGCTTACC	vha68-1c	-	
G67T7-2	TGATCTTTTGCTCGCCATCT	vha68-1c	-	1847-1866
G67T7-3	CAATGTCCTCCAGGTTGTAG	vha68-1c	-	627-645
G6717-4	TGAGGIACHGCGTGACITTC	vha68-1c	-	930-949
G67T7-5	AGGGTAACGAACACAATCGA	vha68-1c	-	2335-2353
G67T7-8	CGTTCCATTTCAGCTACCG	vha68-1c	-	2197-2234

Appendix 2 List of primers used in this study, cont.

primers	sequences ($5^{\prime}-3^{\prime}$)	gelles	orientation	position
67「7-10	CCCGTGAAGAGCGGATGGTT	vha68-1c		745-763
67T7-20	TGCGTAGTGGCACGAACTCGG	vha68-1c	-	1484-1503
667J.T7-1	TCGGAGAAGTCACCACCAGG	vha68-10	-	1332-1330
67LLT7-2	GAACACCTGCACGATACCCAAA	vha68-1c	-	1349-1370
PS67-1	GAGCTGGTGAAACAAATCCAACG	vha68-1c	+	12-34
PS67-2	GCGATTAGTTTGACAAATTGC	vha68-2g	+	912-932
PS67-3	TAACTCAGCAAACGAAGATAGG	vha68-2g	$+$	1690-1700
67T3-5	TCCATTTACACTGG1ATCACT	vha68-1c	$+$	1051-1071
G67T7-6	TCCAAGTTCCACGGAAAGAG	vha68-1c	-	332-350
$67 \mathrm{CP}-1$	AGAAGAAGAAGAGCAGCAACCGCGACC	6vha68-1g		
$67 \mathrm{GP}-1$	ATTGCAGTCGAAAAAACAGAATAAAGCAAA	vha68-2g	+	1258-1287
67CP-2	GTAACATICA「AA'facatTrTATTTCC	vha68-1c	-	2547-2572
EHT7-1	GCATGCATTTGTATTTCTGTCT	vha68-2g	-	4076-4097
EHT7 ${ }^{\text {+ }}$	AAGTCATGTTTTCTCCCTGTTTG	vha68-2c	$+$	2370-2392
EHT7	GTTGCACTTTATTCGTACATT	vha68-2c	-	2432-2452
$67 \mathrm{KG}-10$	CACCAACAATTCCAGCTGCAT	vha68-2y	$+$	3817-3838
$67 \mathrm{KG}-\mathrm{PS}-2 \cdot$	CСTTCTTTGTTATGCTGCG	vhat68-2g	-	991-1009
67KG-9-3-2	TTCAATCCATTTCAGGACC	vha68-2g	$+$	3604-3622
67KG-9-7-3	ATCCTCGGCATTGACCACCGG	vha68-2g	-	
67KG-9-7-3	AACGCATAGTGCAGCAGCGAC	vha68-2g	-	
PS-9'	AACATCATCAAGTATCAT	vha68-2g	$+$	1626-1643
5'3-1'	GGTATCATGGGCAGCATCTT	vha68-2g	$+$	1963-1982
$67 \mathrm{KR}-1$	ACCTGGCTCATCTCCTACTCG	vha68-2g	$+$	3136-3156
67KG-9-7-1	CGTCTGGTAGACGGATCACCA	vha68-2g	-	
67KG7T3-1	AC'TTGCAGTCTGTGTGCGTGTT	vha68-2g	-	280-301
67KG9T7-2	ATGGACCTCAATGGTCGCTGGA	vha68-2g		
67KG9T7-1'	TCCAGCGACCATTGAGGTCCAT	vha68-2g		
67KG9T3-1	CCTGCAGCAGAACTCCTACT	vha68-2g	+	3348-3367
67KG5T7-1	AGTGACGAAGCAGCGATCAA	vha68-2g	+	248-267
67KGT3-1	TGTAGATGGATTCGGTCAGC	vha68-2g	+	2018-1037
67KG-PS14	TCGATGATGAGGAGCGIGAGT	vhat68-2g	+	1307-1327
67KG977-2	AGGTGTCGICCGGTGGAGGATAA	67 kg -mid	\pm	813-834
PS-7	GACCGTTACCGAAGCAGAAGA	vhat88c-1	$+$	43-63
PS-8	CGCGTAGACACGGCCATATT	vha68-2g		
PS-9	CCAACCAAGATAGGTTCCAT	vha68-2g	\sim	1683-1702
PS-10	TTGCCGTCAGCTGACAAATG	vha68-2g	-	661-682
PS-12	ATGTAGCAGATACACCTGCC	vha68-2g	+	1125-1144
PS-13	GTGCGGTATGAAAACGTGAA	vha68-2g	+	397-416

Appendix 3. List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[\mathrm{lac} \mathrm{C}]$

Notes for some items in the table:

1. The Glycerol stock in the table is the rescued plasmid transformed in E. coli which was stored at $-70^{\circ} \mathrm{C}$. Plasmid DNAs were isolated by pool of 10 line.
2. Lethal phase and chromosomal sites of the P-elements were kindly provided by Dr. Istvan Kiss. P: Pupae; L: larvae; 8A: Pharate adult; $\mathrm{A}^{ \pm}$: Adult (semi-lethal); E; Embryo; $\mathrm{L}<\mathrm{n}$; Larvae maller than normal; $\mathrm{I} . \ll \mathrm{n}$: Larvac much smaller than normal. L>n: Larvae larger than normal.

Plasmid pool 1				Plasmid pool 2				Plasmid pool 3				Plasmid pool 4			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \hline \text { P[lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW } W \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
380	46/8	8A		402	49/17	E		412	51/14	$\mathrm{A}^{ \pm}$		2	1/3	E	51C1-2
384	48/2	E		403	50/1	P		413	51/15	E		3	1/7	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	43E1-3
391	48/11	8A		404	50/2	E		414	51/19	E		4	1/8	8A	
392	49/1	E		405	50/7	E		416	51/24	E		5	1/9	E	
395	49/9	E	$\begin{array}{\|l\|} \hline 26 \mathrm{~B} 5-6 \\ 42 \mathrm{E} 3-4 \end{array}$	406	51/3	E	47F8-9	417	51/4	E-L		6	1/10	8A	
396	49/10	$\mathrm{L} \ll \mathrm{n}$		407	51/23	$\mathrm{A}^{ \pm}$		418	51/25	E		7	1/12	$\mathrm{A}^{ \pm}$	
397	49/11	E		408	51/5	E	56D8-11	419	52/1	8A	47A3-5	8	1/14	L<<n	
398	49/12	E		409	51/6	$\mathrm{A}^{ \pm}$		420	52/2	E		9	1/15	P-8A	
399	49/13	E	44F1-2	410	51/8	E		421	52/4		57F5-6	10	1/16		57A4-8
401	49/16	E		411	51/13	E	$\begin{array}{\|l\|} \hline 30 \mathrm{~B} 5-6 \\ 83 \mathrm{~F} 1-2 \\ \hline \end{array}$	422	52/5	E		27	2/28	E	
Plasmid pool 5				Plasmid pool 6				Plasmid pool 7				Plasmid pool 8			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$
30	2/31	P	46A2-3	42	3/8	E		59	4/23	$\mathrm{L} \ll \mathrm{n}$	38A5-6	1	1/1	E	43E1-3
31	2/32		46A2-3	45	3/13	P	45D1-2	60	4/24	E	$\begin{array}{\|l\|} \hline 30 \mathrm{D} 1-2 \\ 44 \mathrm{Fl}-2 \\ \hline \end{array}$	11	1/19	P	
32	2/33	L<<n	42A15-19	46	3/14	E		62	5/3	P	42B1-3	13	2/1	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	
33	2/35	E		47	3/15	E		63	5/4	E		14	2/3	E	46A2-3
35	2/37	E		49	4/3	P		67	6/4	P-8A		16	2/7	E	
37	3/2	L-P	34B8-9	53	4/12	E		68	$6 / 5$	$\mathrm{L} \ll \mathrm{n}$	27A1-2	19	2/11	E	
38	3/3	8A	34B8-9	54	4/13	P	45A4-8	69	6/6	E		20	2/12	$\mathrm{A}^{ \pm}$	59A1-3
39	3/4	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	43F5-6	56	4/18	E		70	6/7	P-8A		23	2/22	E	
40	3/5		$\begin{array}{\|l\|} \hline 53 F 3-5 \\ 47 \mathrm{~A} 11-14 \\ \hline \end{array}$	58	4/20	8A		71	6/9		23F5-6	24	2/23		23D3-4
89	$8 / 4$	E		90	$8 / 5$	P-8A		203	26/10	E		25	2/24	$\mathrm{L} \leq \mathrm{n}$	

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[$ lacW $] \quad$ Box 2

Plasmid pool 9				Plasmid pool 10				Plasmid pool 11				Plasmid pool 12			
Glycerol stock	Fly line	lethal phase	site $\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
28	2/29	$\mathrm{A}^{ \pm}$		85	$7 / 6$	E		102	10/2	P		6/13	6/13	P	
34	2/36	E-L	25C1-2	87	8/2			103	10/4			8/9	8/9		$\begin{aligned} & 49 \mathrm{E} 1-2 \\ & 28 \mathrm{D} 1-2 \end{aligned}$
17	2/8	L<<n	50C17-19	88	$8 / 3$	P-8A	51B1-5	104	10/5	E	$\begin{array}{\|l\|} \hline 47 \mathrm{Al1-14} \\ \hline 70 \mathrm{D} 4-5 \\ \hline \end{array}$	12	1/20	E	43F1-2
72	6/10	E	23A4-6	91	8/6	E	56D5-6	106	10/8			12/7	12/7		
74	6/12			93	8/8	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	60D6-8	107	10/9	8A		48	4/1	E	
76	6/15	E		95	8/11	8A		111	10/15	$\mathrm{L} \ll \mathrm{n}$	60A10-14	387	48/7	$8 A^{ \pm}$	
78	6/17		48E1-2	98	8/15	$\mathrm{L} \ll \mathrm{n}$		109	10/12	E		423	52/6	E	
79	6/18	$\mathrm{L} \ll \mathrm{n}$		99	9/1			108	10/10			424	52/7	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	53D11-14
83	7/3	E-A ${ }^{ \pm}$	$\begin{array}{\|l\|} \hline 51 \mathrm{~B} 4-5 \\ 83 \mathrm{~B} 6-7 \\ \hline \end{array}$	100	9/9	L<<n	47C1-2	113	10/18			425	52/9	E	
84	$7 / 5$	P-8A	56D7-9	101	9/12	E									
Plasmid pool 13				Plasmid pool 14				Plasmid pool				Plasmid pool 16			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
25/23	25/23		42D1-2	25/26	25/26	E		26/8	26/8	E	$\begin{array}{\|l\|} \hline \text { 57B1-5 } \\ \text { 59E-F } \end{array}$	28/3	28/3		
25/21	25/21	E		25/6	25/6		30С7-8	27/4	27/4		$\begin{array}{\|l\|} \hline 57 \mathrm{D} 11-12 \\ \text { 22E1-2 } \\ \hline \end{array}$	28/9	28/9	E	
25/20	25/20	E	42D1-2	26/5	$26 / 5$	E	31F3-4	47/4	47/4			28/11	28/11	E	
25/17	25/17	P		26/6	26/6			28/1	28/1			28/12	28/12	$\mathrm{A}^{ \pm}$	
25/16	25/16	E		$26 / 5$	26/5	E		28/2	28/2	E	50C20-23	28/14	28/14		27C4-5
25/13	25/13			26/4	26/4	E		$28 / 6$	28/6			28/17	28/17		
25/12	25/12			27/8	27/8	E		$28 / 7$	28/7		32E1-2	29/1	29/1	E	
25/11	25/11		52E5-7	27/7	$27 / 7$	P		28/8	28/8	$\mathrm{A}^{ \pm}$		29/3	29/3	$\mathrm{A}^{ \pm}$	
25/8	25/8	E	34A3-4	27/6	27/6	E		44/5	44/5	P-8A		36/3	36/3	E	

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[\mathrm{lacW}] \quad$ Box 3

Plasmid pool 17				Plasmid pool 18				Plasmid pool 19				Plasmid pool 20-			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \text { P[lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{aligned} & \text { lethal } \\ & \text { phase } \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW } W \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
42/9	42/9	E	60B1-2	42/10	42/10	P-8A		54/24	54/24	E		54/38	54/38	E	
42/17	42/17	$\mathrm{L} \ll \mathrm{n}$	$\begin{aligned} & \text { 49D1-3 } \\ & 33 \mathrm{C} 4-5 \end{aligned}$	47/3	47/3	8A	24A1-2	54/25	54/25	E-L		54/39	54/39		50C14-16
42/21	42/21	E		48/1	48/1	$\mathrm{L} \ll \mathrm{n}$		54/26	54/26			54/41	54/41		$\begin{array}{\|l\|} \hline 46 \mathrm{~B} 4-5 \\ 59 \mathrm{~F} 1-2 \end{array}$
44	3/11	$\mathrm{A}^{ \pm}$	36A11-12	53/11	53/11	8A		54/27	54/27			54/42	54/42		53E1-2
45/1	45/1	E		54/20	54/20	E-L	46B4-5	54/31	54/31			54/45	54/45		
45/4	45/4	L-P	42A10-16	54/22	54/22	L-P	46B3-13	54/32	54/32			54/47	54/47		21D3-4
45/10	45/10		48F5-6					54/34	54/34	E	$\begin{array}{\|l\|} \hline \text { 50B1-2 } \\ \text { 50C11-15 } \\ \hline \end{array}$	54/48	54/48		33F1-2
45/12	45/12	E	45B1-2					54/35	54/35		26D7-8	55/2	55/2	E	56A1-2
46/5	46/5	E						56/36	56/36			54/29	54/29	E	$\begin{array}{\|l\|} \hline 39 \mathrm{~F} 1-2 \\ 76 \mathrm{~B} 3-4 \\ \hline \end{array}$
Plasmid pool 21				Plasmid pool 22				Plasmid pool 23				Plasmid pool 24			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
46/1	46/1	L-P		50	4/5	E	25C1-2	138	13/1	$\mathrm{A}^{ \pm}$	45F1-2	155	18/2	E	
54/40	54/40		53B1-2	51	4/6	E		140	13/3	E		156	19/1	L-P	21B4-6
25/7	25/7	E		52	4/7	8A	47B15-16	142	13/7	E		160	20/4	E	
$27 / 5$	$27 / 5$			65	5/8	E	60B4-5	143	13/8	E		161	21/2		
46/7	46/7	$\mathrm{A}^{ \pm}$		120	11/7	L-P		144	13/10	$\mathrm{A}^{ \pm}$		162	21/4		
55/4	55/4	E		123	11/10	E	$\begin{array}{\|l\|} \hline \text { 31F4-5 } \\ \text { 42D4-5 } \\ \hline \end{array}$	146	14/3	P		163	21/7	E	
25/5	25/5	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		126	12/2			148	15/1	E	26B8-9	164	22/1	E	
				128	12/5		60D15-16	151	16/1	E		167	22/6	E-L	57A8-9
				131	12/8		60B4-5	152	16/3	E		168	22/8	$\mathrm{A}^{ \pm}$	
				134	12/11	E-A ${ }^{ \pm}$		153	17/1		25C1-2				

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[\mathrm{lacW}] \quad$ Box 4

Plasmid pool 25				Plasmid pool 26				Plasmid pool 27				Plasmid pool 28			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \text { P[lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
170	22/14			230	29/5	$\mathrm{L} \ll \mathrm{n}$	49F4-5	89s	$8 / 4$	E		308	37/1	$\mathrm{A}^{ \pm}$	51B1-3
171	23/1	8A	47A11-14	232	30/2	$\mathrm{L} \ll \mathrm{n}$		251	31/13	P	42A1-2	309	37/3	E	46F1-2
172	23/2	E		234	30/4	$\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 49 \mathrm{~B} 1-2 \\ 94 \mathrm{~F} 1-2 \\ \hline \end{array}$	252	31/14	pP	42A1-2	315	39/3	$\mathrm{A}^{ \pm}$	38B3-4
174	24/1	P		236	30/7	L-P	$\begin{array}{\|l\|l\|} \hline 55 \mathrm{E} 1-2 \\ 23 \mathrm{~A} 5-6 \end{array}$	255	31/17	P-8A	$\begin{array}{\|l\|} \hline 55 \mathrm{C} 9-12 \\ 54 \mathrm{~B} 15-16 \\ 90 \mathrm{D} \\ \hline \end{array}$	327	42/6	8A	36A1-2
175	24/3	P		237	30/8	E-A ${ }^{ \pm}$	$\begin{array}{\|l\|} \hline 49 \mathrm{E} 1-2 \\ 94 \mathrm{Fl}-2 \\ \hline \end{array}$	256	32/1	E	26D6-9	333	42/16	8A	
176	24/5	$\mathrm{L} \ll \mathrm{n}$	35D1-4	89	8/4	E		304	36/14	$\mathrm{A}^{ \pm}$	42B1-3	336	42/20	E-A ${ }^{ \pm}$	28B1-4
177	24/6	$\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 38 \mathrm{~B} 3-5 \\ 27 \mathrm{~F} 3-6 \\ \hline \end{array}$	246	31/7		32C1-2	257	32/2			341	43/1	P	$\begin{array}{\|l\|} \hline 27 \mathrm{~F} 4-5 \\ \text { 50D5-6 } \\ \hline \end{array}$
178	25/1	E		248	31/10	$\mathrm{A}^{ \pm}$	44C1-2	258	32/3	$\mathrm{L} \ll \mathrm{n}$		344	43/4	E	
179	25/2	E		250	31/12	$\mathrm{A}^{ \pm}$		259	32/4	8A-A ${ }^{ \pm}$		348	43/8	$\mathrm{A}^{ \pm}$	46F1-2
180	25/3	$\mathrm{L} \ll \mathrm{n}$		242	31/1	E	60B3-5	303	36/11	E		354	44/3	E	
Plasmid pool 29				Plasmid pool				Plasmid pool 31				Plasmid pool 32			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \text { PlacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	\| Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
363	44/15	P-8A		430	52/14	E		357	44/8	P		443	53/7	E	
368	45/8	E-L		439	53/2	E		454	53/29	L-P		394	$49 / 7$	E	50E4-7
369 372	45/9	E	35D1-2	441	53/4	8A-A ${ }^{ \pm}$		465	54/11	E		346	43/6	E	24D1-2
372	45/13	E-A ${ }^{ \pm}$		444	53/9	P		467	54/13			365	45/2	E	
374	$46 / 2$	$\mathrm{L} \ll \mathrm{n}$		445	53/10	E		468	54/14			312	38/1	E-A ${ }^{ \pm}$	
386	48/6	P		461	54/6			472	54/19			338	42/22	$\mathrm{A}^{ \pm}$	54B1-2
390	48/10	8A-A ${ }^{ \pm}$	53E1-2	462	54/7			485	54/33	E	53E1-2	310	37/4	E	60E8-9
414	51/19	E		464	54/10			496	54/45	P-8A		376	46/4	E-L	
428	52/12	8A		456	53/34	E	$\begin{aligned} & \text { 50B1-2 } \\ & 50 \mathrm{C} 11-15 \end{aligned}$	495	54/44	E		322	41/1	$\mathrm{L} \ll \mathrm{n}$	
429	52/13	E		459	52/4	8A-A ${ }^{ \pm}$	57F5-6	499	55/1	L-P		453	53/28	L-P	56F10-13

Plasmid pool 33				Plasmid pool 34				Plasmid pool 35				Plasmid pool 36			
Glycerol stock	Fly line	lethal phase	P [lacW] site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
57	4/19	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		3-24	26/12	E		485	54/33	E	53E1-2	139	13/2	E	25D1-2
82	$7 / 2$	8A		336	42/20	L-8A	28B1-4	442	53/5	P		238	13/1	$\mathrm{A}^{ \pm}$	45F1-2
81	6/20	$\mathrm{L} \ll \mathrm{n}$	42C1-2	362	44/13	E		437	52/24	8A-A ${ }^{ \pm}$		231	30/1	E	
116	11/2	P-8A		311	$37 / 6$	$\mathrm{A}^{ \pm}$	29D1-2	438	52/25	$\mathrm{A}^{ \pm}$		243	31/2	E	25C1-2
112	10/17	E	46F5-6	348	43/8	$\mathrm{A}^{ \pm}$	46F1-2	435	52/31			246	31/7		32C1-2
119	11/6	8A		302	36/10	E	46F1-2	457	54/1		21B4-6	245	31/6	L-P	
130	12/7	E	43F1-2	326	42/5	E		466	54/12			253	31/15	8A-A ${ }^{ \pm}$	46B1-2
132	12/9	L<<n	54B4-8	385	48/5	E		488	54/36			240	30/11	E-A ${ }^{ \pm}$	
141	13/4	$\mathrm{A}^{ \pm}$		363	44/15	P-8A		467	54/13			264	33/1	E	
124	11/15	E-L		233	30/3	P-8A	34B8-9	471	54/18			263	32/10	E	
Plasmid pool 37				Plasmid pool 38				Plasmid pool				Plasmid pool 40			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
265	33/2		37A1-2	296	36/1	E		36	3/1	$\mathrm{A}^{ \pm}$	36A11-12	90s	$8 / 5$	P-8A	
272	33/11			291	35/11	E		41	3/7	E		97	8/13	$\mathrm{L} \ll \mathrm{n}$	
271	33/10			290	35/10	E		43	3/10	E		110	10/13	8A-A ${ }^{ \pm}$	
275	33/16	$\mathrm{L} \ll \mathrm{n}$	51B7-8	293	35/13	E		55	4/14	E-L		117	11/3	E	48F3-6
266	33/3	$\mathrm{A}^{ \pm}$	54E1-2	287	35/5	E	36F11-12	64	5/7	pP		129	12/6	E	21A1-4
277	34/2	E	53C1-4	288	35/6		$\begin{array}{\|l\|} \hline 35 \mathrm{D} 1-2 \\ \text { 89B9-10 } \\ \hline \end{array}$	66	6/2	P		139	13/2	E	25D1-2
283	35/1	P-8A		292	35/12	E		73	6/11	P-A ${ }^{ \pm}$	58F4-5	165	22/3	8A-A ${ }^{ \pm}$	44C1-2
281	34/8	E		295	35/14	E	47F1-2	77	6/16	$\mathrm{L} \ll \mathrm{n}$	21B7-8	185	25/10		30C6-7
270	33/9	$\mathrm{L} \ll \mathrm{n}$		298	36/4	E		26	2/17			189	25/14	E	35D3-4
269	33/8	P		300	36/8	E		86	8/1						

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal location(s) of the P[lacW] Box 6

Plasmid pool 41				Plasmid pool 42				Plasmid pool 43				Plasmid pool 44			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \hline \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
196	26/1	E		21	2/13	P-8A	27C2-3	274	33/15	E		294	35/15	E	
197	26/2	E	35D3-4	22	2/15	E		275	33/16	$\mathrm{L} \ll \mathrm{n}$	51B7-8	299	36/7	E-L	
198	26/3	E		122	11/9	8A	41F8-9	280	34/6	E		301	36/9	E	53C1-2
204	26/11	E		127	12/3		30E1-2	284	35/2	E		313	38/2	E	
206	26/15	L-P	52E3-4	125	11/17	E-A ${ }^{ \pm}$		289	35/9	$\mathrm{A}^{ \pm}$	29E1-2	314	39/1	L-P	
208	27/3	P-8A		159	20/3	8A-A ${ }^{ \pm}$		440	53/3	8A-A ${ }^{ \pm}$	52E5-8	317	39/4	$\mathrm{A}^{ \pm}$	43F5-9
215	27/13	E		158	20/2	P-8A		203	26/10	E		318	39/5	E	48C5-6
239	30/10	E		247	31/9	E-L		351	43/14	L-P	42A1-2	321	40/4	$\mathrm{A}^{ \pm}$	
244	31/5	E		219	28/5	E		460	54/5	E		324	42/3	P	
261	32/7	E	48F3-4	267	33/4	$\mathrm{P}-\mathrm{A}^{ \pm}$		260	32/5	E		340	42/24	E	
				268	33/7	E									
Plasmid pool 45				Plasmid pool 46				Plasmid pool 47				Plasmid pool 48			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l} \text { lethal } \\ \text { phase } \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
328	42/7	P-8A	35D1-2	393	49/6			517	55/16	P-8A		455	53/32		
332	42/13	E	48F5-6	400	49/14	E		518	55/17	P	$\begin{array}{\|l\|} \hline 35 \mathrm{D} 1-4 \\ 37 \mathrm{C} 6-7 \\ \text { 82E6-7 } \end{array}$	458	54/2		
335	42/18	E		415	51/22	P-A ${ }^{ \pm}$		519	55/18	E		447	53/13	L-P	
350	43/11	$\mathrm{A}^{ \pm}$		426	52/10	E		520	55/19	$\mathrm{L} \ll \mathrm{n}$		451	53/19	P	
352	44/1	E	55D1-2	427	52/11		$\begin{array}{\|l\|} \hline 35 \mathrm{~F} 1-2 \\ 60 \mathrm{~B} 10-11 \\ \hline \end{array}$	521	55/23	8A-A ${ }^{ \pm}$		501	55/3	P-8A	
353	44/2	8A	28C7-8	431	52/15	E		524	55/32	P		480	54/28	E	
357	44/8	P		432	52/18			511	55/7	E		482	54/30		
358	44/9	E	59A1-3	433	52/19	$\mathrm{L} \ll \mathrm{n}$		512	55/8	P-8A		549	56/33	E	53E1-2
360	44/11	P	26B8-9	436	52/23			514	55/12	P					
361	44/12	E		449	53/17	P	56F10-12	516	55/15	E					

Box 7

Plasmid pool 57				Plasmid pool 58				Plasmid pool 59				Plasmid pool 60			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \text { PlacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$
805	70/14	P-A ${ }^{ \pm}$	44E1-2	759	67/9	E		794	69/20	P-8A		785	69/4	$\mathrm{L} \ll \mathrm{n}$	
808	70/18	E-L	50C14-15	762	67/12	E		795	69/22	P-8A		786	69/6	E	
809	70/20	P	36B1-2	763	67/13	E		797	70/2	E		784	69/3	P-8A	
810	70/24	E	43D1-2	771	68/8	$\mathrm{A}^{ \pm}$		798	70/3	8A-A ${ }^{ \pm}$		787	69/8	P-A ${ }^{ \pm}$	
214	27/10	E		772	68/10	E		701	63/42	P-A ${ }^{ \pm}$		788	69/9	E-A ${ }^{ \pm}$	
249	31/11	E	46B1-2	773	68/11	E		702	63/43	E		789	69/10	E-L	
279	34/5			799	70/5	P	21C4-5	754	67/1	E		790	69/15	E	34C3-5
282	34/9	8A		802	70/11	$\mathrm{A}^{ \pm}$		755	67/3	E		791	69/16	E	
133	12/10	E		803	70/12	E-L	37A2-3	756	$67 / 4$	P-8A		792	69/18	E	
154	18/1	L-P		804	70/13	P-8A		757	67/6	E		793	69/19	P	
Plasmid pool 61				Plasmid pool 62				Plasmid pool 63				Plasmid pool 64			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P} \text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
774	68/13	E		601	59/1	E		623	60/8	E-L		636	61/3	E	
775	68/14	8A		602	59/2	$\mathrm{A}^{ \pm}$		625	60/10	E		637	61/4	E-L	
776	68/15	8A-A ${ }^{ \pm}$		604	59/7	E-L		626	60/11	8A		638	61/5	E	
777	68/17	E-A ${ }^{ \pm}$	47A7-8	605	59/8	E		627	60/15	P		640	61/7		
778	68/18	L-8A		607	59/10	E		628	60/18	E		641	61/8	E	
779	68/19	E		610	59/13	E		629	60/19	P-8A	21B4-6	644	61/12	E	47A11-14
780	68/20	P-8A		612	59/16	P	54B10-14	630	60/21	pP	45B7-8	646	61/14	8A-A ${ }^{ \pm}$	
781	68/21	P-8A		616	59/20	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		631	60/22	E		647	61/15		
782	69/1	E		619	60/4	L<<n		632	60/24	E	$\begin{array}{\|l\|} \hline 47 \mathrm{~A} 11-14 \\ 47 \mathrm{C} 4-7 \\ \hline \end{array}$	648	61/17	E	
783	69/2	E		621	60/6	E	44F3-4	635	61/1	E	21C6-7	649	61/19		

Plasmid pool 65				Plasmid pool 66				Plasmid pool 67				Plasmid pool 68			
$\left\lvert\, \begin{array}{l\|} \hline \text { Glycerol } \\ \text { stock } \end{array}\right.$	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
661	62/3	$\mathrm{L} \ll \mathrm{n}$	51A1-5	307	36/19	$\mathrm{A}^{ \pm}$		858	72/26	E	53E1-2	870	72/40	L-P	
668	62/13	8A-A ${ }^{ \pm}$		460	$54 / 5$	E		860	72/28		53E1-2	879	73/6	E	
672	63/3	$\mathrm{L} \ll \mathrm{n}$	29C3-4	458	54/2	E	$\begin{array}{\|l\|} \hline 37 B 7-10 \\ 32 A 1-2 \\ \hline \end{array}$	866	72/36	E-L	52E5-6	872	72/44	P-8A	
674	63/5	$\mathrm{L} \ll \mathrm{n}$		526	55/31	8A-A ${ }^{ \pm}$	32A1-2	862	72/31	$\mathrm{L} \ll \mathrm{n}$		875	73/1	E	53B1-2
677	63/9	E-A ${ }^{ \pm}$		813	71/5	L-A ${ }^{ \pm}$		829	71/27	E-L	53C1-2	882	73/10	E	21C4-5
683	63/18	E		814	71/6	$\mathrm{P}-\mathrm{A}^{ \pm}$		846	72/11	E	49E6-7	884	73/12	P-8A	$\begin{array}{\|l\|} \hline 41 \mathrm{C} \\ \text { 39B1-2 } \end{array}$
767	68/3	P-8A		816	71/9	E	$\begin{array}{\|l\|} \hline 25 \mathrm{~F} 1-2 \\ 36 \mathrm{E} 3-4 \\ \hline \end{array}$	842	72/4	E	$\begin{array}{\|l\|} \hline 57 \mathrm{F5}-6 \\ 47 \mathrm{~A} 11-14 \\ \hline \end{array}$	888	73/21	E	
897	73/36	$\mathrm{P}-\mathrm{A}^{ \pm}$	46E1-2	815	71/8	E-A ${ }^{ \pm}$	56D7-9	854	72/20	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	53E1-2	885	73/13	E	
869	72/39	E		821	71/16	L-8A		867	72/37	$\mathrm{L} \ll \mathrm{n}$	46C1-2	889	73/22	E-A ${ }^{ \pm}$	
822	71/17	E		824	71/20	L-P		864	72/33	E		890	73/24	P	59F1-2
Plasmid pool 69				Plasmid pool 70				Plasmid pool 71				Plasmid pool 72			
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Glycerol } \\ \text { stock } \end{array} \\ \hline \end{array}$	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW } W] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW } W \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ & \hline \end{aligned}$
894	73/31	8A		828	71/26	E		949	76/20	pP		979	78/5	E	
893	73/27	E		836	71/38	E		960	77/8	pP		982	78/9	$\mathrm{A}^{ \pm}$	
896	73/33	E		839	72/1	E-L	49E6-7	961	77/11	E		983	78/10	E-L	47A7-8
892	73/26	E-A ${ }^{ \pm}$		850	72/16	E	49E6-7	965	77/17	$\mathrm{L} \ll \mathrm{n}$	32D1-2	1013	79/7	P	
825	71/23	8A		852	72/18	E	$\begin{array}{\|l\|l\|} \hline 25 \mathrm{C} 1-2 \\ \text { 26A5-6 } \\ \hline \end{array}$	957	$77 / 4$	E	29D1-2	1014	79/8	E	
634	60/28	L<<n		863	72/32	P-8A		963	77/13	E		1016	79/12	$\mathrm{L} \ll \mathrm{n}$	
820	71/15	E	56D8-9	891	73/25	E		970	77/27	pP		1019	79/16	E-A ${ }^{ \pm}$	55B5-10
823	71/18	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	29C1-3	933	76/2	8A-A ${ }^{ \pm}$		973	77/36	E	23F5-6	1021	79/19	pP	
826	71/24	L-A ${ }^{ \pm}$		934	76/3	E		974	77/37	E	45A1-2	1023	79/21	$\mathrm{L} \ll \mathrm{n}$	
830	71/29	$\mathrm{A}^{ \pm}$	36B1-2	936	$76 / 5$	E		975	77/38	P		1025	79/23	$\mathrm{P}-\mathrm{A}^{ \pm}$	

Plasmid pool 73				Plasmid pool 74				Plasmid pool 75				Plasmid pool 76			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$
1028	79/27	L<<n		1045	80/14	8A-A ${ }^{ \pm}$		1059	80/31	P-8A		1086	81/16	$\mathrm{p}-\mathrm{A}^{ \pm}$	
1029	79/28	$\mathrm{L} \ll \mathrm{n}$		1046	80/15	E	51D3-5	1060	80/32	E		1087	81/18	E	
1031	79/31	E-L	55B5-6	1048	80/17	E		1062	80/34	E	39E3-4	1088	81/19		
1032	79/32	$\mathrm{L} \ll \mathrm{n}$		1049	80/18	$\mathrm{L} \ll \mathrm{n}$	44A1-2	1063	80/35	E		1090	81/21		
1033	80/1	E		1050	80/19	P		1069	80/45	E		1093	81/24		
1035	80/3			1051	80/21	E		1072	81/1	E		1094	81/25	E	23C1-2
1036	80/4	$\mathrm{L} \ll \mathrm{n}$	21D3-4	1053	80/23	E	51D3-5	1073	81/2	$\mathrm{A}^{ \pm}$	21B4-6	1095	81/27		
1037	80/5	E-L		1055	80/25	L-A ${ }^{ \pm}$		1077	81/6	L-A ${ }^{ \pm}$	$\begin{array}{\|l\|} \hline 35 \mathrm{~F} 11-12 \\ 35 \mathrm{~F} 4-5 \\ 21 \mathrm{~B} 4-5 \\ 34 \mathrm{C} 4-5 \\ 42 \mathrm{C} 1-2 \\ \hline \end{array}$	1097	81/34	E-P	59B1-2
1042	80/11	8A	42D4-5	1056	80/27	E	22D4-5	1083	81/12	$\mathrm{A}^{ \pm}$		1101	81/39	pP	
1047	80/16	P		1058	80/29	L<<n		1084	81/13	E		1102	81/41	pP	
Plasmid pool 77				Plasmid pool 78				Plasmid pool 79				Plasmid pool			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { PlacW } \\ \text { site } \end{array} \\ \hline \end{array}$
511	55/7	E		606	59/9	E		678	63/10	E		678	63/10	E	
569	57/11	L-A		613	59/17	P	26B8-9	693	63/32	$\mathrm{L} \ll \mathrm{n}$		693	63/32	$\mathrm{L} \ll \mathrm{n}$	
575	57/18	8A-A ${ }^{ \pm}$		615	59/19	E		700	63/41	E		700	63/41	e	
579	58/1	8A-A ${ }^{ \pm}$		643	61/11	8A-A ${ }^{ \pm}$		703	63/44	P-8A		703	63/44	P-8A	
581	58/4	E		655	61/30	P		711	64/8	$\mathrm{A}^{ \pm}$	46C7-8	711	64/8	$\mathrm{A}^{ \pm}$	46C7-8
589	58/12	E	32C4-5	670	62/21	$\mathrm{L} \ll \mathrm{n}$		715	64/12	$\mathrm{A}^{ \pm}$		715	64/12	$\mathrm{A}^{ \pm}$	
591	58/15	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	39E3-4	683	63/18	E		731	65/11	E-P		731	65/11	E-A ${ }^{ \pm}$	
593	58/17	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		692	63/30	E	47A11-14	758	67/8	E-L		758	67/8	E-L	
594	58/18	E		696	63/35	E	31A1-2	923	75/15	L<<n		923	75/15	$\mathrm{L} \ll \mathrm{n}$	
597	58/23	8A		699	63/40	$\mathrm{L} \ll \mathrm{n}$		924	75/16	E		924	75/16	E	

Box 11

Plasmid pool 81				Plasmid pool 82				Plasmid pool 83				Plasmid pool 84			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[$ lacW $]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[$ lacW $]$ site	Glycerol stock	Fly line	lethal phase	P [lacW] site
851	72/17	E		901	74/4	E	34A1-2	917	75/9	8A-A ${ }^{ \pm}$	54E1-2	940	76/10	8A-A ${ }^{ \pm}$	52E5-6
855	72/22	E	$\begin{aligned} & 37 \mathrm{Fl}-2 \\ & \text { 73D1-2 } \end{aligned}$	902	74/5	E		919	75/11	P-8A		941	76/11	E	
859	72/27	L<<n	46F1-2	905	74/9	P		920	75/12	E		942	76/12	8A-A ${ }^{ \pm}$	
865	72/34	E		908	74/22	E		921	75/13	E	43E7-10	944	76/15	E	
868	72/38			909	74/23	E	$\begin{array}{\|l\|\|} \hline 49 \mathrm{~B} 5-6 \\ 47 \mathrm{~A} 11-14 \end{array}$	925	75/17	E-L	46A3-4	945	76/16	P-8A	42C1-2
878	73/5	E	$\begin{array}{\|l\|} \hline 53 \mathrm{~B} 1-4 \\ 50 \mathrm{~A} 12-14 \end{array}$	910	74/31	$\mathrm{L} \leq \mathrm{n}$	$\begin{array}{\|l\|} \hline 42 \mathrm{E}, 51 \mathrm{~B} \\ 58 \mathrm{D}, 60 \mathrm{~F} \\ \hline \end{array}$	927	75/19	E		947	76/18	L<<n	56E3-6
881	73/9	E-L	46B1-2	911	74/33	E		929	75/21	E	44C1-2	948	76/19	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	43E15-16
886	73/15	E		913	75/2	P	26D1-2	930	75/25			951	76/23	E	60E1-2
887	73/20	E		915	75/5	E	57B1-3	935	$76 / 4$	8A		952	76/24	P-8A	43F1-2
895	73/32	E	34A1-2	916	75/7	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	48C7-8	937	76/6	8A		958	7715	E	46F5-6
Plasmid pool 85				Plasmid pool 86				Plasmid pool 87				Plasmid pool			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	$\begin{array}{\|l} \text { lethal } \\ \text { phase } \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW] } \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$		Glycerol stock	Fly line	$\begin{aligned} & \text { lethal } \\ & \text { phase } \end{aligned}$	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$
966	77/19			991	78/18	$\mathrm{A}^{ \pm}$		1008	79/2	P		1076	$81 / 5$	E	
967	77/21	P-8A		993	78/21	E		1011	79/5	P		1078	81/7	E	
968	77/22	P-8A		994	78/22	P		1034	80/2		56F6-9	1080	81/9	E	
972	77/35	E		995	78/23	E		1040	80/9	$\mathrm{L} \ll \mathrm{n}$		1082	81/11	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	
976	77/39	E	23F5-6	996	78/24	E	53C1-4	1054	80/24	E		1106	82/3	E	56D8-11
984	78/11	P-8A	44C4-5	998	78/27	E		1062	80/34	E	39E3-4	1108	82/8	E	
986	78/13	L-P		1002	78/31	$\mathrm{A}^{ \pm}$		1067	80/40	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	44F11-12	1110	82/11		
987	78/14	E	55E1-2	1103	78/32	P-8A	34B6-7	1068	80/41	E		1113	82/17	P-8A	
989	78/16			1006	78/39	E	57A5-6	1074	81/3	E		1114	82/18		21C4-5
990	78/17	E		1015	79/9			1075	81/4	L<<n	$\begin{array}{\|l\|} \hline 35 \mathrm{D} 1-4 \\ 68 \mathrm{Cl}-2 \\ \hline \end{array}$	1115	82/19	E	

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[\mathrm{lacW}] \quad$ Box 12

Plasmid pool 89				Plasmid pool 90				Plasmid pool 91				Plasmid pool 92			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
1116	82/20	E-A ${ }^{ \pm}$		1135	83/2	$\mathrm{L} \ll \mathrm{n}$		571	57/13	E-L		697	63/38	P-A ${ }^{ \pm}$	
1117	82/21	E		1137	83/4	E-A ${ }^{ \pm}$		580	58/3	E	50C11-15	712	64/9	8A-A ${ }^{ \pm}$	57B1-3
1119	82/24	E		1137/1	83/5	$\mathrm{A}^{ \pm}$	57A5-6	598	58/26	E		747	66/13	E	
1121	82/27	E	$\begin{array}{\|l\|} \hline 50 \mathrm{D} 1-2 \\ 53 \mathrm{~F} 4-5 \end{array}$	1138	83/6	$\mathrm{A}^{ \pm}$		572	57/14	P-8A		807	70/16	E	
1124	82/31	E		1139	83/7	P-8A	$\begin{array}{\|l\|} \hline 53 \mathrm{C} 1-2 \\ 60 \mathrm{~A} 8-11 \\ \hline \end{array}$	528	56/3	$\mathrm{A}^{ \pm}$	58D8-10	932	76/1	8A	
1126	82/33	P		1140	83/8			680	63/12	E		962	77/12	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	43F3-4
1127	82/39			1141	83/10	E		698	63/39	E		1148	83/21		
1129	82/45	$\mathrm{A}^{ \pm}$		1144	83/16	E	58E1-2	563	56/54	P-8A		1149	83/22		
1130	82/47	E		1146	83/19	P		540	56/16	E					
1134	83/1	8A	52E5-6	1147	83/20	P		551	56/36	$\mathrm{L} \ll \mathrm{n}$					
Plasmid pool 93				Plasmid pool 94				Plasmid pool 95				Plasmid pool 96			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW } W] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[$ lacW $]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1150	84/1	8A		1169	85/7		$\begin{array}{\|l\|} \hline \text { 48A5-6 } \\ \text { 60A5-6 } \\ \hline \end{array}$	1185	86/23	E		1201	88/4	8A-A ${ }^{ \pm}$	
1151	84/2	8A-A ${ }^{ \pm}$	$\begin{array}{\|l\|} \hline 42 \mathrm{~F} 1-2 \\ 57 \mathrm{E}-10 \\ \hline \end{array}$	1171	86/2	E		1187	86/25	P	43D1-2	1202	88/5		53F4-5
1153	84/4	L-P		1172	86/4	E		1188	86/29	P		1203	88/6	E	
1156	84/7		52D1-2	1173	86/5	E		1189	86/30	E		1204	88/8	E	
1157	84/8	E	30D1-2	1174	86/9			1192	87/5	E		1205	88/9	E	25C1-2
1158	84/9	E		1176	86/11	E		1194	$87 / 7$	P-A ${ }^{ \pm}$		1206	88/10	$\mathrm{L} \ll \mathrm{n}$	56A1-2
1162	84/15	E		1177	86/12	E		1195	87/8	E		1207	88/12	$\mathrm{L} \ll \mathrm{n}$	
1166	85/4	$\mathrm{A}^{ \pm}$	44A1-2	1178	86/13	E		1196	87/12	$\mathrm{A}^{ \pm}$	35A3-4	1208	88/13	E	
1167	85/5	E		1181	86/17	E		1197	87/13	E	56C1-2	1210	88/7	E-L	44F
1168	85/6	L-8A		1184	86/21	E		1198	87/4	E		1211	88/18		

Plasmid pool 97				Plasmid pool 98				Plasmid pool 99				Plasmid pool 100			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \text { P[lacW] } \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P} \text { [lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site
1212	88/19			1261	91/5	$\mathrm{A}^{ \pm}$		1235	90/3	E	25C1-2	1283	92/21	$\mathrm{L} \ll \mathrm{n}$	46B1-2
1213	89/1		54B15-16	1269	92/1	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	60A8-11	1237	90/8	E		1286	92/24	E	
1214	89/2		55F5-6	1271	92/3	L-8A		1240	90/15	$\mathrm{A}^{ \pm}$		1287	92/25	$\mathrm{L} \ll \mathrm{n}$	
1215	89/3			1273	92/5	L-A		1247	90/24	P	47A11-14	1288	92/29	E	
1217	89/6	E		1274	92/8	L-P		1248	90/25	E	$\begin{aligned} & \hline 60 \mathrm{~A} 8-11 \\ & 86 \mathrm{~F} 1-2 \end{aligned}$	1293	92/38	$\mathrm{A}^{ \pm}$	28A1-2
1218	89/7	E		1275	92/9	8A		1251	90/30	E		1294	92/39	$\mathrm{A}^{ \pm}$	26D1-2
1220	89/9	E		1276	92/10	$\mathrm{A}^{ \pm}$		1253	90/32	E		1295	92/40	E-A ${ }^{ \pm}$	26D1-2
1225	89/18	E		1277	92/14	E		1258	90/41	$\mathrm{L} \ll \mathrm{n}$	25C1-2	1297	92/44	E-L	
1226	89/19	E		1279	92/17	P-A	52D11-12	1259	91/2	E		1299	92/47		
1228	89/21	E	$\begin{array}{\|l\|} \hline 37 \mathrm{~F} 1-2 \\ 55 \mathrm{E} 6-7 \\ \hline \end{array}$	1280	92/18	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		1260	91/4	E	32C4-5	1302	93/6	E	25C1-2
Plasmid pool				Plasmid pool				Plasmid pool				Plasmid pool			104
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { PlacW } \\ \text { site } \end{array} \\ \hline \end{array}$
1303	93/10			1233	89/31	L-8A	55B5-10	1342	95/33	$\mathrm{A}^{ \pm}$	48F3-4	1370	97/10	E	55F1-3
1304	93/12	E		1236	90/5	E		1344	95/36	E-L		1373	97/16	$\mathrm{A}^{ \pm}$	43D1-4
1310	93/19	E		1292	92/36	$\mathrm{A}^{ \pm}$		1346	95/38	E	46F5-6	1374	97/17	$\mathrm{A}^{ \pm}$	
1312	93/22	$\mathrm{A}^{ \pm}$		1296	92/42	E	46F5-7	1347	95/39	E		1378	98/3		56D3-6
1315	94/2	E		1250	90/28	E		1348	95/41	E		1379	98/5	$\mathrm{A}^{ \pm}$	
1316	94/3	P-A ${ }^{ \pm}$		1290	92/32	$\mathrm{L} \ll \mathrm{n}$		1350	96/2	8A-A ${ }^{ \pm}$		1380	98/8	E-A ${ }^{ \pm}$	58D4-5
1317	94/4	8A		1327	95/2	$\mathrm{L} \ll \mathrm{n}$		1354	96/8	E		1381	98/9	8A-A ${ }^{ \pm}$	
1321	94/11	$\mathrm{L} \ll \mathrm{n}$	28D1-2	1330	95/6	E		1358	96/17	E	57F10-11	1382	98/10	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	56D5-6
1323	94/13	E		1333	95/13	E	44B7-8	1360	96/19	pP		1383	98/11		58D4-5
1324	94/14	$\mathrm{L} \ll \mathrm{n}$	39B1-2	1353	96/6			1365	96/29	E		1384	98/12	E	

Plasmid pool 105				Plasmid pool 106				Plasmid pool 107				Plasmid pool 108			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1387	98/15	E		1434	99/32	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	22C1-2	1526	106/4	$\mathrm{L} \ll \mathrm{n}$		1537	107/1	8A	$\begin{array}{\|l\|} \hline 51 \mathrm{~B} 1-5 \\ 78 \mathrm{D} 4-5 \\ \hline \end{array}$
1389	98/17	P-A		1451	101/11	E		1360	96/19			1538	107/2	$\mathrm{A}^{ \pm}$	
1391	98/20	E		1456	101/18	E		1375	97/18	E		1547	108/3	E	
1395	98/24	E	25C1-2	1457	101/19	E	34A5-6	1396	98/28	E		1548	108/4	E-L	
1401	98/34	E	35F1-5	1461	101/26	8A		1418	99/3	22C1-2	22D1-2	1552	108/11	$\mathrm{L} \ll \mathrm{n}$	
1409	98/47	E	26D1-2	1513	104/16	E		1515	104/20	$\mathrm{L} \ll \mathrm{n}$		1553	108/12	$\mathrm{L} \ll \mathrm{n}$	
1411	98/50	P-A	26D1-2	1516	104/23	E	36B1-2	1531	106/10	P		1555	108/17	E	35D1-2
1417	99/2	8A		1519	105/2	8A	60D1-2	1532	106/12			1562	109/5	$\mathrm{A}^{ \pm}$	
1418	99/3	$\mathrm{A}^{ \pm}$	22D1-2	1522	105/5	E		1533	106/13	L-P		1566	109/9	L-8A	
1422	99/8	8A-A ${ }^{ \pm}$		1523	105/6	L<<n		1534	106/15	$\mathrm{L} \ll \mathrm{n}$		1568	109/16	P-8A	
Plasmid pool 109				Plasmid pool 110				Plasmid pool				Plasmid pool 112			
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Glycerol } \\ \text { stock } \end{array} \\ \hline \end{array}$	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Glycerol } \\ \text { stock } \end{array} \\ \hline \end{array}$	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Glycerol } \\ \text { stock } \end{array} \\ \hline \end{array}$	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { acW } \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$
1574	110/11	$\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 43 \mathrm{E} 4-5 \\ 58 \mathrm{C} 1-2 \end{array}$	1596	111/15	$\mathrm{A}^{ \pm}$		1615	112/15	E-P		1611	112/11	P-8A	$\begin{array}{\|l\|} \hline 26 \mathrm{~A} 5-6 \\ 46 \mathrm{~A} 1-2 \\ 47 \mathrm{~A} 11-14 \\ \hline \end{array}$
1575	110/12	E	54B15-16	1597	111/16	E		1616	112/17	L-8A		1619	112/23	$\mathrm{A}^{ \pm}$	
1577	110/16	E		1600	111/20	8A-A ${ }^{ \pm}$	45D4-5	1618	112/22	E		1628	113/1		53F4-5
1581	110/24	P	$\begin{array}{\|l\|} \hline 35 \mathrm{~F} 4-5 \\ 93 \mathrm{D} 3-5 \end{array}$	1601	112/1	E	45B1-2	1620	112/25	E	$\begin{array}{\|l\|} \hline 50 \mathrm{D} 1-2 \\ \text { 58D6-7 } \\ \hline \end{array}$	1697	119/12		
1584	110/31	$\mathrm{A}^{ \pm}$		1602	112/2	E	56D7-10	1623	112/34	L-P		1699	120/2	E	
1588	111/1	$\mathrm{A}^{ \pm}$	28D10-11	1603	112/3	$\mathrm{L} \ll \mathrm{n}$		1624	112/31	E		1709	123/1	pP	
1589	111/2			1605	112/5	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	45B1-2	1642	113/29	L-A ${ }^{ \pm}$		1714	124/1	$\mathrm{L} \ll \mathrm{n}$	
1591	111/6	E		1610	112/10	E		1660	115/8	8A-A ${ }^{ \pm}$		1715	124/2	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	45D4-5
1593	111/8	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		1612	112/12	L-P		1518	105/1	E	48D1-2	1717	124/5	E	
1594	111/9	8A		1613	112/13	P	50F4-7	1536	106/22	pP		1721	126/2	P	

Plasmid pool 113				Plasmid pool 114				Plasmid pool 115				Plasmid pool 116			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{aligned} & \text { lethal } \\ & \text { phase } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	$\begin{array}{\|l} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
1336	95/18	$\mathrm{A}^{ \pm}$	48F3-5	1661	115/9	$\mathrm{A}^{ \pm}$		1696	$119 / 5$			1152	84/3	E-A ${ }^{ \pm}$	
1631	113/10	$\mathrm{A}^{ \pm}$		1662	115/11	E	25E5-6	1698	120/1	E	49D1-3	1154	84/5	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	32B1-3
1633	113/12	$\mathrm{L} \ll \mathrm{n}$		1663	115/13	PO		1703	121/1	$\mathrm{L} \leq \mathrm{n}$		1193	87/6	$\mathrm{L} \ll \mathrm{n}$	
1635	113/15	E		1665	115/15	E		1704	121/2	E-L	46A1-2	1227	89/20	E	
1636	113/18	E	$\begin{aligned} & \hline 25 \mathrm{D} 1-2 \\ & 49 \mathrm{~B} 3-4 \end{aligned}$	1672	115/26	pP		1707	121/4			1239	90/11		
1640	113/25		$\begin{array}{\|l} \hline 21 \mathrm{D} 1-2 \\ 98 \mathrm{Fl}-2 \\ \hline \end{array}$	1674	115/30	pP		1710	123/2	P		1243	90/18	E	
1641	113/28	P		1677	115/33	$\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 57 \mathrm{E} 3-4 \\ 86 \mathrm{E}-10 \\ \hline \end{array}$	1712	123/4	E		1244	90/20	L-P	47A11-14
1644	113/31	P-8A		1681	115/42	$\mathrm{L} \ll \mathrm{n}$		1716	124/3	P-A	30C1-2	1245	90/22	E	27C1-2
1657	115/5	E	54F1-2	1691	118/5	E	25D4-5	1718	124/8	E	30С7-8	1252	90/31	E	
1660	115/8	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	37C5-7	1692	119/1	L-8A	43E1-5	1720	125/3	E		1265	91/16	P-A ${ }^{ \pm}$	31F4-5
Plasmid pool 117				Plasmid pool				Plasmid pool				Plasmid pool			120
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$
1270	92/2	E	54A1-2	1376	97/20	E	48E6-9	1554	108/15	L-P	53F6-9	1629	113/2	$\mathrm{L} \ll \mathrm{n}$	
1272	92/4	E	$\begin{aligned} & \hline 44 \mathrm{C} 4-5 \\ & 57 \mathrm{E} 3-4 \\ & \hline \end{aligned}$	1390	98/19		42C1-2	1564	109/7	E		1631	113/10	$\mathrm{A}^{ \pm}$	
1285	92/23	E	$\begin{array}{\|l\|} \hline 52 \mathrm{E} 5-6 \\ 78 \mathrm{C} 1-2 \\ \hline \end{array}$	1392	98/21	E	45D1-2	1582	110/26	E	$\begin{array}{\|l\|} \hline 50 \mathrm{C} 3-4 \\ 53 \mathrm{Cl}-4 \\ \hline \end{array}$	1639	113/24	E-A ${ }^{ \pm}$	21C1-2
1298	92/46	$\mathrm{A}^{ \pm}$		1398	98/31	E		1590	111/4	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	39F1-2	1641	113/28	P	34A5-6
1301	93/4	8A	48F1-6	1508	104/9	E		1567	109/14	$\mathrm{A}^{ \pm}$	54B1-2	1642	113/29	L-A ${ }^{ \pm}$	
1306	93/15	E-L		1528	106/7	E-L	$\begin{array}{\|l\|l\|} \hline 49 \text { F7-8 } \\ \text { 21F1-2 } \\ \hline \end{array}$	1595	111/10	E	43E4-6	1646	114/2	E	
1331	95/7	$\mathrm{A}^{ \pm}$	45D4-5	1540	107/4	$\mathrm{A}^{ \pm}$		1598	111/17	$\mathrm{A}^{ \pm}$		1647	114/8	E	$\begin{array}{\|l\|} \hline 45 \mathrm{~F} 5-6 \\ 54 \mathrm{Cl}-4 \\ \hline \end{array}$
1352	96/5	E		1541	$107 / 5$	$\mathrm{A}^{ \pm}$		1606	112/6	$\mathrm{A}^{ \pm}$	25C5-6	1651	114/7	E	$\begin{array}{\|l\|} \hline 47 \mathrm{~A} 3-4 \\ 61 \mathrm{~F} 6-8 \\ \hline \end{array}$
1359	$96 / 18$	E		1542	10716	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 53 \mathrm{DIO}-13 \\ 54 \mathrm{C} 7-8 \end{array}$	1611	112/I	P-8A	$\begin{aligned} & \text { 26A5-6 } \\ & \text { 46A1-2 } \\ & 47 \mathrm{Al1-14} \\ & \hline \end{aligned}$	1652	114/11	E	
1361	96/23	$\mathrm{L} \ll \mathrm{n}$		1543	107/12	P		1621	112/26	P-8A	39C1-2	1654	114/13	8A	$\begin{array}{\|l\|} \hline 33 \mathrm{~A} 3-4 \\ 79 \mathrm{E} 1-2 \\ \hline \end{array}$

Plasmid pool 121				Plasmid pool 122				Plasmid pool 123				Plasmid pool 124			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \hline \mathrm{P}[\text { lacW }] \\ & \text { site } \\ & \hline \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW } W \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1650	114/6	P-A	53F1-2	1242	90/17	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 35 \mathrm{D} 1-2 \\ 39 \mathrm{E} 1-4 \end{array}$	1413	98/52	E		1462	101/27	$\mathrm{A}^{ \pm}$	25C1-2
1655	115/2	E		1256	90/37	P		1420	99/6	$\mathrm{P}-\mathrm{A}^{ \pm}$		1502	104/1	8A	
1656	115/4	P-8A		1337	95/19	E		1421	99/7	$\mathrm{L} \leq \mathrm{n}$	53D12-14	1503	104/2	E	
1658	115/6	P		1397	98/29	E		1423	99/10	E	52E7-8	1508	104/9	E	
1668	115/21	$\mathrm{A}^{ \pm}$		1399	98/32			1425	99/18	E	56F8-15	1509	104/10	$\mathrm{A}^{ \pm}$	
1669	115/23	8A		1400	98/33	$\mathrm{A}^{ \pm}$	49B7-8	1426	99/19	$\mathrm{L} \ll \mathrm{n}$		1514	104/19	L-P	
1671	115/25	E-L		1404	98/41	E		1428	99/21	$\mathrm{L} \leq \mathrm{n}$		1529	106/8	$\mathrm{A}^{ \pm}$	
1679	115/37	$\mathrm{L} \ll \mathrm{n}$		1405	98/42	E		1430	99/23		26D1-2	1535	106/17	E-L	27C6-8
1693	119/2	8A	$\begin{aligned} & \hline 43 \mathrm{E} 7-10 \\ & 86 \mathrm{~A} 4-5 \\ & \hline \end{aligned}$	1406	98/44	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		1458	101/21	E	$\begin{array}{\|l\|} \hline 51 B 4-5 \\ 30 A 7-8 \\ \hline \end{array}$	1539	107/3	8A	
1694	119/3			1407	98/45	E		1459	101/22	P-8A		1544	107/14	E	
Plasmid pool 125				Plasmid pool 126				Plasmid pool 127				Plasmid pool 128			
Glycerol stock	Fly line	$\begin{aligned} & \text { lethal } \\ & \text { phase } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ & \hline \end{aligned}$	Glycerol stock	Fly line	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { lethal } \\ \text { phase } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1545	108/1	E-8A		1625	112/37	$\mathrm{L} \ll \mathrm{n}$		1683	116/3	E		1745	131/3	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	
1549	108/5	8A		1632	113/11	$\mathrm{L} \ll \mathrm{n}$	54E1-2	1695	119/4			1784	133/22	E	
1550	108/7	8A		1637	113/19	E		1705	121/3	E	60B4-5	1785	134/1	E	
1556	108/18	P		1645	114/1	E-L		1706	122/1	$\mathrm{A}^{ \pm}$		1795	134/21	$\mathrm{A}^{ \pm}$	
1558	108/21	E	$\begin{array}{\|l\|} \hline 50 \mathrm{C} 14-15 \\ 49 \mathrm{~F} 1-2 \end{array}$	1653	114/12	L-8A		1708	122/2	8A-A ${ }^{ \pm}$		1830	136/24	P-A	21B4-6
1559	108/24	E		1659	115/7	$\mathrm{A}^{ \pm}$	54C1-2	1713	123/5	E	$\begin{aligned} & \hline 47 \mathrm{~A} 11-14 \\ & 46 \mathrm{~F} 5-6 \end{aligned}$	1843	137/6	E-L	57B1-3
1585	110/35	$\mathrm{L} \ll \mathrm{n}$		1664	115/14	E		1722	126/4	pP		1851	137/16	E	$\begin{array}{\|l\|} \hline \text { 26A5-6 } \\ \text { 61D1-2 } \\ \text { 66F1-2 } \\ \hline \end{array}$
1587	110/38	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	22D1-2	1666	115/16	$\mathrm{A}^{ \pm}$	27C1-2	1725	126/9			1853	137/19	$\mathrm{L} \ll \mathrm{n}$	
1599	111/18	E		1667	115/19	E		1740	130/3	E		1856	138/1	L-A	
1614	112/14	$\mathrm{L} \ll \mathrm{n}$		1680	115/38	8A-A ${ }^{ \pm}$	37C5-6	1742	130/9	E		1858	138/3	$\mathrm{L} \ll \mathrm{n}$	57C1-2

Plasmid pool 129				Plasmid pool 130				Plasmid pool 131				Plasmid pool 132			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$
1859	138/4	$\mathrm{A}^{ \pm}$		1844	137/7			1913	141/9	L-P		1953	144/22	8A-A ${ }^{ \pm}$	35D5-7
1860	138/5	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		1889	140/10	E	35D1-2	1918	142/4	$\mathrm{L} \ll \mathrm{n}$	30D1-2	1954	144/23	8A-A ${ }^{ \pm}$	
1862	138/9		50A12-14	1891	140/14	E		1928	143/1	8A		1956	145/2	E	30F5-6
1863	138/10	E		1893	140/18	L-P		1929	143/4	E		1957	145/3	$\mathrm{L} \ll \mathrm{n}$	
1869	138/22	$\mathrm{A}^{ \pm}$		1898	140/25	E		1935	143/12	E	49F7-8	1960	145/5	8A-A ${ }^{ \pm}$	39C1-2
1870	138/25	P-8A		1902	140/29	P-8A		1938	144/1	$\mathrm{L} \leq \mathrm{n}$	31A	1961	145/6	$\mathrm{L} \ll \mathrm{n}$	
2242	115/20			1903	140/36	E	48B6-7	1942	144/7	E	$\begin{array}{\|l\|} \hline 29 \mathrm{~B} 1-2 \\ \text { 42A15-19 } \\ \hline \end{array}$	1969	145/18	E	
2244	105/14			1905	140/38	$\mathrm{A}^{ \pm}$		1944	144/9	E		1970	145/20	E	
1852	137/17	E		1908	140/41	E-A ${ }^{ \pm}$		1950	144/16	E		1979	146/10	$\mathrm{A}^{ \pm}$	
1883	140/2	E		1910	141/4	E		1952	144/21	E		1980	146/12	P-8A	
Plasmid pool 133				Plasmid pool				Plasmid pool				Plasmid pool			36
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$
1981	146/14	E		2074	158/11	E-L		1388	98/16	E	45C7-8	1744	131/2		
1985	147/2	8A	$\begin{array}{\|l\|} \hline 39 \mathrm{~B} 1-2 \\ \text { 60A5-6 } \\ \hline \end{array}$	2100	160/6	E	$\begin{array}{\|l\|} \hline 26 A 5-8 \\ 45 B 7-8 \\ \hline \end{array}$	1393	98/22	E	28D1-2	1787	134/3	$\mathrm{A}^{ \pm}$	48A3-4
2007	149/1	$\mathrm{A}^{ \pm}$		2115	161/17	E		1403	98/39	P		1788	134/9	L-P	60B3-5
2008	149/2	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	29B1-2	2117	161/20	E	44B5-6	1416	99/1	E		1793	134/18	8A	
2036	154/3	E		2247	167/12			1419	99/5	8A	52E5-8	1878	139/11	E	
2039	154/9	E		2248	161/15	$\mathrm{A}^{ \pm}$	29E1-2	1424	99/17	E	28B1-2	2082	158/22	E	
2041	154/11	E		2204	168/21	E		1546	108/2	E		2101	160/8	L<<n	
2042	154/14	L<<n		2243	113/9	E	$\begin{array}{\|l\|} \hline 35 \mathrm{D} 1-2 \\ 54 \mathrm{~B} 12-16 \\ \hline \end{array}$	1557	108/20	8A		2102	160/9	E-L	$\begin{array}{\|l\|} \hline 39 \mathrm{~B} 1-2 \\ 40 \mathrm{~B} 1-2 \\ \hline \end{array}$
2043	154/15	E-P		2245	114/3	8A		1634	113/13	$\mathrm{A}^{ \pm}$		2103	160/10	E-L	
2071	158/3			2246	104/15	L-P		1643	113/30			2106	161/2	$\mathrm{L} \ll \mathrm{n}$	

Box 18

Plasmid pool 137				Plasmid pool 138				Plasmid pool 139				Plasmid pool 140			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
2108	152/2	$\mathrm{L} \ll \mathrm{n}$		2135	162/15	P	36A4-5	2180	167/8	E	$\begin{array}{\|l\|} \hline 42 \mathrm{EE}-6 \\ 39 \mathrm{Al}-2 \end{array}$	1092	81/23	P-A	
2112	161/11	E		2139	162/21	E-L	$\begin{array}{\|l\|} \hline 43 \mathrm{~F} 3-6 \\ 55 \mathrm{C} 7-8 \\ \hline \end{array}$	2187	168/1	E	$\begin{array}{\|l\|} \hline 31 \mathrm{E} 1-2 \\ 60 \mathrm{~F} 1-2 \\ \hline \end{array}$	1096	81/31	E	$\begin{aligned} & \hline \text { 50A9-10 } \\ & \text { 77B4-5 } \\ & \hline \end{aligned}$
2118	161/22	P-8A		2140	162/24	pP		2191	168/5	$\mathrm{L} \ll \mathrm{n}$		1098	81/35	E	
2119	161/24	E	$\begin{aligned} & 23 \mathrm{Cl}-2 \\ & 6 \mathrm{CP3}-4 \\ & 6 \mathrm{ClI}-2 \end{aligned}$	2141	162/25	E		2193	168/7	E	23B5-6	1128	82/43	E-A ${ }^{ \pm}$	37F1-2
2120	161/25	P-8A		2160	166/1	E		2197	168/12	E	25C1-2	1131	82/53		
2124	161/30	8A-A ${ }^{ \pm}$		2164	166/5			2198	168/13	E		1133	82/58	E	
2125	161/31	E		2169	166/15	$\mathrm{L} \ll \mathrm{n}$	25C1-2	2216	170/2	E-L	58F4-5	1150	84/1	8A	$\begin{array}{\|l\|} 3282-3 \\ 38 B 5-6 \end{array}$
2128	162/5	$\mathrm{A}^{ \pm}$		2173	166/19	$\mathrm{A}^{ \pm}$		1238	90/10	E	30D3-4	1161	84/14	P	
2131	162/8		$\begin{array}{\|l\|} \hline 47 \mathrm{~A} 11-14 \\ 30 \mathrm{E} 1-2 \\ \hline \end{array}$	2177	167/4	E		1241	90/16	E	60A8-11	1163	84/16	E	$\begin{array}{\|l\|l\|} \hline 21 \mathrm{~B} 2-3 \\ 96 \mathrm{C} 1-2 \end{array}$
2132	162/10	P	56F1-2	2179	167/6	E		1269	92/1	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		1186	86/24	$\mathrm{A}^{ \pm}$	
Plasmid pool 14				Plasmid pool 142				Plasmid pool 143				Plasmid pool			144
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lac } W] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1219	89/8	E-L		1159	84/10	E-A ${ }^{ \pm}$		1345	95/37	E	$\begin{array}{\|l\|} \hline 23 \mathrm{Cl}-2 \\ 48 \mathrm{E} 4-5 \\ \hline \end{array}$	1738	129/13	$\mathrm{L} \ll \mathrm{n}$	21C3-4
1221	89/10	P-8A		1160	84/12	E		1363	96/25	8A		1745	131/3	8A-A ${ }^{ \pm}$	
1222	89/15	$\mathrm{A}^{ \pm}$	21C5-6	1311	93/21	E		1364	96/28	E	$\begin{aligned} & 21 \mathrm{BID-2}-2 \\ & 42 \mathrm{~A} 10-12 \end{aligned}$	1746	131/4	E-L	$\begin{array}{\|l\|} \hline 56 \mathrm{FIO-III} \\ 55 \mathrm{El}-2 \end{array}$
1300	93/3	P	53F4-5	1318	94/6		$\begin{aligned} & \hline 26 A 5-652 \\ & 3851-2 \\ & 57 F 5-6 \end{aligned}$		96/40	L<<n	$\begin{aligned} & \hline \text { 39B, 42F } \\ & \text { 50D } \end{aligned}$	1749	131/7	pP	$\begin{array}{\|l} \hline 49 \mathrm{~A} 10-11 \\ 48 \mathrm{E} 4-7 \\ \hline \end{array}$
1307	93/16	P		1319	94/7			1372	97/15	P		1750	131/8	pP	$\begin{array}{\|l\|l} \hline 60 \mathrm{~A} 3-4 \\ 38 \mathrm{Cl}-23 \end{array}$
1946	144/12	8A-A ${ }^{ \pm}$	42C1-2	1328	95/3	E		1700	120/3	E		1772	133/4	$\mathrm{A}^{ \pm}$	30A1-2
1955	145/1	E	54B15-16	1338	95/21	E		1701	120/4	$\mathrm{L} \ll \mathrm{n}$	34C4-5	1775	133/7	E-L	
1966	145/14	P	$\begin{aligned} & 25 \mathrm{~F} 3-4 \\ & 27 \mathrm{D} 3-6 \end{aligned}$	1340	95/26	8A-A ${ }^{ \pm}$		1702	120/5	P-8A		1779	133/14	8A-A ${ }^{ \pm}$	53A3-5
2076	158/16	E	$\begin{array}{\|l\|} \hline 56 \mathrm{C} 20-2 \mid \\ 78 \mathrm{Al}-2 \\ \hline \end{array}$	1341	95/31	E		1733	129/9	P		1782	133/19	P-8A	
1339	95/24	$\mathrm{A}^{ \pm}$		1322	94/12	E	28E3-4	1734	129/10	P		1888	140/7	8A	

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the $\mathrm{P}[\mathrm{lacW}]$ Box 19

Plasmid pool 145				Plasmid pool 146				Plasmid pool 147				Plasmid pool 148			
Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1900	140/27	8A	$\begin{aligned} & \hline 42 \mathrm{C} 1-2 \\ & \text { 22B4-5 } \end{aligned}$	1071	80/47	E		1726	127/2	pP		1752	131/10	E	
1947	144/13	E		1199	88/1	E		1727	128/1	$\mathrm{A}^{ \pm}$		1753	131/13	E	
1958	145/4	8A	21B7-8	1230	89/23	E		1728	129/1	$\mathrm{A}^{ \pm}$	23C1-2	1754	131/16	E	$\begin{array}{\|l\|} \hline 28 \mathrm{~F} 1-2 \\ 93 \mathrm{~B} 9-11 \\ \hline \end{array}$
1971	145/23	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	56F5-6	1332	95/8	$\mathrm{L} \ll \mathrm{n}$		1730	129/5	$\mathrm{L} \ll \mathrm{n}$	57F5-7	1755	132/1		
2018	152/2	$\mathrm{L} \ll \mathrm{n}$		2238	170/36		$\begin{array}{\|l\|l\|} \hline 22 \mathrm{Fl}-2 \\ 38 \mathrm{Fl}-3 \\ \hline \end{array}$	1732	129/7	$\mathrm{A}^{ \pm}$		1758	132/7		
2022	152/10	E		1907	140/39	L-P		1729	129/2	$\mathrm{A}^{ \pm}$		1759	132/8	$\mathrm{L} \ll \mathrm{n}$	45F1-2
2039	154/9	E		1906	140/40	8A		1736	129/12	$\mathrm{A}^{ \pm}$		1761	132/11	E	58D6-7
2087	159/3	$\mathrm{L} \ll \mathrm{n}$		1909	141/3	E		1737	129/14	E	29C1-2	1762	132/14	E	
2220	170/6	$\mathrm{A}^{ \pm}$		1915	141/14	8A		1739	130/1	E		1763	132/15	E-L	
1892	140/17	8A-A ${ }^{ \pm}$	52E5-6	1917	142/2	E		1748	131/6	$\mathrm{A}^{ \pm}$		1764	132/17	P	
Plasmid pool 149				Plasmid pool 150				Plasmid pool 151				Plasmid pool			152
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW } \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { lacW } W \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1765	132/18	E	35B3-5	1790	134/11	E		1802	135/5	E		1820	136/5	$\mathrm{A}^{ \pm}$	
1767	132/21	E		1791	134/15	8A		1803	135/7	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	35A1-2	1823	136/9	$\mathrm{L} \ll \mathrm{n}$	
1771	133/12	$\mathrm{A}^{ \pm}$		1792	134/16	E-P		1807	135/10	P	28E3-4	1836	136/38	E	
1773	133/5	8A-A ${ }^{ \pm}$	30F5-6	1794	134/20	E	25C1-2	1808	135/16			1846	137/9	$\mathrm{L} \ll \mathrm{n}$	
1774	133/6	E	$\begin{array}{\|l\|} \hline \text { 48E1-2 } \\ \text { 102D5-6 } \\ \hline \end{array}$	1796	134/27	8A		1809	135/17	$\mathrm{L} \ll \mathrm{n}$		1824	136/12	E	
1776	133/10	L<<n		1797	134/22	$\mathrm{L} \ll \mathrm{n}$	$\begin{array}{\|l\|} \hline 41 \mathrm{C} \\ 48 \mathrm{D} 5-6 \end{array}$	1811	135/19	E		1826	136/15	$\mathrm{L} \ll \mathrm{n}$	
1777	133/12	$\mathrm{A}^{ \pm}$	48D5-6	1798	134/30	E		1812	135/20	E		1832	136/27	P	
1778	133/13	E		1799	135/1	E		1813	135/21	E		1833	136/30	$\mathrm{L} \ll \mathrm{n}$	
1786	134/6	E		1800	135/2	E-L	$\begin{array}{\|l\|} \hline \text { 21B4-6 } \\ \text { 82C1-2 } \\ \hline \end{array}$	1817	136/2	E		1835	136/32	$\mathrm{L} \ll \mathrm{n}$	
1789	134/10	P-8A		1801	135/4	E		1818	136/3	$\mathrm{A}^{ \pm}$	45D4-5	1840	137/3	$\mathrm{A}^{ \pm}$	

Plasmid pool 1				Plasmid pool 1				Plasmid pool 1				Plasmid pool 1			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \hline \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lac } W] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1845	137/8	$\mathrm{L} \ll \mathrm{n}$		1865	138/12	P-8A		1800	135/2	E-L	$\begin{aligned} & \hline 21 \mathrm{~B} 4-6 \\ & 82 \mathrm{C} 1-2 \\ & \hline \end{aligned}$	1234	90/2	E	
1847	137/12	8A		1867	138/14	E		1881	139/14	P		1343	95/34		
1848	137/13	$\mathrm{L} \ll \mathrm{n}$	28B1-2	1868	138/17	8A		1882	140/1	E	23C4-5	1349	96/1	$\mathrm{L} \ll \mathrm{n}$	
1849	137/12	$\mathrm{A}^{ \pm}$	21C7-8	1871	138/27	E		1883	140/2	E		1371	97/13	E-A ${ }^{ \pm}$	25D4-5
1850	137/15	$\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 38 \mathrm{~F} 1-2 \\ 87 \mathrm{C} 6-7 \\ \hline \end{array}$	1872	139/2	E		1885	140/4	E		1735	129/11		
1852	137/17	E		1873	139/3	E		1886	140/6	8A	$\begin{aligned} & 22 \mathrm{~B} 3-5 \\ & 42 \mathrm{~B} 2-3 \\ & \hline \end{aligned}$	1747	131/5	$\mathrm{A}^{ \pm}$	
1854	137/20	$\mathrm{P}-\mathrm{A}^{ \pm}$	26C2-3	1874	139/5	E	36A10-11	1887	140/5	$\mathrm{A}^{ \pm}$		1769	133/1	E	
1855	137/21	E		1875	139/6	E	46D1-2	1901	140/28		38A	1770	133/2	E	37B6-9
1861	138/6	$\mathrm{L} \ll \mathrm{n}$		1876	139/9	P-8A		1904	140/37	E		1780	133/15	E	27B1-2
1864	138/11	8A	32C3-5	1879	139/12	E		1894	140/19	pP		1828	136/19	L-A	
Plasmid pool 1				Plasmid pool				Plasmid pool				Plasmid pool 1			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$
1041	80/10	E	$\begin{aligned} & \hline 23 \mathrm{~A} 5-6 \\ & 75 \mathrm{C} 3-4 \end{aligned}$	2020	152/5	pP	$\begin{aligned} & \text { 47A11-14 } \\ & \text { 49D1-3 } \\ & 57 \mathrm{~B} 1-3 \\ & \hline \end{aligned}$	2050	155/16	E		2091	159/9	E	
1066	80/39	E		2021	152/6	E-L	28B1-2	2053	156/5	E		2092	159/11	E-A ${ }^{ \pm}$	
1415	98/55	E		2023	152/11	$\mathrm{L} \ll \mathrm{n}$		2054	156/6	E	50C17-19	2093	159/13	E	
1437	100/3	pP	21B4-6	2026	153/3	$\mathrm{E}-\mathrm{A}^{ \pm}$		2055	156/8	E		2095	159/15	P-8A	53f1-5
1438	100/4	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	25B1-2	2030	153/11	$\mathrm{A}^{ \pm}$		2057	156/12	E-L	21B4-5	2105	161/1	P	43b1-2
1489	103/6	$\mathrm{A}^{ \pm}$		2035	154/2	E		2058	156/14	$\mathrm{L} \ll \mathrm{n}$		2109	161/6	$\mathrm{L} \ll \mathrm{N}$	
2002	148/17	$\mathrm{A}^{ \pm}$	34C4-5	2037	154/4	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		2060	156/17	$\mathrm{A}^{ \pm}$	52E1-2	2110	161/8	E	
2003	148/20	E-L		2040	154/10	E		2061	156/19	E-L		2111	161/9	E	44f3-4
1013	79/7	P		2044	154/18	E		2062	156/20	$\mathrm{L} \ll \mathrm{n}$		2113	161/13	$\mathrm{L} \ll \mathrm{n}$	$\begin{array}{\|l\|} \hline 27 \mathrm{e} 1-2 \\ 53 \mathrm{all-2} \\ \text { 61dl-2 } \\ \hline \end{array}$
2016	151/3	$\mathrm{A}^{ \pm}$		2048	155/12	pP	54C5-8	2068	157/15	$\mathrm{L} \ll \mathrm{n}$		2114	161/14	$\mathrm{L} \ll \mathrm{n}$	

Plasmid pool 169				Plasmid pool 170				Plasmid pool 171				Plasmid pool 172			
Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\mathrm{P}[\text { lacW }]$ site	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1579	110/21	E	22B1-2	1940	144/4		55C9-12	2083	158/26	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	47C3-4	2157	165/21	E-L	21B4-6
1580	110/23	$\mathrm{A}^{ \pm}$	29C1-2	1995	148/7	E		2104	160/11	E	$\begin{aligned} & 39 \mathrm{BII-2} \\ & 40 \mathrm{BI}-2 \end{aligned}$	2161	166/2	E-L	43E7-10
1670	115/24	E-L	$\begin{aligned} & 35 \mathrm{BB-7} \\ & 93 \mathrm{D} 3-5 \end{aligned}$	1989	147/7	E	51C1-2	2121	161/26	P		2165	166/6	$\mathrm{A}^{ \pm}$	
1678	115/34	8A	58F1-2	2000	148/14	E		2133	162/13	E	$\begin{array}{\|l\|l\|} \hline 27 \mathrm{EII}-2 \\ 53 \mathrm{Al}-2 \\ 66 \mathrm{DI}-2 \\ \hline \end{array}$	2167	166/10		21D3-4
1719	124/9	P	$\begin{aligned} & 2688 .-9 \\ & 26 \mathrm{Cl}-2 \\ & 26 \mathrm{D} 4-5 \\ & \hline \end{aligned}$	2001	148/16	P	$\begin{array}{\|l\|} \hline 29 A 33-5 \\ 23 D 1-2 \end{array}$	2136	162/16	P		2168	166/11	E	
1743	131/1	pP	48E4-7	2009	149/4	8A		2146	164/6	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$		2171	166/17	E-L	47A11-14
1766	132/19	8A	53B1-2	2045	154/19		22F3-4	2147	165/1	$\mathrm{L} \ll \mathrm{n}$	$\begin{aligned} & 25 \mathrm{~A} 6-7 \\ & 28 \mathrm{DI}-2 \end{aligned}$	2188	168/2	P	26B8-9
1804	135/8	$\mathrm{L} \leq \mathrm{n}$		2080	158/20	E	$\begin{aligned} & 26 \mathrm{AFS}-6 \\ & \text { a } 29 \mathrm{Al}-2 \\ & 67 \mathrm{BI}-2 \end{aligned}$	2153	165/14	A		2192	168/6	$\mathrm{A}^{ \pm}$	45D4-5
1829	136/23	P-A	42D1-2	2059	156/16	L<<n	42A15-16	2184	167/21	E	25C1-2	2194	168/8	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	$\begin{array}{\|l\|} \hline 34 \mathrm{Bl} 1-2 \\ 60 \mathrm{~F} 1-3 \\ \hline \end{array}$
1932	143/9	E	$\begin{array}{\|l\|} \hline 50 F 4-7 \\ 57 B 4-6 \end{array}$	2067	157/13	E		2155	165/16	P	$\begin{array}{\|l\|} \hline 36 \mathrm{AlO-11} \\ 39 \mathrm{Cl}-2 \\ 40 \mathrm{Bl} 1-2 \\ \hline \end{array}$	2200	168/15	$\mathrm{L} \ll \mathrm{n}$	
Plasmid pool 17				Plasmid pool				Plasmid pool				Plasmid pool			176
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
2203	168/18	P-8A	27D1-2	2226	170/19	L<<n	$\begin{aligned} & 49 \mathrm{BB} 3-4 \\ & 49 \mathrm{E}-2 \end{aligned}$	510	55/6	8A		603	59/5	P	26B8-9
2204	168/21	E		2230	170/24	E		517	55/16	P-8A		662	62/4	E	$46 \mathrm{Cl}-2$
2206	168/28	$\mathrm{L} \ll \mathrm{n}$		2231	170/25	$8 \mathrm{~A}-\mathrm{A}^{ \pm}$	33E7-8	518	55/17	P	$\begin{array}{\|l\|l\|} \hline 35 D D-4 \\ 37 C-7 \\ 82 E 6-7 \\ \hline \end{array}$	684	63/20	$\mathrm{L} \ll \mathrm{n}$	$\begin{array}{\|l} \hline 60 C 7-8 \\ 67 \mathrm{C} 5-8 \\ \hline \end{array}$
2211	169/7	E		2232	170/26	E	58D6-7	525	55/29	E		679	63/11	E-L	
2212	169/10			2233	170/27	E	35F10-11	586	58/9	E		694	63/33	E	31A1-2
2214	169/18	E-L		2235	170/31	L-P	$\begin{aligned} & 45 \mathrm{FI}-2 \\ & 50 \mathrm{Fl}-2 \end{aligned}$	587	58/9	8A		729	65/7	$\mathrm{A}^{ \pm}$	
2217	170/3			2237	170/35	E-L	45F1-2	595	58/19	E	24F1-2	741	66/6	E	$\begin{aligned} & 30 \mathrm{BIT-2} \\ & 21 \mathrm{~B} 4-6 \end{aligned}$
2218	170/4	$\mathrm{L} \ll \mathrm{n}$	34A3-4	2239	170/37	E		614	59/18	E		800	70/7	E	
2219	170/5	P-A	47F4-9	2229	170/23	$\mathrm{L} \ll \mathrm{n}$		620	60/5	E	48E8-11	856	72/23	E	34A5-6
2224	170/13	E		2243	113/9	E		645	61/13	E-L	39E5-6	926	75/18	P-8A	

List of rescued plasmids with corresponding fly lines, lethal phases and chromosomal locations of the P[lacW] Box 24

Plasmid pool 185				Plasmid pool 186				Plasmid pool 1				Plasmid pool 1			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{P}[\text { acW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$
1926	142/13	$\mathrm{A}^{ \pm}$		1976	146/3	$\mathrm{L} \ll \mathrm{n}$									
1930	143/6	E		1977	146/7	P-8A									
1931	143/8	E		1978	146/8	L<<N									
1933	143/10	E		1900	140/27	8A	$\begin{aligned} & \text { 48B6-7 } \\ & 56 \mathrm{D} 1-2 \end{aligned}$								
1934	143/11	E-L		1991	147/10	E	42A15-19								
1939	144/3	pP		1992	147/15	E									
1941	144/5	$\mathrm{L} \ll \mathrm{n}$		1993	147/16	E	70A1-2								
1943	144/8	$\mathrm{L} \ll \mathrm{n}$		1997	148/11	E-A ${ }^{ \pm}$									
1945	144/10	$\mathrm{L} \ll \mathrm{n}$		1027	79/26	E	$\begin{aligned} & \hline 47 \mathrm{~A} 11-14 \\ & 62 \mathrm{E} 6-7 \\ & \hline \end{aligned}$								
1974	146/1	$\mathrm{A}^{ \pm}$	54E1-2	1975	146/2	$\mathrm{L} \leq \mathrm{n}$	$\begin{array}{\|l\|} \hline 48 \mathrm{~B} 1-2 \\ \text { 67B1-2 } \\ \hline \end{array}$								
Plasmid pool				Plasmid pool				Plasmid pool				Plasmid pool			
Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{aligned} & \mathrm{P}[\text { lacW }] \\ & \text { site } \end{aligned}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{P}[\text { lacW }] \\ \text { site } \end{array} \\ \hline \end{array}$	Glycerol stock	Fly line	lethal phase	$\begin{array}{\|l} \hline \mathrm{P}[\text { lacW }] \\ \text { site } \end{array}$

References

Alphey, L., Parker, L., Hawcroft, G., Guo, Y., Elledge, S., Kaiser, K., Glover, D. M. and Morgan, G. (1996). KI.P38B- a mitotic kinesin-related protein from Drosophila which associates with PP1. Cell (submitted).

Anraku, Y., Hirata, R., Wada, Y. and Ohya, Y. (1992). Molecular genetics of the yearst

Arai, H., Terres, G., Pink, S. and Forgac, M. (1988). Topography and subunit stoichiometry of the coated vesicle proton pump. /. Bio. Chem. 263, 8796-8802.

Ashburncr, M. (1989a). Drosophila: A laboratory manual. Cold Spring Harbour Laboratory Press.

Ashburner, M. (1989b). Drosophila: A Laboratory Handbook. Cold Spring Harbour Press.

Azuma, M., Harvey, W. R. and Wieczorek, H. (1995). Stoichiometry of $\mathrm{K}^{+} / \mathrm{H}^{+}$antiport helps to explain extracellular pH11 in a model epithelium. FFBSS Letters 361, 153-156.

Ballinger, D. G. and Benzer, S. (1989). Target gene mutations in Drosophila. Proc. Nath. Acad. Sci. USA. 86, 9402-9406.

Banga, S. S. and Boyd, J. B. (1992). Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster. Proc. Natl. Acad. U.S.A. 89, 1735-1739.

Baron, R., Bartkicwicz, M., David, P. and Hernando-Sobrino, N. (1994). Acidification and bone resorption: The role and characteristics of V-ATPases in the osteoclast. In Organellar proton-A'TPases (ed. Nelson, N), pp. Austin, Texas: R. G. Landes Company.

Baud, V., Mears, A. J., Lamour, V., Scamps, C., Duncan, A. M. V., McDermid, H. E. and Lipinski, M. (1994). The E subunit of vacuolar H^{+}-A'l'Pase localizes close to the centromere on human chromosome 22. Human Molecular Genetics 3, 335-339.

Bauerle, C., Ho, M. N., Lindorf er, M. A. and Stevens, T. H. (1993), The Saccharomyces cerevisiae VMA6 gene encodes the $36-\mathrm{kDa}$ subunit of the vacuolar H_{+} ATPase membranc sector. J. Biol. Chem. 268, 12749-12757.

Bellen, H. J., O'Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K. and Gehring, W. J. (1981). P-clement-mediated enhancer detection: a versatile method to study development in Drosophild. Genes Dev. 3, 1288-1300.

Berkelman, T., Houtchens, K. A. and Dupont, F. M. (1994), 2 cDNA clones encoding isoforms of the B subunit of the vacuolar ATPase from barlcy roots. Plant Physiol. 104, 287-288.

Bernasconi, P,, Rausch, T., Struve, I., Morgan, L. and T'aiz, L. (1990). An mRNA. from human brain encodes an isoform of the B subunit of the vacuolar H^{+}-ATPase. /. Biol. Chem. 265, 17428-17431.

Bier, E., Vaessin, H., Sheperd, S., Lee, K., McCall, K., Barbel, S., Ackerman, L., Caretto, R., Ucmura, 'I., Grell, E., Jan, L., Y. and Jan, Y. N. (1989). Searching for pattern and mutation with a P-lacZ vector. Genes Dev. 3, 1273-1287.

Birman, S., Mcunier, F.-M., Lesbats, B., Lecaer, J. P., Rossicr, J., Istael, M. (1990). A 15 kDa proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Letters 261, 303-306.

Bingham, P. M. (1981). Cloning of DNA sequences from the white locus of D. melanugaster by a novel and general method. Cell 25, 693-704.

Birnboim, H. C. and Doly, J. (1979). Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7, 1513-1523.

Black, D. M., Jackson, M. S., Kidwell, M. G. and Dover, G. A. (1987). KP elements repress P -induced hybrid dysgenesis in D. melanogaster. EMRO J. 6, 4125-4135.

Blackman, R. K., Koehler, M. M. D., Grimaila, R. and Gelbart, W. M. (1989). Identification of a fully functional hobo transposable element and its use in germ-line transformation of Drosophila. EMBO J. 8, 211-217.

Blair, H., Teitelbaum, S., Ghiselli, R and Gluck, S. (1989). Osteoclastic bone reorption by a polarized vacuolar proton pump. Science 245, 855-857.

Bowman, E. J. (1983). Comparison of the vacuolar membrane ATPase of Neurosport crassa with the mitochondrial and plasma membrane ATPases. J. Biol. Chem. 258, 15238-15244.

Bowman, E. J., Tenney, K. and Bowman, B. J. (1988). Isolation of vma-1 Encoding the Neurospara Vacuolar ATPases. J. Biol. Chem. 263, 13994-14001.

Bowman, E. J., Stcinhardt, A. and Bowman, B. J. (1995). Isolation of the vma-4 gene encoding the 26 kDa subunit of the Neurospora crassa vacuolar ATPase. Biochim. Biophys. Acta 1237, 95-98.

Boyle, J. S. and Lew, A. M. (1995). An inexpensive alternative to glassmilk for DNA purification. $T / G 11$.

Brown, D., Gluck, S. and Hartwig, J. (1987). Structure of the novel membrane-coating material in proton-secrecting cells and identification as an H^{+}ATPase. J. Cell Biol. 105, 1637-1648.

Brown, D. , Hirsch, S. and Gluck, S. (1988). An H+ATPase is inserted into opposite plasma membranc domains in subpopulations of kidney epithelial cells. Nature 331, 622-624.

Brown, D., Lui, B., Gluck, S. and Sabolic, I, A. (1992). plasma membrane proton ATPase in specialized cells of rat epididymis. American Journal of Physiology - Cell Physiology, 263, C913-C916.

Brennan, M. D., Rowan, R. G. and Dickinson, W. J. (1984). Introduction of a Functional P Element into Germ-Line of a Drosophila hawaiiensis. Cell 38, 147-w151.

Bullock, W. O., Fernandez, J. M. and Short, J. M. (1987). XL1-Blue: A high effenciency plasmid transforming recA Escherichia coli strain with β Galactosidase slection. Biotechniques 5, 376-379.

Calvi, B. R., Hong 'T. J., Findley, S. D. and Gelbart, W. M. (1991). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465-471.

Castrillon, D. H., Gonczy, P., Alexander, S., Rawson, R., Eberhart, C. G., Viswanathan, S., DiNardo, S. and Wasserman, S. A. (1993). Toward a molecular-genetic analysis of spermatogenesis in Drosophila melanogaster - Characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135, 489-505.

Cavener, D.R. (1987). Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.

Chambers, T. J., Fuller, K., McShechy, P. M. J. and Pringle, J. A. S. (1985). The effects of calcium regulating bormones on bone resorption by isolated human osteoclastoma cells. fournal of Pathology 145, 297-305.

Chin, A. C., Burgess, R. W., Wong, B. R., Schwarz, T. L. and Scheller, R. H. (1993). Differential expression of transcripts from syb, a Drosophila melanogaster gene encoding VAMP (synaptobrevin) that is abundant in non-neuronal cells. Gene 131, 175-181.

Chisholm, D. (1989). A convenient moderate-scale procedure for obtaining dna from bacteriophage-lambda. Biotechniques .7, 21-23.

Chiu, S.-J., Huang, S. -H. Lin, L. -Y. and Pan, R. L. (1995). A cDN Λ clone cncoding the A subunit of the vacuolar $\mathrm{H}+-$ ATPase from etiolated mung bean seedlings. Plant Physiol. 109, 1125-

Choi, K. R., Lee, K. S., Oh, Y., Baek., K. and Yoon, J. (1995). Isolation and characterization of the Drosophila-melanogaster gene encoding the vacuolar ATPasc subunit-A. Molecules and Cells 5, 544-548.

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidium thicyanate phenol chloroform extraction. Anal. Biochern. 162, 156-159.

Clark, A. G., Silveria, S., Meyers, W. and Iangley, C. H. (1994). Nature screen: An efficient method for screening natural-populations of Drosophila for target P-element inscrtions. Proc. Natl. Acad. U.S.A. 91, 719-722.

Cooley, L., Kelley, R. and Spradling, A. (1988). Insertional mutagenesis in the Drosophila genome with single p elements. Science 239, 1121-1128.

Daniels, S. B. and Chovnick, A. (1993). P-elemene transposition in Drosophila melanogaster -An analysis of sister-chromatid pairs and the formation of intragenic secondary insertions during meiosis. Genetics 133, 623-636.

Das, L. and Martienssen, R. (1995). Site-selected transposon mutagenesis at the HCF106 locus in maize, Plant Cell 7, 287-294.

Davis, M. B. and MacIntyre, R. J. (1988). A genetic analysis of the alphaglycerophosphate oxidase locus in Drosophila melanogaster. Genetics 120, 755-766.

Davies, S. A., Goodwin, S. F., Kelly, D. C., Wang, Z., Sozen, M. A., Kaiser, K. and Dow, J. A. T. (1996). Analysis and inactive of vha55, the gene encoding the V- Λ TPase Bsubunit in Drosophila melanogaster reveals a larval lethal phenotype. J. Biol. Chem. (in press).

Denda, K., Konishi, J., Oshima, T., et al., Date, T. and Yoshida, M. (1988). The membrane-associated ATPase from Sulfolobus acidocaldarius is distantly related to FiATPase as assessed from the primary structure of its α-subunit . J. Biol. Chem. 263, 6012-6015.

Denda, K., Konishi, J., Hajiro, K., Oshima, T., Date, T. and Yoshida, M. (1990). Structure of an ATPase operon of an acidothermophilic archaebacrerium, Sulfolobus acidocaldarius. J. Biol. Chem. 265, 21509-21513.

DeFranco, P. E., Haragism, L., Schmitz, P. G., Bastani, B. and Li,). P. (1995), Absence of vacuolar H^{+}-ATPase pump in the collecting duct of a patient with hypokalemic distal renal cubular acidisis and Sjogren's syndrome. J. American Society of Nepbrology 6, 1046 6673.

Dietz, K. J., Rudloff, S., Ageorges, A., Fckerskorn, C., Fischer, K. and Arbinger, B. (1995). Subunit E of the vacuolar H^{+}-ATPase of Hordeum vulgare 1 - cDNA cloning, expression and immunological analysis. Plant /. 8, 521-529

Ding, D., Parkhurst, S.M. and Lipshitz, H.D. (1993). Different genetic requirements for anterior RNA localization revealed by the distribution of Adducin-like transcripts during Drosophila oogenesis. Proc. Natl. Acad. Sci. U.S.A. 90, 2512-1516.

Dorn, R., Szidonya, J., Korge, G., Sehnert, M., Taubert, H., Archoukieh, E., Tschiersch, B., Morawietz, H., Wustmann, G., Hoffmann, G. and Reuter, G. (1993). P-transposoninduced dominant enhancer nutations of position-effect variegation in Drosophila melanogaster. Genetics 133, 279-290.

Dorssers, L., and Postmes, A. M. E. A. (1987) A simplified orientation specific cDNA. cloning strategy. Nucl. Acids Res. 16, 3629.

Dow, J. A. T. (1984). Extremely high pH in biological systems: a model for carbonate transport, Amer. J. Pbysiol. 246, R633-R635.

Dow, A. J. T. (1986). Inscct midgut function. Adv. Incect Physiol. 19, 187-328.

Dow, J. A. T. and Harvey, W. R. (1988). The role of midgut electrogenic K+ pump porential difference in regulating lumen K^{+}and pH in larval lepidoprera. J. Exp. Biol. 140, 455-463.

Dow, J. A. T. and Peacock, J. M. (1989). Microelectrode evidence for the electrical isolation of goblet cavities of the middle midgut of Manduca sexta.. /. Exp. Biol. 143, 101-104.

Dow, J. A. 'T. and O'Donnell, M. J. (1990). Reversible alkalinization by Manduca sexta midgut. J. Exp. Biol. 150, 247-256.

Dow, J. A. T., Goodwin, S. F. and Kaiser, K. (1992). Analysis of gene encoding a 16kDa proteolipid subunit of the vacuolar H^{+}-ATPase from Manduca sexta midgut and tubulcs. Gene 122, 355-360.

Dow, J. A. T. (1992). pH gradients in lepidopteran midgut. J. Exp. Biol. 172, 355-376.

Dow, J. A. T. (1994). V-ATPase in inscets. In Organcilar proton-ATPase. (ed. Nelson, N.), pp. 75-102. Austin Texas: R. G. Landes Company.

Dow, J. A. T., Maddrell, S. H. P., Görtz, A., Skaer, N. J. V., Brogan, S. and Kaiser, K. (1994). The Malpighian tubules of Drosophila melanogatter: A novel phenotype for studies of fluid secretion and its control. J. Exp. Biol. 197, 421-428.

Dow, J. A. T., Davis, S. A., Guo, Y., Graham, S., Finbow, M. and Kaiser, K. (1996). Molecular genetics analysis of V-ATPase function in Drosophila melanogaster. J. Exp. Biol. 202 (in press).

Emori, Y. and Saigo, K. (1994). Calpain localization changes in coordination with actinrelated cytoskeletal changes during early embryonic development of Drosophila. J. Biol. Chem. 269, 25137-25142.

Engels, W. R. (1979). Hybrid dysgenesis in Drosophila melanogaster. Rule of inheritance of fcmalc stcrility. Genet: Res. 32, 219-213.

Engels, W. R., Benz, W. K., Preston, C. R., Graham, P. L., Phillis, R. W. and H. M. Robertson (1987). Some effects of P element activity in Drosophila melanogaster: Pupal lethality. Genetics 117, 745-757.

Engels, W. R. (1989). P elements in Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437-484. Washington, DC.: American Society for Microbiology.

Engels, W. R., Johnson-Schlitz, D. M., Eggleston, W. B. and Sved, J. (1990). Highfrequency P element loss in Drosophila is homolog dependent. Cell 62, 515-525.

Feinberg, A. P. and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclcase fragments to high specific activity. Anal. Biochem. 132, 6-13.

Finbow, M. E., Eliopoupos, E. E., Jackson, P. J., Keen, J. N., Meagher, L., Thompson, P., Jones, P. and Findlay, J, B. C. (1992). Structurc of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacular H^{+}-ATPase. Protein Engincering 5, 7-15.

Finbow, M. E. and Pitts, J. D. (1993). Is the gap junction channel-the connexon-made of connexon or ductin? J. Cell Sci. 106, 463-472.

Finbow, M. E., Goodwin, S. F., Meagher, L., Lane, N. J., Keen, J., Findlay, J. B. C. and Kaiser, K. (1994a). Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H^{+}-

ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha 16k gene fromm Drosophild. J. Cell Biol. 107, 1817-1824.

Finbow, M. E., Harrisons, M. and Jones, P. (1994b). Ductin -a proton pump component, a gap junction channel and a neurotransmitter release channel. BioEssays 17, 247-255.

Fischer, J. A., Giniger, E., Maniatis, 'I'. and Ptashne, M. (1988). GAL. 4 activates transcription in Drosophila. Nature 333, 853-856.

Forgac, A. H. (1989). Structure and function of a vacuolar class of ATP-driven proton pumps. Physiol. Rev. 69, 765-769.

Foury, F. (1990). The $31-\mathrm{kDa}$ polypeptide is an essential subunit of the Vacuolar ATPase in Saccharomyces cerevisiae. J. Biochem. 265, 18554-18560.

Fridell. Y.W. and Scarlcs, L. L. (1991). Vermilion as a small selectable marker gene for Drosophild transformation, Nucleic Acids. Res., 19, 5082.

Frischauf, A. M., Lehrach, H., Poustka, Λ, and Murray, N. (1983). Lambda-rcplacement vectors carrying polylinker sequences. J. Mol. Biol. 170, 827-842.

Galli, T., Mcpherson, P. S. and Decamilli, P. (1996). The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a triton X-100resistant, freeze-thawing sensitive, complex. /. Biol. Chem. 271, 2193-2198.

Garayoa, M., Villaro, A., Klein, U., Zimmermann, B. and Montuenga, L. (1995). Immunocytochemical localization of a vacuolat-type ATPase in Malpighian tubules of the ant Formica polyctena. Cell and Tissue Research 282, 343-350.

Garrettengele, P., Moilanen, B. and Cyert, M. S. (1995). Calcineurin, the $\mathrm{Ca}^{2+} /$ calmodulin-depedent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar $\mathrm{H}^{+}-\mathrm{A}^{\top} \Gamma$ Pase. Mol, Cell. Biol. 15, 4103-4114.

Gausz, J., Bencze, G., Gyurkovics, H., Ashburner, M., Ish-Horowitz, D. and Holden, J. J. (1979). Genetic characterization of the 87 C region of the third chromosome of Drasophila melanogaster. Genetics 93, 917-934.

Gausz, J., Bencze, G., Gyurkovics, H., Ashburner, M., Ish-Horowicz, D. and Holden, J. J. (1979). Genctic characterization of the 87C region of the third chromosome of Drosophila melanoggaster. Genetics 93, 917-934.

Ghislain, M. and Bowinan, E. J. (1992). Sequence of the genes encoding subunits A and B of the vacuolar H^{+}-ATPase of Schizosaccharomyces pombe. Yeast 8, 791-799.

Gloor, G. B., Nassif, N. A., Johnson-Schliř, D. M., Preston, C. R. and Engels, W. R. (1991a). target gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110-1117.

Gloor, G. and Engels, W. (1991b). Single-fly DNA preps for PCR. D. I. S. 71:148149.

Gluck, S. L.., Nelson, R. D. Lee, B. S., Wang, K.-Q., Guo, X-L., Fu, J.-Y. and Zhang, K. (1992a). Biochemistry of the renal V-ATPase. J. Exp. Biol. 172, 219-229.

Gluck, S . and Nelson, R. (1992b). The role of the V-ATPase in renal epithelial $\mathrm{H}^{+}{ }^{+}$ ATPase in renal epithelial H^{+}transport. J. Exp. Biol. 172, 205-218.

Gluck, S. (1992). V-ATPases of the plasmid membrane. J. Exp. Binl. 172, 29-37.

Gluck, S. L., Nelson, R. D., Lee, B. S. M., Holliday, L. S. and Iyori, M. (1994). Properties of kidney plasma membrane vacuolar H^{+}-ATPases: Proton pumps respousible for bicarbonate transport, urinary acidification, and acid-base homeostasis. In Organellar proton-ATPases (ed. Nelson, N.), pp. Austin, Texas: R. G. Landes Company.

Gogarten, J. P., Pïchmann, J., Braun, Y., Morgan, L., Styles, P., Taiz, S. L., Delapp, K. and Taiz, L. (1992a). The use of antisense mRNA to inhibit the tonoplast $\mathrm{H}^{+}-$ATPase in carrot. The Plant Cell 4, 851-864.

Gogarten, J. P., Starke, T., Kibak, H., Fishmann, J. and Taiz, L. (1992b). Fvolution and isoforms of V-ATPase subunits. J. Exp. Biol. 172, 137-147.

Goldberg, D. A., Posakony, J. W., and Maniatis, T. (1983). Correcr developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line. Cell 34,59-

Goldstein, D. J., Finbow, M. E., Andresson, T., Mclean, P., Smith, K., Bubb, V. and Schicgel, R. (1991). Bovine papillomavirus E5 oncoprotein binds to the 16 K component of vacuolar H^{+}-ATPases. Nature 352, 347-349.

Golic, K. G. (1994). Iocal transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137, 551-563.

Gortlieb, R. A., Giesing, H. A., Zhu, J. Y., Engler, R. L. and Babior, B. M. (1995). Cell acidification in apoptosis-granulocyte-colony-stimulating factor delays programmed celldeath in neutrophils by up-regulating the vacuolar H^{+}-ATPase. Proc. Natl. Acad. U.S.A. 92,5965-5968.

Graham, L. A., Hill, K. J. and Stevens, T. H. (1994). VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar $\mathrm{H}^{(+)}$-ATPase complex. J. Biol. Chem. 269, 25974-25977.

Gräf, R., Novak, F. J. S., Harvcy, W. R. and Wieczorck, H. (1992). Cloning and sequencing of cDNA encoding the putative insect plasma membrane V-ATPase subunit A. FEBS Letter 300, 119-122.

Gräf, R., Harvey, W, R. and Wieczorek, H. (1994a). Cloning, sequencing and expression of cDNA encoding an insect V-ATPase subunit E. Biochim. Biophys. Acta 190, 193-196.

Gräf, R., Lepicr, A., Harvey, W. R. and Wieczorek, H. (1994b). A novel $14-\mathrm{kDa}$ VATPase subunit in the tobacco hornworm midgut . J. Biol. Chem. 269, 3767-3774.

Guo, Y., Wang, Z., Carter, A., Kaiser, K. and Dow, J. A. T. (1996a). Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacular ATPase. Biochem. Biophys. Acta 1283, 4-9.

Guo, Y., Kaiser, K., Wiecrorek, H. and Dow, J. A. T. (1996b). The Drosophila melanogaster gene whal4 encoding a 14 kDa F-subunit of the vacuolar ATPase. Gene 172, 239-243.

Guo, Y., Gillan, A., Török, T., Kiss, L., Dow, J. A. T. and Kaiser, K. (1996c). Siteselected mutagenesis of the Drosophila second chromosome via plasmid rescue of lethal Pelement insertions. Genome Research 6:972-979.

Guo, Y., Dow, J. A. T., Gillan, A., Kiss, I. and Kaiser, K. (1996d). Molecular characterisation and inactivation of the 68 kDa A-subunit of V-ATPase in Drosophila. A. Dros. Conf. Res. 37, 91.

Haenlin, M., Steller, H., Pirrotta, V. and Mohier, E. (1985). A 43 Kilobase cosmid P transposon rescues the $\mathrm{fs}(1) \mathrm{K} 10$ morphogenetic locus and three adjacent Drosophila development mutants. Cell 40, 827-837.

Hamilton, B. A., Palazzolo, M. J., Chang, J. H., Raghavan, K. V., Mayeda, C. A., Whitney, M. A. and Meyerowitz, E. M. (1991). Large scale screen for transposon insertions into cloned genes. Proc. Natl. Acad. Sci. USA. 88, 2731-2735.

Hamilton, B. A. and Zinn, K. (1994). from clone to mutant gene. In Practical uses in ccll and molccular biology. (cd. Goldstcin, L. S. B.; Fyrberg, E. A..) .pp. 81-94. Academic Press.

Hanahan, D. (1985). Techniques for transformation of E. Coli. In DNA Cloning (ed. Glover, D. M.), pp. 109-135. IRL Press.

Handler, A. M., Gomez, S. P. and Obrochta, D. A. (1993). Negative regulation of Pelement excision by the somatic product and terminal sequences of P in Drosophila melanogaster. Molecular ơ General Genetics 237, 145-151.

Harvey, W. R. (1992). Physiology of V-ATPases. J. Exp. Biol. 172, 1-17.

Harvie, P. D. and Bryant, P. J. (1996). Cloning of the C subunit of V-ATPasefrom Drosophila melanogaster. A. Dros. Conf. Res. 37, 92.

He, J. and Kramer, H. (1996). Search for proteins that bind to Hook, a novel component of the endocytic compartment. A. Dros. Conf. Res. 37, 93.

Hemken, P., Guo, X.-L., Wang, Z.-Q., Zhang, K. and Gluck, S. (1992). Immunologic cvidence that vacuolar H^{+}ATPases with heterogeneous forms of $\mathrm{Mr}=31,000$ subunir have different membrane distributions in Mammalian kidncy. J. Biol. Chem. 267, 99489957.

Hernando, N., Bartkiewicz, M., Collin-Osdoby, P. and Osdoby, P. (1995). Alternative splicing generates a second isoform of the catalytic A subunic of the vacuolar H^{+}-ATPase. Proc. NatL. Acad. U.S.A. 92, 6087-6091.

Hilario, E. and Gogarten, J. P. (1995). The V-ATPasde A-subunit gene (VMA-1) Giardiut lamblia. Biochim. Biophys. Acta 1238, 94-98.

Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K. and Anraku, Y. (1990). Molecular structure of a gene, VMA1, encoding the catalytic subunit of H^{+}-translocating adenosine triphosphatase from vacuolar membranes of saccharomyces cercvisiae. J. Biochemestry 265, 6726-6733.

Hirsch, S., Strauss, A., Masood, K., Lee, S., Sukhatme, V. and Gluck, S. (1988). Isolation and sequence of a cDNA clone encoding the $31-\mathrm{kDa}$ subunit of bovine kidncy vacuolar H^{+}-ATPase. Proc. Natl. Acad. U.S.A. 85, 3004-3008.

Ho, M. N., Hill, K. J., Lindorfer, M. A. and Stevens, T. II. (1993). Isolation of vacuolar membrane $\mathrm{H}^{+}-\Lambda$ TPase-deficient yeast mutants; the VMA5 and VM $\Lambda 4$ genes are essential for assembly and activity of the vacuolar H^{+}-ATPase. /. Biol. Chem. 268, 221-227.

Jagcr, D., Novac, F. J. S., Harvcy, W. R., Wicczorck, H. and Klcin, U. (1996). Temporal and spatial disturbution of V-ATPase and its mRNA in the midgut of molying Manduca Sexta. J. Exp. Bioh. 199, 1019-1027.

Johnsonschtitz, D. M. and Fngets, W. R. (1993). P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol. Cell. Biology 13, 7006-7018.

Jones, P. C., Harrison, M. A., I., K. Y., Finbow, M. E. and Findlay, J. B. C. (1995). 'the first putative transmembrane helix of the 16 kDa proteolipid lincs a pore in the $\mathrm{V}(0)$ sector of the vacuolar H^{+}-ATPase. Biochemical Journal 312, 739-747.

Kaiscr, K. (1990). From gene to phenotype in Drosophila and other organisms. BioEssays 12, 297-301.

Kaiser, K. and Goodwin, S. F. (1990). "Sire-selected" transposon mutagenesis of Drosophila. Proc. Nat. Acad. Sci. U. S. A. 87, 1686-1690.

Kaiser, K. (1993). Second-generation enhancer traps. Current Biology 3, 560-562.

Kaiser, K., Sentry, J. and Finnegan, D. (1995). Eukaryotic transposable elements as tools to study gene structure and function. In Mobile Genetic Elements (ed. Sherratt, D. J.), pp. 69-100. IRL Press.

Kalderon, D. and Rubin, G. M. (1988). Isolation and characterization of Drosophila cAMP-dependent protein kinase genes. Genes Dev. 2, 1539-1556.

Kane, P. M., Yamashiro, C. T. , Wolczyk, D. R., Neff, N., Gocbl, M. and Stevens, T. H.(1990). Protein splicing converts the yeast TFPl gene product to the $69-\mathrm{kD}$ subunit of the vacuolar H^{+}-adenosine triphosphatase. Science 250, 651-657.

Kane, P. M. (1992). Biogenesis of the yeast vacuolar IT+ATPase. J. Exp. Biol. 172, 93103.

Kane, P. M. (1995). Disassembly and reassembly of the yeast vacuolar H^{+}-ATPase in vivo. f. Biol. Chem. 270, 17025-17032.

Karcz, S, R., Herrmann, V. R. and Cowman, A. F. 1993. Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum. Mol. Biochem. Parasitol. 58:333-344.

Karess, R. E. and Rubin, G. M. (1984). Analysis of P transposable element function in Drosophila.,

Kassis, J. A., Noll, E., Vansickle, E. P., Odenwald, W. F. and Perrimon, J. (1992). Altering the insertional specificity of a Drosophila transposable elemenc. Proc. Natl. Acad. Sci. USA 89,1919-1923.

Kaufman, P. D. and Rio, D. C. (1991). Germline transformation of Drosophila melanogaster by purified P element transposase. Nucleic Acids Res., 19, 6336.

Kidwell, M. G. (1986). P-M mutagenesis. In Drosophila, a practical approach. (ed. Roberts, D. B.) pp. 59-81. Oxford: IRL Press.

Kidwell, M. G. (1987). A survey of sucess rates using P element mutagenesis in Drosophila melanogaster. Drosopbilat Inf. Seru. 66, 81-86.

Klambt, C., I.. Glazer, and Shilo, B. Z. 1992. Breathless, a Drosophild FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6: 1668-1678.

Klein, U. and Zimmermann, B. (1991). The vacuolar-type ATPase from insect plasma membrane. Immunocytochemical localization in insect sensilla. Cell and Tissue Res. 266, 265-273.

Klein, U., Loffemann, G. and Wieczorek, H. (1991). The midgut as a model system for insect K^{+}-transporting epithelia: immunocytochemical localisation of a vacuolar type H^{+} pump. J. Exp. Biol. 161, 61-75.

Klein, U. (1992). The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J. Exp. Biol. 172, 345-354.

Koralnik, I. J., Mulloy, J. C., Andresson, T., Fullen, J. and Franchini, G. (1995). Mapping of the intermolecular association of the human T cell leukaemia/lymphotropic virus type I P 12 I and the vacuolar H^{+}-Atpase 16 kDa subunit protein. J. General Virology 76, 1909-1916.

Kurkulos, M., Weinberg, J. M., Roy, D. and Mount, S. M. (1994). P-element-mediated in-vivo delecion analysis of white-apricot-deletions between direct repeats are strongly favored. Genetics 136, 1001-1011.

Küppers, J. and Bunss, I. (1996). A primary cation transpore by a V-type ATPase of low specificity. J. Exp. Biol. 199, 1327-1334.

Laski, F. A., Rio, D. C. and Rubin, G. M. (1986). Tissue specificity of Drasophila P' element transposition is regulated at the levcl of mRNA splicing. Cell 44, 7-19.

Lepier, A., Gräf, R., Azuma, M., Merzendorfer, H., Harvey, W. R. and Wieczorek, H. (1996). The periphral complex of the tobacco hornworm V-ATPase contains a novel 13 kDa subunit G. J. Biol. Chem. 271, 8502-8508.

Lindlsey, D. L. and Zimm, G. (1992). The genome of Drosophila melanogaster. Academic Press.

Littleron, J. T., Stern, M., Schulze., K., Perin, M. and Bellen, H. J. (1993). Mutational analysis of Drosophila synaptotagmin demonstrates its essencial role in $\mathrm{Ca} 2^{+}$-activated neurotransmitter release. Cell 74, 1125-1134.

Liu, Q., Kanc, P. M., Newman, P. R. and Forgac, M. (1996). Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J. Biol. Chem. 271, 2018-2022.

Locketr, T. J., I.ewy, D., Holmes, P., Medveczky, K. M. and Saint, R (1992).'The rough $\left(\mathrm{ro}^{+}\right)$gene as a dominant P-element marker in germ line transformation of Drosophila melanogaster, Gene 114, 187-193.

Loukeris, 'l'. G., Arca, B., Iivadaras, I., Dialektaki, G. and Savakis, C. (1995a). Introduction of the transposable element minos into the germ-line of Drosophila melanngaster. Proc. Natl. Acad. Aci. U. S. A. 92, 9485-9489.

Loukeris, T. G., Livadaras, 1., Arca, B., Zabalou, S. and Savakis, C. (1995b). Genetransfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Sciences 270, 2002-2005.

Lukacs, G., Rotsein, O. D. and Grinstein, S. (1991). An Overview of Intracellular pH regulation: Role of vacuolar H^{+}-ATPases. In Organellar proton-ATPases (ed. Nelson, N.), pp 28-47. Austin, Texas: R. G. Landes Company,

Mackenzie, C., Stewart, B. and Kaiser, K. (1989). A device for creating and replicating ordered arrays of plaques or colonies. Techniques-A journal of methods in cell and molecular biology 1, 49-52.

Maddrell, S. H. P. and O'Donnell, M. J. (1992). Insect Malpighian tubules: V-ATPase action in ion and fluid transport. f. Exp. Biol. 172, 417-429.

Mandel, M., Moriyama, Y. and Hulmes, J. D. (1988). Cloning of eDNA sequence encoding the $16-\mathrm{kDa}$ proteolipid of chromaffin granules implies gene duplication in the evolution of H^{+}-VATPases. Proc. Nath. Acad. U.S.A. 85, 5521-5524.

Marra, M., Ballio, A., Battirossi, P., Fogliano, V., Fullone, M. R., Slayman, C. L. and Aducci, P. (1995). The fungal H^{+}-ATPase from Neurospora crassa reconstituted with fusicoccin receptors senses fusicoccin signal. Proc. Nutt. Acad. U.S.A. 92, 1599-1.603.

McCabe, B., Guo, Y., Sweeney, S., Goldstein, E., Kaiser, K. and O'Kane, C. (1996). Investigation of the function of synaptobrevin proteins in Drosophila melanogaster. A. Dros. Conf. Res. 37, 102.

McCarron, M., Duttaroy, A., Doughty, G. and Chovnick, A. (1994). Drosophila Pelement transposase induces male recombination additivelyand without a requirement for P-element excision or insertion. Genetics 136, 1013-1023.

Mead, D. A., Skorupa, E. S. and Kcmper, B. (1985). Single-stranded "Blu" T7 protomoter plasmids: A versatile tandem promoter system for cloning and protein engeering. Nucl. Acids. Res. 13, 1103-1118.

Meagher, L., McLean, P. and Finbow, M. E. (1990). Sequence of a cDNA from Drosophila coding for the 16 kD proteolipid component of the vacuolar H^{+}-ATPase. Nucleic Acids Res. 18, 6712.

Mears, A. J., ElShanti, H., Murtay, J. C., McDermid, H. E. and Patil, S. R. (1995). Minute supernumerary ring chromosome 22 associated with cat eye syndrome: Further delineation of the critical region. Amer. J. Human Genet. 57, 667-673.

Mellman, I., Fuchs, R. and Helenius, A. (1986). Acidification of the endocytic and exocytic pathways. Anm. Rev. Biochem. 55, 663-700.

Merli, C., Bergstrom, D. E., Cygan, J. A. and Blackman, R. K. (1996). Promoter specificity midiates the independent regulation of neighboring genes. Genes Devel. t 10 , 1260-1270.

Moffett, D. F. (1992). Driving forces and parhways of H^{+}and K^{+}transport in insect midgut goblet cells. J. Exp. Biol. 172, 403-416.

Nelson, N. and Taiz, L. (1989). The evolution of H^{+}-ATPases. Trends in Biochemical Sciences 14, 113-116.

Nelson, H. and Nelson, N. (1989). The progenitor of ATP synthases was closely related to the current vacuolar $\mathrm{H}^{+}+\mathrm{A}$ A'Pase. FEBS Letters 247, 147-153.

Nelson, H. and Nelson, N. (1990). Distuption of genes encoding subunits of yeast vacuolar H^{+}-ATPase causes conditional lechaliry. Proc. Natl. Acad. U.S.A. 87, 35033507.

Nelson, N. (1992a). The vacuolar $\mathrm{H}^{+}+$-ATPase - one of the most fundamental ion pumps in nature. /. exp. Biol. 172, 19-27.

Nelson, N. (1992b). Evolution of organcllar proton-ATPases. Biochem. Biophys. Acta 1100, 109-124.

Nelson, R. D., Guo, X.-L., Masood, K., Brown, D., Kalkbrenner, M. and Gluck, S. (1992). Selectively amplified expression of an isoform of the vacuolar H^{+}-ATPase 56 -kilo dalton subunit in renal intercalated cells. Proc. Nath. Acad. U.S.A. 89, 3541-3545.

Nelson, N. (1994). Molecular and cellular biology of F- and V-ATPases. In Organellar Proton-ATPases. (ed. Nelson, N.), pp. 1-27. Austin: R. G. Landes Company.

Nelson, H., Mandiyan, S. and Nelson, N. (1994). The Saccharomyces cerevisiae VMA7 gene encodes a $14-\mathrm{kDa}$ subunit of the vacuolar $\mathrm{H}\left({ }^{+}\right)$-ATPase catalytic sector. J. Biol. Chem. 269, 24150-24155.

Nelson, H., Mandiyan, S. and Nelson, N. (1995). A bovine cDN Λ and a ycast genc (VMA8) encoding the subunit D of the vacuolar H-ATPase. Proc. Natl. Acad. U.S.A. 92, 497-501.

Nishihara, T., Akifusa, S., Koseki, T., Kato, S., Muro, M. and Hanada, N. (1995). Specific inhabitors of vacular type H-ATPases induce apoptotic cell death. Biochemi.. Biophy. Res. Com. 212 255-262.

Noumi, T., Beltrán, C., Nelson, H. and Nelson, N. (1991). Mutational analysis of yeast vacular H^{-1}-ATPase. Proc. Natl. Acad. U.S.A. 88, 1938-1942.

O'Connell, P. and Rosbash, M. (1984). Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12, 5495-5513.

O'Donnell, M. J., Dow, J. A. T., İuesmann, G. R., Tublitz, N. J. and Maddrell, S. H. P. (1996). Separate concrol of anion and cation transport in Malpighian rubules of Drosophila melanogaster. J. Exp. Biol. 199, 1163-1175.

O'Hare, K. and Rubin, G. M. (1983). Structure of P transposable elements ans their sites of excision in the Drosophila melanogaster genome. Cell 34, 25-35.

O'Kane, C. J. and Gehring, W. J. (1987). Detection in situ of genomic regulatory elements in Drosophila. Proc. Nath. Acad. U.S.A. 84, 9123-9127.

Orr, W., White, T. C., Itr, B., Robert, L. and Singh, J. (1995). Characterisation of a low-temperature-induced $\mathrm{cDN} \Lambda$ from winter Brassica napus encoding the 70 kDa subunit of tonoplast ATPase. Plant Mol. Biol. 28, 943-948.

Pan, Y.-X., Xu, J., Strasser, J. E., Howell, M. and Dean, G. E. (1991). Strucrure and expression of subunit A from the bovine chromaffin cell. FEBS Letters 293, 89-92.

Paques, F., Bucheton, B. and Wegnez, W. (1996). Rearrangements involving repeated sequences within a P-element preferentially occur between units close to the transposon experiments. Genetics 142, 459-470.

Patton, J. S., Gomes, X. V. and Geyer, P. K. (1992). Position-independent germline transformation in Drosophila using a cuticle pigmentation gene as a selectable marker. Nucleic Acids Res. 20, 5859-

Pedersen, P. L. and Carafoli, E. (1987). Ion motive ATPases. II. Energy coupling and work output. TIPS 12, 186-189.

Pedersen, P. L. and Amzel, L. M. (1993). ATP synthases-structure, reaction center, mechanism, and regulation of one of nature's most unique machines. /. Biol. Chem. 268, 9937-9940.

Peng, S.-B. Crider, B. P., Zie, Z.-S. and Stone, D. K. (1994). Alternative mRNA splicing, generates tissue-specific isoforms of $116-\mathrm{kDa}$ polypeptide of vacuolar proton pump $/$. Biol. Chem. 269, 17262-17266.

Peng, S.-B. (1995). Nucleotide labelfing and reconstitution of the rccombinant $58-\mathrm{kDa}$ subunit of the vacular proton-translocating A'TPase. /. Biol. Chem. 279, 16926-16931.

Peng, S. B., Crider, B. P., Sue, J. T. Xie, X. S. and Stone, D.K, (1996). Identification of a $14-\mathrm{kDa}$ subunit associated with the catalytic sector of clathrin-coated vesicle H_{+-} ATPase. J. Biol. Chenn. 271, 3324-3327.

Perin, M. S. , Fried, V. A., Stone, D. K., Xie, X.--S. and Studhof, T. C. (1991). Structure of the $116-\mathrm{kDa}$ polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. J. Biol. Chem. 266, 3877-3881.

Puopolo, K. , Kumamoto, C., Adachi, I. and Forgac, M. (1991). A single gene encodes the catalytic 'A' subunit of the bovine vacuolar Ht-ATPase. /. Biol. Chem. 266, 2456424572.

Puopolo, K. , Kumamoto, C., Adachi, I., Magner, R. and Forgac, M. (1992). Differential expression of the ' B ' subunit of the bovine vacuolar H+-ATPase in bovine tissues. J. Biol. Chem. 267, 3696-3706.

Ray, K, and Ganguly, R. (1994). Organisation and expression of the Drosophila melanogaster G protein gamma subunit gene. FASEB J. 8 Al 399 .

Rio, D. C., (1990). Molecular mechanisms regulating Drosphila P element transposition. Annu. Rev. Genet. 24, 543-578.

Rio, D. C. (1991). Regulation of Drosophila P-element wansposition. Irends Genet. 7, 282-287.

Robcrtson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K. and Engels, W. R. (1988). A stable genomic soutce of P element transposase in Drosophila melanogaster. Genetics 118, 461-470.

Rubin, G. M. and Spradling, A. C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353.

Rubin, G. M., Kidwell, M. G. and Bingham, P. M. (1.982). The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29, 987-994.

Rubin, G. M. (1988). Drosophila melanogaster as an experimental organism. Science 240, 1453-1459.

Rushforth, A. M., Saari, B. and Anderson, P. (1993). Site-selected insertion of the transposon Tcl into a Caenorhabditis elegans myosin light chain gene. Mol. Cell. Biol. 13, 902.

Salz, H. K., Cline, T. W. and Schedl, P. (1987). Functional changes associated with structural alterations induced by mobilisation of a P element inserted in the Sex-lethal gene of Drosophila. Genetics 117, 221-231.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular cloning: A laboratory manul. Cold Spring Harbor Laboratory Press.

Sander, I., Lottspeich, F., Appelhans, H., Kojro, E., Spangenberg, J., Wcindel, C., Haasc, W. and Koepsell, H. (1992). Sequence analysis of the caralytic subunit of H^{+}-ATPase from porcine renal brush-border membranes. Biochem. Biophys. Acta 1112, 129-141.

Sentry, J. W. and Kaiser, K. (1992). P element transposition and targeted manipulation of the Drosophila genome. Treads Genet. 8, 329-331.

Sentry, J. W., Yang, M. and Kaiser, K. (1993). Conditional cell abation in Drosophila. Bioessays 11, 491-493.

Sentry, J. W., Goodwin, S. F., Milligan, C. D., Duncanson, A., Yang, M. and Kaiser, K. (1994a). Reverse genctics of Drosophila brain structure and Function. Progress in Neurobiology 42, 299-308.

Sentry, J. W. and Kaiser, K. (1994b). Application of inverse PCR to site-selected mutagencsis of Drosophila. Nucleic Acids Res. 22, 3429-3430.

Sentry, J. W. and Kaiscr, K. (1995). Progress in Drosophila genome manipulation. Transgenic Research 4, 155-162.

Shih, C.-K.., Wagner, R., Feinstein, S., Kanik-Ennulat, C. and Neff, N. (1988). A dominant trifluoperazine resistance gene from Saccharomyces cerevisiae has homology with FOF1 ATP synthase and confers Calcium-sensitive growth. Mol. Cell. Biol. 8, 30943103.

Siebert, A., Lotrspeich, F., Nelson, N. and Betz, H. (1994). Purification of the synaptic vesicle-binding protein physophilin. İdentification as $39-\mathrm{kDa}$ subunit of the vacuolar H^{+}ATPase. J. Biol. Chem. 269, 28329-28334.

Skoulakis, E. M. C., Kalderon, D. and Davis, R. L. (1993). Preferencial expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11, 197-208.

Snaich, H. A., Armstrong, C. G., Guo, Y., Kaiser, K. and Cohen, P. 'Г. W. (1996). Deficiency of protein phosphatase 2Λ uncouples the nuclear and centrosome cycles in Drosophila embryos, /. Cell Sci. (in press).

Sprading, A. and Rubin, G. M. (1982). Transposition of cloned P elements into Drosophila germ-line chromosomes. Science 218, 341-347.

Spradling, A. (1986). P-element mediated transformation of Drosophila. In Drosophila, a practical approach (ed. Robert, D. B.), pp 175-198. Oxford: IRL press.

Spradling, A. C., Stern, D. M., Kiss, I., Roote, J., Laverty, 'I'. and Rubin, G. M. (1995). Gene disruptions using P transposable elements: An integral component of the Drosophila genome project. Proc. Natl. Acad. U.S.A. 92, 10824-10830.

Starke, T. and Gogatten, J. P. (1993). A conserved intron in the V-ATPase A subunit genes of plants and algae. FEBS letters 315, 252-258.

Stellar, H. and Pirrotta, V. (1985). A transposable P vector that confers selectable G118 resistance to Drosophila larvae. EMBO J. 4, 167-171.

Straus, D. and Ausubel, F. M. (1990). Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc. Natl. Acad. Sci. U.S.A. 87, 1889-1893.

Sumner, J. P., Dow, J. A. T., Earley, F., Klein, U., Jäger, D. and Wieczorek, H. (1995). Regulation of plasma membrane H^{+}V-ATPase activity by dissociation of peripheral subunits. J. Biol. Chem. 270, 5649-5653.

Supek, F., Supekova, L. and Nelson, N. (1994). Fcaturcs of Vacular H^{+}-ATPase revealed by yeast suppressor mutants. J. Biol. Chem. 269, 26479-26485.

Supekova, L., Supek, F. and Nelson, N. (1995). The Sacchatramyces cerevisiae VMAIO is an intron -containing gene encoding a novel $13-\mathrm{kDa}$ subunit of vacuolar H^{+}-ATPase, J. Biol. Chem. 270, 13726-13732.

Supekova, I., Sbia, M., Supek, F., Ma, Y. and Nelson, N. (1996). A novel subunit of vacuolar H^{+}-ATPase related to the b subunit of F-A'PPase. J. Exp. Biol. 199, 1147 1156.

Sweency, S. T., Broadic, K., Keanc, J., Niemann, H. and O'Kane, C. J. (1995). Targer expression of Tetanus 'l'oxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioural defects. Neuron 14, 341-351.
'I'aiz, L., Nelson, H., Maggert, K., Morgan, L. and Yatabe, B. (1994). Functional analysis of conserved cystene residues in the catalytic subunit of the yeast vacuolar H^{+}-ATPase. Biochim. Biophy. Acta 1194, 329-334.

Takase, K., Kakinuma, S., Yamato, I., Konishi, K., Igarashi, K. and Kakinuma, Y. (1994). Sequencing and characterization of the ntp gene cluster for vacuolar- type $\mathrm{Na}\left({ }^{+}\right)$translocating ATPase of Enterococcus birac. J. Biol. Chem. 269, 11037-11044.

Tanida, L., Hasegawa, A., Iida, H., Ohya, Y. and Anraku, Y. (1995). Coopcration of calcineurin and vacuolar $\mathrm{H}+$-ATPase in intracellular Ca^{2+} homeostasis of yeast cells. f. Biol. Chem. 270, 10113-10119.

Theopold, U., Pintér, M., Daffre, S., Tryselius, Y., Friedrich, P., Nässcl, D. R. and Hultmark, D. (1995). CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol. Cell. Biol. 15, 824-834.

Tower, J., Karpen, G. H., Craig, N. and Sprading, A. C. (1993). Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347359.

Török, T., Tick, G., Alvarado, M. and Kiss, I. (1993). P-lacW inscrtional mutagenesis on the sccond chromosome of Drosophila melanogaster: Isolation of lethals with different overgrowth phenotypes. Genetics 135, 71-80.
'Tsubota, S. and Schedl, P. (1986). Hybrid dysgenesis-induced revertants of insertions at the 5^{\prime} end of the rudimentary gene in Drosophila melanogaster: Transposon-induced control mutations. Genctics 114, 165-182.

Umemoto, N., Yoshihisa, T., Hirata, R. and Anraku, Y. (1990). Roles of the VMA3 gene product, subunit c of the vacuolar membrane H^{+}-ATPase on vacuolar acidification
and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. f. Biol. Chem. 265, 18447-18453.

Umemoto, N., Ohya, Y. and Anrakyu, Y. (1991). VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H^{+}ATPase activity. Biol. Chem. 266, 24526-24532.

Ultsch, A., Schuster, C. M., Laube, B., Betz, H. and Schmitt, B. (1993). Glutamate receptors of Drosophila melanogaster - primary strucrure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS letters 324, 171-177.
van Hille, B., Richener, H., Evans, D. B., Grecn, J. R. and Bilbe, G. (1993). Identification of 2 subunit A isoforms of the vacuolar $H+$ ATPase in human ostcoclastoma. J. Biol. Chem. 268, 7075-7080.
van Hille, B., Vanek, M., Richener, H., Green, J. R. and Bilbe, G. (1993). Cloning and tissue distribution of subunit C, D, and E Of the human. Biochem. Biophys. Res. Commun. 197, 15-21.
van Hille, B., Richener, H., Green, J. R. and Bilbe, G. (1995). The ubiquitous VAG8 isoform of subunit A of the vacular H^{+}-ATPase is highly expressed in human osteoclasts. Biochem. Biophys. Res. Commun. 214, 1108-1111.

Viereck, R., Kirsch, M., Low, R. and Rausch, T. (1996). Down-regulation of plant Vtype H^{+}-ATPase genes after light-induced inhibition of growth. FEBS letters 384, 285 288.

Voelker, R. A., Greenleaf, A. L., Gyurkovics, H., Wisely, G. B., Huang, S. and Searles, L. L. (1984). Frequent imprecisc cxcision among reversions of a P^{3} elemenc-caused lethal mutations in Drosophila. Genetics 107, 279-294.

Weaver, D. T. (1995). What to do at an end: DNA double-strand-break repair. T/G 11, 388-391.

Wechser, M. A. and Bowman, B. J. (1995). Regulation of the expression of three housekeeping genes encoding subunits of the Neurospora crassa vacuolar ATPase. Molecular and General Genetics 249, 317-327.

Whittaker, P. A., Cambell, A. I. B., Southern, E, M. and Murray N. E. (1988). Enhanced recovery and restriction mapping of DNA fragments cloned in a new lambda vector. Nucl. Acid. Res. 16, 6725-6736.

Wieczorek, H., Weerth, S., Schindlebeck, M. and Klein, U. (1989). A vacuolar-type proton pump in a vesiclc fraction enriched with potassium transporting plasma membranes from robacco hornworm midgut. J. Biol. Chem. 264, 11143-11148.

Wieczorek, H., Putzenlechner, M., Zeiske, W. and Klein, U. (1991). A vacular-type proton pump energizes $\mathrm{K}^{+} / \mathrm{H}^{+}$andiport in an animal plasma membrane. f. Biol. Chem. 266, 15340-15347.

Wieczorek, H. (1992). The insect V-ATPase, a plasma-membrane proton pump energizing secondary active-transport - molecular analysis of electrogenic potassiumtransport in the tobacco hornworm midgut. J. Exp. Biol. 172, 335-343.

Wieczorek, H. and Harvey, W. R. (1995). Energization of animal plasma membranc by the proton-motive force. Physiol. Zool. 68, 15-23.

Wilkins, T. A. (1993). Vacuolar H+-ATPase 69-kiloDalon catalytic subunit cdna from developing cotton (gossypium-hirsutum) ovules. Plant Physiology 102, 679-680.

Wolfersberger, M. G. (1992). V-ATPase-energized epichelia and biological insect control. f. Exp. Biol. 172, 377-386.

Yang, M. Y., Armstrong, J. D., Vilinsky, I., Strausfeld, N. J. and Kaiser, K. (1995). Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron, 15, 45-54.

Yaver, D. S., Nelson, H., Nelson, N. and Klionsky, D. J. (1993). Vacuolar ATPase mutants accumulate precursor proteins in a pre-vacuolar compartment. f. Biol. Chem. 268, 10564-10572.

YI, Y. and Samuelson, J. (1994). Primary structure of the Entamoeba histolytica gene (Ehvma1) encoding the catalytic peptide of a putative vacuolar membrane protontransporting ATPase (V-ATPase). Molecular and Biochemical Parasitology 66, 165-169.

Zhang, J., Myers, M. and Forgac, M. (1992). Characterisation of the V0 domain of the coated vesicle (H^{+})-ATPase. J. Biol. Chem. 267, 9773-9778.

Zhang, P. and Spradling, A. C. (1993). Efficient and dispersed local P element transposition from Drosophila females. Genetics 133, 361-373.

Zhang, P. and Spradling, A. C. (1994). Insertional mutagenesis of Drasophila heterochromatin with single P elements. Proc. Natl. Acad. U.S.A. 91, 3539-3543.

Zhang, J., Vasilyeva, E., Feng, Y. and Forgac, M. (1995). Inhibition and labeling of the coated vesicale V-ATPasc by 2-azido-[32P]ATP. J. Biol. Chem. 270, 15494-15500.

Ziegler, K., Hauska, G. and Nelson, N. (1995). Cyanidium-caldarium genes encoding subunit-A and subunit-B of V-ATPase. Biochi. et Bioph. Acta-Bioenergetics, 1230, 202206.

Zimniak, L., Dittrich, P., Gogarten, J. P., Kibalk, H. and Taiz, L. (1988). The cDNA sequences of the $69-\mathrm{kDa}$ subunit of the carrot vacuolar H^{+}-ATPase homology to the β chain of FUF1-ATPases. J. Biol. Chem. 263, 9102-9112.

Zwaal, R. R., Broeks, A., Vanmeurs, J., Groehen, J. T. M. and Plasterk, R. H. A. (1993). Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. U.S.A. 90, 7431-7435.

[^0]: Actual ratio of certain progeny
 Survival efficiency (\%) =
 Expected ratio of certain progeny if without detrimental effects

