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ABSTRACT

LYSINE LEVELS AND ENZYME ACTIVITY

The activity of diaminopimelic acid decarboxylase, an 
enzyme of the diaminopimelic acid pathway of lysine 
biosynthesis, and usually associated with plants, bacteria 

and certain lower fungi, increased early in powdery mildew 
infection of barley leaves. The level of soluble lysine, 
the product of this enzyme, also increased early in the 
infection. Both soluble and bound lysine were reduced by 6 
days after inoculation (DAI) . At the same time, the 
activity of diaminopimelic acid decarboxylase was not 
significantly different in whole infected leaves when 
compared to healthy leaves, but was slightly reduced in 
isolated chloroplasts. Later in the infection (9 DAI), the 
activity of diaminopimelic acid decarboxylase was 
significantly greater in inter-pustule regions than in 
pustules.

Activity of dihydrodipicolinic acid synthase was 
reduced in infected leaves and in. chloroplasts throughout 
the course of infection. This reduced activity was not due 
to increased levels of lysine, which has been shown to 
control the activity of this enzyme. It is suggested that 
changes in chloroplast integrity may have caused the 
observed reduction in activity of these two chloroplast 
localised enzymes. During sporulation the levels of both 
soluble and bound lysine were reduced in infected leaves.
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Activity of lysine decarboxylase in whole infected 
barley leaves was reduced (3-9 DAI) compared to controls, 
and reductions were found to occur in both pustule and 
inter-pustule regions of the leaf. At the same time, 
activity was higher in chloroplasts isolated from whole 
infected leaves than in those isolated from healthy leaves, 
and a similar situation was found in chloroplasts isolated 
from pustules and inter-pustule regions 6 DAI, By 9 
DAI, however, the activity of the enzyme in chloroplasts 
isolated from pustules was lower than in inter-pustule 
regions and healthy leaves. It is suggested that these 
changes in LDC activity are due to a reduction in activity 
of cytosolic LDC, while activity of the chicroplastic 
enzyme is stimulated in the inter-pustule regions of 
infected leaves.

The activities of two enzymes of the aminoadipic acid 
pathway of lysine biosynthesis were examined. This pathway 
is normally associated with higher fungi. Activity of 
saccharopine dehydrogenase was not significantly different 
in infected leaves until 9 DAI, when activity increased. 
In contrast to dihydrodipicolinic acid synthase and 
diaminopimelic acid decarboxylase, this increase was 

located in the pustules. It is likely that this increase 
was due to the presence of the mildew. Enzyme activity in 
isolated mildew mycelium was greater than in infected 
leaves. No aminoadipic acid reductase activity was found 
in healthy leaves. Activity of this enzyme and of

XV



saccharopine dehydrogenase was similar in infected leaves, 
but the activity of aminoadipic acid reductase was higher 
in the isolated mycelium. It is suggested therefore that 
aminoadipic acid reductase is only found in the fungal 
mycelium.

14C-ASPARTATE UPTAKE

i

Infection of barley with powdery mildew altered the 
uptake and metabolism of ^^C-aspartate. Uptake was greater 
in infected leaves 2 h after feeding, but was reduced 
thereafter. Aspartate was more rapidly metabolised in 
infected leaves than in healthy leaves, probably to 
homoserine and threonine. The fungus took up aspartate, 
homoserine and threonine from the plant, but these were 
apparently not further metabolised over the experimental 
period. This suggests that barley can metabolise 
aspartate, probably forming homoserine, threonine and 
lysine, while such metabolism does not occur in the powdery 
mildew fungus. This would confirm the presence of the 
diaminopimelic acid pathway for lysine biosynthesis in 
barley and its absence in Erysiphe graminis.

UPTAKE

Putrescine and ornithine both reduced the uptake of 
lysine by isolated powdery mildew mycelium, although these 
changes were not statistically significant. Also, a

XVI



slight, though again not statistically significant, 
increase in uptake in the presence of arginine was 
observed. The metabolic inhibitor, sodium azide, had no 
effect on lysine uptake.

Uptake of both aspartate and lysine increased during 
the first 3 Omin of feeding but remained constant 
thereafter, until 120-24Omin, when the rate of uptake of 
lysine decreased. Lysine uptake was much greater than 
uptake of aspartate, and uptake of lysine was biphasic. 
Uptake of aspartate and lysine over the pH range 4-9 was 
not significantly different.

CADAVERINE AND DERIVATIVES

In leaves, inhibition of spermidine synthase/S- 
adenosylmethionine decarboxylase, by pre-treatment with 
inhibitors caused a reduction in the formation of 
aminopropyl derivatives of cadaverine, suggesting the 
formation of these compounds by the normal route of 
polyamine biosynthesis, via aminopropyl transfer from 5- 
adenosylmethionine, and not by Schiff base complex 
formation. This effect was only seen when the leaves were 
pre-treated with the inhibitors before addition of labelled 
lysine.

Inhibition of production of the cadaverine derivatives 
by the ornithine decarboxylase/arginine decarboxylase 
inhibitors difluoromethylornithirie/difluoromethylarginine

XVI1
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suggests that cadaverine is formed by the activity of 
ornithine decarboxylase as well as by lysine decarboxylase 
activity. Labelling in infected leaves was always very 
much lower than in healthy leaves but the percentage 
inhibition was the same in both.

Unlike leaves, treatment of mycelium with 
difluoromethylornithine/difluoromethylarginine had no 
significant effect on labelling of cadaverine or its 
aminopropyl derivatives, even when LDC activity was 
significantly reduced. Also, methylglyoxyal
bis(guanylhydrazone)/cyclohexyalmine had no significant 
effect on lysine decarboxylase activity. It is thus 
suggested that the Schiff base pathway for formation of 
cadaverine homologues may operate in the mycelium of 
powdery mildew.
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1. INTRODUCTION

In the developed world the problem of food production 
would appear to be one of over-production. However, in 
view of the modern trend of growing crops in monoculture1 
systems, uncontrolled outbreaks of pests and diseases could 
quickly change this over-production to a local or even 
country-wide shortage of the affected crop. It is, 
therefore, necessary to do everything possible to decrease 
the risk of infestation or infection.

1.1 METHODS OP PATHOGEN CONTROL

Russell (1978) lists three methods of controlling pests 
and diseases; avoidance, direct control and biological 

control. The first, avoidance, uses quarantine, good 
husbandry, crop rotation, clean seed, hygiene, nutrients, 
soil sterilisation, control of vectors and preventive 
chemicals (for example as seed dressings).

Direct control measures use- chemicals which give 
control on contact (non-systemic) or which may be taken up 
by the crop (systemic) . The former, which were the only 
ones available during the first half of this century, are 
mostly simple compounds containing sulphur, copper and 
mercury, as fungicides, and nicotine, derris and pyrethrum 
(all plant extracts) as insecticides.

Plant systemic fungicides are often fairly specific, 
for example, affecting nucleotide base synthesis,



polynucleotide or protein synthesis, steroid synthesis or 
components of lipoprotein membranes (Hassall, 1982). 
However cases of resistance to these fungicides have 
arisen. Whereas resistance to protective (non-systemic) 
fungicides is often short-lived, resistance to systemic 
compounds, where a single gene mutation is often involved, 
can be very long lasting (Hassall, 1982).

Many chemicals used as fungicides are very toxic to 
humans and may kill beneficial or non-pathogenic organisms, 
as well as controlling the target organism, and can prove 
phytotoxic under certain conditions. Their stability can 
cause environmental pollution and may lead to environmental 
problems in the future. A further disadvantage is that of 
induced resistance to or tolerance of a chemical previously 
toxic to the target organism, so that the chemical becomes 
less effective. The increased costs of development and 
registration of new synthetic chemicals may now make this 
method of control less attractive.

The third method of control cited by Russell (1978), 
biological control, shows promise for a more 
environmentally acceptable approach to disease control. 
Setting one organism, which is not ecologically damaging, 
to control another seems to be the perfect answer to a 

difficult problem and if it were so easy, chemical 
pesticides would soon become redundant. However, it seems 
that even where such systems exist (predatory mites can



control red spider mite in the glasshouse, parasitic wasps 
control white fly also in the glasshouse, ladybirds 
iCoccinelid sp,] versus aphids [Aphis sp.j), environmental 
factors control the effectiveness of these methods* More 
recently, chemical companies have taken up the challenge to 
produce 'ecologically friendly' pesticides.

Bacillus thuringiensis Berl. for example, first used 
against caterpillars in the thirties, was effective against 
Lepidoptera, Coleoptera and Diptera. Delta-endotoxins from 
this organism have now been inserted in killed Pseudomonas 
cells as an insecticide to give a flexible delivery system 
combined with greater persistence (Cannon, 1993). The 
addition of a Pseudomonas strain along with a non- 
pathogenic strain of Fusarium to pot plants and soil-less 
culture systems is said to give total control of Fusarium 
wilt (Alabouvette, Lemanceau & Steinberg, 1993). In 
Holland, growers of sweet pepper and tomato now use a 

system of integrated pest management which uses mainly 
biological control agents (van Schelt, 1993).

Other, commercially available, products include a 
biofungicide based on Streptomyaes griseovirides for the 
control of 'damping off' in cotton seedlings, bioherbicides 
based on Colletotrichum gloeosporoides Penz. used in rice, 

soya and citrus fruits, a Fusarium lateritium Desm. based 
product used in soya, and Alternaria cassiae for use in 
peanuts and soya (Powell & Jutsum,1993).



The second class is difficult or impossible to grow 
axenically (powdery mildews and rusts). In these 
biotrophic fungi (obligate parasites), there is little 
death of host tissues (apart from, for example, cell death 
during the hypersensitive response), and a local

A further theoretical method of control has been 
suggested. Selective inhibition of fungi by, for example, 
changing host metabolism or the relationship of the plant 
with the fungus may be possible (Baldwin, 1984). 
Alternatively it may be possible to inactivate toxins or 
enzymes produced by the fungus during fungal attack 
(Baldwin, 1984). This approach relies on the specificity 
of the host/pathogen interaction (Baldwin, 1984) .

1.2 FUNGAL DISEASES

Plant pathogenic fungi can be split into two broad 
groups according to their modes of nutrition and 
parasitism. The first contains fungi which can be grown 
axenically. This group of fungi, called necrotrophs, cause 
premature senescence or death of the host tissue, although 
this division is not absolute. They often produce large 
quantities of enzymes and phytotoxins. Directed 
translocation in the host does not play a large part in
fungal nutrition. There is little stimulation of protein

■
and nucleic acid biosynthesis in the host, and the host
often produces phytoalexins in response to attack by this 
type of fungus.
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stimulation of host metabolism is seen along with 
stimulation of protein and nucleic acid synthesis.

1.2.1 Powdery Mildew

The barley powdery mildew fungus Erysiphe graminis f. 
sp. hordei Marchai is one of the most economically damaging 
diseases of cereals in Britain and can result in up to 50% 
losses in grain yield in susceptible late-sown varieties. 
The observed reduction in grain yield is due to the 
reduction in fertile tiller numbers, decrease in root 
system, decreases in the number of grains/tiller and in the 
size and weight of grains (Scott and Griffiths, 1980) . It 
affects leaves (chlorosis) and roots (inhibition of mitosis 

in root tips).

The effects of disease are influenced by many 
independent . factors, including genotypes of the host and 
pathogen as well as environmental factors. The presence of 
other diseases also influences the extent of damage and 
yield loss sustained.

Although chemical control of the disease is effective, 
fungicide residues have been found in grain as well as in 
other parts of the plant after harvest. Varieties carrying 
resistance genes are now the main means of control, but 
variation in the fungus can lead to breakdown of 
resistance. Since the sexual stage of the fungus 
(cleistothecium) does not play a large part in the spread
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of the disease in temperate countries, the existence of 
variation within the fungus is thought to be due to somatic 
mutations and asexual recombinations (Russell, 1978). 
Breeders are constantly striving to overcome this problem 
by developing new, resistant varieties.

The powdery mildew fungus is a biotroph present on the 
leaf surface as a loose net of mycelium, which produces 
long strings of conidia. The dry spores are easily 
detached and dispersed by the wind. Low relative humidity 
and high wind speeds facilitate dispersal (Alexopoulos, 
1962) . Although both powdery mildew conidia and rust 

spores have relatively high fat content (which disappears 
during germination and is thought to be used as an energy 
source), only powdery mildew conidia germinate at very low 

relative humidity. Liquid water inhibits germination and 
may even cause death of the conidia. Infection usually 
occurs in relatively dry conditions. This is thought to be 
due to the relatively high water content of the spores 
(Cochrane, 1958; Somers and Horsfall, 1966). The white 
powdery coating on infected leaves, seen with the naked 
eye, is due to the large numbers of conidia produced by the 
conidiophores (Alexopoulos, 1962). A generative cell 
within each conidiophore produces the unicellular conidia. 
These are carried downwind to produce further infection. 
Asexual reproduction is diurnal (Alexopoulos, 1962) and the 
conidia show negative phototropism (Cochrane, 1958). This 

is also seen in sporidia and uredospores of Puccinia, and



the active wavelength is in the blue region of the visible
spectrum (Cochrane, 1958). This type of fungus obtains
metabolites from the host over long periods, since they do 
not disrupt host cells, even during sporulation (Gay & 
Manners, 1981).

Haustoria are formed in epidermal cells by invagination 
of the host plasmalemma (Fig. 1) . This invagination is 
called the extra-haustorial membrane and between it and the 
haustorium is an amorphous matrix which is rich in 
polysaccharides. Although the haustorium is in fact 
outside of the cell plasmalemma, solutes and metabolites 
are unable to pass from the apoplast to the haustorium due 
to the close attachment of the two membranes at an 
impermeable ring (called a neck-band). Transfer of 

metabolites is, therefore, through the host cytoplasm and 
into the matrix via the invaginated portion of the
plasmalemma, which is semi-permeable. Although this
invaginated portion of the plasmalemma is part of the host 
cell, it differs from the remainder of the plasmalemma

because it is more than twice as thick and highly
convoluted (Gay & Manners, 1981).

1.2.2 Invasion of Host Plants by Powdery Mildew.

Powdery mildews invade host tissues directly through
the epidermis. Conidia are stimulated by plant exudates 
(Hancock and Huisman, 1981) on contact with a leaf, to



Pig 1 : Mature fungal haustorium of Erysiphe pisi.
Solid arrows indicate the postulated pathway of 
nutrient movement.

c = cuticle 
pw = plant cell wall 
pp = plasmalemma 

ehm = extra haustorial membrane 
m = matrix 
he = haustorial cytoplasm 
n - neckband 
a = appressorium 
fw = fungal cell wall 
fp = fungal plasmalemma
(Gay and Manners, 1981)
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produce proteins thought to be cutinases (Kunoh, Komura, 
Yamaoka and Kobayashi, 1988). In other species examined, 
these cutinases appear to be tissue specific (Trail and 
Koller, 1990 & 1993), Pascholati, Yoshioka, Kunoh &
Nicholson (1992) showed that an exudate from powdery mildew 
conidia, released on contact with the surface of a barley 
leaf had cutinase activity. This was shown to be a serine 
esterase. This is the first time cutinase activity has 
been shown to occur in a powdery mildew fungus, but enzymes 
of this class are known to occur in other fungi (Pascholati 
et ai., 1992). Release of the enzyme into the liquid takes 
place in two stages. The second stage (10-15 min after 
contact) depends on temperature and protein synthesis 
(Kunoh, Nicholson, Yosioka, Yamaoka and Kobayashi, 1990). 
It is suggested that the enzyme is involved in erosion of 
the leaf surface which begins before the development of the 
appressorium and that this erosion may be necessary for 
recognition of the host surface or for adhesion (Pascholati 
et al,, 1992; Mendgen and Deising, 1993), and more 
efficient penetration of the leaf (Pascholati et ai., 
1992) . The exudate, which covers the entire conidial 
surface within ten minutes of contact, flows onto the leaf 

surface and is deposited around the ungerminated conidium. 
Release of the exudate is complete by thirty minutes after 
contact. However, appressorium formation does not begin 

until two hours after contact. Release of the exudate 
coincides with an apparent loss of structural integrity of 
the surface of the cuticle in contact with it (Pascholati
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et ai., 1992). Scott (1972) suggested that the germ tube 
elongates to form an appressorium which arises from a 
swelling of the tip of the germ tube. However, Carver and 
Ingerson (1987) appear to have shown that at least one 
primary germ tube is initiated before the appressorial germ 
tube forms and there is no further growth of the germ tube 
after it touches the leaf surface (Edwards, 1993) . The 
appressorium is separated from the conidium by a septum 
(Kunoh, Ishizaki and Nakaya, 1977).

Two mechanisms combine to allow entry of the mildew 
into the epidermis. Firstly, enzymes formed following 
attachment of the appressorium to the outside of the 

epidermis, are released onto the surface of the leaves 
(Edwards and Allen, 1970) . These cause enzymic digestion 
of the cuticle and cellulose of the epidermis. However, 
the infection hypha is capable of pushing through the 
epidermis without prior digestion by these digestive 

enzymes (Hardham, 1992) . After attachment, a specialised 
layer containing melanin forms over the appressorium 
(McKeen and Rimmer, 1973). This layer is semi-permeable, 
and increased solute concentration, thought to be due to
the breakdown of stored products, causes high internal
hydrostatic pressure in the appressorium (Hardham, 1992). 
The penetration peg which forms then pushes through a layer 
of deposited secondary plant cell wall material (papilla: 
extracellular deposits of callose, proteins and phenolic
compounds) on the under-side of the epidermal wall (Edwards
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and Allen, 1970; Bushnell, 1972: Scott, 1972; McKeen and
Rimmer, 1973).

The haustoria, involved in nutrient uptake from the 
host, form in an invagination of the host plasmalemma 
within the epidermal cells (Fig. 1) (Bushnell, 1972). They 
develop finger-like projections which effectively increase 
the surface area of these structures (Bushnell, 1972). 
Powdery mildews only invade epidermal cells, causing little 
disruption to the cell wall even during sporulation (Scott,
1972). There is no direct contact between the fungus and 

mesophyll cells and removal of photoassimilates occurs by 
production of nutrient gradients towards the fungus (Scott, 
1972; Farrar, 1995).

1.2.3 Changes in Respiration During Infection.

As a general phenomenon, respiration is increased in 
infected plants (Farrar and Lewis, 1987), The energy 
generated is used for growth and maintenance of the fungus, 
as well as maintenance of the host and for host defence 

mechanisms (Kosuge and Kimpel, 1981; Farrar and Lewis, 
1987) . In addition, Smedegaard-Peterson & Stolen (1981) 
have shown that in incompatible host/pathogen combinations, 
there is an increased consumption of energy by the host.

Much of the work examining changes in respiration 

during biotrophic infection has used rust of wheat or 
barley. For example, in whole rusted barley leaves at
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flecking, the rate of dark respiration was four times that 
of controls, while at sporulation and the green-island 
stage it was twice the control rate (Scholes and Farrar, 
1986). In compatible host/parasite combinations, oxygen 
uptake in individual rust colonies on wheat leaves was 
greatly increased (10 - 15 times control), while tissues 
containing non-sporulating hyphae also showed increased 
oxygen uptake (2 - 4 times control), similar to the
increase seen in pustules formed in non-compatible 
associations (Bushnell, 1970). However, respiration was 
also increased in wheat (Zulu, Farrar and Whitbread, 1991) 
and barley (Farrar and Rayns, 1987; McAinish, Ayres and 
Hetherington, 1991) infected with powdery mildew.

In rust, Scholes and Farrar (1986) thought that the 
observed increase was mainly due to respiration of the 
rapidly growing fungus, since growth and respiration are 
closely related (Farrar and Lewis, 1987). Although there 
was also an increase in regions between pustules, they 

speculate that this was due to the loss of chlorophyll and 
degeneration of chloroplasts, previously shown to occur in 
bluebell leaves infected with the rust Uromyces muscari 

(Scholes and Farrar, 1985).

%
I

In bluebell, increased respiration was only seen in 
rust pustules, which Farrar and Lewis (1987) cite as proof 
that the increase was due to the fungus. However, in 

barley leaves infected with powdery mildew, Millerd and
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Scott (1963) and Bushnell and Allen (1962) showed, by 
removing the surface mycelium from infected leaves, that 
the increase was mainly in the leaves. In addition, 
respiration in mesophyll protoplasts isolated from powdery 
mildew infected barley leaves was higher than in healthy 
leaves (McAinish, Ayres and Hetherington, 1991).

Farrar and Rayns (1987) found that around half of the 
increased respiration in powdery mildew-infected barley was 
due to an increase in electron flow through the cytochrome 
chain and half through the alternative oxidase pathway.
Although the latter pathway was increasingly engaged, the 
capacity was the same. Respiration was not limited by 
substrate or inorganic phosphate (Farrar and Rayns, 1987). 
They suggest that the observed increase in activity of the 
cytochrome pathway was due to adenylate regulation, but 
were not able to show why the alternative pathway was
increasingly engaged. Resistant cultivars do not show
alternative pathway activity (Farrar and Rayns, 1987). 
During infection, the pentose phosphate pathway (PPP), 
which is involved in the production of polyols and
phytoalexins, becomes relatively more important than the 
glycolytic pathway (Farrar and Lewis, 1987). There is only 
a slight increase in the activity of some of the enzymes of 
glycolysis and these authors postulate that regulation of 

respiration is due to adenylate re-cycling, which is seen 
in healthy leaves, although it has been suggested that 
fungal toxins are involved (Farrar and Lewis, 1987).
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1.2.4 Effects of Fungal Infection on Photosynthesis.

In powdery mildew-infected barley (at 1% COg) there was 
a slight increase in photosynthesis 2 DAI (Scott and 
Smillie, 1966) , This increase was also observed at 

physiological COg concentrations (Aist, Domes and Kranz, 
1977). Thereafter photosynthesis decreased when compared 
to healthy leaves (Scott and Smillie, 1966; Aist et al,,

1977). In a further classical and often quoted piece of 
work on the effect of barley mildew on susceptible barley 
leaves (at 1% CO2 ), Edwards (1970) found an initial 
stimulation of photosynthesis, although at physiological 
carbon dioxide concentrations there was biphasic inhibition 
of photosynthesis. The first phase of this inhibition was 
thought, by extrapolation, to take place 12h after 
inoculation (the time of initial penetration by primary 
haustoria) until about 3 DAI (when there was no visible 
chlorosis and chlorophyll content of healthy and inoculated 
leaves was still the same) (Edwards, 1970). The rate 
remained steady until about 6 DAI when the second phase of 
inhibition was seen. At this time sporulation was taking 
place rapidly and carbon was moving from the host to the 
fungus at a very rapid rate (Edwards and Allen, 1966). 
Similarly, in pea seedlings infected with powdery mildew, 
photosynthesis was reduced by 24h after inoculation (Ayres,
1976). Carbon dioxide fixation was not affected at this 
stage (Ayres, 1976). The early decrease in photosynthesis
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in peas was due to an increase in photorespiration, while 
in the later stages reductions in stomata1 opening were 
shown to be partially responsible for reduced net 
photosynthesis (Ayres, 1976), In barley the light 
reactions and photoreduction of NADP decreased and, at the 

same time, chlorophyll and activity of NADPH-diaphorase and 
aldolase, decreased (Scott and Smillie, 1966) . From 3 DAI 
a greater proportion of photosynthate was used in 
respiration in peas infected with mildew and the carbon 
dioxide compensation point increased throughout the period 
of the experiment (7 DAI) (Ayres, 1976). However, during 
mildew infection, non-infected leaves may compensate for 
the reduced carbon dioxide fixation in infected leaves 
(Walters and Ayres, 1980). In powdery mildew-infected 
leaves, RuBPCase was reduced but in non-infected leaves on 
the same plant, the amount of this protein was increased 

(Walters and Ayres, 1980), In addition, the amount of 
photosynthate going to roots decreased (Walters and Ayres, 
1983) , export of photoassimilates from infected leaves 
decreased (Durbin, 1967; Goodman, Kiraly and Wood, 1986) 
and import of inorganic compounds (Durbin, 1967) and 
photosynthates into infected leaves increased (Kosuge,
1978) . The reduction in activity and quantity of RuBPCase 

during infection may be due to the documented reduction in 
chloroplast ribosomes and rRNA as a consequence of the 
observed changes in the ultrastructure of chloroplasts 
(Walters, 1985), Alternatively, since RuBPCase can be used 
as a nitrogen source and since it is known that the uptake
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of nitrate by roots of mildewed barley is inhibited, while 
at the same time nitrogen is taken up from the leaf by the 
fungus, it may be that nitrogen is released from RuBPCase 
protein and subsequently taken up by the fungus (Walters,
1985) . It is also suggested that changes in pH, Mg^^
and/or P̂  ̂ affects the activity of this enzyme. However, 
reductions in RuBPCase may not be solely responsible for 
the observed reductions in photosynthesis, since the 
activities of other enzymes (3-phosphoglycerate kinase and 

glyceraldehyde-3-phosphate dehydrogenase [NAD^ and NADP 
activated forms]) were reduced after inoculation with 
powdery mildew (Walters, 1985).

Conflicting results have also been obtained when 
examining chloroplasts from infected leaves. For example,
the number of chloroplasts in rust pustules on bluebell
leaves was no different than in non-infected leaves 
(Scholes and Farrar, 1985). At the same time, oxygen 
evolution per unit area and per unit of chlorophyll was 

reduced in pustules when compared with areas between 
pustules and with uninfected leaves. Chloroplast volume, 
chlorophyll concentration and the ratio of chlorophyll a:b 
decreased, suggesting that there was a loss of chlorophyll 
from individual chloroplasts (Scholes and Farrar, 1985). 
Two of the major parameters of chlorophyll fluorescence 
kinetics (F^^r Fg) were reduced in pustules, whilst F^
increased before sporulation and decreased during 
sporulation. This suggests impairment of both non-cyclic
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electron transport and the general integrity of the 
chloroplasts (Scholes and Farrar, 1985). It is further 
suggested that the increase in F^ may be due to 
disorientation of the chlorophyll a molecules, caused by 
the pathogen, increasing fluorescence between chlorophyll 
molecules and that the subsequent fall may be due to the 
observed loss of chlorophyll from pustules (Scholes and 
Farrar, 1985). However, in rust-infected barley leaves, 
there were fewer chloroplasts (per unit area) . These 
remaining chloroplasts functioned at least as well as those 
in healthy leaves and in vivo kinetic data point to them 
maintaining the juvenile state for longer (Ahmad, Farrar 
and Whitbread, 1983), Although the rate of ferricyanide 
oxygen evolution was the same as controls, there was more 
starch and Pi and there was increased flux through the 
phosphate translocator on the chloroplast inner membrane 
(Ahmad et al., 1983). The reduction in net photosynthesis 
in these leaves was due to the reduction in the number of 
functional chloroplasts rather than to reduced carbon 
dioxide fixation or changed water relations (transpiration 
was not reduced until two days after photosynthesis 
decreased) (Ahmad et al., 1983). The decrease was 
approximately parallel to the decrease in leaf chlorophyll 
content (Ahmad at al., 1983). In chloroplasts isolated

from powdery mildew-infected sugar beet electron transport 
and ATP formation in non-cyclic photophosphorylation were 
reduced (water as electron donor, NADP as electron
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acceptor) (Magyarosy, Schurmann and Buchanan, 1976). There 
was no change in ATP formation during cyclic 
photophosphorylation. The inhibition of non-cyclic 
photophosphorylation resulted in decreased photosynthetic 
carbon dioxide uptake (Magyarosy et al., 1976). This 
inhibition may not be in the best interests of biotrophs 
since colony development was shown to stop when 
photosynthesis was blocked by adding inhibitors and the 
inhibition could be reversed by exogenous sucrose (Goodman, 
Kiraly and Wood, 1986). In powdery mildew-infected beet 
leaves, ultrastructural changes in chloroplasts were 
accompanied by decreased activity of the enzymes involved 
in organic acid synthesis (PEP carboxylase and malate 
dehydrogenase) (Magyarosy et al., 1976). At the same time, 

labelling of 3-PGA and sugars was decreased and there was 
an increase in the levels of alanine, aspartate and 
glutamate (Magyarosy et al., 1976). Montalbini and 
Buchanan (1974) found similar results with chloroplasts 
from rust infected Vicia fata.

Although the concentration of electron carriers and 
all photochemical activities decreased more rapidly in 
barley leaves infected with powdery mildew when compared on 
a fresh weight basis (Holloway, MacLean and Scott, 1992), 
these did not differ when compared on a chlorophyll basis 
(Holloway et ai., 1992). This suggests that the rate- 

limiting step of non-cyclic electron transport is the same 
in infected and control leaves (Holloway et ai., 1992)
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and the differences are in the chlorophyll content of 
healthy and infected leaves (Goodman et al., 1986). In 
contrast, Magyarosy and Malkin (1978) found a reduction in 
cytochrome levels in the electron transport chain in 
chloroplasts from powdery mildew-infected sugar beet plants 
and suggest that the reduction may be due to the reduction 
in ribosomal RNA in these organelles which occurred as 
early as one day after inoculation (Dyer and Scott, 1972).

1.2.5 Changes in Invertase Activity during Infection.

Increased acid invertase activity in barley leaves
infected with powdery mildew (Hwang and Heitefuss, 1986;
Scholes, 1992), caused a decrease in the activity and/or 
the quantity of the photosynthetic enzymes of the Calvin 
cycle (Scholes, 1992; 1995). Scholes (1992) suggests that 
this was due to end-product inhibition or to a direct
effect of the carbohydrates on the genes which encode for 
these enzymes. However auxin, which may be produced by 

fungi, or host stimulated by the presence of the fungus, is 
known to regulate invertase activity (Scholes, 1992). It 
is not known if the increased enzyme activity is of host or 
fungal origin, although some increase in host invertase 
activity has been shown to occur. The cause of the
increase in acid invertase activity does not appear to be 
known, but cannot be due to an increased requirement for 

its products since these accumulated. It is interesting to 
note that the observed changes have been shown to occur in
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Arabidopsis plants which over-express yeast invertase in 
their cell walls and in leaves when fed with glucose 
(Scholes, 1995).

Brown rust of barley reduced the levels of sucrose and 
glucose, but not of fructose (Tetlow and Farrar, 1993). 
These authors suggest that this means increased invertase 
activity and uptake of glucose by the fungus. Total 
carbohydrates were reduced by 50% at flecking and 
sporulation (Tetlow and Farrar, 1993). They showed very 
low contamination by intracellular enzymes of the apoplast 
(using malate dehydrogenase activity). Both results, 
according to the authors, show that membranes are intact in 
the rusted leaves. Once in the epidermal cells, the
metabolites enter the haustoria directly from the 
cytoplasm, due to the impermeable nature of the haustorial 
neckband (Bushnell and Gay, 1978) . It has been shown that 
sucrose taken up from barley by mildew is quickly 
metabolised (Edwards and Allen, 1966). The main product is 
mannitol, with trehalose, arabitol, aspartic and glutamic 
acids amongst the other products (Edwards and Allen, 1966). 
Soluble fungal materials such as mannitol, are synthesised 
within the haustorium before being transported through the 
septal pore in the haustorial neck to hyphal cells 
(Bushnell and Gay, 1978). Hwang and Heitefuss (1986) on 
the other hand, have suggested that the increase in 
glucose, fructose and sucrose seen in barley infected with 

powdery mildew may be due to accumulation around infection
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sites, reduced export from infected leaves and stimulation 
of host metabolic activity.

1.3 PATHWAYS OF LYSINE BIOSYNTHESIS.

Two pathways for the biosynthesis of lysine are known. 
The ^-aminoadipic acid pathway (AAA) (Fig. 2a) of lysine 
biosynthesis and the diaminopimelic acid (DAP) pathway 
(Fig. 2b) (present only in organisms with cellulose in 
their cell walls) are examples of dichotomous evolution, 
where a single metabolic pathway has branched at some point 
in time to form two mutually exclusive pathways. These 
pathways are unrelated, but are responsible for the 
metabolism of lysine in different classes of organism 
(Bhattacharjee, 1992). The catabolism of lysine takes 
place by a reversal of the AAA pathway.

1.3.1 The -Aminoadipic Acid Pathway of Lysine
Biosynthesis.

In the -aminoadipic acid (AAA) pathway of lysine 
biosynthesis (Fig. 2a), o(-ketoglutarate (C5) and acetyl CoA 
(C2) are condensed to form homocitric acid (C7) . After 

dehydration and re-hydration, an isomer of homocitric acid, 
homoisocitric acid (C7) , is produced. Reduction of this 
compound gives oxaloglutaric acid (C7), which is 
decar boxy lated to oi-ketoadipic acid (C6) . Following 
transamination, AAA (C6) is formed. Reduction of the AAA 
yields -aminoadipate semialdehyde (C6), which is
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Fig 2a; Enzymes of the -Amino Adipic Acid Pathway of
Lysine Biosynthesis

[1] Homocitrate synthase (EC 4.1.3.21)
[2] Homocitrate dehydratase
[3] Homoaconitate hydratase (EC 4.2.1.3 6)
[4] 2-Hydroxy-3-carboxyadipate dehydrogenase

(homoisocitric dehydrogenase) (EC 1.1.1.87)
[5] 2-Aminoadipate aminotransferase

(o4c-ketoadipate glutamate aminotransferase) (EC 2.6.1.39)
[6] Aminoadipate-semialdehyde dehydrogenase

(aminoadipic acid reductase) (EC 1.2.1.31)
[7] Saccharopine dehydrogenase (reductase)

(NADP"̂ , L-glutamate forming) (EC 1.5.1.10)
[8] Saccharopine dehydrogenase

(NAD"*", lysine forming) (EC 1.5.1.7)
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condensed with glutamic acid (C5) to form saccharopine 
(Cll) , the immediate precursor of lysine (C6) . This 
compound was first identified as an intermediate on the AAA 
pathway of lysine biosynthesis in the yeast S. cerevisae 
when it accumulated, briefly, from AAA and was 
subsequently converted to lysine (Kuo, Saunders and 
Broquist, 1964). The glutamate acts as an amino donor in 
the synthesis of the ^-amino group of lysine (Kuo et al*,

1964) .

This pathway for lysine biosynthesis has been shown to 
be present in the yeasts Torulopsis utilis (Sagisaki & 
Shimura, 1962a; Jones & Broquist, 1966), S, cerevisae (Kuo 
et al., 1964; Kurtz and Bhattacharjee, 1975; Bhattacharjee, 

1992) and Rhodotorula glutinis (Kurtz and Bhattacharjee,
1975) and in Neurospora crassa (Abelson and Vogel, 1955; 
Trupin & Broquist, 19 65), Pyricularia oryzae (Wade, 
Thomson & Miflin, 1980), Candida albicans, Cryptococcus 
neoformans and Aspergillus fumigatus (opportunistic fungal 
pathogens) (Garrard & Bhattacharjee, 1992).

1.3.1,1 intra-cellular Localisation of the ^  -Aminoadipic
Acid Pathway Enzymes.

From the evidence available, it may be said that most, 
if not all, of the metabolic enzymes involved in the K - 
aminoadipic acid (AAA) pathway are to be found in the 
mitochondria of some fungi.
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A quarter of the activity of homocitrate synthase, the 
first enzyme of the AAA pathway was found in mitochondria 
in an isolate of Pénicillium chrysogenum^ while the 

remainder was cytosolic (Affenzeller, Jaklitsh, Honlinger 
and Kubicek, 1989) . In 5. cerevisiae the enzymes of this 
pathway, prior to the production of AAA, are localised in 
the mitochondria while the remaining steps are catalysed in 
the cytosol (Bhattacharjee, 1992).

In ox liver, both synthesis and degradation of lysine 
via saccharopine takes place in the mitochondria (Fellows, 
1973) . These reactions are catalysed by separate enzymes. 
Conversion of lysine to saccharopine and then to AAA takes 
place irreversibly in rat liver mitochondria (Rothstein & 
Miller, 1954) and in preparations of human liver in the 
presence of NADPH and =<-ketoglutarate (Hutzler & Danois, 
1968; Higashino, Fujioka & Yamamura, 1971; Fellows & Lewis, 
1973; Fjellstedt & Robinson, 1975). Fellows and Lewis 
(1973) went further to show that this conversion occurs in 
a range of mammals (ox, dog, cat, rat and pig) . The same 
reaction was found to occur in mouse liver, but here the 
activity was not confined to the mitochondria. Catabolism 
of lysine has been shown to occur in the mitochondria in 
some mammals and at least some of the steps of lysine 

catabolism in fungi take place in these organelles 
(Betterton, Fjellstedt, Matsuda, Ogur & Tate, 1968) , In 
barley, lysine catabolism occurred via a reversal of some
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of the steps in the AAA pathway and this may take place in 
the mitochondria (Moller, 1976a).

1.3.1,2 Regulation of the -Aminoadipic Acid Pathway
Enzymes.

Unlike the DAP pathway of lysine biosynthesis, which is 
only one part of a highly branched biosynthetic pathway, 
the oi -aminoadipic acid (AAA) pathway only produces lysine 
as a final product. Lysine metabolism by this pathway is 
regulated in vivo by, amongst other mechanisms, feedback 
inhibition (Bhattacharjee, 1985), repression by lysine 
(Schmidt, Bode & Birnbaum, 1990), general amino acid 

regulation and repression by specific genes.

Homocitrate synthase shows feedback inhibition by 
lysine in yeast (Bhattacharjee, 1985; Schmidt et al., 1990) 
and in numerous species of fungi (Bhattacharjee, 1992) .

AAA reductase in Trichosporon adeninovorans, which 
catalyses the formation of -aminoadipate semialdehyde 
(ASA) from AAA, is regulated by lysine and requires ATP, 
Mg^"^ and NADPH (Schmidt et al,, 1990). AAA plays an 
important role in penicillin biosynthesis (Schmidt et al., 
1990). However, AAA reductase is also regulated by lysine 
in this species (Schmidt et al., 1990). Although this 

enzyme in yeast has the same co-factor requirements for 
activity (Sagisaka and Shimura, 19 62b), it is regulated by
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glutamate rather than by lysine (Schmidt et al., 1990). 
The optimum pH for the reaction in T, utilis was 7.6 - 8.0 
and the enzyme was specific for AAA (Sagisaka and Shimura, 

1962b).

Saccharopine oxidoreductase in ox liver mitochondria 

was not inhibited by lysine (Fellows and Lewis, 197 3). The 
activity of this enzyme in the ox, which relies on a low 
lysine diet, is greater than in humans and other mammals 
studied (Fellows and Lewis, 1973).

1.3.2 Lysine Catabolism

The enzyme involved in the formation of saccharopine 
from lysine and X-ketoglutarate (lysine-cK^-ketoglutarate 
reductase) was found, in humans, mainly in the liver. The 
pH optimum for this reaction was 7.0 and there was a 
requirement for NADPH (NADH was no use) (Hutzler and 
Danois, 1968). Saccharopine is a key intermediate in the 
degradation of lysine in mammals (Fellows and Lewis, 1973). 
However, very little saccharopine is found in human tissues 

and it is suggested that it is rapidly converted to - 
aminoadipate semialdehyde and glutamate (Fellows and Lewis, 

1973) .

Saccharopine dehydrogenase (reductase), the enzyme 
which catalyses the degradation of saccharopine to 
aminoadipate semialdehyde and glutamate, was found in-human

i
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placenta (Fjellstedt and Robinson, 1975) and in human and 
rat liver (Fujioka and Nakatani, 1972). This enzyme was 
not able to be separated from lysine- ^  -ketoglutarate 
reductase. However, these were shown to be two distinct 
enzymes by the lack of inhibition of saccharopine 
dehydrogenase by an inhibitor of lysine- cX -ketoglutarate 
(Fjellstedt and Robinson, 1975).

The optimum pH for the activity of saccharopine 
dehydrogenase was found to be from 8.5 - 8.9 (lower than 
the optimum pH for the yeast enzyme - pH 9.5) and there was 
a requirement for NAD or NADPH (Fjellstedt and Robinson, 
197 5) . Glutamate was moderately inhibitory but no 
inhibition was observed with NAD or saccharopine 

(Fjellstedt and Robinson, 1975).

It was shown that these two reactions took place in 
vitro in the livers of rats, pigs, dogs, cats, oxen and 
sheep, as well as in the human liver (Fellows and Lewis,
1973) and in mouse liver (Fujioka and Nakatani, 1972).

The degradation of lysine in* mammals is similar to 
biosynthesis in yeast and fungi, although there are 
differences in the enzyme and co-factor requirements 

(Fjellstedt and Robinson, 1975). For example, the 
saccharopine reductase enzyme from human placenta has a 
molecular weight of 480000 (Fjellstedt and Robinson, 1975), 
whereas that from yeast is 73000 (Jones and Broquist,
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1966).

In Achromobacter liquidum (Soda and Misono, 1968) and 
Flavobacterium fuscum (Soda and Misono, 1968) , the transfer 
of the terminal amino group of lysine to c^^ketoglutarate 
was catalysed by the enzyme L-lysine- o( -ketoglutarate 
aminotransferase. The optimum pH for the reaction was 8.3 
- 8.5. This enzyme is also able to transfer the terminal 
amino group of L-ornithine to (X -ketoglutarate, but the 

reaction takes place more slowly. The molecular weight of 
the enzyme is 116000 and PLP is required as a co-factor 
(Soda and Misono, 1968).

1.3.3 The Diaminopimelic Acid Pathway of Lysine
Biosynthesis.

In this pathway (Fig. 2b), the formation of lysine 
begins when aspartate (C4) is converted to /3-aspartyl 
phosphate in the presence of aspartate kinase and ATP. 
This is reduced to /3-aspartic semialdehyde (C4) by /?- 

aspartic semialdehyde dehydrogenase (Fig. 2b) . -aspartic 
semialdehyde and pyruvate (C3) are condensed to form 
dihydrodipicolinic acid (DHDP) (C7). This is catalysed by 

dihydrodipicolinic acid synthase (DHDPS). DHDP reductase, 
which requires NADPH as co-factor, reduces DHDP to ^  - 
piperideine-2,6-dicarboxylate (C7), which is further 
reduced in the presence of NADPH and ammonia by meso- 
diaminopimelate dehydrogenase, to jneso-diaminopimelate
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Fig 2b: Enzymes Of The Diaminopimelic Acid Pathway of Lysin
Biosynthesis

[1] Aspartate kinase (EC 2.7.2.4)
[2] Aspartate- /3 -semialdehyde dehydrogenase (EC 1.2.1.11)
[3] Dihydrodipicolinic acid synthase (EC 4.2.1.52)
[4] Dihydrodipicolinic acid reductase (EC 1.3.1.26)
[5] Tetrahydropicolinate succinylase
[6] Succinyl-diaminopimelate (DAP) aminotransferase

(EC 2.6.1.17)
[7] Succinyl-DAP desuccinylase (EC 3.5.1.18)

[8] DAP epimerase (EC 5.1.1.7)

[9] DAP decarboxylase (EC 4.1.1.20)
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(DAP) (C7) . Decarboxylation of this compound by meso-DAP 
decarboxylase gives lysine (C5). In E. coll however, meso- 
DAP dehydrogenase is not present and meso-DAP, the 
immediate precursor of lysine, is produced from tetraHDP by 
a series of four steps involving tetraHDP succinylase, 
succinyl DAP aminotransferase, succinyl DAP desuccinylase 
and DAP epimerase.

Although the DAP pathway was first investigated in E, 
coll (Gilvarg, 1958), many of the enzymes have been shown 
to occur in plants. Vogel (1959) showed that lysine 
synthesis in higher plants occurred via the DAP pathway 
(one part of a larger much-branched pathway) .

:i

1.3.3.1 Aspartate Kinase

Aspartate kinase (the first enzyme of the aspartate 
pathway) was found in the photosynthetic bacterium 
Rhodopseudomonas sphaeroides (Datta and Prakash, 1966). 
Activity of this enzyme has also been shown in maize 
(Cheshire and Miflin, 1975), barley seedlings (Shewry and 
Miflin, 1977), carrot root (Matthews and Widholm, 1978), 
soybean cotyledons and callus (Matthews and Widholm, 1979), 
Nicotiana sylvestris (Negruitiu, Cattoir-Reynearts, 
Verbruggen & Jacobs, 1984) and Nicotiana species (Shaul and 
Galili, 1992).

Aspartate kinase of E, coll is composed of four
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identical sub-units (Umbarger, 1978). The enzyme from 
Rhodo pseudomonas sphaeroides requires ATP and Mg^+ or Mn^^ 
ions and inorganic phosphate increases (Datta and
Prakash, 1966). In yeast, the enzyme required Mg^+, 
or Pe2+ and was equally active from pH 5 - 9 (Black and 
Wright, 1954). In B. polymyxa the enzyme was inhibited by 
L-lysine and L-threonine at concentrations below ImM 
(Paulus and Gray, 1967). At higher concentrations 
inhibition was seen with these amino acids individually 
(Paulus and Gray, 1967).

1.3.3.2 Dihydrodipicolinic Acid Synthase

Dihydrodipicolinic acid synthase (DHDPS), the first 
enzyme exclusive to the lysine biosynthetic pathway, has 
been isolated from E, coli and its physical properties 
determined by Laber, Gomis-Ruth, Romao and Huber (1992) . 

This enzyme was also found in maize cotyledons (Cheshire 
and Miflin, 1975; Mazelis, Whatley and Whatley, 1977), 
carrot root (Matthews and Widholm, 1978), soybean 
cotyledons and callus (Matthews and Widholm, 1979) and N. 
sylvestris (Negruitiu et al., 1984; Ghislain, Frankard & 
Jacobs, 1990) as well as in spinach (Kirk and Leech, 1972; 
Mazelis et al., 1977), red kidney bean seedlings, cabbage, 

potato tubers, squash fruit and wheatgerm (Mazelis, et al.
1977) and wheat (Kumpaisal, Hashimoto and Yamada, 1987) .

The DHDPS enzyme was first purified from B. coli by
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Shedlarski and Gilvarg (1970), The molecular weight of the 
enzyme, which was made up of four sub-units, was 134000. 
The tetrameric form of the enzyme in the same species was 
confirmed by Laber et al, (1992) who calculated the 
molecular weight to be 112000. The four identical sub­
units had molecular weights of 32000 (Laber et al,, 1992).

This enzyme in N, sylvestris has a molecular weight of 
164000 and also has four identical sub-units of 38500 
(Ghislain et al,, 1990). The tetrameric structure is 
stabilised by pyruvate. In wheat where the molecular 
weight was 123000 (Kumpaisal et al,, 1987) and Bacillus 

licheniformis the enzyme was again stabilised by pyruvate.

In B, licheniformis, the molecular weight of the enzyme 
was 108000 - 117500 and was again composed of four
identical subunits each of 28000 (Hailing and Stahly, 
1976) . In B. subtilis, the enzyme from sporulating and 
non-sporulating cells was identical, with a molecular 
weight of 124000 (Yamakura, Ikeda, Kimura & Sasakawa,
1974) . The activity of the enzyme was four to six times 
greater during sporulation in B. cereus (Hoganson and 
Stahly, 1975).

Thus, the molecular weight of the enzyme from different 

species and from the same species when calculated by 
different workers is of the same order of magnitude. 
However, the pH for optimum activity of the enzyme was
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somewhat different in wheat (8.0) (Kumpaisal et al., 1987), 
E. coli (8.4) (Yugari and Gilvarg, 1965) and B. subtilis 
(9.5) (Yamakura et al., 1974).

Regulation of this enzyme can control this branch of 

the pathway (Negruitiu et al,, 1984). The activity of the 
enzyme in N, sylvestris is strongly inhibited by lysine 
(Ghislain et al,, 1990) and, while two lysine analogues 
were poor inhibitors, a pyruvate analogue caused inhibition 
by binding at the pyruvate-binding site (Ghislain et ai., 
1990) , In wheat, the enzyme was inhibited by lysine and 
its analogues, by some metal ions (Zn^^, Cd^^, Hg^^) and
certain sulphydryl inhibitors (Kumpaisal et al,, 1987).

The only substrate for this enzyme in B. licheniformis 
was L-ASA, but both D- and L-ASA inhibited its activity 
(Stahly, 1969). The inhibition arose as pyruvate was not 
able to saturate the enzyme in the presence of these 

compounds (Stahly, 1969). These workers were unable to 
find any other inhibitors of the enzyme. The enzyme in 
maize (Cheshire and Miflin, 1975), soybean seedlings, 
callus and suspension cultures (Matthews and Widholm, 1979) 
was inhibited 95% by ImM lysine. In carrot root suspension 
cultures and whole carrot root, inhibition was greater than 
80% in the presence of 0.5mM lysine (Matthews and Widholm,
1978) .
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1.3.3.3 DAP Decarboxylase

This enzyme has been isolated from B. coli (Work, 1962; 
White and Kelly, 1965) . It is specific for meso- 
diaminopimelate (DAP) and has an optimum pH of 7.2 (Work, 
1962), although White and Kelly (1965), also using a 
phosphate buffer, found the optimum pH in this species to 
be around 6.7 - 6 .8 . There was a requirement for a thiol 
compound and pyridoxal-5'-phosphate (PLP) (White and Kelly,
1965), Work (1962) did not show a requirement for 
additional PLP, but suggested that this compound is tightly 
bound to the enzyme and acts as a co-enzyme. There was no 
evidence that the reaction was reversible (Work, 1962). 
The molecular weight of the enzyme in this species was 
200000 (White and Kelly, 1965).

The enzyme in Vicia faba has been shown to be present 
exclusively in the chloroplast (Mazelis, Miflin and Pratt,
1976). In this species, the optimum pH was 7.0, which lies 
between the pH optima calculated for the two B. coli 
isolates examined by Work (1962) and White and Kelly 
(1965).

1.3.3.4 Other Enzymes of the DAP Pathway

Dihydrodipicolinic acid reductase (DHDPR) (Tyagi, Henke 
and Farkas, 1985b) , an enzyme first identified in B. coli 
by Farkas and Gilvarg (1965), and diaminopimelic acid
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epimerase (DAP epimerase) (Tyagi, Henke and Farkas, 1985a), 
were also present in maize. The optimum pH for the 
activity of DHDPR in E, coli was around 7.0 and the enzyme 
was strongly inhibited by dipicolinic acid (Tyagi at al., 
1985b) . In the same species, the pH optimum for DAP 
epimerase was 7.7 - 8.3 (Antia, Hoare and Work, 1957).
There was no requirement for PLP, but the enzyme was 
inhibited by carbonyl-binding reagents. This inhibition 
was overcome by thiols (Antia et ai., 1957).

Succinyl-DAP aminotransferase had an optimum pH of 8.0 
and was specific for glutamate. K.-Ketoglutarate inhibited 
both the forward and reverse reactions and there was 
inhibition by hydroxylamine (typical of a PLP dependent 
enzyme) (Peterofsky and Gilvarg, 1961). Succinyl-DAP 
succinylase in E, coli also had an optimum pH of 8.0 and 
had a requirement for Co^^ as a co-factor (Kindler and 
Gilvarg, 1960) . This enzyme was also identified in 
Corynebacterium diptheriae and B. cereus (Kindler and 
Gilvarg, 1960).

1.3.3.5 Intra-cellular Localisation of the DAP Pathway
Enzymes.

In contrast to the AAA pathway of lysine biosynthesis 
in fungi, where the enzymes appear to be localised within 
the mitochondria, the enzymes of the DAP pathway are 
thought to be present in the chloroplasts of green plants.
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In fact, most of the enzymes in amino acid biosynthesis 
from aspartate are also present in .these organelles.

DAP decarboxylase activity in Vicia faba (Mazelis et 
al., 1976) and DHDPS activity in spinach were localised 
within the chloroplast (Wallsgrove & Mazelis, 1981) , In 
Nicotiana sylvestris (Ghislain et al., 1990), the activity 
of the latter enzyme was more specifically associated with 
the stroma of the chloroplast. In spinach, aspartate 
aminotransferase was also shown to be associated with the 
stroma of the chloroplast (Miflin, 1974) . Lysine and the 
other amino acids of the aspartate pathway (threonine, 
methionine and isoleucine) were synthesised in chloroplasts 
isolated from pea leaves (Mills; Lea & Miflin, 1980). 
Chloroplasts of V, faba synthesised 19 amino acids, 17 of 

which were formed from alanine or aspartate (Kirk & Leech, 
1972) . Oxaloacetate was only found in the cytoplasm and 
these workers suggest that the supply of this compound from 
the cytoplasm is an important factor in controlling amino 
acid synthesis by chloroplasts. However, Wallsgrove, Lea 

& Miflin (1983) suggest that lysine and threonine are 
synthesised in the chloroplast in green leaves, but the 
final step in methionine biosynthesis takes place in the 
cytoplasm.

It may be possible that the origin of chloroplasts in 
green plants derives from an endosymbiotic relationship 

(Carr and Craig, 1970). Examples of this, in algae, show

il
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the possibility of such symbioses. For example, a blue- 
green alga, Glaucocystis nostochinearum, functions in the 
role of a chloroplast within an unnamed colourless alga. 
Diaminopimelic acid was not detected in the photosynthetic 
alga, although /L -carotene and allophycocyanin, 
characteristic of free living blue-green algae, were 
present. Photosynthetic processes in the blue-green algae 
and in some photosynthetic bacteria are essentially the 
same as those found in chloroplasts. In the blue-green 
algae, the photosynthetic lamellae are situated around the 
periphery of the organism and in contact with the 
cytoplasm. In the chloroplast, however, the lamellae are 
separated from the cytoplasm by being enclosed within the 
chloroplast membrane (Carr and Craig, 1970) .

The components of RNA in chloroplasts, bacteria and 
algae are similar, and different from those of the 
cytoplasm (Carr and Craig, 1970).

1.3.3.6 Regulation of the DAP Pathway Enzymes.

Aspartate kinase and DHDPS from maize (Cheshire and 
Miflin, 1975) and DHDPS from Nicotiana sylvestris (similar 
in function to the bacterial enzyme) (Ghislain, Frankard 
and Jacobs, 1990) and from E. coli (Laber et al., 1992) 

were inhibited by lysine. In maize, lysine also protects 
the aspartate kinase enzyme from heat inactivation
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(Cheshire and Miflin, 1975) . Both aspartate kinase and 
DHDPS in N. sylvestris are regulated by quite small amounts 
of* lysine (Negruitiu et al., 1984). Aspartate kinase is 
inhibited, in vivo, by lysine in the same species (Shaul 
and Galili, 1992). In soybean cotyledons, aspartate kinase 
and homoserine dehydrogenase were' inhibited by lysine or 
threonine, but were inhibited synergistically in the 
presence of both of these compounds (Matthews and Widholm,
1979). In barley seedlings, aspartate kinase was regulated 
by cooperative feedback regulation in the presence of 
lysine and low concentrations of methionine (Shewry and 
Miflin, 1977) .

Unlike most bacterial and plant enzymes, aspartate 
kinase in the photosynthetic bacterium Rhodopseudomonas 
sphaeroides was not inhibited by any of the end-product 
amino acids of this pathway (Datta and Prakash, 1966). A 
key intermediate in the synthesis of all of the aspartate 
pathway amino acids, aspartate-76-semialdehyde was, however, 
strongly inhibitory. This inhibition was competitive with 
aspartate and ATP and is thought to provide an effective 

method of controlling the synthesis of lysine, threonine, 
methionine and isoleucine (Datta and Prakash, 1966).

Synergistic inhibition of growth in Mimulus cardinalis 
seedlings (Henke, Wilson, McClure and Treik, 1974) and in 
wheat and barley embryos (Bright, Shewry and Miflin, 1978) 
occurred in the presence of lysine (ImM) and threonine
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(ImM) . This inhibition was relieved by methionine, 
homocysteine and homoserine, suggesting feed-back 
regulation of aspartate kinase by lysine and homoserine 
dehydrogenase by threonine (Henke et ai., 1974; Bright, 
Wood and Miflin, 1978). Similarly, inhibition of protein 
synthesis was seen in Mimulus cardinalis seedlings (Henke 

and Wilson, 1974).

Inhibition of the growth of gemmaiings of Marchantia 
polymorpha in the presence of lysine and threonine was due 
to inhibition of protein synthesis rather than to changes 
in amino acid uptake (Dunham and Bryan, 1971). These 
workers suggest that there is concerted feedback inhibition 
of aspartate kinase activity in the presence of lysine plus 
threonine, since there is a reduction in aspartate 
derivatives. The addition of methionine with these two 
amino acids relieved the synergistic effect on protein 
synthesis (Dunham and Bryan, 1971).

1.4 Polyamines.

The common polyamines putrescine (PUT), spermidine 
(SPD) and spermine (SPM) are ubiquitous in nature (Porter 
and Sufrin, 1986). The non-conjugated forms of these low 

molecular weight aliphatic amines at cellular pH occur as 
organic polycations and may act as metabolic buffers 
(Hamana and Matsuzaki, 1987; Galston and Kaur-Sawhney,
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Fig, 3: The methionine cycle and the relationship between
synthesis of polyamines and ethylene (Myazaki and Yang, 
1987) .

Abbreviations: ACC = 1-aminocyclopropane-l-carboxylic acid 
Ade = adenine
KMB = 2-keto-4-methyIthiobutyric acid 
Met = methionine 
MTA = 5 ' -methy Ithioadenosine 
MTR = 5-methylthioribose 

MTR-l-P = 5-methylthioribose-l-phosphate 
SAM = S-adenosylmethionine

43

H



 ̂ I 
CH,

OH OH 
(MTR-l-P)

HCOO

CH.-S

CH^-S-CH^-CH^-CO-C 

(KMB)

CĤ
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1990). However, they are often conjugated to, for example, 
small molecules (phenolic acids) or macromolecules (DNA, 
RNA, ribosomes, proteins, cell wall components) (Janne, 
Alhonen-Hongisto, Seppanen and Holtta, 1981; Hamana and 
Matsuzaki, 1987; Galston and Kaur-Sawhney, 1990). 
Variations in the concentrations within the cell ( y«M - 
mM) may occur in response to environmental stress (light, 
temperature, chemical and physical stress) (Galston and 
Kaur-Sawhney, 1990) and, in addition, spermidine protects 
nucleic acids from enzyme degradation and chemical and 
physical stresses (Porter and Sufrin, 1986).

Polyamines are required during cell division (Janne et 
al., 1981; Evans and Malmberg, 1989) and are thought to be 
involved in DNA replication. Indeed, they are essential to 

the development of tobacco and tomato fruit and ovaries, 
and may also be required during differentiation of floral 
meristems (Evans and Malmberg, 1989) . In addition, 
polyamines can delay the start of senescence (Evans and 
Malmberg, 1989; Galston and Kaur-Sawhney, 1990), probably 
by inhibiting the production of ethylene (Galston and Kaur- 
Sawhney, 1990), which may compete with polyamine 
biosynthesis for S-adenosylmethionine (Miyazaki and Yang, 
1987) (Fig. 3) . For example, in powdery mildew-infected 

barley leaves, free polyamine levels were higher in green- 
islands than in surrounding tissues and ethylene production 

was reduced (Coghlan and Walters, 1990).

Although only one pathway for polyamine biosynthesis
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has been shown to occur in mammals and fungi, the ornithine 
decarboxylase (ODC) pathway, there are known to be two 
pathways in plants (Slocum, Kaur-Sawhney and Galston, 1984) 
(Fig. 4) . Ornithine may be converted to the diamine, PUT, 
directly by decarboxylation, or may first be converted, via 
the ornithine cycle, to arginine, which is subsequently 
decarboxylated to give agmatine. On further reaction 

agmatine also yields PUT (Fig. 4) . In higher plants 
arginine may also be converted to ornithine in the presence 
of the enzyme arginase. SPD and SPM are formed by the 
addition of aminopropyl moieties from decarboxylated S- 
adenosylmethionine to PUT and SPD respectively. These 

reactions are catalysed by the action of 
aminopropyltransferases with quite narrow substrate 
specificity. The enzymes which convert ornithine or 
arginine to putrescine, ODC and arginine decarboxylase 
(ADC) , are thought to be compartmentalised within the cell. 
Both ODC and SamDC are rate limiting enzymes in polyamine 
biosynthesis (Holm, Persson, Pegg & Heby, 1989) . Although 

the subcellular distribution, intracellular binding sites 
and bound/unbound pool sizes are not known with certaintly 
(Porter and Sufrin, 1986) , ODC has been associated with 
organelles which contain DNA, while ADC is thought to be 
cytosolic (Galston and Kaur-Sawhney, 1990) . In the fungus, 

N. crassa, however, ODC was found only in the cytosol 
(Tabor and Tabor, 1985). Polyamines produced by the 
activity of ODC are seen as essential for DNA replication
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Fig 4: Putrescine biosynthesis from arginine or ornithine. 
Conversion of ornithine to arginine takes place via the 
ornithine cycle (Slocum, Kaur-Sawhney and Galston,
1984) .
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and cell division, whereas activation of ADC and 
accumulation of PUT tends to be associated with plant 
responses to stress (Evans and Malmberg, 1989; Galston and 
Kaur-Sawhney, 1990). An exception to this occurs in 
Nicotiana tabacum cv xanthi, where ADC activity was found 
to coincide with the production of free amines (agmatine 

and PUT), while ODC was involved in the biosynthesis of PUT 
conjugates (hydroxycinnamoyl putrescines) (Burtin, Matin- 
Tanguy, Paynot and Rossin, 1989). The inhibitor of ADC 
activity, difluoromethylarginine (DFMA), caused a reduction 
in fresh and dry weight of N. tabacum cv. xanthi, while 
difluoromethylornithine (DFMO), which inhibits ODC, 

increased fresh and dry weight (Burtin et ai., 1989). They 
thus suggest that ADC is involved in cell division and 
callus induction (see above).

A decrease in hydroxycinnamoyl putrescines in N, 
tabacum cv xanthi was associated with bud formation (Burtin 
et ai., 1989). However, Torrigiani, Altamura, Capitani, 
Serafini-Fracassini and Bagni (1989) showed that these 
compounds were associated with flowering and the 
development of reproductive organs in the same species. 
Large amounts of these conjugates were also found in 
vegetative organs, callus and roots (Torrigiani at ai., 
1989).

1.4.1 Unusual Polyamines

Polyamines other than PUT, SPD and SPM have been found
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Table A: Unusual polyamines identified from natural sources

1,3-Diaminopropane H2N(CH2
Putrescine H2N(CH2 4NH2
Cadaverine H2N(CH2 5NH2
Norspermidine H2N(CH2 3NH(CH2 3NH2
Spermidine H2N(CH2 3NH(CH2 4NH2
Aminopropyl-

cadaverine
HgNfCHg 3NH(CH2 5NH2

Homospermidine H2N(CH2 4NH(CH2 4NH2
Norspermine
(Thermine)

HgNfCHg 3NH(CH2 3NH(CH2) 3NH2

Thermospermine HgNfCH^ 3NH(CH2 3NH(CH2)4NH2
Aminopentenyl-

norspermidine
H2N(CH2 3NH(CH2 3NH(CH2) 5NH2

Spermine HgNfCH^ 3NH(CH2 4NH(CH2) 3NH2
Aminopropyl-

homospermidine
HgNfCH^ 3NH(CH2 4NH(CH2) 4NH2

Aminobutyl-
homospermidine

HgNfCHg 4NH(CH2 ^NHfCHg) 4NH2

N ,N '-his(3-amino­
propyl) cadaverine

HgNfCHg 3NH(CH2 5NH(CH2) 3NH2

Caldopentamine HgNfCH^ 3NH(CH2 3NH(CH2) 3NH(CH2)3NH2
Homocaldopentamine H2N(CH2 3NH(CH2 3NH(CH2) 3NH(CH2)4NH2

50
a

i



in various organisms. Because of similarities in 
chromatographic properties these unusual compounds were not 
able to be separated from the common polyamines (Tait,
1985) . In recent years, however, many have been separated 
and identified using HPLC and infra red analysis. Diamines 
and polyamines found in bacteria are listed in the table 
below (Table A) (Tait, 1985; Tabor and Tabor, 1985; Galston 
and Kaur-Sawhney, 1990; Hamana, Matsuzaki, Niitsu and 
Samejima, 1990).

It has been shown that these unusual polyamines may be 
related to: stabilising macromolecules under abnormal
conditions (Tait, 1985), protecting bacterial enzymes 
against heat dénaturation (Thermus thermophilus) (Tabor and 
Tabor, 1985), increased growth rate (Rhizobium) (Galston 
and Sawhney, 1990). Differences in the occurrence of these 
compounds within groups of bacteria may assist in their 
taxonomic classification (Hamana at al., 1990). No
polyamines were found in a number of halophytic Eubacteria. 
It is not known at present if this is characteristic of all 
halophytic species (Hamana at al., 1990).

Unusual polyamines have rarely been identified in 

mammalian tissues. However Matsuzaki and co-workers 
(Matsuzaki, Xiao, Suzuki, Hamana, Niitsu and Samejima, 
1987) were able to show the presence of several of these 
compounds (sym-homospermidine, N'-acetylspermidine, N' - 
acetylspermine, aminopropylhomospermidine and canavalmine)
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in hamster epididymis and suggest that 
aminopropylhomospermidine is formed from homospermidine by 
the action of spermine synthase.

1.4.2 Biosynthesis of Uncommon Polyamines

Synthesis of spermidine from putrescine, and spermine 
from spermidine occurs in most organisms by the addition of 
an aminopropyl group from decarboxylated S- 
adenosylmethionine, catalysed by an aminopropyltransferase 
(Fig. 5a) (Tait, 1985). However, an alternative pathway
for the synthesis of spermidine operates in some bacteria. 
Here the aminopropyl group is donated by L-aspartic- - 
semialdehyde (Tait, 1976), a metabolite of aspartic acid 
and a precursor of the aspartate pathway amino acids (Fig. 
5b) . This alternative pathway would still be competitive 
with ethylene since L-aspartate-^ -semialdehyde is a 
precursor of methionine and, therefore, SAMdc. Putrescine
and L-aspartic- -semialdehyde condense to form a Schiff 
base complex. Reduction of this complex forms
carboxyspermidine, which is decarboxylated to give 
spermidine (Fig. 5b) , Both of these pathways are present 
in Lathyrus sativus seedlings (Srivenugopal and Adiga, 
198 0) . In two Vibrio species the action of this
alternative pathway gave rise to norspermidine (Yamamoto, 
Hamanaka, Suemoto, Ono & Shinoda, 1986). These workers
found no aminopropyltransferase capable of using SAMdc,

In polyamines which have only aminopropyl groups
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Fig. 5: Pathways for the biosynthesis of spermidine (a & b)
norspermidine (c) and Homospermidine (d) (Tait, 1985).
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(norspermidine, norspermine, caldopentamine) or aminobutyl 
groups (homospermidine, aminobutylhomospermidine) synthesis 
probably occurs via reactions c) and d) respectively (Fig. 

5) (Tait, 1985).

1.4.3 Cadaverine and its Aminopropyl Derivatives

In tumour cells (Janne et al,, 1981) and Chinese 
hamster ovary cells (Holtta and Pohjanpelto, 1983) depleted 
of SPD and SPM by treatment with the ODC inhibitor DFMO, 
the formation of cadaverine (CAD: a diamine formed by the 
decarboxylation of lysine) is induced. A similar effect 
has been observed in the mycorrhizal fungus Paxillus 
involutus (Zarb and Walters, 1994) . Removal of ORN from 
the growth medium had the same effect on the ovary cells 
(Holtta and Pohjanpelto, 1983). The cadaverine is
converted to aminopropylcadaverine (APC) and N,N-jbls(3-
aminopropyl)cadaverine (3APC) by the addition of 

aminopropyl moieties in a manner analogous to the formation 
of SPD from PUT and SPM from SPD (Fig. 5a) (Janne et al,, 
1981) . These authors suggest that cadaverine is formed 
from lysine by the action of ODC. ODC from rat liver has 
been shown to catalyse this reaction. However, the 
affinity of the enzyme for ornithine is around 100 times 
greater than for lysine (Pegg and McGill, 1979) . It is

thought that these compounds can substitute for PUT, SPD
and SPM in some cellular functions (Janne et ai., 1981). 
In tumour cells treated with DFMO, and in which PUT and SPD
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levels were reduced, conversion of lysine to CAD and APC 
was high. However, cell growth was much slower and they 
behaved like polyamine depleted cells (Alhonen-Hongisto and 
Janne, 1980). Although the role of CAD and its aminopropyl 
derivatives in animal cells is not known, they suggest that 
this alternative pathway may allow cells to remain alive 
during depletion of the common polyamines (Holtta and 
Pohjanpelto, 1983) . In mutant forms of N, crassa, which 

were unable to synthesise PUT, de-repression of an ODC with 
weak lysine decarboxylase (LDC) activity allowed the 
synthesis of CAD and APC. This allowed a reduced rate of 
growth to continue (Tabor and Tabor, 1985). Blocking PUT 
biosynthesis in E, coli allowed synthesis of CAD and its 

aminopropyl derivatives by an inducible LDC, which was 
specific for lysine (Tabor and Tabor, 1985).

1.4.4 Inhibitors of Polyamine Biosynthesis

To assist studies on the functioning of the pathways of 
polyamine biosynthesis, a number of inhibitors of the 
enzymes of these pathways have been developed. 
Difluoromethylornithine (DFMO) and difluoromethylarginine 
(DFMA), which inhibit ODC and ADC respectively, are enzyme- 
activated irreversible inhibitors. The -carbon of 
ornithine and arginine are substituted by a difluoromethyl 
group (Galston & Kaur-Sawhney, 1990) . It is known that
DFMO is decarboxylated by ODC.
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MGBG, an inhibitor of 5-adenosylmethionine 
decarboxylase (SAMdc) may inhibit by competition for an 
uptake system and is a reversible, non-specific inhibitor 
of spermidine synthase (Porter & Bergeron, 1988). This 
compound is also a potent inhibitor of diamine oxidase and, 
in addition, induces SPD/SPM N'-acetyltransferase. MGBG 
has been shown to accumulate in mammalian cells and cause 
damage to mitochondria. There may also be less direct 
effects on the synthesis of macromolecules such as DNA 
(Pegg, 1988). Pegg (1988) suggests that an increase in the 
level of SAMdc on treatment with MGBG is due to enzyme 
stabilisation, preventing proteolytic degradation.

AdoDato is a specific and potent inhibitor of 
spermidine synthase (Porter & Bergeron, 1988). This 
compound is a 'transition state analogue'. Treatment of 
cancer cells with AdoDato decreased spermidine but 

increased spermine concentrations and caused derepression 
of SAMdc (Pegg, 1988).

DMTA, an analogue of methylthioadenisine (MTA) 
(Fig. 3) , is a potent inhibitor of spermine synthase and 
also inhibits SAMdc (Porter & Sufrin, 1986). MTA is 
produced by the aminopropyl transferases during polyamine 
biosynthesis. It does not accumulate in the cell due to 
rapid breakdown by MTA phosphorylase, to adenine and 5- 
methylthioribose 1-phosphate. DMTA may act by mimicking 
the observed feed-back regulation of spermidine and 
spermine synthase by MTA. This compound also inhibits
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spermidine synthase at high concentrations (Pegg, 1988) ,

AdoDato and DMTA are analogues of S-adenosyl methionine 
(AdoMet) . Holm et al, (1989) have suggested that there may 
be competition between AdoMet and AdoDato for the active 
site on spermidine synthase.

1.5 Aims and Objectives.

When alternative pathways for synthesis of a compound 
exist in plants and fungi, inhibition of the fungal pathway 
may be fungitoxic without harming the plant. For example, 
two pathways for the synthesis of poly amines are known to 
exist: the arginine decarboxylase (ADC) pathway and the
ornithine decarboxylase pathway (ODC). Both pathways are 
present in plants, but only ODC is present in most 
phytopathogenic fungi. Inhibition of the enzymes of this 
latter pathway in vivo has been shown to be fungicidal in 
many plant/pathogen systems (e.g. West and Walters, 1988 a 
& b; Foster and Walters, 1990; Walters and Kingham, 1990; 
Walters, Havis, Foster and Robins, 1992; Walters, 1995).

Since two pathways are known to exist for lysine 

biosynthesis, and work on N, Crassa and S, cerevisiae 
suggests that all higher fungi might utilise the AAA 
pathway which is absent from plants, the possibility exists 
that specific inhibition of the fungal pathway might be 

fungicidal.
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Although lysine biosynthesis and catabolism in barley 
have been examined by Moller (1974 and 1976 a & b) , 
little work has been done on lysine metabolism in powdery 
mildew-infected leaves or in the mildew fungus. This 
project aims to examine lysine biosynthesis and catabolism 
in barley, the powdery mildew fungus and in the 
barley: powdery mildew interaction. The objective is to 
determine whether barley and the powdery mildew fungus do 
indeed utilise different pathways for lysine biosynthesis, 
and also to show how mildew infection alters the metabolism 
of lysine in barley. Such information is important in 
helping to determine the suitability of lysine biosynthesis 
as a novel target for future fungicide development.

More specifically, this project will examine changes in 
lysine levels in healthy and mildewed leaves as mildew 
infection progresses, A study of lysine biosynthesis and 
catabolism in infected leaves, in pustules and in isolated 
mildew mycelium will also be carried out. This will 
include measurement of the activity of selected enzymes of 
both pathways, to establish if these are indeed present in 
the leaves, the fungus and/or the host/fungus combination. 
By feeding infected leaves with labelled precursors it 
should be possible to determine if the fungus takes these 
up from the leaf and if they are metabolised by the fungus. 
Lysine biosynthesis is thought to be carried out in the 
chloroplast and structural and functional changes are known 
to occur in these organelles during powdery mildew
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infection (Walters, 1985). An examination of enzyme 
activity in isolated chloroplasts during the course of 

infection will therefore be carried out.

Since any changes seen in the synthesis of the diamine 
cadaverine (a metabolite of lysine) and its derivatives 
(APC and 3AFC) during infection may affect the synthesis of 
lysine, an examination of this pathway both in the leaves 
and in the mycelium, will be carried out. Several 
inhibitors of polyamine biosynthesis, known to be effective 
in blocking key enzymes, will be employed in these studies.

2. MATERIALS AMD METHODS 

2.1 General Materials and Methods.

2.1.1 Growth and Maintenance of Plants before Inoculation.

Barley plants (Hordeum vulgare L. cv. Golden Promise) 
were grown and maintained in a ventilated glasshouse under 

a day/night temperature regime of 24/12^0. Natural 
daylight was supplemented with 400W mercury vapour lamps to 
give a 16 hour photoperiod.

Seeds were sown (30) in Fisons Levington M3 compost, in 
half size seed trays (156 x 208mm). Plants emerged 
approximately 4 days after sowing and were inoculated 8 
days later.
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2.1.2 Maintenance of the Pathogen.

Golden Promise seeds were sown every week (3 x 25 seeds 
in 152mm pots) and when the plants were 7 days old they 

were inoculated with spores of the powdery mildew fungus 
Erysxphe graminis f.sp. hordei Marchai and maintained under 
the same conditions as described in Section 2.1.1. In this 
way there was a continuous supply of fresh spores available 
to be used for plant inoculation.

2.1.3 Inoculation of Plants.

Spores from a pot of freshly sporulating stock plants 
were shaken over the trays and allowed to settle for a few 
hours. The inoculated and uninoculated (control) plants 
were maintained under the conditions described in Section 
2 .1 .1 .

2.1.4 Harvesting and storage of Leaves.

First leaves of barley plants were harvested (1, 3, 6,
9 and 15 days after inoculation (DAI)) and, if not required 
immediately, frozen (-18°C) until required. Pustules and 
inter-pustules (the green areas between pustules) were 
obtained from fresh leaves (9 DAI) by cutting around the 
infected areas with a sharp scalpel and placing them 
immediately into a universal bottle surrounded with ice. 
These were frozen until required.
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2.1.5 Protein Estimation.

Protein was estimated using the method described by 
Lowry, Rosebrough, Farr and Randall (1951). The standard 
curve used is shown in the Appendix, Fig. B.

2.1.6 Statistical Analysis.

All values shown (except those in Table 2 - Section 5 
and DHDPS work) are the means of two to five replicates and 
most experiments were repeated two or three times. Results 
were analysed using Student's t-test on Minitab Data 
Analysis Software Release 6.1.1.

2.1.7 Chemicals.

Chemicals were obtained from Sigma Chemical Co. Ltd. , 
Poole, Dorset and Aldrich Chemical Co. Ltd., Gillingham, 
Dorset. TLC plates were also supplied by Sigma Chemical 
Co. Ltd. White 'unwire' test tube racks were supplied by 
Merck Ltd. (BDH), Thornliebank, Glasgow.

Aspartic- -semialdehyde was kindly supplied by 
Professor D. J. Robins, Chemistry Department, Glasgow 
University.

2.1.8 Radioisotopes.

L-[U-^^C] aspartic acid, (DL-meso)-2 , 6-diamino[1,7- 
^^Cjpimelic acid hydrochloride and L-[U-^^C]lysine
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monohydrochloride were supplied by Amersham International 

PLC, Aylesbury, Buckinghamshire and ICN Biomedicals Ltd, , 
High Wycombe, Buckinghamshire.

2.2 Lysine Concentrations in Healthy Barley Leaves and in 
Leaves Inoculated with Erysiphe graminis.

2.2.1 Determination of Lysine.

2.2.1.1 Extraction of soluble and Hydrolysed Lysine.

Leaves were prepared by the method of Wade et al. 

(1980).

Leaves were cut into small pieces (Ig; 1.0 - 2.0 mm) 
and placed in a boiling tube with aqueous ethanol (10ml; 
70% ethanol; 80°C for 3 min) . The liquid was carefully 
decanted. This was repeated once more with ethanol and 
once with distilled water. All of the decanted liquid (the 
soluble fraction) was combined and dried down on a rotary 
evaporator (Buchi Rotavapor RllO; 30 - 40°C) and taken up 
in sterile distilled water (5ml). Distilled water (3ml) was 
added to the plant material left after extraction. This 
was sonicated (10 min at half power; MSE Soniprep) and the 
same volume of hydrochloric acid (6M) added before flushing 
with nitrogen. The sealed tubes were maintained at 110°C 
for 20h. The resulting hydrolysate was then filtered 

through glass wool and dried on the rotary evaporator 
(60°C) . The evaporator was allowed to run for 2 0 min after 
the samples became dry, to ensure complete removal of the
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hydrochloric acid. These samples were reconstituted by 
adding sterile distilled water (5ml) (hydrolysed or bound 
fraction).

2.2.1.2 Preparation of Lysine Decarboxylase (EC 4.1.1.18).

The enzyme (Sigma Type 1 from Bacterium cadaveris) was 
prepared, according to the method of Hutzler (1968), 
immediately before use. This was done by dispersing it in 
maleate buffer (0.02M; 0.4ml g”  ̂ enzyme) held on ice. The 
suspension was centrifuged (MSE Europa 24M; 100Og (3000
r.p.m.) for 10 min; 4°C) . The supernatant was discarded 
and the enzyme resuspended in maleate buffer (0.2M; 0.2ml 
g“  ̂ enzyme) containing pyridoxal 5-phosphate (Pyridoxal-5- 
phosphoric acid; Co-decarboxylase) and used immediately.

2.2.1.3 Preparation of l-Fluoro-2,4-dinitrobenzene (FDNB).

FDNB (4mg ml“ )̂ was dissolved in absolute ethanol 

shortly before use and kept in the fridge until required. 
Health and safety information contained in the Hazard Data 
Sheets (BDH) was consulted and precautions observed during 
the preparation of this solution.

2.2.1.4 Lysine Assay.

The method of Hutzler, Odievre and Danois (1967) was 
used to measure lysine levels. The standard curve used is 
shown in the Appendix, Fig. A.
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Following the addition of the prepared lysine 
decarboxylase solution (0.5ml) to sample (0,5ml) and water 
(0.5ml), the tubes (16 x 125mm) were incubated (45 min at 
37°C). After incubation, zinc sulphate (2ml; 0.3M) and
sodium hydroxide (2ml; 0.5M) were added: these were allowed 
to run slowly down the sides of the test tubes. The tubes 
were capped, inverted and centrifuged (1500g (2400 r.p.m.); 
20 min).

Aliquots (2ml) from each supernatant were pipetted into 
clean (13 x 100mm) test tubes. Borate buffer (0,4ml; l.OM) 
and FDNB (2ml) were added. Samples were mixed well and 
incubated in a water bath (30 min at 60^C) . Potassium 
hydroxide (1ml; IM) and chloroform (4ml) were added to each 
sample and shaken well, centrifuged (5min; 500g (2000
r.p.m.)) and absorbance of the lower, chloroform, phase 
read (400nm; Gallenkamp Visi-spec). Reagent blanks 
(distilled water + 0.2M maleate buffer) and sample blanks 
(sample 4* 0.2M maleate buffer) were used in each
experiment. Lysine standards were also run in each 
experiment.
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2.3 Biosynthesis and Catabolism of Lysine in Barley
Leaves and Chloroplasts.

2.3.1 The Diaminopimelic Acid Pathway.

2.3.1.1 Assay of Diaminopimelic Acid Decarboxylase
(EC 4.1.1.20) Activity.

Whole leaves:

All sample preparation procedures were carried out 
between 0 - 5®C. Using a modification of the method of 
Sadler & Shaw (1980) whole leaves (Igj were cut (1.0 - 
2.0mm) with scissors and ground in buffer (O.IM Tris-HCl 
[tris(hydroxymethyl)aminomethane hydrochloride]; pH 8.0; 
10ml) containing 2-mercaptoethanol (lOmM). After 
sonication (MSE Soniprep 150; 3 times for 10s on and 10s 
off) the sample was filtered and squeezed through muslin (4 
layers) and centrifuged (20000g (15500 r.p.m.); 30 min).

The supernatant was used as the enzyme source. Aliquots of 
supernatant (0.5ml) were added to (DL-meso)-2,6- 
diamino[l,7“^^C]pimelic acid (DAP) (0.0185 MBq; specific 

activity 4.33 GBq mmol“ ;̂ 5 juJl) , The tubes were closed 
with tight-fitting rubber stoppers and incubated (37°C; 30 
min) , The stoppers were fitted with syringe needles 
holding filter paper squares (0.5 x 0.5cm; Whatmans No 1 
qualitative) impregnated with potassium hydroxide (KOH; 10 
yil ; 2M) . After incubation the tubes were removed to a tray 
of iced water until trichloroacetic acid (TCA) (0.2ml; 6%) 
was added. The stoppered tubes were then replaced in the 
water bath for a further 3 0 min. The filter papers were
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removed and placed in scintillant (10ml; Packard Emulsifier 
Safe) and left overnight before reading on a liquid 

scintillation analyser (Canberra Packard Tri-carb 1900 TR). 
Each sample was replicated (5 times) and blanks (3; TCA 
added before incubation) were used in each experiment.

Chloroplasts:

Chloroplasts were isolated by the method of Ahmad, 
Farrar and Whitbread (1983).

Plants used for chloroplast isolation were obtained 
early in the light period and placed in the dark (Ih) 

before harvesting. This removed any starch stored in the 
chloroplasts and lessened the risk of damage during the 

isolation procedures. Samples were prepared by cutting
leaves (2g) into small pieces (1.0 - 2.0mm). These were 
homogenised in isolation medium (10ml) (Appendix) in a 
Waring blender at the 'Hi' setting (5 x Is). The 
homogenate was filtered and squeezed through muslin (4 
layers) and the filtrate centrifuged (1500g (4000 r.p.m.); 
5min). The supernatant was discarded and the chloroplasts 
gently resuspended in buffer (Tris-HCl; pH 8.0; 4ml) 
containing 2-mercaptoethanol (lOmM), using a brush made 
from fine nylon mesh (Henry Simon, London).

The chloroplast suspension was sonicated as described 

for whole leaves and DAP decarboxylase activity was 

measured by a modification of the method used for whole
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leaves. The volumes of sample and substrate were halved in 
order to conserve ^^C-DAP. The remainder of the assay was 
carried out as described for whole leaves.

2.3.1.2 Assay of Dihydrodipicolinio Acid Synthase (EC 
4.2.1.52) Activity.

Whole leaf and chloroplast samples were prepared as 
described for the DAP decarboxylase assay (Section 
2.3.1.1), using a different grinding (whole leaves) and 
resuspension (chloroplasts) buffer (50mM potassium 
phosphate (pH 8.0), lOmM sodium pyruvate, 5mM 
ethylenediaminetetraacetic acid, disodium salt [EDTA] and 
lOmM 2-mercaptoethanol) (Wallsgrove and Mazelis, 1981). 
The supernatant (whole leaves) and disrupted chloroplast 
isolates were dialysed overnight against potassium 
phosphate buffer (20 volumes; 50mM; pH 8.0) containing 
sodium pyruvate (lOmM). Dialysis was necessary to remove 
the 2-mercaptoethanol, an inhibitor of dihydrodipicolinic 
acid synthase (DHDPS) (Wallsgrove and Mazelis, 1981). 
Aliquots of the dialysed sample (0.25ml) were added to 
tubes along with the reaction medium (Tris-HCl; lOOmM; pH 
8.5; lOOmM sodium pyruvate; 5mM aspartic-yC-semialdehyde;

0.25ml) (Wallsgrove & Mazelis, 1980). Sample blanks
without aspartic-/& -semialdehyde (ASA) were also run. 
Reagent blanks, containing dialysis buffer (0.25ml) and 

reaction medium without ASA (0.25ml) were included. The 
tubes were incubated (30°C; 3 0 or 60 min) and the reaction
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stopped by adding sodium citrate/sodium phosphate buffer 
(0.22M/0.55M; pH 5.0; 2ml) containing p-dimethylaminobenz- 
aldehyde (0.25mg ml“ )̂ which was previously dissolved in a 
minimum of cold absolute ethanol. The colour was allowed 
to develop (2h; at room temperature) before the samples 
were centrifuged (500g (2000 r.p.m.);10 min) and absorbance 
was read (520nm).

2.3.1.3 Assay of Lysine Decarboxylase (EC 4.1.1.18) 
Activity (Icekson, Bakhanashvili and Apelbaum, 
1986).

Samples were prepared ag described for the 
diaminopimelic acid (DAP) decarboxylase assay (Section 
2.3-1.1) except for the extraction buffer (Tris-HCl; 50mM; 
pH 8.0; O.SmM EDTA; 5mM dithiothreitol (DTT)). The 
filtrate was centrifuged (SOOOg (7500 r.p.m.); 15 min) and 
the supernatant used as the enzyme source.

Aliquots of the enzyme extract (50y^l) were added to 

L-[U-^^C]lysine monohydrochloride (7.34 x 10”  ̂ MBq; 
specific activity 11.86 GBq mmol” ;̂ 4 yx_l) and reaction 
medium (Tris-HCl; lOmM; pH 8.0; ImM DTT; O.lmM EDTA; 5mM L- 
lysine; O.lmM pyridoxal 5-phosphate (added immediately 
before use); 0.2ml). The samples were incubated (45^C; Ih) 
and subsequent treatment and recovery of the ^^C-C02 was 
that used for the DAP decarboxylase assay.
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2.3.2 The Aminoadipic Acid Pathway.

2.3.2.1 Assay of Aminoadipate Reductase (EC 1.2.1.31} 
Activity.

Leaves (Ig) were ground in buffer (O.IM Tris-HCl, lOitiM 
2-mercaptoethanol; pH 8.0), sonicated (10s on, 10s off; 3 
times), immediately filtered through four layers of muslin 
and centrifuged (2500g (5500 r.p.m.); 30min; 4̂ Ĉ) . All
procedures were carried out using pre-chilled buffers and 
equipment, which was kept on ice during sample preparation. 
Mycelium (from 10 leaves) was collected using a soft camel 
hair brush and shaken into iced extraction buffer (see 
above). This was sonicated (10s on, 10s off; 6 times) and 
treated as for leaves, after filtration through four layers 
of muslin.

Supernatant (0.5ml) was added to reaction medium (6 
^moles o(-aminoadipic acid (AAA), 2 yunoles adenosine 5'- 

triphosphate (ATP), 2 ^moles magnesium chloride (MgCl2), 
0.09 ywmoles manganese chloride (MnCl2), 0.024 y^moles 
nicotinamide adenine dinucleotide phosphate, reduced form 
(NADPH), 0.1 yx_mole glutathione (GSH) ; 0.5ml; pH 6.5) and 
incubated (2.5h at 37°C) (Sagisaka & shimura, 1962b).

Estimation of c<-aminoadipic acid-y^-semialdehyde was 

carried out by the method of Sagisaka and Shimura (1962b). 
This involved addition of p-dimethylaminobenzaldehyde 
solution (0.5ml; 0.5g in 5ml lOM HCl added to 2 0ml acetone 

(Edwards, 1970) and potassium phosphate buffer (0.2ml of
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0.25M; pH 7.0) to aliquots (0.5ml) of the incubated 
samples. This was heated (100°C for 20min), cooled to room 
temperature and the volume adjusted (3ml) with aqueous 
ethanol (ethanol: water, 60:40 v/v). The samples were
centrifuged (2500g (5500 r.p.m.); lOmin) and absorbance of 
the supernatant read at 480 nm. Water was added to blanks 
in place of AAA.

2.3.2.2 Assay of Saccharopine Dehydrogenase (EC 1.5.1.7) 
Activity.

Samples were prepared as for the o< -aminoadipic acid 
reductase assay (Section 2.3.2.1), using phosphate 
extraction buffer (5mM dipotassium phosphate (KgHPO^), lOmM 
2-mercaptoethanol, ImM EDTA).

Supernatant (0.5ml) was added .to reaction medium (100 
^moles L-lysine.HCl, 20 y^moles /«.-ketoglutarate, 250
ytmoles potassium phosphate buffer (pH 7.0), 0.25 yxmoles yS- 
nicotinamide adenine dinucleotide (NADH); 1.5ml) (Saunders 
and Broquist, 1966) . The tube was inverted to mix the 
contents and the change in absorbance was read (340nm; 3 0s 
intervals for 5min; room temperature). A blank containing 

-ketoglutarate (20 moles in 2ml) was used.

2.4 Uptake and Metabolism of ^^C-Aspartate.

2.4.1 Feeding with ^^C-Aspartate.

Plants were removed from the trays (6 DAI) and the
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first leaves excised under water. These were immediately 
transferred to Pyrex test tubes (12 x 7 5mm; 1 leaf per 
tube) containing distilled water (50y<l; pH 7.5) and L-[U- 

]aspartic acid (0.085MBq; specific activity 7.96GBq 
mmol” ;̂ 10yl) and allowed to take up solution for 2, 4 or 
8h. Test tubes were placed vertically in racks and 
incubated (22°C; 70% RH; 2 37 y^mol m“  ̂ s”^ PAR* [natural
daylight]) during uptake. Healthy leaves from healthy 
plants, infected leaves with mycelium attached and infected 

leaves with mycelium removed before feeding were used in 
these uptake studies. The mycelium was removed from some 
leaves after feeding (using small pieces of damp cotton 
wool) and, in all cases, tissues were extracted as 
described below. After uptake, the cut ends were washed in 
distilled water (0.2ml x 3), dried on tissue paper and the 
leaves weighed. These were then immediately frozen in 
liquid nitrogen and stored until required.

2.4.2 Extraction.

The frozen leaves were finely chopped and added to 
methanol + chloroform + distilled water (12 + 5 + 3 by
volume; M+C+W; 2ml) and kept at -18°C until required. 
Extraction was carried out using a modification of the 
method of Bielski and Turner (1966). The leaves were

Photosynthetically active radiation.
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homogenized, using a Potter Elvehjem homogeniser, at room 
temperature and decanted into centrifuge tubes. The 
homogeniser was washed out with M+C+W (1ml), the washings 
added to the centrifuge tube for centrifugation (SOOOg for 
5 min) and the supernatant decanted into a glass vial 
(10ml). The pellet was re-suspended in M+C+W (2ml) and 
shaken for 5 min, re-centrifuged as above and the 
supernatant added to the glass vial. Chloroform (1ml) and 
water (1.5ml) were added to the M+C+W extract, which was 
then shaken and the chloroform layer, separated by 
centrifuging as above, was removed and discarded. The 
pellet remaining after the second M+C+W extraction was re­
extracted in hot ethanol + water (80 + 20 by volume,* 80°C; 
2ml) . The sample was shaken for 4 min and centrifuged as 
above. The supernatant was added to the M+C+W extract. 
This was repeated a further three times and the combined 
extracts (soluble label/pool) dried down under vacuum at 
35°C and taken up in propan-2-ol + water (10 + 90 by 
volume; 2ml).

Fungal samples were extracted by the method described 
for leaves.

2.4.3 Oxidation.

The pellet remaining after the final extraction step 
(insoluble label/pool) was removed from the tube with 
tissue (3cm^), added to two paper oxidising thimbles and 
the whole oxidised (1 min) in a Canberra Packard Oxidiser
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(mpdel 306 M).

2.4.4 Thin Layer Chromatography (TLC).

Samples (50yd for plant or 100yd for fungal extracts) 
were spotted onto TLC plates (K2F Whatman, 2 0 x 2 0cm 
cellulose) and run sequentially, in the same direction, in 
the solvent systems: butan-2-one + acetone + pyridine +
water + formic acid (35 + 35 + 15 + 15 + 2 by volume) and 
propan-2-ol + water + formic acid (20 + 5 + 1 by volume). 
The plates were dried and then scanned for radioactivity 
using a Stratec Raytest Rita-32 00 Radio-TLC-Analyser. 
Plant samples were scanned for 1000s and fungal samples for 
2000s and peak areas expressed in terms of total counts 
over the time period.

2.4.5 Pre-feeding.

Leaves for pre-feeding were placed in distilled water 

(200yd) containing lysine (lOmM) or threonine (lOmM) for 2h 
before feeding for 4h, as described above. The leaves were 
then processed as described above.

2.5 Studies on Uptake Kinetics using isolated Erysiphe 
graminis Mycelium.

2.5.1 Introduction.

The isolation method used here was first used by
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Gregory (1992) to isolate E. graminis mycelium from barley 
leaves for the study of carbohydrate uptake.

2.5.2 Preparation of Isolated Mycelium.

The mycelium was removed from approximately 100 first 
leaves of barley, using a wetted spatula. This was placed 
in homogenising medium (20ml; Appendix) and stirred to 
produce a fine suspension. Aliquots (2ml) of the prepared 
mycelium were pipetted into centrifuge tubes, centrifuged 
(5800g (8500 r.p.m.); lOmin) and the supernatant discarded.

2.5.3 Measurement of Optimum pH for the Uptake of Aspartate 
and Lysine.

Mycelium was prepared as described in Section 2.5.2. 
The mycelium in each tube was resuspended in homogenising 
medium (0.5ml; containing aspartate or lysine; ImM), 
The pH of each sample was adjusted (pH 4.0, 5.0, 6.0, 7.0, 

8.0 or 9.0) with hydrochloric acid or potassium hydroxide. 
Aliquots (O.lml) were added to labelled aspartate or 
labelled lysine ( 1 yul) and incubated (40 min; room 
temperature). Ice-cold homogenising medium (2ml) was added 
before centrifuging (5800g; 10 min). This step was
repeated once more. The mycelium was resuspended in water 
(0.5ml), by rotamixing briefly, and decanted into a 
scintillation vial. The tubes were further washed (2 x 
0.5ml Soluene (Packard)) before incubation (3h; 60°C). The 
samples were neutralized (25% (v/v) acetic acid); 0.2ml)

and left to stand in Hionic Fluor (10ml) for 24h.
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Disintegrations per minute (DPM) were measured using a 
Packard 1900 TR 'Tri-Carb' scintillation counter.

2.5.4 Time-Course of Aspartate or Lysine uptake.

Mycelium was prepared for this experiment as described 
in Section 2.5,2. After resuspension in homogenising 
medium (pH 7.0; 7ml; containing aspartate or lysine; ImM) 
aliquots (O.lml) of the uniformly dispersed mycelial 
suspension were incubated with labelled aspartate or 

labelled lysine (lyl) for 10, 20, 30, 60, 90, 120 and 240
min. At the end of each time period the reaction was 
stopped by adding ice cold homogenising medium (2ml). All 
samples were then treated as in Section 2.5.3.

2.5.5 Measurement of Lysine Uptake at different 
Concentrations.

Mycelium was prepared as in Section 2.5.2. The 
mycelium in each tube was resuspended in the same buffer i
(pH 7.0; 1.5ml) containing lysine at different i
concentrations (0.005, 0.01, 0.1, 1.0, 10, 25, 50 & lOOmM). 
Aliquots (0.4ml) were added to ^^C-lysine (1ŷ l) and 
incubated (40 min; 25®C). All samples were then treated as 
in Section 2.5.3.
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2.5.6 The Effects of Amines and a Metabolic Inhibitor on 
the Uptake of Lysine by Isolated E, graminis 
Mycelium.

Mycelium was prepared as in Section 2.5.2. The mycelium 

in each tube was resuspended in homogenising medium. Both 
lysine stock solution and the amine (ornithine, arginine, 
putrescine) or inhibitor under test (sodium azide) were 
added to give the same molarity (imM) . Labelled lysine 
(2.5yd) was added at the same time. Samples were incubated 
(40 min; 25°C) and treated thereafter as in Section 2.5.3.

2.6 Formation of Cadaverine Derivatives in Barley Leaves 
and Powdery Mildew Mycelium.

2.6.1 Leaves.

2.6.1.1 Leaves not pre-treated with Inhibitors.

Leaves were prepared and the lysine decarboxylase assay 
carried out as described in Section 2.3.1.3 with the 
exception that the inhibitor solutions (3mM; MGBG/CHA) were 
added at the start of the assay. A similar volume of 
buffer was added to the control samples. At the end of the 

assay period, perchloric acid (10%) was added to terminate 
the reaction in place of TCA, used in the original 
protocol. The reaction medium was retained for labelled 
polyamine determination (Section 2.6.3).

2.6.1.2 Leaves Pre-treated with Inhibitors.

This work was carried out in order to determine the
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effect of pre-treatment with the inhibitors used in Section 
2.6.1.1.

Leaves were cut up (~ 1mm) and placed in buffer (lOmM 
Tris-acetic acid, pH 6.0; 0.5mM calcium chloride; 5 ml g"^) 
containing the inhibitors (3mM; MGBG/CHA). These were 
incubated in the light on a reciprocal shaker (120 
strokes/min; 2h; 25°C). The molarity of the buffer in each 
sample was adjusted to ImM by the addition of unlabelled 
lysine from a stock solution and at the same time, labelled 
lysine was added (5 ^1 ml” )̂ and the samples incubated as 
above (2h). Uptake was stopped by adding ice cold 
distilled water (10ml). This was removed by pipette and 
the same step repeated (x2) after which the leaves were 

stored until required (-18°C). Samples were prepared and 
the LDC assay carried out as described in Section 2.3.1.3.

2.6.2 Isolated Mycelium.

2.6.2.1 Isolated Mycelium not Fre-treated with Inhibitors.

Mycelium was isolated by the method used previously 
(Section 2.5,2) using the buffer described in Section
2.3.1,3 (lysine decarboxylation medium) and stirred to 
ensure a uniform suspension. This was held on ice during 
sonication (10s on and 20s off 10 times, MSE Soniprep) and 
centrifuged (5000g (7500 rpm); 15 min). The supernatant

was adjusted to ImM with a stock lysine solution. Aliquots 
(250yKl) were added to ^^C~lysine (4y«l) and incubated as for
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the lysine decarboxylase assay (Section 4.2.3). The 
reaction medium was retained for analysis of labelled 
polyamines (Section 2.6.3),

2.6.2.2 Isolated Mycelium Pre-treated with Inhibitors,

Again, this work was carried out in order to assess the 
effects of pre-treatment with the inhibitors used. 
Mycelium was isolated by the method used previously 
(Section 2.5.2) using the buffer described in Section
2.3.1.3 (Tris-HCl reaction medium) and stirred to ensure a 
uniform suspension. Aliquots (1ml) of the mycelial 
suspension were added to each tube and inhibitor solution 
(1ml) (made up at double the required molarity) added to 
bring the solution to the required molarity. A similar 
volume of buffer was added to control samples before 
incubation (25; 2h). After the incubation period the 
samples were sonicated as above and all subsequent 
treatments were the same (Section 2.6.2.1).

2.6.3 Determination of Labelled Polyamines by Dansylation 
(Zarb & Walters, 1993).

Aliquots (100 yx.1) of the reaction medium remaining 
after lysine decarboxylase assay were added to saturated 

sodium carbonate (200/̂ l) and dansyl chloride (lOmg ml"^ 
acetone; 400/sL) . These were incubated in the dark (GO°C; 
30 min). Proline (100y^g ml”  ̂water; 100yxi) was added and 
the samples incubated for a further 10 min at room
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The levels of soluble and bound lysine were examined in 
various tissues from both healthy first leaves of barley 
and leaves inoculated with E, graminis (powdery mildew) , at 
various times after inoculation.

Concentrations of soluble lysine were lower than 
concentrations of bound lysine, both in healthy leaves and 
in those inoculated with powdery mildew (Figs 6,1 & 6.2).
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temperature. Toluene (500/^1) was then added and the 
samples shaken (20s). Aliquots (25^1) of the toluene layer 
were spotted onto silica gel TLC plates, activated by 
heating at 110°C for 90min (Whatman LK6D). After drying 
the spots, the plates were run in chloroform:triethylamine 
(12:1 v/v; approximately 40 min). The plates were then 
allowed to dry in a fume hood (15 min) and cadaverine, 
aminopropylcadaverine (APC) and N,N '-bis(3-

aminopropyl)cadaverine (3APC) standards, run on the same 
plate as markers, were traced under UV light. Areas with 
the same Rf value as the standards were scraped from the 
plates and placed in scintillant (10ml) and DPM calculated 
as before (Section 2.3.1.1).

3. RESULTS 

3.1 Lysine Levels and the Activities of some Enzymes of the 
DAP and AAA Pathways of Lysine Biosynthesis 

3.1.1 Lysine in Healthy and Powdery Mildew Infected Barley
Leaves
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This was also true in pustules and inter-pustule regions 
isolated from infected leaves 9 days after inoculation (9 
DAI) (Fig. 6.3). A comparison of healthy and infected 
leaves showed that soluble lysine levels were significantly 
lower in infected leaves, except at 3 DAI when the opposite 
was true (Fig. 6.1). Bound lysine levels were

significantly lower in infected leaves from 6 - 1 5  DAI 
(Fig. 6.2). Both soluble and bound lysine levels were 

significantly lower in pustules than in inter-pustules at 9 
DAI (Fig. 6.3).

3.1.2 Lysine Biosynthesis in Healthy and Powdery Mildew- 
Infected Barley Leaves: Activities of some of the Enzymes 

of the Diaminopimelic Acid Pathway

The activities of the first (dihydrodipicolinic acid 
synthase) and the last (diaminopimelic acid decarboxylase) 
enzymes in the diaminopimelic acid pathway of lysine 
biosynthesis were examined in healthy and mildew infected 
first leaves of barley, at different times after 
inoculation. The activities of these enzymes were also 
measured in pustules and inter-pustule regions taken from 
infected leaves, and in chloroplasts isolated from both 
healthy and infected leaves. The activity of the enzyme 
which catalyses the synthesis of cadaverine from lysine 
(lysine decarboxylase) was also measured in these tissues.

3.1.2.1 Diaminopimelic Acid (DAP) Decarboxylase Activity

The activity of this enzyme was consistently greater
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in infected leaves (Fig. 7.1), though this difference was 
only significant at one day after inoculation (1 DAI) and 
12 DAI. Enzyme activity was significantly greater in 
inter-pustule regions than in pustules at 9 DAI (Fig. 7.2).

However, DAP decarboxylase activity was greater in 
chloroplasts isolated from infected leaves at 3 DAI, 
although it was reduced thereafter (Fig. 7.3).

3.1.2.2 Dihydrodipicolinic Acid Synthase (DHDPS) Activity

One day after inoculation (1 DAI) the activity of this 
enzyme was similar in healthy and infected leaves (Fig. 
7.4). By 3 DAI however, activity was reduced in infected 
leaves. DHDPS activity in the pustule regions was similar 
to that observed in controls (Fig. 7.5) whereas activity in 
inter-pustule regions was somewhat greater than in healthy 
leaves.

In isolated chloroplasts from infected leaves, DHDPS 
activity was consistently less than in those isolated from 

healthy leaves (Fig. 7.6). This was especially evident at 
6 and 9 DAI.

3.1.2.3 Lysine Decarboxylase Activity

• Lysine decarboxylase activity (LDC) was significantly 
greater in infected leaves at one day after inoculation (1 
DAI) , but was significantly reduced at 3 - 9 DAI (Fig,
7.7). Enzyme activity was significantly reduced in both
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pustules and inter-pustule regions compared to healthy 
leaves at 9 DAI (Fig 7.8).

Although enzyme activity was reduced in chloroplasts 
from mildewed leaves 1 DAI, it was increased in 
chloroplasts from mildewed leaves thereafter (Fig. 7.9). 
LDC activity in chloroplasts isolated from pustules and 
inter-pustule regions (6 DAI) and inter-pustules regions (9 
DAI) was greater than in control leaves. However LDC 
activity in chloroplasts isolated from pustules at 9 DAI 
was less than in healthy leaves (Fig. 7.10).
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Fig, 6.1: Soluble lysine in healthy (control) and
mildew infected first leaves of barley at different 
times after inoculation. Significant differences shown 
as p = 0.1 (*); p = 0.05 (**).

Fig, 6.2: Bound (hydrolysed) lysine in healthy (control) 
and mildew infected first leaves of barley at different 
times after inoculation. Significant differences shown 
as p = 0.1 (*); p = 0.05 (**).
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Pig. 6.3: Soluble and bound (hydrolysed) lysine in 
pustules and inter-pustule regions isolated from mildew 
infected first leaves of barley 9 days after 
inoculation. Significant differences shown as p = 0.05 
(**); p = 0.01 (***).
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Pig. 7,1: Diaminopimelic acid decarboxylase activity in
healthy (control) and mildew infected first leaves of 
barley at different times after inoculation. Significant 
differences shown as p = 0.1 (*) ; p = 0.05 (**). nd =
not detected.

Pig. 7.2: Diaminopimelic acid decarboxylase activity in 
pustules and inter-pustule regions of mildew infected 
first leaves of barley 9 days after inoculation. 
Significant differences shown as p = 0.05 (**).
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Fig. 7.3: Diaminopimelic acid decarboxylase activity in
chloroplasts isolated from healthy (control) and mildew 
infected first leaves of barley at different times 
after inoculation. Significant differences shown as p 
= 0.1 (*); p = 0.05 (**) . nd = not determined.
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Fig. 7.4: Dihydrodipicolinic acid synthase activity in
healthy (control) and mildew infected first leaves of 
barley at different times after inoculation.

Pig. 7.5: Dihydrodipicolinic acid synthase activity in
healthy (control) first leaves and in pustules and 
inter-pustules taken from mildew infected first leaves 
of barley 6 & 9 days after inoculation.
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Fig. 7.6: Dihydrodipicolinic acid synthase activity in
chloroplasts isolated from healthy (control) and mildew 
infected first leaves of barley at different times after 
inoculation.
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Pig. 7.7: Lysine decarboxylase activity in healthy
(control) and mildew infected first leaves of barley at 
different times after inoculation. Significant 
differences shown as p = 0.1 (*); p = 0.05 (**).

Pig. 7.8 Lysine decarboxylase activity in healthy leaves 
(control) and in pustule and inter-pustule regions from 
mildew infected first leaves of barley 9 days after 
inoculation. Significant differences shown as p = 0.1 
(*).
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Pig. 7.9: Lysine decarboxylase activity in chloroplasts
isolated from healthy (control) and mildew infected 
first leaves of barley at different times after 
inoculation. Significant differences shown as p = 0.1 
(*) ; p = 0.05 (**) .

Fig, 7.10: Lysine decarboxylase activity in chloro­
plasts isolated from healthy leaves (control) and from 
pustules and inter-pustule regions of mildew infected 
first leaves of barley 6 & 9 days after inoculation. 
Significant differences shown as p = 0.1 (*) .
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3.1.3 Activities of Enzymes of the t?c-Aminoadlipic Acid 
Pathway in Healthy and Powdery Mildew-Infected Barley Leaves 

3.1.3.1 c^-Aminoadipic Acid Reductase Activity

The activity of this enzyme was examined in healthy and 
powdery mildew infected leaves and in mycelium removed from 
infected leaves (9 DAI). Although there was no activity 
detected in healthy leaves, some activity was seen in 
infected leaves. Activity was, however, much greater in 
the mycelium (Table 1).

3.1.3.2 Saccharopine Dehydrogenase Activity

The activity of saccharopine dehydrogenase was examined 
in healthy and powdery mildew infected leaves at various 

times after inoculation and in pustules, inter-pustule 
regions and mycelium removed from infected leaves (9 DAI) . 
In healthy and infected leaves differences were not 
significant at 3 and 6 DAI, but by 9 DAI the activity in 
healthy leaves had decreased significantly compared to the 
infected leaves (Table 2). By 12 DAI, however, activity in 
the infected leaves was significantly lower than in healthy 
leaves. Activity of the enzyme in pustules was 
significantly greater than in inter-pustules. In the 
mycelium, activity was significantly greater than in all 
other tissues examined (Table 2) .
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Table 1: Activity of Aminoadipic Acid Reductase in
healthy (control) and powdery mildew inoculated 
(infected) 1st leaves of barley and in isolated 
powdery mildew 9 days after inoculation. +SEM. 
Significant differences at; p = 0.01 (***).

Sample ^  A min  ̂mg protein ^

control leaf nd

infected leaf 0.027+0.003
mycelium 0.213+0.026***

nd = not detected.
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Table 2: Activity of Saccharopine Dehydrogenase in healthy
(control) and powdery mildew inoculated (infected) 
first leaves of barley at various times after 
inoculation, and in pustules, inter-pustule regions and 
mycelium removed from inoculated leaves 9 days after 
inoculation. Enzyme activity expressed as A A min”  ̂ mg 
protein"^. + SEM. Significant differences at: p = 0.05
(**); p = 0.01 (***) .

Sample days after inoculation

3 6 9 12

control leaf 
infected leaf

0.020+0.005
0.017+0.002

0.021+0.001
0.023+0.001

0.012+0.001 0.017+0.001 
0.021+0.001** 0.009+0***

inter-pustules
pustules
mycelium

0.015+0.002
0.024+0.001**
0.047+0.005***

1 0 2



3.2 Feeding with ^^C-Aspartate

3.2.1 uptake of ^^c-aspartate

3.2.1.1 SOLUBLE LABEL

The uptake of ^"^C-aspartate by both healthy and 
infected leaves (6 DAI) increased with time (Table 3). At 
2h uptake by infected leaves was greater than in control 
leaves. When mycelium was removed from the infected leaves 
before feeding uptake was less than in infected leaves with 
the mycelium still present.

By 4h after the start of feeding, uptake was greater in 
control leaves than in infected leaves with mycelium 
present or in infected leaves from which the mycelium had 
been removed either before or after the feeding began. 
This trend continued at 8h except in leaves with the 
mycelium removed before feeding. In these leaves uptake
was greater than in healthy leaves.

3.2.1.2 BOUND LABEL

Again, as seen with the soluble fraction, labelling in 
the bound (hydrolysed) fraction increased with time in all 
samples (Table 4).

Although there was less bound label in infected leaves 
than in healthy leaves at 2h after feeding began there was 
little difference thereafter. When the mycelium was
removed (either before or after feeding), however, there
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was considerably less bound label present in these leaves.

The ratio of bound label to soluble label changed with
time. At 2h there was less bound label than soluble label 
and at 4h the amounts were similar. By 8h, however, there 
was greater labelling in the bound fraction. This trend 
was also seen in the mycelial extracts (Tables 3 & 4).

3.2.2 Metabolism of ^^C-aspartate

3.2.2.1 LEAVES

Metabolism of aspartate appeared to take place faster 
in infected leaves. 2h after the start of feeding only 22% 
of the label was present as aspartate in contrast to 45% in 
control leaves (Table 5). In the infected leaves, much of 
the label had moved to peak 3 (tentatively identified as 
homoserine and threonine) (Table 6) and peak 5 as yet 
unidentified but possibly methionine.

By 4h, only 18.5% of the label in infected leaves was 
in aspartate but there was still 35% in control leaves. 
There also appeared to be movement of label from peak 5 to 
peak 3 (Table 5) .

Leaves from which the mycelium was removed before 
feeding contained 26% of ^^C-aspartate at 4h (Table 5) , 
greater than in infected leaves with the mycelium still 
attached, but lower than in control leaves.
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The profiles of extracts from infected leaves from 
which the mycelium was removed before (Fig. 8.2a) and after 
feeding (Fig. 8.2b) were quite different. Where the 
mycelium was removed before feeding the profile resembled 
that of control leaves (Fig. 8.1a) but that for leaves 
where fungal mycelium was removed after feeding resembled 
the profile of infected leaves with mycelium still attached 
(Fig. 8.1b). This was true for all samples taken over the 
4-8h period.

3.2.2.2 MYCELIUM

The distribution of label in infected leaves and in 
mycelium detached after feeding showed large differences as 
indicated by the two main peaks - aspartate and peak 3 
(Fig, 8.3). There was much more aspartate (as % of soluble 
label) in the mycelium and, while the percentage of label 
in aspartate in infected leaves decreased with time, it 
remained relatively constant in the mycelium.

Peaks 4 and 5 were lower and higher respectively in the 
mycelial extracts (Fig. 8.3).

3.2.3 Pre-Feeding with Unlabelled lOmM Lysine or Threonine

Both in control and infected leaves, pre-feeding with 
lOmM lysine was more inhibitory to aspartate uptake than 
pre-feeding with lOmM threonine (Table 7). Uptake by 
infected leaves was inhibited less than that in control
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leaves (Table 7) .

Labelling appeared greater in mycelium removed from the 
lysine treated leaves than in controls or those treated 
with threonine, although this increase was not significant 
(Table 8).

106



Table 3: Total radioactivity present in the soluble fraction of 
healthy and infected barley leaves, and in powdery 
mildew mycelium, at different times after feeding with 
^^C-aspartate (see text for details). Results are 
expressed as dps f wt (leaves) and dps per sample
(mycelium). Values are the means of 4 replicates + 
SEM. Significant differences at: p = 0.1 (*)

hours after treatment

2 4 8

control 4460 + 270 9720 + 1020 15960 ± 160
infected 5640 + 300* 8540 + 150 13270 ± 190*
infected (w) a 4570 ± 380 8790 ± 180 17190 ± 280
infected (wa)^ nd 8280 ± 210 12070 ± 300*

mycelium nd 40 ± 2 50 ± 6

Mycelium was removed from leaf surfaces before (w) or after 
(wa) feeding, nd = not determined.
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Table 4: Total radioactivity present in the insoluble fraction
of healthy and infected barley leaves, and in powdery

feeding
Results are expressed as dps g~

mildew mycelium, at different times after 14with ^^C-aspartate 
f wt (leaves) and dps per sample (mycelium).

hours after treatment

2 4 8

control 2820 11320 25950
infected 2580 11980 26100
infected (w) ^ nd 8060 nd
infected (wa)^ nd 8390 17830

mycelium nd 40 110

^ Mycelium was removed 
after (wa) feeding.

from leaf 
nd = not

' surfaces before 
determined.

(w) or

Ï
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Table 5: Labelled aspartate and metabolites as % of total soluble 
radioactivity following feeding of first leaves with 
^^C-aspartate for 2, 4 or 8h. Values are the means of 
2 replicates + SEM. Significant differences shown at: 
p = 0.1 (*); p = 0.05 (**).

hours after treatment

Aspartate
control 44.85 + 1.8 34.90 + 1.5 25.10 4- 0.4
infected 21.65 ± 1.9* 18.40 ± 0.5* 10.40 ± 0.1 **
infected (a)* 32,10 ± 2.9 26.30 + 0.7 17.05 i 0.35**
infected (b)* nd 18.20 0.4* 16.50 ± 0.1 **
mycelium (c)& nd 29.45 ± 3.3 33.30 + 1.4

Peak 3

control 22.75 ± 0.15 35.55 ± 2.4 43.25 ± 0.75
infected 33.35 + 2.4 50.30 + 1.8 58.15 i 2.9
infected (a) 26.65 t 0.75 44.20 + 1.5 44.55 + 5.3
infected (b)& nd 52.45 -f 0.65* 58.60 i 1.5 *
mycelium (c)* nd 18.95 4-0.05* 17.40 i 0.3 **

Peak 4

control 7.70 ± 0.9 6.55 ± 1.1 8.65 + 3.2
infected 8.40 ± 1.9 9.20 + 0.9 10.35 + 3.2
infected (a)& 7.40 + 0.9 7.40 ± 1.8 12.60 + 5.3
infected (b)* nd 7.95 ± 0.15 5.70 ± 1. 1
mycelium nd 5.35 + 0.15 4.25 ± 0.75

Peak 5

control 11.55 ± 0.25 9.45 ± 0.15 9.35 4" 0.15
infected 26.25 i 0.15** 12.10 ± 0.3 * 9.00 4“ 0.1
infected (a)* 20.25 dt 0.05** 11.15 ± 0.35 13.25 + 0.35*
infected (b)& nd 10.80 + 0.4 5.75 ± 0.35*
mycelium (c)* nd 11.00 + 1.2 12.50 4“ 1.7

(a) = inoculated - mycelium removed before feeding; (b) inoculated - 
mycelium removed after feeding? (c) mycelium removed from inf (b; 
leaves. nd = not determined.
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Fig. 8.1: Radio-TLC-analyser traces of extracts after one 
dimensional TLC in 2 solvent systems. a = control 
leaves 4h after feeding; b = infected leaves 4h after 
feeding [x axis = mm; y axis = dps].
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Pig. 8.2: Radio-TLC-analyser traces of extracts after
one dimensional TLC in 2 solvent systems. a = control 
leaves 4h after feeding (mycelium removed before 
feeding); b = infected leaves 4h after feeding (mycelium 
removed after feeding).
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Pig. 8.3: A comparison of the radioactivity in aspartate 
and metabolites in leaves infected with E. graminis, and 
in E. graminis mycelium removed from infected leaves 
after feeding with labelled aspartate for 4 or 8h. 
Significant differences shown as p = 0.1 (*) ; p = 0.05
(**); p = 0.01 (***).
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Table 6: Rf values of the main peaks of radioactivity 
in leaf and mycelial samples and of 
standards run in parallel.

peak Rf standard Rf

cystathionine 0.13
asparagine 0.20
lysine 0.20

2 0.23 aspartate 0.22
3 0.32 homoserine 0.33

threonine 0.34
4 0.43
5 0.63 methionine 0.65

isoleucine 0.76
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Table 7 : Total soluble radioactivity in barley leaves pre­
fed with water (control), 10 mM lysine or 10 mM 
threonine, for 2 hrs, and then fed with ^^C- 
aspartate for 4 hrs. Values are the mean of 4 
replicates + SEM. Significant differences shown 
as: p = 0.1 {*)? p = 0.05 (**); p = 0.01 (***).

Radioactivity dps g“  ̂ f wt

pre-treatment control infected

water 11070 ± 140 8120 + 800
lysine 6060 ± 410* 5460 + 180***
threonine 7560 + 100** 6520 + 520**
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Table 8: Total soluble radioactivity in mycelium, removed
from infected leaves pre-fed with water 
(control), 10 mM lysine or 10 mM threonine, 
for 2 hrs, and then fed with ^^C-aspartate for 4 
hrs. Values are the mean of 4 replicates + SEM. 
Differences not statistically significant.

pre-treatment radioactivity
(dps per sample)

water 129.9 ± 37
lysine 142.3 + 20
threonine 129.9 + 19
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3.3 Studies On Uptake Kinetics Using Isolated E. graminis 
Mycelium

3.3.1 Measurement of Optimum pH for the Uptake of Aspartate 
and Lysine

Uptake of aspartate and lysine by isolated powdery 
mildew mycelium was examined as described in 2.5.

Uptake of aspartate was greater at pH 4 and pH 7 
although differences in uptake over the pH range employed 
were not significant (Fig. 9.1), Uptake of lysine appeared 
to be somewhat greater at pH 4 and pH 9. These differences 
were not, however, significant. Homogenising medium 
adjusted to pH 7.0 was used for subsequent work.

It is interesting to note that uptake of lysine was 
greater than uptake of aspartate at all values of pH 
examined.

3.3.2 Time Course of Aspartate or Lysine Uptake

The rate of uptake of both aspartate and lysine 
increased initially to a constant level, at 3 0 minutes 
after the start of the experiment (Fig. 9.2).

The rate of uptake of lysine during the first 30 
minutes was, however, much greater and appeared to decrease 
between 120 and 240 minutes.

The level of uptake of lysine was much greater than 
that for aspartate.
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3.3.3 Measurement of Lysine Uptake at Different 
Concentrations

Lysine uptake was linear over the whole concentration 
range (0.005 - 100 mM) (Fig. 9.3). Re-calculation of the 
data to produce an Eadie-Hofstee plot showed that uptake 

was biphasic (Fig. 9.4). Values for and V,%ax'
determined by linear regression, were obtained for both 
systems (Table 9) . and V^^^ for system 1 were much
smaller than for system 2.

3.3.4 The Effects of Amines and a Metabolic Inhibitor on 
the Uptake of Lysine by Isolated E, graminis 
Mycelium

Lysine uptake decreased in the presence of putrescine 
and, especially, ornithine but was increased in the 
presence of arginine (Fig. 9,4). These differences were 
not significant.

Uptake was unaffected by the presence of ImM sodium 
azide.
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Fig. 9.1: Uptake of aspartate or lysine, by isolated E. 
graminis mycelium, at different pH values.
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Fig. 9.2: Time course of uptake of aspartate or lysine, 
by isolated E. graminis mycelium.
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Fig. 9.3; Effect of concentration on uptake of lysine 
by isolated E, graminis mycelium.
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Fig. 9.4; Eadie-Hofstee plots for lysine uptake by E.
graminis: showing lysine uptake versus lysine
uptake/lysine concentration, over the concentration 
range 0.005 - lOOmM.
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Table 9 : and V.max values for lysine uptake by E*

graminis. Values calculated by linear regression from 
Eadie-Hofstee plots.

System 1 System 2

Km %m ^max
(mM) (m mol h"^) (mM) (m mol h” )̂

Lysine 1.09 0.31 80.0 12.7

a

%
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Fig. 9.5* Uptake of lysine by isolated E* gramlnls 
mycelium in the presence of imM sodium azide, arginine, 
putrescine or ornithine. Differences not significant at
p = 0 .1 .
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3.4 Formation of Cadaverine Derivatives

3.4.1 Incorporation of ^^C-Lysine into Cadaverine 
Derivatives in Healthy and Mildewed Barley Leaves

The amount of radioactivity appearing in cadaverine and 
N , N ' - M s (3-aminopropyl) cadaverine (3APC) , a higher
homologue of cadaverine, was significantly reduced in 
leaves infected with E, graminis compared to healthy leaves 
of the same age (Table 10) . In contrast, labelling of 
aminopropylcadaverine (APC) was significantly increased in 
mildewed leaves. Addition of 3mM MGBG (a SAMdc inhibitor) 
and 3mM CHA (a spermidine synthase inhibitor) had no 
significant effect on labelling in either healthy or mildew 
infected leaves (Table 10) . However, treatment with the 

same inhibitors for 2h before addition of labelled lysine 
significantly reduced labelling of 3APC (to 10% and 11% of 
that found in the non-inhibitor treated healthy and mildew 
infected leaves respectively) (Table 11). APC, detected in 
the non-inhibitor treated healthy leaves was absent from 
those treated with inhibitor and from both treated and non­
treated infected leaves. No radioactivity appeared in 
cadaverine (Table 11).

Pre-treatment of healthy and infected leaves with 5mM 
each of DFMO/DFMA reduced labelling of 3APC to 53% and 50% 
of the non-inhibitor treated leaves respectively (Table 
12). However, although label appeared in APC in the 
healthy leaves treated with DFMO/DFMA, this compound was 
absent from non-inhibitor treated healthy and infected
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leaves and from all other inhibitor treated samples (Table
12) .

When 5mM MGBG/5mM CHA was combined with 5mM DFM0/5mM 
DFMA, there was no labelling of cadaverine or either of its 
higher homologues. A similar result was obtained when 
leaves were pre-treated with 0.2mM AdoDato (a spermidine 
synthase inhibitor) + 5mM CHA (Table 12).

In preliminary work it was shown that labelling of 
3APC was much greater in inter-pustules than in pustule 
regions and labelling was significantly reduced in both 
inter-pustules and pustules when treated with 0.2mM AdoDato 
+ 5mM CHA (data not shown).

3.4.2 Incorporation of ^^C-Lysine into Cadaverine 
Derivatives in Isolated Mycelium of E, graminis

When isolated powdery mildew mycelium was fed with ^^C- 
lysine, some radioactivity appeared in APC but most of the 
label appeared in its higher homologue, 3APC (Table 13) . 
A similar situation was observed in vitro, when extracts of 
the mycelium were incubated with ^^C-lysine (Table 14) . 
Following pre-treatment with 2mM DFM0/2mM DFMA, labelling 
of 3APC was not significantly altered (Tables 13 & 14).
Pre-treatment with these inhibitors at 5mM also had no 
significant effect on the labelling of 3APC, although 
labelling of APC was significantly reduced (Table 15), 
Treatment with a combination of 5mM MGBG/5mM CHA and 5mM
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DFM0/5mM DFMA caused a reduction in labelling of 3 APC. 
Labelling of cadaverine and APC were not significantly 
altered. Exposure to 5mM MGBG/5mM CHA alone, as with 5mM 
DFM0/5mM DFMA alone, produced no significant effect on 
labelling of 3APC (Table 15) .

Interestingly, DFMO/DFMA used at 2mM or 5mM in vitro 
reduced LDC activity, although only the latter treatment 
was significant (Table 16). A similar result was obtained 
in vivo when mildew mycelium was incubated with 2mM 
DFM0/2MmM DFMA prior to the LDC assay (Table 17). 
Treatment with 5mM MGBG/5mM CHA produced no significant 
effect on LDC activity, although a combination of 
MGBG/CHA/DFMO/DFMA reduced enzyme activity (Table 18).

Labelling of 3APC in isolated mycelium increased with 
increasing molarity of DMTA (a spermine synthase inhibitor) 
(Table 19) . This increase was only significant at the 
highest molarity (lOmM) of the inhibitor used. LDC 
activity was not significantly altered over the range of 
inhibitor concentrations used (Table 20).
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Table 10: In vitro incorporation of ^^C-lysine into
cadaverine derivatives in extracts from healthy 
and mildewed first leaves of barley, ± MGBG and 
CHA. Values are the means of 5 replicates 
+SEM. Significant differences at: p = 0.1 (*);
p = 0.01 {***); p = 0.001 (****).

Treatment Radioactivity in polyamine ( d p m p r o t e i n )

CAD APC 3APC

control 0.68+0.20 2.84+0.79 32.50+1.00
3mM MGBG + 
3rtiM + CHA

0.32+0.08 3.43+0.92 30.56+3.70

infected 0.13+0.06* 7.02+0.49*** 12.76+1.20****

3rnM MGBG + 
3mM + CHA

0.16+0.04* 9.81+1.40*** 9.93+1.00****
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Table 11: In vitro incorporation of ^^C-lysine into
cadaverine derivatives in healthy and mildewed 
first leaves pre-fed with MGBG and CHA. Values 
are the means of 5 replicates +.SEM. 
Significant differences at: p = 0.001 (****).

Treatment Radioactivity in polyamine (dpm protein)

CAD APC 3APC

control nd 14.28+2,20 56.62+2.80
3mM MGBG + 
3mM+ CHA

nd nd 5,43+0,74****

infected nd nd 12.40+1.60****

3mM MGBG + 
3mM+ CHA

nd nd 1.32+0.37****

nd = not detected
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Table 12 : In vitro incorporation of ^^C-lysine into
cadaverine derivatives in extracts of healthy 
and mildewed barley leaves pre-treated with 
inhibitors for 2h. Values are the means of 5 
replicates + SEM. Significant differences at; 
p = 0.01 (***); p = 0.001 (****).

Treatment Radioactivity in polyamine (dpm g“  ̂protein)

CAD APC 3APC

control nd nd 81.68+6.11
+ 5mM DFM0/5mM DFMA nd 26.60+0.97 43.25+2.41***
+ 5mM DFMO/5mM DFMA
& 5mM MGBG/5tnM CHA nd nd nd

+ 0.2mM AdoDato/
5mM CHA nd nd nd

infected nd nd 20.24+1.75***1
+ 5mM DFMO/5mM DFMA nd nd 10.17+1.84***1
+ 5mM DFMO/5mM DFMA
& 5mM MGBG/5raM CHA nd nd nd

+ 0.2mM AdoDato/
5mM CHA nd nd nd

nd = not detected
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Table 13: In vivo incorporation of ^^C-lysine into
cadaverine derivatives in isolated mycelium of 
E, graminis, pre-fed with 2 mM DFMO and 2mM 
DFMA. Values are the means of 5 replicates ± 
SEM. Differences not significant.

Treatment Radioactivity in polyamine (dpm g~^ protein)

CAD APC 3APC

control nd 7.34+3.53 106.47+17.91

2raM DFMO 
+ 2mM DFMA

nd 11.96+5,16 94.19+12.86

nd = not detected
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Table 14: In vitro incorporation of ^^C-lysine into
cadaverine derivatives in extracts of E. 
graminis mycelium + DFMO and DFMA.
Values are the means of 5 replicates 
+ SEM. Differences not significant.

Treatment Radioactivity in polyamine (dpm g-1 protein)

CAD APC 3APC

control nd 19.9+5.3 176.8+32.4

2raM DFMO 
+ 2mM DFMA

nd 10.9+2.0 211.0+19.9

nd not detected
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Table 15: In vitro incorporation of ^^C-lysine into
cadaverine derivatives in extracts of E. 
graminis mycelium in the presence of
inhibitors. Values are the means of 5 
replicates + SEM. Significant differences at: 
p = 0.1 (*); p = 0.05 (**).

Treatment Radioactivity in polyamine (dpm̂ tg"̂  protein)

CAD APC 3APC

control 0.38+0,04 1.66+0.18 46.17+3.32
5mM MGBG/5mM CHA 0.27+0.09 
+ 5mM DFMO/5mM DFMA

1.35+0.32 33.87+2.45**

5mM MGBG/5mM CHA 0.36+0.05 1.36+0.27 41.21+5.30
5mM DFMO/5mM DFMA 0.19+0.11 0.86+0.21* 42.37+3.90
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Table 16; In. vitro lysine decarboxylase activity in extracts 
of isolated E, graminis mycelium in the presence 
of DFMO/DFMA. Values are the means of 5 
replicates + SEM. Significant differences at; 
p=0.1 (*).

Treatment
9

enzyme activity 
imol COg mg protein"^ h” )̂

control 0.73+0.23
2mM DFMO + 2mM DFMA 0,52+0.08
5mM DFMO + 2mM DFMA 0.45+0.07*
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Table 17 ; In vivo lysine decarboxylase activity in extracts 
from isolated E. graminis mycelium pre-treated 
with DFMO/DFMA. Values are the means of 5 
replicates + SEM. Significant differences at: p 
= 0.05 (**).

Treatment enzyme activity 
{^mol COg mg protein”  ̂h” )̂

control

2mM DFMO + 2mM DFMA

1.19 + 0.26

0.81 + 0.25
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Table 18: In vivo lysine decarboxylase activity in isolated 
E. gramlnls mycelium in the presence of various 
inhibitor combinations. Values are the means of 
5 replicates + SEM. Differences not significant.

Treatment enzyme activity
(yumol COg mg protein”  ̂h"^)

control 0,60+0.13

SmM MGBG/5mM CHA 0.32+0.08
+ 5mM DFM0/5mM DFMA
5mM MGBG/5mM CHA 0.57+0.02
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Table 19: In vitro incorporation of ^^C-lysine into
cadaverine derivatives in extracts of E. 
graminis mycelium + DMTA. Values are the 
means of 5 replicates + SEM. Significant 
differences at: p=0.1 ( * ).: p=0.05 (**);
p=0.001 (****).

Treatment Radioactivity in poly amine (dpm jiAg protein)

CAD APC 3APC

control 0.47+0.55 17.68+8.26 124.69+22.23

2mM DMTA 1.34+0.35** 17.31+8.73 133.99+22.63
5mM DMTA 2.15+0.12**** 13.60+8.80 146.73+17.52

lOmM DMTA 1.46+0.00** 8.00+2.24* 160.60+30.10
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Table 20: Lysine decarboxylase activity in extracts of
isolated E. graminis mycelium in the presence 
of DMTA. Values are the means of 5 
replicates + SEM. Differences not significant.

Treatment
(yLimol

enzyme activity 
COg mg protein”  ̂ h ^)

control 0.63+0.25
2mM DMTA 0.64+0.21
5mM DMTA 0.68+0.14

lOmM DMTA 0.59+0.14
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4. DISCUSSION

4.1 Lysine And Enzymes Of Lysine Biosynthesis.

The enhanced activity of DAP decarboxylase in whole 
infected barley leaves early in the infection process (Fig,
7.1), confirmed by an examination of isolated chloroplasts 
(Fig. 7.3), may be due to an increased requirement for 
lysine either by the leaf or by the developing fungus. 
Indeed, the level of soluble lysine in these leaves was 
increased at 3 DAI (Fig. 6.1). This is in agreement with 
the work of Sadler and Shaw (1980) who found increased 
lysine levels in the mycelium of the rust fungus Melampsora 
lini, on flax cotyledons and Jaeger and Reisener (1969) who 
found that lysine accumulated in pustules of Puccinia 
graminis on wheat leaves. Also, labelled lysine or its 
metabolites were transferred from Phaseolus vulgaris to 
haustoria and then to intercellular hyphae of Uromyces 
phaseoli (Mendgen, 1979). In rust-infected bean however, 
there were no major fluctuations in free and bound lysine 
during the early stages of infection with rust (Raggi, 
1974), although there were increases in free lysine during 
primary and secondary sporulation on rusted pinto bean 
leaves and, at flecking, free lysine was decreased in the 
areas immediately around pustules (Raggi, 1974) , In the 
present study, the levels of both soluble and bound lysine 
were decreased in whole infected leaves by 6 DAI (Fig. 6.1,
6.2). DAP activity in whole infected leaves was not 
significantly different from controls at this time,
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although enzyme activity was decreased in chloroplasts. 
Subsequently, DAP decarboxylase activity was significantly 
greater within the inter-pustule regions than in pustules 
(Fig, 7.2). The lower DAP decarboxylase activity in 
pustules may be due to the breakdown in chloroplast 
function within these regions. Indeed, it is well known 
that there is a loss of chloroplast polysomes as early as 
24h after inoculation of leaves with powdery mildew and 
that chloroplast disintegration occurs later in infection 
(e.g. Dyer & Scott, 1972; Callow, 1983; Magyarosy et al., 
1976). This is in contrast to brown rust of barley, where 
chloroplast integrity was not greatly affected within 
pustules (Ahmad et al., 1983; Scholes and Farrar, 1986), 
Mills at al. (1980) have shown that the enzymes of lysine
biosynthesis are located within the chloroplast in green 
plants and evidence of loss of chlorophyll from individual 
chloroplasts, decrease in chloroplast volume and decrease 
in the ratio of chlorophyll a:b have been shown to occur in 
rust pustules on bluebell leaves (Scholes and Farrar, 
1985) . These differences were evident by the pre- 
sporulation stage, when chlorophyll in the pustule areas 
was 54% of the control value and changes in chlorophyll 
fluorescence, suggesting impairment of non-cyclic electron 
transport and chloroplast integrity, were also observed. 
Although it can be speculated that -these changes may be due 
to, for example, a diffusible toxin as suggested for 
powdery mildew infection of peas (Aked and Hall, l&93b),
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there may be a more straightforward explanation. Thus, 
Scholes (1992) suggests that, in powdery mildew infected 
barley, the decrease in the rate of photosynthesis occurs 
primarily as a result of an accumulation of carbohydrates, 
following an increase in invertase activity. The 
subsequent reduction in activity of the Calvin cycle 
enzymes down-regUlates electron transfer. Thus, the mildew 
does not affect photosynthesis by producing a toxin, but by 
altering source/sink relations in the infected leaf.

The increased respiration seen during infection 
requires a greater proportion of photosynthate (Ayres, 
1976) . This may mean a diversion of precursors away from 
the lysine pathway. It may also be that more of the 
precursors of this pathway are diverted to the other 
branches to form threonine, methionine or isoleucine, since 
lysine can inhibit the formation of these amino acids (for 
example: Henke and Wilson, 1974; Henke et al., 1974;
Bright et al., 1978; Matthews and Widholm, 1979). Such 
changes may contribute to the reduction in lysine 
concentration in mildewed leaves.

The reduced activity of DHDPS, the first enzyme unique 
to lysine biosynthesis, in both whole infected leaves (Fig.
7.4) and in isolated chloroplasts (Fig. 7.6), throughout 
the course of the infection, suggests differential effects 
of infection on these two chloroplast localised enzymes 
(i.e. DHDPS & DAP decarboxylase). DHDPS is regulated by 

lysine (e.g. Cheshire and Miflin, 1975; Negruitiu et al.,
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1984; Ghislain et al., 1990) and although the level of 
soluble lysine in these leaves was greater at 3 DAI, both 
soluble and bound lysine were reduced thereafter, as 
previously stated. Thus, regulation by lysine is not 
responsible for this effect. In fact, increased activity 
of this enzyme might be expected because of the reduction 
in lysine levels. As with DAP decarboxylase, this reduced 
activity may be due to changes in the integrity of the 
chloroplasts (although it should be noted that activity was 
greater in inter-pustule regions than in pustules or 
healthy leaves at 6 & 9 DAI) . For example, in powdery 
mildew of beet, activity of some of the enzymes involved in 
organic acid synthesis (which occurs in chloroplasts) was 
reduced while, at the same time, the relative amounts of 
amino acids increased (Magyarosy et al., 1976). It is most 
likely that lysine is taken up from the leaf by fungi 
(Jaeger and Reisener, 1969; Mendgen, 1979) and Sadler and 
Shaw (1980) have suggested that the increased production of 
lysine seen in rust infected flax may provide this amino 
acid for fungal uptake. This lysine might become bound 
within the fungus (eg. in proteins) or be dispersed (eg, 
spores). The levels of both soluble and bound lysine in 
pustules was lower than in inter-pustule regions at 9 DAI 
(Fig. 6.3), coincident with sporulation.

The observed reduction in lysine decarboxylase (LDC) 
activity, seen in whole infected leaves (3-9 DAI) (Fig. 
7.7), which is consistent both with the reduced labelling
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of cadaverine and its aminopropyl derivatives seen at 9 DAI 
(Section 3,4) and the reduction in free and bound lysine 
already discussed, is not due to reduced activity of the 
enzyme in chloroplasts since activity in these organelles 
was increased at this time (Fig, 7.9), Activity in 
chloroplasts isolated from pustules at 9 DAI was reduced 
(Fig. 7.10), probably due to the previously observed 
reduction in chloroplast integrity within powdery mildew 
pustules. However, activity in chloroplasts from inter­
pustules at this time remained higher than in healthy 
leaves. Since LDC is not thought to be found only in 
chloroplasts, it may be that this anomalous situation is 
due to reduced activity of the enzyme outwith the 
chloroplast. This could perhaps cause a stimulation of 
activity in chloroplasts and may point to some association 
between the separate locations of this enyzme.

It is also seen from Section 3.4 that the assay used is 
not specific for LDC and may also measure ODC activity. 
ODC can catalyse the conversion of lysine to cadaverine, 
albeit very weakly (Janne et al., 1981). Nevertheless, 
since ODC is thought to be associated with DNA (Galston & 
Kaur-Sawhney, 1990), it is possible that the reduction seen 
in whole leaves is due more to reduced activity of this 
enzyme. If the increase in LDC seen in chloroplasts is not 
sufficient to compensate for this reduction then, overall, 
a reduction in activity would be seen (Fig. 7.8).
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DHDPS and DAP decarboxylase are enzymes of lysine 
biosynthesis in healthy plants. However, the powdery 
mildew fungus, like most fungi except Oomycetes, is thought 
to synthesise lysine using enzymes of the AAA pathway. The 
activity of saccharopine dehydrogenase, one of the enzymes 
of this pathway, in powdery mildew-infected barley leaves 
(Table 2) was no different from healthy leaves until 9 DAI, 
when activity increased. In direct contrast to DHDPS (Fig.
7.5) and DAP decarboxylase (Fig. 7.2), this effective 
increase in activity was located in the pustules. This was 
almost certainly due to the presence of the fungal 
mycelium, since activity in isolated mycelium was greater 
than in mildewed leaves. The increased activity was not 
due to an increase in the level of lysine, the substrate,
but may have been due to a reduction in the levels of
saccharopine or AAA, causing release of feedback 
inhibition. Also, if there is a requirement for either of 
these compounds by the fungus, especially during 
sporulation, then the activity of these enzymes might be 
expected to remain high, or to increase at this time. It
is possible that lysine taken up from the leaves is used in
the production of proteins and the excess degraded to 
saccharopine or AAA, which may be required by the fungus or 
may be used in some other metabolic process. The reduced 
activity of saccharopine dehydrogenase in infected leaves 
12 DAI may reflect both damage to the leaf and to a loss of 
activity of the fungal enzymes. This latter effect may be 
due to reduced availability of the substrate (lysine) or to
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a reduced requirement for these compounds at this stage in 
the infection. Thus the level of lysine in these leaves 
would be reduced and since the DAP pathway enzymes may be 
damaged by the breakdown of chloroplasts at this stage of 
infection, then less or no new lysine would be synthesised.

It is interesting to note that, although AAA reductase 
(Table 1) and saccharopine dehydrogenase (Table 2) 
activities in infected leaves were similar, the activity of 
AAA reductase in isolated mycelium (Table 1) was much 
greater than the activity of saccharopine dehydrogenase in 
this tissue. The lack of activity of AAA reductase in non­
infected leaves thus suggests that this enzyme is only 
found in the fungal mycelium. In contrast, saccharopine 
dehydrogenase activity was detected in healthy barley 
leaves. Interestingly, although biodegradative
saccharopine dehydrogenase activity is known to occur in 
barley, some evidence has been published for the 
biosynthetic activity of this enzyme in green tissue 
(Holler, 1976b).

Light is involved as a catalyst in some enzyme 
reactions (Buchanan, Hutcheson, Magyarosy and Montalbini, 
1981) . Thus, light regulates the reductive pentose 
phosphate pathway cycle at a number of key points which may 
be rate limiting. Changes seen are in the concentration of 
H"̂  and Mg^^ ions, the redox state of, for example, 
thioredoxins, and increases in the concentration of

152



metabolites which change enzyme activity (ATP and NADPH). 
These changes caused by light are reversed in the dark, so 
that photosynthetic and biosynthetic enzymes are active 

during the day and degradative enzymes are active at night. 
It may be, therefore, that some of the changes seen in 
mildew and rust pustules are due directly to changes in 
light levels at the surface of the leaf. Fungal mycelia 
are hyaline but presumably absorb or reflect some light 
(pustules look white to the naked eye, suggesting that all 
of the visible light striking these areas is reflected). 
Light is also involved in chlorophyll production (quality 
as well as quantity) . Shading by the mycelium may cause 
the switching off of the biosynthetic functions of these 
key enzymes and the switching on of their biodegradative 
functions. This would depend on the maintenance of the 
integrity of chloroplast, plasmalemma and tonoplast 
membranes. Accelerated senescence would be observed at the 
original site of infection, where primary sporulation would 
take place. At the same time, the fungus might grow into 
outlying regions and the same process could begin again. 
Reduced photosynthesis and biosynthesis in pustule regions 
might stimulate these processes in non-infected areas. The 
development of green-islands, which only takes place in 
detached leaves or late in infection when natural 
senescence is advanced, may be induced. The production of 
cytokinins either by the host or the fungus is thought to 
be involved in this phenomenon (Kiraly, El Hammady and 
Pozsar, 1967), although firm evidence is lacking.
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similarly, greatly elevated polyamine concentrations are 
associated with green-islands on mildewed barley leaves 
(Coghlan and Walters, 1990). Green-island formation may 
allow the complete development of spores already initiated.

4.2 Uptake of ^^C-aspartate.

The uptake of ^^C-aspartate by both healthy and 
infected leaves increased with time (Table 3). The 
increased uptake of aspartate by infected leaves at 2h was 
probably the result of the active metabolic sink created by 
the presence of the rapidly growing fungus (Bushnell & Gay, 
1978). Indeed, removal of the fungal mycelium before 
feeding reduced uptake at this stage (Table 3) , although 
uptake increased in these leaves from 4h. Other workers 
have shown that powdery mildew haustoria continue to take 
up label even after the mycelium has been removed (Shaw & 
Samborski, 1956). At 4h and subsequently, aspartate uptake 
by infected leaves bearing mycelium was reduced (Table 3) . 
Since there was no difference in insoluble label (see 
Section 2.4) between control and infected leaves at 2, 4 or 
8h (Table 4) and all of the label had been taken up from 
the feed water by 8h (results not shown), the lower soluble 
counts (see Section 2.3) in infected leaves was not due to 
movement away from the soluble pool to the insoluble pool. 
This makes the reduction in soluble label in infected 
leaves at 8h (Table 3) difficult to explain. Nevertheless, 
there may have been a loss of label as ^^C-carbon dioxide
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(CO2)t due to spore release, fungal metabolism of aspartate 
or to altered leaf metabolism as a result of more general 
effects of the fungus. However, the increased label 
remaining in the infected leaves from which mycelium was 
removed before feeding seems to point to loss of label due 
to fungal metabolism rather than to the latter (Table 3).

4.2.1 Metabolism of ^^C-aspartate.

Metabolism of labelled aspartate appeared to take place 
faster in the infected leaves in that only 22% of the label 
found in these leaves after 2h was still present as 
aspartate in contrast to 45% in control leaves (Table 5) . 
In the infected leaves, much of the label had moved to peak 
3 (tentatively identified as homoserine and threonine 
[Table 6]) and peak 5 (as yet unidentified, but possibly a 
precursor of homoserine i.e. 2-aspartyl phosphate, or of 
threonine i.e. o-phospho-homoserine; or perhaps methionine 
[Table 6]). Mills et ai. (1980) showed that homoserine 
was the main product formed after feeding pea chloroplasts 

with ^^C-aspartate. Lysine, threonine and isoleucine, as 
well as alanine, asparagine and glutamate were formed in 
much smaller quantities. By 4h, only 18.5% of the label in 
infected leaves was in aspartate but there was still 3 5% 
in control leaves. There also appeared to be movement of 
label from peak 5 to peak 3 (Table 5) . Leaves from which 
the mycelium was removed before feeding contained 26% 
aspartate at 4h (Table 5), greater than in infected leaves
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with the mycelium still attached, but lower than in control 
leaves. This suggests that although the surface mycelium 
played some part in the increased metabolism of the 
labelled aspartate, there was still a residual effect on 
metabolism when this was removed.

The radio TLC profiles of extracts from infected 
leaves from which the mycelium was removed before (Fig. 
8.2a) and after feeding (Fig. 8.2b) were quite different. 
Where the mycelium was removed before feeding the profile 
resembled that of control leaves (Fig. 8.1a) but that for 
leaves where fungal mycelium was removed after feeding 
resembled that for infected leaves with mycelium still 
attached (Fig. 8.1b). This was true for all samples taken 
over the 4 - 8h period.

The distribution of label in infected leaves and in 
mycelium detached after feeding showed large differences as 
indicated by the two main peaks - aspartate (peak 2) and 
peak 3 in Fig. 8.3. There was much more ^'^C-aspartate (as 
% of soluble label) in the mycelium and, while the % label 

in aspartate in the infected leaves decreased with time, it 
remained relatively constant in the mycelium. The 
decreased aspartate in the infected leaves probably 
reflects both enhanced metabolism and fungal uptake. The 
aspartate in the fungus cannot be metabolised to lysine 
(Vogel, 1959) and probably becomes incorporated into 
protein only slowly. The amount of label in peak 3 (which
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may be homoserine and/or threonine) was lower in the 
mycelium, and again remained constant while it increased in 
the leaves. Since the fungus probably cannot make 
homoserine or threonine (Vogel, 1959), the presence of 
these amino acids in the mycelium relects uptake from the 
plant. Peaks 4 and 5 were lower and higher respectively in 
the mycelial extracts (Fig. 8.3). This selective uptake of 
amino acids has been shown to occur in rust on coltsfoot 
{Tussllago farfara L.) (Burrell & Lewis, 1977).

4.2.2 Pre-feeding With Unlabelled 10 mM Lysine Or
Threonine.

Pre-feeding with lysine or threonine has been shown to 
inhibit enzymes of the aspartate pathway (Mills et al., 
1980). It seemed that, both in control and infected leaves, 
pre-feeding with 10 mM lysine was more inhibitory to 
aspartate uptake than pre-feeding with 10 mM threonine 
(Table 7) . However, enzyme inhibition was lower in the 
infected leaves, possibly due to metabolites being removed 
from the leaves by the fungus, as suggested above, and 
would probably lower the enzyme inhibition to some extent. 

Although uptake of label in the infected leaves pre-fed 
with lysine was significantly lower than in those pre-fed 
with threonine, there was the opposite trend in the 
mycelial extracts (Table 8).
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4.3 Uptake Kinetics.

The values for lysine uptake in E, graminis (Table 
9) were found to be similar to those observed for the 
uptake of DFMO into barley seedlings (Walters and Kingham, 
1990) and putrescine and spermidine uptake into Saintpaulia 
petals (Bagni and Pistocchi, 1985) but were much higher 
than uptake of putrescine and spermidine by the plant 
pathogenic fungus F, culmorum (West and Walters, 1991). 
Further, the decreased uptake of lysine by isolated powdery 

mildew mycelium in the presence of putrescine and ornithine 
(Fig. 9.5) suggests that these compounds share an uptake 
system (or systems). In cultured human epithelial cell 
lines from kidney the inhibition of lysine uptake by 
arginine and ornithine was suggested to show the presence 
of a shared di-basic amino acid transport system (States, 
Foreman, Lee, Harris and Segal, 1987). There was a high 
affinity (low concentration) system and a low affinity 
(high concentration) system for uptake (States et al., 
1987). Similarly, in sugarcane cells there are at least 
two transport sites for arginine and lysine (Maretzki and 
Thom, 1970) . One has a high affinity for arginine and a 
low extracellular concentration but a second carrier system 
may function at higher arginine concentrations. In barley 
roots, where there are also two systems for the uptake of 
basic amino acids (Bright, Kueh and Rognes, 198 3) , uptake 
of lysine, arginine and ornithine was reduced in the roots 

of mutant plants which did not have the low concentration-

158



high affinity system. At the same time lysine uptake by 
leaves was unaffected in these mutants (Bright at al. , 
1983). Again, in Chromatinm vinosum (a purple
photosynthetic bacterium) it is suggested that there are 
two transport systems. One can transport either lysine or 
arginine while the second is specific for arginine (Young- 
Ae and Knaff, 1988). There was no co-transport of protons 
(H"̂ ) or sodium ions (Na+) and it is thought that transport 
may take place by an electrogenic uniport (Young-Ae and 
Knaff, 1988).

In contrast, in Saintpaulia petals, the stimulation of 
spermidine uptake by potassium ions (K̂ ) may be due to a 
co-transport mechanism (Pistocchi, Bagni and Creus, 1986). 
Lysine transport in Corynebacterium glutamicuia was highly 
specific, energy dependent and active, and there was 
exchange of intra- and extra-cellular lysine. Pores, which 
were thought to be used for lysine excretion and whose 
permeability depend on membrane structure, appeared to open 
when intra-cellular lysine concentrations increased (Luntz, 
Zhdanova and Bourd, 1986).

There was no reduction in uptake of lysine in the 
presence of arginine in powdery mildew mycelium (Fig. 9.5). 
In fact, there was a slight though not significant 
increase. In higher plants, Kinraide (1981) suggests, 
there are two amino acid transport channels. Channel two 
transports basic amino acids, with greatest affinity for 
arginine followed by lysine and then histidine. At the
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same time affinities for other amino acids in this channel 
are low. Channel one, on the other hand, is a general
transport system (Kinraide, 1981). In oat coleoptiles,
however, there are different mechanisms for the uptake of 
basic, neutral and acidic amino acids (Kinraide and 
Etherton, 1980). Here neutral amino acids are thought to
be co-transported with a proton and accumulation appears to
depend on both a change in pH and the electrical potential 
difference in protons. With acidic amino acids each 
molecule is associated with a cation and a proton. In this 
case accumulation only depends on the electrical potential 
difference. Since basic amino acids (e.g. ornithine, 
arginine, lysine) are permanently protonated they do not 
seem to be co-transported with an additional proton but 
'depend on the membrane potential component of the proton 
motive force' (Kinraide and Etherton, 1980).

In cultured tobacco cells lysine accumulated against a 
concentration gradient (Harrington and Henke, 1981), and 
uptake was biphasic. Interestingly, transport was 
stimulated by low pH and both systems were inhibited by 
respiratory inhibitors, unlike the uptake of both aspartate 
and lysine in powdery mildew mycelium (Table 9.1). Uptake 
of the basic amino acids, arginine and ornithine, was also 
pH dependent in Fusarium culmorum and took place most 

rapidly at acidic pH (West & Walters, 1991). In cultured 
tobacco cells. System I was only inhibited by basic amino 
acids and, to a lesser extent, sulphur amino acids while
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system II was inhibited by all of the amino acids tested 
(Harrington and Henke, 1981). Uptake of lysine does not 
appear to be an active process in powdery mildew since the 
metabolic inhibitor sodium azide did not affect uptake 
(Fig. 9.5). However, the rapid response of arginine and 
lysine transport in sugar cane cells to metabolic 
inhibitors shows that, in these cells, uptake requires 
energy (Maretzki and Thom, 1970) , as shown for 
Corynebacterium glutamicum (Luntz et al., 1986), 
Phosphorylation uncouplers were specially fast in 
inhibiting uptake in sugarcane cells, suggesting that ATP 
storage was limited and ATP unavailable unless it was being 
continuously reformed. In these cells both lysine and 
canavanine were poor inhibitors of arginine uptake* The 
lower inhibition of arginine uptake, compared with lysine, 
on pre-incubation with a metabolic inhibitor is further 
evidence of two separate transport sites for these amino 
acids in sugarcane cells (Maretzki and Thom, 197 0).

4.4 Formation of Cadaverine Derivatives.

4.4.1 In Barley Leaves.
/

The accepted route for the formation of polyamines is 
via aminopropyl transfer from decarboxylated s- 
adenosylmethionine (SamDC) (Fig. 5a). However, the 
existence of a second route which involves the formation of 
a Schiff base complex has been shown to occur in some
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bacteria and in the legume Lathyrus sativus (Srivenugopal 
and Adiga, 1980; in Tait, 1985) (Fig. 5b).

Reduced formation of aminopropyl derivatives of 
cadaverine following pre-treatment of barley leaves with 
CHA/MGBG (Table 11) and AdoDato/CHA (both inhibitors of 
spermidine synthase) (Table 12) suggests that the formation 
of these compounds takes place by the action of the 
aminopropyl transferases, although partial operation of the 
Schiff base complex route proposed by Tait (1985) cannot be 
ruled out. A similar situation was observed in a number of 
fungi, which appeared to form CAD and its higher 

derivatives via both routes (Zarb and Walters, 1993). This 
is unlike the results obtained by Hamana, Matsuzaki, Niitsu 
and Samejima (1989), where inhibition of the aminopropyl 
transferases had little effect on the formation of tri- and 
tetra-amines from putrescine in Agrobacterium species. It 
is suggested that these enzymes have a very narrow 
specificity (Goodman, Kiraly & Wood, 1986) . However, 
Matsuzaki et al. (1987) postulate that homospermine 
(aminopropylhomospermidine) may be formed from 
homospermidine by spermine synthase (Matsuzaki et al., 
1987). Also, aminopropyltransferases other than spermidine 
and spermine synthase are involved in the production of 
norspermidine and norspermine from 1,3-diaminopropane in 
some thermophilic Eubacteria and Archaebacteria (Hamana et 
al., 1989).

Pre-treatment of leaves with DFMO/DFMA (Table 12)
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substantially reduced (50%) the labelling of 3APC in both 
healthy and powdery mildew-infected leaves, although APC 
was also present in the healthy inhibitor treated leaves 
(Table 12), This suggests that the precursor, cadaverine, 
is formed by the action of ODC/ADC as well as by lysine 
decarboxylase, since these inhibitors should inhibit ODC 
and ADC activity. It should be noted however, that both 
DFMO and DFMA can be metabolised in plant tissue and this 
may result in incomplete inhibition of ODC and ADC.

Inhibition of ODC also inhibited production of 
cadaverine and its aminopropyl derivatives in Chinese 
hamster ovary cells (Holtta and Pohjanpelto, 1983). These 
authors suggested that cadaverine is formed from lysine by 
the action of ODC, which has been shown to catalyse this 
reaction in rat liver cells, although the affinity of the 
enzyme for ornithine is around one hundred times greater 
(Pegg and McGill, 1979; In Holtta and Pohjanpelto, 1983) . 
Again, in the filamentous fungus N. crassa, ODC activity 
was greatly enhanced (de-repressed) when ornithine was 
depleted (Paulus, Kiyono & Davis, 1982). Cadaverine and 
APC are produced from lysine, following decarboxylation by 
ODC, since mutants of this species without ODC activity 
cannot decarboxylate lysine (Paulus et ai., 1982). ODC 
catalysed the formation of cadaverine (in vitro) in 
polyamine depleted cells of E, coli and APC was synthesised 
from cadaverine, although (in vivo) the formation of APC 

was inhibited by ODC (Igarishi, Kashiwagi, Hamasaki, Miura,
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Kakegawa, Hirose and Matsuzaki, 1986), In contrast, the 
activity of ODC (in vivo) in tumour cells exposed to DFMO 
was greatly increased and DFMO appeared to act as a 
competitive inhibitor rather than as an irreversible 
inhibitor (Alhonen-Hongisto and Janne, 1980), The 
increased activity of the enzyme in these cells was thought 
to be due to stabilisation of the enzyme by DFMO, 
preventing proteolysis. Alhonen-Hongisto and Janne (1980) 
suggest that it may also be due to the depletion of 
putrescine and spermidine which may act as feedback 
inhibitors (Alhonen-Hongisto and Janne, 1980). Inhibition 
of ODC led to enhanced SAMdc activity in this case (Janne 
et al., 1981). When the phytopathological fungus, P. 
avenae, was grown in media amended with DFMO or DFMO/MGBG 
the concentrations of CAD, PUT and SPD were reduced 
significantly (Foster and Walters, 1990). Here, DFMO 
reduced ODC activity greatly and the activity of SAMdc was 
greatly enhanced. In addition, MGBG reduced ODC activity, 
which is in contrast to results seen with tumour cells, 
where activity of this enzyme was greatly increased when 
treated with this compound (Porter and Sufrin, 1986). This 
latter result may be due to stabilisation of ODC protein in 
these inhibitor treated cells (Janne, Alhonen-Hongisto, 
Nikula and Elo, 1985) as previously suggested with DFMO 
(Alhonen Hongisto and Janne, 19 80) . However, the 
inhibition of ADC and SAMdc, by ethylene, in pea seedlings 
led to an increase in lysine decarboxylase activity and

164



allowed accumulation of CAD (Icekson et al., 1986). These 
authors postulate that the observed increases compensate 
for the inhibition of the 'normal' route of polyamine 
biosynthesis.

4.4.2 In Powdery Mildew Mycelium.

Unlike the results obtained with leaves, treatment of 
mycelium with DFMO/DFMA had no significant effect on 
labelling of CAD and its aminopropyl derivatives (Tables 
13, 14 & 15). This was in spite of the fact that the
activity of LDC (or ODC) was reduced significantly in the 
presence of these inhibitors (Tables 16 & 17). Without the 
addition of DFMO/DFMA, MGBG/CHA had no effect on LDC 
activity (Table 18). Since MGBG/CHA also had no effect on 
labelling, it may be that the alternative Schiff base 
pathway is present in this fungus, unlike the situation in 
barley leaves. This is also unlike the results obtained by 
Zarb and Walters (1993; 1994) with a number of
phytopathological and mycorrhizal fungi. Here labelling 
was, in most species, reduced significantly by treatment 

with MGBG/CHA. Zarb and Walters (1993) suggest, however, 
that the remaining label may be due to the operation of the 
Schiff base route. The significant reduction in labelling 
observed in the presence of MGBG/CHA and DFMO/DFMA (Table 
15) , which was not observed with MGBG/CHA or DFMO/DFMA 
alone may be due to a non-specific effect of the combined 
inhibitors.
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Total labelling was increased in the presence of 
increasing concentrations of the spermine synthase 
inhibitor DMTA (Table 19). The increased labelling of 3APC 
in the presence of this inhibitor points to the activity of 
an aminopropyltransferase other than SPM synthase. It is 
interesting to note that there was no significant 
difference in the activity of LDC in the presence of DMTA 
(Table 20) .

5. CONCLUSIONS

Since plants and some pathogenic fungi have separate 
pathways for lysine biosynthesis, the specific inhibition 
of lysine biosynthesis in these fungi might provide a new 
approach to fungal control. However before this can be 
achieved, information on lysine metabolism in the host and 
fungus must be gained.

Results discussed in this thesis show that there are 
significant changes in the metabolism of aspartate and 
lysine in barley leaves infected with powdery mildew. 
Although there was greater uptake of labelled aspartate by 

infected leaves initially, uptake decreased thereafter. 
Metabolism of the labelled aspartate was greater in the 
infected leaves compared to controls, while in the fungus 
aspartate and homoserine were taken up from the leaves 
without further metabolism. Furthermore, the apparent 
inability to metabolise these compounds suggests that the
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diaminopimelic acid pathway for lysine biosynthesis is not 

present in the fungus. The early increase in DAP 
decarboxylase activity and soluble lysine may provide 
lysine for the rapidly growing fungus. This growing sink 
for nutrients could cause an increase in metabolism by 
releasing feedback inhibition of enzymes. For example, 
inhibition of aspartate uptake by lysine and threonine was 
reduced in infected leaves. This increased metabolism is 
especially apparent in the work done using labelled 
aspartate. An examination of the uptake of lysine and 
aspartate by powdery mildew mycelium showed that the fungus 
is apparently quite able to take up both of these 
compounds, even when isolated from the leaves.

The reductions in soluble and bound lysine by 6 days 
after inoculation (DAI) may be due to loss in fungal spores 
or metabolism by the fungus, as suggested for the loss of 
label seen during uptake of labelled aspartate. The 
activities of three enzymes of the DAP pathway (DHDPS, DAP 
decarboxylase and LDC) were also decreased in pustules by 9 

DAI and may be due to the documented loss of chloroplast 
integrity.

By contrast, the activity of two enzymes (saccharopine 
dehydrogenase and aminoadipic acid reductase), thought to 
be of fungal origin, were increased at 9 DAI. These enzymes 

may also be involved in lysine catabolism. Furthermore, it 
was demonstrated that the formation of CAD and its 
aminopropyl derivatives was very much lower in infected
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leaves, showing that the reductions in lysine levels in 
infected leaves are not due to increased cadaverine 
formation. However, this reduction in cadaverine formation 
may be due to the reduced levels of lysine in the infected 
leaves or to a reduced requirement for these compounds. 
This alternative pathway for the formation of polyamines is 
thought to be used mainly when there are insufficient 
'normal' polyamines (putrescine, spermidine, spermine) 
available. Since polyamine levels are known to increase in 
infected leaves (e.g. Walters, Wilson & Shuttleton, 1985; 
Walters & Wylie, 1986; Coghlan & Walters, 1990; 
Machatschke, Kamrowski, Moerschbacher & Reisener, 1990; 
Foster & Walters, 1990) , use of this pathway may not be 
required. Interestingly, a further alternative pathway for 
the formation of cadaverine derivatives, via Schiff base 
formation, may be present in the fungus.

This work confirms that the. DAP pathway of lysine 
biosynthesis is present in barley leaves, while the AAA 
pathway is present in the powdery mildew fungus. It has 
also shown that the fungus is capable of taking up both 
precursors and metabolites of lysine. Thus, although the 
fungus has the capacity to synthesise lysine, it may also 
require to take up lysine from the leaves for sustained 
growth and reproduction. At present, therefore, it is not 
clear whether specific inhibition of fungal lysine 
biosynthesis will be fungicidal. Before this can be 
determined, it will be necessary to ascertain whether the
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mildew synthesises most of its own lysine requirement.

6. FUTURE WORK.

The usual method for specifying and quantifying 
compounds required for fungal growth is by growing the 
fungus on modified medium lacking the compound under test, 
or by adding the radiolabelled compound to the medium and 
examining the biosynthetic products. It is also possible 
in the same way to look at the activity of enzymes and at 
enzyme induction. While biodegradative enzymes are 
inducible and biosynthetic enzymes are constitutive, they 
can be distinguished by the co-factors and redox conditions 
required for optimum activity. This relatively simple 
method cannot, unfortunately, be used with powdery mildews 
since there is at present no way that these can be grown 
axenically. A different approach must, therefore be tried, 
perhaps by injecting the labelled substrate into the 
infected leaves or by allowing it to be taken up by the 
isolated leaves. Removal of the mycelium or the pustules 
after a measured time would allow the metabolic products of 
the substrate to be determined and measured.

The latter method was used to examine the uptake and 
metabolism of labelled aspartate. It was not possible to 
show the exact products of aspartate metabolism in the 
leaves or fungus during the work on uptake of 
aspartate. This was due to the difficulty of finding a TLC
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system which effectively separated the metabolic products. 
The main problem lay in the co-chromatography of aspartate 
with lysine or lysine with homoserine and/or threonine, in 
most of the solvent systems used. A further range of 
solvent systems tried since the completion of this work, 
shows that it may indeed be possible to separate these 
products. For example, ethanol:2 8% ammonium hydroxide 
(80:20) separated all four compounds although homoserine 
and threonine ran very closely together. Running the same 
plate in butanol:acetic acid:water (4:1:1) in the second 
dimension might give better separation of these latter 
compounds. Methionine should also be separated using this 
system.

As an extension of the work done using labelled 
aspartate, the uptake of ^^C-lysine from infected leaves 
into the mycelium might give a measure of the fungal 

requirement for this amino acid. This might be more easily 
measured than the previous work since the potential number 
of compounds produced from lysine should be smaller. This 
could also, perhaps, give an indication of how lysine is 
used within the area infected by the fungus. For example, 
it might show that lysine is, âs has been suggested, 
removed from the leaves in spores or show if label is lost 
in the form of carbon dioxide. Preliminary unpublished 
work using labelled lysine has shown that there is a 
greater evolution of labelled carbon dioxide from infected 
leaves than from healthy leaves. It may also be that some
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of the lysine is degraded to saccharopine. Transamination 
of the saccharopine could, theoretically, yield glutamate 
by a reversal of reaction 7 (Fig. 2a) . Detection of 
labelled saccharopine and glutamate after feeding with 
labelled lysine would confirm this. Other amino acids 
might be produced by transamination of the glutamate thus 
formed. This may also help to explain the reduction in 
lysine levels in infected leaves.

The work done on cadaverine and its higher homologues 
has shown that, at 9 DAI, the synthesis of these compounds 
was very much reduced in infected leaves. At the same time 
lysine levels and the activities of two of the enzymes of 
the DAP pathway were reduced within powdery mildew 
pustules. It would be interesting to know if this 
reduction in the levels of APC and 3APC only occurs during 
sporulation or if this is also seen earlier in the course 
of infection. An examination of isolated pustules and 
inter-pustule regions, as has been carried out for DAP 
decarboxylase, DHDPS and LYS decarboxylase would be 

useful in determining whether these changes are generalised 
or localised within a specific area of the infected leaves. 

Preliminary work has already shown that labelling of 3APC 
was much greater in inter-pustule regions than in pustules. 
This is in spite of the fact that these reactions also 
occur in the mycelium of powdery mildew.
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APPENDIX

Chloroplast isolation Medium (Ahmad et al., 1983)

400 mM sucrose
50 mM Hepes (pH 8.0)
10 mM sodium chloride
1 mM magnesium chloride
1 mM EDTA

4.1 mM cysteine
0.25% BSA

1% PEG

Mycelium Homogenising Medium (Gregory, 1992)

50 mM Mes-BTP 
1.5 mM magnesium chloride 
2.0 mM EDTA 

5 mM glucose 
30 mM glycine betaine 
2% PEG

0.5% PVP
0.1% ESA
0.3% DTT
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Pig A 2 Lysine standard curve constructed using data 
obtained after performing the H u tz1er lysine assay 
described in Section 2 .2.1.4. Six replicates were used 
and the standard errors are shown.
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Pig B: Protein standard curve constructed following
protein assay (Section 2.1.5.) of known concentrations of 
bovine serum albumin (fraction V). Two replicates were 
used and the standard errors are shown.
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