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Abstract.

The work contained within this thesis describes the development of confocal laser 

scanning methods as applied to the study of blood vessel structure and receptor 

distribution. Prior to the start of the project there were no suitable techniques 

available for the study of 3D structure and spatial distribution of receptors which 

therefore necessitated the development of novel methods. The first phase of the work 

employed fluorescent DNA stains which provided an increased contrast and an ability 

to identify all cell types, number, orientation and viability within a living vascular 

wall. This nuclear staining method was then extended by introducing confocal 

analysis of myograph mounted arterial segments. The confocal method was 

successful in detecting areas of apparently disorganised smooth muscle cells within 

the wall of SHR basilar arteries. In addition, CLSM detected changes in the media of 

human arteries taken from cases of critical limb ischaemia and in the adventitia of 

mouse tail artery where the aib-adrenoceptor had been deleted.

Structm’al studies of the vascular wall required the use of image analysis methods 

for quantification and feature extraction. This required the development of novel 

methods specific for, CLSM-derived, 3D volumes of vascular sti'uctmo. A semi­

automated thresholding and segmentation algorithm (IMTS) was developed and 

tested. The imaging and segmentation phase of the research aided in the identification 

of problems associated with quantification of 3D volumetric structures.

Fluorescent-ligands can be used to identify high affinity binding sites within cells. 

A significant proportion of this thesis describes the development of fluorescence- 

binding using CLSM and image analysis. The results document the developmental 

work leading up to the construction of the first ‘specific’ binding curve to be 

performed on a single living cell. This paves the way for ligand-binding-type 

experiments on cells dissociated from biopsies or other small tissue samples.

Overall, the project has established the use of confocal microscopy for the study of 

blood vessel structure, function and receptor distribution. This thesis describes the 

key steps in the development of the techniques and hopefully serves as a guide to 

those interested in using confocal based methods for the study of blood vessels.
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?VI. Summary of results.

Chapter 1.

1. This thesis contains the developmental work which has resulted in the group of 

techniques which are generally referred to as confocal myography and 

fluorescent ligand binding.

2. Studies of agonist induced activity in wire myograph mounted vessel segments 

indicated that cells were active prior to stimulation and that rhythmic activity 

develops from an apparently uncoordinated initial contraction

3. Hoechst 33342 provided greater contrast than cytoplasmic stains and enabled 

the identification of cell type, axial position, number and orientation.

4. Ethidum related dyes (i.e. bromide and homodimer) are sensitive enough to 

detect free radical-induced cellular damage in the vascular endothelium.

5. Nuclear stains administered in-vivo up to 30mg/kg stained vascular 

endothelial cell nuclei and did not cross the blood brain barrier.

6 . H33342 did not alter the sensitivity of rat isolated mesenteric artery to 

noradrenaline.

7. NA-induced nuclei re-arrangement can be analysed, plotted and is consistent

;;

i

with the expected shortening (and bunching) of smooth muscle cells in a wire 

myograph system.

Chapter 2.

1. Confocal microscopy was evaluated as a tool for the study of vascular S

structure.

I
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2. Extracellular, cytoplasmic and nuclear stains were compared. The nuclear 

stains appeared to be the most appropriate for confocal microscopy studies of 

cellular arrangement.

3. Pressure myography and CLSM was used to build 3D models of cytoplasmic 

and nucleai' stained vessels under different transmural pressures.

4. During increases in tiansmural pressure the smooth muscle cell nuclei become 

longer and wider indicating that cells become longer and flatter.

5. WKY and SHR pressuiised segments revealed the presence of significant 

invaginations of the internal elastic lamina which are more prominent at low 

(i.e.<= 40mmHg) transmural pressures.

6 . Vector models provided simple visualisation for 3D volumetric data of nuclei.
.

7. CLSM revealed regions of disorganised smooth muscle cells in basilar arteries 

taken from SHR but not WKY animals.

8 . CLSM analysis of limb cutaneous arteries showed distal (ischaemic) arteries 

had fewer cells and reduced wall thickness than proximal segments.

9. A new method of segmentation, the iterative multi-level thiesholding 

segmentation (IMTS) was found to a reliable semi-automated method of nuclei 

extinction which will provide a basis for fuiiher development.

Chapter 3.

1. A novel fluorescent ligand (BODIPY FL-prazosin aka QAPB) was evaluated 

as a possible ligand for ai-adrenoceptors.

2. QAPB inhibited IP3 generation (pAi 7.78) and ^[H]-prazosin binding (pK, 8.9) 

with high affinity when tested versus recombinant aid-adrenoceptors.
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3. Functional studies of vascular tissues yielded pAg values of 8.25 (rat aorta) and

7.6 (rabbit saphenous arteiy).

4. QAPB (0.1 uM) caused a rightward shift of the noradrenaline concentration 

response curve in the rat vas deferens. In vas, responses to acetylcholine were 

unaffected by QAPB. Thus, QAPB exerts its action via blockade of ai~ 

adrenoceptors and is non-toxic.

5. QAPB-induced fluorescence was time- and concentration-dependent. Initial 

experiments revealed diffuse and clustered binding consistent with the 

expected distribution of receptors. QAPB binding (fluorescence) was 

inhibited by non-fluorescent antagonists. Ftowever, displacement of QAPB 

was difficult to achieve, presumably due to the high degree of inttacellular 

binding which occurs at high (i.e. >10nM) concentrations.

6 . Lowering the concentration of QAPB (0.4-1 OnM) and increasing the detector 

sensitivity enabled specific binding (K d 3.9nM) with characteristics similar to 

those of radioligand binding (K d  1.89nM). This result represents the first 

specific binding curve (and fluorescence Kd) to be calculated for a living cell 

at true equilibrium.

7. Image analysis enabled the calculation of the relative distribution of diffuse 

and clustered binding. Low level fluorescence (diffuse binding) accounted for 

41.2% of the total whilst high intensity (clustered) binding accounted for 

15.5%.

8 . 3D spatial analysis of >5nM QAPB binding in live cells using a Z-section 

viewer showed that binding was both intracellular and membrane bound.

Î



phenoxybenzamine (lOuM) respectively. Binding was consistent with the

9. QAPB (0.1 uM) binding to segments of blood vessels and anococcygeiis 

muscle was inhibited in the presence of YM12617 (lOuM) and

.
orientation of the smooth muscle and was both diffuse and clustered. 

Comparative studies of rat mesenteric and basilar arteries showed fewer

QAPB binding sites in the basilar arteiy.

10. Staining of transverse sections of blood vessels indicated that most QAPB 

binding occurs in the regions of the internal and external elastic lamina.

11. In conclusion, fluorescent ligands are an ideal way of obtaining information 

on the spatial distribution of receptors within living tissue and isolated cells. 

However, issues relating to the specificity of the fluo-ligand must be resolved 

prior to its use for either quantitative or qualitative purposes.

ft

Ï

Chapter 4.

1. A short case study of the mouse tail artery was undertaken to demonstrate the 

ways in which confocal studies can complement conventional pharmacological 

methods.

2. The a 2-antagonists delequaraine (pKs 6.02) and rauwolscine (pKa 6.33) 

exhibited low affinity versus noradrenaline.

3. The proposed aie-antagonist chloroethylclonidine (CEC) caused a slight 

rightward shift in the noradrenaline concentration response curve. In mice 

lacking the a ie -adrenoceptor the CEC induced shift was reduced indicating 

only a minor role for aie-adrenoceptors.
94



4. The potency order of the ai-agonists A86441 and phenylephrine (A86441 »  

phenylephrine) and the lack of effect of BMY7378 precludes the involvement

initial response to adrenergic neurotransmission since responses in aiB-

research..

Î

of the aiD-subtype and leaves the aiA-adrenoceptor subtype as the most likely 

subtype to be involved in the noradrenaline-induced response.

5. Electrical field stimulation indicated that the am-subtype may initiate the

!
knockout mouse were slower than those of the wild type.

I
6 . Confocal studies of the adventitia of the wild type and knockout mouse tail 

artery revealed a marked reduction (59%) in the number of adventitial cells 

present in the adventitia of the KO mouse tail artery.

7. CLSM studies of pressurised arteries revealed a heterogeneous orientation of ï 

medial smooth muscle cells.

8 . QAPB binding to mouse dissociated tail artery smooth muscle cells revealed 

both membrane bound and intracellular receptors. The FK d calculated from 

the specific QAPB-binding to a single living cell (2nM) is constant with other 

values obtained for aiA-adrenoceptor transfected cells in Prof. McGrath's 

group.
.s

9. In conclusion, the confocal-derived data supports the pharmacological findings
I

and gives greater confidence for the use of confocal methods in vascular
I .
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VII General Introduction.

Studies of vascular structure and function have yet to be unified by a single 

method or technique. There is no question that vascular structure is altered in many 

cardiovascular related diseases (such as hypertension and heart failui'e) and these will 

be discussed in the chapters that follow. There is also little doubt that a significant 

alteration in structure will have a subsequent impact on the normal fiinction of the 

diseased vessel. Despite the intense research into vascular mechanisms worldwide, 

we still know veiy little about the structure-function relationship. Classical 

histological studies have not advanced our laiowledge in the past twenty years.

Current histology textbooks still provide only the most basic description of the 

vascular wall. Even if it was possible to obtain the set of cells required to build a 

blood vessel it would certainly not be possible to find the insti'uctions on how to put 

them together, hideed, even the placement of the first two cells is not Icnown.

Perhaps then it is not surprising that the influence that structure has on function is not 

yet known, except in its most basic sense (eg. a damaged endothelium may cause 

impaired vasodilatation).

„>■

In my previous research project (MSc) I studied the participation of (%2- 

adrenoceptors in the response to sympathetic neuroeffector transmission in the rabbit 

isolated saphenous and plantaris veins. Briefly, it was found that ai-adrenoceptors 

can participate in the postjimctional response to neurotransmitters under certain 

conditions, namely in the presence of cocaine to block neuronal uptake. This raised 

the question of location of vascular a-adrenoceptors. Two possible conclusions were

VII
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reached from the study; i) Œz-adreuoceptors required prolonged activation or ii) (%2- 

adrenoceptors are located extrajunctionally. However, many questions were left 

unanswered, i) how are the adrenoceptor subtypes distributed throughout the vascular 

wall? ii) do smooth muscle cells express subtypes in equal quantities? iii) will 

noradrenaline (and other selective agonists) stimulate specific cell layers (i.e. 

asymmetry of responsiveness)?

For my PhD project I was given the task of determining the action of selective 

agonists at different depths within the vascular wall, in an attempt to answer some of 

the questions raised in the previous project. Fortunately, the development of wire and

arteries. Furthermore, the design of the myograph enabled them to be used in 

conjunction with a microscope thus offering a view of the vessel. However, the 

imaging was primarily for morphometric measurement of wall thickness (wire 

myograph) or gross functional response (pressure myograph measure of internal and

With the benefit of liindsight I realise now that the task I was given was hugely 

complicated and it has taken my research in a direction that I could not have predicted.

perfusion myographs made it possible to mount very small segments of resistance

external diameter coupled with wall thickness). These technologies therefore dictated 

that the following study would be performed on resistance arteries. Unfortimately, 

this meant leaving the rabbit saphenous and plantaris veins but the questions raised 

with these vessels are just as relevant (and perhaps even more so) in the resistance j';■■ÿ
:

vasculature.

What started out as an adrenoceptor related pharmacological project has



required the use of fluorescence and confocal microscopy, image analysis 

methods, 3D modelling, cell culture and the development of novel fluorescent ligands 

for adrenergic receptors.

This thesis sets out to describe in detail the development of methods which have 

become commonly used in Professor McGrath’s laboratory and is widely referred to 

as ‘confocal myography’. Chapter 1 introduces the problems briefly outlined above 

and suggests a method for staining and visualising ‘living’ myograph mounted 

segments of blood vessels. In addition this chapter introduces a novel cell viability 

assay for blood vessels and shows that these methods can also be applied to in-vivo 

preparations. Chapter 2 introduces the principles of confocal microscopy and details 

my search for the vital stains and conditions that could be used for the study of blood 

vessel structure. Chapter 2 also introduces the methods of image analysis and the 

problems associated with 3D quantification. Chapter 3 describes the work with 

fluorescent ligands, which can be used with other structural stains. This chapter 

describes the problems of maintaining drug selectivity while at the same time 

obtaining good hnages for analysis. Chapter 3 also presents the first published 

‘specific’ fluorescence binding curve performed on living cells. This technique will 

provide a means of determining receptor subtype on a single dissociated cell and will 

hopefully provide a direct answer to one of the questions previously raised. Chapter 4 

is a case study of the mouse tail artery. This chapter shows what information can be 

gained using a combination of confocal microscopy and myography (confocal 

myogi’aphy).



Chapter 1
The Development of Fluorescence Myography and the Use of 

Fluorescent Nuclear Stains.



Introduction

t

Blood Vessel Structure and Function

Current histology texts devote very little space to the description of vascular structure. 

In general, the main vessels (with the exception of the capillaries) are composed of 3 

‘tunics’. The tunica adventitia is the outer coating of cells, comprising mainly 

macrophage and fibrocyte cells. The adventitia also provides support for the 

postganglionic sympathetic neiwes that innervate some vessels and which terminate at 

the adventitia medial border in arteries and slightly deeper in the veins. The inner 

layer of endothelial cells (EC’s), which form the endothelium, are generally fiat cells 

which are in contact with the blood and are referred to as the tunica intima. Between 

the intima and adventitia is the tunica media. The media is composed of smooth 

muscle cells (SMCs), elastin and collagen fibres.

I

The arrangement and number of SMCs has become a focus of attention in the past 20 

years, stimulated by the discovery that medial thickness (and thus wall:lumen ratio) is 

altered in resistance vessels of hypertensive animals. Mulvany & Halpern (1977) 

reported a 23% increase in wall thiclcness in 3̂^̂ order branches of rat mesenteric arteiy 

taken fi'om spontaneously hypertensive rats (SHR’s) compared with their 

normotensive Wistar Koyoto (WKY) controls. This finding has been confirmed by 

many workers in recent years and is reviewed in several articles by Mulvany (see most 

recent 1999). It is beyond the scope of this thesis to review the recent literature 

regarding hypertension and the reader is encouraged to read the reviews by Mulvany 

et al. However, in a general sense it may be worth considering the ‘regular’



I
arrangement of vascular smooth muscle cells and the complex interactions that 

undoubtedly exist between the cells of the adventitia, media and intima.

Older histology texts state that the smooth muscle cells of arterioles are orientated 

circumferentially and spiral around the vessel lumen (Garvin 1965). Current 

loiowledge adds nothing to this description. In a review of the fine structui'e of 

vascular walls in mammals, Rhodin (1982) writes "Generally speaking, the muscle 

cells are arranged in a helical fashion around the vessel". The same author estimated 

the angle between the helical turn and the long axis of the mouse femoral artery to be 

around 3Qo. In large ’elastic' arteries the spiralling may vary from one layer to the next 

(Pease & Paule 1960). Moreover, the orientation of smooth muscle cells in the rat 

aorta changes from oblique to radial in the lathyritic vessel (Keech I960). Aalkjaer 

and Mulvany (1983) described the circumferentially orientated smooth muscle cell 

arrangement of resistance arteries of both rat and human.

There have been no studies which have focussed on the detailed arrangement of cells 

in the vascular wall. This is surprising given the intense research into the mechanisms 

of vascular remodelling which occurs in hypertension (Baumbach & Heistad 1989;

Haegerty et ah, 1993; Mulvany et ah, 1996). The debate over remodelling in the
;■

literature tends to centre around the cause of the increased media thickness. However, 

no attempts have been made to describe the organisation of smooth muscle cells in 

normal vessels.

The outer coating (tunica adventitia) of most blood vessels contain post-ganglionic 

sympathetic nerves which release neurotransmitters (noradrenaline, ATP and



neuropeptides) which act on the vascular smooth muscle cells (VSMCs) to cause 

constriction of the vessel. Falck-Hillarp and Glyoxylic acid staining reveals a plexus 

of nerves which appears to have no real pattern or organisation. However, these nerve 

stains are rarely visualised in combination with stains for the VSMC or cells in the

linked with the underlying VSMCs upon which the neurotransmitters act. Similarly 

the endothelium exerts control over VSMC and the cells make individual contact yet 

the general relationship is not known.

Ii

adjacent adventitia. It could be expected that the nerve plexus will be intimately

hi an early review of vascular structure and function Bmton (1954) concentrated on 

the relationship of elastic fibers and SMCs and largely ignored both endothelial cells

and any influence that nerves may play. In Ms review Burton suggested that the only 

important role the endothelium plays is in the closure (by nuclear swelling) of 

capillaries. While our knowledge of the various endothelium derived factors has been 

extended in recent years it is still not clear how the individual EC’s relate to the 

adjacent SMCs.

Bozler (1941) classified smooth muscle cells into two groups. ‘Multi-unif groups are 

activated by motor neurones and ‘visceral’ smooth muscle groups are intrinsically 

rhythmically active. Since the vascular wall can be innei-vated and can exhibit 

rhythmic contractions the possibility exists that two (or even more) functional groups 

of SMCs may exist. TMs has yet to be established.

Figure 1.1 shows a simplified schematic of the blood vessel wall. Generally, the 

vascular sympathetic nerves terminate at the adventitia medial border in arteries. The

I



Adventitia

Media

Intima
Lumen

Figure 1.1. Schematic diagram o f  the vascular wall showing varicose 
sympathetic nerves terminating at the adventitia-media border. 
Noradrenaline (NA) and perhaps ATP & NPY are released from the 
varicosities to cause vasoconstriction. Nitric oxide (NO) and endothelin can 
be released from the endothelial cells to cause vasodilation and 
vasoconstriction respectively. It is not possible to represent the receptor 
distribution for any o f  these molecules on the diagram.



Asymmetry o f responsiveness.

m

A
I
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adrenergic nerves depicted in the diagram release NA which acts on vascular a-

adrenoceptors to cause contraction. In many cases the P2x agonist ATP is a

cotransmitter with NA. Neuropeptide-Y is also present in some sympathetic nerves.
,

Nitric oxide (NO) is one of the many factors liberated by the endothelium and is 

presently one of the most widely studied vasodilators. The relatively unstable nature 

of NO and NA in the biophase might suggest that the outer layers of smooth muscle 

cells would be most sensitive to NA. However, this does not appear to be the case.

The asymmetry of responsiveness within the vascular wall is a little imderstood but 

well documented and important phenomenon. The iimer layers of smooth muscle of

the perfused rabbit ear artery are more sensitive to noradrenaline (NA) than the outer 

layers (De La Lande et al., 1967; Kalsner, 1972). Using heat damaged strips of sheep 

carotid arteiy, Graham and Keatinge (1972) showed that inner layers of SMCs were 

more responsive to vasoconstrictor hormones than the outer layers. The relative

contraction of inner and outer smooth muscle was later assessed by measuring 

shortening and direction of torque produced during contraction of helical strips of 

sheep carotid artery (Keatinge & Torrie, 1976). Techniques using silicone grease to 

restrict the access of drugs to adventitia or intimai surfaces were subsequently 

developed and provided fiuther evidence for asymmetry of response in strips of rabbit 

aorta (Pascual & Bevan, 1979; Pascual & Bevan 1980) and rings of rabbit ear artery 

(McCalden & Bevan, 1980). Such asymmetry has been demonstrated in isolated 

perfused rat mesenteric resistance arteries using on-line video analysis (Tesfamariam 

& Halpern, 1988).

,1
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Wire Myography

The study of small segments of resistance arteries was made possible by the 

development of the wire-myograph. This development was a major breakthrough and 

enabled the mechanical properties of vascular smooth muscle cells to be studied in- 

situ (Mulvany & Halpern 1976). Prior to this development smooth muscle cells were 

studied by visual means since it was not possible to tether individual cells between 

supports and tr ansducers. One such study of the arrangement of filaments in activated 

SMCs (using phase contrast and birefringence) suggested that intracellular filaments 

are arranged in a regular SD-pattern that reorganises on activation and in turn leads to 

shortening of the SMC (Fisher & Bagby 1977).

All of the above studies have concentrated on the application of the agonist to the 

inner (luminal) or outer (adventitial) surfaces of the preparation. Studying the activity 

of individual cells within the wall of a vessel requires that the tissue be visually 

inspected for changes in force development, circumferential length and/or resistance 

to flow. Present computerised techniques are capable of monitoring internal and 

external diameter but cannot determine how cell-cell interactions within the media 

brings about these changes.

T

A starting point for the present study was to develop a method that would enable the 

study of cell activation at different medial depths in response to a-adrenoceptor 

subtype selective and non-selective agonists.



Using wire myogi'aph mounted segments of rat mesenteric artery Mulvany and 

Halpern (1976) employed Nomarski interference microscopy to visualise smooth 

muscle cells in the media of an isolated vessel thus permitting measurement of cell 

length and width. The authors even report the visualisation of nuclei and 

mitochondria in certain cells. Apart from Mulvany’s group few, if any, papers have 

appeared that have used the wire myograph as a tool for visualisation of contraction. 

Most workers have used the myogi'aph simply to measure isometric force. In some 

cases morphological measurements of wall thickness have been made of mounted 

vessels (Mulvany & Halpern 1977).

It was therefore decided that, for the present project, wire myograph mounted 

segments of rat mesenteric arteiy would be used to study activation of cellular layers 

in response to a-agonists.

a-adrenoceptors in the vasculature.

Functional a-adrenoceptors (ARs) are found in most (but not all) blood vessels, a- 

adrenoceptors can be divided into two main classes; a  and p. Circulating adrenaline 

can stimulate a- and p-adrenoceptors while the neurotransmitter noradrenaline (NA) 

activates mainly ai-adrenoceptors. A fuller discussion of the various ai-adrenoceptor 

subtypes is given in chapter 3 of this volume.

ai-ARs are 7 transmembrane domain (7TM) G-protein coupled receptors (GPCR). 

Activation of the receptor causes activation of the G-protein, which causes an increase



It has been suggested that different oci-subtypes utilise different pools of Ca^”̂ in

media. This has yet to be established conclusively.

a-adrenoceptors play a crucial role in the function of both arteries and veins. The 

distribution of ai and aa-adrenoceptors varies widely in the vessels of the 

cardiovascular system. In our own lab we have studied vessels which range from

There are presently 4 main methods of determining degi ee of contraction/activation of 

VSMCs.

in inositol phospholipid hydrolysis. The resulting increased concenfration of IP3 

triggers the release of calcium from intracellular stores. The increased [Ca2+]i leads 

to contraction of vascular smooth muscle cells.

I
effecting their response (McGrath 1982). Therefore, a vessel with a mixed population

of functioning a%-adrenoceptors subtypes would be expected to display asymmetry of
■

responsiveness in cases where the subtypes are distributed unevenly throughout the

=1ii

being mainly a i (rabbit carotid artery, M. Nahagadeh PhD thesis) to mainly az (rabbit 

ear vein, Daly et al., 1988b). Between these two anatomical locations the mix of % to

a 2 in individual vessels is remarkably varied (Daly et al., 1988a).

In resistance sized arteries there have been several recent studies of a-AR subtype 

mediated vasoconstriction. The rat mesenteric arteiy appears to contain aiA & ocib 

adrenoceptor subtypes (Smith & McGrath 1996) and constricts strongly to 

noradrenaline in-vitro and in-vivo (figure 1.2 ).



Control
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Figure 1.2. In-situ rat mesenteric artery branches contracted with 
exogenously applied NA. the mesenteric arcade was exposed under 
anaesthesia (thiopentone Na) and immersed in Krebs solution. A standard 
monochrome camera was used to image the bifurcation prior to and during 
exposure to topical application o f  1 & 2mM noradrenaline.



i) Biochemical; Tissue levels of G-protein, fP3 etc. can be measured at set times 

during incubation with activators.

ii) Fluorimeti'y; Ca2 + indicators can be used to report [Ca2+]i in cells in the presence 

of activators. The signal can be detected by PMT devices or CCD cameras.

iii) Physiological; Isolated cells or tissue segments can be studied for their 

electrophysiological or mechanical response to activators.

iv) Molecular; Recent developments have enabled the measurement of DNA and

RNA synthesis in homogenised tissues. The amount of mRNA can be an indicator |

of receptor synthesis which in turn may be linlced to degree of cellular activation.

The eventual goal of the current research project is to establish a collection of 

methods that together will be able to report on the actions of agonists from a 3- 

dimensional perspective.

Unfortunately, there is no recognised method for studying cellular activation at
■

different depths within thick living' biological specimens. Ideally, a combination of

methods ii & iii would have the potential to answer questions regarding the Ï

asymmetric action of certain agonists.



The experiments in this chapter detail the search for a method of staining cells and 

detecting movement in response to pharmacological stimuli. An interesting use of 

cell-viability assays was also investigated. A significant portion of this chapter has 

been published in the Journal of Vascular Research (Daly et al., 1992) and was 

presented in both poster and oral form at the International Symposium on Resistance
- I

Aiteries (ISRA3, Rebild, Denmark, 1991).

ÏÎ
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Methods.

by washing) a variety of known vasoconstrictors were added to the bath (KCl 30mM; 

NA luM; a, p, mATP 3uM).

10

Male Wistar rats (250-300g) were killed by stunning followed by exsanguination. 

Branches of rat mesenteric artery (RMA; 3"̂  ̂ order) and segments of rat aorta were 

isolated and cleared of comiective tissue for subsequent in-vitro staining. Male Wistar 

rats were prepared for in-vivo study as described below.

i

Phase Contrast Studies o f Vasoconstriction.
.

Segments of RMA were mounted on a wire myograph and normalised at 

Li=0.9Li00 (Mulvany & Halpern 1977). Using a x40 Zeiss water immersion 

objective the wall of the vessel (including the supporting 40um wire) was brought into 

focus. The vessel was then sti’etched by 20um to observe the change in wall
.j:: .

morphology. After an initial ‘sighting concentration’ (noradrenaline lOuM followed

In a separate series of experiments the centre of the vessel (top surface) was focused. 

Phase contrast optics permitted the discrimination of adventitia and smooth muscle. 

Therefore, it was possible to focus past the adventitia and into the media. The 

movement of the cells was video taped prior to and during application of NA (luM) to 

initiate rhythmic activity. In some experiments prazosin (lOnM) was used to block 

rhythmic activity.

o!3



Fluorescent Staining procedures.

The use of fluorescent markers was investigated with the purpose of providing a 

greater degree of contrast between cellular structures and extracellular matrix. The 

dyes used were Hoescht 33342 (Bisbenzimide) 5ug/ml (Sigma) , Ethidium Bromide 

5ug/ml (Sigma) and Ethidium Homodimer 4pM (Molecular Probes).

Two methods of staining were used, a) Extraluminally (in-vitro); Isolated tissues 

were incubated in Krebs' solution containing dyes for 20-30 minutes at room 

temperatuie or 15 minutes at 37®C. b) Intraluminally (in-vivo); Wistar rats were 

anaesthetised (i.p. injection) with Thiopentone Na (120mg/kg). Dyes were then 

administered via a cannula in the left jugular vein. After 15-45 minutes (depending on 

the amount of staining required) the animals were sacrificed and the tissues (vessels) 

of interest were quickly removed and placed in fresh Krebs solution.

In-Vitro toxicity tests.

To identify any toxic effects of H33342 in RMA, cumulative concentration response 

cuiwes (CCRC) to NA (lOnM - lOuM) were performed in the presence and absence of 

H33342 (5ug/ml). After an initial sighting concentration to NA (lOuM), a CCRC to 

NA was constructed. After washing RMA segments were incubated with H33342 for 

45 minutes prior to construction of a second CCRC to NA.

Free radical generation and cell-viability assays
:

Segments of rat mesenteric artery were used to determine the sensitivity of the cell- 

viability assay. Segments were subjected to incubation with hypoxanthine (ImM; HO) 

and xanthine oxidase (0.025 units specific activity/ml; XO) along with the nuclear

11



stains H33342 and ethidium homodimer for 45 minutes. These experiments were 

performed in 1ml aliquot vials. Following incubation, vessel segments were removed 

to fresh Kreb’s for immediate viewing (unfixed) under fluorescence.

Collection o f Fluorescence Micrographs.

Stained vessels were mounted (unfixed) on glass microscope slides. A central square 

well was created on the slide using thin streaks of silicone grease. The vessel segment 

was placed in the well and covered with fresh Krebs solution. A number 1 coverslip 

was then placed over the vessel and was gently pressed down to hold the sample in 

position.

A Zeiss Axiophot fitted with a 35mm camera was used to photograph the vessels 

under different excitation wavelengths. Filter blocks for UV (Ex. 364nm; LP 

>400nm), Fluoresceine (Ex. 488nm; LP >515nm) and rhodamine (Ex. 529nm; LP 

610nm) were used to image Hoechst 33342, Calceine and Ethidium respectively. 

Exposure time was determined automatically by the camera system.

Image Analysis.

A standard Zeiss microscope fitted with an Hg light source and epi-fiuorescence 

assembly was used with filter sets for Floechst (Zeiss filter set 2, Excitation 365nm, 

Beam splitter 395nm, Long pass filter 420nm) and Rhodamine (Zeiss filter set 15, 

Excitation 546nm, Beam splitter 580mn, Long pass filter 590nm). The microscope 

was also fitted with a Panasonic camera (type WV CD 20).

Branches of rat mesenteric arteiy were mounted on a wire myograph and normalised 

at Li=0.9Li00 (Mulvany & Halpern 1977). Tissues were then stained extraluminally

12



before the whole myograph was placed on the stage of the microscope. A water 

immersion objective (x40/0.75) was used to focus discrete layers of cells within the 

upper wall of the vessel (see figure 1.11). Images obtained on the microscope were 

simultaneously captured on video tape and computer. The video recorder was a Pal u- 

matic model CR 606OE. The computer was a colour Macintosh Ilex with 8Mb of on 

board RAM fitted with an analog-digital 'Data capture' board. The 'public domain' 

software for thresholding and imaging was 'Image v l . l 6 '. This software reports the 

cartesian coordinates in pixels of any selected object (nucleus) on the screen. For each 

nucleus the x-y coordinates were recorded during movement on a frame by frame 

basis. This particular system does not provide an automated means of identifying the I
centre of a nucleus (more advanced object analysis routines are described in Chapter

2). For my initial experiments 1 was only concerned with the principle of the

technique and therefore I estimated the centre of the nuclei, based primarily on pixel 

intensity, before and after contraction. Clearly this manual method introduces a 

degree of error which was reduced by further developments outlined at the end of 

chapter 2  of this thesis.

The way in which vessels are mounted on an isomefric wire myograph causes 

accumulation of tissue between the wires during contraction of sufficient force (see 

discussion). I have concenfrated not on the overall movement of nuclei along the 

circular axis but on the average spacing of a group of cells (defined by their nuclei 

positions) relative to each other along the circular and longitudinal axis. 1 also 

calculated the average diagonal spacing between the nuclei of the selected group. To 

measure the change in nuclei spacing during contraction the method employed was as 

follows.

13



d) The average of spacing of the group of nuclei, ordered in this way , was then 

calculated as follows;

14

a) The video camera is oriented to show the vessel segment as it is on the myograph, 

with the circular smooth muscle running horizontally and the longitudinal axes of the 

vessel (lumen) running vertically. The computer will therefore display smooth 

muscle cell nuclei oriented along the computer screen x-axis.

b) A group of nuclei were selected for analysis prior to contraction. The arrangement 

of smooth muscle is such that groups of nuclei will generally be arranged in a rouglily 

diagonal distribution. The nucleus nearest the bottom of the screen is designated 

number 1 the next nearest in the longitudinal axis being number 2  and so on until all 

nuclei within the group are numbered . These numbers are not used in any calculation

and are for reference only.

c) The centre of each nucleus is estimated and a pointing device (mouse) used to 

label the centre and obtain screen coordinates in pixels. The positions of nuclei in 

the group were thus obtained and logged.

(i) Circular Spacing

The difference in the x-axis coordinates between nucleus 1&2, 2&3, 3&4 etc. was 

calculated by subtraction to give the circular spacing between each pair. The average 

circular spacing was thus calculated.

44



(ü) Longitudinal Spacing

calculated by subtraction to give the longitudinal spacing between each pair. The 

average longitudinal spacing was thus calculated.

(iii) Diagonal Spacing

'

%

The difference in the y-axis coordinates between nucleus 1&2 , 2&3, 3&4 etc. is

i

Î

By constructing right angled triangles between nucleus 1&2, 2&3, 3&4 etc. the

hypotenuse can be calculated from the Imown opposite and adjacent (x and y
I

spacings) to give the diagonal spacing between each pair. The average diagonal
■

spacing was thus calculated. |

■

Points c and d are then repeated after contraction has reached a plateau and tire '
I

two data sets are compared.

.6

A fully automated system would ideally perform steps c and d continuously and in real
■4

time. . «
•s

'

Drugs and Solutions.
1

The composition of the Krebs-Henseleit solution was (mM): NaCl 118, KCl 4.7, |

CaCl2  2.5, MgSO4 :7 H2 0  1.2, NaHCO] 24.9, KH2 PO4  1,2, and glucose 11.1. The 

substances used were: Hoechst 33342 (Ex. 343nm, Em. 483nm) (Sigma), ethidium

bromide (Ex. 482, Em. 616) (Sigma), ethidium homodimer (Ex. 492, Em. 627) I
2

(Molecular Probes Inc.), noradrenaline (NA) (Sigma) & acetylcholine (ACh) (Sigma). 3

i
'I

15
A -

:



Results.

Phase Contrast.

After mounting on the wire myograph (figure 1.3a & 1.3b) a x40 water immersion 

objective was used to focus the wall of the vessel (figure 1.3c). The supporting wire, 

media and adventitia can be clearly discriminated. On activation with noradrenaline 

(NA; luM) the tissue becomes compressed causing thinning of the wall on the wire 

and also causing increased folding of the internal elastic lamina (figme 1.3d).

On all of the arteries studied the media appear ed to contain an area of high contrast 

which appears as a thin black line running down the centre of the media. Alteration in 

brightness and contrast were moderately successful at enhancing this feature (figure 

1.4).

KCl 50mM caused a visible thinning of the vessel wall (figure 1.4a).

NA luM caused a visible thimiing of the wall and disappearance of the central line of 

contrasting material (figure 1.4b).

a, P, mATP 3uM also caused a significant thinning of the wall which equated to 

300mg of force generation as measured on the wire myograph (figuie 1.4c).

These experiments show that the wire myograph is not 100% isometric and that 

contraction of vascular smooth muscle can be visualised.

16



a

b

Figure 1.3. Rat mesenteric artery segment mounted on a wire 
myograph, a) low magnification image showing the supporting 
wires and vessel segment in the space between the adjacent heads,
b) Higher magnification showing only the vessel segment, c) Using a 
water (x40 NA 0.75) immersion objective the supporting(lefl hand 
wire) and wall thickness can be imaged, d) The vessel region shown 
in c) during contraction to luM noradrenaline.



Figure 1.4. The effect o f  contractile agents on wall thickness o f  wire 
mounted segments o f  rat mesenteric artery, ai), hi) & ci) show 
arteries at rest, aii), bii) & cii) show arteries contracted with 50mM 
KCl, IpM NA & 3|iM a ,p , mATP repectively.



NA caused rhythmic activity to develop in certain arteries. Figure 1.5 shows one such 

example. The central point on the top surface of the mounted segment is brought into 

focus (x40 w/0.75). Prior to contraction, very slight vasomotion was observed under 

no active tone. As phasic activity continues the artery oscillates between two general 

arrangements (figure 1.5c&d). The smooth muscle cells (SMCs) appear to be 

arranged circumferentially around the artery. Focussing into deeper medial layers did 

not enable visualisation of inner layers of SMCs (figure 1.5b). During contraction to 

NA (luM) rhythmic activity developed and the folds of the internal elastic lamina 

became clearly defined. The lowest (figure 1.5c) and highest (figure 1.5d) forces of 

rhythmic contraction are shown.

Regardless of the focal position, degi'ee of stretch or activator used, it was not possible 

to achieve sufficient contrast to identify individual cells or cell layers. Therefore, a 

series of fluorescent vital stains were tested.

Fluorescent probes.

The molecular probes cell viability kit contains Calceine AM and ethidium bromide. 

Live cells will take up calceine AM after which esterase activity will cleave the AM to 

produce green fluorescence in the healthy cells. Etliidium bromide is a red nuclear 

stain which is excluded from live cells and will stain only the nuclei of permeablised 

cells. Figure 1.6 shows a representative example of a series of experiments. The 

artery was lifted in the middle using forceps prior to being incubated in EB & 

calceinAM. Subsequent analysis revealed the damaged areas adjacent to the live 

(gi'een) cells (figure 1.6a). Unfortunately, calceine fluorescence bleached quickly
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Figure 1.5. All four plates show a wire mounted segment o f  rat resistance 
artery viewed under bright field illumination, a) Immediately under the 
adventitia, smooth muscle cells are arranged circularly (top to bottom on the 
plate), b) focussing deeper into the media results in a loss o f  definition o f  
cellular structure, c) Focussing in the lumen reveals the folds o f  the 
internal elastic lamina, d) During contraction distance between the folds 
decreases as the tissue becomes compressed.



a

Figure 1.6. Results obtained using a standard cell viability assay on 
segments o f  rat isolated mesenteric arteries. Calceine AM is a vital stain 
which is taken up into living cells where esterases render it fluorescent 
producing green fluorescence in the cytoplasm. Ethidium Bromide is a 
nuclear stain which is cell impermeant and therefore will only stain nuclei o f  
non-viable cells, a) Shows an area o f  live (green) cells alongside an area o f  
forcep damaged (orange nuclei) cells, b) Shows a high magnification view  
o f  ‘live’ cells, c) A vessel with healthy media and damaged endothelial cell 
nuclei (see text for details)
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making prolonged study impossible. The contrast even in healthy cells was often not 

sufficient to resolve cell boundaries. Cells in inner layers of the media could not be 

visualised (figure 1.6b). Figure 1.6c shows the healthy (green) media and damaged 

(orange nuclei) of a fr ee radical treated vessel (described later).

Hoechst 33342 & Ethidium bromide.

H33342 is a lipophilic vital stain for DNA. Together with EB this combination 

should be able to distinguish viable from non-viable cells. H33342 will label ALL 

cell nuclei while other stains can be used which target specific cells/nuclei. Image 

subtraction can then be used to determine nuclear differences.

I
Extraluminal staining.

Branches of rat mesenteric artery were stained extraluminally with Hoechst 33342

(5pg/ml) and ethidium bromide (5pg/ml) for ISminutes at 37^C. Under fluorescence
.

using the Hoescht filter set only the nuclei of the various cells are visible (figure 1.7).

When the focus is only on the adventitia the cell nuclei are iiTegular or roughly round

in shape (figure 1.7a), this is consistent with the known shape of macrophage and 

fibroblast cells, which are the main cell types of the adventitial coat. We have 

observed that a proportion of the outermost cells take up ethidium and are presumably 

damaged during dissection. If the focus is set on the outermost smooth muscle the

adventitial nuclei fall out of focus but can still be identified (figure 1.7b). The smooth 

muscle cell nuclei however can be sharply focused (figme 1.7b) and these are

distinguished by their elongated shape. When the plane of focus is set on the luminal
.

surface the endothelial cells are sharply focused and the smooth muscle cell nuclei fall

I
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Figure 1.7. Fluorescent nuclear staining o f  rat mesenteric 
artery. The top panel (a) shows the image obtained when 
the focal plane is set within the adventitia. The lower panel 
(b) shows the smooth muscle cell nuclei o f  those cells 
immediately under the adventitia.



out of focus, the adventitial cell nuclei cannot be distinguished. The use of objectives 

>x25 with a numerical aperture of 0,75-1.00 does not permit simultaneous viewing of 

the adventitia, smooth muscle and endothelium. Thus focal plane and nuclear shape 

can be used to identify cell types and focal depth and therefore allow identification of 

discrete cell layers.

Cell Viability
Segments of RM A were incubated in H33342 & EB and visualised at xlO to show the 

general structure of the vessel (figure 1.8a&b) or the wall thickness and lumen 

diameter (figure 1.8d)

There appears to be no damage to smooth muscle cells during careful dissection of 

most blood vessels (figure 1.8a). If, however, forceps are used to hold the vessel, the 

area under the compression can be severely damaged (figure 1.8b&c). This technique 

is sensitive enough to show damage caused by less invasive methods, e.g. infusion of 

air (figure 1.8e), 'gentle intimai rubbing' (not shown) and exposure to fiee radicals 

(figure 1.9).

In a brief study of rat aorta it was found that the aortic wall is too thick to permit 

visualisation of the endothelial cell layer through the adventitial surface. Therefore, 

rings of aorta were cut open to permit viewing fiom the luminal surface (figure 1.8f). 

this technique is particularly well suited for studying endothelial cell arrangement.

Figure 1.9 demonstrates the greater selectivity (brightness relative to background) of 

ethidium homodimer (figure 1.9 b, c & d) compared with ethidium bromide (figme
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Figure 1.8. Segments o f  rat isolated rat mesenteric artery (RMA; a-e) 
and rat aorta (f) stained with Hoechst 33342 in combination with 
ethidium bromide, a) RMA showing damage (orange nuclei) in only the 
outermost cells o f  the adventitia, b) RMA showing damage o f  smooth 
muscle cells in the media following compression with forceps, c) High 
magnification view  o f  forcep damage to the medial smooth muscle, d) 
Focussing through to the lumen provides good enough contrast to 
measure wall thickness and lumen diameter, e) The passage o f  air 
through the lumen causes damage to the endothelial cells, indicated by 
the orange nuclei, f) Endothelial cell nuclei o f  the rat aorta



Figure 1.9 Free radical damage in four segments (a-d) o f  rat mesenteric 
artery. The images are from 4 different vessels. Nuclei o f  damaged cells 
are stained with (red) stain ethidium homodimer.



Figure 1.10. In-vivo staining using 30mg/Kg Hoechst 33342 (intravenously), 
a) Examination o f  the rat mesenteric arteries revealed good staining o f  the 
endothelial cell nuclei, b) Inspection o f  capillaries in the brain revealed much 
poorer staining although white blood cells where clearly visible within the 
lumen, c) Bright-field imaging o f  larger cerebral arteries showed the 
presence o f  red blood cells in the artery and its branches, d) Fluorescence 
microscopy showed good staining o f  the main arterial smooth muscle nuclei 
but an absence o f  stain in the branch.



Myograph Image A n a l y s i s

Mount ina Heads

7  '■

End El evat i on

w a ter  im m ers ion  
lens

Mounting w i r e

-7

Smo ot h m u s c l e  c e l l  nucle i

Figure 1.11. Schematic diagram o f  a nuclear stained segment o f  
rat mesenteric artery mounted for visualisation on a wire 
myograph.



Figure 1.12. Combination o f  brightfield images (a&c) and fluorescence 
images (H33342; b&d). a) shows the brightfield image obtained when 
focussed near the lumen where the supporting wire is clearly visible. 
The fluorescence image at the same plane o f  focus (b) shows the 
arrangement o f  smooth muscle cells at this depth, c) the brightfield 
image shows the general direction o f  smooth muscle in the layer 
immediately below the adventitia. The fluorescence image at this depth 
reveals a different smooth muscle cell layer. (40x water objective, NA  
0.75).
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Figure 1.13. The effect of H33342 on responses to noradrenaline in 
isolated segments of wire myograph mounted rat mesenteric artery. 
Filled symbols represent responses in the presence of FI33342. a) 
responses expressed as a percent of control (unfilled symbols) 
maximum, b) results expressed in mN force generated. Data points 
represent the mean+/- s.e.m of 4 experiments. there was no 
significant difference between stained and unstained tissues.



Figure 1.14. The plate shows the position o f  the outer layer o f  smooth 
muscle cells prior to (a) and during (b-f) contraction to 1 pM 
noradrenaline. The last image (f) required refocusing to show the nuclei 
which had fallen out o f  focus as a result o f  tissue bunching. The 
contraction lasts only a few seconds and images b-f are at different time 
points (chosen for clarity rather than being equally spaced in time). The 
entire sequence shows the movement o f  tissue towards the center (left - 
right) o f  the segment. (x40 water objective, NA 0.75).



Figure 1.15. The position o f  7 nuclei identified from the previous figure. 
The upper panel shows nuclei position at rest. The lower panel shows the 
result o f  contraction to IpM noradrenaline. The average circular, 
longitudinal and diagonal spacing were calculated as described (in methods 
page 15) and results are shown in the following figure.
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Figure 1.16. Shows the analysis of cellular movement shown in figures 
14 & 15. The top graph (a) shows the change in xy position of 7 cell 
nuclei from resting (open circles) to contracted positions (closed 
symbols). The lower graph (b) shows an analysis of the relative changes 
in circular (C) longitudmal (L) and diagonal (D) spacing, see methods 
section for a full description of the analysis method used.



1.9a). Rat mesenteric arteries were bathed in Krebs containing ethidium homodimer 

(4pM), hypoxanthine (HO, ImM) and xanthine oxidase (XO, 0.025 units specific 

activity/ml) for 45 minutes. Tliis combination of HO and XO has been shown to 

produce free oxygen radicals (Ytiehus et al., 1986) Examination under fluorescence 

of vessels ti’eated in this way showed that etliidium homodimer stained the nuclei of 

only the outermost adventitial cells and the endothelium, giving it the appearance of 

an 'inner-tube'. The absence of any stain in the media suggests that the h'ee radical 

treatment has selectively permeabilised the endothelium. The cells of the adventitia 

are damaged due to dissection. Furthermore, damage was not observed in E* order 

branches of the superior mesenteric artery, suggesting that ECs may be a 

heterogeneous population in the vasculature.

Intraluminal staining.

Rats were prepared as described above. Bolus injections of Hoechst 33342 (lOmg/kg) 

had no effect on either blood pressure or heart rate. Bolus injections of 30mg/kg, 

however, were obseiwed to cause accumulation of fluid in the trachea. Rats were 

therefore injected with 3 x lOmg/kg doses of Hoechst 33342 at 5 minute intei'vals 

which eliminated this. The rats were killed by exsanguination 5-40 minutes after the 

third injection. Subsequent inspection, under fluorescence, of branches of rat 

mesenteric artery revealed a selective staining of the endothelium (Figure 10a). 

Further experiments have shown the staining to be both time and concentration 

dependent. If the animals are killed 60 minutes after injection 3 substantial staining of 

the media is observed. If this time period is increased to two hours all cells within the 

vessel are well stained.
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Image analysis.

Nuclear staining facilitates tracking of cell positions during vasornotion and the dyes 

themselves do not interfere with contraction (figure 1.11 & 1.13). Light and electron 

microscopy studies have confrrmed the assumption that the nucleus remains central 

within the cell during contraction (Lance 1965; Gabella 1976). Therefore the

21

Analysis of a variety of blood vessels showed that 33342 accumulated in the lungs, 

probably due to the i.v. route delivering the stain to the lungs first. Interestingly, 

capillaries in brain slices of cortex showed much lighter staining compar ed with RMA 

from the same animal. Indeed, white blood cells stained much brighter than the 

endothelial cells in brain capillaries (figure 1 .10).

Staining o f large (thick walled) blood vessels.

Experiments were performed to investigate the effect of free radical generation on |

responses to exogenously applied NA and endothelium derived vasodilation in 

isolated rings (3-4mm in length) of rat aoifa. At the end of the experiment the rings 

were incubated in Krebs' containing Hoechst 33342 (5pg/ml) for 45 minutes at 37^C.

After washing in fresh Krebs' the rings were cut open and placed endothelial side up 

on slides. Under fluorescence the endothelial cell nuclei can be distinguished by their v

oval shape, their positions relative to the overlying smooth muscle and their focal 

position (i.e. on top) (Figure 1.8f). After exposure to hypoxanthine (HO, ImM) and |

xanthine oxidase (XO, 0.025 units specific activity/ml) for 45 minutes, causing the 

formation of free radicals, endothelial cell number is reduced (see Daly et ah, 1992 for 

full details).
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assumption is that the nucleus position is a reliable indicator of the cell position 

within the wall. Rings of rat mesenteric artery (149±10 pm normalised diameter) 

were mounted on a wire myograph and a layer of cells within the media was selected

(figure 1.12 & 1.14). The artery was then challenged with NA (IpM) and the average 

spacings (circular, longitudinal and diagonal) of the 7 nuclei before and during 

contraction were compared. Figure 1.15 shows the positions of the 7 nuclei during 

force development of 13.3mN. The positions of the nuclei before and during 

contraction can be plotted on a graph (figure 1.16a). During contraction circular and 

diagonal spacing between nuclei is decreased whereas longitudinal spacing is 

increased (figure 1.16b), as expected from a shortening and widening of the circular 

helically arranged smooth muscle cells.

y
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cells.
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Discussion.

Phase Contrast.

Vessels mounted on the wire myograph can be imaged using conventional 'white 

light' (bright field). Use of phase conti’ast optics provides further contrast and enables 

the identification of smooth muscle cell orientation. Image quality is similar to that 

obtained using the Nomarski interference method (Mulvany & Halpern., 1976).
:âl

However, unlike the Nomarski method it was not possible to resolve intracellular 

organelles including nuclei or mitochondria in any of the vessels studied. It should be 

noted that the Nomarski method does not enable detection of the organelles of all

Using bright field illumination (phase contrast) it is possible to make 

morphological measurements of wall thickness. It is possible to distinguish adventitia 

from media using this approach although determination of intimai thickness is 

difficult. Initial experiments showed that wall thickness could be measured before 

and during contraction with KCl and the agonists NA and a, (3, mATP. All tlrree
>■

agents caused a significant thinmng of the wall adjacent to the wires and presumably

bunching of the tissue in the centre of the vessel. The three vasoconstrictors appeared
,

to cause a uniform thinning of the wall and showed no 'visual' evidence of asymmetiic

agonism. Since it was not possible to distinguish individual cells in the wall

surrounding the wires, even after image processing it was decided to study the vessel

«between the wires from the top surface where the cells are presented for viewing as
I'

essentially a flat sheet.

Î  
:l
■i
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An unexpected property of the vessel wall was observed when viewing from the 

top. After normalisation and under no active tension visible vasomotion was
Ï

observed. The movement of VSM was very subtle, detectable, but did not cause a

■I
measurable degree of isometric force. Although no further investigation was made of

'I
this phenomenon this spontaneous activity may be the basis on which the greater

rhythmic activity obseived in response to luM of NA is based. If this is the case

dihydropyridine drugs may be expected to block this, Ca2+ channel, activity. i
%

Whatever the mechanism this phenomenon may be worthy of further study.

s
''s‘:

The tunica adventitia can easily be distinguished from the tunica media using
"'I:;::

phase contrast. The adventitia has a very disorganised 'swirly' appearance. Focusing 

through the adventitia reveals the media as an almost 'striated' layer of tissues.

Unfortunately, contrast is not sufficient to permit identification of individual cells.

The response to application of luM NA was fast and powerful. The vessel appears to 

twist on the wires in what seems to be an uncoordinated fashion which eventually

gives way to rhythmical contractions. The most notable feature of rhythmic activity is

the folding of the internal elastic lamina which can be clearly seen in figure 5. I' 

«Interestingly, prazosin (0.1 uM) effectively abolished the rhythmic contractions within 

2 minutes (not shown). This raises some interesting questions regarding the optimum 

incubation time required for such antagonists to reach equlibrium within a tissue and 4

to produce a maximum effect.

■y-

Overall, the results of these preliminary experiments proved that it is possible to
I

image vasoconstrictor response to various agonists in myograph mounted segments of 

arteries. While these studies revealed many interesting properties of the wall it was



Cell viability

I define cell viability as being the ability of a cell to survive in a normal culture 

medium, such as DMEM , which mimics extracellular fluid. Cell survival is wholly 

dependent on the maintenance of ionic gradients across the plasma membrane. Loss

25
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not possible to determine which (if any) cells were more sensitive to agonists or were 

responsible for the onset of rhytlimic/phasic activity (i.e. pacemakers). Therefore, a 

search for non-toxic, vital stains was undertaken in the hope of finding a suitable, 

contrast enhancing, stain that could be used on living myograph mounted vessels.

'I
Fluorescent nuclear stains

Nuclear fluorescent dyes have been used routinely by cell biologists for many
:

years to quantity cell numbers and screen out non-viable cells (i.e. those which would 

not survive in culture medium). The range of application of these dyes outwith cell 

culture has not been appreciated. This chapter describes preliminary experiments 

which indicate that these dyes can be applied successfully to the study of cell viability

within blood vessels in vitro and in vivo. Standard histological techniques depend 

primarily on labelling the cell nuclei to facilitate identification of tissue type and any 

abnonnalities associated with pathology. Similarly vital fluorecent nuclear dyes 

provide information by outlining the position and distribution of cells via their nuclei. 

However their use confers significant advantages. Since fixation and sectioning is 

not necessary the labelling procedure is simpler and more flexible. This lack of a 

fixation requirement allows dynamic events such as cell movement to be monitored, 

vital characteristics such as viability to be measured and labelling of living tissue in 

vivo and in vitro to be achieved.
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esterase activity was present and was indicated by the ability of the smooth muscle 

cells to hydrolyse Calcein AM to the fluorescent product Calcein. In addition, the 

contractile apparatus can function if the intracellular fluid is mimicked. However, the 

smooth muscle cells also label with Ethidium Homodimer indicating their non­

viability in the long term in extracellular conditions. This was supported by the loss 

of contractile function in normal Krebs'.
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of such gradients allows passage of Ethidium Homodimer and labelling of the nuclei. 

I would draw a distinction between cell viability and cell function since 

permeabilised cells retain some intracellular functions such as enzymatic activity. I 

have previously investigated this distinction in saponin skinned/permeabilised blood a

vessels (not work for this thesis). In skinned preparations, of rat mesenteric artery,

The results of this chapter have shown this method to be sensitive enough to show 

damage to blood vessels which have been manipulated with forceps, damaged during 

dissection, exposed to free radicals and other mechanisms such as intimai rubbing (not 

shown).

i

The experiments with flee radicals highlights the two ways in which hydrophilic 

and lipophilic dyes can be used. In figure 1.9 there is significant ethidium staining in 

the lumen of a vessel exposed to flee radicals. This is not surprising as it is widely 

accepted that free radicals can cause lipid peroxidation (Wrens & Lucchesi 1990). 

The results show that in rat mesenteric aifeiy it is the endothelial cells which are most 

sensitive to the effects of free radicals. If this vessel was stained with Hoescht 33342 

it would be possible to quantify the ratio of viable and non-viable cells (Daly et al., 

1991a). However the purpose of figure 1.9 is to show that ethidium is sensitive
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■
enough to show localised biochemical injury. Therefore, lipophilic dyes can be used 

to obtain information about cell arrangement and density. Hydrophilic dyes can be

used to identify permeabilised cells. Labelling with both dyes simultaneously, 

therefore, provides a convenient cell viability assay for isolated blood vessels.

labelling techniques described here can be used to demonstrate any damaging effects

27
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Experiments using segments of blood vessels are sometimes ended when the 

tissue has lost its responsiveness. This is often attributed to de sensitisation of 

membrane receptors or second messenger systems. Alternatively a loss of 

responsiveness may be blamed on the combination of pharmacological antagonists or 

physiological inteiventions which the tissue has been exposed to. The double

i
of a particular protocol, wliich results in permeabilisation of the membrane and loss of 

viability.

Studies on cell viability are not limited to isolated blood vessels. These dyes can 

be given intravenously to anaesthetised animals and are not toxic with the protocol 

used. Intra-venous injections of 30mg/kg Hoescht 33342 causes staining of the

endothelium after as little as 15 minutes. If the dyes are left to circulate for 1-2 hours 

examination of any blood vessel (except those of the brain, figure 1 .10) will show 

staining of the media as well as the intima and adventitia. Preliminaiy experiments 

have shown that the dyes do not cross the blood brain barrier. All other organs and 

tissue types will stain well if given sufficient time. This creates a great number of

possibilities for investigations of pathological conditions. Animals could be subjected 

to an experimental protocol and then injected with a dye combination for cell viability. 

Any blood vessel or tissue bed could then be inspected for cell death.
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Endothelial cell nuclei can be stained selectively by intravenous application of the 

dyes for a short time period (15 minutes, figure 1.10a). This has now be done in 

Professor McGrath’s laboratory using a perfusion myograph where the amount of 

staining can be monitored and therefore optimised for any given vessel type.
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Nuclear dyes can be used in many areas of physiology and pharmacology. The 

most immediate uses may be for morphological studies. Normally this is done by 

Instology or election microscopy and requires reconstruction of several sections.

Using fluorescent dyes, morphological studies (e.g. smooth muscle cell density, 

arrangement, viability, etc.) can be done by non-microscopists either before or after 

experimentation.

Image analysis

I draw a distinction between the lateral movement of a nucleus and the spacing 

between groups of nuclei. Cell movement refers to the displacement of a single cell 

within the overall dimensions of the vessel. This displacement occws along the 

circular (x) axis of the vessel. All of the nuclei in figure 1.15 move from left to right 

towards the central axis of the section of the wall running between the supporting 

wires during contraction. This lateral movement is ignored to concentrate on the 

change in average nuclei spacing (see methods) diuing contraction.

Overall the results have highlighted advantages and disadvantages of the isometric 

wire myogiaph. If cell movement is to be analysed then clearly a truly isometric 

system is not suitable. However, the wire myograph is not truly isometi'ic partly due

I"



rearrangement, although the flat surface of the stretched vessel may be useful for Câ "*"
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to elasticity within the tissue and a little compliance within the mounting wires. To 

generate sufficient measurable change in nuclear spacing the vessel segment was 

challenged with IpM noradrenaline. This concentration normally produces 80% of 

the maximum contraction, ft is not surprising therefore that at this degree of 

contraction some nuclei will twist or fold and thus increase their fluorescence. This
■■

does not present much of a problem since nuclear spacing is measured and not lateral 

movement or length. What is perhaps surprising is that it is possible to make any kind 

of quantitative analysis of change in cell spacing on an isometric myogi'aph. Thus it is 

difficult to make any suggestions about the physiological relevance of the 

measurements made other than they are consistent with the expected shortening and 

widening of vascular smooth muscle cells during contraction. What is important in 

the context of this chapter is that the techniques developed make it possible to monitor 

cell rearrangement within the wall of a small artery during contraction.

I

Clearly the wire myograph is limited as a tool for image analysis of cellular

studies where the cellular movement must be kept to a minimum if ratiometric Ca^  ̂

indicators are not used. The next logical step for the current technique, is to move to 

an isotonic or perfusion myograph where greater rearrangement for a given agonist 

concentration may be observed. The ability to make measurements up to at least 80% 

of the maximum contiaction means that it should be possible to construct
i

concentration response curves for change in nuclear spacing. Exactly what

physiological information on vascular mechanics this will provide remains to be seen.
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While asymmetry of responsiveness has been clearly demonstrated in a number of

preparations, the various investigators have concentrated on the route of drug >

administration and have measured the response of the whole tissue. The work of

.Tesfemariam, and Halpern (1988) concentrated on visualising a perfused microvessel f

to show asymmetry. However, this method is unable to distinguish movement within

discrete layers of cells. Nomarski interference microscopy has been used to obtain a 

general outline of smooth muscle cells, some of which have visible nuclei and 

mitochondria (Mulvany & Halpern 1976). Nuclear fluorescent dyes provide 

significant advantages: a) the position of all cells is clearly marked; b) the contrast for 

image analysis is significantly enhanced; c) the transparency of the cytoplasm, under 

fluorescence, allows discrimination of layers at depth within the media and d) cell 

viability can be assessed in parallel.

Clearly much more work needs to be done on the basic mechanics of blood vessel ;

contraction. It is not clear how much independence of movement a given layer of
I

smooth muscle cells has. This is fundamental information which will be required |
y

before making any assessment of the sensitivity of different layers of cells to selective
y

and non-selective agonists. To this end comparisons of responses obtained on 

isometric, isotonic, isobaric and perfusion systems will be invaluable.

In conclusion, nuclear fluorescent dyes can be used to assess cell viability in a f

number of tissue types but is particularly well suited to blood vessels. The dyes can 

be used to enhance current diametric image analysis methods and can be used to 

enable the study of cell rearrangement within the wall of myogiaph mounted vessels.

I
£
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Chapter 2
Confocal Microscopy and Image Analysis

!



Introduction

In the previous chapter a method for studying cellular distribution and activation was 

developed. It was found that nuclear fluorescent stains could be used to assess cell 

viability and identify cell type, number and orientation by nuclear morphology alone 

(Daly et al., 1992). Using conventional wide field fluorescence microscopy it was 

possible to image nuclei of cells at varying depths within the blood vessel wall, hi 

some cases, depending on wall thickness, it was even possible to determine 

endothelial cell nuclei morphology and number. Unfortunately, computer analysis of 

digitised images of nuclei was severely hampered by out-of-fbcus glare from nuclei 

above and below the plane of focus. In particular, it was almost impossible to obtain 

images of cell cytoplasm at sufficiently high resolution to determine cell size. 

Following on from this it can be postulated that measures of cell volume would not be 

practicable using conventional epi-fluorescence.

Nevertheless, the data fi'om the previous chapter provided an insight into the kind of 

methodology that would have to be adopted and the kind of problems that would have 

to be addressed in order to achieve the goal of studying the activation of individual 

cells within the wall of a living resistance arteiy. The first major problem to 

overcome concerned the loss of resolution (contrast) in images deep within a 

relatively thick biological specimen. The second major problem was that of 

quantification. Duiing a visit to our laboratoiy by Dr. Jolin Russ (author of the 

internationally renowned Handbook of Image Processing) he correctly pointed out that 

'..an image may well be worth a thousand words but a number is worth a thousand
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pictures'. 1 was soon to discover how ti'ue this is when presenting image data to the 

physiological and pharmacological community.

In the summer of 1990 I travelled through to Edinburgh to examine some slide

I

5

5|91A colleague, Dr. John Gordon, suggested that Laser Scanning Confocal Microscopy 

(CLSM) may offer some solutions to the problems outlined above. CLSM provides 

tliin 'optical sections' of thick biological specimens that are relatively free from out-of­

focus glare emanating fr'om structures above and below the plane of focus. The laser

illumination source can be tuned to excite specific fluorescent markers and the 

resulting images are digitised and stored (as numbers) in the memory of a computer. 

It therefore would seem to be an ideal tool for the study of vascular str ucture and 

function, assuming that suitable non-toxic dyes can be found and also that methods of

quantification can be adapted or developed.

mounted nuclear stained vessels on a Leica CLSM system. The results were (at that

time) astonishing and proved without doubt that confocal microscopy could be used to 

obtain 'quality' images (optical slices) of nuclei from the adventitia through to the 

endothelium. 1 realised that if this technique could be combined with wire or even 

perfusion myography it would create the potential to study many features of vascular 

mechanics that previously had not been studied due to technical limitations. 

Fortunately, the Edinbmgh data was collected in time to be presented at the 

foilhcoming Physiological Society meeting being held in The Institute of Physiology, 

University of Glasgow (1990). At the meeting 1 demonstrated the method of 

Fluorescence Myography (Chapter 1) and introduced the idea of using Confocal 

Microscopy (Daly et al., 1990).
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From 1990 to 1992 I studied the use of nuclear dyes and evaluated methods of 

tracking the movement of nuclei using freely available Macintosh imaging software 

(e.g. Vision, NTH Image etc.). Following, the publication of the studies with nuclear 

stains (Daly et al., 1990, 1991a, 1991b & 1992) and based on the preliminary confocal 

and imaging data, Prof. J.C. McGrath secured funding for a NORAN Odyssey CLSM 

system. The system was evaluated duiing August 1992 and was installed soon after. 

There followed a period of intense research into the possibilities for the use of 

confocal microscopy in studying vascular structure.

The following sections describe the results obtained using various fluorescent stains, 

the study of normotensive and hypertensive resistance arteries, 2D methods of 

quantification, 3D modelling and the problems associated with developing a fully 

automated algorithm for the quantification of segmented objects within digital 

volumes.

Principles o f  Confocal Microscopy.

The patent which describes the illumination path of the confocal system was 

registered by Marvin Minsky in 1957. In his patent he describes both ti’ansmitted and 

epi-illumination pathways. The essential components of the system are the pinholes 

(or slits) thi'ough which the excitation and emission light soui'ces must pass. In the 

transmitted light path the excitation light source passes though a pinhole and is 

focussed by a condenser onto a specimen. The transmitted light is then focussed by an 

objective and passes through a second pinliole which is positioned at an equal distance 

from the point of focus in the specimen. The two equidistant pinholes are said to be
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'confocal' to one another. The more common epi-illumination light path is shown in 

Figure 2.1. The resulting image is a sharply focussed point of light which is 

relatively free from out-of-focus glare. Therefore the sample (stage) must be moved 

in order to build up a picture of the complete focal plane. More modern systems move 

(scan) the beam rather than the stage. The beam scan is typically performed using a 

galvanometer or, in the case of the NORAN Odyssey, an acousto optical deflector 

(AOD). The patented Noran AOD provides a scan speed of 25 frames per second 

(video rate Odyssey) and 250 fps in the new Oz systems.

The advantages of using confocal over conventional fluorescence are as follows;

i) Reduced blurring of images

ii) Increased effective resolution

iii) Improved signal to noise ratio

iv) Axial (z-axis) scans are possible

v) Serial axial scans can be combined

vi) Digital images are produced

vii) Living (i.e. unfixed) tissue can be studied

viii) Numerous fluorescent stains are available 

Points vi-viii are now generally applicable to many epi-fluorescence (imaging) 

systems.

3

Although the confocal principal was first published in 1957 it was not until the mid

1980's that commercial instruments (using lasers) became widely available. The 

.biological applications of such techniques were quickly realised (Calisson et al. 1985;

Amos et al., 1987 & White et al., 1987).
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Figure 2.1. Schematic diagram o f  the confocal light path. The 
yellow coloured block represents the biological specimen, the light 
from the laser illumination source is reflected o ff the beam splitter 
and down to the tissue. Reflected light o f  a longer wavelength 
passes back along the same light path and passes through the 
dichroic mirror (beam splitter) and then through the pinhole to reach 
the detector (PMT). Light from above the point o f  focus (green 
light path) is focussed behind the pinhole and is therefore rejected. 
Light below the plane o f  focus (not shown) would focus in front o f  
the pinhole. Diagram reproduced from the NORAN Odyssey sales 
material (1991).



drawback of using fluorescent stains is the phenomenon known as photobleaching. 

Definition: An excited fiuorophore is raised to a singlet state and decays 

back to gi'ound state in a variety o f ways. The most common way is 

emission o f a photon which generates a fluorescent signal. Powerful,

molecular oxygen to generate a non-fluorescent molecule. Thus 

fluorescence is lost and addition o f fi^ee radical scavengers (anti-fade 

agents) can reduce the rate o f photobleaching.

practical uses o f CLSM.

Confocal systems can use reflective surfaces to form an image. This property has 

been exploited in the imaging of silicon chips and in other métallurgie applications. 

However, apart from the autofluorescent properties of elastin and other biological 

molecules, it is generally necessary to use a fluorescent stain to label' a structure of 

interest. Fortunately, there are stains and antibodies for practically every cellular .

component fr'om the nucleus to the plasma membrane bound proteins. The major

excitation can raise the fiuorophore to a triplet state which can react with

Effect: Significant photobleaching will cause a fluorescent sample to fade rapidly. 

Photobleaching is a significant problem for both wide field and confocal microscopy.

If we consider that a thick sample like a blood vessel wall is to be scanned 60 to 80 

times during the collection of a 3D volume of data, it might be expected that 

photobleaching could be a significant problem to be overcome. Therefore, it is 

important to balance illumination intensity (laser power) with photomultiplier gain 

and photon averaging in order to mimimise bleaching and still maintain adequate 

signal/noise ratio. Unfortunately, each stain on each sample will require different 

parameters. It is not simply a matter of preparing the slide and turning on the scanner.
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Emission attenuation with depth.

In an ideal situation where dye loading is even throughout the sample and 

photobleaching is minimal, focal planes deep within the specimen will be dimmer due 

to light diffraction and absorbtion . While there are routines for correcting this it 

remains a significant disadvantage of studying thick specimens.

Optical aberrations in CLSM.

Confocal laser scamiing microscopy has been shown to be a powerful technique for 

the 3 dimensional imaging of relatively thick living biological specimens 

(Brackenhoff et al., 1989). These authors calculated that lateral resolution is more 

affected by pinhole diameter than is axial resolution. This feature of the confocal 

system is important when faint staining is required to be imaged and excessive 

bleaching requires that the pinhole aperture be opened. This feature of a CLSM 

system is exploited in Chapter 3 of this volume.

Given that relatively thick specimens will be studied on a CLSM system, one should 

consider the nature of any optical aberrations that may exist when light may be 

passing through air (objective), oil (immersion media), glass (cover slip) and tissue 

components.

In a study of thick (up to 300um) uniform samples (a volume of water), Carlsson 

(1991) noted that axial/lateral resolution ratio is reduced by a factor of 3 as scamiing 

depth increases from zero to 300um. Carlsson suggests that for thick specimens it 

may be necessary to increase the sampling distance in the axial plane. These
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measurements were made using reflected light. In confocal fluorescence microscopy 

the axial resolution could deteriorate by a factor of eight where refractive indices (RI) 

are mismatched. Therefore, specimen Rl can seriously affect the resolution of thick 

tissues. Even high NA objectives are subject to the same limitations and it is 

suggested by Carlsson that dependent upon the actual sample it may be advisable to 

use a low NA objective.

Further studies cast doubt on the published data of measured volumes imaged by 

confocal microscopy. Visser et al., (1992) point to the inaccuiacy of depth 

measurements made of watery samples using high NA oil immersion objectives. 

These authors examined the lateral aberrations caused by Rl mismatch using
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Chen et al., (1991) developed a correction factor for the refi'action of light passing

tlirough a blood vessel wall which they quote has an Rl of 1.523. However, this value

(taken from Gahm & Witte, 1986) appears to be derived from a sample of rat 

. .mesentery comprising mainly "hyaluronic acid, elastin, collagen fibrils and connective 

tissue cells". Gahm & Witte make no mention of blood vessels in their paper. It is 

not clear therefore how accuiate tliis value is with respect to the vascular wall. It has

I

been reported by others that embryonic cytoplasm has an Rl of 1.5.
.

Î
Chen et al., go on to suggest that internal diameter measurement of vessels mounted in 

a Halpern style myograph (Halpern et al., 1984) should be corrected since the water 

solution has an Rl of 1.33 compared with the blood vessel wall Rl of 1.523.

« 
I
i
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fluorescent beads and a Biorad CLSM. The data show that RI of sample and
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-3'

"::3'

 Jidi



mounting/immersion media must be matched in order to maintain lateral/axial 

resolution ratio at 1 .

Further aberrations in CLSM systems caused by RI mismatch were considered by Hell 

et al., (1993). These authors state that "provided that immersion liquids of correct 

Refractive Index are used, aberrations can be neglected". Hell et al., provide 

descriptions and quantification of the point spread functions at different depths within 

a watery sample using an oil immersion objective. The full width half maximum 

(FWHM; measure of axial resolution) is reduced from 0.53um (plane zero) to 0.68um 

(5um in) to 0.9um (lOum in) to 1.23um (20um in). This and other data provided by 

Hell et al., explained the physical properties which are responsible for the main 

aberrations caused by RI mismatch in CLSM systems namely: 1) loss of resolution as 

axial focal position increases; 2) signal attenuation as axial position increases; 3) 

elongation of the sample as axial position increases.

Increasing detector pinhole increases the affect of aberrations. High NA oil 

immersion objective measurements of biological specimens are more susceptible to 

aberration than are low NA (less than 1) objectives. Overall the published literature 

would suggest that if myograph blood vessels are to be studied the best conditions 

would be to use a water immersion objective. The choice of NA would appear to be 

of less importance given the relatively thick nature of the sample and the expected 

axial resolution.
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In the present study three objectives were used: for slide mounted samples an X60 oil 

immersion (NA 1.1); for myograph mounted vessels an X40 water immersion 

objective (NA 0.75) and X40 water immersion objective (NA 1.13, UV corrected.)

Bleaching and Fluorescence attenuation.

Bleaching and attenuation with depth is a common problem in both conventional and 

confocal fluorescence microscopy. Since confocal microscopy encourages the use of 

thick specimens it is important to consider the implications such physical effects will 

have on any attempts to quantify amormts of fluorescence in a 3D volume of confocal 

derived data.

Using thick (50um) slices of nuclear stained rat liver Rigaut & Vassy (1991) 

quantified the amount of photobleaching and attenuation caused by confocal scanning. 

The method of staining used by these authors allowed penetration of dye from both 

sides of the tissue block thus ensuring equal staining. Using axial step sizes of lum 

they concluded that at depths up to 50ums there was no attenuation of excitation 

through the sample. However, attenuation of emission was obseived. With regards to 

photobleaching Rigaut & Vassey obseiwed uniform bleaching that was independent of 

depth.

For the present study of isolated perfused blood vessels it seemed appropriate to use a 

luminal and extra-luminal staining protocol to ensure equilibrium. Furthermore, since 

the vascular wall thickness of (2 0 0  - 300um i.d.) resistance arteries would be expected 

to be in the region of 50 - 70 um axial step sizes of lum appear to be acceptable.
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In their review of digital 3D imaging Chen et al., (1995) described the variety of 

protocols used in their studies. For studies of living embryos they prefer to use Z 

steps of 0.5 to lum in combination with X60 (1.4) or X40 (1.3) objectives 

respectively.

46

Collection o f Serial Optical Sections.

As stated above CLSM provides a means of capturing optical sections of a living 

specimen. In order to construct a 3D volume it is necessary to optically section the 

sample at fixed distances along the optical axis of the imaging system. This raises the 

question of what is the correct sampling distance (Z). Unfortunately, there is not one 

answer to this as the optimal value of Z will be determined by tissue/imaging 

conditions and by investigator requirements. There is though one school of thought 

which states that Z-sampling distance should equal twice the spatial resolution. This 

is known as the Nyquist theorem and in practical terms demands that Z-sampling 

should be no gi’eater than 0.3um. The rule applies particularly where quantification of 

3D volumes is to be relied on. In many cases it will simply be spatial information that 

is required (i.e. how many cells of a particular shape are present at a specific depth). 

It appears to be left to the individual to justify their chosen parameters.

When photobleacliing is problematic, or even where intensity is to be measured within

a volume, it is advisable to take a reverse stack of images. This requires that the focal

.plane be set at the maximum depth within the specimen and the focus direction is 

moved step-wise towards the surface. This will minimise the deleterious effect of 

light in the converging and diverging cones of the excitation beam.
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Digital Images and 3-dimensional volumes.

The Human eye and brain together form an unparalleled imaging system which is able 

to recognise millions of colours, shapes and forms almost instantaneously. Computers 

and cameras (or photomultipliers) by comparison are really veiy poor and while

cameras may be capable of capturing images at high resolution, once digitised the

image will be typically reduced to 256 colours or grey levels for the purpose of image 

processing. All of the images contained within this thesis are 8 bit and fall into this 

category. High end systems now work with 24 bit images and in time this will 

improve further. For the purpose of tliis thesis though we will consider only 8 bit 

images.

An 8 bit digital image comprises a 2D array (in this case 512 x 512) of picture
V'

elements (pixels). These are small squares that have an intensity value of between 0
I

(black) and 255 (white). Values between 0 and 255 are usually assigned shades of
1

grey or colours (pseudocolour). The mapping of a colour to a particular intensity is 

done by a look up table (LUT or palette). Different palettes can be assigned to an
I

image and these can be user defined. Palette editing can be useful in assigning a

Iparticular colour to a range of intensities which may define a specific feature.
. .i'i. 

;
The digital (numeric) natuie of the captured image is such that numeric algorithms can 

be applied to alter selected values in order to remove or enhance certain features. This 

would be coimnonly known as image processing. Once images have been processed

measurements can be made in order to quantify the data {image analysis). These are
V

general definitions that will be adopted for the discussion and description of work in |
I

this thesis. A comprehensive review of cuiTent methods and theories of digital
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imaging is far beyond the scope of this thesis and the reader is referred to the several 

good texts that are available (e.g. ‘Handbook of Image Processing’ by Dr. John Russ).

The experiments in this chapter detail the search for appropriate fluorescent probes 

that can be used for the study of vascular structure using confocal microscopy and 

small vessel myography. In addition, the transferral of the techniques developed in 

Chapter 1 to CLSM, the analysis of diseased vessels and the first steps towards a 

semi-automated analysis method are detailed.
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obtained from amputated limbs following critical limb ischaemia. One segnment of 

rat pulmonaiy artery was also used. Vessels to be kept for later study were

I
Methods.

Tissue harvest.

Male wistar, WKY and SPSHR rats were obtained from either Biological Services
■■.

(Internally bred colonies of wistar) or from Dr. A. Domiiiiczak (WKY & SPSHR) at 

the Department of Medicine and Therapeutics, University of Glasgow. The SPSHR Î
are a genetically modified strain of (stroke prone) spontaneously hypertensive rat.

The WKY rats seive as controls and are sex and age matched in all experiments. The 

SPSHR & WKY rats have been bred in the department since 1991. Wistar rats were 

generally killed by stunning followed by exsanguination. WKY & SHR were lolled 

by inhalation of halothane (4%) in oxygen. All rats weighed between 250 and 300g.

Branches off the superior mesenteric arteiy (3rd order) were excised and cleaned of

suiTounding fat and connective tissue before being placed in fresh PSS solution (at

.room temperature). Cerebral vessels were obtained from whole brains (ex vivo) 

which were dissected in cooled PSS (i.e. on ice). Branches of posterior cerebral

arteiy or the complete basilar artery were removed fr’om the brain and cleaned of
.

connective tissue. Samples of human subcutaneous (limb) resistance arteries were

refrigerated at 4°C.

I
S'

Tissue Mounting.

Vessel segments were visualised mounted on a perfusion myograph or on glass slides.

Slide Mounting: Standard glass slides and coverslips (No. I) were used thioughout. A 

well was created on the slide using high vacuum grease. The grease is applied using a

•;
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Tissue Staining.

A variety of staining protocols was employed depending on the requirements of the 

stain and thickness of the preparation. All of the stains used require either, fixed 

tissue, unfixed tissue and/or staining at 37°C.

Fixed Tissue: Vessel segments are fixed in formalin, in aliquots, and left to

50

long needle. The streaks of grease resemble a noughts and crosses grid on the slide. 

The central portion of the grid is filled with PSS into which is placed the vessel 

segment. A coverslip is then placed over the grid and gently pressed taking care not to 

compress the tissue. The slide is then ready for viewing. Nuclear stained sample such 

as these can be kept refrigerated for up to two days with no discernible loss in tissue 

integi'ity or staining.

Myograph Mounting: The model used was a Halpern Pressure Myograph system 

(Living Instruments, Burlington, Vermont). Segments of artery are cannulated

between two micro pipettes and tied in position using fine ligatures. Warmed PSS is

allowed to flow through the system prior to mounting to remove any air bubbles and

to flush out any cleaning soloution or water in the system. Once the vessel is mounted

the pipette at one end is blocked by closing its associated three-way tap. By use of a
.

servo-pump the pressure can be increased from 0 to 199mmHg. Pressures of between
■■

40 and 60mmHg were chosen for WKY arteries and in some cases 120mmHg for
:

SHR arteries. The choice of 4G-60mmHg was based on the observed values for

0.9Lioo obtained in normalisation of wire mounted vessels.

-
equilibrate in nuclear stains overnight in a fridge (4®C). Before visualisation fixed 

segments ai*e rinsed in fi'esh PSS to remove any unbound stain.
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Living Tissue (room temperature): Vessel segments are incubated in aliquots with 

either nuclear or extracellular stains. Aliquots are either wrapped in foil or stored in a 

cupboard to prevent any degradation of the fluorophores by bright laboratory lighting.

Living Tissue (37°C): Many AM ester dyes require to undergo esterase activity within 

a cell before the fluorescent molecule is activated/released. To enable staining at 37”C 

two methods were used. For myograph mounted vessels the dye was simply applied 

to the bathing chamber once the gassing conditions (pH) and temperature were at the 

desired level. For vessels stained in aliquots it was first necessaiy to vigorously 

oxygenate the PSS to stop the precipitation of calcium. Vessel segments were then 

incubated in sealed, 'full' aliquots of gassed PSS containing the stain. The aliquots 

were then floated in a water bath (37“C) using plastic aliquot racks. After staining 

tissues are rinsed with fresh PSS and visualised immediately.
' I

i
Fluorescent Stains.

All stains were purchased from Molecular Probes inc (Eugene, Oregon or Leiden 

Netherlands). Table 1 shows the full list of fluorescent compounds tested in this 

thesis along with their solubility, fluorescent characteristics and sites of action.
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Confocal Microscopy.

Two NORAN odyssey confocal laser scanning microscope were used in the course of 

this project. The vessel work was performed on an upright (Nikon Optiphot) 

configuration and the single cell work of chapter 3 was performed on an inverted 

configuration (Nikon Diaphot). The NORAN odyssey CLSM is a slit scanning system 

that runs at video rate (25 frames per second). The raw video rate signal can be 

captured directly to video tape. Alternatively, the signal can be output to a computer 

via an analogue (Matrox) fr ame grabber board. This is the preferred option if frame 

averaging is required or if there is no need to run at the top speed. The Odyssey uses 

point illumination and slit detection and as such sits between point scanners and slit 

scanners in terms of design. The xy scan is performed by a galvanometer (y-scan) and 

an acousto-optical deflector (AOD; x-scan). The AOD controls the horizontal sweep 

and the diffiaction efficiency, which in simple terms means that the laser intensity can 

be software controlled. Therefore if the laser power entering the system is set to 50%, 

the AOD can be tuned to deliver 0 - 100% of that incoming laser intensity. The 

Odyssey is a two channel fluorescence system which uses a primary and secondaiy 

photomultiplier (PMT) for detection

UV CLSM system: The upright microscope is fitted with a mixed gas UV laser 

(Coherent) and can deliver lines of 364nm, 488nm and 525nm. The laser is water 

cooled and is remote from the scan module due to its large size. The laser is delivered 

to the scan module via an optical cable. The scan module offers barrier filters of 

400nm, 515mn and 529nm. This system is optically best suited for UV stains and 

gieen fluorescent stains. However, the power of this laser enables excitation of red
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stains such as PI and EB (see table 1 for spectral information). The system is 

physically best suited for myograph mounted vessels and fixed cell work.

Argon Ion CLSM system: The inverted system is fitted with a single argon ion laser 

(OmniChi’ome) capable of delivering lines of 454nm, 488mn and 529nm. The laser is 

cooled by a motorised fan and is housed within the scan module. Available barrier 

filters are 515mii, 550nm and 610mii. This system is optically best suited to dual 

fluorescence work using green and red stains (i.e. fluorescein and rhodamine type 

stains). The system is physically best suited to work with single cells mounted on a 

specialised flow chamber (see chapter 3).

Conti'ol software for the CLSM system was used to set the following parameters to 

ensure that similar or identical parameters can be set when comparing different 

specimens.

i) Brightness (PMT offset)

ii) Contrast (PMT gain)

iii) Laser intensity (AOD power)

iv) Pan and Zoom (Illumination area and size)

v) Excitation wavelength (depending on the stain)

vi) Emission wavelength (barrier/long pass filter)

vii) Slit size (the size of the detection aperture)

viii) Frame averaging (2-256)

The above parameters (together with axial step size and lateral resolution) are the 

settings that are recorded and stored with each image or stack. These settings are
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important for purposes of 3D reconstruction and psf calculations required for 

deconvolution algorithms.

Calibration o f objectives.

Objectives: The main objectives used in this study were; Nikon x60 oil (NA 1.3); 

Nikon x40 water (NA 1.13); Zeiss x40 water (NA 0.75). These objectives produce 

final images which are 70, 100 & 102 um square respectively.

For each objective used it is important to know the calibration in microns. This 

requires that the pixel per micron scaling is determined at each excitation wavelength 

and at each optical zoom. In addition, if dual excitation is required it is important that 

the two excitation beams are aligned and that 'image shift' is minimised. It is also 

useful to know the psf of the optical system for any combination of excitation 

wavelength and objective. This can be determined using sub-resolution point spek- 

beads. The final important calibration is the determination of axial resolution of a 

given objective.

Distance calibrations: A slide which has vertical lines etched lOum apart was imaged 

under a given combination of objective and illumination (no slit for detection was 

used). The line tool of MetaMorph (see below) was used to draw a line parallel to the 

y-axis and joining the right hand side of one etched line to the right hand side of the 

next. The number of pixels was recorded and used to determine pixels per micron. 

This process was repeated for all objectives at all wavelengths.
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Laser alignment: Focal check beads (15um diameter) were obtained from Molecular 

probes. These beads have a coating of one fluorescent dye and a core of a different 

dye (i.e. blue (UV) core, green (fluorescein) surface. This enabled the 364, 488 and 

525 nm beams of the upright CLSM to be aligned. The 488 and 529nm beams of the 

inverted CLSM were aligned in the same way.

psf determination: As mentioned in the introduction the point spread function (psf) is 

an important determinant of the axial resolution and can be calculated if a sub­

resolution point of light can be imaged. Point speck beads (0.1 Sum diameter) were 

purchased from molecular probes and mounted on slides using non-fluorescent 

mounting media. A point of light was located using a high NA objective (x40 water 

NA 1.13) and a confocal volume (z = O.lum) was collected. The data set was then 

processed by Hugensll software (Bitplane AG) to measure the psf of the system. This 

calibration was only performed for the 364mn line of the upright CLSM system since 

this is the microscope used for thick (i.e. blood vessel) specimens.

Axial resolution: A mirrored slide is used to measure the reflected fluorescent light. 

As the focal plane moved towards the mirror the intensity at the PMT is plotted. This 

results in a transient peak which generally displays a tail on its trailing edge. The 

width of the peak at the point of 50% maximum intensity is referred to as the full 

width half maximum (FWHM) and is a measure of axial resolution. This calibration 

was performed by a NORAN engineer at the time of installation.
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Image Capture.

MetaMorph (v2.5) image processing software (described below) was used to control 

the microscope and to acquire images. A special drop down menu contains all of the 

functions required to control the scan and capture systems. A general running average 

of 16 ft'ames was used. This enables the live monitor to be used as a reasonable 'real 

time' display. The actual scan speed 33.33msec per frame (30Hz) but some time must 

be given for the hardware to perform the frame averaging. Nevertheless, averaging at 

16 frames gave a good response time for general use. Depending on the signal quality 

and bleach rate a frame average of between 16 and 256 was chosen (64 being the 

norm and producing an image in just over two seconds).

A stack of images was collected by selecting a staid plane within the specimen, setting 

the stepper motor interval (z) and specifying the number of planes required. The 

motor can be set to travel in a positive or negative direction. After each plane (optical 

section) is scanned the shutter is closed (to preseiTe the sample) and the resulting 

image is stored in the computer memory. This process is repeated for each plane until 

the required volume has been scanned. The resulting stack of optical sections can 

then be inspected before being saved or deleted to make way for a new stack with 

different settings of brightness, contrast, AOD intensity or fr'ame averaging as 

required.

Image Analysis and 3D processing.

The upright CLSM system was originally used in conjunction with the IMAGE 1 

image processing package (Universal Imaging Corporation). This software eventually 

became MetaMorph (MM) and is cuiiently at version 4 which is windows95
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compliant. The versions used for this study were v2.5 for Image Capture and v2.76 

for off-line analysis of 2D images. For 3D visualisation a combination of Imaris 

(Bitplane AG, Switzerland)) and Microvision (Fairfield Imaging, England) software 

packages were used.

Extended Focus Models: EF models were constructed using MMs 3D-reconstruction 

option. The models are built using all of the slices in a volume and using a maximum 

intensity projection. The models are rotated around a central x-axis in steps of 10° 

and an animation is created to help perspective viewing of the volume. For myograph 

mounted vessels where lum steps in z were used a pixel distance of 3 was used 

(without interpolation) to introduce artificial space into the model.

Rendered Models: More realistic alpha blended or back to front (BTF) rendering was 

performed on SiliconGraphics workstations using Imaris and Microvision 

respectively. The rendering algorithims work with the parameters listed in the 

previous section (confocal microscopy) to interpolate between the collected slices.

Limited image processing was employed prior to the building of EF models. In some 

cases a low pass or median (3 x 3) smoothing filter may have been used to reduce 

noise in images with low ft'ame averaging.

Measurements of angles: For the comparison of basilar arteries taken from WKY and 

SPSHR rats the measure angle tool of MetaMorph was used. Full details are given in 

(Arribas et al., 1996). Briefly, the direction of flow was established by visualising the 

direction of the longest axis of the endothelial cells or by detecting the folded internal
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.lamina of vessels under low pressure. The axis of flow is set and the angle of the

longest axis of individual smooth muscle cells is measured relative to the axis of flow.

Î
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nuclei due to the optical sectioning and plane of section (Figure 2.2c & 2.2d). Figure

Results.

Extracellular staining.

Slide mounted, isolated segments of 3rd order rat mesenteric artery (RMA) branches 

were incubated in 1 mg/ml 5,6 carboxyfluorecein for 20 minutes prior to visualisation 

under excitation of 488nm (em 515nm) using a x60 oil immersion objective (NA 1.3). 

No washing was performed prior to visualisation. 5,6 CF produced a very bright 

'gi’een' fluorescence which under non-confocal (slit = none) conditions did not 

provide images of extracellular space due to out-of-focus glare. Reducing the slit 

width to 15nm enabled resolution of cell boundaries within the media of the arteries 

(Figure 2.2a & 2.2b). The images in figure 2.2 show the high degree of fluorescence

in the lumen and around the outside of the vessel. Live cells were shown to exclude 

5,6 CF producing a cell profile or negative image of cell cytoplasm.

By combining the 'red' nuclear stain dihydroethidium (DFIE, IfiM) with 5,6 CF it was 

possible to image the cell nuclei and cell profiles independently. The images can then 

be combined to show the nuclear position in each cell. As expected, not all cells have

2.2e shows a vessel similar’ to those of 2.2a-d but under a x2 zoom. Figure 2.2f shows 

another view of a dual stained vessel obsei-ved from the top surface of the vessel, j ust

,; îunder the adventitia. The longitudinal profiles can be seen along with the nuclei of a 

few smooth muscle cells as they wrap around the wall.

Using a water immersion (x40, NA 0.75) objective it was not possible to obtain 

comparable images of myograph mounted vessels due to the amount of fluorescence 

in solution. Unfortunately, a short working distance liigh NA objective (as used for
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Figure 2.2. Combination staining o f  5,6 carboxyfluoresceine and 
DHE showing cell profiles in the media o f  isolated segments o f  rat 
mesenteric artery (60x oil immersion NA 1.3).



60

the human studies at the end of this chapter (figure 2.18) was not available at the time
f

these experiments were performed.

Cytoplasmic Staining.

The use of Calcein AM as a cytoplasmic stain for live cells was described in chapter

1. Under confocal excitation this stain was found to be extremely unstable and 

bleached too quickly to be of any use. Another stain had to be found.

BCECF is a commonly used fluorescent pH indicator and as such has been shown to 

be non-toxic (see discussion). It was therefore of interest to examine the distribution 

of this stain throughout the media and to determine its usefulness as a cytoplasmic 

stain. Segments of RMA were incubated in 5|iM BCECF in PSS for 15 minutes at 

37°C. Vessels were then removed, rinsed and incubated for a second time for 15 

minutes at 37°C. This double staining protocol was found to give optimal loading of

the dye. Vessel segments were then rinsed in fresh PSS and slide mounted for

Visualisation using an x60 oil immersion objective (NA 1.3). By balancing laser %

(AOD) and contrast (PMT sensitivity) it was possible to reduce bleaching rate to

enable 64 frame averaging and scanning times of several seconds. The adventitial

cells loaded BCECF in apparently equal amounts to the SMCs of the media. Figure

2.3a shows at least 3 different structures in the adventitia which have loaded BCECF.

The smooth muscle cells directly below this area of adventitia are shown in figure 

.2.3b. It was not possible to resolve SMC in deeper layers of the media. Therefore, î

BCECF may be of use for imaging studies only of outer layers of smooth muscle or of 

arterioles. Smaller cerebral arteries are particularly well suited for study using this |

stain (see figure 2.6). An extended focus view of a different vessel segment to that 

shown in figure 2.3a&b suggests that certain adventitial structures stained by BCECF



Figure 2.3. Rat mesenteric artery stained with BCECF (5uM). 
a) adventitia showing several cellular structures, b) smooth 
muscle within the media immediately below the adventitial 
region shown in a), c) The overlay shows possible nerves (at the 
adventitia/media border) and the underlying smooth muscle 
cells. All images were collected from slide mounted vessels 
using a x60 oil immersion objective. Ex. & Em. as shown in 
table 2.1.



d) RMA segments. Figure 2.5a provides an excellent example of the confocality of 

the insti’ument when using the x60 oil objective. Figure 2.5ai shows adventitial cell 

nuclei and elastin fibrils. Focusing towards the media shows the adventitial nuclei 

falling out of focus and new elastin fibres become visible (Figure 2.5aii). Increasing
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;
may be nerves (Figure 2.3c). The nerve-like structures shown in figure 2.3c resemble 

similar structures found in the adventitia following staining with glyoxylic acid, i

rhodamine 123 and phalloiden (not shown).

By combining BCECF with DFIE (as above with 5,6 CF) it was possible to image .

both cell cytoplasm and nuclei position in isolated segments of slide mounted RMA 

(Figure 2.4a&b). These studies confirmed that the nucleus is indeed generally 

confined to the central part of the cell (as suggested in chapter 1). Although this
if

methodology can provide beautiful images of cell cytoplasm and thus shape, it is not 

possible to resolve the tips (ends) of the cells. Furthermore, the amount of 

fluorescence (due to the relative lack of extracellular space) makes it difficult to

analyse 3D volumes of cytoplasmic staining. Preliminary studies of volumetric 

analysis were largely unsuccessful but provided valuable infoimation on the 

limitations of 3D-image analysis (see figure 2.19 & 2.20 and discussion).

.1:.
V

Combined extracellular and nuclear staining.

Figure 2.5 shows the results obtained from imaging RMA segments stained with both 

DHE and FITC-albumen. The combination of these two stains enables visualisation 

of both stains together when using 529nm excitation (610nm emission). Figure 2.5

shows images from both slide mounted (2.5a) and pressure myograph mounted (2.5b-

the plane depth brings the external elastic lamina into focus (figure 2.5aiii) and just
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Figure 2 .4 . Rat mesenteric artery stained with a 
combination o f  BCECF and DHE. The plates (a&b) 
show medial smooth muscle o f  unfixed (slide 
mounted) tissue.



Figure 2.5. Combination o f  FITC-albumin and DHE. Rat mesenteric artery 
segment mounted on slide ai-aiv or pressure mounted at 60mmHg b-d. ai) 
adventitial nuclei and elastin fibers on the outermost surface o f  the vessel, aii) 
a deeper adventitial section showing fibres immediately under the cells shown 
in ai. aiii) the external lamina), aiv) Smooth muscle cell nuclei immediately 
below the external lamina (x60 oil immersion objective NA 1.3). b) outer 
layers o f  smooth muscle cell nuclei and external lamina, c) inner layers o f  
smooth muscle also showing internal elastic lamina, d) extended focus model 
o f  all optical slices from b&c (water immersion x40 NA 0.75).



under the external lamina the first layers of smooth muscle cell nuclei can be clearly 

resolved (Figure 2.5iv).

Figures 2.5b-d show different optical sections of a pressure mounted (60mmHg) RMA 

segment visualised with an x40 water immersion objective (NA 0.75). The external 

lamina can be seen in addition to the underlying smooth muscle cell nuclei. The low 

NA of the x40 water objective provides a thicker optical section (i.e. focal depth). A 

diagonal (helical) arrangement of smooth muscle cells is suggested from the image. 

Focusing down to the inner layers (just above the internal lamina) shows a different 

layer and arrangement of cells (Figure 2.5c). An extended focus view of all of the 

optical sections in the volume produces the image shown in Figui'e 2.5d.

BCECF stained, myograph mounted arterial segments.

Vessel segments of RMA and rat posterior cerebral artery (PCA) were stained with 

BCECF as described above prior to mounting on a pressure myograph. Both 

segments were pressurised to 40mmHg and imaged under 488nm excitation using the 

x40 water objective. Optical sections were collected at 1pm steps along the optical 

axis and extended focus models were constructed from the resulting stack of images. 

Figure 2.6a and 2.6b show RMA and PCA respectively. The lack of substantial 

adventitia on the PCA vessel makes it easier to visualise the smooth muscle cell 

cytoplasm. By rotating the EF models by 30° around a central y-axis, the images 

shown in figures 2.6c & 2.6d are obtained. Visualisation of the animated model 

shows how surprisingly thin the wall is when pressurised and suggest that these 

2 0 0 pm i.d. vessels have no more than two layers of smooth muscle when under 

pressure.
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Figure 2.6. BCECF staining o f  pressure mounted segments o f  rat mesenteric artery 
(a&c) and rat basilar artery (b&d). All plates show extended focus models o f  the 
complete 'confocal' stack. The model can be rotated for viewing at different 
angles. The Oo view is shown in a&b. The view at 30° rotation is shown in c&d. 
Both vessels were held at 60mmHg and viewed with x40 water objective (NA  
0.75).



The combination of FITC-albumen and DHE proved to be a very useful combination 

providing images of nuclei and extracellular matrix under a single wavelength 

excitation (488nm; the most widely used CLSM laser line). Figure 2.5 shows that this 

combination of dyes can be used with both high NA (figure 2.5a) and low NA (figure 

2.5b-d) objectives. Figure 2.5 also shows images of a pressurised vessel. This is a 

significant improvement on the techniques developed in chapter 1. The vessel is now 

under the physical forces that would be experienced in-vivo and therefore the cells 

have their natural arrangement. This provides a very interesting platform for further 

study of vascular function. A similar method using BCECF stained vessel produced 

good images but the general arrangement of cells is difficult to determine when there 

are no cellular markers other than the homogeneous staining of the cytoplasm. These 

experiments did however highlight the optical clarity of cerebral vessels compared 

with the mesentery, due mainly to the virtual lack of adventitia (Figure 2.6).

Nuclear stained, myograph mounted vessels.

DHE (IpM) stained vessels were mounted on a pressure myograph and pressurised to 

30mmHg. Full z-sections Ifom adventitia through to endothelium were obtained and 

archived. When the extended focus model of the vessel shown in figure 2.7 was 

constructed (without adventitial layers), two distinct arrangements of circularly 

arranged smooth muscle cells were observed. In addition to the expected diagonal 

arrangement there was an apparent region of cells arranged in a ring. This does not 

appear to be associated with a branch point since no leak was detected in the vessel. If 

the servo was constantly re-inflating the vessel due to a leak it would not have been 

possible to collect the sharp z-series of images since movement artefacts would have
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severely blurred the image. It is tempting to speculate that this group of cells may 

represent a functional unit. Figui'e 2.7 shows 4 orientations (0,40,60 & 90°) of the EF 

model. Figure 2.7d gives an indication of the curvature of the vessel under the 

loading pressure. Increasing the holding pressure to SOmmHg caused the vessel to 

lengthen, thus changing the lateral position of the 'ring' of nuclei (Figure 2.8a). The 

nuclear spacings did not appear to be altered dramatically by this increase of 

SOmmHg. However, the nuclei became 13.7% longer and 11.4% broader as a result of 

the pressure increase. This suggests that the smooth muscle cells become longer and 

flatter (as opposed to tliiiiner). As the wall thins and cells compress duiing 

pressurisation it is reasonable to assume that the cells will get flatter. However, 

analysis of full 3-dimensional volumes would be the only way to verify this 

assumption.

Figure 2.9a-d shows a different segment of rat mesenteric artei-y stained (DHE IjiM) 

and pressurised to 40mmHg. The plates show different views of the full EF model 

(0,40,60 & 90°). The SMCs are all orientated circumferentially and are perpendicular 

to the axis of flow indicated by the endothelial cell nuclei which are aligned from left 

to right on the image. The endothelial cells line the grooves in the internal elastic 

lamina (lEL) which form invaginations at this transmural pressure. This gives the 

impression that the endothelial cells are arranged in horizontal lines. A roughly 

helical (zig-zag) arrangement of SMC nuclei can also be seen. The adventitial cells 

do not appear to be ordered in any particular fashion.

Segments of WKY mesenteric artery show structurally similar features to the Wistar 

mesenteric arteries. Figure 2.10 a-d shows a segment of WKY RMA stained (DHE
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Figure 2.1. A pressure mounted segment o f DHE stained rat mesenteric 
artery showing only the media. The holding pressure was set to 
SOmmHg. Extended focus views are shown for different rotations, a) 
0°, b) 40°, c) 60° & d) 80°. The asterisks in panel (a) shows those 
nuclei chosen for analysis as detailed in the results section. Images 
were collected using a x40 water immersion objective (NA 0.75).
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Figure 2.8. A pressure mounted segment o f  rat mesenteric artery (as 
shown in figure 2.7). The holding pressure was set to 80mmHg. 
Extended focus views are shown for different rotations, a) 0°, b) 40°, 
c) 60° & d) 80°. The same nuclei as those shown in figure 2.7 were 
selected for analysis.
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Figure 2.9. A segment o f  DHE stained rat mesenteric artery pressure 
mounted at 40mmHg showing the full depth o f  the vascular wall. 
Round nuclei represent adventitial cells. Elongated nuclei running 
from top to bottom represent smooth muscle cells o f  the media. 
Elongated nuclei running left to right represent the endothelial cell 
nuclei. Extended focus views are shown for different rotations, a) 0°, 
b) 40°, c) 60° & d) 80°. Images were collected using a x40 water 
immersion objective (NA 0.75).
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Figure 2.10. A segment o f  DHE stained WKY rat mesenteric artery 
pressure mounted at 40mmHg showing the full depth o f  the vascular 
wall. Round nuclei represent adventitial cells. Elongated nuclei 
running from top to bottom represent smooth muscle cells o f the 
media. Elongated nuclei running left to right represent the endothelial 
cell nuclei. Extended focus views are shown for different rotations, a) 
0°, b) 40°, c) 60° & d) 80°. Images were collected using a x40 water 
immersion objective (NA 0.75).



Ij îM) and pressurised to 40mmHg. The plates show different views of the full EF 

model (0,40,60 & 90°). Like the Wistar RMA the SMCs are aiTanged perpendicular 

to the endothelial cells, which again appear to run in lines due to folding of the lEL. 

Comparing figure 2.10a with 2.9a suggests that the WKY may have a lower density of 

SMCs per unit area.

Figure 2.11 a-d shows a segment of SFIR RMA stained (DFIE IpM) and pressurised to 

60mmITg. The plates show different views of the full EF model (0,40,60 & 90°). In 

this particular vessel there appears to be more deviation of SMCs from the circular 

axis perpendicular to the endothelial cells (i.e. axis of flow). A striking increase in the 

density of adventitial cells was obseiTcd in this sample. Increasing the ti'ansmural 

pressure to 120mmHg caused no significant change in length (figure 2.12).

Agonist activation o f stained pressure-mounted vessels.

A DHE stained vessel was mounted on a perfusion myograph and maintained at 

40mmHg (figirre 2.13a). An series of optical sections through the media of the vessel 

was captured before and after the application of 50mM KCl to cause a graded 

contraction. Dming contraction all nuclei appeared to move as a unit (figure 2.13b). 

Analysis of 10 nuclei picked at random from control (figure 2.13a) and contracted 

(figure 2.13b) showed no difference in shape, length breadth or orientation.

Table 2.2 shows the average morphology of 10 randomly selected nuclei shown

Length Breadth Shape Orientation

Control 89.0 +/- 4.9 22.67+7- 1.16 0.4 +7- 0.02 84.9 +7- 0.8

Contracted 90.8+7-4.85 22.67 +7- 1.26 0.42 +7- 0.03 84.85 +7- 0.64
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Figure 2.11. A segment o f  DHE stained SHR rat mesenteric artery 
pressure mounted at 60mmHg showing the full depth o f  the vascular 
wall. Round nuclei represent adventitial cells. Elongated nuclei 
running from top to bottom represent smooth muscle cells o f  the 
media. Elongated nuclei running left to right represent the endothelial 
cell nuclei. Extended focus views are shown for different rotations, a) 
0°, b) 40°, c) 60° & d) 80°. Images were collected using a x40 water 
immersion objective (NA 0.75).
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Figure 2.12. The segment o f  DHE stained SHR rat mesenteric artery 
(shown in figure 2.11) pressurised to 120mmHg showing the full 
depth o f  the vascular wall. Round nuclei represent adventitial cells. 
Elongated nuclei running from top to bottom represent smooth muscle 
cells o f  the media. Elongated nuclei running left to right represent the 
endothelial cell nuclei. Extended focus views are shown for different 
rotations, a) 0°, b) 40°, c) 60° & d) 80°. Images were collected using 
a x40 water immersion objective (NA 0.75).
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Figure 2.13 . The effect o f  KCl on the arrangement o f  vascular smooth 
muscle cells within the media o f  a wire myograph mounted segment o f  
rat mesenteric artery, a) Extended focus view o f  the media prior to 
contraction, b) Extended focus view o f  the media during contraction to 
KCl. c) 10 nuclei selected from view  (a), d) 10 nuclei selected from 
view (b).
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was then applied to the data sets shown in figure 2.13 (KCl contraction data). The 

resulting vector maps (figure 2.15) aid the visualisation of the effects of contr acting a 

pressurised vessel with KCl.
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Vector models.

The first attempt to visualise data sets in 3D involved reducing all nuclei down to their

longest cord (vector) which would describe the position and orientation in 3D space.

A freeware software package (3Dview) was used for visualisation on the vector fields.

Figure 2.14 shows an example of vector maps of the real data sets shown in figui'e 2.9
,

(mapped in fig 2.14 a&b) and figui’e 2.12 (mapped in fig 2.14 c&d). This approach

Structural studies using extracellular and nuclear stains.

The data thus far suggested that interesting observations could be made of smooth
■■r

.muscle cell organisation in pressurised arteries. Therefore a more detailed structural 

and functional study of basilar arteries isolated from WKY and SPSHR animals was 

undertaken in collaboration with Dr. Silvia Arribas. The results given in this section 

are confined to the confocal-derived data sinee the full study (including functional 

data) has already been published (Arribas et. al., 1996).

Isolated segments of basilai' artery were stained with 5,6 carboxyfluoresceine as 

described above. Full z-series stacks (z=lpm) were obtained for both WKY (Figure 

2.16) and SPSHR (Figure 2.17) arteries. The axis of flow was determined by focusing 

the lEL and drawing a line parallel to the long axis of the endothelial cells. The long 

axis of the SMCs in thi'ee distinct layers (outer, middle and inner) was then identified
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Figure 2.14. The plate shows vector models o f  a wistar (a&b) and 
SHR (c&d) segment o f  RMA pressure mounted and stained with 
DHE. Rotation o f  the models permits visualisation o f  the 
orientation and arrangement o f  the smooth muscle cell nuclei, a&b 
represent data taken from the RMA segment shown in figure 2.9. 
c&d represent data taken from the SHR RMAsegment shown in 
figure 2.11. Yellow/green vectors represent smooth muscle cell 
nuclei.



Figure 2.15. Vector diagrams o f  the data shown in figure 2.13. The left hand 
panels show views o f  the smooth muscle cell nuclei at rest in a presurised RMA. 
The adventitial and endothelial cells have not been plotted, a) top view  (i.e. looking 
down on the vessel), b) end elevation view, c) & d) show identical views during 
contraction with KCl.



Figure 2.16 . Basilar artery from WKY stained with 5,6-CF. The 
figure shows selected images from the full stack o f  optical slices, 
collected at lum intervals along the axial plane. 5,6 CF is excluded 
from live cells which appear as 'empty' cells in these images. The 
extracellular space is clearly visible and the orientation o f  the cells in 
each plane can be easily distinguished. Images are o f  slide mounted 
vessel segments visualised with a x40 water immersion objective (NA  
0.75).



Figure 2.17 . Basilar artery from SHR stained with 5,6-CF. The 
figure shows selected images from the full stack o f  optical slices, 
collected at lum intervals along the axial plane. 5,6 CF is excluded 
from live cells which appear as 'empty' cells in these images. The 
extracellular space is clearly visible and the orientation o f  the cells in 
each plane can be easily distinguished. Images are o f  slide mounted 
vessel segments visualised with a x40 water immersion objective (NA  
0.75).



for each cell and this angle was expressed as a deviation from 90® to the axis of flow. 

The results are summarised in table 2.3.

Table 2.3 The average deviation from 90® of the long axis of smooth muscle cells 
in comparable layers of WKY and SHR basilar arteries. Number in parentheses 
represents number of cells measured from 6-9 different animals. Measurements 
were made according to the description of angle measurements given in the 
methods section.
Data taken from: Arribas S, Gordon J, Daly CJ, Davidson A, Dominiczak AF & 
McGrath JC. (1994). Smooth muscle cell rearrangement and impaired 
contractions in basilar artei-y of SHRSP. Methods & Findings in Experimental & 
Clinical Pharmacology, 16, p47

Strain Layer 1 Layer 2 Layer 3 KCl 5HT
WKY 7.2+0.2 (45) 6.410.7 (46) 5.510.6 (46) 235 1 37 256130
SHR 25.012.0 

(57) **
9 .1 1 1 (6 5 ) 11.612.0

(65)*
771  19** 98125**

A brief study of human cutaneous resistance vessels was conducted as part of a

Wellcome Trust funded project grant to study the structure of vessels taken fr'om

critical limb ischaemic patients. Vessels were mounted in a pressure myograph as

previously described and inflated to SOmmHg. Preliminary observations showed that

at 40mmHg tissue compression (or folding) within the wall severely limited the ability

to obtain good quality optical sections. Increasing the pressure to SOmmHg provided

much clearer images. The reasons for this observation require further study. Figure

2.18 shows examples of both proximal (i.d. 186 um) and distal (i.d. 174 um) vessels

taken from ischaemic limbs. Overall the distal portion of the arteiy had fewer smooth

muscle cells and a thinner wall. The data is summarised below.

Table 2.4. Analysis of the z-series collected of H33342 stained pressurised 
(SOmmHg) segments of human subcutaneous resistance arteries taken from

Wall
thickness

Cell No. 
(Adv.)

Cell. No. 
(SMC)

Cell No. 
(EC)

W:L ratio Media 
(% o f wall)

Proximal 41 um 14 49 14 22.2% 56.3%
Distal 25 um 8 23 15 14.8 47.1%

It is interesting that hypotension, as a result of the blockage, appears to cause 

remodelling in the opposite direction to that observed in cases of increased pressure.
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Figure 2.18. Comparison o f  proximal and distal subcutaneous resistance 
arteries taken from a human lower limb. Amputation was the result o f  
critical limb ischaemia. a) Extended focus model o f  a pressurised proximal 
artery at 80mmHg. b) Extended focus model o f  a distal segment o f  artery 
pressurised at SOmmHg. c) a 90o rotation o f  the proximal EF model. Wall 
thickness measured at 4 lum. d) a 90o rotation o f the distal EF model. Wall 
thickness measured at 25um. Field size 102um square.



In any case the CLSM method is shown to be sensitive enough to detect the 

differences in cellular composition of the two arterial segments.

Automated Analysis o f 3D volumes.

Several methods of 3D rendering were investigated. The extended focus visualisation 

method is adequate for displaying general cellular arrangement. However, the EF is 

not a true 3D volume where the slices would be blended together and the space 

between the slices would be interpolated to produce a solid model of each object 

(nuclei). The optical abberations and elongations described in the inlxoduction to this 

chapter play a major role in determining the success or otherwise of any 3D rendering 

and subsequent segmentation.

Data volumes (z-series of a rabbit isolated perfused cutaneous resistance artery) were 

transferred to SiliconGraphics workstations for rendering by Micro vision and Imaris. 

Figure 2.19a shows a maximum intensity (analogous to the EF model) projection 

produced by Microvision. In this method the dark voxels (which carry no valuable 

information) prevent efficient visualisation. Figure 2.19b shows a back-to-front 

(BTF) rendering of the same data with the dark voxels made transparent. This then 

allows lighting and textui'es to be mapped to the remaining objects to further enhance 

visualistaion. The circle drawn on the volume denotes an area where the nuclei 

appear to fuse together (optical abberation). After iterative multi level thresholding 

(IMTS) the same group of nuclei are still fused (figure 2.19c). This is more apparent 

when the object analysis routine measures the segmented volume and draws a vector 

along the longest cord of each individual object (i.e. the software sees the group of 

fused nuclei as one object (figure 2.19d)).
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Figure 2.19. 3-dimensional reconstruction o f  raw and processed data from a 
segment o f myograph mounted (pressurised) rabbit cutaneous resistance artery. 
The figure shows identical views o f  the same data set after different rendering 
and analysis processes, a) extended focus view o f  the nuclei within the wall o f  
the vessel. Note that some nuclei are brighter than others {object intensity 
heterogeneity.), b) The volume has been rendered using a back-to-ffont (BTF) 
algorithm which allows for the control o f  opacity o f  individual voxels. In this 
case the background (i.e. darkest) voxels have been made transparent. This 
method is effective for volume examination and identification o f  potential 
problems. One particular group o f  nuclei were found to be touching {object 
fusion) and have been circled in the figure, c) The data volume was them 
processed using the IMTS routine (without object classifiers) which segmented 
the objects. Some individual nuclei were clearly segmented while some others 
were not. Some degree o f  object fracturing and fusion was observed, d) The 
segmented volume was then passed for automated analysis. Only the longest 
cord o f each object is shown. These cords are 3D-vectors which describe the 
length and orientation o f  the object. It is clear that the software has failed to 
identify certain ‘individual’ objects (circled).



Testing the IMTS segmentation method.

In choosing data sets with which to test the segmenter, I have kept in mind the major 

problems associated with object extraction from CLSM data volumes. These “real” 

data sets have been chosen as representative examples.

Confocal set-up

Serial optical sections were collected using either an Argon Ion laser (Ex. 488 nm; Em 

610 nm; Data set 1) or a UV Argon ion laser (Ex. 364 nm; Em 400 nm; Data set 2 & 

3). Individual volumes consist of serial images each of which represents a 64 ftame 

average to reduce noise and improve image quality. Data set 1 was collected using a 

x40 water (NA 0.75 long working distance) immersion objective and as such 

represents a relatively poor quality (in terms of confocality ) data set. Data sets 2 & 3 

were collected using a x40 water (NA 1.13 short working distance) immersion 

objective and represent good “confocal” data sets. Deconvolution methods to account 

for blurring caused by the point spread function were not employed in this study.

Data set 1 (figure 2.20a)

The data volume is made up of 54 confocal serial sections of a segment of pressurised 

resistance artery, shown in figure 2.12. Sections were acquired at steps of 1 jam in the 

axial plane and are 512x512 pixels (102 jam) in x-y. The volume contains objects (cell 

nuclei stained with dihydroethidium) which define the number (i.e. one object/nucleus 

per cell) and type of cell (i.e. determined by shape, position and orientation). For 

further details see reference (Daly et al. 1992).
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Figure 2.20 The figure shows top and end elevation views o f  three 
different confocal data sets, a) Segmented volume o f  a pressurised 
resistance artery (figure 11). The volume contains objects (cell nuclei) 
which define the number (i.e. one object/nucleus per cell) and type o f  
cell (i.e. determined by shape, position and orientation), b) Confocal 
volume o f  endothelial cell nuclei on the inner surface or an isolated 
segment o f  pulmonary artery. These nuclei are characterised by their 
heterogeneity o f  intensities (indicative o f  DNA concentration). In 
particular some nuclei have a bright perimeter, c) A single endothelial 
cell nucleus.



Data set 2 (figure 2.20b)

The data volume consists of confocal serial sections of endothelial cell nuclei on the 

inner surface or an isolated segment of rat pulmonary artery. Sections are 332x174 

pixels and axial spacing is 0.5 jLim. These Hoechst 33342 stained nuclei are 

characterised by their heterogeneity of intensities (indicative of DNA concentration). 

In particular some nuclei have a bright perimeter.

Data set 3 (figure 2.20c)

A single endothelial cell nucleus. The bright spots are characteristic of some nuclei 

which may be about to die (apoptosis). The image size is 130x83 pixels (xy) and 18 

pm (z).

IMTS Segmentation o f Data Set 1

The relatively wide intensity distribution histogram (not shown) indicates that data set 

1 is comprised of a wide range of voxel intensities, most of which were blaek (i.e. 

background / non-nuclear cellular material). The 3D rendered volume shows the 

range of intensities of individual nuclei (objects) within the volume. IMTS 

segmentation parameters (Table 2.5) extracted 188 objects which were identified as 

nuclei according to the pre-set classifiers (Table 2.5; Figure 2.20 (a)). An end 

elevation view of the 3D model reveals the curvature of the data set and demonstrates 

the efficient segmentation and separation of individual objects (Figure 2.20 (a); 

bottom panel).
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Table 2.5.

Analysis of Multi-segmented vascular wall

Parameters

all nuclei round nuclei long nuclei

Classifier vol. > lOpmNol. > 10 pm Vol. > lOpnT
w /l> 0 .4 9 w /1 < 0.49

No. of Objects 188 132 52
volume (pm^) 47.06 ± 2.39 48.10 ±2.93 43.48 ±4.25
length (pm) 8.93 ± 0.27 7.78 ± 0.22 11.65 ±0.67
width (pm) 4.96 ±0.13 5.19±0.15 4.34 ± 0.22
width / length (pm) 0.59 ±0.01 0.67 ± 0.01 0.39 ±0.01
thick / length (pm) 0.29 ±0.01 0.33 ±0.01 0.18 ± 0.01



/ ' I l ,

IMTS Segmentation o f Data Set 3

The intensity histogram of data set 3 (not shown) indicated that this data set does not 

contain a large range of intensity. However, a smaller peak representing the bright 

spots in the nucleus was apparent (figure 2.20c). The 3D-rendered volume shows that 

the single nucleus does not have a uniform intensity. IMTS segmentation parameters 

successfully segmented the nuclei into 1 separate object.
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IMTS Segmentation o f Data Set 2

The intensity histogram of data set 2 (not shown) indicated that this data set does not 

contain a wide range of intensity values and that the majority of voxel values represent 

the ‘background’ voxels. The 3D rendered volume reveals several nuclei with bright 

perimeters which appear to fuse with neighboming nuclei (figure 2.20b). IMTS 

segmentation parameters successfully extracted 14 separate objects with 2 joined 

pairs.



Discussion.

The Vascular Wall.

The initial work with BCECF provided some of the most stunning images on smooth 

muscle cells in-situ. These particular images have been particularly useflil as a
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There are many reports describing the orientation of smooth muscle cells in the

vascular wall. The general consensus is that the smooth muscle cells of arteries are 

orientated circumferentially and spiral around the vessel lumen (Gaiwin 1965; Rhodin 

(1982; Pease & Paule; 1960; Aallgaer and Mulvany 1983). Few (if any) studies have
I

focussed on the detailed arrangement of cells in the vascular wall. This is surprising y
4

given the intense research into the mechanisms of vascular remodelling which occurs

in hypertension (Baumbach & Heistad 1989; Flaegerty et al., 1993; Mulvany et al.,

11996). The debate over remodelling in the literature tends to centre around the cause #

of the increased media thickness. Flowever, no attempts have been made to describe 

the organisation of smooth muscle cells in normal vessels. Perhaps due to a lack of 

suitable methodology

Confocal (fluorescence) microscopy.

The aim of this part of the study was to investigate the use of confocal microscopy as 

a method for answering the primary question of the project; do selective agonists 

activate all cells equally? Secondly, can the reported asymmetiy of responsiveness be

visualised using CLSM methods. There are many technical advantages and S-
,s

disadvantages to using confocal based approaches (see Intioduction) and so it was 

important to evaluate CLSM as an appropriate method for studying vascular structure 

(and possibly function).



teaching aid for they provide an insight into the architecture of the vessel wall. If only 

the nuclei are visible the observer may be fooled into thinking that there is a 

considerable amount of extracellular space. However, the smooth muscle cells are 

packed very tightly leaving very little extracellular space. Unfortunately, the sheer 

amount of fluorescence caused by BCECF staining precludes imaging of deep layers 

of SMCs. However, 2-photon systems which have greater depth resolution may 

provide a solution here.

Nuclear Staining.

Nuclear stains were considered to be the best option for studying cell number, 

orientation and (perhaps) activation. The previous chapter had already provided data 

to suggest that nuclear stains were non-toxic and fairly stable under fluorescence 

excitation (Daly et al., 1992).

Visualising a full Z-series as an EF model provided spatial information on the 

distribution (and number) of adventitial, smooth muscle and endothelial cells. The 

adventitial cells do not appear to conform to any specific pattern. However, without 

any detailed analysis of spatial self-organisation it is difficult to be certain that there is 

indeed no pattern. The smooth muscle cells on the other hand have a specific 

orientation (perpendicular to the axis of flow) and appear to be diagonally offset 

(helical) with a pitch of between 45-55“. The diagonal arrangement of SMCs in the 

vascular wall is currently being studied as part of a Wellcome Project Grant recently 

awarded to Prof. McGrath. The aim of the project is to mathematically model the 

arangement of cells in the vascular wall. This project is a direct result of the 

development work documented in this thesis. One of the interesting findings of this
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study was the location of endothelial cells within the invaginating grooves of the
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internal elastic lamina under conditions of low pressure. Figures 2.9 (wistar RMA) & 

2.10 (WKY RMA) show endothelial nuclei appearing to run in lines. However, when
3

the pressure is increased the endothelial cells appear to be more evenly distributed 

within the lumen. It would be of interest to determine if the altered arrangement of
,

endothelial cells has any differential effects on the overlying (inner layers) of smooth 

muscle.

I
Overall, the experiments on nuclear stained pressurised vessels confirmed that this is 

an excellent method for the study of vascular sti'ucture if detailed information on 3D 

spatial organisation of cells is required. Furthermore nuclei morphology can be 

conveniently analysed using routine image analysis on a slice by slice basis (i.e. 2D 

analysis). Morphometi ic and automated analysis of 3D volumes is discussed later.

Activation of pressurised segments of RMA was assessed using KCl. The contraction 

caused more nuclei to come into the field of view. However, the contraction was not 

sufficient to cause a significant change in the nuclear morphology (Table 2.2). These 

experiments show that it is possible to maintain function of a pressure mounted 

segment under laser scanning excitation. Furthermore it is possible to construct 

models of cellular position before and during contiaction.

Application o f the CLSM method to studies o f vascular remodelling.

The techniques developed in the course of this project seemed ideal for investigating 

the nature of 'remodelling' in hypertensive arterial segments. Since the stroke prone 

spontaneously hypertensive rat model was available to oui' gi’oup it was decided to



investigate the structure of the isolated basilar artery using confocal microscopy. In 

normal (WKY) basilar arteries the cells, in all layers, were regularly arranged and 

deviated by no more than 7.2“ horn an axis perpendicular to the direction of flow 

(Figure 2.15). However, in the SPSHR basilar arteries several disorganised regions 

were found and these deviated by as much as 25“ in the outer layers (Figure 2.16). 

The data is presented in Table 2.3.

It is interesting that the greatest differences were observed near the adventitia since a 

significant increase in the number of adventitial cells was also observed (Aii’ibas et 

al., 1996). Adventitial-like cell nuclei were also observed in the medial layers of the 

basilar artery. In all of the hypertensive arterial segments of rat mesenteric artery 

examined in this study, a noticeable increase in adventitial cell density was observed. 

The importance of the adventitia is slowly being realised and It will be interesting to 

follow the research in this area since a more intimate relationship between adventitial 

and smooth muscle cells (with respect to remodelling) may be revealed.

Human Resistance Arteries.

The study of human vessels taken from cases of critical limb ischaemia demonstrated 

the power of the confocal method to quickly identify a structural difference in 

proximal and distal aiterial segments following ischaemia. In general the distal 

portions of artery contained fewer cells and had a reduced wall thickness (see Table 

2.4). This may be the reverse of the phenomenon obseived in remodelled 

‘hypertensive’ vessels and may point to a common mechanism of remodelling of 

arterial vessels. A more detailed study of Human limb arteries and an investigation of
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common remodelling mechanisms will be undertaken during the forthcoming EU 

programme giant (VASCAN 2000).

CLSM methods can therefore reveal aspects of cellular organisation and morphology 

that are not obtainable by other methods. The foci of disorganised cells in SPSHR 

basilar arteries had not previously been described, perhaps due to the more aggressive 

natui’e of conventional histology where shiinkage artefacts and 'plane of section' can 

combine to give false impressions of structure (to an inexperienced observer). On the 

other hand, CLSM methods enable structural studies to be made on living and fixed 

tissue. The throughput is greater and the ability to build 3D-models adds another 

dimension to the possible analysis. Combining different stains in living tissues and 

studying function simultaneously will allow vascular scientists to tackle problems that 

would not have been possible without the development of confocal methods.

Ideally, it would be possible to pass a complete data volume (i.e. image stack) to a 

software routine that could identify discrete objects, count and classify them and then 

report the findings to the user. However, any computerised measurement system 

requires a set of classifiers that first tell the software within which parameters to 

operate. For a nuclei stained volume this could consist of a set of arguments that 

define the limits of individual nucleai' dimension (e.g. minimum and maximum length 

and width). In tliis respect the measurement algorithm will be semi-automated in that 

it requires the user to set the classifiers at the beginning and then perhaps alter the 

classification depending on the output (results). If a given tissue and staining protocol 

yielded uniform staining each and every time then it may be possible to fully automate 

the process. However, in my experience, tissue variability makes it almost impossible
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to predict for different vessels what the classifier values should be, particularly where 

intensity of staining is a factor. For this reason, and because of the problems 

described below, we have yet to find an algorithm that can fully automate this process. 

Fui'thermore, even our own semi-automated method is not 100% accurate.

Automated SD-analysis.

The quantitative advantage of imaging modalities can only be fully realised once 

suitable analysis software is available. Unfortunately, the current state-of-the-art in 

rendering and segmentation is not equipped to cope with the variability of many 

biological tissues. The previous sections have dealt solely with 2-dimensional 

imaging. The extended focus models shown in this chapter are only psuedo-3D 

projections on wliich measurement is not permitted. Although structural studies were 

not the primary goal of the project it seemed necessary to investigate the power of 3D- 

rendering. I was particularly interested in investigating the possibilities for 

quantifying 3D volumetric data of vascular objects (i.e. nuclei). If vascular reactivity 

could be monitored in 2D, perhaps it could be quantified in 3D. This proved to be 

(and still is) an enormous task. It is not within the scope of this thesis to describe the 

development work and experiments in deconvolution and rendering that led to the 

final algoiritlims that were developed by Dr. Daisheng Luo. However, I will describe 

here the general problems that need to be overcome in studying blood vessel walls in 

3D.

Thiesholding and segmentation routines are at the heart of many image based 

measurements. I define ‘tlii’esholding’ as being the process of selecting intensity 

ranges; ‘segmentation’ is defined as the process of extractmg an object from a volume.
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Nuclei stained blood vessels present a particular challenge to the thresholding and 

segmentation routines. Essentially, the vascular wall can be treated as a 3D volume 

containing several objects (in tliis case nuclei) which have different sizes, shapes, 

orientations and intensities. The challenge is to accurately segment each nucleus from 

the volume with the minimum input from the user. Several segmentation methods 

have been suggested. In biomedical image processing, Ong et al. (1996) give a review 

of four categories for the segmentation of tissue section images: thresholding, region 

growing, edge detection, and pattern matching. Most methods deal only with 2-D 

images and although some can be extended to 3D, it is far more complicated..

Specific routines for confocal derived data are particularly difficult to find. The need 

for such routines has prompted us to develop oui' own methods designed to handle 

volumetric data from vascular segments.

7
Problems associated with CLSM.

The data of this chapter have identified a series of segmentation problems associated 

with studying nuclear stained vascular segments. For example, (1) objects (i.e. nuclei) 

can be as little as a few microns apart and may appear to fuse together in the 

segmented volume. (2) Neighbouring objects can have different intensities and 

individual objects can themselves have a wide range of intensity values. (3) Intensity 

will be lower deep within the specimen due to diffraction of light. (4) Even in CLSM 

data sets, some objects will be out-of-focus. The problems described above are 

general and will be relevant to most biological applications employing thick Tive’ 

tissue. Now consider each problem with respect to the confocal study of blood 

vessels.
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Object Fusion. With the exception of cells undergoing mitosis, there will be no cases 

where two nuclei occupy the same cell and therefore be touching. In general, cell 

nuclei must be separated by, at least, the thickness of two cell membranes. In this 

extreme case it will probably not be possible to resolve the distance between the 

nuclei, particularly in the optical (z) axis. Fortunately, the architecture of the vessel 

wall is such that cells are generally offset and are not stacked along the optical axis. 

Therefore, it is a reasonable assumption that where two nuclei appear to fuse it is 

probably the result of some optical abenution which may or may not be corrected. If 

the objects cannot be separated then the user must ensure that classifier parameters are 

stringent enough to eliminate objects whose volume is greater than the average by a 

factor of two (i.e. is it a double nuclei?).

Object intensity heterogeneity. This creates the greatest problem for efficient 

thresholding. Vital nuclear stains report the concentration of DNA. Therefore, if a 

nucleus has regions of high or low DNA concentiation (i.e. an apoptotic nuclei) the 

resulting image of that nucleus will have a range of intensities. Selecting a fixed 

range of intensities for thresholding will undoubtedly result in ftacturing of the object 

where only the brightest (or dimmest) regions will be segmented. One solution would 

be to broaden the thresholding range. Flowever, this will increase the incidence of 

object fusion. In addition, two nuclei occupying the same optical plane can have 

completely different intensity ranges. This means that efficient segmentation of one 

nuclei in a plane does not guarantee segmentation of all other nuclei in that plane.

Intensity attenuation with depth. This is a more general problem which has a 

significant effect on our ability to image the complete vascular wall. As the focal
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Iplane is increased along the z-axis the intensity of the fluorescent signal drops. This is

mainly due to the diffraction of light and the efficiency of penetration of the laser.

.Practically, it means that nuclei deep within the wall (near the lumen) are more

difficult to resolve cleanly. Moreover, it makes visualisation of the endothelial cells 

particularly difficult. One solution is to simply increase the PMT gain or laser power 

slightly with each increase in z-axis position during stack acquisition. This solution is

1

only valid if intensity data per se is not meaningful or required.

Diffraction o f light. Even in the best confocal system there will be some out-of-focus 

glare from fluorescent structures above and below the plane of focus. In vascular 

samples this is not a major problem since the relative size of the objects is greater than 

the actual diffraction from the point light source. Much has been written about the use 

of deconvolution methods to correct for this (Van Der Voort & Strasters 1995; Shaw 

1995). I have tested several methods of deconvolution on vascular samples and have 

found the Iterative Consti’ained Tiklionov Miller and Maximum Likelihood methods 

to produce the best results for vascular tissues.

'/

Multi-level thresholding and segmentation (IMTS).

To overcome the problems described above a specialised semi-automated algorithm 

for thresholding and segmenting objects fiom confocal volumes of vascular structure 

was developed in collaboration with Dr. Daisheng Luo.

The iterative multilevel tluesholding and splitting (IMTS) method segments 3D 

images into volumes iteratively by increasing the threshold value and splitting larger 

volumes into smaller volumes. The volumes are extracted by the slice merging



method. The object segmentation is conti'olled by intensity homogeneity and volume 

size criterion.

Unlike the automatic multilevel thresholding (Chang, 1995) where thi'eshold values 

are found from the global histogram and different objects are segmented in different 

tlireshold bands, IMTS segments different objects at different threshold values which 

match the object themselves. This method is particularly effective for segmenting 

nuclei in vascular segments. Operation of IMTS is simple. The routines have been 

built into an existing 3D-rendering package (Microvision; Fairfield Imaging). The 

software runs on SiliconGraphics hardware and has a fiiendly windows like interface. 

Once the volume has been loaded the user selects the thresholding range and the 

incremental step size. The software then segments the volume interactively and 

displays the segmented volume in the render window, the user can then examine the 

volume visually and can view the object data text file. If the results are not 

satisfactory, the thresholding step size and range is altered and the process is repeated.

Object Classification and measurement.

As stated earlier (and shown in the figm-es), cell type can be identified by nuclei 

position, shape and orientation. Therefore, segmented objects can be used to report 

the number, position and orientation of the different cell types. Once a data volume 

has been analysed by the IMTS segmenter the object data is output to a simple text 

file. Objects can then be ordered by size, shape factor orientation etc. If only smooth 

muscle cells are to be examined then classifiers which are unique to these cells can be 

defined (i.e. ratio of length to width; shape factor; orientation with respect to a fixed 

axis etc. Table 2.5).
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In summary, the data within tliis chapter have helped clarify exactly what is possible 

in terms of studying vascular structure and function using confocal microscopy. 

Stains for the extracellular matrix, cytoplasm and nucleus have been validated and 

their respective limitations identified. It has been shown that nuclear stains can 

provide information on the spatial organisation of vascular cells. Fui'thermore, the 

cellular arrangement can be examined at different perfusion pressures or degrees of 

activation. The method is sensitive enough for detection of vascular abnormalities 

resulting from at least two cardiovascular disorders.

The process of thresholding and segmentation of 3D volumes has been tackled and 

was largely successful. A major conclusion to be drawn from these experiments is 

that sti'uctural analysis using the stains described here is unlikely to be useful in the 

study of vascular asymmetry. An alternative approach (studying receptor distribution) 

is described in the next chapter.

Focussing on the positive aspects of the results it should be noted we are now able to 

clearly define the way in which our studies of vascular structure and function will 

continue in the future. In the comse of examining several hundred arterial segments, 2 

questions are constantly raised in my mind.

1. Are there gi'oups of cells which act as functional ‘pacemaker’ units for 

initiation of contraction? I firmly believe that we will find repeating patterns 

of cell arrangements which may or may not be functional units.

2. Is there a relationship between the adventitial neiwe plexus and the 

arrangement of smooth muscle cells on the outermost layers of the tunica 

media? Do nerves follow the pattern of cell arrangement?
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3 . Is there a simple mathematical formulae to describe the arrangement of cells

mapped to a tubular structur e which could be used to build models of vascular
.

cell arrangement. Furthermore, alteration of which variables of the formulae

would cause reorganisation akin to remodelling.

outlined above. Answering these questions will form a major focus of my work in the 

coming years.
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Chapter 3
The use of fluorescent ligands and the development of methods for 

fluorescent ligand-binding in isolated cells and tissues.
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Introduction.

89

The previous chapters have dealt with fluorescence based methods for identifying 

cells and cell types. Much of the previous work was focused on developing a means 

of visualising cells during vasomotion at different depths within the vascular wall in 

response to agonists and other stimuli. In many respects the fluorescence based 

approach was largely successful, proving that it is indeed possible to stain living
■ii-

(pressurised) vessels, to identify cell type, to build 3D models of vascular structure 

and to monitor the change in position/arrangement of cells during contraction and 

changes in transmural pressure. In addition, several other interesting features of 

vascular structure and possible avenues for investigation became apparent and are 

currently being followed by members of Professor McGrath's research group (i.e. 

confocal studies of hypertension induced remodelling, confocal analysis of vessels 

from organoid culture, mathematical descriptions of vascular cell arrangement, 

automated analysis of 3D volumes etc.). However, with respect to the main aim of this
■lii.

project, which is the determination of sensitivity of individual cells and cell layers to 

selective agonists, it appears that the organelle staining approach might not be 

sensitive enough. Moreover, it is not exactly clear how much freedom of movement 

an individual cell might have. Even if one cell in a group is rich in adrenoceptors and 

is activated first, contraction of this cell may be constrained by other physical factors 

like anchorage to elastin and collagen or the presence of surroimding cells. This is 

indicated by careful examination of the movies of ICC 1 and noradrenaline contraction 

of pressuiised vessels where there is no evidence for initial activation of sub­

populations of cells.



One possible line of attack would be to study Câ "̂  activation in the cells of the 

vascular wall. ai-adrenergic receptor activation causes a rise in intracellular Ca^  ̂

which leads to contraction of vascular smooth muscle (McGrath 1982). There are 

now many forms of fluorescent Câ "̂  indicator which will increase or decrease their 

fluorescence in proportion to the amount of free cytosolic Ca^^ (Minta et ah, 1989). 

This creates the possibility of using confocal microscopy to examine Câ "̂  signalling 

in vascular smooth muscle at different depths within the media in response to 

selective agonists. However, while I believe that this particular approach will provide 

very important information in the future, I did not feel that it would fully address the 

real pharmacological question relating to receptor distiibution and its relationship to 

the observed asymmetry of responsiveness. Nevertheless this approach is being 

strongly considered for futme developments by professor McGrath's research group. 

A very recent paper described Câ "̂  activation in renal arterioles using confocal 

microscopy (Miriel et al., 1999). Unfortunately, the image quality in the study was 

relatively poor and suggests work with thicker walled arteries may be problematic and 

difficult to interpret. My preliminary experiments (not shown here) of loading fura- 

red into blood vessels showed that it was possible to obtain reasonable resolution of 

smooth muscle cells in the region just underneath the adventitia. It will be interesting 

to watch the developments in this area.

At the same time as I was considering which direction to follow next (to go with Ca^’*’, 

to stick with the fluorescent nuclear stains, or move to arterioles and try to establish 

the mechanics of contraction), Molecular Probes announced the synthesis and 

commercial availability of BODIPY FL-prazosin. Prazosin is a high affinity %- 

adrenoceptor antagonist and has been used to distinguish oci and «2  adrenoceptors pre-
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and postjunctionally (McGrath 1982). BODIPY (borate-dipyrromethene) is a more

stable (pH insensitive) fluorophore than FITC (FITC bleaches quickly under laser
.

illumination and is sensitive to intracellular pH). Therefore BODIPY is a more 

suitable fluorophore for conjugating to a ligand.

The development of this compound raised the possibility of mapping the location of

ai-ARs rather than inferring their presence indirectly based on cellular activation.

Furthermore, since prazosin is not selective for the three ai-subtypes (see below) it 

.may be possible to use the non-selective fluorescent drug in combination with subtype

selective compounds in order to determine the distribution of individual receptor 

subtypes. It was thus decided to follow a program of work investigating the functional
'

pharmacology and ligand-binding characteristics of BODIPY FL-prazosin in single 

transfected cells, in freshly dissociated cells and in living tissue sections. The 

experiments in this chapter describe the preliminaiy work leading up to the 

development of the method of fluorescent ligand binding. Data from some recent 

publications will also be presented (McGrath & Daly 1995; McGrath et al., 1996;

Daly et al., 1998).

I

Current Classification o f aj~adrenoceptor subtypes.
'

Classical pharmacological methods and theory dictate that identification of a receptor 

subtype requires proof of the existence of the endogenous ligand. In addition, an 

antagonist that binds to the receptor with high (nanomolar) affinity must be available. 

In recent years this approach has been radically changed. It is now possible to identify 

the genes which code for receptor subtypes. These genes (cDNA) can now be 

transfected into cells which will then transcribe the DNA and manufacture the

I
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recombinant receptors. Therefore the classical requirements for identification of a

receptor subtype have changed. The original requirements for an antagonist and

endogenous ligand still stand, unless you have the gene! This situation has resulted in
.

the discoveiy of receptor subtypes for wliich, in many cases, there is either no 

endogenous ligand or recognised physiological role. This situation now exists to a 

certain extent for the ai-ARs.

There are cuirently three recognised subtypes (known genes) of ai-ARs; aiA, ol\b and 

a w  (Hieble et al, 1995). The aw  nomenclature has been abandoned to avoid

contusion (see Hieble et al for details). A further important classification (aiO is 

recognised functionally but not 'officially accepted' due to the absence of a known 

cDNA sequence which can transcribe the hinctional receptor in recombinant systems.

Nevertheless the aiL-AR, which is characterised by its low affinity for prazosin, has 

been demonstrated functionally in many tissues including, most recently, those of the 

lower urinary tract (Ford et al., 1996). The wide range of observed pA% values for 

prazosin was highlighted by Drew (1985) at a workshop on a-adrenoceptors hosted by 

Prof. J.C. McGrath and later published in Clinical Science. Drew's observations led 

others to suggest that the low affinity prazosin site may represent a new a  -AR 

subtype (Flavahan & Vanlioutte 1986; Murumatsu 1990). Some authors have 

suggested that the ociL-AR is a low affinity state of the aiA-AR (Ford et al.,1996). If 

this is the predominant AR on prostatic SMCs it may explain why prazosin is not used 

therapeutically since relatively high doses would need to be administered and the 

resulting hypotension caused by non-selective vasodilation would be an unacceptable 

side-effect.

f
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Selectivity o f Antagonist drugs and new compounds.

The quinazoline family of compounds (which includes prazosin, doxazosin, alfuzosin 

etc. Figure 3.1) are not selective among the three ai-AR subtypes. Tamsulosin 

(YM12617) has high affinity for aiA-ARs but also has affinity for ocm ARs. Wliile 

the current group of pharmacological tools for subdivision of the ai-ARs are not ideal 

there are several compounds which do possess relatively high selectivity for individual 

subtypes (i.e. BMY7378 for am; 5-methylurapidil for aiA: L765,314 for am etc.).

Although many different compounds are used for the classification of subtypes it 

seems that the relatively 'non-selective' ones are used clinically, probably due to the 

mix of receptor subtypes that are generally present on native tissues. It should also be 

noted the the quinazolines are lipophilic and will therefore have access to any 

inti'acellular receptors which may contribute to their observed potency.

I
Receptor distribution and location f

It is now apparent fioin biochemical and molecular studies that receptor 

desensitisation and downregulation is probably associated with the mechanism of 

receptor internalisation which occurs by an endocytotic process and which is reviewed 

extensively elsewhere (von Zasti'ow & Kobilka 1994).

It has been shovm in recombinant systems that aiA-ARs are expressed as intracellular 

receptors whereas am-ARs are more readily translocated to the plasma membrane

(Hirisawa et al., 1997). Presently, nothing is known about receptor turnover in blood |
#

vessels at the cellular level. It is also not known if cell surface ARs are distributed
i:

evenly through the medial smooth muscle cells of the vessel wall. It was therefore of
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Figuic 3.1. The stfuctui-e of quinazolinyl piperazine (top) and the various 
substituents (R) that distinguish prazosin, doxazosin and QAPB. This 
particular form of BODIPY is excited at 488nm and emits above 515mn. The 
compound was obtained from Molecular Probes and is listed in their 
catalogue as "BODIPY FL-prazosin" but since it lacks the furan group which 
defines prazosin, as opposed to other compounds which share the 
quinazolinyl piperazine group, such as doxazosin, we refer to it by an 
acronym, "QAPB", derived from its chemical name (quinazolinyl piperazine 
borate-dipyrromethene).



interest to determine whether fluorescent ligands could be usefully applied to tackling 

these issues.

Until recently fluorescently labelled receptor ligands were used more or less as 

iireversible histological "stains". The long duration of the ligand-receptor association 

was considered as akin to a covalent bond. Unlabelled competitors were merely a 

means of occluding the association and validating the receptor type. However, some 

compounds are now available which have the ability to report the "amount" of ligand- 

receptor complex at equilibrium: these compounds fluoresce when bound to the 

receptor but have low background fluorescence in the aqueous phase giving a high 

signal to noise ratio. This opens up the possibility of assessing the affinity of the 

receptors for the fluorescent ligand and, further, of assessing the affinity of other 

ligands by competition. The big advantage is that quantitative ligand binding can be 

carried out with very high spatial resolution which is ideal for dealing with 

heterogeneous tissue, but many other advantages follow (table 3.1).

History o f  fluorescent "drug” ligands.

Many attempts have been made at conjugating fluorescent molecules to receptor 

ligands in the hope of identifying their binding sites. This was aimed mainly at the 

localisation of the receptors rather than studying their properties. The objective was to 

produce a fluorescent compound which would remain fluorescent when bound to the 

receptor and would remain bound when the free drug was washed away. This 

actually makes the experiment more demanding since washing is likely to cause the
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ligand to dissociate and diffuse away, unless it has very high affinity (or a slow off- 

rate). Increased fluorescence on binding was not an objective. Early studies were also 

limited by the insensitivity of detectors. However the greatest obstacle was the lack of 

suitable probes, necessitating the ad hoc development of the fluorescent ligands. In 

reviewing the limited critical acceptance of some early examples, it is worth noting 

whether the pharmacological properties of the ligands were examined or whether the 

assumption was made that they possessed similar properties to the parent compound. 

The contemporary situation is simpler since the development of fluorescent 

biochemicals has become important in molecular biology and the tools for rapid 

pharmacological screening are available.

Examples offluorescent ligands for various receptors

Nicotinic: a-Bungarotoxin was one of the first drugs to be exploited as a fluorescent 

ligand (Anderson & Cohen 1974). It was used to label acetylcholine (ACh) receptors 

of Xenopus sartorius muscle fibres. Fluorescent a-bungarotoxin binding could be 

inhibited by carbachol or unlabelled a-bungarotoxin. This early report is significant 

in taking account of both the selectivity and affinity of the fluorescent ligand, noting 

that the fluorescent conjugate exhibited lower potency than the native toxin. 

Fluorescent a-bungarotoxin is still in use: one study combined this probe with 4-D1-2- 

ASP to visualise simultaneously the dynamic architecture of nerve terminals and their 

associated postjunctional receptors during development (Balice-Gordon & Lichtman 

1993). High affinity toxins whose binding is virtually ineversible are ideal for these 

"localisation" studies and carry the additional advantage that they can be translocated 

inside the cell with receptors.

fi-Adrenoceptors: Atlas and co-workers synthesised a fluorescent analogue of 

propranolol (9-AAP) and used this probe in an attempt to localise p-adrenoceptors in 

rat cerebellum (Atlas et al., 1976). They found 'spots' of fluorescence, consistent with 

binding to presynaptic sites, which were reduced in both number and intensity in the
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presence of unlabeled propranolol. Similar results were obtained with a dansyl 

analogue of propranolol (DAPN) which prompted the authors to suggest that 

fluorescent p-adrenoceptor antagonists could be used in vivo to study p-adrenoceptors 

in the CNS (Atlas & Melamed 1978). However, the use of fluorescent p-antagonists 

did not find widespread use. There are two possible reasons for this. Firstly, the 

qualitative nature of the technique may have limited its appeal and, secondly, there 

was criticism that the fluorescent spots observed may be autofluorescent granules 

(Hess 1979). A later development in this field was the use of fluorescent labelled 

CGP12177. Heithier et al, (1994) showed that a BODIPY derivative of CGP12177 

had similar binding properties to native CGP12177 on human p2 -adrenoceptor

ti’ansfected Sf9 cells and were able to demonstrate punctate fluorescence on lightly 

fixed cells which was abolished in the presence of non-fluorescent CGP.

Opioid: The understanding of opiate-induced desensitisation of receptors was

advanced following the synthesis of a fluorescently labeled enkephalin which was 

used to study opiate receptors in neui'oblastoma cells (Hazum et al., 1979). Using this 

probe it was found that opiate receptors normally exist in a diffuse state and that both 

agonists and antagonists can induce receptor clustering (Hazum et al., 1980).

Histamine: Petty & Francis(1986) synthesised and studied fluorescein-histamine.

They identified clusters of mobile receptors on the cell surface of polymorphonuclear 

leukocytes. Furthermore, fluorescein-histamine binding was inhibited in the presence 

of histamine and cimetidine confirming that conjugation of the fluorophore does not 

markedly alter its selectivity.

Neurotensin: Faui’e et al., (1994) synthesized a fluorescent derivative of neurotensin, 

Na-FTC-[Glul]NT (fluo-NT). Using (i) flow cytometry, (ii) ligand binding and (iii) 

confocal microscopy the authors demonstrated that fluo-NT, over the concentration 

range tested (0.16-16nM), exhibits (i) 85% specific binding, (ii) a pKi (0.67nM) 

against [1251]-NT similar to non fluorescent NT (0.55nM) and (iii) granular hot spots 

within nerve cell bodies on rat brain sections. Fluo-NT binding to SN17 cells (septal



neuron-neuroblastoma hybrid cells, wlrich express high affinity NT-binding sites) 

produced hot spots which were predominantly on the cell surface although a 

population of inti’acellular hot spots was identified using confocal microscopy.

a~adrenoceptors: The experiments of this chapter have employed a BODIPY-iabelled 

fluorescent quinazoline, QAPB (figure 3.1) which is related to the a i  adrenoceptor

antagonists doxazosin, prazosin and terazosin (Ruffolo et al., 1995) to visualise a- 

adrenoceptors on live cells and intact pieces of tissue. The punctate fluorescence 

found is visually similar to that found with other receptor antibodies and confirms the 

punctate nature of a-adrenoceptor distribution found by Uhlen et al., (1995) in MDCK 

cells.

Cell surface G-protein-coupled receptors are notoriously difficult to localise 

accurately, even in fixed tissue using antibodies, due to the non-specificity caused by 

the high degree of conservation of sequence, or using radioligands due to the inherent 

low resolution of autoradiography. However, high affinity fluorescent ligands based on 

“antagonist” dmgs/ligands could be used in a manner analogous to radioligands, but 

with much higher spatial resolution and in real-time on live tissue, if their 

concentration can be measured photometrically.

The data which follow document the validation of the compound BODIPY FL- 

prazosin (or QAPB). Firstly, the pharmacology of the ligand is established in a variety 

of tissue types using functional, binding and biochemical assays. Secondly, by using a 

transgenic cell line, the concenti’ation-fluorescence characteristics of the compound are 

investigated in an attempt to produce data similar to that obtained in conventional 

radioligand binding. In addition, the fluo-ligand is tested on dissociated cells and tissue 

sections harbouring known ai-AR subtype populations. Finally, the use of image 

analysis methods for studying receptor binding induced fluorescence and spatial 

distribution is also considered.
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Methods

Reagents

Reagents used were of the highest analytical grade. The following compounds were 

used: DMEM (GEBCO UK); -prazosin (8 6 Ci mmol"^) and m_yo-[2-3H]inositol 

were obtained from Amersham; BODIPY FL-prazosin 'QAPB'(Molecular Probes Inc); 

prazosin HCl and doxazosin (Pfizer); phentolamine mesylate (Ciba); phenylephiine 

HCl & phenoxybenzamine (Sigma); YM12617 (Chinoin).

Cell culture.

Rat 1 fibroblasts stably expressing the aid-adrenoceptor (see Wise et ah, 1995) were 

maintained in DMEM containing 5% (v/v) new-born calf serum, glutamine, penicillin, 

streptomycin and geneticin (G418) in a humidified atmosphere at 37^C containing 5% 

C02.

Inositol phosphate studies.

Cells were seeded in 24-well plates and labelled close to isotopic equilibrium by 

incubation with 1 pCi/ml wy-o-[2-3FI]inositol in 0.5 ml of inositol-free DMEM 

containing 1% (v/v) dialysed newborn calf serum for 36 h. On the day of the 

experiments the labelling medium was removed and cells were washed twice with 

HBG buffer [0.5 ml Hanks buffered saline, pH 7.4, containing 1% (w/v) BSA and 10 

mM glucose]. Cells were then washed twice for 10 min with HBG/LiCl buffer (HBG 

supplemented with 10 mM LiCl) and subsequently stimulated with agonist in 

HBG/LiCl for 20 min. All incubations were conducted at 37 °C. Reactions were 

terminated by the addition of 0.5 ml of ice-cold methanol. Cells were then scraped, 

transferred to vials and chloroform was added to a CHC13/MeOH ratio of 1:2 (v/v). 

Total inositol phosphates were extracted for 30 min before the addition of chloroform 

and water to a final ratio of 1:1:0.9 (CHC13/MeOH/H20, by vol). The upper phase
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was taken and total inositol phosphates were analysed by batch chromatography on 

Dowex-1 formate as previously described (MacNulty et a l, 1992).

Membrane preparation.

Cells were grown to confluence and harvested using a rubber policeman followed by 

centrifugation at 600xg for 5mins. The cell pellet was resuspended in 5mis of Tris- 

HCl assay buffer (150mM NaCl, 50mM Tris-HCl, lOmM MgCQ, 5mM EDTA,

lug/ml leupeptin, lOmM benzamidine, 500ug/ml soya bean trypsin inhibitor, pH 7.4) 

and homogenised at setting 6  for 3x5secs using an ultrapolytron. Following 

centrifugation (600g, lOmins, 4^C) the supernatant was retained on ice while the 

pellet was re suspended, rehomogenised and recentrifuged. The supernatants were 

pooled and centrifuged at 56,000g for 30mins at 4^C. The resulting membrane pellet 

was resuspended in 1ml of ice-cold Tris-HCl assay buffer and homogenised with a 

5ml teflon-in-glass homogeniser. The homogenate was processed for protein 

estimation using a Pierce protein assay kit and adjusted to 0.5 mg/ml. Aliquots which 

were not used immediately for ligand binding were stored frozen at -80^C.

Radioligand binding studies.

Saturation studies were performed with rat a id  fibroblast membranes (0.05mg/ml)
3

which were incubated in triplicate with [ H]-prazosin (0.05-1 OnM) in a total volume 

of 0.5ml of 150mM NaCl, 50mM Tris-HCl, lOmM MgCl2 , 5mM EDTA, pH 7.4.

Competition binding assays were performed by incubating membranes with 0.2nM

[ H]-prazosin in the presence or absence of a range of 12 concentrations of the

competing ligands. Non-specific binding was defined as the concenti’ation of bound

ligand in the presence of lOgM phentolamine. Following equilibrium (30mins at

25®C) bound ligand was separated fi-om free by vacuum filtration over GF/C filters on
3a Brandell cell harvester. Inliibition of specific binding of [ H]-prazosin by ligands
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was analysed to estimate the IC5 0  (concentration of the ligand displacing 50% of 

specific binding). The inhibitoiy constant (Ki) was calculated from the IC5 0  by the 

equation of Cheng and Prusotf (1973). Binding isotherms from displacement studies 

were analysed by a non-linear least square parametric curve fitting programme 

GRAPHPAD Prism, capable of iterative curve fitting to a single or two-site model.

100

Analysis o f  functional antagonism by QAPB.

Preparations of rabbit saphenous artery or rat aorta were cut transversely into 3-

4mm rings and suspended between thick wire supports. Each ring was suspended

horizontally by means of two stainless-steel L-shaped hooks carefully passed

tlirough the lumen. The upper support was connected by cotton to an isometric

transducer while the lower support was connected to a glass tissue holder. The

arterial rings were mounted in 10ml isolated organ bath, bathed in Krebs 

maintained at 37°C and gassed with 95% O2  plus 5% CO2 . The rings were then

placed under resting tension at 1.5-2g for each group of arterial rings, which was 

determined fiom active tension development curves and found to be optimal. 

Segments of rat (epididimal) vas deferens were isolated and mounted longitudinally 

(under Ig tension) in a 10 ml organ bath. Isometric contractions were measured by 

a Grass FT03 transducer cormected to a Linseis (TYP 7208) pen recorder. In all 

experiments, tissues were left to equilibrate for a 60 min period, during which time 

the tension was re-adjusted to a set value which was maintained constant 

throughout the rest of the experiment. Each preparation was then exposed to NA 

(IpM) and allowed to contract for 5-10 min. This first contraction to an agonist 

minimised changes in the sensitivity of preparations to fur ther addition of agonists. 

The presence of the endothelium (on vascular segments) was confirmed 

pharmacologically by a relaxant response to acetylcholine (IpM). Following

I
Î
I

i

,;r:



complete washout, an additional one hour equilibration period was allowed before 

commencement of any other experimental procedure.

Assessment o f antagonist potency versus agonist concentration response curves

Cumulative concentration response curves to noradrenaline or phenylephiine 

(0.1 nM to 30pM in increments of a half of a log unit) were constructed. When 

QAPB was used, the preparations were incubated at least for 45 minutes with the

Confocal Microscopy.
A Noran Odyssey real-time confocal laser scanning microscope (CLSM) was used in
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antagonist drug prior to the onset of a second cumulative concentration response 

curve. Only two consecutive curves were tested on each preparation.

The potency of agonist was determined as the pD2 , which is the negative logarithm 

of the concentration causing half the maximal response.

In examining the effects of the antagonist versus concentration response cur ves to 

agonists, agonist concentration ratio values were determined from the 

concentrations producing 50% of the maximum response (EC5 0 ) in the absence 

and presence of each concentration of antagonist. The EC5 Q value of the agonist 

was expressed as the pD2  value which was calculated as the negative logarithm of

the EC50  value (pD2 =-log EC5 0 ).

%
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conjunction with an Nikon Diaphot (inverted) microscope. The 488nm line (515 

band pass) of an argon-ion laser was used tliroughout. In order to maximise the signal 

detection at very low concentrations of the fluorescent ligand a 1 0 0 pm slit was used in 

all experiments. While not giving the optimum 'confocality' required for 3D- 

reconstruction work, this slit width nevertheless gave a significant increase in axial 

resolution compared with a conventional fluorescence microscope. A Nikon 40x oil
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immersion objective (NA 1.3) was used throughout. Krebs solution is identical to that i
:

given in chapter 1.

Whole cell image analysis.
Images were collected and analysed using Universal hnaging's 'MetaMorph' software.

.Cells were grown on coverslips for 24 hours prior to use. Coverslips were mounted in
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a flow chamber (WPI) and placed on the stage of an invert (Nikon Diaphot) 

microscope fitted with a Noran Odyssey Laser Scanning Confocal Module. Using 

cell autofluorescence a suitable group of cells was selected and the focal plane fixed 

by locking the focus motor. The system was then set to acquire images (64 frame 

averages; 2.56 seconds exposure) at 1 minute inteiwals. After a 'run in' period of 5-6 

minutes the first concentration of fluorescent ligand was added and allowed to 

equilibrate for at least 5 minutes. After equilibration the next concentration of 

fluorescent ligand is added, without washing, and given at least 5 minutes to reach 

equilibrium (i.e. no further increase in fluorescence). Once saturation has been 

reached the individual cells are outlined using MetaMorph's define-region tool and the 

whole time series is plotted as intensity vs time for each cell. Non-specific binding 

was defined as fluorescent binding in the presence of lOpM phentolamine. The 

composition of the Hepes buffer for cellular studies was as follows: (mM) NaCl 130,
v;

KOI 5.0, HEPES 20, Glucose 10, MgCl 1, CaCl 1.

Ligand binding to tissue slices.

Rat mesenteric arteiy segments were isolated and cleared of connective tissue. The 

segments (5-10mm in length) were placed in a mixture of molten glycerine and 

gelatine (37“) and allowed to cool to room temperature when the gelatine would set 

firmly. Segments were then cut transversely using a Sorvall TC-2 tissue chopper. Cut



ring segments (75~100um thickness) were then suspended in fresh HEPES for 10-15 

minutes. Ring segments were then placed on coverslips coated with Cel-Tak tissue 

adhesive (3.5ug/cm^). The coverslips were then moimted in a flow chamber for 

microscopy studies identical to those used for isolated and cultured cells.

Iso-Surface Modelling.

and intensity value (or range). The full data volume is inspected for comparable 

values. The co-ordinates of the iso-values are plotted and connecting vectors are

Using the depth analysis module of the Imaris image analysis suite, a suitable iso­

value was selected for construction of an iso-surface model. The iso-value represents
:

as
drawn between the points to create simple geometiic shapes (i.e. triangles). This 

creates a wire-frame model upon which a surface can be mapped. The surface colour, 

texture and opacity can be user defined to enable visualisation of multi-layered
■■

surfaces. The surface area of each Tayer’ can be quantified. Unfortunately, current 

software versions do not permit accurate calibration to provide quantification to be 

expressed in microns or some other suitable unitary measure.

Simulated Fluorescence Projection.

SEP is another rendering method offered by the Imaris suite (Messerli et al., 1993). 

The software treats the data volume as a block of absorbent material. If a light ray 

passes through the volume at a given point it will be adsorbed and cast a shadow. In a 

fluorescent stained volume areas of heavy staining (fluorescence) will tend to cast 

shadows on the background. Tliis method is ideal in certain situations for showing a 

2D image of a 3D volume.

I
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Results.

Ligand affinity.

In Rat-1 fibroblasts expressing the rat aid-adrenoceptor, co-incubation of the cells

with increasing concentrations of QAPB resulted in a progressive, parallel rightward 
.shift in the concentration-effect curve for the generation of inositol phosphate induced 

by the al-adrenoceptor agonist phenylephiine (Wise et n/., 1995) without alteration in

the maximal effect (Figure 3.2a), demonstrating QAPB to act as a competitive, 

functional antagonist at this receptor. Transformation of this data to produce a Schild 

plot resulted in an estimated pA2  for QAPB at the rat aid-adrenoceptor of 7.78

which was not significantly different fi’om its antagonism of phenylephrine in rat aorta 

(pA2  8.25, figure 3.3a).
■Ï
5
■Ï.

4

3]T-prazosin binding to ftactionated cell membranes is the common method used to 

determine ai-adrenoceptor number and affinity (Kenny et al., 1996). hihibition of 

3]T-prazosin binding to aid-membranes by unlabelled competitors resulted in Ki 

(pKi; antagonist) values of 1.04 (9; prazosin), 1.24 (8.9; QAPB) and 17.8nM (7.5; 

doxazosin) (figme 3.2b). Inhibition cuiwes were analysed using GraphPad PRISM 

and were statistically best fit by a single site model, confirming binding-site 

homogeneity.

'4 '

QAPB acted as a competitive antagonist versus phenylephiine in rat aorta (pAi 8.25 

slope 0.9; figure 3.3a) and against noradrenaline in rabbit saphenous artery (pAz 7.6 

slope 0.75; figure 3.3b)

QAPB (0.1 uM) caused a rightward shift in the concentration response curve to 

noradrenaline in isolated rat vas deferens (figure 3.4a). Versus acetylcholine in the 

same preparation QAPB (0.1 uM) caused no shift in the CRC, confirming that there is 

no non-specific effect (or toxicity; figure 3.4b).
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Concentration dependent fluorescence.

Initial experiments examined the binding of QAPB to fibroblasts transfected with the 

rat aid adrenoceptor. Using a 15um slit and an oil immersion objective (x40 NA 1.13) 

produced a faint image of the unstained cells (autofluorescence) which was used to fix 

the focal plane. The CLSM system was then set to collect images (64 frame averages) 

every minute. QAPB was increased from 10 -  160nM in steps of lOnM every minute. 

Figure 3.5 shows the development of fluorescence with increasing concentrations. 

The development of clusters (hot spots) can be seen from frame 11 onwards. 

Fluorescence developed in clusters and in a diffuse manner with regions of high and 

low intensity.

The image produced by incubating with lOOnM QAPB was selected for the 

construction of image masks. By selecting (thresholding, see chapter 2) a range of 

low (33-64), intermediate (65-96) and high (97-128) intensities it was possible to 

make masks of the regions which achieved the designated intensity (Figure 3.6). 

These masks were then used to measure the fluorescence development in only those 

regions through the course of the entire experiment. As can be seen from the graph in 

figure 3.5, the high intensity fluorescence is last to develop (at 90nM) while the low 

intensity fluorescence develops from 50nM.

To demonstrate the specific nature of the binding, experiments were performed in the 

presence and absence of the non-fluore scent ai-antagonist prazosin. Prazosin 

(lOOnM) inhibited the development of QAPB-induced fluorescence (figure 3.7). By 

measuring the average fluorescence in eaeh image it is possible to plot a concentration 

fluorescence cmve (CFG). Figui'e 3.8 shows the CFG in the presence and absence of 

non-fluorescent prazosin. As expected, the control GFG was shifted to the left.

The experiments thus far have shown that it is possible to inhibit the development of 

binding-induced fluorescence. I then considered the possibility of reversing the
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fluorescence by adding a high concentration of non-fluorescent ligand in the presence 

of QAPB (at equilibrium). Figure 3.9 shows the effect of applying lOuM of prazosin 

and phentolamine in the presence of QAPB-induced fluorescence. 3 sample traces are 

shown in figure 3.9 which accurately represent the overall conclusion of many )

attempts to ‘reverse’ QAPB fluorescence, namely that it is not possible to completely |

reverse the binding of 5-lOnM QAPB. These results led to the assumption that either 

QAPB has a slow dissociation rate, there is a population of receptors unavailable to 

the competitior or the concentration of QAPB is too high and thus has a non-specific w

component.

There followed a period of experimentation in which the sensitivity of the CLSM
'V : : .

method was increased to enable visualisation of binding at lower (i.e. < 5nM)
I,

concentrations. Increasing CLSM sensitivity was achieved by

1 . opening the pinhole aperture

2. increasing the gain of the PMT

3. Allowing longer incubation periods.

4. removing the secondary dichioic block from the system.

Point 4 is a technical consideration and has no effect on image quality (only system 

flexibility). However, point 1 & 2 have serious implications for image quality. Point 

1 reduces confbcality to almost non-confbcal condition. Point 2 introduces PMT 

noise into the image. Point 3 allows more time for equilibrium to be acliieved and for 

fluorescence to develop. j

Figure 3.10 shows the results using the new parameters of lOOum slit, increased gain,

5 minute incubations. QAPB was applied every 5 minute (or longer if required) from

0.4nM -  1 OnM. Figure 3.10a shows the individual data (average intensities) measured 

at each point in a fluorescence saturation experiment on live cells, fixed cells and 

fixed cells + prazosin (luM). By plotting the maximum point (intensity measure) of
■f;■-
j'i.-i;
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each concentration and performing a non-linear regression analysis, saturation cui'ves 

similar to those of a radioligand binding study were produced. Kd values were as 

follows; live cells 0.6nM, fixed eells 2.4nM, fixed + prazosin 1.6nM. These cui’ves 

represented the first time a saturation binding curve has been constructed (at 

equilibrium) for a living or fixed single cell. Radioligand binding is a non­

equilibrium method. Having proved the principal with prazosin as the competitor it 

was important to try other oq-adrenoceptor antagonists.

YM12617 (also known as tamsulosin) is a high affinity ai-antagonist which is 

structurally unrelated to the quinazoline family of compounds (shown in figure 3.1). 

YM12617 caused a decrease in the maximum fluorescence and a rightward shift in the 

saturation cui*ve (F K d  5.5nM) compared with control experiments (F K d  0 .8nM; n=9; 

figure 3.11a). The non-transfected control cells displayed no fluorescence at 10 -  

20nM QAPB.

The prazosin-related compound (doxazosin 0.1 - luM; see figure 3.1) also inliibited 

QAPB induced fluorescence (figure 3.11b). Contiol FKD=1.6nM; + doxazosin 

O.luM = 1.7nM; + doxazosin luM = 1.4nM.

So far the saturation curves shown have been of total binding in either the presence or 

absence of competitor. The next stage of development was to examine the saturation 

of diffuse (low intensity) and clustered (high intensity) binding and to determine the 

specific binding using fluorescence. This was tested on the cells expressing the 

recombinant a  i ̂ -adrenoceptor. Incubation with QAPB produced concenti’ation-

related fluorescence on the cells. There was virtually no background fluorescence 

from QAPB in solution and minimal fluorescence fiom non-transfected fibroblasts 

demonstrating a high specificity of fluorescence for the presence of the receptors. 

This enabled capture of a fluorescent image of the aid-adrenoceptor expressing cells

in the presence of the fluorescent ligand which is virtually an image of the receptor 

disti’ibution (Figures 3.12a-h).
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Figitre 3.11. Fluorescence saturation curves for control 'live' cells (a^- 
adrenoceptors) in the presence of (A) YM12617 or (B) doxazosin. A) 
QAPB (0.4-1 OnM) versus human a^j-adi'enoceptors in the presence (A) 
and absence (■ ) of YM12617. B) QAPB (0.4-1 OnM) + doxazosin (A 
O.luM; T luM ) versus rat aj^-adrenoceptors. Estimated FKD values are 
given in the results section. Data points represent the average of 9 
individual cells (a) or average fluorescence from a patch of cells (b).



Figure 3.12. QAPB binding-induced fluorescence on a,j-adrenoceptor 
transfected cells. Patches o f  cells grown on coverslips were examined by 
confocal microscopy. A) single cell plus InM QAPB. B) InM QAPB in the 
presence o f phenoxybenzamine (lOuM). C-H) timelapse photography o f a 
patch o f  7 fibroblasts. Increasing concentrations (0.4 - lOnM) were added 
cumulatively and images were collected at 1 minute intervals. C-H) show 
images collected at equilibrium point for each concentration (C, control - 
autofluorescence; D, 0.4; E, 1; F, 2; G, 5; H, 10 nM). Images are in greyscale 
where black indicates no staining and white indicates maximal concentration 
(saturation) o f  the fluorophore.
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A single cell stained with InM QAPB exhibits binding on the cell membrane (figure 

3.12a). The presence of phenoxybenzamine (lOuM) markedly inhibited the binding of 

InM QAPB leaving only the intiucellular sites available. The nucleus (n) contains no 

binding sites for QAPB. The diffuse fluorescence over the nucleus in (figure 3.12a) is 

probably the result of light diffraction from the overlying membrane.

For saturation experiments images were taken at 1 minute intervals and each 

concentration was given time to reach equilibrium, typically 3-6 minutes. Two 

patterns of fluorescence were visible over a cumulatively increasing concentration 

range (0.4-1 OnM). At the lowest concentration (0.4nM) binding sites appeared to be 

diffuse and tended to be concentrated at the cell membrane/boundaries (figure 3.12d). 

At InM diffuse staining became stronger and clusters of binding sites became visible 

(figure 3.12d). As the concentration increased to lOnM (figure 3.12e-h) the clusters 

became visibly more distinct from the diffuse staining.

Image analysis.

The digital image contains considerable information on the concentration as well 

as localisation of the fluorescent ligand-receptor complex. The image was segmented 

into three regions o f interest, i. the high intensity 'clusters’, ii the mid-range intensities 

and iii. lower intensity 'diffuse' fluorescence, to compare how much of the total 

receptor population each represented and to assess whether their affinities differed 

(figure 3.4a~d). The regions were set according to the images obtained at 5nM QAPB 

(figure 3.3e). This shows that the majority of the total fluorescence emanates from the 

diffuse and mid-range regions (41.2 and 43.2% respectively), even though the average 

fluorescence intensity of the clusters is greater. The clusters cover 9.4% of the cell 

area and contain 15.5% of the total fluorecence and hence receptors. The diffuse 

staining covers 54.9% of the total cell area providing 41.2% of the total fluorescence. 

This data is summarised in table 3.2



Total Intensity (%) Cell Coverage (%) Average Intensity

Red (65-128) 41.2 54.9 96.7+17.6

Green (129-191) 43.2 35.6 156.5 + 17.5

Blue (192-255) 15.5 9.4 212.4+16.8

Table 3.2. Analysis o f the image obtained after incubation with 5nM  QAPB  

(figure 3.12 & 3.13), Red represents the low level (diffuse) staining. Green and 

blue represent the mid-range and clustered staining respectively, numbers In 

parentheses show the actual range o f pixel intensities analysed in each range. 

Values between 0 and 64 are considered as background noise in this example.

The data can be scattered and fit by a non-linear regression to give a fluorescence 

half maximum (FHM) value in nM (Figure 3.13c&d). The mid range intensities 

(green) produced a value of 1 .6 , slightly higher than the low (diffuse; red) and high 

(clustered; blue) ranges which produced identical values of 1.3nM, consistent with the 

Ki (1.04nM) calculated from displacement of ^H-prazosin with QAPB. This is of 

course total binding, although the very low fluorescence from non-transfected cells 

suggests that the amount of non-specific binding at the concentrations employed is 

negligible.

Specificity of binding was frirther defined in a separate series of experiments in 

which absolute values of fluorescence intensity were measured over a range of 

concentrations under identical conditions in separate sets of cells. Data was collected 

from experiments in the absence (total binding; example cell shown in figure 3.13e) or 

presence (non-specific binding; example shown in figure 3.13f) of lOpM 

phentolamine and used to construct a specific binding cui've (Figure 3.13g; K p = 3.9

± 0.74 nM ). Scatchard analysis of the specific binding curve for ^H-prazosin binding
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Figure 3.13. A-D) Image analysis o f  the data set shown in figure 3.12. A) 5nM QAPB 
staining (taken from fig 3.12e). B) The diffuse, mid-range and clustered areas were 
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control cell (InM QAPB). F) InM QAPB + phentolamine lOuM. G&H) Total (■ ) ,  
Specific ( # )  and non-specific (A )  binding o f  radiolabelled (H) and fluorescent-labelled 
'prazosin' (G) to ai^-adrenoceptors. Non-specific binding was determined in the presence 
o f  lOuM phentolamine.
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to aid-membranes produced a Kd  of 1.89 ± 0.15 nM. Thus the binding
::

characteristics of fluorescent QAPB on living cells and radioactive prazosin on 

membrane fractions are very similar as shown by their dissociation constants and 

saturation binding curves (figure 3.13g & 3.13h).

3-dimensional visualisation and localisation o f QAPB (3OnM) binding to ajd- 

adrenoceptor transfectedfibroblasts.

Cells were grown on coverslips and visualised on an inverted CLSM. QAPB (3OnM) 

was added to the cells and allowed to achieve equilibrium (15 minutes). This 

relatively high concentration was required in order to optimise the confbcality (in the 

absence of any deconvolution) by using a 15um slit. Without washing, individual 

cells were selected for serial sectioning and reconstruction. 30 serial sections (0.3pm 

apart) were collected along the z-axis of the cell. The data set was then reconstructed 

as a simulated fluorescence projection (sfp; figure 3.14a). In the presence of 

phenylephrine (lOuM) the fluorescence was significantly reduced (figure 3.14b). Z- 

sectioning was used to determine the degree of intmcellular fluorescence. Figure 14ci 

shows a single xy-section, indicating the presence of fluorescence inside the cell. The 

xz and yz-sections also indicate intracellular fluorescence at the planes studied.. The 

presence of intiacellular sites was confirmed in all experiments. Figure 3.15 shows z- 

sectioning on two representative experiments (QAPB lOnM). In both panels (figure cs
"I:

3.15a & b) the xz and yz-sections show clear intracellular staining. However, the cells
■I

have regions where the fluorescence is largely confined to the cell membrane (figure
il

3.15a, figure 3.16). Examples of visualisation methods are shown in figure 3.16. The 

z-sectioning method is useful for determining spatial distribution at a single 

plane/section. Figure 3.16a shows a more detailed z-section of the intense membrane . ÿ

binding shown in figure 3.15a. The z-sections show strong binding within the 

membrane. The SFP reconstruction of the full data set (of figure 3.16a) confirms the 

membrane binding (figure 3.16b). To visualise the membrane binding from any angle
.',1;

no I



Figure 3.14 A. and B. QAP-B-induced fluorescence is shown on two similar cells, 
one in the absence ( A ) , the other in the presence (B), o f the a,-adrenoceptor agonist 
phenylephrine (lOpM). This view shows the overall reduction in fluorescence 
produced by phenylephrine. Measuring the "total" fluorescence the cell exposed to 
phenylephrine had 30% o f  that on the other cell. This difference is likely to be due 
to competition between the two ligands rather than down regulation o f  receptors 
since the time o f  exposure was short (20 min). C. The sub-cellular location o f  QAP- 
B (30nM) binding is shown. (Ci) shows a single optical section (x-y plane) through 
the middle o f  the cell. The bright areas indicate regions o f  intense binding at the cell 
edges. An impression o f  the three dimensional distribution can be obtained by re- 
sectioning the cell, y-z (Cii) and x-z (Ciii) sections are shown: these are taken from 
between the vertical or horizontal lines, respectively. These views suggest that both 
membrane located and intracellular binding sites exist for QAPB.
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Figure 3.15. Z-sectioning o f two groups o f fibroblasts. QAPB (lOnM) binding to 
aijj-transfected fibroblasts. A) 3 fibroblasts showing strong membrane binding. 
B) A group o f fibroblasts showing diffuse and clustered intracellular binding. 
Both groups o f cells are obtained from the same cell line and represent the 
heterogeneity o f  cells in culture with respect to receptor distribution.



Figure 3.16. Three different methods o f  visualising the same data set. The data is 
a subset o f data taken from fig 3.15a. A) Z-sectioning the subset using the same 
method shown in fig 3.15. B) the simulated fluorescence projection (SFP) mode. 
C-F) Different views o f the fully interactive iso-surface model. All methods are 
supplied as part o f the Imaris visualisation software suite.
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or magnification it is possible to build a ‘virtual’ iso-surface model (see methods). 

Four views of the data set are shown in figures 3.16c~f. The flat images do not Hilly 

convey the flexibility offered to the viewer by using this method. It is possible to fly 

through the data and even position the viewer in the middle of the data set.

This iso-surface analysis was further developed by combining multiple chamiels of 

data. Figure 3.17 shows a variety of views of a single cell (aia-tranfected) which is 

displayed as 3 channels of data comprising the nucleus, diffuse membrane binding and 

clustered (intracellular) binding.

I
■,/

QAPB (0.1 jâM) binding to whole tissue.

.Using the CLSM optical sections from the media of rat mesenteric artery and basilar 

artery were examined. The rat mesenteric artery (RMA) was incubated in O.luM of 

QAPB (a concentration wliich is at the upper limit of its selectivity) for 30 minutes.

Optical sections were collected along the optical axis. Selected optical planes are 

shown in figure 3.18. Staining in the mesenteric artery was greatest in the medial 

smooth muscle layers (figure 3.18b). The adventitia showed clustered staining (figure 

3.18a) while there was little visual evidence of staining in the intima (figure 3.18c).

Rat isolated basilar artery was studied under identical conditions to those described 

above for RMA. Figure 3.19a shows the same image from figure 3.18b for reference.

Figure 3.19b shows a medial optical section of the basilar artery. The relatively 

poorer staining of the basilar artery is consistent with the lack of contractile
"

responsiveness to noradrenaline in this vessel. In both plates the out-of focus 

autofluorescent internal elastic lamina in a lower plane can be seen rimning 

perpendicular to the smooth muscle orientation.

QAPB binding to non-vascular smooth muscle cells of the rat anococcygeus was also 

examined. Once again an image of RMA is shown for reference (figure 3.20a). Figure
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Figure 3.17. Images a-c show 3D localisation o f QAPB-associated fluorescence 
(lOOnM) on the cell membrane (yellow) and in the cytosol (blue) o f rat-1- 
fibroblasts transfected with a^j-adrenoceptors. 3D images were constructed 
using the ISO-surface module o f  IMARlS on a SGI workstation. Two ISO 
values were selected, one for the surface (s) and another for the intracellular (i) 
QAPB signal. A separate ISO value was selected for the nucleus (red) using a 
nuclear stain (Sytol3). Images b and c are cut to show the location o f  
intracellular QAPB-associated fluorescence. Images d and e show 3D 
localisation o f QAPB-associated fluorescence (0.4nM) on the membrane (blue) 
and the nucleus (yellow) o f  a freshly dissociated human prostatic smooth muscle 
cell, (see chapter 4 for cell dissociation method).
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Figure 3.18. QAPB (lOOnM) binding to whole mount (slide mounted) 
segments o f  rat mesenteric artery. Bright spots represent regions o f  
high intensity binding. A) adventitial optical section. B) medial 
optical section showing binding consistent with SMC orientation. C) 
luminal section showing less binding and internal elastic lamina 
gooves. x40 objective (0.57 optical zoom); field size 200um square.
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Figure 3.19. Comparison o f  QAPB (lOOnM) binding to rat 
mesenteric artery medial smooth muscle cells (A) and rat 
isolated basilar artery smooth muscle cells (B). x40 objective 
(0.57 optical zoom); field size 200um square.



Figure 3.20. Comparison o f  QAPB (lOOnM) binding to rat mesenteric artery 
medial smooth muscle (A) and rat anococcygeus smooth muscle (C). 
Binding was also examined in the presence o f lOuM phenoxybenzamine for 
mesenteric artery (B) and in the presence o f lOuM YM12617 for 
anococcygeus (D).

(A&B) x60 oil immersion objective; field size 70um square. 
(C&D) x40 water objective; field size lOOum square.



3.20b shows the effect of preincubating RMA with lOuM phenoxybenzamine prior to 

application of QAPB (O.luM). Figure 3.20c&d shows QAPB binding to 

anococcygeus smooth muscle prior to (3.20c) and following preincubation with 

YM12617 (lOuM) (3.20d). QAPB binding to anococcygeus smooth muscle was 

consistent with the orientation of the cells. This is similar to the observations made 

for QAPB binding in the media of RMA (figures 3.19a & 3.20a).

QAPB binding to transverse sections o f rat mesenteric artery.

Figure 3.21 shows a diagram of the method used to study binding to transverse 

sections of RMA (see methods section for details). QAPB bound to transverse 

sections to produce a strong fluorescence signal at 5-1 OnM. Binding was most 

notable in the regions of internal and external elastic lamina (figure 3.22b & 3.22c). 

Use of the low (more specific) concentration of QAPB required use of a wide confocal 

slit (i.e. lOOum). Reducing the slit to 15um for the lOnM QAPB response confirmed 

binding in the external lamina. The time course of binding in both lamina and media 

was examined using a ‘region brightness over time’ function. The average data is 

plotted in figure 3.23a. The time coui'se giaph indicates that fluorescence developed 

more quickly in the lamina than in the medial smooth muscle. These findings are 

discussed in the next section.
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Figure 3.21. Schematic diagram o f the method used to study 
QAPB binding on transverse sections o f blood vessels (details in 
methods section). This setup enables the use o f  high NA oil 
immersion objectives and thus optimal confbcality can be 
achieved if  the fluorescence signal is great enough. More 
importantly the method enables visualisation o f  inner and outer 
layers o f smooth muscle simultaneously.



Figure 3.22 . CLSM optical images (extended focus models, lOOum slit) 
o f  rat mesenteric artery transverse sections mounted as shown in figure 
21. A) autofluorescence from unstained tissue. (B). Binding o f  QAPB 
5nM. (C) QAPB lOnM binding. (D) The section in (C) imaged using a 
15um slit to increase confbcality (BUT reduce the fluorescence). x40 
oil immersion objective; field size 102um.
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Figure 3.23. The graphs show the fluorescence development of 
QAPB (5-1 OnM) on the ti'ansverse sections shown in figure 
3.22. A) Fluorescence development plotted versus time. B) 
Average data plotted as a bar chart showing maximum intensity 
in three regions of the vascular wall. The data were collected 
by defining a region outlining the two lamina and media and 
then following the development of fluorescence at 1 minute 
intervals.
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Discussion.

The results of this chapter have produced the only available characterisation of the 

fluorescent ligand QAPB (BODIPY FL-prazosin). The model presented here could be 

applied to the validation of any new fluorescent ligand which may be developed. 

There is a growing list of fluorescent peptides wliich are currently available (eg fluo- 

endothelin, fluo-angiotensin & fluo-NPY; Advanced Bioconcepts, Canada). In 

addition, a current collaboration with Prof. D. Robins (Chemistiy Dept., Glasgow 

University) has resulted in the production of two novel fluorescent compounds, FITC- 

QAPB (oti-AR ligand) and rhodamine-yohimbine (otz-AR ligand). Both compounds 

are currently being evaluated by Professor McGrath’s group.

A recent collaboration with Advanced Bioconcepts provided positive results in the 

study of NPY receptors in rat anococcygeus. The validation methods outlined here 

were perfectly suited to testing of a fluo-peptide on living tissues.

Many of the advantages of confocal microscopy (table 3.1) could have been identified 

based on technical theory alone. In practice, many other key issues emerged which on 

one hand caused delay but on the other provided fascinating new avenues to explore.

Following the routine pharmacological analysis, it was necessary to consider some 

aspects of what is expected of ‘membrane bound’ receptors. Interpretation of image 

data is a considerable departure from reading averaged data presented in graphical 

form. Ironically, it became clear at an early stage that in order to quickly convey 

image data it is necessary to have a means of graphing it.
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Since the image data to be generated represented ligand-binding processes it seemed 

reasonable to apply known pharmacological methods (and theories) to the image 

analysis process.

The most demanding part of image analysis is in not seeing. This was perfectly 

demonstrated in chapter 2 where efficient image segmentation is the barrier. In 

receptor imaging we see total (specific and non-specific) binding. We are also blinded 

by our prejudices concerning what we ‘know’ to be true from non-image based 

functional studies.

Aside from the technical construction of the fluo-ligand (discussed later), the 

experiment can be made simpler by staying within the specific concentration range of 

the fluo-ligand. Knowledge of the native ligand pharmacology cannot be relied on. 

The first (and most important) question to be asked of any ligand must be affinity at 

the receptor. Fluorescent characteristics are secondary.

Affinity and Selectivity.

The most important characteristic of any fluorescent ligand should be that it retains as 

much as possible of the affinity and selectivity of the related un-labelled compound 

for the receptors of interest.

Borate-dipyrromethene (BODIPY) has become one of the most popular fluorophores 

in recent years and a variety of receptor and ion-chamiel ligands have been synthesised 

(table 3.3). BODIPY iodoacetamides have very high fluorescent yields,
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Table 3.3 Receptor selective fluorescent probes.

Ligand Site of action

BODIPY FL-prazosin (green) a-adrenoceptors 1

BODIPY FL-prazosin (red) a-adrenoceptors 2

BODIPY CGP 12177A P 2-adrenoceptors 3

BODIPY FL-ABT muscarinic receptors 4

BODIPY pirenzepine muscarinic (M l) receptors 3

BODIPY a-bungarotoxin nicotinic receptors 6

BODIPY FL-NAPS D2-receptors 7

BODIPY FL-SCH 23390 D1-receptors 8

BODIPY Ro-1986 benzodiazepine ^

BODIPY dihydropyridine Ca+4- Channels

The table shows a selection o f  site selective BODIPY ligands which are currently 

available. This is by no means an exhaustive list. The purpose o f this table is to 

emphasise the growing popularity o f BODIPY as a fluorescent conjugate. The site o f  

action is that claimed by the manufacturer or from studies undertaken by the cited 

authors. Many o f  the probes listed are available in both red and green versions as shown 

for prazosin.

1. McGrath, J.C. and Daly, C.J. (1995) P h a r m .  C o m m . ,  6(1-3), 269-279
2. Spence, T.Z. (1993). Bio Probes 18 . Molecular Probes, Inc.
3. Heithier, H,, e^.a/., (1994). B i o c h e m i s t i y , ? » ! » ,  9 1 2 6 - 9 1 2 4

4. Spence, T.Z. (1994). Bio Probes 22 . Molecular Probes, Inc.
5. Wang, Y., Gu, Q., Mao. F., Haugland, R.P. and Cynader , M.S. { \ 9 9 A )  J . N e u r o s c i

14,4147-4158
6. Robitaille, R., Adler, E.M. and Charlton, M.P. (1990) Aewro/ï. 5, 773-779
7. Aboud, R., Shafii, M. and Docheity, J.R. (1993). B r . J ,  P h a r m a c o l ,  109, 80-87.
8. Ariano, M.A. e t .  a l  ,  (1989) Proc. Natl. Acad. Sci. 86 (21), p8570- 8574
9. Velazquez, J.L., Thompson, C.L., Barnes, E.M. Jr and Angelides, K.J. (1989) J.

N e u r o s c i  ,9 ,  2163-2169
10. Goligorslcy, M.S., Colflesh, D., Gordienko, D and Moore, L.C. (1995) A m  J P h y s i o l ,  

268, F251-F257.



are relatively pH insensitive and long wavelength versions are also available 

(Haugland 1992). A crucial issue is whether the addition of the fluorescent moiety 

affects ligand affinity. A comparative study of BODIPY and another fluorescein 

derivative (FITC) of CGP 12177 demonstrated that the BODIPY conjugate exhibited 

10 fold higher aflinity for the recombinant human p2 ~receptor than did the FITC 

conjugate (Heithier et ah, 1994).

QAPB was validated as a competitive antagonist versus phenylephrine's production of

g
inositol phosphates and as a competitive ligand versus H-prazosin, confirming that it 

is a ligand for functional a  1 ̂ -adrenoceptors. The binding and functional antagonism 

data shows that despite the modiflcation of the molecule to incorporate the fluorescent 

tag, it retains the properties required of a high affinity pharmacological "antagonist" 

ligand. The affinity for QAPB versus ^H-prazosin (-Log Ki = 8.9) is slightly higher 

than the derived pA2  values of 8.25 (in rat aorta) and 7.78 (vs IP3 generation in 

transfected cells) and is consistent with other comparisons of binding and functional 

antagonism which tend to imply higher afflnity in radioligand binding studies.

Functional studies with QAPB suggest that this compound has an approximately ten 

fold lower affinity for a  1-adrenoceptors than prazosin (QAPB pA2  8.25 vs 

phenylephrine in rat aorta; 7.9 vs phenylephrine in rat anococcygeus; 7.6 vs 

noradrenaline in rabbit saphenous artery). A reduction in affinity caused by 

conjugation of the BODIPY in place of the furan ring in prazosin might be expected 

given the large size of the BODIPY ring structure (Mole wt. prazosin HCl 419.9;
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QAPB 563.41). The good retention of affinity probably derives fiom the placement of 

the substituent away from the parts of the molecule involved in binding.

Anderson and Cohen (1974) attributed the reduced affinity of a-bungarotoxin 

(conjugated to either fluorescein isothiocyanate or tetramethylrhodamine 

isothiocyanate) to the faet that the dyes react with amino acid residues which alter 

their charge. Faure et.al. (1994) report identical Kj values for fluo-NT and unlabeled 

NT. Heithier et.al, have reported similar K d  values for both BODIPY CGP 12177 

and native CGP 12177. It is possible therefore to add a fluorescent molecule to a 

ligand with minimal alteration to its affinity although this will depend largely on the 

structure of the native ligand. Choice of "substrate" drug therefore becomes an 

important factor in the synthesis of any putative fluo-ligand.

Visualisation and construction o f  concentration / fluorescence curves and competition 

binding studies on live cells.

With QAPB it is not necessary to remove the rmbound ligand by washing the tissues 

before visualisation. The lack of any significant backgi'ound fluorescence makes it 

possible to measure fluorescence at equilibrium and to record the development of 

fluorescence/binding with time. The binding over time can be performed by time- 

lapse recording at a fixed focal plane. Fluorescence measured in this way is both time 

and concentration dependent (figures 3.5 & 3.7). Analogous to ligand binding studies, 

pre-incubation of cells in a high concentiation of a 'cold' competitor shifts the 

fluorescence cui’ve to the right revealing the extent of non-specific binding (figure 3.8, 

3.10 & 3.11). Cultured cells show low non-specific binding and a ready visualisation
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of the recombinant receptors which gives some confidence that the ligand might allow 

visualisation of receptors in native tissue.

hiitial experiments were designed to produce good quality images under optimal 

confocal conditions (figure 3,5). The high quality images permitted image analysis 

using masks which could be used to investigate the fluorescence development in 

different regions of the cell. However, fui'ther work demonstrated that use of such 

high concentrations (i.e. >10nM) caused a degree of non-specific binding which was 

difficult to displace with non-fluorescent competitor ligands (figure 3.9). 

Nevertheless, even veiy high concentrations of QAPB (10 -  lOOnM) could be 

inhibited by preincubation with prazosin (figure 3.8). The difficulty in displacing 

QAPB from its binding sites awaits clarification. Current work in Professor 

McGrath’s laboratory suggests that QAPB may dissociate very slowly from its 

receptor. Furthermore, the competitor ligand may not have access to QAPB-bound 

intracellular receptors.

In order to reduce the concentration of QAPB required to produce a detectable signal 

it was necessary to compromise the image quality by increasing the PMT gain and 

opening the confocal slit. Compare figure 3.12h (lOnM QAPB; lOOum slit) with 

figure 3.5 (plate 20; 150nM QAPB; 15um slit). If a lOOum slit had been used for the 

10"160nM cuiwe the signal would have saturated resulting in a useless image for 

quantification purposes. If a 15um slit had been used for the 0.4-10nM curve there 

would have been no detectable signal since around 90% of the light is rejected by the 

slit. Experiments on live and fixed cells in the presence and absence of high affinity
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a i-antagonists proved that it is possible to construct saturation binding curves for >1

individual cells which exhibit similar characteristics to the binding of the native ligand

in conventional radioligand binding studies (figures 3.10 & 3.11).

A requirement for efficient ligand bmding is the ability to use the ligand at concentrations 

which are low in relation to its binding affinity. To represent receptor binding, the

binding experiments. A study of aib-adrenoceptors using flow cytometry (Hirasawa 

et.al, 1996) examined QAPB binding at IpM, a concentration which is almost certain to 

have significant non-specific effects. Similarly, Wang et.al, (1997) employed 50-500nM
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If the interpretation is correct, then the fluorescence binding characteristics should 

correspond quantitatively to the other pharmacological measures. The binding
3

characteristics of QAPB's fluorescence (FKd between l-5nM) lay between its functional A

competitive antagonism at the a i  ̂ -adrenoceptor (A2  = 12nM) and its displacement of 

3H-prazosin (Kq  = 2nM). A further corollary confirming that fluorescence indicates the 

ligand-receptor complex is the reduction of fluorescence by other competitive ligands for 

the site. Experiments performed in the presence of phentolamine (figure 3.13g) allow the
3

quantitification of "specific" binding. In fact this is an extremely useful feature of f

fluorescence binding because image subtraction can remove the non-specific binding T

,

leaving only the image of the receptors which have been "removed", i.e. competitively 

antagonised by the competitor.

■„
concentration of unlabelled ligand displacing 50% of the labelled ligand should be similar " J

1
to the Kd - It proved possible to use the fluorescent antagonist QAPB on live cells at

3 .similar concentrations to those of H-prazosin on membrane preparations in radioactive T



of QAPB to study ai-adrenoceptors in rat cultured cortical neurons. Interestingly, the 

same group also reported an apparent Ki for QAPB of 64nM (vs lOnM [3H]-prazosin).

This is in contrast to our estimation of 1.24nM (vs 0.2nM [3H]-prazosin). It is clear from 

the present work and other studies with QAPB that great caution should be taken in the 

interpretation of fluorescence-derived images. It is crucial that for any given tissue and 

receptor subtype the degree of non-specific binding at the concenti’ations used should be 

determined. In this study I have sacrificed a certain degree of confbcality (i.e. by using a 

wide, 100pm, slit) thus retaining ligand specificity in the low nM range (0.4-10).

Since the detection is by microscopy, analysis can be made on the subcellular level and 

under physiological conditions, both of which are advances on radioligands. New
'::T

information on both of these aspects was found in relation to "clusters" of receptors, 

which have previously been demonstrated by immunohistochemistry in fixed tissue for 

several receptor types. For example, Uhlen et a/.,(1995) using antibodies for epitope 

tagged receptors, reported that O2 a"adrenoceptors exist as two populations of diffuse and ÿ

clustered receptors which is in accord with the known clustering of G proteins.

This study demonstrates for the first time the existence of diffuse and clustered 

populations of al-adrenoceptor binding sites in live cells. The results indicate that the f

affinity of both populations for the ligand is identical. This shows that the environment of 

the clustered domain leaves the binding site accessible to ligands. I then estimated the f

relative distribution of receptors between these two domains. This quantitative analysis
I

showed that although the clusters are visually striking they represent a relatively small 

proportion of the receptor population which is accessible to ligand. This emphasises that



subjective visual assessment can exaggerate the relative proportion of receptors which 

appears to be present in the clusters. It is also possible to be misled by quantification of 

processed photographic images since alteration of 'contrast' can change the linearity of the 

signal, thus underestimating the diffuse signal or in other circumstances underestimating 

intense 'out-of-range' peaks. In immunohistochemistry a similar bias against low level 

diffuse staining is found since this can be dismissed as background noise.

Spatial distribution o f ai-adrenoceptor subtypes.

There is currently much interest in identifying the mechanisms of receptor internalisation 

and sequestration. The development of GFP and flag-tagged receptors has enabled new 

ways of localising receptors in single cells. Biochemical methods are now being replaced 

by more visual methods which have the advantage of being performed on living cells. It 

has been suggested that aib-adrenoceptors are primarily located on the cell membrane 

whereas aia-adrenoceptors are largely confined to the cytoplasm (Hirisawa et al., 1996). 

It also been shown that stimulation of NPY receptors in the membrane can inhibit the 

recycling of oti a-adrenoceptors back into the membrane following stimulation with 

phenylephrine (Holtback et ah, 1999). Many receptor systems have now been shown to 

internalise following agonist stimulation and it is now accepted that intracellular receptors 

do exist in most cells (Hall et ah, 1999.).

The results of this study confirm the presence of intracellular binding sites for QAPB. 

When discussing ai-adrenoceptors I prefer to reserve the term ‘receptor’ for a binding site 

which is known to couple to a G-protein and initiate a 2"  ̂messenger cascade. Presently 

we can not be certain of the function of these intiacellular sites and it is not known if they 

are functionally coupled or are merely primitive proteins which are pre-cursors of the
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membrane bound receptors. Intense staining was often observed around the nucleus and 

this may represent sites in the Golgi apparatus. However, no counter-staining was used to 

confirm this.
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The Z-sectioning module of IMARIS permitted the visualisation of 3D volumes from any 

plane or angle. Figures 3 .14 -3 .16  show representative examples of the type of receptor 

distribution seen in ti'ansfected fibroblasts. Figure 3.14 shows a fibroblast with strong 

binding on the cell surface although some faint intracellular fluorescence was observed. 

Figure 3.15 (top panel) shows very clear membrane binding in a group of 3 fibroblasts. 

The bottom panel (figure 3.15) shows diffuse and clustered intracellular binding. In 

general the findings suggest that in ti'ansfected cell systems there is a considerable 

proportion of intracellular binding sites. It will be extremely interesting to study freshly 

dissociated cells to determine whether they have the same proportions of intracellular and 

membrane bound binding sites. Initial studies of dissociated prostate smooth muscle cells 

indicates that both exist in real tissues (McGrath et ah, 1999).
1 
I

Iso-surface modelling.

Alternatives to Z-sectioning are the various rendering and visualisation methods made 

available by the IMARIS and Microvision software progiams. The iso-surface modelling 

method appears to be the best when multiple data sets are to be visualised simultaneously.

Figure 3.16 shows a region of a fibroblast (shown in figure 3.15) following deconvolution 

using the iterative constrained Tiklionov Miller algorithm (supplied as a FluygensII 

module). It can be seen that the fluorescence is largely confined to the cell membrane. A 

simulated fluorescence projection of the sub-volume also shows strong membrane
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I
binding (figure 3.16b). By constructing an iso-surface model it is possible to view the 

data from any angle, four examples are shown in frguie 3.16c-f. The power of the iso­

surface modelling procedure lies in its ability to combine channels of data. Figure 3.17 

shows different views of a 3 channel iso-model. The raw data has been segmented into 

three distinct volumes for the nucleus, diffuse staining and clustered (high intensity) 

staining. It can be clearly seen that the clusters are located inside the cell in close 

proximity to the nucleus and are probably located in the Golgi-apparatus. Figure 3.17 

also shows the iso-model of a dissociated human pro static smooth muscle cell indicating 

that this technique will be applicable to native cells even where the receptor expression 

level may not be as high as is found in recombinant systems.
-

i
.

Analysis o f receptor binding intensity in thick biological specimens.

In cell culture monolayers it is possible to visualise and measure receptor-activated

fluorescence with conventional fluorescence microscopy since the cell membranes are

directly visible. With intact pieces of tissue this is impractical due to "bleed through"

from out-of-focus planes. This problem can be addressed by the use of either

confocal microscopy or wide field/deconvolution. One technical problem in

attempting to measure receptor distribution, at different depths, is that concentration

of the fluorescent ligand may vary according to the rate of diffusion and time of

.incubation. However, if the ineubation time needed for full functional antagonism is

known then analysis at that time point should indicate which receptors are involved in

the response. Depending on the composition of the tissue, it is practicable to "see
.

through" tissue to a depth of between 20 and 50 pm. Small resistance vessels and 

other thin preparations are therefore ideal. Unfortunately, thick preparations
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containing large amounts of elastin (i.e. aorta, carotid artery etc.) exhibit 

autofluorescence in the same spectrum as many of the available fluorescent probes.

Rat mesenteric arteries (RMA) and basilar arteries (RBA) are particularly well suited 

to optical methods of studying their structure (see chapter 2). In this chapter I have 

examined the binding of QAPB to whole mount (unfixed) samples of RMA and RBA. 

To enable the captuie of high quality confocal sections it was necessary to use a 

concentration of QAPB (0.1 uM) which was higher than its anticipated dissociation 

constant and therefore may display some non-specific binding. However, this is an 

acceptable concentration of QAPB to use as an antagonist on blood vessels since it is 

expected to have approximately 10  fold lower affinity than prazosin which would 

commonly be used in functional studies at around lOnM. Furthermore, QAPB 

binding (lOOnM) was significantly reduced in the presence of phenoxybenzamine and 

YM12617. In all of the RMA sections studied the QAPB binding was found to be 

both diffuse and clustered. In addition the binding was consistent with the orientation 

of the smooth muscle cells. Figure 3.18a shows a significant degree of binding in the 

adventitia. The presence of ocradrenoceptors in the adventitia has yet to be described 

and this binding may simply reflect non-specific binding to prejunctional Œz- 

adrenoceptors. However, the affinity of QAPB at a 2D-adrenoceptor subtypes (the 

expected subtype on rat sympathetic varicosities) is unknown and this is merely 

speculation.

Further confirmation of the relative selectivity of QAPB on blood vessels comes from 

the observation that 1 OOnM produced less binding in the media of the rat basilar artery
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(a tissue which responds poorly to noradrenaline). When compared with the RMA 

media it appears that the RBA does not exhibit the diffuse binding which I believe 

represents the membrane bound ‘specific’ binding sites.

Non-vascular smooth muscle also exhibits diffuse and clustered binding. The rat

. . .isolated anococcygeus muscle is richly innervated with sympathetic nerves (Gillespie

& Maxwell 1971) and produces a powerful (ai-adrenoceptor mediated) contraction in

response to noradrenaline (Docheity et ah, 1979). In this tissue QAPB binding was 

.associated with the orientation of smooth muscle cells and was inhibited in the

presence of the high affinity ai-antagonist YM12617.

inner and outer layers of vascular smooth muscle simultaneously would be

developed for single cells. Interestingly, the results of QAPB binding to TS rings of 

RMA were almost identical to the results obtained by using tritiated prazosin binding 

to rat aortic sections (Dashwood & Jacobs 1985). These authors claimed their data 

showed the presence of high concentiations of ai-adrenoceptors in the inner layers of 

smooth muscle. However, it is also possible that they were observing binding of

Having proved that fluorecent-ligand binding could provide information on the spatial

distribution of ai-adrenoceptors it was decided that a method of visualising binding to

advantageous. Figure 3.21 shows such a method where the blood vessel is cut into 

transverese sections (TS), mounted on cover slips and visualised using the method

'I
I

prazosin to the internal elastic lamina; In the present study, binding of QAPB was 

found to be strongly associated with the internal and external elastic lamina (figure 

3.23). It is not clear if the binding is to the laminae per se or if the binding is to cells
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which are lining the laminae. Nevertheless, the binding of QAPB is almost identical 

to that observed with radio-labelled prazosin which further confirms the similarity 

between both compounds.

Using confocal microscopy or similar techniques, the study of receptors can be 

extended beyond the approaches described here. Receptor populations within intact 

live tissue can be localised and analysed at the cellular and sub-cellular level. There 

are possibilities to study the spontaneous or induced relocation and cycling of 

receptors.

125

In conclusion, fluorescent ligands combined with confocal microscopy can provide 

new methods for studying receptors and receptor-mediated mechanisms in living 

tissues. QAPB is an interesting example with which to explore the potential of the 

method since it fluoresces more brightly when bound to the receptors. It is possible, 

using such a fluorescent ligand, to determine the presence and distribution of receptors 

within a multi-cellular preparation and to localise the binding on or within single cells 

at a given time point. It is also possible to measure concentration-dependent binding 

in the presence and absence of non-labelled competitors to further determine receptor 

profiles in order to locate subtypes.

I

A further important advantage of having developed the method using confocal 

microscopy is that important questions such as the localisation of the signal to the 

membrane phase and the extent of peneti’ation of the probe into the cell can be 

characterised. This validates the technique and sets the scene for the development of



simpler, less expensive and, potentially, automated analytical systems based on the 

same principle.

The technology can thus be extended in the hi-tech or lo-tech directions.

I

Î
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Chapter 4
Pharmacological and CLSM study of the mouse tail artery; a case 

study bringing together the methods developed in the previous
chapters.



Introduction.

In the previous chapters confocal-based methods for the study of vascular structure
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and receptor distribution were developed. This chapter is a case study of one 

particular artery and aims to show how CLSM methods can complement the 

conventional pharmacological (functional) studies that are normally employed.

The pharmacology of the mouse vasculature is relatively unlaiown since most studies 

of blood vessels have tended to focus on higher animals due to their ease of study and 

due to the technical limitation of studying such small diameter vessels, hi addition, 

many workers have attempted to study human vessels due to their clinical relevance. 

However, genomic research has resulted in a proliferation of transgenic animal models 

harbouring various mutated genes or lacking in specific genes. The mouse has 

become a favourite for reasons other than an existing comprehensive knowledge of 

murine physiology. This may not be important from a molecular point of view but it 

leaves physiologist and pharmacologists with a significant amount of gi'ound work to 

do prior to studying the effect of any gene defects. Fortunately, the methods of 

confocal myography described in this thesis are ideal for studying mouse blood 

vessels. The myographs are tailor made for small vessels and the microscopy permits 

the visualisation of structui'e and receptor distiibution.

Wild type and KO mice

Cavalli et al., (1997) have engineered an am-knockout mouse using targeted gene 

disruption and have shown that pressor responses to phenylephrine are reduced and 

that binding sites in both liver and brain are reduced. This type of approach to
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determining adrenergic receptor (AR) subtype function is essential since the cunent 

collection of subtype-selective antagonists and agonists do not display sufficient 

selectivity for the am-AR over otiA- and am* The original definition of the aie-AR 

was that it showed high affinity for the alkylating agent chloroethylclonidine (CEC) 

and relatively low affinity for WB4101 (Morrow & Creese 1986; Han et al., 1987).

However, later studies have shown that CEC is an unreliable compound that is 

relatively non-selective between ai-AR and ocz-AR subtypes, its action is dependent 

on the protocol used (Michel et al., 1993). Studies with transfected cells have 

suggested that the aib-AR is confined mainly to the cell membrane while the aia-AR 

is mainly intracellular (Hirisawa et al 1997). Functionally, the (Xib-AR has been 

suggested to be involved in growth regulation (Chen et al., 1995.) and is thought to be 

present on rabbit cutaneous resistance arteries (Smith et al., 1997) and rat carotid 

artery (Stassen et al., 1998). More recently, a new compound L765,314 has been 

reported to display 100 fold higher affinity for ocm-AR over aiA or am  (Patane et ah,
■■

1998 ) although this compound appears to have been tested in only one published 

report and its acceptance as a highly selective compound awaits further study by other 

investigators. Preliminaiy work from Professor J.C. McGrath’s research group 

suggests that L765,314 does not show the same degi’ee of selectivity (i.e. 100 fold 

higher) for am- over aiA- & am-

Overall, the role of the am-AR in vascular function awaits clarification. Since there 

are no reports of a vessel which expresses am- alone it is likely that it plays a 

synergistic role with other receptor subtypes. The advantage of using tissues (vessels) 

from an am-KO mouse is that the loss of such an interaction may cause a change in

":l
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expression or coupling efficiency of the remaining receptors. If the change can be 

identified then the functional role of the missing receptor can be inferred indirectly. 

Until such times as the pharmaceutical companies can produce high affinity receptor 

ligands at the same speed with which molecular biologists identify and express gene 

products, we will have to rely on transgenic models to provide less complicated 

fiinctional tissues. Even if such high affinity compounds were available the ability to 

remove one subtype completely (as opposed to a pharmacological blockade) from a 

multi-receptor system would prove invaluable.

Colonies of am-KO and wild-type (WT) C57-black mice have been raised from 

breeding pairs kindly supplied by Prof. Susanna Coteccia (University of Lausanne; 

Switzerland). The lack of any literature concerning murine vasculature required a 

preliminary study of seleted vessels to determine which would give strong and 

reproducible contraction to adrenergic agonists. A comparison of mouse carotid, 

mesenteric and tail artery showed the latter to be a strong candidate. The rat tail artery 

has already been widely studied and shown to possess a rich adrenergic innervation 

along with postjunctional a i- and az-ARs (Redfern et ah, 1995). The subtype of a- 

AR has been suggested to be mainly aiA- Therefore if the mouse tail artery exhibits a 

similar adrenergic system it may provide information on the possible interactions 

between aiA- and otm-AR.

Mouse tail artery segments taken from WT and KO mice were studied on the wire 

myograph to determine the major postjunctional receptor subtype and to establish a 

functional role (if any) for the otiB-suhtype. Following the suggestion that am-AR is
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involved in growth a structural study was undertaken using CLSM. In addition a short 

study of receptor distribution in isolated cells and tissue sections was attempted to 

show the distribution of native receptors.
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It is not within the scope of this chapter to present a full and comprehensive

description of the pharmacology, structure and receptor distribution of the mouse tail 

artery. The aim of the chapter is merely to give a flavour of what is now possible 

following the development of the CLSM and fluorescence based methods and to show 

how these types of studies can be combined with the more conventional studies.
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Methods.

C-57 black (Wild Type and Knockout) mice weighing between 25-35g were killed by 

stumiing. The tail was marked on its underside before being removed and placed 

Petri dish containing normal Krebs' solution. A mid section (l-2cm) of tail artery 

removed for staining, cell dissociation or myograph mounting. Preliminary studies 

employed the normalisation technique of Mulvany & Halpern (1977; see chapter 1). 

In order to obtain vessel internal diameter and normalised resting tension. Thereafter, 

vessel segments were set at 2 0 0 mg resting tension prior to construction of 

concentration response curves (CRCs).

Functional Studies.

CRCs to noradrenaline (NA; InM - lOuM), phenylephrine (phe; InM - lOuM) and the 

selective aiA-adrenoceptor agonists A86641 (O.OlnM - 0.1 uM) were constructed in 

the presence and absence of ai-adrenoceptor subtype selective antagonists. After an 

initial sighting concentration to NA (lOuM) tissues were washed and allowed 40 

minutes before begiiming the first CRC. Antagonists were allowed at least 45 

minutes to reach equilibrium prior to the beginning of a second or third CRC.

Analysis o f  functional data.

The potency of the agonists was determined by comparing EC50 (concentration 

required to produce 50% of maximum response) values obtained for each agonist. 

This value is sometimes referred to as the pÜ2 (see methods section of Chapter 3). 

Antagonist affinity was determined by calculating the pKe where a single antagonist 

concentration was used.
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Confocal Study o f Structure.

Vessel segments were stained with lOug/ml of H33342 as described in chapters 1 & 2. 

For studies of adventitial cell density, vessels were slide mounted. For pressurised 

sti’uctural studies, segments were mounted in a specialised pressure myograph system 

(JP Trading ).

Using an upright Noran Instruments Odyssey CLSM, optical sections of vessels were

series capture a step size of lum was maintained.
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obtained as single images (adventitial study) or as z-series (structural study). For z-

S'

Dissociation o f Smooth Muscle cells.
-'R

Cells were dissociated by the method of Kamishima et a i, 1997. Briefly, tail arteiy

segments are immediately placed in buffer 1 (147mM NaCl, 5mM KCl, IniM MgClz,

1.8mM CaCli, lOmM HEFES, 0.1% BSA, pH7.4). Segments are washed once in
■T

buffer 1, resuspended in buffer 2 (80mM sodium glutamate, 54mM NaCl, 5mM KCl,
:

ImM MgClz, O.lmM CaClz, lOmM HEPES, lOmM glucose, 0.2mM EDTA, 0.1%

BSA, pH7.3) with 1.7mM papain, 0.7mM dithioerythiitol and incubated at 35°C for 

30mins. Segments were centrifuged at 1200g for 2mins and supernatant discarded.

Segments were resuspended in buffer 2 with LOmM collagenase II, LOmM |
I

hyaluronidase and SMC were dispersed immediately with a fire polished pasteur 

pipette. Cells were plated onto coverslips.

Drugs and Solutions.

The composition of the modified Krebs solution was as follows: (in mM): NaCl f
7

118.4, NaHCOg 25, KCl 4.7, KH2 PO4  1.2, MgSO^ 1.2, CaCl2  2.5 and glucose 11.

:
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NagEDTA (23 pM) was also included in the Krebs in all experiments to prevent 

degradative oxidation of NA.

Noradrenaline, phenylephrine (Sigma Chemical Co.); A86441 (Dr Hancock, Abbott 

laboratories); BMY7378, YM12617, chloroethylclonidine (Research Biochemical 

International, RBI); delequamine (low affinity isomer; Roche pharmaceuticals); 

QAPB (BODIPY-FL prazosin), H33342 (Molecular Probes).
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Agonist potency

The aiA-agonist 86641 was approximately 100 fold more potent than 

phenylephrine (which was equipotent with noradrenaline). (Figure 4.3).

Electrical fie ld  stimulation.

Stimulus parameters of 4-64Hz (of 1 second dui*ation) produced frequency 

dependent responses which were transient in nature, having a fast initial component 

with a slower declining phase to the response. Maximum size of response, time to 

reach maximum amplitude and the slope of the initial fast phase was calculated for
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Results.

Antagonist profile

hi wire mounted segments of mouse tail artery, the high affinity ai-adrenoceptor 

antagonist YM12617 (tamsulosin; InM) caused a rightward shift in the CRC to NA L

with a pKs of 9.41 (Figure 4.1a). YM12617 also caused a reduction in maximum 

response. The az-antagonists delequamine (luM, pKe 6.02; figure 4.1b) and 

rauwolscine (luM, pKe 6.33; figure 4.1c) displayed low potency versus NA in the tail 

artery.

Chloroethylclonidine (CEC; lOuM) caused a small rightward shift in the CRC to 

NA in normal (wild type) mouse tail artery (figure 4.2b). In tail arteries taken from
;

knockout (KO) mice devoid of ocm-adrenocepors CEC was less effective (figure 4.2c).

BMY7378 displayed no antagonism at concentrations up to and including 0.1 uM. At
:

luM BMY7378 exhibited slight rightward shift versus the aiA-agonist A86441 (figure 

4.3).
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Figure 4.1. The effect of a-adreiioceptor antagonists versus 
noradrenaline (NA) on the mouse isolated tail artery. (n=5)
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each frequency. Low frequency responses (4-16Hz) were significantly greater in 

magnitude in the WT compared with the KO (p<0.05; figure 4.4a). In addition the 

time to maximum for low frequency response was also greater (Figure 4.4b) and this 

is accounted for by the reduction in slope (expressed in mV/sec.) (Figure 4.4c).

Confocal analysis o f structure.

Arterial segments from WT and KG mice were taken from 4 animals of each type 

(representative images are shown in figure 4.5). Nuclear (and thus cell) density 

(number per unit volume) was found to be 59.2 ± 17% lower in the KG adventitia. In 

addition, more autofluorescent extmcellulai' material, perhaps elastin or collagen, was 

observed.

Analysis of pressure-mounted segments of WT tail artery revealed a characteristic
■

punctate staining of the nucleus, by H33342, which was also observed in the KG tail

artery. The orientation of the smooth muscle cells indicate that at least two 
.

orientations (or bands) of smooth muscle exist in the tail artery of WT mice (figure
■

Fluorescent ligand binding.

QAPB binding to dissociated cells was time and concentration dependent and was 

inhibited in the presence of lOuM phentolamine. The binding sites were found to be 

associated with the membrane but also with intracellular sites (figui’e 4.7). Clusters of 

intracellular binding sites were also apparent, the calculated Fkd was 2.0nM which is 

consistent with the expected affinity of QAPB at otiA-adrenoceptor subtypes.
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Figure 4 .5 . Representative images o f the adventitial cell 
nuclei in the normal (WT) and knockout (KO) isolated 
mouse tail artery. The black spots represent individual 
nuclei. Each image is 102 um square.



Figure 4 .6 . Extended focus images o f a mouse tail artery segment 
mounted on a perfusion myograph at lOOmmHg and stained with 
H33342 (lOug/ml). a-c) Show different regions o f  the same vessel, d) 
endothelial cell nuclei on the luminal surface. Images were collected 
using ax40 water objective (NA1.13). Field (image) size 97um square.
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Figure 4.7. i. Smooth muscle cells freshly dissociated from murine tail artery, 
were plated on coverslips and examined by confocal microscopy and time- 
lapse photography at Imin intervals with increasing concentrations o f  QAPB 
(0, 0.4, 1, 2, 5nM) in the absence (a-e) and presence (f-j) o f  lOuM 
Phentolamine. Representative images o f  cells are shown in pseudocolour, 
where black indicates no staining and blue, green, and yellow indicate 
increasing levels o f  saturation o f  QAPB. ii. QAPB-associated fluorescence 
intensity was calculated by MetaMorph software and plotted against increasing 
concentrations o f QAPB to demonstrate the levels o f  total (■ ), non-specific 
( • )  and specific (A) binding. The specific affinity (FK^) o f QAPB for murine 
tail artery smooth muscle cells was estimated as 2.0nM.
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The purpose of this chapter was to demonstrate how the confocal approach can 

compliment the pharmacological study of an unknown vessel. The idea was to use 

some of the methods developed in the previous chapters and apply them to the study 

of a new vessel. The mouse represents a relatively unknown species with respect to 

its pharmacology. It is reasonable to assume that it will be similar to the rat and other
■■■■

rodents and indeed this assumption would suffice if only a general knowledge of 

function was required. However, now that molecular biology has delivered a 

multitude of transgenic models (mainly mice) it has become important to fully 

understand the 'lower' animals that have previously been ignored in favour of studying 

the physiology of 'higher' animals and humans where possible.

The mouse brings other advantages for microscopy and myography. Previously, it 

was not feasible to study large thick walled vessels (of larger rodents) under the 

microscope without first fixing and sectioning. The mouse gives us the chance to 

study intact segments of conduit vessels on the myograph and under the confocal 

microscope. One such line of study (the mouse carotid artery) is presently being 

followed by a member of Prof. McGraths research group.

For this chapter I have chosen to study the mouse tail artery. Tliis vessel has a rich 

adrenergic innervation, has relatively few branches and contracts powerfully to 

noradrenaline. Until the present study, the relative contribution of a-adrenoceptor 

subtypes to contraction was unknown. The receptor distribution in murine smooth
-7.

muscle cells and the 3D architecture of the vessel wall were also unknowns.



artery.
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Antagonist potency.

The first question I would ask of any new vascular preparation is; what is the ratio of 

otr to (%2-adrenoceptors. The low potency of delequamine and rauwolscine suggest 

that in the isolated tail artery a 2-adrenoceptors do not play a major functional role.

The potency of YM12617 confirms the involvement of ai-adrenoceptors. However, 

the apparent non-competitive action of YM (i.e. reducing the maximum) may indicate 

an unusual property of the murine adrenoceptor.

CEC is reported to be an alkylating agent at am-adrenoceptors and therefore should 

reduce the response to NA if am-adrenoceptors play a significant role. In the present 

study CEC (lOuM) caused only a slight reduction in maximum and rightward shift in 

normal mice. In the ocm-KO mice CEC was even less effective. This points to only a

minor role (if any) for am-adrenoceptors in the response to NA in the mouse tail

A comprehensive study of am  -AR distribution in 7 rat arteries found that am- 

immunoreactivity was widely distributed in all arteries but that am- functionality

could only he attributed to the mesenteric resistance arteries (Piascik et al., 1997)

'■f

The aiD-selective antagonist BMY7378 exhibited low potency against A86441 and
,

phenylephrine, in mouse tail artery, which precludes any involvement of the am- 

adrenoceptor.
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Agonist potency.

The selective otiA-agonist A86441 was approximately 100 fold more potent than
£:|

phenylephrine which is consistent with a functional population of aiA-adrenoceptors 

(Knepper et a l, 1995 ). This is similar to the rat tail artery which has also heen 

reported to be mainly (%iA (Laclinit et a l, 1997).

Electrical field  stimulation.

Since the tail artery in expected to be richly innei*vated (hom knowledge of the rat) I
■

decided to investigate the nature of the neuroeffector response in both wildtype and

.knockout mice. If a functional difference could be identified then perhaps a structural 

alteration may also exist since the am-adrenoceptor has been implicated in mediating 

a growth response (Chen et a l, 1995).

The sensitivity to exogenous agonists was no different in the WT and KO mice. 

However, responses to electrical field stimulation were smaller in the KO mouse, 

particularly a low frequencies. A detailed analysis of the shape of the responses

indicated that the initial rapid response to EFS was slowed in the KO mouse tail 

artery. This was the first evidence of a difference in the small (resistance?) vessels of 

the mouse.

The postganglionic sympathetic nerves are located in the adventitia/medial border. 

Therfore it was of interest to examine the adventitia of the WT and KO mice.

&
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Confocal Studies o f Structure.

WT and KO mice (4 of each) were selected at random and a mid section of tail artery 

was removed from each and stained with H33342 and mounted on slides. In all cases 

the cell density (indicated using nuclear staining) was lower in the adventitia of the 

KO mice. This supports the previously reported suggestion that the am-adrenoceptors 

play a role in growth.

Further experiments using pressure (lOOmniHg) mounted ‘living’ vessels showed an 

arrangement of smooth muscle cells which was apparently more complex than that 

observed in the rat mesenteric resistance arteries. At least two orientations of SMCs 

were observed. It is possible that this arrangement may play a role in the rhythmic 

activity which often develops in response to low concentrations of a-AR agonists. A

characteristic of the mouse tail artery vascular cells was the punctate staining obtained
'

with the nuclear stain H33342. The spots of fluorescence within the nucleus are 

similar to those observed in apoptotic nuclei. However, it is unlikely that all cells in 

the wall are in this state. Nevertheless, this staining pattern was observed in 3 WT 

arteries and 1 KO artery and certainly warrants further study.

a-adrenoceptor distribution.

It has previously been shown that recombinant adrenoceptor subtypes can have 

differential localities. Hirisawa et al. (1997) found that aib-adrenoceptors are
„ S"

confined to the cell membrane whereas aia-adrenoceptors are mainly intracellular.

The pharmacological data of this chapter indicates that the aiA-adrenoceptor subtype 

is functionally expressed in the tail artery smooth muscle cells. However, the



presence of am-ARs cannot be discounted.. To distinguish clearly subcellular 

receptor location it is necessaiy to first dissociate cells. QAPB binding to dissociated 

cells was found to be both intracellular and membrane bound. Presumably these 

receptors represent the previously identified functional sites. However, it is not 

possible to say from these experiments what the proportion of aiA- and Œm- 

adrenoceptors is. Further experiments with non-fluorescent antagonists used in 

competition studies, followed by image processing and subtraction, are necessaiy to 

establish the proportions of each receptor type in different locations.

;

■

In conclusion, the main functional a-adrenoceptor subtype is the aiA-subtype. The 

functional role of aiB-adrenoceptors appears to be confined to the initial phase of the 

neuroeffector response and may he involved in growth. Since the major structural 

alterations were observed within the adventitia, it is interesting to speculate that the 

role of aiB -ARs in neurotiansmission and the location of the sympathetic nerves in 

the adventitia may be a significant factor in the growth and structure of the adventitia.

Confocal studies have revealed an alteration in the adventitial structure and have 

confirmed the existence of two spatially distributed populations of adrenoceptor 

subtypes which may correlate with the expected locations of aiA- and am- 

adrenoceptors.
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General Discussion and Future Research.

The original aim of this study was to investigate the phenomenon known as vascular
■:

asymmetry whereby the inner layers of smooth muscle are more sensitive to activation 

by noradrenaline than the outer layers. This characteristic of many hlood vessels has 

been known about for almost 30 years and yet we still do not fully understand the 

underlying mechanism. A major goal was to investigate the nature of asymmetry and 

to try to determine its hasis. Initially it was thought that this would simply involve 

mounting a small vessel under a microscope and focusing on the different layers while 

monitoring the activation caused by a range of a-adrenoceptor suhtype selective and 

non-selective agonists. In practice it became clear that this would not be a simple 

task.

The first problem to overcome was that of contrast within the living vessels. Studies 

with brightfreld illumination confirmed that vascular contraction was a complex 

(multi-cellular) process. However, it was not possible to identify individual cells at 

varying depths within the wall. This led to the development of methods employing 

fluorescent nuclear stains. These stains proved to be non-toxic and enabled the

i

Ï
identification of cell type, position, orientation and viability within a living (unfixed) 

vascular wall.

The work with fluorescent nuclear stains led to the realisation that activation of cells 

within a 3D matrix would require a more sophisticated method of analysis. Tliis led 

to the evaluation and eventual pui'chase of a laser scanning confocal microscope 

(CLSM) which provided a means of collecting 3D volumes of vascular cell
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resistance arteiy wall, it also created a requirement to use image analysis and

arrangement. While this alone provided interesting insights into the structure of the

processing methods which previously had not been used within our research group. A

processing and analysis methods. The outcome of the work presented here is that we 

are now in a position to define the next set of problems which must be solved in order 

to fully automate the process of quantifying 3D volumes of vascular structure. In 

support of this, a multi-centre European partnership to study vascular structure using 

CLSM methods has recently been funded which Professor McGrath’s group will co­

ordinate.
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variety of fluorescent stains were evaluated along with a large number of image

I

The methods I have developed have already heen used for the study of cellular 

rearrangements within SPSHR basilar arteries, mouse tail artery, rat mesenteric 

arteries and human subcutaneous resistance arteries. Furthermore, Professor 

McGrath's research group have recently been awarded a Welcome Trust project grant

to construct mathematical models of vascular structure based on the CLSM data 

which we have collected. Briefly, I believe that there may be a simple mathematical 

formula that will describe the arrangement of smooth muscle cells in the vascular 

wall. This model may contain repeating patterns of cells which may or may not 

represent groups of pacemaker cells. The project is a combination of pattern 

recognition and mathematical modelling. It will be veiy interesting if  we can find a 

simple formula to describe the aiTangement of cells mapped to a cylindrical structure. 

Even more interesting will be to alter the variables in the formula to cause cellular 

rearrangement. The question then would be; what physiological factors do these
f

variables relate to? In many respects this is 'blue skies' research but the ideas within



the project outline are the result of studying structure from a 3D point of view. The 

Wellome project and VASCAN-2000 (EU programme grant) will form a major part of 

my research in the next 2-3 years.

Segmentation of objects within 3D volumes of biological data is cuiTently the focus of 

much attention within the computer imaging field. Presently there is not one well 

defined (or accepted) method of segmenting biological data. Much of the research 

centres around MRI and High Resolution ultrasound scanning. While the spatial 

resolution of these imaging modes is far lower than that of CLSM, the same problems 

apply. In fact, efficient segmentation/thresholding will continue to be a problem for 

my confocal studies in the years to come. It will be important therefore to keep up to 

date with the current methods and wherever possible identify collaborators who are 

working in tliis field.

Fluorescent ligands provided an interesting avenue of research at a point where the 

structural studies had reached a major hurdle to be overcome in the form of 

segmentation. It seemed an altogether simpler approach to map the receptor 

distribution within the vascular wall. However, as now expected with this project, 

there were many problems to overcome first.

Historically, fluorescent ligands were used like dyes and were not employed by 

pharmacologists. It took many months of studying the binding characteristics of 

BODIPY FL-prazosin (QAPB) before I would be convinced that any observed 

fluorescence was the result of the formation of a receptor-ligand complex. Once again 

I had to employ methods that I was not previously familiar with, namely cell cultuie
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and the use of recombinant cell lines. There followed many more months of study 

with cloned cell lines which eventually resulted in the development of a fully 

quantitative method of ligand binding that could be performed at equilibrium on a 

single cell. This is perhaps the single biggest scientific achievement of the project 

(and the one which brought the most personal satisfaction). The method is now in 

regular use and we have recently published binding curves derived from a single 

human pro static smooth muscle cell. The work is now being applied to whole 

sections of blood vessels and I believe that here we will find some answers to the 

question of asymmetry.

The work with fluorescent ligands is timely. Almost every month a new fluorescent 

peptide is synthesised by Advanced Bioconcepts or Molecular probes. There are now 

fluo-peptides for angiotensin II, endothelin, hradykinin, CGRP, substance P and a host 

of other molecules that are important to the cardiovascular system. The British 

Phaimacological Society awarded last year’s AJ Clark scholarship to Professor 

McGrath to develop new fluorescent compounds for the study of a-adrenoceptors. 

This was a direct result of our work and publications in this area. We are currently 

evaluating an FITC-prazosin and a FITC-yoliimbine which have been synthesised by 

our collaborators in the Dept of Chemistry (University of Glasgow). In the next two 

years it is hoped that we will be able to synthesise subtype-selective fluorescent 

probes for the known subtypes of a i- and «i-adrenoceptors.

In conclusion, the central question of vascular asymmetry remains unanswered and 

may remain so for a few years to come. However, in the course of working on this 

project I feel that 1 have more clearly defined some of the problems which must first
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be solved if we are get closer to an understanding of the mechanisms of vascular cell 

interactions. The confocal methods described here will go a long way in helping to 

define vascular structure and receptor distribution. Much of the hard work has now 

been done and I believe that this now sets the scene for new approaches to the

interesting problems of vascular biology.

.3
£
,;s:

, ï . '


