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Abstract 

Purple photosynthetic bacteria contain a highly efficient light-harvesting system 

of LH2 and LH1 complexes, consisting of peptides, bacteriochlorophyll, and 

carotenoids, which allow cells to grow photosynthetically under different 

environmental conditions.  

Allochromatium (Alc.) vinosum is a sulphur purple photosynthetic bacterium 

that was found to produce several different LH2 complex types under different 

growth and nutritional conditions. These LH2 complexes have been identified as 

the B800-820, B800-840, and B800-850. All of the LH2 complex types of Alc. 

vinosum were confirmed as heterogeneous forming part of the basis of the 

unusual split B800 peak due to two potential B800 binding sites on the alpha 

peptides. This work produced CD data to suggest that excitonic coupling of the 

B800 BChl occurs and Monte Carlo simulations produced in conjunction with this 

work indicated that this would also contribute to the splitting of the band 

observed. The carotenoids of the spirilloxanthin pathway were identified within 

all of the LH2 complexes, however, the specific carotenoid composition varied 

depending on the LH2 complex type.  

Unlike most purple photosynthetic bacteria, Alc. vinosum is able to produce LH2 

complexes in the absence of carotenoid biosynthesis. Carotenoidless LH 

complexes are ideal for the process of reconstitution, often used to elucidate 

structure function relationships within complexes. Carotenoidless LH2 complexes 

were produced and used for proof of concept reversible dissociation studies. 

This work identified the B800-850 LH2 complex as a reconstitution candidate for 

further work.  
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 Chapter 1 - Introduction 

1.1 Photosynthesis 

Photosynthesis is one of the most important processes on Earth as it is essential 

for life. Photosynthesis provides the energy input for nearly all ecosystems by 

converting solar energy into a chemical form. Multiple organisms such as plants 

and algae have evolved to perform photosynthesis whereby solar energy is 

absorbed and used to fix carbon dioxide and reduce it into carbohydrates with 

oxygen as the by-product. The production of oxygen and the harnessing of solar 

energy for life highlight the importance of photosynthesis and its role in Earths 

ecosystems.  

The main focus in early photosynthesis research was on oxygenic photosynthesis 

i.e. plants, which began in the beginning of the 17th century (1). Jan Baptista 

van Helmont (1580-1644) deduced from a simple weighing experiment that trees 

don’t build their mass from parts in the soil but from the water they absorb. The 

phlogiston theory, postulated at the end of the 17th century by Joachim Becher 

(1635-1682), identified phlogiston as the flammable substance that is released 

into the air by substances upon combustion (2). Many scientists subscribed to 

this theory including Joseph Priestley (1733-1804) who applied this to 

experiments on the ability of plants to ‘dephlogisticate’ air. He found that, upon 

the addition of a sprig of mint, a candle would burn again for a brief period of 

time inside a container of air that had previously been ‘phlogisticated’. This 

identified “dephlogistigated air” or, according to Lavoisier’s pneumatic theory, 

oxygen as a product of the plant and integral for a candle to burn. Jan 

Ingenhousz (1730-1799) discovered that light was integral to the production of 

oxygen by plants as in darkness they “phlogisticate” the air like a candle. Jean 

Senebier (1742-1809) noted that plants require carbon dioxide (or ‘fixed air’) in 

order to “dephlogisticate” the air but it was Nicolas-Theodore de Saussure in the 

19th century who deduced that the plants increase of mass is derived from both 

water and carbon dioxide. It was only with Sergei Winogradskys (1856-1953) 

development of the Winogradsky column in the 1880’s (3) that the realm of 

photosynthesis began to substantially expand to include bacterial 

photosynthesis. A Winograsky column is a column of pond water and sediment 

that is enriched for the growth of pond bacteria and algae. Different layers of 
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added sediment create gradients of both oxygen and sulphur down the column, 

selecting for the growth of different species. The Winogradsky column allowed 

scientists such as Cornelius van Niel to grow up anoxygenic sulphur bacteria in 

the laboratory. 

It was the study and contrast between the oxygenic phototrophs and the sulphur 

using phototrophs that aided van Niel in the 1920’s to conclude that the 

production of oxygen is not from the splitting of carbon dioxide, rather it is due 

to the splitting of water (4). By comparing oxygenic and anoxygenic sulphur 

consuming phototrophs, van Niel (1931) determined that while oxygenic 

phototrophs produced oxygen as a by-product, purple sulphur bacteria used 

reduced sulphur compounds and produced sulphur as their by-product. This 

allowed van Niel to determine the general equation for photosynthesis (Equation 

1) wherein a molecule, such as water (Equation 2) or a reduced sulphur 

compound (Equation 3), is used as an electron donor for the reduction of carbon 

dioxide.  

General equation for photosynthesis as determined b y van Niel (4), where A is a suitable 
electron donor, such as H 2O, thiosulphate, or a reduced carbon compound. 
CO2 + 2H2A + light energy = C(H2O)n + H2O + 2A     (1) 

The most common form of photosynthesis, oxygenic photosynthesis, evolved to 

use water as the electron donor, and results in diatomic oxygen as the oxidised 

end product (Equation 2). This is the form of photosynthesis that occurs in plants 

and algae. 

The equation for oxygenic photosynthesis, as determ ined by van Niel (4), with  water as the 
electron donor producing diatomic oxygen as the by- product.  
 
CO2 + 2H2O + light energy = C(H2O)n + H2O + O2     (2) 

Alternatively, if the electron donor is an inorganic substrate this produces a 

different oxidised by-product, forming the basis of anoxygenic photosynthesis. 

Anoxygenic photosynthesis is the form observed in photosynthetic bacteria and 

can use a variety of different electron donor molecules. The electron donor can 

be a variety of different inorganic molecules, such as hydrogen sulphide (5, 6), 

or organic molecules, such as succinate (7, 8). Equation 3 shows the overall 
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equation if the electron donor is hydrogen sulphide, creating a by-product of 

sulphur.  

The equation for anoxygenic photosynthesis, as dete rmined by van Niel (4),  with  hydrogen 
sulphide as the electron donor producing elemental sulphur as the by-product. 
CO2 + 2H2S + light energy = C(H2O)n + H2O + 2S0    (3) 

There are several groups of organisms that are able to grow photosynthetically. 

These are plants, cyanobacteria, algae, and halobacteria as well as purple and 

green photosynthetic bacteria. The archaean halobacteria harvest energy from 

sunlight but are not conventional phototrophs as they do not use chlorophyll 

light-harvesting systems, rather protein light-driven proton pumps unlike the 

other organisms listed (9).  

1.2 Purple photosynthetic bacteria 

Purple photosynthetic bacteria are one of the model organisms used to study 

photosynthesis due to their simplicity, ease of growth and the robustness of 

their photosynthetic apparatus. Previously, purple photosynthetic bacteria were 

classified into two groups depending on whether or not they metabolised sulphur 

compounds. Modern molecular techniques have illuminated further distinctions, 

showing that the photosynthetic bacteria fall into three subgroups 

alphaproteobacteria, betaproteobacteria and gammaproteobacteria (10). It is 

the alpha and betaproteobacteria subtypes that make up the non-sulphur 

contingent of purple photosynthetic bacteria while the sulphur bacteria are 

placed within the gammaproteobacteria (11)(Table 1.1). 
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Table 1.1 Examples of common purple photosynthetic bacterial species from the subtypes 
alphaproteobacteria and gammaproteobacteria, which are referenced in this work. (11) 
Subtype Alphaproteobacteria Gammaproteobacteria 

Family Rhodospirillaceae Chromatiaceae 

Species Rhodopseudomonas (Rps.) 

palustris 

Rhodopseudomonas (Rps.) viridis 

Rhodopseudomonas (Rps.) 

acidophila 

 

Rhodobacter (Rba.) capsulatus 

Rhodobacter (Rba.) spheroides 

Phaeospirillum (Phs.) 

molischianum 

Rhodospirillum (Rsp.) rubrum 

(Previously Chromatium) 

Allochromatium (Alc.) vinosum 

Allochromatium (Alc.) 

minutissimum 

 

Marichromatium (Mch.) 

purpuratum 

Thermochromatium (Tch.) 

tepidum 

 

 

Alpha-, beta-, and gammaproteobacteria require anaerobic conditions in order 

to grow photosynthetically. It is under low oxygen partial pressures that they 

produce the structures and complexes required for photosynthesis (12-14), such 

as the intracytoplasmic membrane (ICM). Structures such as the ICM are not 

present when the purple photosynthetic bacterium grows 

chemoheterotrophically (15). The ICM is a continuous membrane that is distinct 

from the inner membrane and is used to house the light reactions of the 

bacterium (11). The structure of the ICM varies between different species of 

bacteria, forming lamellae in some and chromatophores in others (16). Purple 

photosynthetic bacteria grow photosynthetically when they inhabit low oxygen 

environments such as the bottom of ponds and stagnant water (Figure 1.1). They 

inhabit the stratum below the oxygenic phototrophs, such as algae and 

cyanobacteria. A consequence of this is that the wavelengths of light that reach 

the purple photosynthetic bacteria are limited due to being filtered through 

these oxygenic, chlorophyll containing phototrophs. Chlorophyll containing 

organisms absorb wavelengths in the blue and red parts of the incident solar 

spectrum. This results in only the green and NIR wavelengths of light reaching 

the organisms in the lower layers of water. For this reason, purple 

photosynthetic bacteria use pigments that are able to absorb light in the green 



 

 

and near infrared (NIR) regions of the absorption spectrum and use it for 

photosynthesis.  

Purple sulphur and non

water (Figure 1.1). Purple sulphur bacteria occupy the very bottom of ponds as 

decaying matter sinks to the bottom. It is this decaying matter that is the source 

of the reduced sulphur compounds that purple sulphur bacteria

donors. Purple non-

bacteria (17). 

Figure 1.1 Schematic diagram of a pond containing different ph ototrophs; algae, 
cyanobacteria, and purple photosynthetic bacteria. 
The different wavelengths of light shown on the axis across the top are represented by coloured 
arrows. These different wavelengths of light are filtered through the chlorophyll containing algae 
and cyanobacteria present in the upper layers of the water. These phototrophs are oxygenic, 
producing oxygen that result
level of oxygen greatly reduces. The purple photosynthetic bacteria require low oxygen 
concentrations to photosynthesise and so they occupy the lower layers of water, where the level of 
oxygen is lowest.  The wavelengths of ligh
phototrophs are the blue, green and near infrared regions of the absorption
photosynthetic bacteria at the bottom of the pond. Purple sulphur bacteria inhabit the deepest parts 
of the pond in order to access the sulphur compounds released by decaying material, whereas 
purple non-sulphur bacteria inhabit the layer of water above the purple sulphur bacteria.

1.2.1 An overview of the light reactions of purple photos ynthetic 
bacteria  

Historically, photosynthesis has been split into t

and dark reactions. The light reactions involve the harvesting of light energy by 

pigments; in purple photosynthetic bacteria the light energy is then converted

and near infrared (NIR) regions of the absorption spectrum and use it for 

Purple sulphur and non-sulphur bacteria occupy different layers within 

. Purple sulphur bacteria occupy the very bottom of ponds as 

decaying matter sinks to the bottom. It is this decaying matter that is the source 

of the reduced sulphur compounds that purple sulphur bacteria

-sulphur bacteria inhabit the stratum above the sulphur 

Schematic diagram of a pond containing different ph ototrophs; algae, 
cyanobacteria, and purple photosynthetic bacteria.  
The different wavelengths of light shown on the axis across the top are represented by coloured 

ws. These different wavelengths of light are filtered through the chlorophyll containing algae 
and cyanobacteria present in the upper layers of the water. These phototrophs are oxygenic, 
producing oxygen that results in an oxygen gradient as further from the oxygenic phototrophs the 
level of oxygen greatly reduces. The purple photosynthetic bacteria require low oxygen 
concentrations to photosynthesise and so they occupy the lower layers of water, where the level of 
oxygen is lowest.  The wavelengths of light that penetrate through the chlorophyll containing 

the blue, green and near infrared regions of the absorption
photosynthetic bacteria at the bottom of the pond. Purple sulphur bacteria inhabit the deepest parts 

the pond in order to access the sulphur compounds released by decaying material, whereas 
sulphur bacteria inhabit the layer of water above the purple sulphur bacteria.

An overview of the light reactions of purple photos ynthetic 

cally, photosynthesis has been split into two sets of reactions, the light

reactions. The light reactions involve the harvesting of light energy by 

; in purple photosynthetic bacteria the light energy is then converted
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and near infrared (NIR) regions of the absorption spectrum and use it for 

ifferent layers within bodies of 

. Purple sulphur bacteria occupy the very bottom of ponds as 

decaying matter sinks to the bottom. It is this decaying matter that is the source 

of the reduced sulphur compounds that purple sulphur bacteria use as electron 

sulphur bacteria inhabit the stratum above the sulphur 

 

Schematic diagram of a pond containing different ph ototrophs; algae, 

The different wavelengths of light shown on the axis across the top are represented by coloured 
ws. These different wavelengths of light are filtered through the chlorophyll containing algae 

and cyanobacteria present in the upper layers of the water. These phototrophs are oxygenic, 
he oxygenic phototrophs the 

level of oxygen greatly reduces. The purple photosynthetic bacteria require low oxygen 
concentrations to photosynthesise and so they occupy the lower layers of water, where the level of 

t that penetrate through the chlorophyll containing 
the blue, green and near infrared regions of the absorption, which reach the purple 

photosynthetic bacteria at the bottom of the pond. Purple sulphur bacteria inhabit the deepest parts 
the pond in order to access the sulphur compounds released by decaying material, whereas 

sulphur bacteria inhabit the layer of water above the purple sulphur bacteria. 

An overview of the light reactions of purple photos ynthetic 

wo sets of reactions, the light 

reactions. The light reactions involve the harvesting of light energy by 

; in purple photosynthetic bacteria the light energy is then converted 
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into ATP molecules and a reduced cofactor, NADH2. The dark reactions use the 

ATP and NADH2 to fix and reduce simple organic molecules into sugars (18).  

The light reactions are based within the ICM in purple photosynthetic bacteria 

(11) while the dark reactions occur free in solution within the cytoplasm. 

Incident photons are absorbed by an array of light-harvesting complexes within 

the ICM of the photosynthetic bacterium. These complexes consist of proteins 

that contain bacteriochlorophyll (BChl) and carotenoid pigments. The pigments 

absorb light energy and funnel it down an energy gradient to a central reaction 

centre (RC) where a charge separation occurs across the membrane, effectively 

‘trapping’ the solar energy in a chemical form.  

The charge separation in the RC powers a series of REDOX reactions involving 

other protein complexes bound within the ICM (Figure 1.2) that lead to the 

formation of a proton motive force (PMF). As a result of the primary charge 

separation reactions, a quinone is reduced to a quinol. The quinol is 

subsequently released into the membrane where it reduces the cytochrome b/c1 

complex (19) translocating two protons across the membrane, creating a PMF. 

The electrons from the quinol reduce the cytochrome c complex (20), which 

then reduces the RC to prepare it for more charge separation. It is the PMF that 

provides the driving force for the ATPsynthase (21, 22) complex in order to 

create ATP.  



 

 

Figure 1.2 Schematic diagram showing the proteins within the I CM of purple photosynthetic 
bacteria that are involved in the light
These membrane bound complexes harvest light energy and 
the dark reactions. The energy is absorbed by the light
energy to the reaction centre (RC). This energy is used by the RC to create a charge separation 
across the membrane to fuel the 
cytochrome b/c1 complex 
creating a proton motive force (PMF). The electrons are transferred 
(20), which reduces the RC. The PMF is used by the ATP synthase complex to create ATP 

1.3 Purple b acterial photosynthetic light
machinery

The first stage of the light reactions is the absorption of solar energy, and this is 

performed by light-

peripherally to the RC and act like 

and transferring it down an energy gradient to the RC.

section of solar energy 

The light-harvesting 

carotenoid pigments 

arrays within the membrane 

peripheral light-harvesting machinery to the reaction centre. 

When one of the pigments absorbs a photon, an electron is excited t

energy level (Figure 1.

Schematic diagram showing the proteins within the I CM of purple photosynthetic 
bacteria that are involved in the light -dependant reactions.  
These membrane bound complexes harvest light energy and convert it into ATP and NADPH
the dark reactions. The energy is absorbed by the light-harvesting complexes that funnel the 
energy to the reaction centre (RC). This energy is used by the RC to create a charge separation 
across the membrane to fuel the reduction of a quinone. The oxidation of the quinone by the 

complex (19) translocates two protons across the membrane into the periplasm, 
creating a proton motive force (PMF). The electrons are transferred to the cytochrome c complex 

, which reduces the RC. The PMF is used by the ATP synthase complex to create ATP 

acterial photosynthetic light -harvesting 
machinery  

The first stage of the light reactions is the absorption of solar energy, and this is 

-harvesting complexes. The light harvesting complexes sit 

peripherally to the RC and act like an energy funnel absorbing the solar energy 

ng it down an energy gradient to the RC. This 

tion of solar energy captured for use by the RC for charge separation.

harvesting complexes and RC consist of bacteriochlorophyll (

carotenoid pigments packaged within a protein scaffold. These complexes form 

within the membrane (23, 24) that allows easy energy transfer from the 

harvesting machinery to the reaction centre. 

When one of the pigments absorbs a photon, an electron is excited t

energy level (Figure 1.3 S1 or S2). The energy is then transferred on or is 
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Schematic diagram showing the proteins within the I CM of purple photosynthetic 

convert it into ATP and NADPH2 for 
harvesting complexes that funnel the 

energy to the reaction centre (RC). This energy is used by the RC to create a charge separation 
reduction of a quinone. The oxidation of the quinone by the 

translocates two protons across the membrane into the periplasm, 
to the cytochrome c complex 

, which reduces the RC. The PMF is used by the ATP synthase complex to create ATP (22). 

harvesting 

The first stage of the light reactions is the absorption of solar energy, and this is 

harvesting complexes. The light harvesting complexes sit 

absorbing the solar energy 

This increases the cross 

RC for charge separation. 

bacteriochlorophyll (BChl) and 

a protein scaffold. These complexes form 

easy energy transfer from the 

harvesting machinery to the reaction centre.  

When one of the pigments absorbs a photon, an electron is excited to a higher 

). The energy is then transferred on or is 
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dissipated through several photosynthetically non-productive processes. In the 

light-harvesting complexes energy transfer occurs from the first excited singlet 

state and in reaction centres this excited state is used to drive the first electron 

transfer reaction. The processes involved in the electron excitation and 

relaxation are easily visualised using a Jablonski diagram (Figure 1.3). The 

excitation of an electron by a photon stimulates the electron out of the ground 

state and into a higher energy singlet excitation level (Figure 1.3, heavy black 

lines dubbed S1 and S2). Electrons in the singlet excitation level are able to 

decay back to the ground state progressively or, preferably in photosynthesis, 

transfer the energy on or be transferred on. Each energy level contains multiple 

smaller vibrational states, (Figure 1.3, light dashed lines). The energy of the 

electron dissipates through several different non-radiative and radiative 

processes. Non-radiative modes of energy dissipation include vibrational 

relaxation and internal conversion. Energy lost within an energy state as the 

electron falls down the vibrational states is referred to as vibrational relaxation, 

while the movement of an electron down to another energy level is internal 

conversion. A change in the spin multiplicity, whereby the electron spin reverses 

direction, causes the electron to move from a singlet excitation state to a triplet 

excitation state. This is termed intersystem crossing (Figure 1.3 ISC, S1 to T1). 

The triplet excited electron and its partner in the ground state have parallel 

spins resulting in the transition to the ground state being forbidden due to the 

Pauli Exclusion Principle (25). This results in the triplet excitation state being 

long lived in comparison to the singlet state, milliseconds in comparison to 

nanoseconds in the case of bacteriochlorophyll (26). Fluorescence and 

phosphorescence are forms of radiative energy dissipation that occur if the 

energy cannot be transferred on by excitation energy transfer. Fluorescence 

occurs from singlet excitation states and occurs at a slightly longer wavelength 

than the position of the absorption band due to energy loss from internal 

conversion and vibrational relaxation. Phosphorescence is the release of the 

energy from the triplet excitation states and so occurs over a much longer 

period of time. 



 

 

Figure 1.3 Jablonski diagram 
(T1) states and the different modes of energy decay th at return the electron to the ground 
state (S 0). 
Excitation by a photon (absorption) 
states. The energy dissipates in non
intersystem crossing) and radiative methods (fluorescence, and phosphorescence). Vibrational 
relaxation is the dissipation of energy as the electron relaxes d
within the energy state. Internal conversion is the dissipation of the energy allowing the electron to 
fall down an energy state. Upon a change of the spin multiplicity of the electron changes the 
electron from a singlet (S
(ISC). The radiative modes of energy dissipation are fluorescence and phosphorescence to return 
the electron to the ground state energy level.

1.3.1 Pigments  

The major light-harves

types of BChl have been identified in nature; BChl a, b 

but purple photosynthetic bacteria are only known to possess BChl a and b 

The BChl molecule can be separated into two basic 

and the bacteriochlorin ring

macrocycles, (I, II, 

ring that contains the conjugated system of π

chromophore. The chromophore is the part of the pigment molecule that absorbs 

light energy. The structure of BChl a is sho

shows the group that is substituted between BChl a and BChl b 

of this change is that BChl b produces a more red

Jablonski diagram (27) showing the electron excited singlet (S
) states and the different modes of energy decay th at return the electron to the ground 

Excitation by a photon (absorption) excites the electron from the ground state into the S
states. The energy dissipates in non-radiative (internal conversion, vibrational relaxation, and 
intersystem crossing) and radiative methods (fluorescence, and phosphorescence). Vibrational 
relaxation is the dissipation of energy as the electron relaxes down the different vibrational states 
within the energy state. Internal conversion is the dissipation of the energy allowing the electron to 
fall down an energy state. Upon a change of the spin multiplicity of the electron changes the 

t (S1) state to a triplet state (T1), this is referred to as intersystem crossing 
(ISC). The radiative modes of energy dissipation are fluorescence and phosphorescence to return 
the electron to the ground state energy level. 

 

harvesting pigment of purple photosynthetic bacteria is BChl. Six 

types of BChl have been identified in nature; BChl a, b (28)

but purple photosynthetic bacteria are only known to possess BChl a and b 

The BChl molecule can be separated into two basic parts – 

and the bacteriochlorin ring (Figure 1.4). The bacteriochlorin ring consists of five 

macrocycles, (I, II, III, IV, and V) with a central Mg2+ ion. It is the bacteriochlorin 

ring that contains the conjugated system of π-bonds that forms the 

chromophore. The chromophore is the part of the pigment molecule that absorbs 

light energy. The structure of BChl a is shown in figure 1.4 

shows the group that is substituted between BChl a and BChl b 

of this change is that BChl b produces a more red-shifted absorption spectrum 
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showing the electron excited singlet (S 1 and S2) and triplet 
) states and the different modes of energy decay th at return the electron to the ground 

excites the electron from the ground state into the S1, S2, or S3 
radiative (internal conversion, vibrational relaxation, and 

intersystem crossing) and radiative methods (fluorescence, and phosphorescence). Vibrational 
own the different vibrational states 

within the energy state. Internal conversion is the dissipation of the energy allowing the electron to 
fall down an energy state. Upon a change of the spin multiplicity of the electron changes the 

), this is referred to as intersystem crossing 
(ISC). The radiative modes of energy dissipation are fluorescence and phosphorescence to return 

ting pigment of purple photosynthetic bacteria is BChl. Six 

(28), c , d, e, and g (29), 

but purple photosynthetic bacteria are only known to possess BChl a and b (30). 

 the hydrophobic tail 

The bacteriochlorin ring consists of five 

ion. It is the bacteriochlorin 

bonds that forms the 

chromophore. The chromophore is the part of the pigment molecule that absorbs 

 and the green box 

shows the group that is substituted between BChl a and BChl b (28). The effect 

shifted absorption spectrum 



 

 

than BChl a due to an increase in the length of the π

hydrophobic tail increases the hydrophobic nature of the BChl molecule and can 

be either a geranylgeraniol group 

main structural difference between the two hydrophobic 

presence of double bonds in the geranylgeranyl group that are absent in the 

phytyl tail. There is no functional difference between the two hydrophobic tail 

groups. 

Figure 1.4 Structure of 
hydrophobic tail groups that are found as the R gro up. 
The two hydrophobic tail groups that have been observed on the BChl a molecule 
geranylgeranyl (31) or a
geranylgeranyl but only contains one double bond. The geranylgeranyl group contains the same 
double bond as the phytyl as well as three more. The hydrophobic tail does not contain a 
chromophore. The main chromophore of the BChl is the bacteriochlorin ring, which contains the Qx 
(red) and Qy (blue) transition dipole moments. Both BChl a and b have be
photosynthetic bacteria, the difference between BChl a and BChl b is the substitution of the group 
outlined in green box (28, 32)

The spectrum of free monomeric BChl in inorganic solvents contains four main 

absorption peaks dubbed 

spectrum)(33). These absorption bands relate to transition dipoles on the BChl 

ring. The Bx and By are often referred to by

transition dipoles that

due to an increase in the length of the π-bond system

hydrophobic tail increases the hydrophobic nature of the BChl molecule and can 

either a geranylgeraniol group (31) or a phytol group (28)

main structural difference between the two hydrophobic tail types is the 

presence of double bonds in the geranylgeranyl group that are absent in the 

phytyl tail. There is no functional difference between the two hydrophobic tail 

Structure of BChl a showing the bacteriochlorin ring and the two  potential 
hydrophobic tail groups that are found as the R gro up.  
The two hydrophobic tail groups that have been observed on the BChl a molecule 

or a phytyl (28) tail . The phytyl tail is one carbon longer than the 
geranylgeranyl but only contains one double bond. The geranylgeranyl group contains the same 

uble bond as the phytyl as well as three more. The hydrophobic tail does not contain a 
chromophore. The main chromophore of the BChl is the bacteriochlorin ring, which contains the Qx 
(red) and Qy (blue) transition dipole moments. Both BChl a and b have be
photosynthetic bacteria, the difference between BChl a and BChl b is the substitution of the group 

(28, 32). 

The spectrum of free monomeric BChl in inorganic solvents contains four main 

absorption peaks dubbed the Qy, Qx, Bx, and By peaks (Figure 1.

. These absorption bands relate to transition dipoles on the BChl 

ring. The Bx and By are often referred to by the joint term 

transition dipoles that absorb in the red and NIR, the Qx and Qy, 
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bond system. The 

hydrophobic tail increases the hydrophobic nature of the BChl molecule and can 

(28) (Figure 1.4). The 

tail types is the 

presence of double bonds in the geranylgeranyl group that are absent in the 

phytyl tail. There is no functional difference between the two hydrophobic tail 

BChl a showing the bacteriochlorin ring and the two  potential 

The two hydrophobic tail groups that have been observed on the BChl a molecule are a  
. The phytyl tail is one carbon longer than the 

geranylgeranyl but only contains one double bond. The geranylgeranyl group contains the same 
uble bond as the phytyl as well as three more. The hydrophobic tail does not contain a 

chromophore. The main chromophore of the BChl is the bacteriochlorin ring, which contains the Qx 
(red) and Qy (blue) transition dipole moments. Both BChl a and b have been found in purple 
photosynthetic bacteria, the difference between BChl a and BChl b is the substitution of the group 

The spectrum of free monomeric BChl in inorganic solvents contains four main 

the Qy, Qx, Bx, and By peaks (Figure 1.5 blue 

. These absorption bands relate to transition dipoles on the BChl 

the joint term Soret peak. The 

absorb in the red and NIR, the Qx and Qy, have a specific 



 

 

position on the bacteriochlorin 

and blue lines, respectively)

Figure 1.5 Absorption spectra of BChl a (blue) and the caroten oid spirilloxanthin (green) in 
acetone.  
The BChl absorption spectrum consists of multiple peaks that relate to transition dipole moments, 
Qy, Qx, Bx, and By, and the carote
nm. The transition dipole moments of the By and Bx are known by the joint term Soret peak. The 
position of the peaks of both the carotenoid and BChl depends on the type of pigment and the 
polarizability and polarity of its environment. In acetone, the different peaks of the BChl centre at 
772 nm (Qy), 580 nm (Qx) and ~370 (Soret), and the three spirilloxanthin peaks centre at 465 nm, 
492 nm, and 525 nm. 

The position of the Qy transition of BChl i

free in solution, the Qy band is affected by the polarity of the solvent it is 

suspended in (34). Aggregation of the BChl pigments causes a red

absorption band, which increases with the number of B

When bound within a protein scaffold additional factors affect the position of 

the Qy transition dipole, due to the effects of nearby protein residues. 

Deformations of the bacteriochlorin macrocycle, such as doming, can occur due

to steric hindrance from nearby residues. This doming can shift the Qy 

absorption peak, while also affecting the duration of excitation times. The 

rotation of the C3-acetyl group relative to the chromophore 

causes shifts in the absorption sp

bacteriochlorin ring perpendicular to each other (Figure 1.

and blue lines, respectively).  

Absorption spectra of BChl a (blue) and the caroten oid spirilloxanthin (green) in 

The BChl absorption spectrum consists of multiple peaks that relate to transition dipole moments, 
Qy, Qx, Bx, and By, and the carotenoid produces three absorption peaks in the region of 400
nm. The transition dipole moments of the By and Bx are known by the joint term Soret peak. The 
position of the peaks of both the carotenoid and BChl depends on the type of pigment and the 

zability and polarity of its environment. In acetone, the different peaks of the BChl centre at 
772 nm (Qy), 580 nm (Qx) and ~370 (Soret), and the three spirilloxanthin peaks centre at 465 nm, 

The position of the Qy transition of BChl is sensitive to a variety of factors. When 

free in solution, the Qy band is affected by the polarity of the solvent it is 

. Aggregation of the BChl pigments causes a red

absorption band, which increases with the number of BChl within the aggregate. 

When bound within a protein scaffold additional factors affect the position of 

the Qy transition dipole, due to the effects of nearby protein residues. 

Deformations of the bacteriochlorin macrocycle, such as doming, can occur due

to steric hindrance from nearby residues. This doming can shift the Qy 

absorption peak, while also affecting the duration of excitation times. The 

acetyl group relative to the chromophore 

causes shifts in the absorption spectrum, this can occur due to residues forming 
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perpendicular to each other (Figure 1.4 red 

 

Absorption spectra of BChl a (blue) and the caroten oid spirilloxanthin (green) in 

The BChl absorption spectrum consists of multiple peaks that relate to transition dipole moments, 
noid produces three absorption peaks in the region of 400-550 

nm. The transition dipole moments of the By and Bx are known by the joint term Soret peak. The 
position of the peaks of both the carotenoid and BChl depends on the type of pigment and the 

zability and polarity of its environment. In acetone, the different peaks of the BChl centre at 
772 nm (Qy), 580 nm (Qx) and ~370 (Soret), and the three spirilloxanthin peaks centre at 465 nm, 

s sensitive to a variety of factors. When 

free in solution, the Qy band is affected by the polarity of the solvent it is 

. Aggregation of the BChl pigments causes a red-shift of the Qy 

Chl within the aggregate.  

When bound within a protein scaffold additional factors affect the position of 

the Qy transition dipole, due to the effects of nearby protein residues. 

Deformations of the bacteriochlorin macrocycle, such as doming, can occur due 

to steric hindrance from nearby residues. This doming can shift the Qy 

absorption peak, while also affecting the duration of excitation times. The 

acetyl group relative to the chromophore π-bond system 

ectrum, this can occur due to residues forming 



 

 

hydrogen bonds to the C3

protein scaffold the BChl can be held in 

can effectively form an aggregate, allowing excitonic coupling to occur that 

produces a red-shift of the Qy peaks 

Carotenoids are the other pigment type present within the light

complexes of purple photosynthetic bacteria

chain hydrocarbons that are desaturated to form a conjugated double bond 

system. It is the conjugated 

1.6 green highlighting) 

region of the spectrum between 400

Factors that affect the position and line profile of the carotenoid absorption 

spectrum include the length of the conjugated double bond system as well as 

any chemical modifications present on the chromophore. The longer the 

chromophore (the more repeats of double/single bonds present in tandem in the 

molecule) the more red

Figure 1.6 Structure of the carotenoid 
system highlighted in green. 
It is the conjugated double bond system that constitutes the chromophore. The number of 
is described using the term n =, in this case spirilloxanthin n = 13.

Three peaks are observed in the absorption spectra of carotenoids from purple 

photosynthetic bacteria in the 450

(Figure 1.5 green spectru

carotenoid are sensitive to the polarity and polarizability of the solvent they are 

suspended in (38). When the carotenoid is bound within a protein, the protein 

environment of the carotenoid affects the position of the absorption bands 

observed. 

Carotenoids perform three functions in the light

photosynthetic bacteria; light

to the C3-acetyl or 131 keto carbonyl groups 

protein scaffold the BChl can be held in proximity to each other, and the BChl 

can effectively form an aggregate, allowing excitonic coupling to occur that 

shift of the Qy peaks (36).  

he other pigment type present within the light

of purple photosynthetic bacteria. Carotenoids are hydrophobic, long 

chain hydrocarbons that are desaturated to form a conjugated double bond 

. It is the conjugated π-bond system that forms the chromophore (Figure 

green highlighting) (37) allowing the molecule to absorb ligh

region of the spectrum between 400-550 nm (Figure 1.5 green spectrum). 

Factors that affect the position and line profile of the carotenoid absorption 

spectrum include the length of the conjugated double bond system as well as 

modifications present on the chromophore. The longer the 

chromophore (the more repeats of double/single bonds present in tandem in the 

molecule) the more red-shifted the peaks observed in the absorption spectrum. 

Structure of the carotenoid spirilloxanthin with the conjugated double b
system highlighted in green.  
It is the conjugated double bond system that constitutes the chromophore. The number of 
is described using the term n =, in this case spirilloxanthin n = 13. 

Three peaks are observed in the absorption spectra of carotenoids from purple 

photosynthetic bacteria in the 450-600 nm region of the absorption spectrum 

green spectrum). The positions of the absorption bands of the 

carotenoid are sensitive to the polarity and polarizability of the solvent they are 

. When the carotenoid is bound within a protein, the protein 

environment of the carotenoid affects the position of the absorption bands 

Carotenoids perform three functions in the light-harvesting 

photosynthetic bacteria; light-harvesting (39), structural stability 
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keto carbonyl groups (35). Within the 

proximity to each other, and the BChl 

can effectively form an aggregate, allowing excitonic coupling to occur that 

he other pigment type present within the light-harvesting 

. Carotenoids are hydrophobic, long 

chain hydrocarbons that are desaturated to form a conjugated double bond 

nd system that forms the chromophore (Figure 

allowing the molecule to absorb light in the visible 

green spectrum). 

Factors that affect the position and line profile of the carotenoid absorption 

spectrum include the length of the conjugated double bond system as well as 

modifications present on the chromophore. The longer the 

chromophore (the more repeats of double/single bonds present in tandem in the 

shifted the peaks observed in the absorption spectrum.  

 

with the conjugated double b ond 

It is the conjugated double bond system that constitutes the chromophore. The number of π bonds 

Three peaks are observed in the absorption spectra of carotenoids from purple 

600 nm region of the absorption spectrum 

m). The positions of the absorption bands of the 

carotenoid are sensitive to the polarity and polarizability of the solvent they are 

. When the carotenoid is bound within a protein, the protein 

environment of the carotenoid affects the position of the absorption bands 

harvesting complexes of purple 

, structural stability (32, 40), and 



 

 

photoprotection (41

the light-harvesting complex to drive photosynthesis. The energy absorbed 

stimulates an electron within the carotenoid into

energy is then transferred on to one of the singlet excitation states of the bound 

BChl (Figure 1.7). When bound within a light

carotenoids have different levels of efficiency in their ability

transfer this energy on to the BChl. Genera

carotenoids containing 

transfer efficiencies in light

are excited to the S

‘dark’ state due to its symmetry with the S

Figure 1.7 Jablonski diagram
The carotenoid singlet (S
the transition dipole moments (Qx and Qy) and the triplet excitation
lines). Electrons are excited to the S
‘dark’ state due to its symmetry 
levels of the BChl. If triplet excitation states are formed due to intersystem crossing, these are 
quenched by the carotenoid due to the lower energy of the carotenoid T

The transfer of energy between the carotenoids and the BChl allows not just the 

transfer of singlet exci

excitation states from the BChl 

(41-44). The light absorbed by the carotenoid can be utilised by 

harvesting complex to drive photosynthesis. The energy absorbed 

stimulates an electron within the carotenoid into a singlet excitation state. This 

energy is then transferred on to one of the singlet excitation states of the bound 

). When bound within a light-harvesting complex, d

carotenoids have different levels of efficiency in their ability

transfer this energy on to the BChl. Generally, it has been observed that 

carotenoids containing shorter chromophores are associated with higher energy 

transfer efficiencies in light-harvesting complexes (45-47). The excited electrons 

are excited to the S2 state within the carotenoid, as the S1 

‘dark’ state due to its symmetry with the S0 state (48, 49). 

 

Jablonski diagram  of the carotenoid and BChl singlet and triplet ener gy levels. 
The carotenoid singlet (S1 and S2) and triplet energy states (T1) (red lines) and the energy 
the transition dipole moments (Qx and Qy) and the triplet excitation state

Electrons are excited to the S2 state within the carotenoid, as the S
‘dark’ state due to its symmetry (48, 49). The energy can then be passed on to the Qx or Qy energy 
levels of the BChl. If triplet excitation states are formed due to intersystem crossing, these are 
quenched by the carotenoid due to the lower energy of the carotenoid T

The transfer of energy between the carotenoids and the BChl allows not just the 

transfer of singlet excitation states to the BChl but the quenching of triplet 

excitation states from the BChl (46, 50). This is because the triplet excitation 
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The light absorbed by the carotenoid can be utilised by 

harvesting complex to drive photosynthesis. The energy absorbed 

a singlet excitation state. This 

energy is then transferred on to one of the singlet excitation states of the bound 

harvesting complex, different 

carotenoids have different levels of efficiency in their ability to harvest light and 

lly, it has been observed that 

s are associated with higher energy 

. The excited electrons 

 state is a forbidden 

.  

of the carotenoid and BChl singlet and triplet ener gy levels.  
) (red lines) and the energy states of 

state (T1) of the BChl (green 
state within the carotenoid, as the S1 state is a forbidden 

d on to the Qx or Qy energy 
levels of the BChl. If triplet excitation states are formed due to intersystem crossing, these are 

1 energy state (42).   

The transfer of energy between the carotenoids and the BChl allows not just the 

tation states to the BChl but the quenching of triplet 

. This is because the triplet excitation 
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state of the carotenoid is of a lower energy than the triple excitation state of 

BChl (Figure 1.7) (51). If the excited electron in singlet excited BChl (Equation 5) 

changes its spin due to intersystem crossing, it then enters a triplet state as 

outlined in section 1.2 (Equation 6). This triplet state is able to form singlet 

oxygen due to its long lived nature (Equation 7). Singlet oxygen is highly reactive 

and so detrimental to the bacterium (52). 

Singlet excition of BChl 
BChl + hν � 1BChl*          (5) 

ISC of singlet excited BChl to triplet excited BChl  
1BChl* � 3BChl*          (6) 

Formation of singlet oxygen from triplet excited BC hl 
3BChl* + hν � 3BChl* + _gO2*        (7) 

The carotenoid is able to quench triplet excited BChl and prevent the formation 

of singlet oxygen (Equation 8)(46, 50). This occurs by Dexter energy transfer. 

The carotenoids are then able to release this energy as heat (Equation 9) (42). 

Transfer of triplet excited state to carotenoid 
3BChl* + Car � BChl + 3Car*        (8) 

The dissipation of carotenoid triplet state as heat  
3Car* � Car + heat         (9) 

The carotenoids are also able to quench singlet oxygen (42, 53, 54). The 

quenching of both BChl triplet excitation states and singlet oxygen prevents the 

degradation of the BChl and the toxic effects of reactive oxygen species formed 

from singlet oxygen (52).  

1.3.2 Purple photosynthetic reaction centres 

Early work on the RC by Okamura et al., (55) identified three peptides that were 

named the Light (L), Medium (M) and Heavy chains (H) after the relative 

molecular weights observed after analysis by SDS PAGE. In 1985, the reaction 

centre from Rps. viridis was the first membrane protein to have its structure 

solved by H. Michel et al (56), for which the Nobel prize was awarded in 1988 
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(57). This structure elucidated the fact that the RC consists of BChl, 

bacteriopheophytin (BPh) and carotenoid pigments bound within a protein 

complex consisting of the three protein subunits L, M, H, and, in the case of Rps. 

viridis, a cytochrome c. The L and M peptides bind BChl and bacteriopheophytin 

pigments in position for effective light-driven electron transfer that creates the 

charge separation across the membrane. 

1.3.3 Purple photosynthetic bacterial peripheral light-ha rvesting 
complexes  

The RC is surrounded by light-harvesting complexes to increase the cross section 

of the solar spectrum that is captured for use by the RC. These complexes come 

in two types, the light-harvesting complex 1 (LH1) and the light-harvesting 

complex 2 (LH2). All purple photosynthetic bacteria contain the LH1 complex 

and most but not all contain the LH2 complex (Figure 1.8). The LH2 is a smaller 

peripheral light-harvesting complex that absorbs light energy at shorter 

wavelengths than LH1 and transfers the energy onto the LH1 (58). The LH1 is 

always found in a 1:1 ratio with the RC as it directly surrounds the RC (59-61), 

for this reason the two complexes are referred to as the LH1/RC “core” 

complex. 

 

 



 

 

Figure 1.8 Diagram showing the LH1/RC “core” and LH2 light
purple photosynthetic bacteria. 
The light-harvesting complex 2 (LH2) complexes shown are the repeats of the nonamer B800
LH2 from Rps. acidophila
peptide), and pigments in blue, purple (BChl), and orange (carotenoid).  Th
complex 1 (LH1) shown is the 
15 subunits with the protein W helix at the gap in the ring. The LH1 proteins are shown in cyan 
(alpha peptide) and green (beta p
shown. The reaction centre (RC) sits in the middle of the LH1 complex, with proteins in orange (M 
peptide), pink (L peptide), and blue (H peptide) and BChl pigments in green. Solar energy is 
absorbed at shorter wavelengths by the LH2 complex, which then transfers the energy down an 
energy gradient onto the LH1 complex. The LH1 complex then transfers this energy onto the RC, 
which is then used by the RC to create a charge separation across the m

Both the LH1 and LH2 form rings

as they consist of oligomers of alpha/beta

span the membrane once and form a scaffold fo

pigments.  

The pigments bound within the light

BChl, absorb at different wavelengths than the free pigments due to ‘tuning’ by 

the protein scaffold they are bound to. The differences in the positions of the Qy 

bands of the BChl populatio

well as due to pigment

defined by the different H bonding of the peptides to the BChl, which varies 

depending on the peptide residues present within t

Diagram showing the LH1/RC “core” and LH2 light -harvesting machinery 
purple photosynthetic bacteria.  

harvesting complex 2 (LH2) complexes shown are the repeats of the nonamer B800
Rps. acidophila (62, 63) with proteins shown in cyan (alpha peptide) and green (beta 

peptide), and pigments in blue, purple (BChl), and orange (carotenoid).  Th
complex 1 (LH1) shown is the Rps. palustris structure (60) and is an elliptical complex consisting of 
15 subunits with the protein W helix at the gap in the ring. The LH1 proteins are shown in cyan 
(alpha peptide) and green (beta peptide) with BChl pigments in dark red, and the carotenoids not 
shown. The reaction centre (RC) sits in the middle of the LH1 complex, with proteins in orange (M 
peptide), pink (L peptide), and blue (H peptide) and BChl pigments in green. Solar energy is 
bsorbed at shorter wavelengths by the LH2 complex, which then transfers the energy down an 

energy gradient onto the LH1 complex. The LH1 complex then transfers this energy onto the RC, 
which is then used by the RC to create a charge separation across the m

h the LH1 and LH2 form rings that are based on a similar modular principle, 

oligomers of alpha/beta polypeptide heterodimer subunits that 

span the membrane once and form a scaffold for non-covalently bound 

ents bound within the light-harvesting complexes,

BChl, absorb at different wavelengths than the free pigments due to ‘tuning’ by 

the protein scaffold they are bound to. The differences in the positions of the Qy 

bands of the BChl populations are due to differences in their site energies, as 

well as due to pigment-pigment interactions. The site energy of the BChl is 

defined by the different H bonding of the peptides to the BChl, which varies 

depending on the peptide residues present within the BChl binding site. In 
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with proteins shown in cyan (alpha peptide) and green (beta 
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shown. The reaction centre (RC) sits in the middle of the LH1 complex, with proteins in orange (M 
peptide), pink (L peptide), and blue (H peptide) and BChl pigments in green. Solar energy is 
bsorbed at shorter wavelengths by the LH2 complex, which then transfers the energy down an 

energy gradient onto the LH1 complex. The LH1 complex then transfers this energy onto the RC, 
which is then used by the RC to create a charge separation across the membrane. 
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addition to the site energy, pigment-pigment interactions can shift the position 

of the Qy peak.  

This effect is most prominent when contrasting the absorption spectrum of the 

LH1/RC “core” and LH2 (Figure 1.9). The absorption spectrum of the LH1/RC 

“core” complex is cumulative of the absorption from the small number of 

pigments bound within the RC and the larger number of pigments bound within 

the LH1. Figure 1.9 shows the room temperature absorption spectra of the 

LH1/RC “core” and LH2 complexes from Rps. acidophila. The BChl Qy peaks of 

the LH1/RC “Core” complex absorb at 760 nm (RC), 800 nm (RC) and 885 nm 

(LH1), while the BChl Qy peaks of the LH2 absorb at 800 nm and 863 nm. The 

positions of the peaks in the absorption spectrum of the different light-

harvesting complexes vary depending on the species of bacterium. There are no 

chemical modifications to the BChl to cause the difference in the wavelength 

position of the Qy, it is nearly entirely due to the differences in the protein 

binding and the larger number of aggregated BChl.  

The carotenoid absorption peaks are shown in green on the absorption spectrum 

(Figure 1.5). Carotenoids fulfil their three roles of light-harvesting, 

photoprotection and structural stability to different degrees depending on the 

requirements of the bacterium and light-harvesting complex. Bacteria that 

inhabit deeper waters will rely on the light-harvesting capabilities of the 

carotenoid more due to the poor light-transmission of NIR wavelengths through 

water (64), and some bacteria produce alternative carotenoids with shorter 

chromophores to produce more efficient energy transfer (47). Drews et al, 

(1971) and Clayton (1963) found that carotenoidless LH1 and RC complexes could 

form as long as the bacteria were grown in the complete absence of any oxygen, 

thus preventing the formation of any reactive oxygen species. This suggests that 

the purpose of carotenoids in the LH1/RC “core” complex is predominantly 

photoprotective. Carotenoids have been found to be integral in the formation of 

the LH2 complex (40) as in their absence the polypeptides fail to aggregate into 

a full LH2 complex. It was suggested that this may be due to the hydrophobicity 

of the carotenoid stabilising the heterodimer subunit. 



 

 

Figure 1.9 Normalised absorption spectr
Rps. acidophila (65).  
The LH2 absorption spectrum (solid line) shows the absorption of the bound BChl at ~ 370 nm 
(Soret peak), ~590 nm (Qx, blue), 800 nm and 863 nm (Qy, red), and the absorption 
carotenoid at ~460 nm, ~490 nm, and 525 nm (green). The LH1 absorption spectrum (dotted line) 
shows the absorption of the LH1 bound BChl at ~ 370 nm (Soret peak), 595 nm (Qx), and at 885 
nm (Qy), and the bound carotenoid peaks between 450
centre is shown in purple at ~ 760 nm, and 800 nm.

The LH1/RC “core” and LH2 complexes form part of the basis of how purple 

photosynthetic bacteria adapt to changes in light

photosynthetic bacteria opt

environmental conditions by controlling the amount and size of photosynthetic 

units (the number of light

achieved by exerting control over the formation of the 

ratio (13, 65, 67). Under high light the ratio is low, but under low light 

conditions the ratio increases as the number of LH2 complexes increases to 

optimise the energy capture of the light

discussion see the recent review 

Normalised absorption spectr a of the LH1/RC “core” and LH2 complexes from
 

The LH2 absorption spectrum (solid line) shows the absorption of the bound BChl at ~ 370 nm 
(Soret peak), ~590 nm (Qx, blue), 800 nm and 863 nm (Qy, red), and the absorption 
carotenoid at ~460 nm, ~490 nm, and 525 nm (green). The LH1 absorption spectrum (dotted line) 
shows the absorption of the LH1 bound BChl at ~ 370 nm (Soret peak), 595 nm (Qx), and at 885 
nm (Qy), and the bound carotenoid peaks between 450-550 nm.  The absorption of the reaction 
centre is shown in purple at ~ 760 nm, and 800 nm. 

The LH1/RC “core” and LH2 complexes form part of the basis of how purple 

photosynthetic bacteria adapt to changes in light-conditions. 

photosynthetic bacteria optimise their light-harvesting capacity in different 

environmental conditions by controlling the amount and size of photosynthetic 

units (the number of light-harvesting BChl pigments present per RC)

achieved by exerting control over the formation of the ICM

Under high light the ratio is low, but under low light 

conditions the ratio increases as the number of LH2 complexes increases to 

optimise the energy capture of the light-harvesting complexes. For a full 

ee the recent review (14).  
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The LH2 absorption spectrum (solid line) shows the absorption of the bound BChl at ~ 370 nm 
(Soret peak), ~590 nm (Qx, blue), 800 nm and 863 nm (Qy, red), and the absorption of the bound 
carotenoid at ~460 nm, ~490 nm, and 525 nm (green). The LH1 absorption spectrum (dotted line) 
shows the absorption of the LH1 bound BChl at ~ 370 nm (Soret peak), 595 nm (Qx), and at 885 

nm.  The absorption of the reaction 

The LH1/RC “core” and LH2 complexes form part of the basis of how purple 

conditions. Purple 

capacity in different 

environmental conditions by controlling the amount and size of photosynthetic 

harvesting BChl pigments present per RC)(66). This is 

ICM and the LH2:LH1 

Under high light the ratio is low, but under low light 

conditions the ratio increases as the number of LH2 complexes increases to 

harvesting complexes. For a full 
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1.3.3.1 Light-harvesting complex 1 (LH1) 

Early work on the LH1 found the presence of two polypeptides, alpha and beta, 

present in a 1:1 ratio (68), with two BChl and one carotenoid (23) per alpha and 

beta. Determination of the structures confirmed previous biophysical findings 

(69) that the alpha and beta peptides form heterodimer subunits that traverse 

the membranes once and non-covalently bind BChl and carotenoid pigments 

(Figure 1.10). The alpha and beta polypeptides are encoded for by the puf 

operon (70, 71). In each heterodimer subunit of the LH1 there is a single 

carotenoid and a pair of BChls, which are excitonically coupled. These 

excitonically coupled BChl produce the absorption peak that centres at the 

longest wavelength, at 885 nm in Rps. acidophila (72), in the NIR observed in the 

absorption spectrum (Figure 1.9). The specific position of the NIR absorption 

maximum observed depends on the bacterium the LH1 has been produced by.  

The LH1 structure directly surrounds the RC and funnels the energy absorbed by 

the LH2 complexes into the RC. The LH1/RC “core” complex is known to be 

dimeric in some species, such as Rba. sphaeroides (73-75), and monomeric in 

others (60, 61). The structure for the LH1 complex from Rps. palustris was 

solved by X-ray crystallography (60) (Figure 1.10) and showed it to be monomeric 

and consisting of 15 repeating heterodimer subunits. The LH1 from Rps. palustris 

was determined to be elliptical with a gap facilitated by the helix protein W. 

Protein W is thought to be homologous to the pufX helix within Rba. sphaeroides 

(75) that is key in creating the gap in the LH1 that allows the quinol to be 

released into the membrane to reduce the cytochrome b/c1 complex. The 3 Å 

structure of the LH1/RC from Tch. tepidum (61) showed no such gap, with an 

additional alpha/beta heterodimer subunit in place of protein W helix.  
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Figure 1.10 X-ray crystallography structure of mono meric elliptical 15-mer LH1 structure 
surrounding the RC complex from Rps. palustris (60) (PDB 1PYH).  
The alpha and beta peptides of the LH1 complex are show in pink, with the BChl shown by their 
Mg2+ ion (blue sphere). The protein W is shown as the single red helix at the gap of the LH1. The 
RC peptides are shown in blue, and the bound pigments of the reaction centre are shown in green 
as sticks. Left: top view of the complex, and Right: side view through the membrane of the 
complex. 

1.3.3.2 Light-harvesting complex 2 (LH2)  

The LH2 complexes consist of a ring of repeating heterodimer subunits (Figure 

1.11). The heterodimer subunits are formed from alpha (Figure 1.11 cyan) and 

beta (Figure 1.11 green) polypeptides (5-6 kDa) (63, 69, 76), which are coded by 

puc genes (10, 77-79), in a 1:1 ratio creating a scaffold for the BChl and 

carotenoid pigments.  



 

 

Figure 1.11 Side view of the heterodimer subunit from the B800
acidophila (63)(PDB 1KZU) showing 
peptides shown transparent with a change in angle t o show the pigment arrangement.
The alpha (cyan) and beta (green) peptides traverse the membrane once and bind BChl that 
absorb as part of the B850 BChl (dark blue) and the B800 BChl monomer (purple). 
(orange) interdigitates between the hydrophobic tails of the BChl and th
added stability due to its hydrophobic nature.
parallel to the membrane while the hydrophobic tail angles up toward the B850 BChl. The B850 
BChl sit perpendicular to the plane of t
BChl.  

The current structural understanding of LH2 complexes show it to be a nonamer 

in the case of Rhodopseudomonas (Rps.) acidophila

octamer in the case of 

Marichromatium (Mch.) 

three BChl per heterodimer subunit 

monomer. The monomeri

bacteriochlorin ring perpendicular to the transmembrane alpha 

α/β polypeptides, while the dimerised BChl (Figure 1.

parallel to the helices.

covalently bound carotenoid per heterodimer subunit 

Figure 1.12 orange). 

Side view of the heterodimer subunit from the B800 -850 LH2 complex
(PDB 1KZU) showing A: peptides and bound BChl and carotenoid

peptides shown transparent with a change in angle t o show the pigment arrangement.
The alpha (cyan) and beta (green) peptides traverse the membrane once and bind BChl that 
absorb as part of the B850 BChl (dark blue) and the B800 BChl monomer (purple). 

interdigitates between the hydrophobic tails of the BChl and the polypeptides, providing 
added stability due to its hydrophobic nature. The bacteriochlorin ring of the B800 monomer sits 
parallel to the membrane while the hydrophobic tail angles up toward the B850 BChl. The B850 
BChl sit perpendicular to the plane of the membrane, with the tails angled down towards the B800 

The current structural understanding of LH2 complexes show it to be a nonamer 

Rhodopseudomonas (Rps.) acidophila (62, 63)

in the case of Phaeospirillum (Phs.) molischianum

(Mch.) purpuratum (81). Unlike in the LH1 complex there are 

three BChl per heterodimer subunit (62, 63, 69, 80, 82) that form a dimer and a 

monomer. The monomeric BChl (Figure 1.11 and Figure 1.12

bacteriochlorin ring perpendicular to the transmembrane alpha 

α/β polypeptides, while the dimerised BChl (Figure 1.11 and Figure 1.

helices. As in the LH1 heterodimer subunits, there is a single non

covalently bound carotenoid per heterodimer subunit (83) 

orange).  
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Figure 1.12 X-ray crystallography structure of the nonameric B800-850 LH2 complex type 
from Rps. acidophila  (PDB 1KZU)(63).  
The alpha (cyan) and beta (green) peptides form a protein scaffold for the B800 BChl (purple), 
B850 BChl (blue), and the carotenoids (orange). The top view structure shows the nonameric 
structure with the alpha peptides forming the internal protein ring, and the beta peptides forming 
the outer protein ring. The bacteriochlorin rings of the B800 BChl sit parallel to the membrane and 
thus the bacteriochlorin ring is easily visualised at this angle. The bacteriochlorin rings of the B850 
BChl sit perpendicular to the membrane and so they appear side on at this angle. This shows the 
overlap between all the B850 BChl that allows the excitonic coupling of the molecules. The side 
view of the structure shows the repeating heterodimer subunit of the LH2 complex. The phytyl tails 
of the BChl interdigitate with the carotenoid, adding stability. This proximity is also required for 
energy transfer from the carotenoid to the BChl as well as the quenching of BChl triplet excitation 
states. 

It is these two populations of BChl that produce the two different Qy absorption 

bands in NIR at ~ 800 nm (monomeric BChl) and ~ 850 nm (dimeric BChl) and 

thus are referred to as the B800 and B850 BChl respectively (34, 84). The 

difference in the positions of the Qy bands of the two BChl populations are due 

to differences in their site energies and the strength of interactions between 

pigments (85). The dimeric BChl are excitonically coupled across the ring, which 

shifts the position of their Qy further to the red than the B800 BChl. The LH2 

complexes that absorb in these relative positions are often referred to as a 

B800-850 complex due to the position of these absorption bands.   

The B850 BChl are non-covalently bound in place by conserved histidines on both 

the alpha and beta polypeptides (Figure 1.13). The overlap of the III and V cycles 

is clearly observed in the structure, allowing the excitonic coupling of the BChl. 

The polypeptide binds the BChl that is closest to the opposite peptide, i.e. the 

alpha peptide binds to the BChl closest to the beta peptide. The BChl bound to 

the alpha peptide is dubbed αBChl and the BChl bound to the beta peptide, 

βBChl. These BChl are further held in place and tuned by H bonds from trp45 and 

Tyr44 on the alpha peptide. These residues form H bonds to the C3-acetyl group 



 

 

on the BChl (35, 36, 62, 63, 86, 87)

is also known to be important in binding and stabilising the BChl but not in the 

B800-850 LH2 complex type from 

Figure 1.13 Stick view of the dimerised BChl from the B800
acidophila 10050 (PDB 1KZU)
The BChl and residues associated with the alpha peptide are shown in green, while the BChl and 
residues associated with the beta peptide are shown in cyan. The histidine residues that coor
with the central Mg2+ ion from both the alpha and beta peptides are shown as 
respectively. The trp45 residue from the alpha peptide from this heterodimer subunit H bonds to the 
C3-acetyl group of the α
heterodimer subunit forms an H bond with the C3
overlap in the III and V cycles of the bacteriochlorin ring, which are essential to the excitionic 
coupling of the dimerised BChl
dimerised BChl within the heterodimer subunit is 8.7 
heterodimer subunits the distances are 9.7

The factors that affect the position of the Qy peaks produ

absorption spectrum from different

method of identification 

and concentration. 

The carotenoids of LH2 complexes are in the 

steric hindrance in the

(35, 36, 62, 63, 86, 87). The 131 keto carbonyl group on the V cycle 

is also known to be important in binding and stabilising the BChl but not in the 

850 LH2 complex type from Rps. acidophila (32, 88). 

Stick view of the dimerised BChl from the B800 -850 LH2 complex type from 
10050 (PDB 1KZU)(63).  

The BChl and residues associated with the alpha peptide are shown in green, while the BChl and 
residues associated with the beta peptide are shown in cyan. The histidine residues that coor

ion from both the alpha and beta peptides are shown as 
respectively. The trp45 residue from the alpha peptide from this heterodimer subunit H bonds to the 

acetyl group of the αBChl. The Tyr44 residue from the alpha peptide of the following 
heterodimer subunit forms an H bond with the C3-acetyl group of the βBChl.
overlap in the III and V cycles of the bacteriochlorin ring, which are essential to the excitionic 
coupling of the dimerised BChl across the whole of the LH2 ring.  The distances between the 
dimerised BChl within the heterodimer subunit is 8.7 Å, while between the BChl in between 
heterodimer subunits the distances are 9.7 Å. 

The factors that affect the position of the Qy peaks produce a relatively unique 

absorption spectrum from different light-harvesting complexes

method of identification as well as an assay of the complex

and concentration.  

The carotenoids of LH2 complexes are in the trans conformation 

n the cis conformation prevents the heterodimer subunit 
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850 LH2 complex type from Rps. 

The BChl and residues associated with the alpha peptide are shown in green, while the BChl and 
residues associated with the beta peptide are shown in cyan. The histidine residues that coordinate 

ion from both the alpha and beta peptides are shown as αHis and βHis 
respectively. The trp45 residue from the alpha peptide from this heterodimer subunit H bonds to the 

lpha peptide of the following 
βBChl. This figure shows the 

overlap in the III and V cycles of the bacteriochlorin ring, which are essential to the excitionic 
across the whole of the LH2 ring.  The distances between the 

, while between the BChl in between 

ce a relatively unique 

harvesting complexes. This provides a 

as well as an assay of the complexes intactness, purity 

formation (24, 89-91), as 

the heterodimer subunit 
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formation. Cis isomerisation can be identified by the presence of cis peaks at 

approximately ~ 370 nm in the absorption spectrum of a carotenoid (Figure 1.5) 

(92). As previously described, one of the key functions of the carotenoid is 

structural stability as it sits between the two peptides within the LH2 and 

interdigitates with the hydrophobic tail of the B800 BChl (65).  

1.3.3.3 Adaptations of the LH2 complex for low ligh t conditions 

When some bacteria grow under low light conditions they adapt their light-

harvesting machinery to compensate for the lower levels of energy reaching 

them. To do this, some purple photosynthetic bacteria have been found to 

produce alternative LH2 complex types. Rps. acidophila strains 7050 and 7750 

(93) and Phs. molischianum (94, 95) produce a low light adapted LH2 complex, 

sometimes referred to as the LH3 complex, which absorbs at 800 nm and ~ 820 

nm and has thus been dubbed the B800-820 LH2 complex type (Figure 1.14).  

The advantages of the blue shift of the absorption peak from ~ 850 nm to 820 nm 

is the reduction in the back transfer of energy from the LH1/RC “core” complex 

to the LH2 complex (96). The reduction in back transfer results in a more 

efficient energy transfer process, which is important under conditions where the 

amount of light is limited.   

 

 



 

 

Figure 1.14 NIR absorption spectra 
acidophila 7750 under high light conditions, the B800
Rps. acidophila 7750 under low light conditions, and the B800
acidophila 7050 under low light conditions.

Under low light conditions both strain 7050 and 7750 change to producing a B800
complex with NIR absorption peaks that centre at 800 nm and 820 nm. The LH1/RC “core” peak at 
890 nm does not change under different growt
the amount of energy back transfer from the LH1 complex, thus increasing the efficiency of the 
process. 
 
Changes in carotenoid composition are also observed due to changes in growth 

conditions, such as the shi

Rsp. acidophila 7050 under low light conditions 

absorbs at a longer wavelength

suggesting that a shift to longer wavelength improves the level of energy capture 

(47, 93). Additionally, rhodopinal glucoside more efficiently transfers 

from the carotenoid to the BChl 

The determination of the B800

(99) confirmed findings from previous mutagenesis studies 

structural basis for the difference

between the B800-

to 820 nm is due to a change in hydrogen bonding from the alpha peptide to the 

NIR absorption spectra (97) of the B800- 850 LH2 complex type produced by 
7750 under high light conditions, the B800 -820 LH2 complex type produced by 

7750 under low light conditions, and the B800 -820 produced by 
under low light conditions.   

Under low light conditions both strain 7050 and 7750 change to producing a B800
complex with NIR absorption peaks that centre at 800 nm and 820 nm. The LH1/RC “core” peak at 
890 nm does not change under different growth conditions. The B800-820 LH2 complex reduces 
the amount of energy back transfer from the LH1 complex, thus increasing the efficiency of the 

Changes in carotenoid composition are also observed due to changes in growth 

conditions, such as the shift from rhodopin glucoside to rhodopinal glucoside in 

7050 under low light conditions (98). Rhodopinal glucoside 

absorbs at a longer wavelength with broader peaks than rhodopin glucoside 

suggesting that a shift to longer wavelength improves the level of energy capture 

. Additionally, rhodopinal glucoside more efficiently transfers 

from the carotenoid to the BChl (47).  

The determination of the B800-820 LH2 complex type from 

findings from previous mutagenesis studies 

structural basis for the difference in the Qy absorption of the d

850 and B800-820 LH2 complex types. The 

to 820 nm is due to a change in hydrogen bonding from the alpha peptide to the 
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850 LH2 complex type produced by Rps. 
820 LH2 complex type produced by 

820 produced by Rps. 

Under low light conditions both strain 7050 and 7750 change to producing a B800-820 LH2 
complex with NIR absorption peaks that centre at 800 nm and 820 nm. The LH1/RC “core” peak at 

820 LH2 complex reduces 
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of the dimeric BChl 

The shift from 850 nm 

to 820 nm is due to a change in hydrogen bonding from the alpha peptide to the 
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B850 BChl. In the B800-820 LH2 complex the αTyr44 and αTrp45 residues (Figure 

1.15 blue) are replaced by phenylalanine and leucine respectively (Figure 1.15 

red) (99). This means that the H bonds present in the B800-850 LH2 complex 

type can no longer form and this changes the site energy of the BChl. 

Additionally, the residue at position 41 on the α peptide in the B800-850, a 

phenylalanine, is replaced by a tyrosine in the B800-820 LH2 complex. This 

residue forms an H bond with the C3 acetyl group of the αBChl causing a rotation 

of the C3-acetyl group relative to their position in the B800-850 LH2, causing the 

blue-shift of the absorption band of the Qy band.  

Both the C3-acetyl and C131-keto group of the βBChl are unbound, and the C131-

keto of the αBChl is unbound. In the B800-820 LH2 complex type the C3-acetyl of 

the αBChl is H bonded to αTyr41. This change of H bonding causes a rotation of 

the C3-acetyl groups of the B820 BChl to torsion angle (C2-C3-C31-O31) is 132 ̊ 

for the αBChl and 135 ̊ for the βBChl (99), while the equivalent angles in the 

B850 BChl are αBChl 166 ̊ and βBChl 156 ̊ (63).  The rotation of the C3-acetyl 

moves a π-bond out of alignment, effectively shortening the series of conjugated 

double bonds and thus the chromophore. This blue shifts the Qy absorption of 

the BChl. 

 

 

 

 



 

 

Figure 1.15 Comparision of the residues involved in the hydroge n bonding in the B800
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complex types. The residues that form H bonds with the C3
alpha peptide are Trp45 and Tyr44, these are substituted by the Leu45, and Phe44 in the B800
820 LH2 complex. This removes the potential for H bonding of these residues in the B800
complex. The Phe41 residue of the B8
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of heterodimer subunits that produce a 856 nm absorption peak and heterodimer 

subunits that produce a 824 nm absorption peak contained within the same LH2 

complex (101). 

The structural basis for the change in the absorption appears to be similar to 

that observed between the B800-850 and B800-820 LH2 complexes from Rps. 

acidophila. The change in the site energy of some of the BChl is due to the 

inclusion of an additional alpha peptide in the low light LH2. At the relative 

positions α44 and α45 the alpha peptide has the residues replaced with 

phenylalanine and methionine (107). These residues are unable to form H bonds 

with the C3-acetyl group of the BChl allowing this group to rotate out of the 

plane of the bacteriochlorin ring and effectively shorten the chromophore (99). 

This blue shifts the absorption of the excitonically coupled BChl within the 

heterodimer subunits that contain this alpha peptide to 824 nm.  

 

 



 

 

Figure 1.16 Room temperature NIR absorption spectra for the LH2  complexes produced by 
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environmental conditions under which they are grown (5, 6, 108, 109). These 

studies observed substantial variation in the Qy absorption peaks in the NIR of 

the membranes prepared from Alc. vinosum grown under different growth 

conditions. Alc. vinosum is affected by temperature, light intensity and sulphur 

source, meaning that the absorption spectra were not well reproduced between 

different studies (Figures 1.17-1.19). Bril (1959) prepared chromatophores with 

peaks at ~ 800 nm, ~ 850 nm, and a shoulder at ~ 890 nm from cells grown in the 

presence of thiosulphate (Figure 1.17). It was observed that the height of the 

~850 peak varied and a reduction in peak intensity was accompanied by a blue-

shift of the peak. 

 

Figure 1.17 Absorption spectrum of Alc. vinosum chromatophores from cells grown in the 
presence of thiosulphate (110).  
This early work shows chromophores from cells grown in the presence of thiosulphate but without a 
careful check on temperature or light intensity. The NIR absorption peaks observed centre at ~ 800 
nm and ~ 850 nm with a shoulder at approximately 890 nm. The ~850 nm peak is the highest 
intensity peak, followed by the ~ 800 nm peak. The ~800nm and ~850 nm most probably are 
produced by an LH2 complex type, and the shoulder at ~ 890 nm by an LH1 complex type. 

Work by Cusanoviche (111) identified the peaks of Alc. vinosum at 805 nm, 845 

nm, and 888 nm, with the 805 nm peak substantially higher than the 845 nm 

peak (Figure 1.18). Chromatophores were from cells grown at 35 ̊C ± 2 ̊C at 50 

footcandles (~ 8 µmol m-2 s -1). 
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Figure 1.18 Absorption spectrum of Alc. vinosum chromatophores from cells cultured with 
succinic acid as the carbon source, at 35 ̊C ±2 ̊C, at 50 footcandles (~ 8 µmol m -2 s -1) (111).  
The NIR absorption peaks observed centre at 805 nm, 845 nm and 888 nm. The 805 nm peak is 
the highest peak present followed by the 845 nm and finally the 888 nm peak. The 805nm and 845 
nm peaks most probably are produced by an LH2 complex type, and the peak at 888 nm by an 
LH1 complex type. 

The NIR absorption spectrum observed in cells grown in the presence of both 

thiosulphate and sodium sulphide in the study by (108) showed peaks at ~800 

nm, ~ 820 nm, and 890 nm (Figure 1.19). 

 

Figure 1.19 Absorption spectrum of Alc. vinosum chromatophores (108) from cells grown 
on Hendley medium (112) containing both sodium thio sulphate and sodium sulphide.  
This early work shows chromophores from cells grown in the presence of thiosulphate and sulphide 
but without a careful check on temperature or light intensity. The NIR absorption peaks observed 
centre at ~ 800 nm, ~ 820 nm, and ~ 890 nm. The ~800nm and ~820 nm most probably are 
produced by an LH2 complex type, and the peak at ~ 890 nm by an LH1 complex type. 
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The peaks at ~ 800 nm and ~ 890 nm appear to have varied minimally in previous 

work, but the third peak present in the NIR red-shifts by up to 30 nm between 

different studies. Without knowing the parameters for all three growth factors it 

is impossible to determine how different conditions affect the NIR spectrum 

observed from previous work. The changes in the absorption have been 

determined to be due to changes in the LH2 complexes produced (113), but the 

correlations between different nutritional and growth conditions are not fully 

understood.  

Previous work (113-115) has determined that there are several LH2 complex 

types observed in Alc. vinosum; a B800-850, B800-820, and a B800-840 LH2 

complex type. These LH2 complexes have been postulated as being 

heterogeneous both structurally and spectrally (116) and all of them produce an 

unusual split B800 absorption band (113, 115). Recent work (10) sequenced and 

annotated the full genome of Alc. vinosum  identifying six potential puc genes 

pairs, which code alpha and beta apoproteins and provide the basis for several 

LH2 complex types and potentially for heterogeneous complexes (113).  

 Alc. vinosum has been previously reported as producing the carotenoids of the 

spirilloxanthin series; lycopene, anhydrorhodovibrin, spirilloxanthin, and 

rhodopin (11, 117, 118).  

The ring size of the LH2 complex types from Alc. vinosum has been postulated to 

be larger than the current nonamer structure (115). Kereiche et al (2008) used 

EM to identify two populations of different sizes of LH2 complexes from Alc. 

vinosum, one of which was identified as potentially an octomer/nonamer and 

the other as a 12-mer or 13-mer. In light of further work (119) a 13-mer has 

been postulated as not as energetically stable as a 8, 9, 10 or 12-mer, suggesting 

that the some of LH2 complex types of Alc. vinosum are 12-mers. 

1.5 Reconstitution 

Determination of the structure of a complex shows how different structural 

elements are situated relative to each other but does not convey information on 

the interactions between different structural elements within a complex. One 

method of elucidating the interactions between different structural elements is 
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to substitute different parts and observe the changes in the function of the 

complex. This can be done using the process of reconstitution. 

Reconstitution is an established biochemical technique whereby a structure is 

remade from its individual component parts in order to 1) test the understanding 

of how the structure forms and 2) to elucidate relationships between different 

component parts. A reconstitution protocol has been successfully developed for 

the LH1 complex originally by the Loach group (32, 68, 120-123) and has been 

instrumental in the understanding of different integral parts of the LH1 complex.  

Reconstitution has been used to infer and identify key structural interactions 

and moieties for protein binding and LH1 formation (32), which have been 

confirmed upon structure determination, supporting the validity of the 

technique (32, 121). For example, reconstitution of bacteriopheophytin into the 

LH1 complex highlighted the importance of the central magnesium ion, as in its 

absense the LH1 failed to form (121). The determination of the LH1 structure 

(60) showed the coordination bonds from the conserved histidine residues to the 

Mg2+ of the BChl are key in holding the heterodimer subunits together. Other 

BChl analogues were reconstituted and confirmed the importance of the C3-

acetyl and C131 ketocarbonyl groups on the BChl for protein binding (32).  

During the process of dissociation and re-association, an intermediate in the 

formation of the LH1 from Rsp. rubrum, the B820, was identified and isolated 

(120, 122-124). The B820 is the heterodimer subunit of the LH1 complex and was 

named for the NIR absorption maximum of the Rsp. rubrum heterodimer subunit 

at 820 nm. Factors that were identified as important in the dissociation of the 

smaller B820 complex into the constituent parts were concentration, 

temperature, pH and the detergent used (32, 68, 122, 125). 

The Loach process of LH1 reconstitution (Figure 1.20) involves the dissociation of 

the native complex (Figure 1.20, stage 1) using detergent (Figure 1.20, stage 2). 

This results in the component parts being free in solution (Figure 1.20, stage 3). 

The B820 intermediate is reformed by diluting the detergent concentration 

(Figure 1.20, stage 4). The reformation of the B820 intermediate is fairly rapid 

upon detergent dilution. The addition of carotenoid (Figure 1.20, stage 5) pushes 

the equilibrium towards whole complex formation (Figure 1.20, stage 6). Re-
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Figure 1.20 Process of reconstitution using the LH1 complex typ e from 
IPYH)(60) as an example
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in after individual sourcing for de novo reconstitution, or dissociated from the LH1 complex for 
reversible dissociation. The process of reversible dissociation starts with a complete complex (1) 
that is dissociated through the addition of detergent (2).
then free in solution (3), this stage is the beginning of de novo reconstitution.  The detergent 
concentration is then reduced (4) to encourage the component parts to form the B820 heterodimer 
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 peptides (cyan) and β peptides (green) with carotenoid (orange), and BChl (blue) 
in after individual sourcing for de novo reconstitution, or dissociated from the LH1 complex for 
reversible dissociation. The process of reversible dissociation starts with a complete complex (1) 
that is dissociated through the addition of detergent (2). The component parts of the complex are 
then free in solution (3), this stage is the beginning of de novo reconstitution.  The detergent 
concentration is then reduced (4) to encourage the component parts to form the B820 heterodimer 
subunit. Upon carotenoid addition (5) the heterodimer subunits oligomerise into a full complex (6).

The reconstitution technique developed by the Loach group has been applied to 
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moves the equilibrium towards complex reformation (122, 129). For this reason, 

carotenoidless LH1 complexes have been used previously. Carotenoidless mutant 

strains have been isolated from Rba. spheroides R26.1 (130),  Rsp. rubrum G9 

(131), and Rba. capsulatus SB203E (132) but are not available for all species. 

The carotenoid biosynthesis inhibitor diphenylamine (DPA) has been used (83, 

133-135) in lieu of carotenoidless mutants. DPA inhibits the enzyme phytoene 

desaturase (CrtI) that performs the progressive desaturation of phytoene to 

lycopene (Figure 1.21), therefore preventing the formation of the conjugated 

double bond system that forms the chromophore (37). Ζ-carotene is the first 

carotenoid visible to the human eye, appearing yellow.   

 

Figure 1.21 The carotenoid biosynthesis pathway of spirilloxanthin.  
Carotenoids and carotenoid precursors are shown in black, while enzymes acting in the pathway 
are shown in red. The enzymes involved consist of three enzyme types CrtI/CrtD (Carotenoid 
desaturases), CrtC (Hydroxyneurosporene synthase), and CrtF type (O-methyltransferase family 
2). The phytoene desaturase (CrtI) enzyme desaturates the chromaphore of the colourless 
carotenoid pre-cursors phytoene, phytofluene, and the coloured carotenoids ζ-carotene and 
neurosporene. Lycopene is then processed by carotenoid 1,2-hydratase (CrtC) to rhodopin. 
Rhodopin can be converted to anhydrorhodovibrin by two enzymes, 1-hydroxycarotenoid 3,4-
desaturase (CrtD) and  demethylspheroidene O-methyltransferase (CrtF). This can then be 
converted into rhodovibrin by carotenoid 1,2-hydratase (CrtC) and then to spirilloxanthin via 1-
hydroxycarotenoid 3,4-desaturase (CrtD) and demethylspheroidene O-methyltransferase (CrtF) 
(37, 136). The enzyme affected by the carotenoid biosynthesis inhibitor diphenylamine (DPA)(133) 
is shown on the diagram. The phytoene desaturase enzyme is involved in multiple steps and so the 
inhibition is of all of these stages. The result of DPA inhibition is the build up of the carotenoid 
precursor phytoene. 

Previous work has also used benzene washes to extract the carotenoid from LH1 

complexes to make a carotenoidless complex (121).  
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1.5.1 Reconstitution of the LH2 complex 

Reconstitution of LH2 peptides has only been achieved with the LH2 from Phs. 

molischianum (127) and from Alc. minuitissium (128) and this was postulated to 

be due to the fact that these peptides show strong homology with the peptides 

of LH1. The importance of the carotenoid in the structural stability of the LH2 

complex (40) has been postulated as one of the reasons why the reconstitution 

protocol has not been successful, as in the absence of carotenoids the LH2 fails 

to form in many purple photosynthetic bacteria (40, 130, 132).  

Early work (134) using the carotenoid biosynthesis inhibitor DPA showed that Alc. 

vinosum was able to grow and produce NIR spectra that indicated that the LH2 

complexes were still able to form. More recent work (135, 137) on Alc. 

minutissimum, a very close relative of Alc. vinosum (138), found that it was able 

to grow and produce LH2 in the presence of DPA. This work found that in the 

absence of coloured carotenoids phytoene was not substituted (137). This 

suggests Alc. vinosum may be a promising species from which a viable LH2 

reconstitution protocol could be developed. This could allow a variety of 

modifications that would be useful to discern not only the basis of the variation 

between the different LH2 complex types of Alc. vinosum but differences in 

other LH2 using synthetic components and a variety of biophysical and 

spectroscopic techniques. 

1.6 Thesis aims 

The overall aim of this work was to develop an effective reconstitution protocol 

for the LH2 complex type as has been developed for the LH1 complex. This 

would provide a method for elucidating structure-function interactions within 

the LH2 complex. Research suggested that the LH2 complexes from Alc. vinosum 

are potential candidates for a reconstitution strategy as they appear to produce 

LH2 complexes under carotenoid biosynthesis inhibiting conditions. Early in this 

work it became apparent that the understanding of the LH2 complexes of Alc. 

vinosum had not been revisited since the determination of an LH2 structure (62, 

63, 80, 99) and the annotation of the genome (10). For this reason, a substantial 

amount of characterisation work had to be done. 
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• The first aim was to determine the LH2 complex types produced by Alc. 

vinosum under different growth and nutritional conditions. This involves 

the development and optimisation of a purification protocol to separate 

the different LH2 complex mixes produced under different growth 

conditions. A substantial question to be answered is whether the different 

LH2 complex types form a continuum between the B800-820 and B800-

850, and the B800-840 is an intermediate, or whether these are all 

distinct LH2 complexes types.  

• The second aim was to understand the basis of the variations observed 

between the different LH2 complex types of Alc. vinosum and the LH2 of 

other species. This will cover the peptide composition and carotenoid 

content of the different LH2 complex types as well as work towards 

understanding the unusual electronic and structural arrangement of the 

B800 BChl that gives rise to the origin of the split B800 peak.  

• The third aim of this work was to identify an LH2 reconstitution 

candidate. As discussed in section 1.4, the initial stage of reconstitution 

work best in the absence of carotenoids. To determine which of the LH2 

complex types of Alc. vinosum are stable in the absence of carotenoids, 

cultures will be grown in the presence of DPA under different growth 

conditions and the LH2 complexes produced purified. As DPA can be toxic 

in high concentrations other routes for carotenoidless complexes will be 

tested including solvent extraction of the standard complex and the 

creation of a genetic ‘knock-out’. Due to time restraints a full 

reconstitution protocol could not be developed but reversible dissociation 

experiments were conducted as proof of concept. 
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 Chapter 2 - Methods and Materials 

2.1 Glycerol stocks 

Original Alc. vinosum strain D cells, DSM 180, were given as a gift from Prof. Phil 

Thornber, these cells were then aliquoted into 25 % (v/v) glycerol and stored at -

80 ̊C. Glycerol stocks were re-suspended in thiosulphate media (6) and cultured 

in high light conditions between 30 ̊C and 40 ̊C in an 8 ml container. Once grown, 

these cells were used to inoculate two 20 ml universal bottles containing 

thiosulphate media and grown in the same conditions. After further growth the 

universal cultures were used to inoculate larger volumes of thiosulphate media 

until the cultures were grown in 500 ml flat bottles. This was the starting point 

for cultures to be grown under specific growth conditions.  

2.2 Standard growth conditions and cell harvesting 

Alc. vinosum strain D was grown anaerobically in the light on media containing 

either 0.5 mM sodium sulphide (denoted with an S)(5) or 18.8 mM sodium 

thiosulphate (denoted with a T) (6) as an electron donor under several growth 

conditions. Cultures were grown under high light (denoted as HL) between 60-

150 µmol s-1 m-2, low light (denoted as LL) at 2 µmol s-1 m-2, high temperature 

(40 °C) or standard temperature (30 °C). Cultures grown in low light conditions 

at 40 °C were grown in a water bath to maintain the temperature. Cells were 

cultured and used to inoculate fresh, sterile media twice before cells were 

harvested to ensure the spectra observed were indicative of the standard 

spectral phenotype for those growth conditions. Cultures were grown in 500 ml 

flat bottles or a 10 L pot for 2-3 days under high light conditions, or two weeks 

under low light conditions. Cells were harvested by centrifugation at 1250 xg for 

25 mins and washed with MES, 100 mM KCl solution, pH 6.8 to remove residual 

media. Cells were then re-suspended in fresh MES, 100 mM KCl, pH 6.8 solution 

if frozen or re-suspended in 20 mM Tris-HCl, pH 8.0 if used immediately. 

2.3 Membrane preparation 

Harvested cells were homogenised to remove cell clumps before being lysed by 

three passages through a French press at 950 psi, in the presence of MgCl2 and 
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DNase1 (bovine Deoxyribonuclease I, Sigma-Aldrich)(139). The lysate was 

centrifuged for 10 minutes at 2000 xg to remove unbroken cells and cell debris 

and then the supernatant was spun for 1 hour at 200,000 xg to pellet the 

membranes. The supernatant was discarded at this stage. Membranes were 

resuspended in 20 mM Tris-HCl, pH 8.0 (this buffer was used throughout the 

process unless otherwise stated) to an optical density (OD) of 25 at the Qy 

absorbance maximum. For different growth conditions the Qy absorbance 

maximum position varies, therefore for membranes prepared from T/S HL40 

growth conditions were diluted to Qy856nm = 25, for S HL30 growth conditions 

Qy853nm = 25, for T HL30 growth conditions Qy850nm = 25, and for T/S LL30 growth 

conditions Qy802nm = 25.  

2.4 Allochromatium vinosum LH2 Purification 
optimisation 

The first stage in purification of the LH2 complex is sucrose density 

centrifugation. Sucrose density centrifugation gradients separate the larger 

LH1/RC ‘core’ complexes from the smaller LH2 complexes according to the 

density at which they equilibrate to. The density of the LH2 and LH1/RC ‘core’ 

complexes are dependant on the size of the detergent micelle they are 

suspended within, meaning that sucrose concentrations vary for each detergent.  

2.4.1 LDAO and DM solubilisation trials 

n-Dodecyl-ß-D-maltoside (DDM) detergent has previously been used successfully 

as both a solubilising detergent and a working detergent with Alc. vinosum (113) 

but did not completely solubilise the membranes. This was apparent as after 

centrifugation the unsolubilised pellet was still pigmented. For this reason two 

detergents that have been used on other purple photosynthetic membranes were 

trialled. Lauryldimethylamine oxide (LDAO) (63, 120, 140, 141) and decyl 

maltoside (DM) (81) were tested for their ability to extract the light-harvesting 

complexes as well as for their effects on the complexes. Membranes at OD856 50 

from Alc. vinosum cells grown in thiosulphate media at high light and 40 °C were 

solubilised with either 1 % LDAO (v/v) or 1.5 % DM (w/v) at room temperature 

and agitated for 1 hour. Membranes were then centrifuged for 60 min at 20,000 

xg to pellet any unsolubilised material. The supernatant containing the 
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solubilised light-harvesting complexes was then decanted. The level of 

solubilisation was assayed by whether the pellet was pigmented. Room 

temperature absorption spectra were recorded using a Shimadzu UV-1700 

PharmaSpec to determine the effect of solubilisation with 1 % LDAO (v/v) and 

1.5 % DM (w/v) on the different light-harvesting complexes. Sucrose density 

centrifugation gradients were set up in 12 ml Beckman tubes with sucrose 

concentrations of 0.2, 0.4, 0.6, 0.8, and 1 M (2 ml volume for all concentrations) 

in the presence of 0.1 % LDAO (v/v) and 1 ml LDAO solubilised light-harvesting 

complexes were aliquoted on top of the 0.2 M sucrose layer. For DM solubilised 

membranes, sucrose density centrifugation gradients were set up with sucrose 

concentrations of 1.2, 1.4, 1.6, 1.8, and 2.0 M (2 ml volume for all 

concentrations) in the presence of 0.15 % DM (w/v) and 1 ml DM solubilised light-

harvesting complexes were aliquoted on top of the 1.2 M sucrose layer. Sucrose 

density centrifugation gradients were spun at 200,000 xg for 12-16 hours to 

separate the light-harvesting complexes. Presence or absence of the LH1/RC 

“core” and LH2 complexes was determined visually by observation of pigmented 

bands.  

2.4.2 Optimisation of sucrose density centrifugation grad ients 
after solubilisation in dodecyl maltoside 

Previous work (113) that used DDM during extraction and purification of the LH2 

complexes of Alc. vinosum used sucrose concentrations of 0.6, 0.8, 1.0, and 1.2 

M with volumes of 5.5 ml, 6 ml, 6 ml, and 5.5 ml respectively. All sucrose 

concentrations contained 20 mM Tris-HCl, pH 8.0, and 0.02 % DDM. These 

volumes of sucrose concentrations between 0.6 – 1.2 M resulted in poor 

separation of the LH1/RC “core” and LH2 complexes and so alternative volumes 

were tested.  

Membranes at OD856 50 from Alc. vinosum cells grown in thiosulphate media at 

high light and 40 °C were solubilised in 2 % DDM (w/v) and left agitating at room 

temperature for 90 min. Solubilised membranes were then centrifuged for 60 

min at 20,000 xg to pellet any unsolubilised material. The supernatant (1 ml) 

was then loaded on top of sucrose density gradients consisting of volumes of 3 

ml, 8 ml, 8 ml, and 3 ml of 0.6 M, 0.8 M, 1.0, and 1.2 M sucrose concentrations 

respectively. Supernatant (1 ml) was also loaded on a second set of sucrose 
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gradients set up with volumes of 3 ml, 6 ml, 6 ml, 6 ml, and 3 ml of 0.6 M, 0.8 

M, 0.9 M, 1.0 M, and 1.2 M sucrose concentrations respectively. Sucrose density 

gradients were then centrifuged at 200,000 xg for 16 hours to separate the light-

harvesting complexes. The separation of the LH1/RC “core” and LH2 complexes 

was assayed by eye. 

2.5 Purification protocol for the LH2 complex types  of 
Alc. vinosum 

The LH2 complex types of Alc. vinosum were purified in dodecyl maltoside (DDM) 

for characterisation work as the LH2 complexes were stable, or in decyl 

maltoside (DM) for reconstitution studies in order to be able to perform a 

detergent exchange into octyl glucoside (OG) or DDM where required. 

2.5.1 Solubilisation using the detergent dodecyl maltosid e and 
sucrose density centrifugation to separate the ligh t-
harvesting complexes  

All characterisation work used the detergent DDM during the purification of the 

LH2 complex types. Membranes were solubilised with n-Dodecyl-ß-D-maltoside 

(DDM, Glycon) at 2 % (w/v) at room temperature and were agitated for 90 

minutes. Unsolubilised material was then pelletted by centrifugation for 20 

minutes at 20,000 xg. Solubilised material was then loaded onto sucrose density 

centrifugation step gradients set to 0.6 M, 0.8 M, 1.0 M and 1.2 M sucrose (at 3 

ml, 8 ml, 8 ml, and 3 ml respectively) and centrifuged for 14 hours at 200,000 

xg. The discrete LH2 band was then decanted and the absorption spectrum 

recorded. The crude LH2 fraction was either used immediately for anion 

exchange chromatography or frozen at -20 ̊C. 

2.5.2 Solubilisation using the detergent decyl maltoside and 
sucrose density centrifugation to separate the ligh t-
harvesting complexes  

All reconstitution work used the detergent DM during the purification of the LH2 

complex types. Membranes were solubilised with Decyl-β-D-maltoside (DM, 

Glycon) at 1.5 % (w/v) at room temperature and were agitated for 60 mins. 

Unsolubilised material was then pelletted by centrifugation for 20 minutes at 

20,000 xg. Solubilised material was then loaded onto sucrose density 
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centrifugation step gradients set to 1.0 M, 1.2 M, 1.4 M and 1.6 M sucrose (at 3 

ml, 8 ml, 8 ml, and 3 ml respectively) and centrifuged for 14 hours at 200,000 

xg. The discrete LH2 band was then decanted and the absorption spectrum 

recorded. The crude LH2 fraction was either used immediately for anion 

exchange chromatography or frozen at -20 ̊C. 

2.5.3 Anion exchange chromatography to separate the diffe rent 
LH2 complex types of Alc. vinosum 

Anion exchange chromatography was performed using Poros 20 HQ resin (packed 

at 2600 psi) on a BioCad 700E perfusion workstation (Applied Biosystems). The 

anion exchange protocol and methods for each LH2 complex type is identical 

regardless of whether DM or DDM detergent is used with the exception of the 

detergent present in the equilibration and elution buffers. Solution A was the 

equilibration buffer and consisted of 20 mM Tris-HCl, pH 8.0, while the elution 

buffer, solution B, consisted of 20 mM Tris-HCl, pH 8.0, and 1 M NaCl. Both 

solution A and B contained either 0.02 % DDM or 0.15 % DM depending on the 

detergent present in the crude LH2 fraction. The crude LH2 fraction from 

sucrose density centrifugation was thawed and filtered through a 0.2 µM filter 

(Sartorius stedim) to remove any particulates that could block the lines. The 

crude LH2 sucrose density centrifugation fraction (5 ml) was injected at OD802 

(S/T LL30, SLL40), OD803 (S/T HL30,), or OD848 (S/T HL40) into the loop. The 

automated system injected the sample onto the column at 0 mM NaCl and the 

sucrose was washed from the sample and column. The elution program consisted 

of alternating gradients and steps to wash the sample and elute the different 

LH2 complex types. The different LH2 complex types elute at different NaCl 

concentrations and so depending on the mix of LH2 complexes produced under 

different growth conditions, different methods were used. 

2.5.3.1 Anion exchange chromatography program for t he B800-850 LH2 
complex types produced under S/T HL40 growth condit ions  

To purify the B800-850 LH2 complex type produced under high light, 40 ̊C growth 

conditions the following step-gradients were used; a wash step for 10 column 

volumes (CV) at 0 mM NaCl. The first gradient step from 0 mM to 100 mM over 5 

CV and held at 100 mM for 5 CV.  The concentration of NaCl was increased to 

250 mM over 5 CV and held for 2 more CV. The NaCl was increased to 310 mM 
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over 5 CV and maintained at 310 mM for a further 3 CV. The NaCl concentration 

was increased to 500 mM over 10 CV and maintained for 5 CV. To then clean the 

column the NaCl concentration was increased to 1000 mM over 5 CV. This 

method was named Alvin-SandThio-HL40-800-850-method-3.met. 

2.5.3.2 Anion exchange chromatography program for t he B800-820 and 
B800-840p LH2 complex types produced under T HL30, T LL40, and 
S/T LL30 growth conditions  

To purify the B800-820 and B800-840 LH2 complex types produced under 

thiosulphate high light, 30 ̊C, or thiosulphate, low light, 40 ̊C, or low light, 30 ̊C 

growth conditions the following step-gradient program was used; a wash step for 

10 column volumes (CV) at 0 mM NaCl. The first gradient step from 0 mM NaCl to 

100 mM over 5 CV and held at 100 mM for 5 CV.  The concentration of NaCl was 

increased to 240 mM over 5 CV and held for 12 CV more. The NaCl was increased 

to 260 mM over 2.5 CV and maintained at 260 mM for a further 9 CV. The NaCl 

concentration was increased to 500 mM over 10 CV and maintained for 5 CV. To 

then clean the column the NaCl was increased 1000 mM over 5 CV. This method 

was named Alvin-800-820-and800-840-method.met. 

2.5.3.3 Anion exchange chromatography program for t he B800-820 and 
B800-850 LH2 complex types produced under S HL30 an d S LL40 
growth conditions  

To purify the B800-820 and B800-850a LH2 complex types produced under 

sulphide high light, 30 ̊C, or sulphide, low light, 40 ̊C growth conditions the 

following step-gradient program was used; a wash step for 10 column volumes 

(CV) at 0 mM NaCl. The first gradient step from 0 mM NaCl to 100 mM over 3 CV 

and held at 100 mM for 5 CV.  The concentration of NaCl was increased to 240 

mM over 5 CV and held for 12 more CV. The NaCl was increased to 260 mM over 

2.5 CV and maintained at 260 mM for a further 9 CV. The NaCl was increased to 

310 mM over 5 CV and maintained for 5 CV. The NaCl concentration was 

increased to 500 mM over 10 CV and maintained for 2 CV. To clean the column 

the NaCl was increased to 1000 mM over 5 CV. This method was named Alvin-SHL 

30 - exp03-6-02-13.met. 
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2.5.4 Size exclusion chromatography for the LH2 complex t ypes 
of Alc. vinosum 

Following anion exchange chromatography, size exclusion chromatography (SEC) 

was used to desalt the sample and to separate any remaining contaminants 

according to their size. The SEC protocol and methods for each LH2 complex 

type is identical regardless of whether DM or DDM detergent is used with the 

exception of the detergent present in the equilibration/elution buffer. Elution 

buffer was 20 mM Tris-HCl, pH 8.0 with either 0.02 % DDM (w/v) or 0.15 % DM 

(w/v). SEC was performed using a Superdex G200 column (GE Healthcare) on an 

AKTAprime plus system (GE Healthcare) at 0.5 ml/min at an average pressure of 

0.29 psi.  

2.6 Steady state absorption, transmittance and 
fluorescence spectroscopy 

Room temperature absorption spectroscopy was performed with a Shimadzu UV-

1700 PharmaSpec. Buffers contained 20 mM Tris-HCl (pH 8) for membrane 

samples with addition 0.02 % DDM for LH2 samples for characterisation, 0.15 % 

DM for LH2 samples prepared for reconstitution, or 0.7 % octyl glucoside (OG) for 

LH2 samples during reconstitution. All spectra were taken at an OD between 0.1 

and 1 A.U. and were normalised at the Qx band (590 nm), where appropriate. 

Peak positions were determined using Origin 8, and the position of absorption 

shoulders determined by checking the ASCII files directly. Shouders in absorption 

are denoted by a ~ preceding the wavelength at which the absorption rapidly 

drops. 

Fluorescence excitation and emission spectra were recorded with a 1 cm path 

length cuvette using a Spex 1681 0.22m Fluorolog spectrometer. Samples were 

diluted with 20 mM Tris-HCl buffer, pH 8.0 with 0.02 % DDM, 0.15 % DM or 0.7 % 

OG. Fluorescence spectroscopy must be done at very low concentrations to avoid 

self-absorbance of the fluorescence, so all samples were run at an OD of 0.07. 

Emission spectra were recorded for the B800-850c, B800-850a, B800-840p and 

B800-820 LH2 complex types after excitation at 488 nm. Two samples of B800-

820 LH2 complex type were sourced from low light 30 ̊C growth conditions, one 

sample purified from cells grown in the presence of thiosulphate and the other 
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from cells grown in the presence of sulphide. Two samples of classic B800-850 

LH2 complex types were purified from cells cultured at high light 40 ̊C growth 

conditions, one in the presence of sulphide and the other in thiosulphate. The 

alternative B800-850 was purified from cells grown in the presence of sulphide in 

high light at 30 ̊C. The B800-840p was purified from Alc. vinosum grown under 

thiosulphate in high light at 30 ̊C growth conditions. The carotenoid depleted 

B800-850 LH2 complex was sourced from Alc. vinosum grown under sulphide in 

high light at 30 ̊C growth conditions in the presence of 75 µM DPA. 

2.7 Circular dichroism (CD) spectroscopy 

CD experiments were performed at room temperature using a JASCO, J-810 

spectrophotometer at 20 ̊C with a photomultiplier sensitive between 400 -1000 

nm. The NIR spectra were recorded between 750 nm and 900 nm, while the 

green region of the spectra was recorded between 300-600 nm to observe the 

carotenoid binding. Samples were run at OD 4 in a 0.2 cm cell. System 

parameters were 20 nm/min, 2 scans (averaged at end), 2 second response, with 

a 60 µm band width.  

Circular dichroism was used on purified B800-820, B800-840p and B800-850c LH2 

complex types from Alc. vinosum and compared to the standard B800-850 LH2 

complex from Rps. acidophila 10050. The B800-820 LH2 complex type was 

purified from thiosulphate low light 30 ̊C growth conditions. The B800-850c LH2 

complex types were purified from cells cultured in thiosulphate high light 40 ̊C 

growth conditions. The alternative B800-850 was purified from cells grown in the 

presence of sulphide in high light at 30 ̊C. The carotenoid depleted B800-850 LH2 

complex was sourced from Alc. vinosum grown under sulphide in high light at 

30 ̊C growth conditions in the presence of 75 µM DPA. B800-850 LH2 complex 

from Rps. acidophila 10050 was grown and purified as per (93). 

2.8 SDS PAGE 

Membranes, crude LH2 extracts from sucrose density centrifugation gradients 

(SDCG) and purified LH2 complex types were analysed by SDS PAGE analysis. 

Proteins in membrane samples were denatured in 1 x Laemmli sample buffer 

(BioRad), 20mM Dithiothreitol (DTT) and additional 2 % SDS (v/v) and heated for 
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20 min at 70 ̊C. SDCG and purified LH2 complex types were denatured in 1 x 

Laemmli sample buffer (BioRad) and heated for 5 min at 90 ̊C. After 

denaturation, all samples were spun at 16,600 xg in a bench top centrifuge to 

pellet any large aggregated material. Samples were run for 27 minutes at 150 V 

on an anykD gel polyacrylamide gel (BioRad) with BioRad precision plus dual Xtra 

protein standards consisting of 12 recombinant proteins of 2, 5, 10, 15, 20, 25, 

37, 50, 75, 100, 150, and 250 kDa. 

2.9 Tandem MS-MS of the standard and carotenoid 
depleted B800-850a with Dr Bill Mullen 

Tandem MS-MS was used to determine the differences in peptide composition 

between the alternative B800-850 (B800-850a) and the classic B800-850 (B800-

850c). Both the standard B800-850a and carotenoid depleted B800-850a LH2 

complexes were analysed to ensure that there were no protein changes due to 

the inhibition by DPA. The B800-850a was purified from SHL30 growth conditions 

and peptides extracted and sent to Dr Bill Mullen for tandem MS-MS mass 

spectroscopy. Peptides were extracted using chloroform/methanol 1:1 (v/v) with 

0.1 M ammonium acetate for preferential alpha peptide extraction, and with the 

addition of 10 % (v/v) acetic acid for preferential beta peptide extraction. In the 

absence of acetic acid, only a small proportion of the betas are extracted but 

the addition of acetic acid causes methylation of the alphas. This means that 

two samples must be prepared to ensure that all peptides are extracted and 

identified. The extract was then passed through a sephadex LH60 resin 

(Amersham Biosciences) column and pooled according to its A280. The full 

spectrum of the pooled fractions was acquired before pooling to ensure there 

were no pigments present as they block the HPLC. The pooled sample was then 

dried under nitrogen gas and stored at -20 ̊C if for 1-2 weeks, or at -80 ̊C if for 

longer. 

Samples were analysed on a Dionex Ultimate 3000 RSLS nano flow system 

(Dionex, Camberly UK). After loading (5 µl) onto a Dionex 0.1×20 mm 5 µm C18 

nano trap column at a flowrate of 5 µl/min in 98% 0.1% formic acid and 2% 

acetonitrile, sample was eluted onto an Acclaim PepMap C18 nano column 75 

µm×15 cm, 2 µm 100 Å at a flow rate of 0.3 µl/min. The trap and nano flow 

column were maintained at 35°C. The samples were eluted with a gradient of 
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solvent A:98% 0.1% formic acid, 2% acetonitrile verses solvent B: 80% 

acetonitrile, 20% 0.1% formic acid starting at 35% B for 5 minutes rising to 45% B 

after 15 min and finally to 80%B after 40 min. The column was then washed and 

re-equilibrated prior to the next injection. 

The eluant was ionized using a Proxeon nano spray ESI source operating in 

positive ion mode into an Orbitrap Velos FTMS (Thermo Finnigan, Bremen, 

Germany). Ionization voltage was 2.6 kV and the capillary temperature was 

250°C. The mass spectrometer was operated in MS/MS mode scanning from 400 

to 1800 amu. The top 5 multiply charged ions were selected from each scan for 

MS/MS analysis using HCD at 40% collision energy. The resolution of ions in MS1 

was 60,000 and 7,500 for MS2. 

MS and MS/MS data files were searched, in this case, against Uniprot 

Allochromatium + Vinosum database using SEQUEST (by using Thermo Proteome 

Discoverer), with no enzyme specified. Peptide data were extracted using high 

peptide confidence and top one peptide rank filters. No static modification set 

Oxidation of Methionine and Proline (M, P) as variable modifications and a 

peptide mass tolerance of ± 10 ppm and a fragment mass tolerance of ± 0.05 Da 

and allow for a maximum of two missed cleavage. Determine the false discovery 

rates by reverse database searches and empirical analyses of the distributions of 

mass deviation, whereby Ion Scores can be used to establish score and mass 

accuracy filters. 

2.10 Carotenoid extraction, purification and analys is by 
thin layer chromatography (TLC) 

Carotenoids were extracted from purified B800-820, B800-840p and B800-850c 

LH2 complex types and the LH1/RC “Core” from from Alc. vinosum. The B800-

820 LH2 complex type was purified from thiosulphate low light 30 ̊C growth 

conditions. The B800-850c LH2 complex types were purified from cells cultured 

in thiosulphate high light 40 ̊C growth conditions. The alternative B800-840p was 

purified from cells grown in the presence of thiosulphate in high light at 30 ̊C. 

All carotenoid extractions were performed in low light conditions. Carotenoids 

were extracted from 100 µl of OD 100 purified LH2 complex types using 4 ml of 
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7:2 acetone/methanol. The LH2 acetone/methanol mix was left for 10 min at 

room temperature before 2 ml pet ether (40.60 bp) was added. The addition of 

4-5 ml of warm salty water causes the carotenoid to partition into the pet ether 

layer, which is then decanted off. The pet ether layer is then washed with 

another 4-5 ml of warm salty water to remove any residual acetone. The 

carotenoid mix is then dried down under nitrogen and resuspended in diethyl 

ether. Carotenoid mixes from each of the LH2 complex types, and the LH1 were 

spotted onto a TLC plate using a glass pipette and separated using 90:10 pet 

ether/acetone (v/v) as the mobile phase.  

Individual carotenoids preliminarily identified as part of the carotenoid 

complement of the LH2 complexes were extracted from known sources to 

confirm their identities. Lycopene, spirilloxanthin, anhydrorhodovibrin, and 

rhodopin were extracted as described from tomato paste, Rsp. rubrum S1, and 

Alc. vinosum strain D respectively. TLC plates were used to separate the 

carotenoids in the crude extracts and bands were scraped from the plates. In the 

case of anhydrorhodovibrin, multiple TLC plates were used to accumulate 

enough anhydrorhodovibrin to acquire an accurate absorption spectrum. The 

identities of the carotenoids were confirmed using absorption spectra and 

hydrophobic character. Carotenoids from the purified B800-850 LH2 complex 

from THL40 growth conditions were extracted and ran parallel to the Purified 

carotenoids, which were run using 90:10 pet ether/acetone (v/v). 

2.11 Production of a carotenoid minus B800-850 usin g 
the carotenoid biosynthesis inhibitor diphenylamine  
(DPA) 

Diphenylamine (DPA) inhibits the carotenoid biosynthesis pathway in purple 

photosynthetic bacteria by inhibiting the enzyme phytoene desaturase (133). 

DPA degrades when exposed to white light, so cultures were grown beneath a 

red filter during inhibition studies.  
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2.11.1 Establishing the sensitivity of Alc. vinosum to DPA and 
the effective concentration range for producing ful ly 
carotenoidless LH2 

Cultures were grown with either thiosulphate or sulphide media in the presence 

of 10-100 µM DPA to establish the DPA concentration range that effectively 

inhibits the production of carotenoid in Alc. vinosum. Alc. vinosum cultures were 

grown at 40 °C in 60-80 µmol s-1 m-2 light conditions in autoclaved 100 ml flat-

sided bottles. DPA is not very soluble in water and so was dissolved in ethanol 

and aliquoted into the cultures to a final DPA concentration of 10 µM, 20 µM, 30 

µM, 40 µM, 50 µM, 60 µM, 70 µM, 80 µM, 90 µM, or 100 µM. A control culture was 

grown under the same conditions with an equal volume of ethanol to the culture 

grown at the highest DPA concentration. Cultures were incubated at 40 ̊C in 

darkness for 24 hours to allow the oxygen present to be respired, and then 

cultures were grown behind a red light filter. Cultures were compared visually 

and by absorption spectroscopy to assay the level of carotenoid inhibition and 

the effects on the light-harvesting complexes.  

2.11.2 Production of the carotenoid depleted B800-850 LH2 
complex type 

The DPA concentration range of 65-75 µM produced carotenoid depleted B800-

850 LH2 complex type from the high light 40 ̊C and 30 ̊C growth conditions, 

which was consistent with previous work (83, 134, 135). Cultures were grown in 

sterile 500 ml flat-sided bottles in either thiosulphate (6) or sulphide (5) media 

under high light (60-80 µmol s-1 m-2 ) or low light (2 µmol s-1 m-2) conditions at 40 

°C or 30 °C. DPA was dissolved in ethanol to a concentration of 10 mM and 

added to cultures with the inoculum, to a final concentration of between 65-75 

µm. Cultures were incubated at 30 ̊C in darkness for 24 hours to allow the 

oxygen present to be respired, and then cultures were grown behind a red light 

filter. Alc. vinosum cells were harvested as outlined in section 2.2. Cells were 

lysed using a Sanyo Soniprep 150 sonicator due to low volumes of harvested cells 

being insuffient for French press lysis. Cells were homogenised and lysed, in the 

presence of MgCl2 and DNase1 (bovine Deoxyribonuclease I, Sigma-Aldrich) and 

then sonicated at 10 microns for 10 cycles of 30 seconds. Membranes were then 

prepared as outlined in section 2.3.  Membranes were resuspended in 20 mM 

Tris-HCl, pH 8.0 to an OD856 of 25.  
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The B800-850 LH2 complexes were purified as per section 2.5 in either DDM for 

characterisation or DM for reconstitution studies. Absorption spectra and photos 

were taken to show the preferential incorporation of carotenoid.  

2.12 Production of a carotenoid minus Alc. vinosum 
mutant 

The creation of a carotenoid minus strain of Alc. vinosum allows the production 

of fully carotenoidless LH2 complexes without the need of the toxic inhibitor 

DPA. 

2.12.1 Genomic extraction 

Serial dilutions of cultures were plated on 1.5 % agar in thiosulphate media (6) 

and grown at anaerobically at 28 ̊C under 60 µmol m-1 s-2 conditions. Fifteen to 

twenty colonies were picked and used to inoculate 5 ml thiosulphate media. 

Cultures were grown overnight at 28 ̊C under 60 µmol m-1 s-2 conditions and 

cultures were centrifuged at 2550 xg for 15 minutes, 4 ̊C, to pellet the whole 

cells. DNA was isolated and prepared using standard procedures (142). In brief, 

supernatant was removed and pellet incubated at 37 ̊C for 1 hour in 1 ml fresh 

lysis buffer (0.2 M Tris-HCl,  0.5 M NaCl, 0.01 M EDTA, 1 % SDS, 1 M sodium 

acetate). To break down proteins present, the sample was incubated at 50 ̊C in 

100 µg/ml proteinase K until clear. The sample was then incubated at 37 ̊C for 

30 minutes in 20 µg/ml RNAse A. The sample was mixed with an equal volume of 

phenol:chloroform:IAA (25:24:1 v/v) forming a milky suspension. This was spun 

at 16,000 xg for 5 minutes. The upper phase of the sample was decanted and 0.2 

volumes 10 M ammonium acetate, and then 600 µl absolute ethanol (AR grade) 

were added. DNA was pelleted at 16,000 xg for 30 minutes, and supernatant 

removed. The pellet was then washed in 70 % ethanol, and spun for 16,000 xg 

for a further 10 minutes. The final DNA pellet was air dried for 15-20 minutes 

before being resuspended in DNAse and RNAse free water at 40 ̊C overnight. 

Genomic DNA was then stored at -20 ̊C. 
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2.12.2 Creation of the CrtI - Genomic ‘knock-out’ using Splice-
Overlap-Extension method 

Two genes in Alc. vinosum have been putatively assigned as the CrtI gene that 

produces phytoene desaturase for the biosynthesis of the carotenoid precursor 

phytoene (10), Alvin 2566 and Alvin 2570. Alvin 2566 (2,894,906…9,896,402 bp) 

was selected to be knocked out first. Upstream (US) forward and reverse, and 

downstream (DS) forward and reverse primers were designed by Dr Sarah Henry 

and produced by Eurofins Scientific to create flanking sequences to the 

identified CrtI gene (Table 2.1). EcoRI and HindIII restriction sites were 

incorporated into the US forward and DS reverse primers respectively. 

Table 2.1 Upstream (US) and downstream (DS) forward  and reverse primers showing the 
incorporated restriction enzyme sites (blue)  
Name 51-31 sequence 

US forward with EcoRI ACAGAATTCGAAGGCGAGGATGATGAGC 

US reverse CGGTCAGGTCGGCATCAGAACCATGACTC 

DS forward CTGATGCCGACCTGACCGTCGACAACGACG 

DS reverse with HindIII ACTAAGCTTTCATCGATGTCGATCACCAG 

 

The US and DS flanking sequences were denatured for 10 seconds at 98 ̊C, 

annealed for 20 seconds at 60 ̊C, and extended for 30 seconds at 72 ̊C with 

Phusion polymerase (Biolabs) PCR on a Biorad C1000 Thermal Cycler. These steps 

were repeated for 30 cycles. PCR products were then separated using gel 

electrophoresis and extracted using a gel extraction kit (Thermo scientific).  

A gradient PCR reaction was conducted to determine the appropriate annealing 

temperature for the US segment of DNA. The annealing temperature was varied 

across a set of 8 reaction tubes, from 50 ̊C to 68 ̊C (68 ̊C, 67 ̊C, 64.9 ̊C, 57 ̊C, 

53.5 ̊C, 52 ̊C, and 50 ̊C). The US product was denatured for 10 seconds at 95 ̊C, 

annealed for 20 seconds, and extended for 1 minute at 72 ̊C with MyTaq 

polymerase (Bioline) on a Biorad C1000 Thermal Cycler for 29 cycles. The PCR 

products were then analysed by gel electrophoresis as outlined in section 2.12.3. 

The US and DS products were then annealed using a splice overlap extension 

program (SOE) PCR (143). US and DS sections were denatured at 90 ̊C for 10 
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the absence of DNA 

complementary codons at the 3

sense 31 end of the DS segment. After the SOE program is run, Phusion 

polymerase (Biolabs) was added and a PCR program, as outline

individual US and DS segments, was run. This resulted in a blunt ended insert 

consisting of the joined US and DS sequences with two codons in the centre, of 

780 bp (Figure 2.1). This is the CrtI

Figure 2.1 Basic schematic showing the process of producing a CrtI
Splice Overlap Extension (SOE) method. 
This process proceeds by the duplication of the upstream and downstream regions of
around the CrtI-, phytoene desaturase, gene. These are amplified by PCR and then
using the splice, overlap, extension method. The products are then extended using DNA 
polymerase creating a blunt ended CrtI

2.12.3 DNA gel electrophoresi

DNA PCR and digestion products were checked using 

with SYBR® Safe DNA gel stain (Invitrogen)

(Embi Tec) electrophoresis tank at 100 volts. DNA was run parallel to a 1kb DNA 

ladder (Promega). 

2.12.4 Liga tion of the CrtI
transformation of DH5

The blunt ended CrtI

per the manufacturer instructions

insert was used to transform DH5α strain 

Competent DH5α cells were thawed on ice before 4 µl of the pJET1.2/blunt

seconds, annealed at 37 ̊C for 20 seconds, and extended at 72 

the absence of DNA polymerase. This results in the annealing of the two 

complementary codons at the 31 end of the sense US segment, and the

end of the DS segment. After the SOE program is run, Phusion 

polymerase (Biolabs) was added and a PCR program, as outline

individual US and DS segments, was run. This resulted in a blunt ended insert 

consisting of the joined US and DS sequences with two codons in the centre, of 

780 bp (Figure 2.1). This is the CrtI- insert that can then be ligated into a vector.

Basic schematic showing the process of producing a CrtI
Splice Overlap Extension (SOE) method.  
This process proceeds by the duplication of the upstream and downstream regions of

, phytoene desaturase, gene. These are amplified by PCR and then
using the splice, overlap, extension method. The products are then extended using DNA 
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with SYBR® Safe DNA gel stain (Invitrogen) run in 1x TAE buffer on a RunOne 

(Embi Tec) electrophoresis tank at 100 volts. DNA was run parallel to a 1kb DNA 

 

tion of the CrtI - into pJET1.2/blunt vector and 
transformation of DH5 α cells 

The blunt ended CrtI- was subcloned into pJET1.2/blunt (Thermo Scientific) as 

per the manufacturer instructions using T4 DNA ligase (Thermo Scientific). The 

to transform DH5α strain E.coli cells using heat shock treatment. 

cells were thawed on ice before 4 µl of the pJET1.2/blunt

52 

C for 20 seconds, and extended at 72 ̊C for 1 minute in 

polymerase. This results in the annealing of the two 

end of the sense US segment, and the anti-

end of the DS segment. After the SOE program is run, Phusion 

polymerase (Biolabs) was added and a PCR program, as outlined for the 

individual US and DS segments, was run. This resulted in a blunt ended insert 

consisting of the joined US and DS sequences with two codons in the centre, of 

insert that can then be ligated into a vector. 

 

Basic schematic showing the process of producing a CrtI - DNA insert using a 

This process proceeds by the duplication of the upstream and downstream regions of the DNA 
, phytoene desaturase, gene. These are amplified by PCR and then annealed 

using the splice, overlap, extension method. The products are then extended using DNA 

1 % agarose (Roche) gels 

run in 1x TAE buffer on a RunOne 

(Embi Tec) electrophoresis tank at 100 volts. DNA was run parallel to a 1kb DNA 

into pJET1.2/blunt vector and 

(Thermo Scientific) as 

using T4 DNA ligase (Thermo Scientific). The 

cells using heat shock treatment. 

cells were thawed on ice before 4 µl of the pJET1.2/blunt-CrtI- 
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was aliquoted into the cells and stirred, gently, once. Cells were left on ice for 

15 min before they were placed in a 42 ̊C water bath for 30-60 seconds. Cells 

were then returned to ice for 5 min to recover before 250-400 µl warm LB was 

aliquoted into the cells. The transformed cells were then incubated for 1 hr at 

37 ̊C while agitated. Cells were then plated onto an LB agar plate (100 mM 

ampicillin) and incubated overnight at 37 ̊C. Transformed colonies produced 

were then picked and transferred to liquid LB (100 mM ampicillin) for overnight 

growth. Glycerol stocks of transformed cells were created using 1 ml 50 % 

glycerol (v/v) and 1 ml transformed cells. Plasmids were extracted using the 

Thermo Scientific miniprep kit and sent for sequencing to confirm that the insert 

sequence was correct. 

2.12.5 Sequential and simultaneous digests of the 
pJET1.2/blunt-CrtI - vector using HindIII and EcoRI 

The pJET1.2/blunt-CrtI- was digested with HindIII (Roche) and EcoRI (Roche) in 

buffer B (Roche) at 37 ̊C overnight producing a CrtI- insert with ‘sticky ends’. The 

digested DNA was separated on the 1 % agarose gel and the band at ~780 bp was 

excised and then extracted using a gel extraction kit (Thermo Scientific).  

As there is a HindIII restriction site present on the pJET1.2/blunt vector, this 

potentially slows the rate of cleavage by the HindIII enzyme of the restriction 

site of the CrtI- insert. Sequential digests were performed to determine whether 

this was a factor in low CrtI- yields. PJET1.2/blunt-CrtI- was digested for 1 hour 

at 37 ̊C with EcoRI (Roche) before the digested products were separated on a 1 % 

agarose gel, excised and purified using a gel extraction kit (Thermoscientific). 

The Eco RI cleaved pJET1.2/blunt-CrtI- was then digested overnight at 37 ̊C with 

HindIII (Roche). The digested products were separated on a 1 % agarose gel 

before being excised and purified using a gel extraction kit (Thermoscientific). 

The simultaneous digests were repeated and the digestion products were 

extracted using a Qiagen gel extraction kit as there were potential issues with 

contamination from the Thermoscientific gel extraction kit.  
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A Thermo Scientific Nanodrop 1000 spectrophotometer was used to confirm the 

levels of DNA present after gel extractions as well as to assay the purity of the 

DNA acquired. 

2.12.6 Ligation of the CrtI - with ‘sticky ends’ into 
pK18MobsacB vector and transformation of JM109 cell s 

The CrtI- insert with ‘sticky ends’ was ligated into the pK18MobsacB (144) vector 

using Promega T4 ligase for 5 min at room temperature and then overnight at 

4 ̊C. The ligated pK18MobsacB-CrtI- construct was used to transform competent 

E.coli JM109 cells using heat shock treatment as previously described. 

Transformed cells were then plated onto LB plates with 30 µg/ml kanamycin, 6 

µl 1 M IPTG, 40 µl 20 mg/ml X-GAL (145) to induce the lac operon, and then 

incubated overnight at 37 ̊C. Colonies were used to inoculate 5 ml of LB with 30 

µg/ml kanamycin and grown overnight at 37 ̊C. 

2.13 Trials to determine whether extraction of 
carotenoids by solvent mixes can produce carotenoid  
depleted light-harvesting complexes 

Due to the difficulty producing carotenoidless B800-820 using DPA it was decided 

to try to remove the carotenoid from the already formed complex. Carotenoids 

can be extracted from membrane bound LH complexes using benzene (Clayton 

and Sistrom 1978) and previous work has successfully depleted the carotenoids 

present in the LH1 (121). Benzene is highly toxic and so toluene was substituted 

due to its lower toxicity. Toluene is less polar than benzene, which may affect 

the level of extraction of carotenoids, therefore to compensate for this 

additional polar solvents were added at low percentages. Acetone, ethyl 

acetate, diethyl ether and petroleum ether, at 1 %, 5 % or 10 % (v/v) were used 

to increase the polarity of the solvent mix. The solvent mixes were added to 1 

mg freeze dried chromatophores from sulphide low light grown 30 ̊C Alc. 

vinosum cultures. The carotenoids were extracted with 1 ml of solvent-mix, 

which was stirred and then left for 10 minutes at room temperature. Membranes 

were spun at 5000 xg to pellet the chromatophores and the supernatant was 

decanted. A further 1 ml of solvent-mix was used to resuspend the pellet, and 

the mixture was stirred and left for a further 10 min. Membranes were pelleted 
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by centrifugation at 5000 xg and the supernatant decanted. The pellet was then 

resuspended in 20 mM Tris-HCl, pH. 8.0. 

To determine the full complement of carotenoids contained within 1 mg of 

chromatophores, carotenoids were extracted using 100 % acetone as carotenoids 

have good solubility in acetone (146). Membranes were washed in 1 ml acetone 

and pelleted by centrifugation at 5000 xg twice before being resuspended in 

Tris-HCl, pH 8.0. Absorption spectra of both the supernatant and the re-

suspended membranes were recorded to assess the level of carotenoid extracted 

and the intactness of the light-harvesting complexes present within the 

membranes. 

2.14 Reconstitution and reversible dissociation stu dies 

The carotenoid depleted B800-850 LH2 complex was used for proof of concept 

reversible dissociation and reconstitution trials. 

2.14.1 Carotenoid extraction and purification by alumina 
chromatography for reconstitution studies 

Processes such as reconstitution (122) require higher purity and quantity 

carotenoids than can be acquired for a TLC plate. For this reason alumina 

chromagraphy was used to produce larger quantities of pure carotenoids. All 

carotenoid extractions were performed in low light conditions. The carotenoids 

used in reversible dissociation studies were lycopene, spirilloxanthin, and 

rhodopin. These carotenoids were extracted and purified from tomoto paste, 

Rsp. rubrum S1 chromatophores (147), and Alc. vinosum strain D 

chromatophores respectively. Carotenoids were extracted using 7:2 

acetone/methanol, which was stirred and left for 10 min at room temperature 

to extract the majority of the carotenoids from the chromatophores. This was 

followed by the addition of 2 ml pet ether (40.60 bp) followed by 4-5 ml of warm 

salty water. The pet ether layer containing carotenoid was decanted off and re-

washed with warm salty water to remove any residual acetone. The carotenoid 

mix is then dried down under nitrogen and re-suspended in pet ether for 

immediate alumina chromatography.  
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The carotenoid sample was purified using alumina column chromatography.  The 

solid phase, alumina (aluminium oxide, Merck), was deactivated by the addition 

of 10 µl of water per 1 g of alumina. The addition of water reduces the number 

of polar sites available on the alumina, limiting its ability to retain organic 

compounds and preventing the carotenoid binding too strongly to the resin and 

failing to elute. The deactivated alumina was then poured into the vertical glass 

column as a slurry of alumina in the mobile phase, PET ether.  The alumina 

column was flushed with 5 volumes of PET ether prior to addition of sample.  

Following the addition of the carotenoid sample, carotenoids were eluted with 

increasing concentrations of diethyl ether as diethyl ether is more polar than 

PET ether. Fractions were collected by hand, and assayed using absorption 

spectroscopy. Fractions were pooled according to the carotenoid peak positions 

and the low intensity of their cis peaks and carotenoids were used for reversible 

dissociation immediately after purification. The absorbance spectrum of each 

fraction was taken to quantify the quality of the samples by examining the cis 

peaks present. Cis absorption peaks are produced by carotenoid in the cis isomer 

form (37). 

2.14.2 Dissociation of standard B800-850 LH2 complexes by 
LDAO, OG and DM 

Standard B800-850 LH2 complexes from Alc. vinosum were produced by cells 

grown under THL40 growth conditions and purified in DM as described in section 

2.5.2. The DM was dialysed out and replaced by either 0.1 % 

lauryldimethylamine oxide (LDAO) (v/v), 0.7 % n-octyl-β-D-glucoside (OG) (w/v), 

or 0.15 % decyl maltoside (DM) (w/v) by centrifugation in a 50 kDa molecular 

weight cut off filter. Absorption spectroscopy was used to monitor the state of 

the LH2 complexes and determine whether full detergent exchange had 

occurred. Once the Qy peaks stopped shifting position, an additional 5 volumes 

of the CMC of appropriate detergent in 20 mM Tris, pH 8.0 was run through the 

sample. Following this, the concentrations of the detergents were increased to 2 

% LDAO (v/v), 4.15 % DM (w/v), or 5 % OG (w/v) and the sample left at room 

temperature for 60 min before the absorption spectrum was acquired. The 

sample was then left overnight at room temperature and then a further 

absorption spectrum was recorded to monitor the intactness of the complexes. 
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2.14.3 Reversible dissociation of carotenoid depleted B800 -
850 LH2 complexes by LDAO and OG 

Carotenoid depleted B800-850 LH2 complex was produced by Alc. vinosum grown 

under SHL30 growth conditions in the presence of 75 µM DPA, and purified in DM 

as described in section 2.5.2. The DM was dialysed out and replaced by 0.7 % OG 

(w/v) or 0.1 % LDAO (v/v) by centrifugation in a 50 kDa molecular weight cut off 

filter. Absorption spectroscopy was used to monitor the state of the LH2 

complexes and determine whether full detergent exchange had occurred. Once 

the Qy peaks stopped shifting position, an additional 5 volumes of the CMC of 

appropriate detergent in 20 mM Tris, pH 8.0 was run through the sample. 

Following this, the concentrations of the detergents were increased to 2 % LDAO 

(v/v), or 5 % OG (w/v) and the sample left at room temperature for 60 min 

before the absorption spectrum was acquired. The sample was then left 

overnight at room temperature and then another absorption spectrum was 

recorded to monitor the intactness of the complexes. As dissociation appeared 

to have occurred, the concentration of detergent was reduced to the CMC (0.1 % 

LDAO (v/v) or 0.7 % OG (w/v)) and the absorption spectrum acquired to 

determine whether dissociation had been reversed. 

2.14.4 Reversible dissociation of carotenoid depleted B800 -
850 LH2 complexes by OG and the addition of caroten oid 

Carotenoid depleted B800-850 LH2 complex was produced by Alc. vinosum grown 

under SHL30 growth conditions in the presence of 75 µM DPA, and purified in DM 

as described in section 2.5.2. The DM was dialysed out and replaced by 0.7 % n-

octyl-β-D-glucoside (OG) by centrifugation in a 50 kDa molecular weight cut off 

filter. Absorption spectroscopy was used to monitor the state of the LH2 

complexes and determine whether full detergent exchange had occurred. To 

ensure full detergent exchange, an additional 5 volumes of buffer/detergent 

were run through the sample until the Qy peak position was unchanged in the 

absorption spectrum. The B800-850 LH2 sample was concentrated to a volume of 

200 µl at OD 20. The concentration of OG was increased to 5 % (w/v) by addition 

of 50 µl 20 % OG (w/v) to dissociate the LH2 complexes, which were left 

overnight at room temperature to fully dissociate. To begin to re-associate the 

LH2 complexes they were placed on ice in the dark and the detergent 
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concentration was reduced. Tris-HCl (pH 8.0) was added in 250 µl increments 

until the volume was 1 ml, and the OG concentration was 1.175 % (w/v). At 4 ̊C 

the CMC of OG is 1 %, resulting in the sample being just above the CMC. Freshly 

prepared carotenoid, as described in section 2.14.1, was added in acetone in 10 

µl increments. The initial experiment using spirilloxanthin did not do this under 

nitrogen but in further experiments, with lycopene and rhodopin, carotenoid 

was added under a stream of nitrogen gas to prevent carotenoid and BChl 

degradation. Carotenoid was added every 10 min to prevent a build up of 

acetone in the solution as this negatively affected re-association. The Hamilton 

syringe used to inject carotenoid into solution was placed within the solution 

and used to stir in the carotenoid. This ensured the carotenoid entered the 

solution as otherwise the acetone formed a layer on top of the solution, and 

carotenoid was found to bind to the plastic of the eppendorf tube after acetone 

evaporation. After carotenoid was added in excess and the volume had been 

returned to 1 ml the sample was progressively diluted to 0.33 % OG. Dilutions 

were performed with 250 µl Tris-HCl (pH 8.0) and the sample was returned to ice 

beneath a stream of nitrogen gas. At 0.33 % OG (w/v) the sample was left at 4 ̊C 

overnight to allow complex reformation. After the sample had re-associated the 

complex was detergent exchanged into 0.02 % DDM by centrifugation. After 

reversible dissociation with rhodopin and lycopene the sample was purified by 

sucrose density sucrose centrifugation in 12 ml tubes, overnight at 200, 000 xg, 

at 4 ̊C. Volumes used were 1 ml, 4 ml, 4 ml, and 1 ml of 0.6 M, 0.8 M, 1.0 M, and 

1.2 M sucrose concentrations respectively, with 20 mM Tris-HCl (pH 8.0), 0.02 % 

DDM (w/v). Sucrose density centrifugation gradients were photographed and the 

LH2 band was decanted and the absorption spectrum acquired. Fluorescence 

emission and excitation spectra were acquired at OD 0.07 for the pre-RD sample 

and the post-RD sample. LH2 complexes were excited at 485 nm for fluorescence 

emission spectra and monitored for emission at 850 nm for excitation spectra. 

2.14.5  De novo reconstitution of the B800-850 LH2 complex  
from Alc. vinosum 

2.14.5.1 Purification of protein and pigment compon ents 

The alpha and beta peptides were extracted from purified freeze dried B800-850 

LH2 complex using a solution of chloroform-methanol (1:1) in the presence of 
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ammonium acetate (0.1 M)(148). This technique preferentially extracts α 

peptides in addition to some β peptides (121), which was thought sufficient for 

preliminary experiments. The alpha and beta peptides were extracted and 

separated from the pigments using a sephadex LH60 resin (Amersham 

Biosciences) column. The column was equilibriated in chloroform-methanol 

(1:1), and ammonium acetate (0.1 M) and the sample was injected onto the 

column and eluted by gravity flow. The absorption spectra of the fractions were 

measured to determine the concentration of protein, and to ensure no pigments 

were pooled with the peptides. The alpha and beta peptides were then dried 

under nitrogen and stored at –20 ˚C. The number of absorbing amino acid 

residues in each of the α and β peptide sequences from Alc. vinosum was 

calculated and multiplied by its respective extinction coefficient (tyrosine 1490 

M-1 cm-1, tryptophan 5500 M-1 cm-1, and cystine 125 M-1 cm-1) (149, 150) and 

averaged across the twelve peptides to determine the average extinction 

coefficient of 15,823 M-1 cm-1. The A280 was then divided by 15,823 M-1 cm-1 to 

determine the protein concentration used. 

Spirilloxanthin was extracted and purified as described in section 2.14.1 and the 

A486 recorded to determine the concentration of spirilloxanthin using the 

extinction coefficient of 94 M-1 cm-1 (151). 

Previous work found that a phytol tail instead of the geranylgeranyl group on the 

BChl made no difference in the ability of the complex to form (121) so BChl can 

be sourced from bacteria that produce different BChl a analogues. Previous work 

also found that whether the pigments were added in acetone or methanol made 

no difference to the ability of the complex to reform (32). Bacteriochlorophyll 

(BChl) was extracted from Rsp. rubrum G9 mutant using a methanol wash. 

Methanol was added to freeze dried G9, which was then centrifuged at 5000 xg 

for 10 min to pellet membrane and peptide debris. The supernatant containing 

BChl was decanted off and the A770 recorded to determine the concentration 

using the extinction coefficient 76 M-1 cm-1 (152). The BChl was then dried down 

under nitrogen and stored at 4 ˚C.  
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2.14.5.2 De Novo reconstitution 

Extracted peptides were thawed and re-solubilised in 20 % OG (w/v), 20 mM Tris-

HCl, pH 8.0, to ensure the peptides were fully dissociated and solubilised. The 

concentration of OG was then reduced to 1 % by the addition of Tris-HCl, pH 8.0, 

with a final peptide concentration was 6 µM. Spirilloxanthin was added in 

acetone to a final concentration of 7 µM while the sample was agitated under a 

stream of nitrogen gas. Following carotenoid addition, the OG concentration was 

further diluted to 0.7 % by the addition of Tris-HCl, ph 8.0, and the sample was 

left on ice for 10 min. Extracted BChl was re-suspended in acetone and added to 

a final concentration of 6 µM and the sample left to agitate for 10 minutes more 

on ice. Following pigment addition the concentration of OG was reduced by 

progressive additions of 20 mM Tris-HCl, pH 8.0, until the OG concentration 

reached 0.66 % and the sample left overnight at 4 ̊C.  

To purify the reconstituted sample, a 1 g De52 (Whatman) resin column was 

equilibrated in 20 mM Tris, pH 8.0, and 0.7 % OG and sample was aliquoted on 

top of the column. The sample was then washed with elution buffer consisting of 

20 mM Tris, pH 8.0, 0.7 % OG and increasing NaCl concentrations. The NaCl 

concentrations used to wash the reconstituted sample were 100 mM NaCl, 250 

mM NaCl, 500 mM NaCl, 1 M NaCl, and 2 M NaCl. 
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 Chapter 3 - Establishment of Allochromatium 
(Alc.) vinosum growth conditions, LH2 complex 
purification and LH2 complex types produced 
under different growth conditions.  

3.1 Introduction 

The aim of the work in this chapter was to revisit the light-harvesting complexes 

of Alc. vinosum in light of recent structural and genomic understanding to see 

what types of LH2 can be made and characterised. One of the main questions 

was to discover whether the LH2 complex types of Alc. vinosum are discrete or 

whether they form a continuum of intermediate complexes.  

Early work on Alc. vinosum strain D (5, 6, 109, 146, 153) found that different 

growth conditions produced cells with different NIR spectra as described in 

Introduction section 1.3. These variations reflected a change in the complement 

of light-harvesting complexes produced. It was hypothesised at the time that 

these changes in the absorbance of the light-harvesting machinery were adaptive 

in order to optimise the light-harvesting capability of the bacterium under 

different growth conditions.  

Since this early work, there has been the successful structural determination of 

the LH2 (62, 72, 80, 99, 154) and LH1/RC “core” (59-61) complexes from several 

bacteria. This has helped allow us to understand the structural basis for the 

absorbance of the light-harvesting complexes.  

Recent work (10) has fully annotated the genome of Alc. vinosum and identified 

six puc gene pairs that can code for the LH2 alphas and betas. This means that 

Alc. vinosum has, potentially, the capacity to form heterogeneous LH2 

complexes, wherein the heterodimer subunits that make up the single ring of an 

LH2 complex are non-identical. This type of heterogeneity  has been observed in 

the LH2 complexes of other purple photosynthetic bacteria such as Rsp. palustris 

(101) and Phs. molischianum (95).  
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3.2 Characterisation of Alc. vinosum spectral changes under 
different growth conditions 

The absorption peaks observed in the NIR relate to the light-harvesting 

complexes (outlined in Introduction section 1.2.3) that are present in the 

photosynthetic membrane. Therefore, variations observed in the absorption 

spectra relate to changes in the light-harvesting machinery. The absorption 

peaks observed in the membranes of Alc. vinosum can be tentatively allocated 

to structures that are analogous to the LH1/RC “core” and LH2 structures 

determined from other species. The absorption peak that centres at the longest 

wavelength is the LH1/RC “core” complex, while all other peaks will correspond 

to BChl molecules bound within the LH2 complex types present. The absorption 

maxima centred at ~ 800 nm will correspond to the monomeric B800 BChl, while 

the more red-shifted LH2 peaks will relate to the excitonically coupled BChl, 

dubbed “B850-like” after the Rsp. acidophila model LH2.  

To begin to determine the level of variation expressed by Alc. vinosum under 

different growth conditions, cultures were grown in either sulphide or 

thiosulphate media under different growth conditions (outlined in materials and 

methods section 2.2). Cells were then harvested and membranes were prepared 

as per materials and methods section 2.2 and 2.3. The NIR absorbance spectra of 

a diluted sample of membranes from cells grown under different growth 

conditions were recorded. 

3.2.1 Room temperature absorption spectra of the membrane s 
from Alc. vinosum grown under different growth conditions 

In membranes prepared from all growth conditions a broad peak is observed in 

the absorption spectra at ~ 800 nm relating to the B800 BChl, with an apex at 

807 nm (Figures 3.1 and 3.2). In figure 3.1, the effects of temperature and light 

intensity on the light-harvesting complexes produced by Alc. vinosum grown in 

the presence of sulphide (S) are observed. Distinct peaks of equal intensity are 

observed at 807 and 822 ± 0.5 nm in membranes produced under low light 

conditions at 30 ̊C (LL30, cyan). The LH1/RC “core” peak is positioned at 890 ± 

0.5 nm. The LH1/RC “Core” peak is of a much lower intensity than the other two 

peaks. When Alc. vinosum is cultured in low light intensity at 40 ̊C (LL40, blue), 

the “B850-like” peak centres at 853 ± 0.5 nm and is of higher intensity than the 
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Room temperature NIR absorption spectra of Alc. vinosum
in the presence of sulphide (S) under different growth conditions

30 ̊C or 40 ̊C).  
Alc. vinosum grown under SHL40 (dotted line) growth conditions produce three 

e NIR at 807 ± 0.5 nm, 856 ± 0.5 nm, and 888 ± 0.5 nm. The 856 nm peak and 888 
peaks are of a higher intensity than the 807 nm peaks. Membranes from 
SHL30 (green) growth conditions produce two peaks in the NIR at 807 ±

0.5 nm. The 853 nm peak and 890 shoulder are of a lower intensity than the 
807 peak. Membranes from Alc. vinosum grown under SLL40 (blue) growth conditions produce two 
peaks in the NIR at 807 ± 0.5 nm, 853 ± 0.5 nm and a shoulder at ~890 
peak is of a higher intensity than the 807 peaks while the 888 peak is of a lower intensity. 

Alc. vinosum grown under SLL30 (cyan) growth conditions produce three peaks 
0.5 nm, 822 ± 0.5 nm and 890 ± 0.5 nm. The 822 nm peak is of equal intensity 

to the B800 peak and the 890 shoulder is of a lower intensity than the 807 peak. 
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-shifted and obscured 

is grown at high light intensity and 30 ̊C (HL30, 

harvesting complexes of Alc. vinosum 

centre at the same wavelengths as those produced under LL40 conditions but are 

Alc. vinosum is grown in 

like” peak shifts 

while the LH1/RC “core” centres at 

807 nm peak.  

 

Alc. vinosum membranes prepared 
under different growth conditions  (HL: High 

grown under SHL40 (dotted line) growth conditions produce three 
. The 856 nm peak and 888 nm 

peaks. Membranes from Alc. vinosum grown under 
± 0.5 nm, 853 ± 0.5 nm, and 

. The 853 nm peak and 890 shoulder are of a lower intensity than the 
grown under SLL40 (blue) growth conditions produce two 

and a shoulder at ~890 ± 0.5 nm. The 853 nm 
peak is of a higher intensity than the 807 peaks while the 888 peak is of a lower intensity. 

grown under SLL30 (cyan) growth conditions produce three peaks 
. The 822 nm peak is of equal intensity 

to the B800 peak and the 890 shoulder is of a lower intensity than the 807 peak.  
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In figure 3.2, the effects on the light-harvesting complexes produced by Alc. 

vinosum grown in the presence of thiosulphate under different light intensities 

and temperatures are shown. When Alc. vinosum is cultured under low light, 

30 ̊C growth conditions (LL30, pink) the NIR absorption peaks of the LH2 B800 

BChl and LH1/RC “core” produced centre at 807 nm and 890 ± 0.5 nm 

respectively, while the LH2 “B850-like” BChl peak is obscured as a shoulder at ~ 

818 nm. Both the LH1/RC “core” and the “B850-like” peak are of a lower 

intensity relative to the B800 peak. This relationship between the B800 peak and 

those of the “B850-like” and LH1/RC “core” is observed in membranes from cells 

grown in all thiosulphate growth conditions bar those grown in high light at 40 ̊C. 

When Alc. vinosum cells are cultured in low light intensity at 40 ̊C (LL40, purple) 

the “B850-like” BChl peak centres at 846 ± 0.5 nm, and a LH1/RC “core” is 

slightly blue-shifted to 888 ± 0.5 from where it has been observed in membranes 

from other conditions. In membranes from cells cultured under high light 30 ̊C 

(HL30, red) growth conditions the “B850-like”and LH1/RC “core” peaks centre at 

849 ± 0.5 nm and 889 ± 0.5 nm respectively. The membranes from cells grown in 

high light intensity at 40 ̊C (THL40, dark red) produce the most red-shifted 

“B850-like” peak of all the LH2 complex types, which centres at 857 ± 0.5 nm 

and is at a higher intensity than that of the 807 nm peak. The LH1/RC “core” 

peak is positioned at 890 ± 0.5 nm and is also of a higher intensity relative to the 

807 nm peak.  

 

 



 

 

Figure 3.2 Room temperature NIR absorption spectra of 
grown in the presence of thiosulphate (T) under different  growth conditions (
LL: Low light, 30 ̊C or 
Membranes from Alc. vinosum
peaks in the NIR at 807 
peaks are of a higher intensity than the 807 peak.  Membranes from 
THL30 (red) growth conditions produce two peaks in the NIR at 807 
shoulder at 889 ± 0.5 nm
the 807 peak.   Membranes from 
produce two peaks in the NIR at 807 
846 nm peak and 888 shoulder are of a higher intensity than the 807 peak.  Membranes from 
vinosum grown under TLL30 (pink) growth conditions pr
nm and 890 ± 0.5 nm with a shoulder at ~818 
of a lower intensity than the 807 peak.  

In summary, the B800 BChl present as a broad peak with an apex at 807 nm 

throughout all growth conditions, and the 

LH1/RC “core” shows low variation, centring at 889

produced under all growth conditions. As the temperature or light intensity of 

the growth conditions is increased, 

the middle of the three peaks in the NIR, associated with the excitonically 

coupled “B850-like” 

red-shifts from ~818 nm (TLL30), to 822

849 nm ± 0.5 (THL30), 853

Room temperature NIR absorption spectra of Alc. vinosum
in the presence of thiosulphate (T) under different  growth conditions (

C or 40 ̊C).  
Alc. vinosum grown under THL40 (dark red) growth conditions produce three 

peaks in the NIR at 807 ± 0.5 nm, 857 ± 0.5 nm, and 890 ± 0.5 nm. The 857 nm peak and 890 
peaks are of a higher intensity than the 807 peak.  Membranes from Alc. vinosum

growth conditions produce two peaks in the NIR at 807 ± 0.5 nm
0.5 nm. The 849 nm peak and the 889 nm shoulder are of a lower intensity than 

the 807 peak.   Membranes from Alc. vinosum grown under TLL40 (purple) growt
produce two peaks in the NIR at 807 ± 0.5 nm, 846 ± 0.5 nm and a shoulder at 888 
846 nm peak and 888 shoulder are of a higher intensity than the 807 peak.  Membranes from 

grown under TLL30 (pink) growth conditions produce two peaks in the NIR at 807 
with a shoulder at ~818 ± 0.5 nm. The ~ 818 nm shoulder and 890 peak are 

of a lower intensity than the 807 peak.   

In summary, the B800 BChl present as a broad peak with an apex at 807 nm 

ut all growth conditions, and the absorption peak associated with the 

” shows low variation, centring at 889 ± 1 nm in membranes 

produced under all growth conditions. As the temperature or light intensity of 

the growth conditions is increased, regardless of sulphur source, a red shift of 

the middle of the three peaks in the NIR, associated with the excitonically 

like” BChl of the LH2 complex, is observed. The 

shifts from ~818 nm (TLL30), to 822 ± 0.5 nm (SLL30), 846

(THL30), 853 ± 0.5 nm (SLL40 and SHL30), with the highest values 
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Alc. vinosum membranes from cells 
in the presence of thiosulphate (T) under different  growth conditions ( HL: High light , 

grown under THL40 (dark red) growth conditions produce three 
. The 857 nm peak and 890 

Alc. vinosum grown under 
0.5 nm, 849 ± 0.5 nm, and a 

. The 849 nm peak and the 889 nm shoulder are of a lower intensity than 
grown under TLL40 (purple) growth conditions 

and a shoulder at 888 ± 0.5 nm. The 
846 nm peak and 888 shoulder are of a higher intensity than the 807 peak.  Membranes from Alc. 

oduce two peaks in the NIR at 807 ± 0.5 
. The ~ 818 nm shoulder and 890 peak are 

In summary, the B800 BChl present as a broad peak with an apex at 807 nm 

peak associated with the 

nm in membranes 

produced under all growth conditions. As the temperature or light intensity of 

regardless of sulphur source, a red shift of 

the middle of the three peaks in the NIR, associated with the excitonically 

BChl of the LH2 complex, is observed. The “B850-like” peak 

, 846 ± 0.5 nm (TLL40), 

nm (SLL40 and SHL30), with the highest values 
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at 856-857 ± 0.5 nm (THL40 and SHL40). This would imply a high level of 

variation in the LH2 complex types produced, specifically in the binding of the 

excitonically coupled BChl within the LH2 complex types.  

3.2.2 Low temperature (77 K) absorption spectra of the 
membranes from Alc. vinosum grown under different 
growth conditions 

Reducing the temperature at which absorption spectra are recorded narrows and 

red-shifts some of the absorption bands observed, which improves the resolution 

of peaks in cases where several peaks overlap. Samples were sent to our 

collaborator, Darek Niedzwiedzki at Washington University, to record steady 

state low temperature absorption spectra, at 77 K, of the membranes from 

various growth conditions in order to obtain higher resolution spectra (Figures 

3.3 and 3.4). Low temperature absorption spectra were only acquired for 

membranes from Alc. vinosum cells grown under high light 40 ̊C, high light 30 ̊C, 

and low light 30 ̊C growth conditions as at the time of low temperature 

absorption acquisition the set up for low light 40 ̊C growth conditions had not 

been developed.  

Figure 3.3 shows the low temperature absorption spectra of membranes 

prepared from cells grown under different growth conditions in the presence of 

sulphide. The narrowing of the absorption bands that occurs at low temperatures 

allows us to distinguish the split B800 peaks present at ~ 800 nm, centred at 797 

nm and the other at 808 nm. These peak positions are the same for membranes 

produced under all growth conditions and the 808 nm peak is always of a higher 

intensity than the 797 nm peak. In membranes from SLL30 (Figure 3.3 cyan) 

growth conditions the “B850-like” maximum observed centres at 822 nm and 

produces a shoulder at ~860 nm that was not visible in the absorption spectrum 

measured at room temperature. The LH1/RC “Core” peak centres at 909 nm. 

Membranes from SHL30 (Figure 3.3 green) growth conditions produce a “B850-

like” maximum at 876 nm and the LH1/RC “core” peak at 908-909 nm. Both of 

these maxima are of a lower intensity relative to the B800 peaks. A small 

shoulder is observed at ~ 822 nm in membranes from SHL30 conditions that may 

correspond to another “B850-like” population implying a mix of LH2 complex 

types. The NIR absorption spectrum of membranes produced under SHL40 (Figure 



 

 

3.3 dotted line) conditions show the 797 nm and 808 nm peaks are of a lower 

intensity relative to the 

at 909 nm.  

 

Figure 3.3 Low temperature (
cells grown in the presence of sulphide 
light, LL: Low light, 30 ̊
Membranes from Alc. vinosum
peaks in the NIR at 797 nm, 808 nm, 871 nm and 909 nm. The highest intensity peaks are the 871 
nm and 909 nm peaks, followed by the 808 nm peak. The 797 nm peak is of the lowest intensity. 
Membranes from Alc. vinosum
in the NIR at 797 nm, 808 nm, 873 nm, and 908 nm. The highest intensity peak is the 808 nm 
peak, followed by the 797 nm peak. The 873 nm peak and 908 nm peak are of the lowest intensity. 
Membranes from Alc. vinosum
NIR at 797 nm, 808 nm, 822 nm and 909 nm with a shoulder at ~860 nm. The 808 nm peak is the 
highest intensity followed by the 797 nm and 822 nm peaks. The 909 nm peak is the lowest 
intensity of all the peaks.

Figure 3.4 shows the

prepared from Alc. vinosum

different growth conditions. As observed in membranes prepared from cells 

grown in the presence of sulphide, the two absorptio

are distinguishable from each other at 77 K, and under all conditions the 808 nm 

) conditions show the 797 nm and 808 nm peaks are of a lower 

intensity relative to the “B850-like” peak at 871 nm and the LH1/RC “Core peak 

Low temperature ( 77 K) NIR absorption spectra of Alc. vinosum
cells grown in the presence of sulphide (S) under different growth conditions 

30 ̊C or 40 ̊C).  
Alc. vinosum grown under SHL40 (dotted line) growth conditions produce three 

797 nm, 808 nm, 871 nm and 909 nm. The highest intensity peaks are the 871 
nm and 909 nm peaks, followed by the 808 nm peak. The 797 nm peak is of the lowest intensity. 

Alc. vinosum grown under SHL30 (green) growth conditions produce two pea
in the NIR at 797 nm, 808 nm, 873 nm, and 908 nm. The highest intensity peak is the 808 nm 
peak, followed by the 797 nm peak. The 873 nm peak and 908 nm peak are of the lowest intensity. 

Alc. vinosum grown under SLL30 (cyan) growth condit
NIR at 797 nm, 808 nm, 822 nm and 909 nm with a shoulder at ~860 nm. The 808 nm peak is the 
highest intensity followed by the 797 nm and 822 nm peaks. The 909 nm peak is the lowest 
intensity of all the peaks.  

Figure 3.4 shows the low temperature NIR absorption spectra of membranes 

Alc. vinosum cells grown in the presence of thiosulphate under 

different growth conditions. As observed in membranes prepared from cells 

grown in the presence of sulphide, the two absorption bands present at ~ 800 nm 

are distinguishable from each other at 77 K, and under all conditions the 808 nm 
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) conditions show the 797 nm and 808 nm peaks are of a lower 

at 871 nm and the LH1/RC “Core peak 

  

Alc. vinosum membranes from 
under different growth conditions (HL: High 

grown under SHL40 (dotted line) growth conditions produce three 
797 nm, 808 nm, 871 nm and 909 nm. The highest intensity peaks are the 871 

nm and 909 nm peaks, followed by the 808 nm peak. The 797 nm peak is of the lowest intensity. 
grown under SHL30 (green) growth conditions produce two peaks 

in the NIR at 797 nm, 808 nm, 873 nm, and 908 nm. The highest intensity peak is the 808 nm 
peak, followed by the 797 nm peak. The 873 nm peak and 908 nm peak are of the lowest intensity. 

grown under SLL30 (cyan) growth conditions produce peaks in the 
NIR at 797 nm, 808 nm, 822 nm and 909 nm with a shoulder at ~860 nm. The 808 nm peak is the 
highest intensity followed by the 797 nm and 822 nm peaks. The 909 nm peak is the lowest 

low temperature NIR absorption spectra of membranes 

cells grown in the presence of thiosulphate under 

different growth conditions. As observed in membranes prepared from cells 

n bands present at ~ 800 nm 

are distinguishable from each other at 77 K, and under all conditions the 808 nm 
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peak is of a higher intensity than the 797 nm peak. In membranes produced 

under TLL30 (Figure 3.4 pink) growth conditions the split B800 peaks are of a 

higher intensity than all other peaks present. The “B850-like” peak that presents 

as a shoulder in room temperature spectra at ~818 nm is observed here as a 

distinct, red-shifted peak at 823 nm. In TLL30 membranes, the shoulder at 852 

nm is more distinct than the one observed in SLL30 membranes. The LH1/RC 

“core” maximum centres at 908-908 nm. In THL30 growth conditions (Figure 3.4 

red) the B800 peaks are of a slightly higher intensity relative to the other peaks 

present. In HL30 conditions there is a small shoulder at ~ 825 nm, and a distinct 

peak at 866 nm, potentially relating to two different populations of “B850-like” 

BChl and thus two LH2 complex types present. The LH1/RC “core” absorption 

peak centres at 908 nm and relates to the LH1/RC “core”. Under HL40 growth 

conditions (Figure 3.4 dark red) the “B850-like” peak centres at 870 nm and the 

LH1/RC “Core” is positioned at 907 nm. These are the are the only conditions to 

produce higher intensity “B850-like” and LH1/RC “core” peaks relative to the 

808 nm peak. Additionally, the 797 nm band produces a shoulder instead of a 

distinct peak.  



 

 

Figure 3.4 Low temperature (
cells grown in the presence 
light, LL: Low light, 30 ̊
Membranes from Alc. vinosum
peaks in the NIR at 797 nm, 808 nm, 870 nm and 907 nm.  The hig
nm followed closely by the 808 nm and 907 nm peaks. The lowest intensity peak is the 797 nm 
peak. Membranes from 
the NIR at 797nm, 808 nm, 866 nm, 908 nm
peak centres at 808 nm followed by the 797 nm peak. The peaks at 866 nm and 908 nm are of 
nearly equal intensity. Membranes from 
produce peaks in the NIR at 797 nm, 808 nm, 823 nm, 908 nm, with a shoulder at ~ 852 nm. The 
highest intensity peak centres at 808 nm followed by the 797 nm and 823 nm peaks. The peak at 
908 nm is of the lowest i

The values of the room temperature and low temperature NIR Qy maxima of the 

light-harvesting complexes contained within the photosynthetic membranes 

produced by Alc. vinosum

table 3.1. The values obtained at low temperature are in agreement with 

previous values observed at 77 K and 80 K of membranes from 

155). While the low temperature absorption spectra of 

most peaks present, it did not resolve all peaks. The light

must be extracted from the membranes and analysed individually

peak identities and begin to identify LH2 complex types. 

Low temperature ( 77 K) NIR absorption spectra of Alc. vinosum
cells grown in the presence of thiosulphate (T) under different growth conditions 

30 ̊C or 40 ̊C).  
Alc. vinosum grown under THL40 (dark red) growth conditions produce three 

peaks in the NIR at 797 nm, 808 nm, 870 nm and 907 nm.  The highest intensity peak is the 870 
nm followed closely by the 808 nm and 907 nm peaks. The lowest intensity peak is the 797 nm 
peak. Membranes from Alc. vinosum grown under THL30 (red) growth conditions produce peaks in 
the NIR at 797nm, 808 nm, 866 nm, 908 nm, with a shoulder at ~825 nm. The highest intensity 
peak centres at 808 nm followed by the 797 nm peak. The peaks at 866 nm and 908 nm are of 
nearly equal intensity. Membranes from Alc. vinosum grown under TLL30 (pink) growth conditions 
produce peaks in the NIR at 797 nm, 808 nm, 823 nm, 908 nm, with a shoulder at ~ 852 nm. The 
highest intensity peak centres at 808 nm followed by the 797 nm and 823 nm peaks. The peak at 
908 nm is of the lowest intensity with the exception of the shoulder at ~ 856 nm. 

The values of the room temperature and low temperature NIR Qy maxima of the 

harvesting complexes contained within the photosynthetic membranes 

Alc. vinosum under different growth conditions can be found in 

table 3.1. The values obtained at low temperature are in agreement with 

previous values observed at 77 K and 80 K of membranes from 

While the low temperature absorption spectra of the membranes resolved 

most peaks present, it did not resolve all peaks. The light-harvesting complexes 

must be extracted from the membranes and analysed individually

and begin to identify LH2 complex types.  
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Alc. vinosum membranes from 
under different growth conditions (HL: High 

grown under THL40 (dark red) growth conditions produce three 
hest intensity peak is the 870 

nm followed closely by the 808 nm and 907 nm peaks. The lowest intensity peak is the 797 nm 
grown under THL30 (red) growth conditions produce peaks in 

, with a shoulder at ~825 nm. The highest intensity 
peak centres at 808 nm followed by the 797 nm peak. The peaks at 866 nm and 908 nm are of 

grown under TLL30 (pink) growth conditions 
produce peaks in the NIR at 797 nm, 808 nm, 823 nm, 908 nm, with a shoulder at ~ 852 nm. The 
highest intensity peak centres at 808 nm followed by the 797 nm and 823 nm peaks. The peak at 

n of the shoulder at ~ 856 nm.  

The values of the room temperature and low temperature NIR Qy maxima of the 

harvesting complexes contained within the photosynthetic membranes 

onditions can be found in 

table 3.1. The values obtained at low temperature are in agreement with 

previous values observed at 77 K and 80 K of membranes from Alc. vinosum (146, 

the membranes resolved 

harvesting complexes 

must be extracted from the membranes and analysed individually to confirm 
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Table 3.1 Room temperature (RT) and 77 K (LT) wavel ength values of Qy maxima produced 
by the light-harvesting complexes in membranes from  Alc. vinosum cells cultured under 
different growth conditions.  
Peaks that appear as a shoulder are defined by (sh). The growth conditions are defined as S: 
sulphide, T: thiosulphate, HL: High light, LL: Low light, 30 ̊C or 40 ̊C. 

 SLL30 SLL40 SHL30 SHL40 TLL30 TLL40 THL30 THL40 
RT         

B800 peak 

(nm) 

807 807 807 807 807 807 807 807 

“B850-

like”peak 

822 853 853 856 818(sh) 846 849 857 

LH1/RC 

“core” 

peak (nm) 

890 888-

890(sh) 

888(sh) 888 890 888 889 890 

LT         

B800 peaks 

(nm) 

797 

808 

 

 

796 

808 

797 

808 

796-797 

808 

 799 

808 

799(sh) 

808 

“B850-like” 

peaks (nm) 

825 

~860(sh) 

 873 

 

871 823 

852(sh) 

 825(sh) 

866 

870 

LH1/RC 

“Core” 

peak (nm) 

909  908-909 909 908-909  908-909 907 

 

3.2.3 Detergent trials 

Typically, purple photosynthetic bacterial membranes have been solubilised in 

detergent to extract the light-harvesting machinery, LH1/RC “core” complex 

and LH2 complex types, which are then separated using sucrose density 

centrifugation gradients (SDCG) (113, 156). Sucrose density gradients are 

created through the layering of decreasing concentrations of sucrose solutions, 

in 20 mM Tris-HCl (pH 8.0), in the presence of the CMC of the chosen detergent, 

into a centrifugation tube onto which the solubilised complexes are aliquoted (as 

outlined in Methods and Materials section 2.4.1). As different detergents form 

different sized micelles, the overall density of the micelle-complex structure 

and therefore the separation of the complexes will vary depending on the 

detergent present.  

Previous work on the light-harvesting machinery from purple photosynthetic 

bacteria has used detergents such as lauryldimethylamine oxide (LDAO) (101, 

115, 140, 141), decyl maltoside (DM)(81)  and β-dodecyl maltoside (DDM) (113, 

115). These detergents have different levels of efficacy when solubilising 
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complexes from membranes. Additionally, some detergents are harsher than 

others, e.g. LDAO is very effective solubilising agent however can cause 

degradation of complexes, while DM and DDM are less effective at solubilising 

membranes however they are less detrimental to the complexes.  

Membranes from cells cultured in thiosulphate high light 40 ̊C growth conditions 

(as outlined in Methods and Materials sections 2.2 and 2.3) were used for 

solubilisation experiments. Membranes were solubilised and the absorption 

spectra of the solubilised material were recorded prior to loading on SDCG (as 

outlined in Methods and Materials section 2.4.1). Membranes solubilised with DM 

and LDAO produce slightly blue shifted peaks relative to the values observed in 

the membranes (Figure 3.5). After solubilisation in DM, the apex of the B800 

peak blue-shifts from 807 nm to 804 nm, and the second peak of the split B800 

becomes more prominent at 801 nm. The “B850-like” BChl peak, centred at 857 

nm in the membranes, blue-shifts to 847 nm, while the LH1/RC “core” complex 

blue-shifts from 890 nm to 888 nm after DM solubilisation. The intensities of the 

847 nm and the 888 nm peaks relative to the 804 nm peak are reduced 

moderately however both peaks are still of a higher intensity than the 804 nm 

peak after DM solubilisation.  After LDAO solubilisation of the membranes, the 

wavelength shift of the split B800 peaks are the same as observed after DM 

solubilisation although the height of the split B800 peaks to each other is 

reversed as the 801 nm peak changes to a higher intensity than the 804 nm. The 

“B850-like” peak is reduced and blue-shifted from 857 nm to 840 nm and is of a 

lower intensity relative to the B800 peaks. The LH1/RC “core” peak is reduced, 

nearly completely, to a shoulder. This reduction of the “B850-like” peak in 

addition to the change in ratio between the 804 and 801 nm peaks implies some 

degradation of the LH2 complexes during LDAO solubilisation. Additionally, the 

near total loss of the LH1/RC “core” associated peak would indicate a dramatic 

loss of the LH1/RC “core” complex.  



 

 

Figure 3.5 NIR absorption spectra of 
(w/v) or 1 % LDAO (v/v). 
The absorption peaks produced by the unsolubilised membranes in the NIR centre at 807 nm, 857 
nm, and 890 nm. After solu
801 nm, 804 nm, and 840 nm. After solubilisation in DM for 30 min the absorption peaks in the NIR 
centre at 801 nm, 804 nm, 847 nm
solubilisation are blue shifted from their position in the membranes however the relative intensities 
of the peaks are unchanged. There is a reduction in the 890 nm peak after LDAO solubilisation and 
the 857 nm peak in the membranes blue shifts to 840 nm an
level than the B800 peak.

Light-harvesting complexes from the solubilised membranes were then separated 

using SDCG in the presence of the CMC of the appropriate detergent (0.1 % LDAO

(v/v) or 0.15 % DM 

The top band on the SDCG consists of free pigment, and the second band is that 

of the crude LH2 fraction (Figure 

the highest density layer, is the LH1/RC “

LH1/RC “Core” complex and the LH2 complex types are visibly present in the 

SDCG after DM solubilisation, albeit with poor separation, while the LDAO trial 

shows a strong LH2 band 

with the observations from the post

LH1/RC “core” complex is degraded during solubilisation with LDAO

NIR absorption spectra of membranes from Alc. vinosum
(w/v) or 1 % LDAO (v/v).  
The absorption peaks produced by the unsolubilised membranes in the NIR centre at 807 nm, 857 
nm, and 890 nm. After solubilisation in LDAO for 30 min the absorption peaks in the NIR centre at 
801 nm, 804 nm, and 840 nm. After solubilisation in DM for 30 min the absorption peaks in the NIR 
centre at 801 nm, 804 nm, 847 nm, and 888 nm. The absorption peaks observed after DM 
olubilisation are blue shifted from their position in the membranes however the relative intensities 

of the peaks are unchanged. There is a reduction in the 890 nm peak after LDAO solubilisation and 
the 857 nm peak in the membranes blue shifts to 840 nm and is reduced in intensity to a lower 
level than the B800 peak. 

harvesting complexes from the solubilised membranes were then separated 

using SDCG in the presence of the CMC of the appropriate detergent (0.1 % LDAO

 (w/v)) (as outlined in Methods and Materials section

The top band on the SDCG consists of free pigment, and the second band is that 

of the crude LH2 fraction (Figure 3.6). The bottom band, which equilibrates into 

the highest density layer, is the LH1/RC “core” complex. Both bands of the 

LH1/RC “Core” complex and the LH2 complex types are visibly present in the 

SDCG after DM solubilisation, albeit with poor separation, while the LDAO trial 

shows a strong LH2 band with a negligible LH1/RC “core” band. This concurs 

h the observations from the post-solubilisation absorption spectra

LH1/RC “core” complex is degraded during solubilisation with LDAO
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Alc. vinosum solubilised in 1.5 % DM 

The absorption peaks produced by the unsolubilised membranes in the NIR centre at 807 nm, 857 
bilisation in LDAO for 30 min the absorption peaks in the NIR centre at 

801 nm, 804 nm, and 840 nm. After solubilisation in DM for 30 min the absorption peaks in the NIR 
. The absorption peaks observed after DM 

olubilisation are blue shifted from their position in the membranes however the relative intensities 
of the peaks are unchanged. There is a reduction in the 890 nm peak after LDAO solubilisation and 

d is reduced in intensity to a lower 

harvesting complexes from the solubilised membranes were then separated 

using SDCG in the presence of the CMC of the appropriate detergent (0.1 % LDAO 

ed in Methods and Materials section 2.4.1). 

The top band on the SDCG consists of free pigment, and the second band is that 

). The bottom band, which equilibrates into 

lex. Both bands of the 

LH1/RC “Core” complex and the LH2 complex types are visibly present in the 

SDCG after DM solubilisation, albeit with poor separation, while the LDAO trial 

” band. This concurs 

solubilisation absorption spectra that the 

LH1/RC “core” complex is degraded during solubilisation with LDAO. 
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Figure 3.6 The LH1/RC “core” and LH2 complexes from  Alc. vinosum solubilised in either 
LDAO or DM and separated by sucrose density centrif ugation.  
After solubilisation in DM and separation by SDCG the pink LH1/RC “core” band equilibrated to ~ 
1.6 M sucrose and the red LH2 complex band equilibrated to ~ 1.4 M sucrose. The level of 
separation was very poor however both bands were clearly observable. After solubilisation in 
LDAO and separation by SDCG the faint pink LH1/RC “core” band equilibrated to ~ 0.6 M sucrose 
and the red LH2 complex band equilibrated to 0.4 M sucrose. The level of separation was very 
good although the LH1/RC “core” band was very faint, suggesting the LH1/RC “core” complex had 
degraded in the presence of LDAO.  

The deleterious effects of LDAO on the peaks of both the LH2 and LH1/RC 

“core” complexes rule it out as a detergent for solubilisation. Solubilisation with 

DM changes the position of the LH2 and LH1/RC “core” maxima and the ratio of 

the B800:B850 becomes closer to 1:1 than observed in the membranes. To 

further examine the changes in spectra due to DM, a longer solubilisation (1 

hour) (as outlined in Methods and materials section 2.5.2) was repeated on fresh 

membranes using DM and the spectra of the SDCG crude fractions recorded and 

compared to unsolubilised membranes (Figure 3.7). The peak position recorded 

of the LH1/RC “core” complex was unchanged at 890 nm (Figure 3.7 red) 

however the NIR absorption maxima of the crude LH2 complex fraction (Figure 

3.7 blue) was blue-shifted from the values seen in the membrane bound 

complexes and the solubilised chromatophores to 804 nm and 842 nm. This 

difference in the maxima between the post-solubilisation and post-SDCG 

fractions may be due the presence of a mix of both detergent-micelles and 

mixed phospholipid-detergent micelles straight after solubilisation.  



 

 

Figure 3.7 NIR absorption spectra of 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 1.5 % 
DM (w/v).  
The  Qy maxima observed from the unsolubilised membranes (purple) centre at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 804 nm, 842 
nm and 890 nm. The Qy peaks from the LH2 fraction are of nearly equal intensities. T
maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm and 802 nm.

DDM was tested as an alternative to DM as it

longer hydrocarbon chain. Membranes prepared from cells grown in thiosulphate 

at 40 ºC in high light 

were solubilised in a concentration of ten times the CMC of DDM (2 % (w/v)) and 

loaded onto SDCGs in the presence of DDM at the CMC (0.02 % (w/v))

(as described in methods and materials section

sufficient to extract the light

the separation observed in the SDCG of the LH1/RC “

complexes types was more pronounced than that of the SDCG in DM. The Qy 

maxima observed after separation show a blue

the LH2 complex types present in the membranes

peak blue-shifts to 803 nm and the other

the B850 peak blue

nm. The LH1/RC “c

NIR absorption spectra of Alc. vinosum membranes and sucrose density 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 1.5 % 

ma observed from the unsolubilised membranes (purple) centre at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 804 nm, 842 
nm and 890 nm. The Qy peaks from the LH2 fraction are of nearly equal intensities. T
maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm and 802 nm.

was tested as an alternative to DM as it is a similar detergent but 

longer hydrocarbon chain. Membranes prepared from cells grown in thiosulphate 

C in high light (as described in methods and materials section 

were solubilised in a concentration of ten times the CMC of DDM (2 % (w/v)) and 

loaded onto SDCGs in the presence of DDM at the CMC (0.02 % (w/v))

(as described in methods and materials section 2.5.1). DDM solubilisation was 

sufficient to extract the light-harvesting machinery from the membranes, and 

the separation observed in the SDCG of the LH1/RC “core” complex and the LH2 

es was more pronounced than that of the SDCG in DM. The Qy 

maxima observed after separation show a blue-shift of the peaks associated with 

the LH2 complex types present in the membranes (Figure 3.

shifts to 803 nm and the other B800 peak presents at 796 nm, while 

the B850 peak blue-shifts to 848 nm from the membrane bound position of 856 

core” peak at 890 nm does not change at all in DDM
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membranes and sucrose density 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 1.5 % 

ma observed from the unsolubilised membranes (purple) centre at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 804 nm, 842 
nm and 890 nm. The Qy peaks from the LH2 fraction are of nearly equal intensities. The Qy 
maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm and 802 nm. 

is a similar detergent but contains a 

longer hydrocarbon chain. Membranes prepared from cells grown in thiosulphate 

(as described in methods and materials section 2.2 and 2.3) 

were solubilised in a concentration of ten times the CMC of DDM (2 % (w/v)) and 

loaded onto SDCGs in the presence of DDM at the CMC (0.02 % (w/v)) gradients 

. DDM solubilisation was 

harvesting machinery from the membranes, and 

” complex and the LH2 

es was more pronounced than that of the SDCG in DM. The Qy 

shift of the peaks associated with 

(Figure 3.8 blue). The 808 nm 

B800 peak presents at 796 nm, while 

shifts to 848 nm from the membrane bound position of 856 

” peak at 890 nm does not change at all in DDM (Figure 



 

 

3.8 red). The ratio of the intensity of the B800 peaks to the “B850

% (w/v) DDM is more representative of the peaks seen in the membranes than 

LH2 complexes in the presence of DM (0.15 % (w/v)). The improved separation of 

the fractions of the

the good B800:B850 peak ratio makes DDM a preferable detergent for 

characterisation of the LH2 complex types. A draw back to the use of DDM is 

that it cannot be dialysed out or detergent exchanged, therefore DM should be 

used if a downstream process requires the subs

Figure 3.8 NIR absorption spectra of 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 
DDM (w/v).  
The Qy maxima observed from the unsolubilised membranes (purple) centred at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 803 nm
nm and 848 nm. The Qy maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm 
and 803 nm. The longest wavelength 
than the B800 peak. 

3.2.4 Sucrose Density Centrifugation Step Gradient 

After membrane solubilisation, the light

from each other using SDCG

2.4.2). The sucrose density gradient used to separate the LH1/RC “Core” 

complex from the LH2 

). The ratio of the intensity of the B800 peaks to the “B850

% (w/v) DDM is more representative of the peaks seen in the membranes than 

LH2 complexes in the presence of DM (0.15 % (w/v)). The improved separation of 

the LH1/RC “core” and LH2 complexes, reduced blue

00:B850 peak ratio makes DDM a preferable detergent for 

characterisation of the LH2 complex types. A draw back to the use of DDM is 

that it cannot be dialysed out or detergent exchanged, therefore DM should be 

used if a downstream process requires the subsequent removal of a detergent. 

NIR absorption spectra of Alc. vinosum membranes and sucrose density 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 

The Qy maxima observed from the unsolubilised membranes (purple) centred at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 803 nm

and 848 nm. The Qy maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm 
longest wavelength Qy absorption peak in the LH2 fraction is of a higher intensity 

Sucrose Density Centrifugation Step Gradient 

After membrane solubilisation, the light-harvesting complexes are separated 

from each other using SDCG (as described in methods and materials section 

. The sucrose density gradient used to separate the LH1/RC “Core” 

complex from the LH2 complex types solubilised in DDM required optimisation to 
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). The ratio of the intensity of the B800 peaks to the “B850-like” in 0.02 

% (w/v) DDM is more representative of the peaks seen in the membranes than 

LH2 complexes in the presence of DM (0.15 % (w/v)). The improved separation of 

, reduced blue-shift and 

00:B850 peak ratio makes DDM a preferable detergent for 

characterisation of the LH2 complex types. A draw back to the use of DDM is 

that it cannot be dialysed out or detergent exchanged, therefore DM should be 

equent removal of a detergent.  

 

membranes and sucrose density 
centrifugation gradient fractions of LH2 and LH1/RC  “Core” complexes solubilised in 2 % 

The Qy maxima observed from the unsolubilised membranes (purple) centred at 807 nm, 856 nm, 
and 890 nm. The Qy maxima observed from the crude LH2 fraction (blue) centre at 803 nm, 796 

and 848 nm. The Qy maxima from the LH1/RC “core” complex fraction (red) centre at 890 nm 
peak in the LH2 fraction is of a higher intensity 

Sucrose Density Centrifugation Step Gradient optimisation 

harvesting complexes are separated 

(as described in methods and materials section 

. The sucrose density gradient used to separate the LH1/RC “Core” 

complex types solubilised in DDM required optimisation to 
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attain the best separation possible for this detergent. Membranes from Alc. 

vinosum cells grown under thiosulphate, high light 40 ºC growth conditions and 

prepared as per Methods and Materials sections 2.2 and 2.3 were used to 

optimize the SDC gradients used. The initial protocol was for sucrose 

concentration steps of 0.6 M, 0.8 M, 1.0 M and 1.2 M at volumes of 5.5 ml, 6 ml, 

6 ml, and 5.5 ml respectively (113), with 2 ml solubilised membranes layered on 

top of this gradient at an OD856 of 50. The LH1/RC “Core” complex reached 

equilibrium at approximately ~ 1.0 M sucrose, while the LH2 equilibrated in the 

concentration directly above it at ~ 0.8 M sucrose. The standard protocol 

produced overloaded gradients with poor separation of the LH1/RC “Core” band 

from the LH2 complex band, so these were repeated with the lower volume of 1 

ml solubilised light-harvesting complexes at OD856 of 25  added (Figure 3.9 A). 

Further adaptations were to increase the volume of the sucrose concentrations 

that the complexes equilibrated into to improve the separation. Volumes were 

changed to 3 ml, 8 ml, 8 ml, and 3 ml of 0.6 M, 0.8 M, 1.0 M and 1.2 M 

respectively. These changes improved separation (Figure 3.9 B) however an 

additional band of 0.9 M sucrose was added to the step gradient to explore the 

possibility of improving the separation further. The new volumes used were 3 

ml, 6 ml, 6 ml, 6 ml, and 3 ml of 1.2 M, 1.0 M, 0.9 M, 0.8 M, and 0.6 M 

respectively. The addition of 0.9 M sucrose did not affect the separation of the 

LH2 and LH1/RC “Core” as much as expected as the LH2 equilibrated to 0.9 M 

(Figure 3.9 C). 

 

 

 



 

 

Figure 3.9 LH1/RC “core” and LH2 complexes from 
density centrifugation. 
Different volumes of each sucrose concentration were used to optimise the level of separation 
between the LH1/RC “core” and the LH2 complex types. Tube A consisted of 5.5 ml, 6 ml, 6 ml, 
and 5.5 ml of 1.2 M, 1.0 M, 0.8 M and 0.6 M, respectively, as had bee
(113). Tube B consisted of 3 ml, 8 ml, 8 ml, and 3 ml of 1.2 M, 1.0 M, 0.8 M and 0.6 M, 
respectively. Tube C consisted of 2 ml, 6 ml, 6 ml, 6 ml, and 2 ml of 1.2 M, 1.0 M
0.6 M, respectively. All sucrose density gradients resulted in two distinct bands with a diffuse band 
of free pigment. The LH1/RC “core” band consistently equilibrated to ~ 0.9
LH2 complex equilibrated to ~ 0.8 M
band improved when the volumes of 0.8 M and 1.0 M sucrose were increased and was best when 
0.9 M sucrose was used in the gradient.  

3.3 Composition of LH2 crude extracts from cells grown under 
differe nt growth conditions

Once the LH1/RC “

membranes and separated from each other

section 2.5.1), the Qy peaks of the crude LH2 fractions were examined using 

room temperature absorption spectroscopy. The removal of the membranes 

reduced the level of light scattering, allowing the second set of pigments 

present, the carotenoids, to be observed (see Introduction section 

apparent mixed composition of carotenoi

spectroscopic analysis of the carotenoids impossible without extraction and 

individual isolation and analysis. For this reason, carotenoid peaks will be 

examined however analysis of the composition of the carotenoids 

out in Chapter four

LH1/RC “core” and LH2 complexes from Alc. vinosum separated by sucrose 
density centrifugation.  
Different volumes of each sucrose concentration were used to optimise the level of separation 
between the LH1/RC “core” and the LH2 complex types. Tube A consisted of 5.5 ml, 6 ml, 6 ml, 
and 5.5 ml of 1.2 M, 1.0 M, 0.8 M and 0.6 M, respectively, as had been used in previous work 

. Tube B consisted of 3 ml, 8 ml, 8 ml, and 3 ml of 1.2 M, 1.0 M, 0.8 M and 0.6 M, 
respectively. Tube C consisted of 2 ml, 6 ml, 6 ml, 6 ml, and 2 ml of 1.2 M, 1.0 M
0.6 M, respectively. All sucrose density gradients resulted in two distinct bands with a diffuse band 
of free pigment. The LH1/RC “core” band consistently equilibrated to ~ 0.9
LH2 complex equilibrated to ~ 0.8 M sucrose. The separation between the LH1/RC “core” and LH2 
band improved when the volumes of 0.8 M and 1.0 M sucrose were increased and was best when 
0.9 M sucrose was used in the gradient.   

Composition of LH2 crude extracts from cells grown under 
nt growth conditions  

Once the LH1/RC “core” complex and LH2 complexes were extracted from the 

membranes and separated from each other (As outlined in Methods and Materials 

, the Qy peaks of the crude LH2 fractions were examined using 

perature absorption spectroscopy. The removal of the membranes 

reduced the level of light scattering, allowing the second set of pigments 

present, the carotenoids, to be observed (see Introduction section 

apparent mixed composition of carotenoids throughout all LH2 fractions makes 

spectroscopic analysis of the carotenoids impossible without extraction and 

individual isolation and analysis. For this reason, carotenoid peaks will be 

examined however analysis of the composition of the carotenoids 

out in Chapter four. 
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separated by sucrose 

Different volumes of each sucrose concentration were used to optimise the level of separation 
between the LH1/RC “core” and the LH2 complex types. Tube A consisted of 5.5 ml, 6 ml, 6 ml, 

n used in previous work 
. Tube B consisted of 3 ml, 8 ml, 8 ml, and 3 ml of 1.2 M, 1.0 M, 0.8 M and 0.6 M, 

respectively. Tube C consisted of 2 ml, 6 ml, 6 ml, 6 ml, and 2 ml of 1.2 M, 1.0 M, 0.9 M, 0.8 M and 
0.6 M, respectively. All sucrose density gradients resulted in two distinct bands with a diffuse band 
of free pigment. The LH1/RC “core” band consistently equilibrated to ~ 0.9-1.0 M sucrose, while the 

sucrose. The separation between the LH1/RC “core” and LH2 
band improved when the volumes of 0.8 M and 1.0 M sucrose were increased and was best when 

Composition of LH2 crude extracts from cells grown under 

” complex and LH2 complexes were extracted from the 

(As outlined in Methods and Materials 

, the Qy peaks of the crude LH2 fractions were examined using 

perature absorption spectroscopy. The removal of the membranes 

reduced the level of light scattering, allowing the second set of pigments 

present, the carotenoids, to be observed (see Introduction section 2.2.1). The 

ds throughout all LH2 fractions makes 

spectroscopic analysis of the carotenoids impossible without extraction and 

individual isolation and analysis. For this reason, carotenoid peaks will be 

examined however analysis of the composition of the carotenoids will be carried 
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3.3.1 Room temperature absorption spectroscopy studies of  
crude LH2 fractions 

As postulated from spectroscopic analysis of the membranes, under different 

growth conditions Alc. vinosum seems to produce a mix of LH2 complex types. It 

is observable in the crude LH2 extract from SDCG that under high light 40 ̊C 

growth conditions Alc. vinosum produces a near identical LH2 mix regardless of 

the sulphur source provided during growth (Figure 3.10). The maxima of which is 

observed at 798 nm, 803 nm and 848 ±1 nm for THL40 (Figure 3.10 dark red) and 

849 ±1 nm for SHL40 (Figure 3.10 dark blue) growth conditions. The absorption 

bands of the carotenoids present can be observed and the complement of 

carotenoids present in the LH2 fractions from both thiosulphate and sulphide 

HL40 seem to be very similar. There is a single peak at 487.5 ±0.5 nm in the 

absorption spectrum of the extract from THL40 growth conditions, and 488 ±0.5 

nm in the absorption spectrum of the extract from SHL40 growth conditions. The 

two absorption shoulders observed on either side of the main peak centre at ~ 

461 ±1 nm and ~ 522 ±1 nm in SDCG from cells grown under high light at 40 ̊C.  

The LH1/RC “core” and LH2 from Alc. vinosum grown under both SHL40 and 

THL40 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.10 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SHL40 and THL40 growth conditions. The LH1/RC 

“core” complex produced under SHL40 growth conditions appears to be deeper 

pink in colour but this is most probably a variation in the concentration of 

solubilised light-harvesting complexes loaded onto the sucrose gradient. 



 

 

Figure 3.10 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under high light (HL), 40 
The LH2 fraction produced under SHL40 (Blue) growth conditions produces peaks at 488
590 nm, 798 nm, 803 nm, and 849
The LH2 fraction produced under THL40 (red) growth conditions produces peaks at 487
590 nm, 798 nm, 803 nm, and 848
Insert shows LH1/RC “core” and LH2 complexes produced unde
conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
and 1.2 M sucrose, in 20 mM Tris
respectively.  The LH1/RC “core” complex eq
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 
aboved the LH2 band at ~ 0.6 M sucrose.

The sulphur source produces a negligible effect on the mix 

produced under low light 30 

broad, maximum at 802 nm with a shoulder at ~ 820 nm

spectra. Interestingly the Qx peaks seem to be broader in these fractions than 

the Qx peaks observed in 

from HL40 growth conditions

fractions produced in the presence of thiosulphate produce a

at 488.5 ±1 nm, with a 

shoulder at ~ 518 ±3 nm than that observed in the HL40 fractions. This possibly 

relates to a larger fraction of carotenoids with longer conjugated double bond 

systems. In cells grown is the presence o

observed in the carotenoid peaks as they centre at 489 ±1, ~462 ±1 nm, and ~ 

525 ±1 nm.  

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under high light (HL), 40 ̊C growth conditions. 
The LH2 fraction produced under SHL40 (Blue) growth conditions produces peaks at 488
590 nm, 798 nm, 803 nm, and 849 ± 1 nm with two shoulders at ~460 ± 1 
The LH2 fraction produced under THL40 (red) growth conditions produces peaks at 487
590 nm, 798 nm, 803 nm, and 848 ± 1 nm with two shoulders at ~460  ± 1 
Insert shows LH1/RC “core” and LH2 complexes produced under SHL40 and THL40 growth 
conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
and 1.2 M sucrose, in 20 mM Tris-HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 
aboved the LH2 band at ~ 0.6 M sucrose. 

The sulphur source produces a negligible effect on the mix 

low light 30 ̊C growth conditions (Figure 3.

broad, maximum at 802 nm with a shoulder at ~ 820 nm in the absorption 

nterestingly the Qx peaks seem to be broader in these fractions than 

the Qx peaks observed in the absorption spectra from the LH2 fraction extracted 

growth conditions. The carotenoid peaks present in low light LH2 

fractions produced in the presence of thiosulphate produce a

at 488.5 ±1 nm, with a shoulder at ~ 460 ±1 nm and a higher intensity, broader 

shoulder at ~ 518 ±3 nm than that observed in the HL40 fractions. This possibly 

relates to a larger fraction of carotenoids with longer conjugated double bond 

systems. In cells grown is the presence of sulphide small differences

in the carotenoid peaks as they centre at 489 ±1, ~462 ±1 nm, and ~ 
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Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
grown in the presence of 

C growth conditions.  
The LH2 fraction produced under SHL40 (Blue) growth conditions produces peaks at 488 ± 0.5 nm, 

± 1 nm and ~525 ± 1 nm. 
The LH2 fraction produced under THL40 (red) growth conditions produces peaks at 487 ± 0.5 nm, 

± 1 nm and ~523 ± 1 nm.  
r SHL40 and THL40 growth 

conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 

uilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 

The sulphur source produces a negligible effect on the mix of LH2 complex types 

conditions (Figure 3.11) showing a single 

in the absorption 

nterestingly the Qx peaks seem to be broader in these fractions than 

absorption spectra from the LH2 fraction extracted 

. The carotenoid peaks present in low light LH2 

fractions produced in the presence of thiosulphate produce an absorption peak 

shoulder at ~ 460 ±1 nm and a higher intensity, broader 

shoulder at ~ 518 ±3 nm than that observed in the HL40 fractions. This possibly 

relates to a larger fraction of carotenoids with longer conjugated double bond 

f sulphide small differences are 

in the carotenoid peaks as they centre at 489 ±1, ~462 ±1 nm, and ~ 



 

 

The LH1/RC “core” and LH2 from 

TLL30 growth conditions equilibrate to the same concentrations 

3.11 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SLL30 and TLL30 growth conditions. 

Figure 3.11 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under low light ( LL), 3
The LH2 fraction produced under SLL30(cyan) growth conditions produces peaks at 489
590 nm, 802 nm, and three shoulders at ~ 822 nm, ~460
fraction produced under TLL30 (pink) growth conditio
802 nm, and three shoulders at ~821 nm, ~460
“core” and LH2 complexes produced under SLL30 and TLL30 growth conditions separated on a 
sucrose density centrifugation gradi
mM Tris-HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml respectively.  The LH1/RC “core” 
complex equilibrated to ~ 1.0 M and the LH2 complex equilibrated to ~ 0.8 M sucrose. Free 
pigment present in the sucrose density gradient equilibrated aboved the LH2 band at ~ 0.6 M 
sucrose.  

There is variation observed in the absorption spectra of the LH2 fractions 

produced by Alc. vinosum

presence of different 

between 798 nm and 803 nm when cells have been cultured in the presence of 

both sulphide or thiosulphate however there is a ~ 7 nm difference between the 

“B850-like” peaks pro

after culturing cells in sulphide centres at 848 ± 1 nm (Figure 3.

cells cultured in thiosulphate produce a crude LH2 fraction with a maximum at 

The LH1/RC “core” and LH2 from Alc. vinosum grown under both SLL30 and 

TLL30 growth conditions equilibrate to the same concentrations 

3.11 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SLL30 and TLL30 growth conditions. 

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under low light ( LL), 30 ̊C growth conditions. 
The LH2 fraction produced under SLL30(cyan) growth conditions produces peaks at 489
590 nm, 802 nm, and three shoulders at ~ 822 nm, ~460 ± 1 nm, and ~525
fraction produced under TLL30 (pink) growth conditions produces peaks at 489
802 nm, and three shoulders at ~821 nm, ~460 ± 1 nm and ~530 ± 1 nm.  Insert shows LH1/RC 
“core” and LH2 complexes produced under SLL30 and TLL30 growth conditions separated on a 
sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, and 1.2 M sucrose, in 20 

HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml respectively.  The LH1/RC “core” 
complex equilibrated to ~ 1.0 M and the LH2 complex equilibrated to ~ 0.8 M sucrose. Free 

present in the sucrose density gradient equilibrated aboved the LH2 band at ~ 0.6 M 

observed in the absorption spectra of the LH2 fractions 

Alc. vinosum grown under high light 30 ̊C growth conditions

presence of different sulphur sources. The B800 peaks appear as a plateau 

between 798 nm and 803 nm when cells have been cultured in the presence of 

both sulphide or thiosulphate however there is a ~ 7 nm difference between the 

peaks produced (Figure 3.12). The “B850-like” 

after culturing cells in sulphide centres at 848 ± 1 nm (Figure 3.

cells cultured in thiosulphate produce a crude LH2 fraction with a maximum at 
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grown under both SLL30 and 

TLL30 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.11 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SLL30 and TLL30 growth conditions.  

 

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
grown in the presence of 

C growth conditions.  
The LH2 fraction produced under SLL30(cyan) growth conditions produces peaks at 489 ± 1 nm, 

nm, and ~525 ± 1 nm. The LH2 
ns produces peaks at 489 ± 1 nm, 590 nm, 

nm.  Insert shows LH1/RC 
“core” and LH2 complexes produced under SLL30 and TLL30 growth conditions separated on a 

ent consisting of 0.6 M, 0.8 M, 1.0 M, and 1.2 M sucrose, in 20 
HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml respectively.  The LH1/RC “core” 

complex equilibrated to ~ 1.0 M and the LH2 complex equilibrated to ~ 0.8 M sucrose. Free 
present in the sucrose density gradient equilibrated aboved the LH2 band at ~ 0.6 M 

observed in the absorption spectra of the LH2 fractions 

growth conditions in the 

. The B800 peaks appear as a plateau 

between 798 nm and 803 nm when cells have been cultured in the presence of 

both sulphide or thiosulphate however there is a ~ 7 nm difference between the 

 maximum observed 

after culturing cells in sulphide centres at 848 ± 1 nm (Figure 3.12 red) while 

cells cultured in thiosulphate produce a crude LH2 fraction with a maximum at 



 

 

841 ± 2 nm (Figure 3.

(THL30) or 488 (SHL30), ~460 ±1 nm (THL30) or 461 ±1 nm (SHL30), and ~ 521 ±1 

nm (THL30) or ~ 520.5 ±0.5 nm (SHL30) with the LH2 fraction from sulphide 

grown cells producing a slightly more distinct absorption shoulder at ~

The LH1/RC “core” and LH2 from 

THL30 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.12 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SHL30 and THL30 growth conditions. 

Figure 3.12 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucr
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under high light (HL), 30 
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 488
nm, 590 nm, 798 nm, 803 nm, and 848
nm. The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488
nm, 590 nm, 798 nm, 803 nm, and 841
nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 
conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
and 1.2 M sucrose, in 20 mM Tris
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 
aboved the LH2 band at ~ 

A difference in LH2 complement is observed 

low light 40 ̊C growth conditions depending on the sulphur source present during 

growth (Figure 3.13

(Figure 3.12 green). The carotenoid peaks centre at 487.5 ±0.5 nm 

(THL30) or 488 (SHL30), ~460 ±1 nm (THL30) or 461 ±1 nm (SHL30), and ~ 521 ±1 

nm (THL30) or ~ 520.5 ±0.5 nm (SHL30) with the LH2 fraction from sulphide 

grown cells producing a slightly more distinct absorption shoulder at ~

The LH1/RC “core” and LH2 from Alc. vinosum grown under both SHL30 and 

THL30 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.12 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SHL30 and THL30 growth conditions. 

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucr
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under high light (HL), 30 ̊C growth conditions. 
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 488

nm, 803 nm, and 848 ± 1 nm, and two shoulders at ~460
nm. The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488

nm, 803 nm, and 841 ± 1 nm, with two shoulders at ~460
nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 
conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
and 1.2 M sucrose, in 20 mM Tris-HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 
aboved the LH2 band at ~ 0.6 M sucrose. 

A difference in LH2 complement is observed when Alc. vinosum

C growth conditions depending on the sulphur source present during 

13). When grown in the presence of sulphide the Qy maxima 
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id peaks centre at 487.5 ±0.5 nm 

(THL30) or 488 (SHL30), ~460 ±1 nm (THL30) or 461 ±1 nm (SHL30), and ~ 521 ±1 

nm (THL30) or ~ 520.5 ±0.5 nm (SHL30) with the LH2 fraction from sulphide 

grown cells producing a slightly more distinct absorption shoulder at ~ 520 nm.  

grown under both SHL30 and 

THL30 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.12 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SHL30 and THL30 growth conditions.  

 

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucr ose 
grown in the presence of 

C growth conditions.  
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 488 ± 0.5 

nm, and two shoulders at ~460 ± 1 nm, and ~523 ± 1 
nm. The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488 ± 0.5 

t ~460 ± 1 nm and ~523 ± 1 
nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 
conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 

8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 

Alc. vinosum is cultured under 

C growth conditions depending on the sulphur source present during 

). When grown in the presence of sulphide the Qy maxima 



82 
 

 

are positioned at 797 nm, 802 nm, and 847.5 ± 0.5 nm (Figure 3.13 blue), while 

cells grown in the presence of thiosulphate only produce distinct peaks for the 

split B800 BChl and a large shoulder at ~ 844 nm (Figure 3.13 dark red). The 

carotenoid peaks observed are similar between fractions produced in the 

presence of thiosulphate or sulphide, with the primary peak centring at 489.5 

±0.5 nm (SLL40) or 488.5 (TLL40). The absorbance shoulders produced by the 

SDCG produced under these growth conditions centre at approximately ~ 462 ±1 

nm (SLL40) or 460 (TLL40) and 524.5 ±1 nm (SLL40) or ~510 nm (TLL40). The ~ 

510 nm absorption shoulder is broader and of a higher intensity from the LH2 

fraction produced under TLL40 conditions than the 524.5 nm peak observed from 

the SLL40 growth conditions fraction. 

The LH1/RC “core” and LH2 from Alc. vinosum grown under both SLL40 and 

TLL40 growth conditions equilibrate to the same concentrations in SDCG (Figure 

3.13 inset). The LH1/RC “core” complex equilibrates to ~ 1.0 M sucrose and the 

LH2 equilibrates to ~ 0.8 M sucrose. There are similar levels of LH1/RC “core” to 

LH2 produced under both SLL40 and TLL40 growth conditions.  

 

 



 

 

Figure 3.13 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under low light ( LL), 40 
The LH2 fraction produced under SLL40 (blue) growth conditions produces peaks at 489
590 nm, 797 nm, 802 nm, and 847.5
nm. The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 4
0.5 nm, 590 nm, 798 nm, 803 nm, and three shoulders at ~ 844
1 nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 
conditions separated on a sucrose density centrifugation gradient c
and 1.2 M sucrose, in 20 mM Tris
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment pres
aboved the LH2 band at ~ 0.6 M sucrose.

The absorption spectra observed for 

under sulphide LL40 growth conditions has more similarities to the 

from sulphide high light 30 

thiosulphate low light 40 

both SDCG from SLL40 (

indicate the LH2 mix present is similar.

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under low light ( LL), 40 ̊C growth conditions.

roduced under SLL40 (blue) growth conditions produces peaks at 489
590 nm, 797 nm, 802 nm, and 847.5 ± 0.5 nm, and two shoulders at ~460
nm. The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 4

nm, 803 nm, and three shoulders at ~ 844 ± 0.5 nm, ~460
nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 

conditions separated on a sucrose density centrifugation gradient consisting of 0.6 M, 0.8 M, 1.0 M, 
and 1.2 M sucrose, in 20 mM Tris-HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 
respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
equilibrated to ~ 0.8 M sucrose. Free pigment present in the sucrose density gradient equilibrated 

the LH2 band at ~ 0.6 M sucrose. 

spectra observed for the LH2 extract from Alc. vinosum

sulphide LL40 growth conditions has more similarities to the 

e high light 30 ̊C growth conditions (Figure 3.1

thiosulphate low light 40 ̊C. The Qy peaks centre at the same wavelengths in 

both SDCG from SLL40 (847.5) and SHL30 (848) growth conditions. This may 

indicate the LH2 mix present is similar. 
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Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
grown in the presence of 

C growth conditions.   
roduced under SLL40 (blue) growth conditions produces peaks at 489 ± 0.5 nm, 

nm, and two shoulders at ~460 ± 1 nm, and ~523 ± 1 
nm. The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 489 ± 

nm, ~460 ± 1 nm and ~522 ± 
nm.  Insert shows LH1/RC “core” and LH2 complexes produced under SLL30 and TLL30 growth 

onsisting of 0.6 M, 0.8 M, 1.0 M, 
HCl, pH 8.0, in volumes of 3 ml, 8 ml, 8 ml, and 3 ml 

respectively.  The LH1/RC “core” complex equilibrated to ~ 1.0 M and the LH2 complex 
ent in the sucrose density gradient equilibrated 

Alc. vinosum grown 

sulphide LL40 growth conditions has more similarities to the LH2 extract 

4) than to the 

The Qy peaks centre at the same wavelengths in 

growth conditions. This may 



 

 

Figure 3.14 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under l
The LH2 fraction produced under SLL40 (blue) growth conditions produces peaks at 489
590 nm, 797 nm, 802 nm, and 847.5
nm. The LH2 fraction produced
0.5 nm, 590 nm, 798 nm, 803 nm, and 848
± 1 nm. The LH2 fraction from cells grown under SHL30 growth conditions produce higher intensity 
B800 peaks than the LH2 fraction produced under SLL40 growth conditions. There is a small level 
of variation in the carotenoid peaks between the LH2 fractions produced under SLL40 and SHL30 
growth conditions. The carotenoid peaks in the LH2 absorption spectru
conditions are less distinct but at the same wavelengths. 

Cells grown under thiosulphate low light 40 

fraction with an absorption spectrum more similar to cells cultured with 

thiosulphate at high li

nm. 

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under l ow light (LL), 40 ̊C growth conditions. 
The LH2 fraction produced under SLL40 (blue) growth conditions produces peaks at 489
590 nm, 797 nm, 802 nm, and 847.5 ± 0.5 nm, and two shoulders at ~460
nm. The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 488

nm, 803 nm, and 848 ± 0.5 nm, and two shoulders at ~460
nm. The LH2 fraction from cells grown under SHL30 growth conditions produce higher intensity 
0 peaks than the LH2 fraction produced under SLL40 growth conditions. There is a small level 

of variation in the carotenoid peaks between the LH2 fractions produced under SLL40 and SHL30 
growth conditions. The carotenoid peaks in the LH2 absorption spectrum from SLL40 growth 
conditions are less distinct but at the same wavelengths.  

Cells grown under thiosulphate low light 40 ̊C growth conditions 

fraction with an absorption spectrum more similar to cells cultured with 

thiosulphate at high light 30 ̊C (Figure 3.15) however with a lower peak at 840 
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Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
grown in the presence of 

C growth conditions.  
The LH2 fraction produced under SLL40 (blue) growth conditions produces peaks at 489 ± 0.5 nm, 

nm, and two shoulders at ~460 ± 1 nm, and ~523 ± 1 
under SHL30 (green) growth conditions produces peaks at 488 ± 

nm, and two shoulders at ~460 ± 1 nm, and ~523 
nm. The LH2 fraction from cells grown under SHL30 growth conditions produce higher intensity 
0 peaks than the LH2 fraction produced under SLL40 growth conditions. There is a small level 

of variation in the carotenoid peaks between the LH2 fractions produced under SLL40 and SHL30 
m from SLL40 growth 

growth conditions produced an LH2 

fraction with an absorption spectrum more similar to cells cultured with 

) however with a lower peak at 840 



 

 

Figure 3.15 Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from 
thiosulphate (T) or sulphide (S), under low light ( LL), 40 
The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 489
nm, 590 nm, 798 nm, 803 nm, and three shoulders at ~ 84
nm.  The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488
nm, 590 nm, 798 nm, 803 nm, and 841
nm. The LH2 fractions from both
similar intensity. While the 841 nm peak is a defined peak in the LH2 fraction from THL30 growth 
conditions it is an absorption shoulder in the LH2 fraction from TLL40 growth conditions.

3.3.2 Low temperat
LH2 fractions

The room temperature absorption spectra produced from the crude extracts 

imply a mix of several different peaks producing a cumulative spectrum. With 

the assistance of Darek Niedzwiedzki, absorbanc

sucrose gradient crude fractions, narrowing all the absorption peaks and blue

shifting peaks produced by the excitonically coupled BChl. This narrowing of the 

Qy absorption bands increases the resolution of the Qy peaks present, 

uncovering any obscured “B850

spectra from the membranes

all the crude extracts, centring at 804 (Qy

Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
density centrifugation (SDC), extracted from Alc. vinosum grown in the presence of 
thiosulphate (T) or sulphide (S), under low light ( LL), 40 ̊C growth conditions. 
The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 489

nm, 803 nm, and three shoulders at ~ 844 ± 0.5 nm, ~460
nm.  The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488

nm, 803 nm, and 841 ± 0.5 nm, with two shoulders at ~460
nm. The LH2 fractions from both TLL40 and THL30 growth conditions produce B800 peaks of 
similar intensity. While the 841 nm peak is a defined peak in the LH2 fraction from THL30 growth 
conditions it is an absorption shoulder in the LH2 fraction from TLL40 growth conditions.

Low temperat ure absorption spectroscopy studies of crude 
LH2 fractions  

The room temperature absorption spectra produced from the crude extracts 

imply a mix of several different peaks producing a cumulative spectrum. With 

the assistance of Darek Niedzwiedzki, absorbance at 77 K was measured for 

sucrose gradient crude fractions, narrowing all the absorption peaks and blue

shifting peaks produced by the excitonically coupled BChl. This narrowing of the 

Qy absorption bands increases the resolution of the Qy peaks present, 

uncovering any obscured “B850-like” peaks. As observed in the absorbance 

the membranes (section 3.2.2), the split B800 bands are present in 

all the crude extracts, centring at 804 (QyR) nm and 792 nm (Qy
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Absorption spectra of the crude LH2 fraction in 0.0 2 % DDM from sucrose 
grown in the presence of 

C growth conditions.  
The LH2 fraction produced under TLL40 (purple) growth conditions produces peaks at 489 ± 0.5 

nm, ~460 ± 1 nm and ~522 ± 1 
nm.  The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 488 ± 0.5 

nm, with two shoulders at ~460 ± 1 nm and ~523 ± 1 
TLL40 and THL30 growth conditions produce B800 peaks of 

similar intensity. While the 841 nm peak is a defined peak in the LH2 fraction from THL30 growth 
conditions it is an absorption shoulder in the LH2 fraction from TLL40 growth conditions. 

ure absorption spectroscopy studies of crude 

The room temperature absorption spectra produced from the crude extracts 

imply a mix of several different peaks producing a cumulative spectrum. With 

e at 77 K was measured for 

sucrose gradient crude fractions, narrowing all the absorption peaks and blue-

shifting peaks produced by the excitonically coupled BChl. This narrowing of the 

Qy absorption bands increases the resolution of the Qy peaks present, 

peaks. As observed in the absorbance 

, the split B800 bands are present in 

) nm and 792 nm (QyB). Low 
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temperature absorption spectra were recorded from SDCG from THL40, SHL40, 

THL30, SHL30, TLL30, and SLL30 growth conditions. Low temperature absorption 

spectra were recorded before the development of the low light 40 ̊C set up and 

so there is no data for these growth conditions. 

There is very little variation between the B800 and “B850-like” absorption peaks 

observed from the LH2 fraction produced under SHL40 and THL40 growth 

conditions (Figure 3.16). The Qy absorption peaks centre at 867 nm, 792 nm and 

805 nm in the LH2 fraction produced in THL40 growth conditions (Figure 3.16 

red) and 868 nm, 793 nm and 805 nm when thiosulphate is substituted for 

sulphide (Figure 3.16 blue). The carotenoid peaks are also narrowed, allowing 

visualisation of the vibronic peaks of the carotenoids that are at the highest 

concentrations. A total of five carotenoid peaks are observed in all samples at 

467 nm ±1 nm, 489 nm, 502 nm ±1-2 nm, 527 nm and 547 nm although not all 

bands are fully resolved.  

 

 



 

 

Figure 3.16 Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from 
presence of thiosulphate (T) or sulphide (S), under  high 
The LH2 fraction produced under SHL40 (blue) growth conditions produces peaks at 466 nm, 489 
nm, 501 nm, 527 nm, 590 nm, 793 nm, 805 nm, and 868 nm with a shoulder at ~547 nm. The LH2 
fraction produced under THL40 (red)
nm, 527 nm, 590 nm, 792 nm, 805 nm, and 867 nm with a shoulder at ~545 nm. The absorption 
spectra of the crude LH2 fraction produced under SHL40 and THL40 varies only slightly in the 
intensity of the carotenoid peaks but are otherwise identical.

The TLL30 and SLL30 crude extracts both produce Qy peaks at 819 nm and a 

shoulder at ~852 nm, with B800 peaks at 792 nm (T), 793 nm(S) and 804 nm 

(Figure 3.17). The carotenoid peaks observed centre at 489 nm, 

nm (T), 528 nm (S), 527 nm (T) with two shoulders at ~ 470 nm (S), ~ 468 nm (T), 

and ~ 547 nm. 

Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from Alc. vinosum
presence of thiosulphate (T) or sulphide (S), under  high light (HL), 40 
The LH2 fraction produced under SHL40 (blue) growth conditions produces peaks at 466 nm, 489 
nm, 501 nm, 527 nm, 590 nm, 793 nm, 805 nm, and 868 nm with a shoulder at ~547 nm. The LH2 
fraction produced under THL40 (red) growth conditions produces peaks at 468 nm, 488 nm, 502 
nm, 527 nm, 590 nm, 792 nm, 805 nm, and 867 nm with a shoulder at ~545 nm. The absorption 
spectra of the crude LH2 fraction produced under SHL40 and THL40 varies only slightly in the 

carotenoid peaks but are otherwise identical. 

The TLL30 and SLL30 crude extracts both produce Qy peaks at 819 nm and a 

shoulder at ~852 nm, with B800 peaks at 792 nm (T), 793 nm(S) and 804 nm 

). The carotenoid peaks observed centre at 489 nm, 

nm (T), 528 nm (S), 527 nm (T) with two shoulders at ~ 470 nm (S), ~ 468 nm (T), 
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Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
Alc. vinosum grown in the 

light (HL), 40 ̊C growth conditions. 
The LH2 fraction produced under SHL40 (blue) growth conditions produces peaks at 466 nm, 489 
nm, 501 nm, 527 nm, 590 nm, 793 nm, 805 nm, and 868 nm with a shoulder at ~547 nm. The LH2 

growth conditions produces peaks at 468 nm, 488 nm, 502 
nm, 527 nm, 590 nm, 792 nm, 805 nm, and 867 nm with a shoulder at ~545 nm. The absorption 
spectra of the crude LH2 fraction produced under SHL40 and THL40 varies only slightly in the 

The TLL30 and SLL30 crude extracts both produce Qy peaks at 819 nm and a 

shoulder at ~852 nm, with B800 peaks at 792 nm (T), 793 nm(S) and 804 nm 

). The carotenoid peaks observed centre at 489 nm, 503 nm (S), 504 

nm (T), 528 nm (S), 527 nm (T) with two shoulders at ~ 470 nm (S), ~ 468 nm (T), 



 

 

Figure 3.17 Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from 
presence of thiosulphate (T) or sulphide (S), under  low light (LL), 30 
The LH2 fraction produced under SLL30 (cyan) growth conditions produces peaks at 489nm, 503 
nm, 528 nm, 590 nm, 793 nm, 804 nm, and 819 nm with shoulders at ~470 nm, ~547 nm, and ~ 
850 nm. The LH2 fraction produced under TLL30 (pink) growth conditions
nm, 504 nm, 527 nm, 547 nm, 590 nm, 792 nm, 804 nm, and 819 nm, with shoulders at ~468 nm 
and ~ 850 nm. The absorption spectra of the crude LH2 fraction produced under SLL30 and TLL30 
varies only slightly in the intensity of the abso

Figure 3.18 shows the differences 

fractions produced under THL30 and SHL30 growth conditions. The “B850

maximum from the THL30 growth conditions is centred at 861 nm 

red) while the SHL30 maximum is positioned at 867 nm

NIR absorbance of both fractions show a shoulder at 818 nm that is more 

prominent in the fraction produced from THL30 conditions. While the “B850

like” Qy peaks are different

produce similar absorption peaks that centre at 489 nm, 502 nm, 527 nm (S), 528 

nm (T) and two shoulders at ~ 547 nm and ~ 467 nm. This data is summarised in 

table 3.2. 

Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from Alc. vinosum
presence of thiosulphate (T) or sulphide (S), under  low light (LL), 30 
The LH2 fraction produced under SLL30 (cyan) growth conditions produces peaks at 489nm, 503 
nm, 528 nm, 590 nm, 793 nm, 804 nm, and 819 nm with shoulders at ~470 nm, ~547 nm, and ~ 
850 nm. The LH2 fraction produced under TLL30 (pink) growth conditions
nm, 504 nm, 527 nm, 547 nm, 590 nm, 792 nm, 804 nm, and 819 nm, with shoulders at ~468 nm 
and ~ 850 nm. The absorption spectra of the crude LH2 fraction produced under SLL30 and TLL30 
varies only slightly in the intensity of the absorption shoulder at ~ 850.  

the differences in the absorption spectra 

fractions produced under THL30 and SHL30 growth conditions. The “B850

maximum from the THL30 growth conditions is centred at 861 nm 

while the SHL30 maximum is positioned at 867 nm (Figure 3.

NIR absorbance of both fractions show a shoulder at 818 nm that is more 

prominent in the fraction produced from THL30 conditions. While the “B850

Qy peaks are different, the carotenoid peaks observed in these fractions 

produce similar absorption peaks that centre at 489 nm, 502 nm, 527 nm (S), 528 

nm (T) and two shoulders at ~ 547 nm and ~ 467 nm. This data is summarised in 
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Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
Alc. vinosum grown in the 

presence of thiosulphate (T) or sulphide (S), under  low light (LL), 30 ̊C growth conditions.  
The LH2 fraction produced under SLL30 (cyan) growth conditions produces peaks at 489nm, 503 
nm, 528 nm, 590 nm, 793 nm, 804 nm, and 819 nm with shoulders at ~470 nm, ~547 nm, and ~ 
850 nm. The LH2 fraction produced under TLL30 (pink) growth conditions produces peaks at 489 
nm, 504 nm, 527 nm, 547 nm, 590 nm, 792 nm, 804 nm, and 819 nm, with shoulders at ~468 nm 
and ~ 850 nm. The absorption spectra of the crude LH2 fraction produced under SLL30 and TLL30 

in the absorption spectra between the LH2 

fractions produced under THL30 and SHL30 growth conditions. The “B850-like” 

maximum from the THL30 growth conditions is centred at 861 nm (Figure 3.18 

igure 3.18 green). The 

NIR absorbance of both fractions show a shoulder at 818 nm that is more 

prominent in the fraction produced from THL30 conditions. While the “B850-

carotenoid peaks observed in these fractions 

produce similar absorption peaks that centre at 489 nm, 502 nm, 527 nm (S), 528 

nm (T) and two shoulders at ~ 547 nm and ~ 467 nm. This data is summarised in 



 

 

Figure 3.18 Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from 
presence of thiosulphate (T) or sulphide (S), under  high light (HL), 3
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 467 nm, 489 
nm, 502 nm, 527 nm, 590 nm, 792 nm, 804 nm, and 867 nm with shoulders at ~547 nm, and ~818 
nm. The LH2 fraction produced under THL30 (red
489 nm, 502 nm, 528 nm, 590 nm, 793 nm, 804 nm, 818 nm, and 861 nm with a shoulder at ~547 
nm. The absorption spectra of the crude LH2 fraction produced under SHL30 and THL30 varies in 
the position of the longest wavelength
818 nm. 

 

 

 

 

 

 

Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
DDM from sucrose density centrifugation (SDC), extr acted from Alc. vinosum
presence of thiosulphate (T) or sulphide (S), under  high light (HL), 3
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 467 nm, 489 
nm, 502 nm, 527 nm, 590 nm, 792 nm, 804 nm, and 867 nm with shoulders at ~547 nm, and ~818 
nm. The LH2 fraction produced under THL30 (red) growth conditions produces peaks at 467 nm, 
489 nm, 502 nm, 528 nm, 590 nm, 793 nm, 804 nm, 818 nm, and 861 nm with a shoulder at ~547 
nm. The absorption spectra of the crude LH2 fraction produced under SHL30 and THL30 varies in 

longest wavelength Qy peak as well as the THL30 producing a distinct peak at 
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Low temperature (77 K) absorption spectra of the cr ude LH2 fraction in 0.02 % 
Alc. vinosum grown in the 

presence of thiosulphate (T) or sulphide (S), under  high light (HL), 3 0 ̊C growth conditions.  
The LH2 fraction produced under SHL30 (green) growth conditions produces peaks at 467 nm, 489 
nm, 502 nm, 527 nm, 590 nm, 792 nm, 804 nm, and 867 nm with shoulders at ~547 nm, and ~818 

) growth conditions produces peaks at 467 nm, 
489 nm, 502 nm, 528 nm, 590 nm, 793 nm, 804 nm, 818 nm, and 861 nm with a shoulder at ~547 
nm. The absorption spectra of the crude LH2 fraction produced under SHL30 and THL30 varies in 

Qy peak as well as the THL30 producing a distinct peak at 
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Table 3.2 Room temperature (RT) and 77 K (LT) wavel ength values of Qy maxima produced 
by the light-harvesting complexes in SDCG in 0.02 %  DDM from Alc. vinosum cells cultured 
under different growth conditions.  
Peaks that appear as a shoulder are defined by (sh). S: sulphide, T: thiosulphate, HL: High light 
(60-80 umol m-2 s-1), LL: Low light, 30 ̊C or 40 ̊C. 

 SLL30 SLL40 SHL30 SHL40 TLL30 TLL40 THL30 THL40 

RT         
Carotenoid 

peak(s) (nm) 

~460(sh) 

489 

~530(sh) 

~460 

489 

~523(sh) 

~460(sh) 

488 

~523(sh) 

~460(sh) 

488 

~525(sh) 

~460(sh) 

489 

~530(sh) 

~460 

489 

~522(sh) 

~460(sh) 

488 

~523(sh) 

~460(sh) 

487 

~523(sh) 

B800 
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3.4 Optimisation of Anion Exchange purification pro tocol  

The low temperature absorption spectra of the crude LH2 fractions suggested 

multiple different LH2 types are produced by Alc. vinosum, the production of 

which is restricted by the growth conditions under which the light-harvesting 

complexes are produced. It is not clear whether, under these different growth 

conditions, there are distinct LH2 complex types or a continuum of different 

complexes constructed with different combinations of polypeptides. To 

elucidate this, the complexes must be fractionated further to resolve the mix of 

LH2 complexes. Anion exchange chromatography was used to separate the 

different LH2 complex types according to their charge. 

Gravity flow anion exchange chromatography using Whatman De52 cellulose 

resin has previously been used to purify the crude LH2 fraction from other purple 

photosynthetic bacteria (101, 156). This method is sufficient to remove residual 
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LH1/RC “core” complex and other impurities when the LH2 fraction contains 

only one LH2 complex type. As Alc. vinosum produces several different types of 

LH2 complex under the same growth conditions, this method is insufficient to 

separate them. For this reason, protocols using an automated Persceptive 

Biosystems BioCad 700E perfusion workstation (Applied Biosystems) with a Q20 

resin column were developed (as outlined in Methods and Materials section 

2.5.3).  

The use of the Persceptive Biosystems BioCad 700E perfusion workstation allows 

the creation of linear/step gradients with small changes in NaCl concentration. 

The nature of the automated system ensures the concentrations and volumes 

passed through the column are reproducible. Crude extracts of LH2 complexes 

isolated by SDCG were loaded onto a Poros Q20 column, attached to a BioCad 

700E perfusion workstation and a gradient of 0 M to 1 M NaCl, 20 mM Tris-HCl 

(pH 8.0), 0.02 % DDM, was used to elute the different LH2 complex types. The 

absorbance at 280 nm was measured to record the elution of proteins, which was 

followed by the recording of the 250-950 nm absorption spectrum of each 

fraction. This allowed the assay of both the separation of the different LH2 

complex types and the ratio of the Qymaximum/A280 to ascertain purity. Fractions 

were pooled according to the position of their Qy bands and the level of purity 

denoted by the Qy/A280 ratio. Methods were optimised to ascertain the NaCl 

concentration required to elute each LH2 complex type present (as outlined in 

Methods and Materials section 2.5.3).   

The presence of an isosbestic point within the absorption spectra of the 

different LH2 complex types may indicate a relationship between different LH2 

complex types. An isosbestic point is formed when the absorption of only two 

types of complex overlap at the same wavelength. This implies the conversion 

between the two proceeds without any intermediate other complex types being 

present. Multiple isosbestic points would be observed if there are several 

different LH2 complex types present, although this would be difficult to resolve 

at room temperature.  
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3.4.1 Anion exchange of LH2 complex types produced under HL 
40 growth conditions 

The LH2 mix extracted from Alc. vinosum grown under SHL40 ̊C growth 

conditions was separated using anion exchange chromatography on a Poros Q20 

column with the gradient method Alvin-SandThio-HL40-800-850-method-3.met 

(as outlined in Methods and Materials section 2.5.3.1). The crude LH2 fraction 

was in the presence of 0.02 % DDM, 20 mM Tris-HCl (pH 8.0) and ~ 0.8 M sucrose 

after extraction via sucrose density centrifugation.  

The crude LH2 fraction from sulphide, high light 40 ̊C (SHL40) growth conditions 

produced multiple elution peaks (Figure 3.19, peaks A-E). Peak A eluted at 100 

mM NaCl, peak B at 250 mM NaCl, peak C at 310 mM NaCl, peak D at 350 mM 

NaCl, peak E at 1000 mM NaCl (Figure 3.19). The elution peaks A and B were 

non-photosynthetic impurities, while peak D was identified as mixed LH2 and 

LH1/RC “Core” with an increasing concentration of LH1/RC “core” complex as 

the fractions increased. The final peak is residual impurities that were stripped 

from the column. 
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Figure 3.19 Anion exchange chromatogram showing the  separation of the crude LH2 
fraction from Alc. vinosum grown under high light, 40 ̊C in the presence of sulphide.  
The gradient steps were at 100 mM (1), 250 mM (2), 310 mM (3), 500 mM (4), and 1000 mM (5). 
Fraction number is shown with green lines, while pressure is the lateral green line. The 
concentration of NaCl in the elution buffer is shown in blue, and the A280 nm in red. After injection 
there is an increase in pressure due to the sucrose in the sample. At 100 mM NaCl two small 
peaks (A) were observed eluting from the column. At 250 mM NaCl a single small peak eluted (B). 
At 310 mM NaCl a substantial peak eluted (C). This was followed by a peak (D) between 310 mM 
and 500 mM, and a small peak (E) at 1000 mM NaCl. The largest peak that elutes at 310 mM NaCl 
was identified as the B800-850 LH2 complex type.  

The 250-950 nm absorption spectra of the fractions of peak C showed that they 

corresponded to a B800-850 LH2 complex type with Qy absorption peaks at 796 

nm, 802 nm and 848 ± 1 nm (Figure 3.20 purple). The carotenoid peaks observed 

are the same as those observed in the SDCG, at ~ 460 nm, 488 nm, and ~525 nm. 

This method was sufficient to purify the B800-850 LH2 complex type at a purity 

ratio of 1.9-2.0 from both SDCG extracted from cells grown under SHL40 and 

THL40 growth conditions. The NaCl concentrations at which peaks eluted were 

unchanged when this gradient was run in the presence of 0.15 % DM instead of 

0.02 % DDM.  



 

 

Figure 3.20 Normalised absorption spectra of the original crude  LH2 extract 
growth conditions (dotted line) and the 
% DDM from fractions pooled after anion exchange ch romatography. 
The crude LH2 fraction was extracted from 
under high light, 40 ̊C growth (SHL40) conditions
mM NaCl in a single peak. 
peaks at 798 nm, 803 nm, and 849 ±1 nm while the purified B800
peaks at 796 nm, 802 nm and 848 nm ±1. There is a small blue shift of the Qy peaks, and no 
difference in the carotenoid peaks

3.4.2 Anion exchange of LH2 complex types produced under 
THL30, TLL40 and LL

The LH2 mix extracted from 

30 ̊C (THL30) growth conditions was separated using anion exchange 

chromatography on a Poros Q20 column with the gradient method Alvin

and800-840-method.met (

The crude LH2 fraction was in the presence of 0.02 % DDM, 20 mM Tris

8.0) and ~ 0.8 M sucrose. The crude LH2 fraction from THL30 growth conditions 

produced multiple elution peaks (Figur

Normalised absorption spectra of the original crude  LH2 extract 
(dotted line) and the purified B800- 850 LH2 complex type (purple)

% DDM from fractions pooled after anion exchange ch romatography. 
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of sulphide, 

C growth (SHL40) conditions. The B800-850 LH2 complex type eluted at 310 
in a single peak. The crude LH2 fraction from sucrose density centrifugation produced Qy 

peaks at 798 nm, 803 nm, and 849 ±1 nm while the purified B800-850 LH2 complex produced Qy 
peaks at 796 nm, 802 nm and 848 nm ±1. There is a small blue shift of the Qy peaks, and no 
difference in the carotenoid peaks at ~460 nm, 488 nm, and ~ 525 nm. 

Anion exchange of LH2 complex types produced under 
THL30, TLL40 and LL 30 growth conditions

The LH2 mix extracted from Alc. vinosum grown under thiosulphate, high light 

growth conditions was separated using anion exchange 

chromatography on a Poros Q20 column with the gradient method Alvin

od.met (as outlined in Methods and Materials section 

The crude LH2 fraction was in the presence of 0.02 % DDM, 20 mM Tris

0.8 M sucrose. The crude LH2 fraction from THL30 growth conditions 

produced multiple elution peaks (Figure 3.21, peaks A-G). Peak A eluted at 0 mM 
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Normalised absorption spectra of the original crude  LH2 extract from SHL40 
850 LH2 complex type (purple)  in 0.02 

% DDM from fractions pooled after anion exchange ch romatography.  
cells grown in the presence of sulphide, 

850 LH2 complex type eluted at 310 
The crude LH2 fraction from sucrose density centrifugation produced Qy 

0 LH2 complex produced Qy 
peaks at 796 nm, 802 nm and 848 nm ±1. There is a small blue shift of the Qy peaks, and no 

 

Anion exchange of LH2 complex types produced under 
30 growth conditions  

thiosulphate, high light 

growth conditions was separated using anion exchange 

chromatography on a Poros Q20 column with the gradient method Alvin-800-820-

as outlined in Methods and Materials section 2.5.3.2). 

The crude LH2 fraction was in the presence of 0.02 % DDM, 20 mM Tris-HCl (pH 

0.8 M sucrose. The crude LH2 fraction from THL30 growth conditions 

G). Peak A eluted at 0 mM 
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NaCl, peak B at 100 mM NaCl, peak C at 240 mM NaCl, peak D at 260 mM NaCl, 

peak E at 330 mM NaCl, peak F at 350 mM NaCl and peak G at 1000 mM NaCl. 

 

Figure 3.21 Anion exchange chromatogram showing the  separation of the crude LH2 
fraction from Alc. vinosum grown under high light, 30 ̊C in the presence of thiosulphate. 
The gradient steps were at 100 mM (1), 240 mM (2), 260 mM (3), 500 mM (4), and 1000 mM (5). 
Fraction number is shown with green lines, while pressure is the lateral green line. The 
concentration of NaCl in the elution buffer is shown in blue, and the A280 nm in red. After injection 
there is an increase in pressure due to the sucrose in the sample.  During the wash step at 0 mM 
NaCl a small peak eluted (A) after the sucrose was washed from the column. At 100 mM NaCl, two 
small peaks eluted (B). At 240 mM NaCl a substantial peak eluted (C) that produced a long tail. 
This was followed by a peak (D) at 260 mM, and two peaks (E and F) in close succession between 
260 mM and 500 mM. At 1000 mM NaCl a single peak (G) eluted. The largest peak that elutes at 
240 mM NaCl was identified as the B800-820 LH2 complex type, while the peak at D was identified 
as the B800-840h and B800-840p. Peak E was identified as a potential B800-850a LH2 complex 
type but was in low abundance. All other peaks were non-photosynthetic contaminants except for 
peak E and F that was a mix of LH1/RC “core” and LH2 complex types. 

Peak C, fractions 30 to 34, was found to constitute the B800-820 LH2 complex 

type producing absorption maxima at 796 nm, 803 nm, and a shoulder at ~ 818 

nm (Figure 3.22 red). In fractions eluted after these, the “B850-like” BChl peak 

of each fraction became more red-shifted. When the absorption spectra of the 

fractions from peak D were recorded, they were found to produce a hump in the 

absorption at ~ 840 nm (Figure 3.22 dark yellow) that red-shifts to an 

absorbance peak at 840 ± 2 nm (Figure 3.22 black) after the main elution peak. 

These were both identified as a B800-840 LH2 complex type, but differentiated 

as B800-840 peak (B800-840p) and B800-840 hump (B800-840h) (Figure 3.23). 



96 
 

 

Peak E was made up of a LH2 complex that produced a “B850-like” Qy 

absorption peak centred at 845 nm, implying it may be a B800-850 LH2 complex 

type. Peak F was identified as a mix of LH1/RC “core”, and LH2 complex types.  

The carotenoid peaks show small variations depending on the complex type they 

are present in. In the B800-820 LH2 complex type the carotenoid peaks centre at 

~ 460 ±0.5 nm, 488.5 nm, and ~ 523 ±1 nm. The B800-840h and B800-840p 

complex types produce carotenoid maxima at ~461 ± 1 nm, 488 ± 0.5 nm, and 

~521.5 ± 1 nm. The B800-850 complex type produced under these conditions 

produces carotenoid peaks at ~461 ±1 nm, 487 nm, and ~ 520.5 ±0.5 nm.  

An apparent isosbestic point is observed in NIR absorption of the LH2 complex 

types. The wavelengths at which the LH2 complex types overlap differ as the 

B800-820 LH2 complex intercepts the B800-840h LH2 complex at 831.5 nm, and 

the B800-840p LH2 complex at 832.5 nm, and at 833.5 nm with the B800-850 LH2 

complex. The B800-840h LH2 complex absorption intercepts the B800-840p LH2 

complex absorption at 833.5 nm, and the B800-850 at 834 nm.  The B800-840p 

LH2 complex produces an isosbestic point at the longest wavelength at 835 nm 

when intercepting the absorption of the B800-850 LH2 complex. 

 

 

 



 

 

Figure 3.22 Normalised absorption spectra of the original crude  LH2 extract 
growth conditions (dotted line) and the
840p (blue), and B800
after anion exchange chromatography. 
The crude LH2 fraction was extracted from 
thiosulphate, under high light
eluted at 240 mM NaCl, the B800
eluted at 330 mM NaCl. The crude LH2 fraction from sucrose density centrifugation produced Qy 
peaks at 798 nm, 803 nm, and 841 ±2 nm. The purified B800
peaks at 798 nm, 802 nm
798 nm, 802 nm, with a shoulder at ~840 nm. The purified B800
802, and 840 nm ±1. The purified B800
There are no substantial changes observed in the carotenoid region of the absorption spectrum
~460 nm, 488 nm, and ~520 nm
points, as the ~818 nm peak shifts to 845 nm. There are several isosbest
between the B800-820 and the B800
(831.5 nm). There are isosbestic points observed between the B800
(833.5 nm) and the B800
B800-850a centres at 835 nm. These isosbestic points are within 3.5 nm of each other.

The B800-820 LH2 complex type appears to be the origin of the absorption at ~ 

818 nm observed in t

method successfully separates the B800

was used to purify the crude LH2 extract from THL30, TLL40, SLL30 and TLL30 

Normalised absorption spectra of the original crude  LH2 extract 
(dotted line) and the  purified B800- 820 (red), B800

840p (blue), and B800 -850a (purple) LH2 complex types in 0.02 % DDM from fractions pooled 
fter anion exchange chromatography.  

The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of 
under high light, 30 ̊C growth (THL30) conditions. The B800

eluted at 240 mM NaCl, the B800-840 complex types eluted at 240 mM NaCl, and the B800
eluted at 330 mM NaCl. The crude LH2 fraction from sucrose density centrifugation produced Qy 
peaks at 798 nm, 803 nm, and 841 ±2 nm. The purified B800-820 LH2 complex produces Qy 
peaks at 798 nm, 802 nm, with a shoulder at ~ 818 nm. The purified B800
798 nm, 802 nm, with a shoulder at ~840 nm. The purified B800-840p produces peaks at 798 nm, 
802, and 840 nm ±1. The purified B800-850a produced peaks at 798 nm, 802 nm and 846 nm ±1. 
There are no substantial changes observed in the carotenoid region of the absorption spectrum
~460 nm, 488 nm, and ~520 nm. The changes in the Qy peaks appear to produce isosbestic 

, as the ~818 nm peak shifts to 845 nm. There are several isosbest
820 and the B800-850a (833.5 nm), B800-840p (832.5 nm) and the B800

(831.5 nm). There are isosbestic points observed between the B800-840h and the B800
(833.5 nm) and the B800-850a (834 nm). The isosbestic point between the B800

850a centres at 835 nm. These isosbestic points are within 3.5 nm of each other.

820 LH2 complex type appears to be the origin of the absorption at ~ 

818 nm observed in the SDCG and membranes of THL30. Therefor

method successfully separates the B800-820 from the B800

was used to purify the crude LH2 extract from THL30, TLL40, SLL30 and TLL30 
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Normalised absorption spectra of the original crude  LH2 extract from THL30 
820 (red), B800 -840h (green), B800-

in 0.02 % DDM from fractions pooled 

cells grown in the presence of 
C growth (THL30) conditions. The B800-820 LH2 complex type 

mplex types eluted at 240 mM NaCl, and the B800-850a 
eluted at 330 mM NaCl. The crude LH2 fraction from sucrose density centrifugation produced Qy 

820 LH2 complex produces Qy 
, with a shoulder at ~ 818 nm. The purified B800-840h produces peaks at 

840p produces peaks at 798 nm, 
850a produced peaks at 798 nm, 802 nm and 846 nm ±1. 

There are no substantial changes observed in the carotenoid region of the absorption spectrum at 
. The changes in the Qy peaks appear to produce isosbestic 

, as the ~818 nm peak shifts to 845 nm. There are several isosbestic points observed 
840p (832.5 nm) and the B800-840h 

840h and the B800-840p 
t between the B800-840p and the 

850a centres at 835 nm. These isosbestic points are within 3.5 nm of each other. 

820 LH2 complex type appears to be the origin of the absorption at ~ 

. Therefore, as this 

820 from the B800-840 complex types it 

was used to purify the crude LH2 extract from THL30, TLL40, SLL30 and TLL30 
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growth conditions as they produce prominent ~ 818 nm shoulders (as outlined in 

Methods and Materials section 2.5.3.2).  

Anion exchange chromatography of LH2 complexes produced under TLL40 

conditions produced elution peaks A, B, C, D, F, and G when separated using the 

gradient from Alvin-800-820-and800-840-method.met. The method eluted three 

LH2 complex types similar to those observed from the crude LH2 fraction from 

THL30 growth conditions. The B800-820 LH2 complex type identified produced 

absorption peaks centring at ~ 796 nm, 801 nm and a shoulder at ~ 818 nm 

(Figure 3.23 red). The peaks of the B800-840h complex type centred at 798 nm, 

~ 805 nm, and a shoulder at ~ 835 nm (Figure 3.23 dark yellow), while the B800-

840p complex type peaks centre at 797 nm, ~ 802 nm, and 840 nm (Figure 3.23 

purple).  

The carotenoid peaks of the different LH2 complex types produced under TLL40 

growth conditions centre at ~ 460 nm and 489 nm. The carotenoid peak at the 

longest wavelength differs in intensity between the different complex types, 

centring at ~ 508 nm in the B800-820 LH2 complex type with the highest 

intensity, shifting to ~ 520 nm in the B800-840p complex type. The isosbestic 

points observed in the NIR between the complex types produced under these 

growth conditions centre at 831.5 nm between the B800-820 and the B800-840h, 

and 832 nm between the B800-820 and the B800-840p. While the B800-840h 

intercepts the NIR absorption of the B800-840p at 831 nm.  

 

 

 



 

 

Figure 3.23 Normalised absorption spectra of the original crude  LH2 extract
growth conditions (dotted line) and the 
840p (blue), and B800
after anion exchange chromatography. 
The crude LH2 fraction was e
thiosulphate, under low light
eluted at 240 mM NaCl and the B800
fraction from sucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and a shoulder 
at ~ 844 nm. The purified B800
shoulder at ~ 818 nm. The purified B800
at ~840 nm. The purified B800
change in the carotenoid absorption between the three LH2 complex types identified. The red
shoulder at ~ 520 nm decreases in intensity from the B8
840p LH2 complex type. The changes in the Qy peaks appear to produce isosbestic point
~818 nm peak shifts to 840 nm.
820 and the B800-840p (832 nm), and the B800
observed between the B800
1 nm of each other. 

The LH2 complex types produced under 

conditions are the B800

yellow). The B800-820 complex type absorption peaks were observed at 803 nm, 

and ~ 819 nm, whil

shoulder at ~ 839 ± 1 nm. The B800

carotenoid maxima observed vary only a small amount, centring at 463 nm, 490 

Normalised absorption spectra of the original crude  LH2 extract
(dotted line) and the purified B800- 820 (red), B800

840p (blue), and B800 -850a (purple) LH2 complex types in 0.02 % DDM from fractions pooled 
after anion exchange chromatography.  
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of 

under low light, 40 ̊C growth (TLL40) conditions. The B800
eluted at 240 mM NaCl and the B800-840 complex type eluted at 240 mM NaCl. The crude LH2 

ucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and a shoulder 
at ~ 844 nm. The purified B800-820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a 
shoulder at ~ 818 nm. The purified B800-840h produces peaks at 798 nm, 802 nm, with
at ~840 nm. The purified B800-840p produces peaks at 798 nm, 802, and 840 nm ±1. There is a 
change in the carotenoid absorption between the three LH2 complex types identified. The red

decreases in intensity from the B800-820 LH2 complex type to the B800
840p LH2 complex type. The changes in the Qy peaks appear to produce isosbestic point
~818 nm peak shifts to 840 nm. There are several isosbestic points observed between the B800

840p (832 nm), and the B800-840h (831.5 nm). There is an isosbestic point 
observed between the B800-840h and the B800-840p (831 nm). These isosbestic points are within 

The LH2 complex types produced under sulphide, low light 30 ºC (

conditions are the B800-820 (Figure 3.24 red) and B800-840h (Figure 3.

820 complex type absorption peaks were observed at 803 nm, 

and ~ 819 nm, while the B800-840h complex type centred at 803nm, with a 

shoulder at ~ 839 ± 1 nm. The B800-840p maxima centre at 839.5 ± 0.5 nm. The 

carotenoid maxima observed vary only a small amount, centring at 463 nm, 490 
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Normalised absorption spectra of the original crude  LH2 extract  from TLL40 
820 (red), B800 -840h (green), B800-

850a (purple) LH2 complex types in 0.02 % DDM from fractions pooled 

cells grown in the presence of 
C growth (TLL40) conditions. The B800-820 LH2 complex type 

840 complex type eluted at 240 mM NaCl. The crude LH2 
ucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and a shoulder 

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a 
840h produces peaks at 798 nm, 802 nm, with a shoulder 

840p produces peaks at 798 nm, 802, and 840 nm ±1. There is a 
change in the carotenoid absorption between the three LH2 complex types identified. The red-most 

820 LH2 complex type to the B800-
840p LH2 complex type. The changes in the Qy peaks appear to produce isosbestic points, as the 

There are several isosbestic points observed between the B800-
840h (831.5 nm). There is an isosbestic point 
840p (831 nm). These isosbestic points are within 

sulphide, low light 30 ºC (SLL30) 

840h (Figure 3.24 dark 

820 complex type absorption peaks were observed at 803 nm, 

840h complex type centred at 803nm, with a 

840p maxima centre at 839.5 ± 0.5 nm. The 

carotenoid maxima observed vary only a small amount, centring at 463 nm, 490 



 

 

nm and 525 nm (B800

between these two LH2 complex types centres at 834 nm. 

Figure 3.24 Normalised absorption spectra of the original crude  LH2 extract 
growth conditions (cyan) and the
complex types in 0.02 % DDM from fractions pooled after anion exc hange chromatography. 
The crude LH2 fraction was extracted from 
under low light, 30 ̊C growth (SLL30) conditions. The B800
mM NaCl and the B800
sucrose density centrifugation produced Qy peaks at 802 nm, and a shoulder at ~ 822 nm. The 
purified B800-820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818 
nm. The purified B800-840h produces peaks at 798 nm, 802 nm, with a shoulder at ~840 nm. 
There is no substantial change in the carotenoid absorption between the three
identified at 463 nm, 490 nm, and 525 nm
isosbestic point, as the ~818 nm peak shifts to 840 nm

When the crude LH2 fraction, extracted from 

presence of thiosulphate

the same gradient as the SLL30 fraction the same elution peaks are observed 

however the complexes show some differences (Figure 3.2

complex maxima centre at 803 nm 

840h complex type produces a more prominent hump at ~ 830 nm

nm and 525 nm (B800-820) or 526 (B800-840h). The NIR isosbestic point observed 

between these two LH2 complex types centres at 834 nm. 

Normalised absorption spectra of the original crude  LH2 extract 
(cyan) and the  purified B800-820 (red) and B800 -

in 0.02 % DDM from fractions pooled after anion exc hange chromatography. 
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of sulphide

C growth (SLL30) conditions. The B800-820 LH2 complex type eluted at 240 
mM NaCl and the B800-840 complex type eluted at 240 mM NaCl. The crude LH2 fraction from 
sucrose density centrifugation produced Qy peaks at 802 nm, and a shoulder at ~ 822 nm. The 

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818 
840h produces peaks at 798 nm, 802 nm, with a shoulder at ~840 nm. 

There is no substantial change in the carotenoid absorption between the three
at 463 nm, 490 nm, and 525 nm. The changes in the Qy peaks appear to produce an 

isosbestic point, as the ~818 nm peak shifts to 840 nm (834 nm). 

When the crude LH2 fraction, extracted from Alc. vinosum

nce of thiosulphate, under low light and 30 ̊C (TLL30), is separated using 

the same gradient as the SLL30 fraction the same elution peaks are observed 

however the complexes show some differences (Figure 3.25

complex maxima centre at 803 nm and ~818 nm (Figure 3.2

840h complex type produces a more prominent hump at ~ 830 nm

100 

isosbestic point observed 

 

 

Normalised absorption spectra of the original crude  LH2 extract from SLL30 
-840h (green) LH2 

in 0.02 % DDM from fractions pooled after anion exc hange chromatography.  
cells grown in the presence of sulphide, 

820 LH2 complex type eluted at 240 
840 complex type eluted at 240 mM NaCl. The crude LH2 fraction from 

sucrose density centrifugation produced Qy peaks at 802 nm, and a shoulder at ~ 822 nm. The 
820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818 

840h produces peaks at 798 nm, 802 nm, with a shoulder at ~840 nm. 
There is no substantial change in the carotenoid absorption between the three LH2 complex types 

. The changes in the Qy peaks appear to produce an 

Alc. vinosum cells grown in the 

(TLL30), is separated using 

the same gradient as the SLL30 fraction the same elution peaks are observed 

5). The B800-820 

(Figure 3.25 red). The B800-

840h complex type produces a more prominent hump at ~ 830 nm (Figure 3.25 
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dark yellow), and the B800-840p produces a distinct peak at 839 ±1 nm (Figure 

3.25 black). The carotenoid peaks of the B800-820 complex type centre at 489 

±0.5 nm, with shoulders in the absorption at ~ 510 ±2 nm, ~ 460 ±0.5 nm and ~ 

550 nm. The carotenoid peaks of the B800-840h are similar to the B800-820 with 

a slight reduction in the intensity of the ~ 510 nm shoulder. The B800-840p 

produces the same carotenoid maxima but with a red-shifted shoulder at ~ 519 

nm.  

There are isosbestic points observed between the complexes produced under 

TLL30 growth conditions. The B800-820 LH2 complex absorption intersects the 

absorption of the B800-840p at 831 nm and the B800-840h at 828 nm. The 

absorption of the B800-840p and B800-840h LH2 complex types intersect at 842 

nm. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3.25 Normalised absorption spectra of the original crude  LH2 extract 
growth conditions (dotted line) and the 
B800-840p (blue) LH2 complex types
exchange chromatography. 
The crude LH2 fraction was extracted from 
thiosulphate, under low light
eluted at 240 mM NaCl and the B800
fraction from sucrose density cent
nm. The purified B800-820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at 
~ 818 nm. The purified B800
nm. The purified B800-840p produces peaks at 798 nm, 802 nm, and 840 nm. There is no 
substantial change in the carotenoid absorption between the three LH2 complex types identified
~460 nm, 489 nm, and ~510 nm
absorption spectrum of the different LH2 complexes. There are isosbestic points observed between 
the B800-820 and the B800
between the B800-840h and the B800
between the different LH2 complex types varies by 11 nm.

3.4.3 Anion exchange of LH2 complex types produced under 
SHL30 and SLL40 growth conditions

There is a small ~ 818 nm shoulder in the 77 K absorption spectrum of SDCG from 

SHL30 but the most prominent Qy maximum centres at 867 nm (Figure 3.

This suggests that the primary LH2 complex type produced under the SHL30 

growth conditions is a B800

Normalised absorption spectra of the original crude  LH2 extract 
(dotted line) and the purified B800- 820 (red), B800

840p (blue) LH2 complex types  in 0.02 % DDM from fractions pooled after anion 
exchange chromatography.  
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of 

under low light, 30 ̊C growth (TLL30) conditions. The B800
eluted at 240 mM NaCl and the B800-840 complex types eluted at 240 mM NaCl. The crude LH2 
fraction from sucrose density centrifugation produced Qy peaks at 802 nm, and a shoulder at ~ 821 

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at 
~ 818 nm. The purified B800-840h produces peaks at 798 nm, 802 nm, with a shoulder at ~

840p produces peaks at 798 nm, 802 nm, and 840 nm. There is no 
substantial change in the carotenoid absorption between the three LH2 complex types identified
~460 nm, 489 nm, and ~510 nm. There is more variation between the intercepts of 
absorption spectrum of the different LH2 complexes. There are isosbestic points observed between 

820 and the B800-840h (828 nm) and the B800-820 and the B800
840h and the B800-840p (842 nm). The difference in the isosbestic points 

between the different LH2 complex types varies by 11 nm. 

Anion exchange of LH2 complex types produced under 
SHL30 and SLL40 growth conditions  

There is a small ~ 818 nm shoulder in the 77 K absorption spectrum of SDCG from 

the most prominent Qy maximum centres at 867 nm (Figure 3.

This suggests that the primary LH2 complex type produced under the SHL30 

growth conditions is a B800-850 LH2 complex type but that there may be some 
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Normalised absorption spectra of the original crude  LH2 extract from TLL30 
820 (red), B800 -840h (green), and 

in 0.02 % DDM from fractions pooled after anion 

cells grown in the presence of 
C growth (TLL30) conditions. The B800-820 LH2 complex type 

840 complex types eluted at 240 mM NaCl. The crude LH2 
rifugation produced Qy peaks at 802 nm, and a shoulder at ~ 821 

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at 
840h produces peaks at 798 nm, 802 nm, with a shoulder at ~830 

840p produces peaks at 798 nm, 802 nm, and 840 nm. There is no 
substantial change in the carotenoid absorption between the three LH2 complex types identified at 

. There is more variation between the intercepts of the Qy 
absorption spectrum of the different LH2 complexes. There are isosbestic points observed between 

820 and the B800-840p (831 nm) and 
in the isosbestic points 

Anion exchange of LH2 complex types produced under 

There is a small ~ 818 nm shoulder in the 77 K absorption spectrum of SDCG from 

the most prominent Qy maximum centres at 867 nm (Figure 3.18). 

This suggests that the primary LH2 complex type produced under the SHL30 

850 LH2 complex type but that there may be some 
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B800-820 present. The potential joint production of these two complex types led 

to the adaption of the Alvin-800-820-and800-840-method.met method to 

optimise purification of both LH2 complex types. This was achieved via the 

addition of a step of 310 mM NaCl to elute the B800-850 complex type. This 

method was named Alvin-SHL 30 - exp03-6-02-13.met (as outlined in Methods 

and Materials section 2.5.3.3). 

As expected, the main elution peaks were observed at 240 mM, and 310 mM NaCl 

with a small peak at 260 mM. The B800-820 LH2 complex type eluted at 240 mM 

and produced peaks at 796nm, 802 nm and ~ 818 nm (Figure 3.26 red). A small 

amount of B800-840h (Figure 3.26 dark yellow) and B800-840p (Figure 3.26 

black) eluted at 260 mM NaCl. The B800-840 LH2 complex types produced 

absorption peaks at 796nm and 802 nm with a distinct peak (B800-840p) or an 

absorption shoulder (B800-840h) at 846 nm. At 310 mM NaCl the B800-850 LH2 

complex type eluted, which produced absorption peaks at 796 nm, 802 nm, and 

849 ± 1 nm (Figure 3.26 purple). The carotenoid composition changes slightly 

between the B800-820 LH2 complex type and the B800-850 LH2 complex type. 

The main peak centres at 488 ±0.5 nm, with a shoulder at ~ 464 nm and ~ 521 ±1 

nm. The shoulders are more distinct as peaks in the B800-850 complex type 

produced under these growth conditions than the B800-820 or B800-840 LH2 

complex types.  

The isosbestic point observed between the B800-820 and B800-850 complex 

types centres at 838 nm and can be observed across all the fractions pooled. 

 



 

 

Figure 3.26 Normalised absorption spectra of the original crude  LH2 extract 
growth conditions (dotted line) and the 
B800-840p (black), and the B800
fractions pooled after anion exchange chromatograph y. 
The crude LH2 fraction was extracted from 
under high light, 30 ̊C growth (SHL30) conditions. The B800
mM NaCl and the B800
sucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and 848
purified B800-820 LH2 complex produces Qy peaks at 
nm. The B800-840h produces Qy peaks at 798 nm, 802 nm, and two absorption shoulders at ~818 
nm and ~846 nm. The B800
B800-850a LH2 complex produces Qy peak
substantial change in the carotenoid absorption between the two LH2 complex types identified. The 
isosbestic point between the B800
838 nm. 

When the crude LH2 fraction from cells grown under SLL40 growth conditions 

was separated using this gradient

complexes eluted was the same as those from the 

SHL30 growth conditions

NaCl. The LH2 complex types recorded

eluted at 240 mM NaCl with a peak centring at 802 nm, and a shoulder at ~ 818 

nm. The B800-850 LH2 complex

produced Qy absorption peaks at 797nm, 802nm and 848 nm. The carotenoid 

Normalised absorption spectra of the original crude  LH2 extract 
(dotted line) and the purified B800-820 (red), B800
and the B800 -850 (purple) LH2 complex ty pes in 0.02 % DDM from 

fractions pooled after anion exchange chromatograph y.  
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of sulphide

C growth (SHL30) conditions. The B800-820 LH2 complex type e
mM NaCl and the B800-850a complex types eluted at 310 mM NaCl. The crude LH2 fraction from 
sucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and 848

820 LH2 complex produces Qy peaks at 796 nm, 802 m, and a shoulder at ~ 818 
840h produces Qy peaks at 798 nm, 802 nm, and two absorption shoulders at ~818 

nm and ~846 nm. The B800-840p produces Qy peaks at 798 nm, 802 nm, and 846 nm.
850a LH2 complex produces Qy peaks at 796 nm, 802 nm, and 849

substantial change in the carotenoid absorption between the two LH2 complex types identified. The 
isosbestic point between the B800-820 LH2 complex and the B800-850a LH2 complex centres at 

crude LH2 fraction from cells grown under SLL40 growth conditions 

using this gradient method, the NaCl concentration at which the 

complexes eluted was the same as those from the LH2 fraction

growth conditions. The LH2 complexes eluted at 240 mM and 310 mM 

NaCl. The LH2 complex types recorded were the B800-820 

eluted at 240 mM NaCl with a peak centring at 802 nm, and a shoulder at ~ 818 

850 LH2 complex (Figure 3.27 purple) eluted at 310 

produced Qy absorption peaks at 797nm, 802nm and 848 nm. The carotenoid 
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Normalised absorption spectra of the original crude  LH2 extract from SHL30 
B800-840h (dark yellow), 

pes in 0.02 % DDM from 

cells grown in the presence of sulphide, 
820 LH2 complex type eluted at 240 

850a complex types eluted at 310 mM NaCl. The crude LH2 fraction from 
sucrose density centrifugation produced Qy peaks at 798 nm, 803 nm, and 848 ± 0.5 nm. The 

nm, 802 m, and a shoulder at ~ 818 
840h produces Qy peaks at 798 nm, 802 nm, and two absorption shoulders at ~818 

840p produces Qy peaks at 798 nm, 802 nm, and 846 nm.The purified 
s at 796 nm, 802 nm, and 849 ± 0.5 nm. There is no 

substantial change in the carotenoid absorption between the two LH2 complex types identified. The 
850a LH2 complex centres at 

crude LH2 fraction from cells grown under SLL40 growth conditions 

method, the NaCl concentration at which the 

LH2 fraction produced under 

eluted at 240 mM and 310 mM 

 (Figure 3.27 red) that 

eluted at 240 mM NaCl with a peak centring at 802 nm, and a shoulder at ~ 818 

eluted at 310 mM NaCl and 

produced Qy absorption peaks at 797nm, 802nm and 848 nm. The carotenoid 



 

 

complement between the B800

complex type produced under these growth conditions varies. The carotenoids of 

the B800-820 complex pr

B800-850 LH2 complex type carotenoid peaks centres at ~ 462 nm, 488.5 nm, 

and ~ 521.5 nm. The absorption at ~460 nm and ~510 nm are less distinct in the 

B800-820 complex type produced under these growth co

point observed centres at 833.5 nm between the B800

produced under these growth conditions.

Figure 3.27 Normalised absorption spectra of the original crude  LH2 extr
growth conditions (blue) and the 
complex types in 0.02 % DDM from fractions pooled a fter anion exchange chromatography. 
The crude LH2 fraction was extracted from 
under low light, 40 ̊C growth (SLL40) conditions. The B800
mM NaCl and the B800
sucrose density centrifugation produced Qy p
purified B800-820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 
The purified B800-850 LH2 complex produces Qy peaks at 798 nm, 802 nm, and 846
There is a small change in t
obscured as a shoulder in the B800
LH2 complex.  

complement between the B800-820 LH2 complex type and the B800

complex type produced under these growth conditions varies. The carotenoids of 

820 complex produce maxima at ~460 nm, 451 nm, and ~ 510 nm. The 

850 LH2 complex type carotenoid peaks centres at ~ 462 nm, 488.5 nm, 

and ~ 521.5 nm. The absorption at ~460 nm and ~510 nm are less distinct in the 

820 complex type produced under these growth conditions. The isosbestic 

point observed centres at 833.5 nm between the B800-820 and B800

produced under these growth conditions. 

Normalised absorption spectra of the original crude  LH2 extr
(blue) and the purified B800-820 (red), and B800 -

complex types in 0.02 % DDM from fractions pooled a fter anion exchange chromatography. 
The crude LH2 fraction was extracted from Alc. vinosum cells grown in the presence of sulphide

C growth (SLL40) conditions. The B800-820 LH2 complex type eluted at 240 
mM NaCl and the B800-850a complex types eluted at 310 mM NaCl. The crude LH2 fraction from 
sucrose density centrifugation produced Qy peaks at 797 nm, 802 nm, and 847

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 
850 LH2 complex produces Qy peaks at 798 nm, 802 nm, and 846

There is a small change in the carotenoid absorption in the red-most carotenoid peak, as it is 
obscured as a shoulder in the B800-820 LH2 complex but is a more distinct peak in the B800
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820 LH2 complex type and the B800-850 LH2 

complex type produced under these growth conditions varies. The carotenoids of 

oduce maxima at ~460 nm, 451 nm, and ~ 510 nm. The 

850 LH2 complex type carotenoid peaks centres at ~ 462 nm, 488.5 nm, 

and ~ 521.5 nm. The absorption at ~460 nm and ~510 nm are less distinct in the 

nditions. The isosbestic 

820 and B800-850 

 

Normalised absorption spectra of the original crude  LH2 extr act from SLL40 
-850 (purple) LH2 

complex types in 0.02 % DDM from fractions pooled a fter anion exchange chromatography.  
the presence of sulphide, 

820 LH2 complex type eluted at 240 
850a complex types eluted at 310 mM NaCl. The crude LH2 fraction from 

eaks at 797 nm, 802 nm, and 847 ± 0.5 nm. The 
820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 

850 LH2 complex produces Qy peaks at 798 nm, 802 nm, and 846 ± 0.5 nm. 
most carotenoid peak, as it is 

820 LH2 complex but is a more distinct peak in the B800-850a 
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In summary, the different LH2 complex types are produced under a variety of 

growth conditions (Table 3.3). Some growth conditions produced negligible 

quantities of some of the LH2 complex types. These are classified as LH2 

complex types that are ‘present’ but not ‘abundant’. High light 40 ̊C growth 

conditions solely produced B800-850, while high light 30 ̊C in the presence of 

sulphide produced B800-820, a small amount of B800-840h and a B800-850 LH2 

complex type. Cells cultured in high light 30 ̊C conditions with thiosulphate 

produced B800-820, B800-840h, B800-840p and a B800-850 LH2 complex type. 

The primary LH2 complex type was the B800-820, with a small amount of B800-

840h and B800-840p under low light 30 ̊C conditions in the presence of 

thiosulphate. Growth under low light 40 ̊C conditions in the presence of sulphide 

produced small amounts of B800-820 LH2 complex type, and a B800-850 

complex. In the presence of thiosulphate cells cultured under low light 40 ̊C 

growth conditions produce primarily a B800-820 LH2 complex type with some 

B800-840h.  

It is possible that the B800-840 complex types are intermediates between the 

B800-820 and B800-850 LH2 complex types. The isosbestic points observed vary 

between the different LH2 complex types and suggest that there is probably 

more than one factor changing. This factor is the polypeptide composition and 

therefore there are probably several different alpha and beta peptides 

difference between the B800-820 and B800-850.  

Table 3.3  Showing the different LH2 complex types produced by  Alc. vinosum under 
different growth conditions.   
The growth conditions are S: sulphide, T: thiosulphate, HL: High light, LL: Low light, 30 ̊C or 40 ̊C. 

Conditions 

/ Complex  

 

SLL30  

 

SLL40 

 

SHL30 

 

SHL40 

 

TLL30 

 

TLL40 

 

THL30 

 

THL40 
B800-820 Abundant Present Present Absent Abundant Abundant Abundant Absent 

B800-840P Absent Absent Present Absent Absent Present Abundant Absent 

B800-840H Present Present Present Absent Abundant Abundant Abundant Absent 

Classic 

B800-850 

Absent Present Absent Abundant Absent Absent Absent Abundant 

Alternative 

B800-850 

Absent Abundant Abundant Absent Absent Absent Present Absent 
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3.5 The LH2 complex types 

Direct comparisons of an LH2 complex type sourced from different growth 

conditions will determine whether they are spectroscopically identical or 

whether there is significant variation within an LH2 complex type.  

3.5.1 B800-820 LH2 complex type 

There is little variation between the B800-820 LH2 complex type produced under 

TLL30, SLL30, THL30, and TLL40 growth conditions (Figure 3.28). The B800-820 

LH2 complex type from these growth conditions produce Qy peaks that centre at 

796 nm and 802 nm with a shoulder at ~ 818 nm. The Qx peak observed is 

broader than those observed in other LH2 complex types. The broadening of the 

Qx peak observed in the SDCG absorption spectrum in section 3.3.1 relates to 

the B800-820 LH2 complex type, as it is observed in the absorption spectra of 

purified complexes.  

The shoulder at ~818 nm is most distinct in the B800-820 from TLL30 growth 

(Figure 3.28 pink) conditions than the B800-820 LH2 complex from SLL30. The 

B800-820 produced under SLL30 (Figure 3.28 cyan), THL30 (Figure 3.28 red) and 

TLL40 (Figure 3.28 purple) produce a near negligible shoulder at ~818 nm, and 

the B800-820 from SLL30 appears to have a more pronounced hump at ~ 840 nm. 

The intensity of the B800 peak of the B800-820 from TLL40 and THL30 is slightly 

higher than that of the complexes produced under LL30 conditions.  

The carotenoid composition varies to a small degree depending on the growth 

conditions the B800-820 complex type was produced under. The blue-most 

carotenoid absorption shoulder varies between ~ 461 nm (THL30), ~ 460 nm 

(T/SLL30), and ~463 nm (TLL40). The main peak centres at either 488.5 ± 0.5 nm 

(THL30), 489 ± 0.5 nm (TLL30 and TLL40), and 489.5 ± 0.5 nm (SLL30). The red-

most absorption shoulder produces the most variability, producing higher 

intensity absorption shoulders at ~ 510 ±2 nm from TLL40 and TLL30 growth 

conditions than the absorption measured from SLL30 and THL30 conditions (522 

nm and 525 ±0.5 nm respectively).   



 

 

Figure 3.28 Normalised absorption spectra of the purified B800
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 
THL30 (red), and TLL40 (purple) by 
The different growth conditions of 
(S), under low light (LL) or high light (HL), at 30 
each other using anion exchange chromatography before absorption spectra were recorded. The 
purified B800-820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 
The carotenoid peaks show the largest variation between the different purified B800
complex types. The carotenoid peak of the B800
shoulders at ~ 460 nm and 510 nm. The carotenoid peak of the B800
nm with two shoulders at ~ 460 nm and 522 nm. The carotenoid peak of the B800
centres at 489 nm with two shoulders at ~ 460 nm and 510 nm. 
820 (THL30) centres at 488 nm with two shoulders at ~ 461 nm and ~525 nm. The B800
TLL40 and THL30 growth conditions produce the highest intensity B800 peaks and the least 
defined ~818 nm shoulder.  

3.5.2 B800-840 LH2 co

The B800-840 LH2 complex type falls into two sub

the B800-840 peak distinguished by whether the peak at 840 nm ±2 nm is a 

distinct peak or a hump. The B800

under low light conditions, and in significant quantities under high light 

conditions at 30 ̊C. The B800

growth conditions in the presence of thiosulphate. 

Normalised absorption spectra of the purified B800 -820 LH2 complex type in 
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 
THL30 (red), and TLL40 (purple) by Alc. vinosum.  
The different growth conditions of Alc. vinosum were in the presence of thiosulphate (T) or sulphide 
(S), under low light (LL) or high light (HL), at 30 ̊C or 40 C̊. LH2 complex types were separated from 
each other using anion exchange chromatography before absorption spectra were recorded. The 

820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 
The carotenoid peaks show the largest variation between the different purified B800
complex types. The carotenoid peak of the B800-820 (TLL30) centres at 489 
shoulders at ~ 460 nm and 510 nm. The carotenoid peak of the B800-820 (SLL30) centres at 489 
nm with two shoulders at ~ 460 nm and 522 nm. The carotenoid peak of the B800
centres at 489 nm with two shoulders at ~ 460 nm and 510 nm. The carotenoid peak of the B800
820 (THL30) centres at 488 nm with two shoulders at ~ 461 nm and ~525 nm. The B800
TLL40 and THL30 growth conditions produce the highest intensity B800 peaks and the least 
defined ~818 nm shoulder.   

840 LH2 co mplex types 

840 LH2 complex type falls into two sub-types, the B800

840 peak distinguished by whether the peak at 840 nm ±2 nm is a 

distinct peak or a hump. The B800-840 hump is produced in small quantities 

nditions, and in significant quantities under high light 

C. The B800-840p is predominantly produced under high light 30 

growth conditions in the presence of thiosulphate.  
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820 LH2 complex type in 
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 

were in the presence of thiosulphate (T) or sulphide 
C. LH2 complex types were separated from 

each other using anion exchange chromatography before absorption spectra were recorded. The 
820 LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder at ~ 818. 

The carotenoid peaks show the largest variation between the different purified B800-820 LH2 
820 (TLL30) centres at 489 nm with two 

820 (SLL30) centres at 489 
nm with two shoulders at ~ 460 nm and 522 nm. The carotenoid peak of the B800-820 (TLL40) 

The carotenoid peak of the B800-
820 (THL30) centres at 488 nm with two shoulders at ~ 461 nm and ~525 nm. The B800-820 from 
TLL40 and THL30 growth conditions produce the highest intensity B800 peaks and the least 

types, the B800-840 hump and 

840 peak distinguished by whether the peak at 840 nm ±2 nm is a 

840 hump is produced in small quantities 

nditions, and in significant quantities under high light 

840p is predominantly produced under high light 30 
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Figure 3.29 shows the absorption spectra of the different B800-840h identified 

after anion exchange chromatography purification. The amount of B800-840h 

produced under most growth conditions is not of a sufficient amount to pool for 

further purification but is adequate for comparison. All the B800-840h produced 

by cells in the presence of thiosulphate produce B800-840h that has a higher 796 

nm peak relative to the 803 (Figure 3.29 pink, purple, and red), while this is 

reversed in the case of the B800-840h produced by cells grown in the presence 

of sulphide (Figure 3.29 cyan and green). The B800-840h LH2 complex from all 

growth conditions produce a hump in the absorbance at ~ 840 nm to different 

degrees, and a broad Qx peak. This may imply that this complex is a variation on 

the B800-820 complex type.  

There are pronounced differences in the carotenoids present in the B800-840h 

sourced from Alc. vinosum grown under different growth conditions. The 

absorption peak centres at 489 nm. The carotenoid composition of the B800-

840h from TLL30 and TLL40 produce higher intensity shoulders at ~ 510 nm and a 

shoulder at ~ 550 nm, and the ~ 460 nm shoulder is reduced. This contrasts with 

the B800-840h produced under THL30, SLL30 and SHL30 growth conditions which 

produce clear shoulders at ~ 522 nm and ~460 nm. 

 

 

 



 

 

Figure 3.29 Normalised absorption spectra of the purified B800
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 
THL30 (red), SHL30 (green), and TL
The different growth conditions of 
(S), under low light (LL) or high light (HL), at 30 
each other using anion exchange chromatography before absorption spectra were recorded. The 
purified B800-840h LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder that 
varies between 835- 840 nm. The carotenoid peaks show the largest variation between the 
different purified B800-840h LH2 complex types. The B800
nm but the intensity of the absorption shoulders varies. The B800
shoulder at ~ 460 nm and higher intensity shoulder at ~ 510 nm. The B800
from TLL40 growth conditions produces a low intensity shoulder at ~ 460 nm and a higher intensity 
shoulder at ~ 515 nm. The B800
shoulder at ~ 460 nm and a shoulder of equal intensity
type from SLL30 produces a shoulder at ~ 460 nm and a shoulder of lower intensity at ~ 525 nm. 
The B800-840h LH2 complex type from SHL30 produces a shoulder at ~ 460 nm and a shoulder of 
lower intensity at ~ 525 nm.

The carotenoid composition of the B800

conditions produce higher intensity shoulders at ~ 510 nm and a shoulder at ~ 

550 nm, and the ~ 460 nm shoulder is reduced. This contrasts with the B800

840h produced under THL30, S

clear shoulders at ~ 522 nm and ~460 nm.

Normalised absorption spectra of the purified B800 -840h LH2 complex type in 
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 
THL30 (red), SHL30 (green), and TL L40 (purple) by Alc. vinosum.  
The different growth conditions of Alc. vinosum were in the presence of thiosulphate (T) or sulphide 
(S), under low light (LL) or high light (HL), at 30 ̊C or 40 C̊. LH2 complex types were separated from 

n exchange chromatography before absorption spectra were recorded. The 
840h LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder that 

840 nm. The carotenoid peaks show the largest variation between the 
840h LH2 complex types. The B800-840h carotenoid peaks centre at 489 

nm but the intensity of the absorption shoulders varies. The B800-840h (TLL30) produces a low 
shoulder at ~ 460 nm and higher intensity shoulder at ~ 510 nm. The B800
from TLL40 growth conditions produces a low intensity shoulder at ~ 460 nm and a higher intensity 
shoulder at ~ 515 nm. The B800-840h LH2 complex type from THL30 conditions produces a 
shoulder at ~ 460 nm and a shoulder of equal intensity at ~ 525 nm. The B800
type from SLL30 produces a shoulder at ~ 460 nm and a shoulder of lower intensity at ~ 525 nm. 

840h LH2 complex type from SHL30 produces a shoulder at ~ 460 nm and a shoulder of 
lower intensity at ~ 525 nm.    

The carotenoid composition of the B800-840h from TLL30 and TLL40

produce higher intensity shoulders at ~ 510 nm and a shoulder at ~ 

550 nm, and the ~ 460 nm shoulder is reduced. This contrasts with the B800

840h produced under THL30, SLL30 and SHL30 growth conditions which produce 

clear shoulders at ~ 522 nm and ~460 nm. 
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840h LH2 complex type in 
0.02 % DDM produced from four different growth cond itions, TLL30 (pink), SLL30 (cyan), 

were in the presence of thiosulphate (T) or sulphide 
C. LH2 complex types were separated from 

n exchange chromatography before absorption spectra were recorded. The 
840h LH2 complex produces Qy peaks at 798 nm, 802 nm, with a shoulder that 

840 nm. The carotenoid peaks show the largest variation between the 
840h carotenoid peaks centre at 489 

840h (TLL30) produces a low 
shoulder at ~ 460 nm and higher intensity shoulder at ~ 510 nm. The B800-840h LH2 complex type 
from TLL40 growth conditions produces a low intensity shoulder at ~ 460 nm and a higher intensity 

840h LH2 complex type from THL30 conditions produces a 
at ~ 525 nm. The B800-840h LH2 complex 

type from SLL30 produces a shoulder at ~ 460 nm and a shoulder of lower intensity at ~ 525 nm. 
840h LH2 complex type from SHL30 produces a shoulder at ~ 460 nm and a shoulder of 

840h from TLL30 and TLL40 growth 

produce higher intensity shoulders at ~ 510 nm and a shoulder at ~ 

550 nm, and the ~ 460 nm shoulder is reduced. This contrasts with the B800-

LL30 and SHL30 growth conditions which produce 
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Few differences are observed between the absorption spectra of the purified 

B800-840p LH2 complex type and the B800-840h, other than the presence or 

absence of a defined peak. In the split B800 peaks, as observed in some of the 

B800-840h complexes, the 796 nm peak is higher relative to the 803 nm 

absorption. Figure 3.30 contrasts the two types of B800-840 after gel filtration 

showing the differences in B800 peak intensity and the “B850-like” maxima. 

Most obviously the B800-840h doesn’t have a dip in absorbance at ~ 820 nm 

(Figure 3.30 dark yellow) unlike the B800-840p (Figure 3.30 red) and there is a 

small difference in the breadth of the Qx peaks. 

 

 



 

 

Figure 3.30 Normalised absorption spectra of the purified B800
B800-840p (red) LH2 complex types in 0.02 % DDM produced  under thiosulphate (T), high 
light (HL), at 30 C̊ (THL30). 
LH2 complex types were separated from each other using anion exchange chromatography before 
absorption spectra were recorded. The purified B800
798 nm, 802 nm, with a shoulder that varies between 835
complex produces Qy peaks at 798 nm, 802 nm, and 840 nm. There is no variation between the 
carotenoid peaks of the purified B800
B800-840h LH2 produces a distinct peak at 798 nm with the 802 nm showi
B800-840p LH2 produces a flat B800 peak with both the 798 nm and 802 nm peaks of equal 
intensity.  

The B800-840p was used as the standard B800

characterisation as it was found in highest abundance with the l

between preparations. 

3.5.3 B800-850 LH2 complex type

Figure 3.31 shows the comparison of the absorption spectra of the different 

B800-850 LH2 complex types from 

Normalised absorption spectra of the purified B800 -840h (dark yellow) and 
840p (red) LH2 complex types in 0.02 % DDM produced  under thiosulphate (T), high 

C (THL30).  
pes were separated from each other using anion exchange chromatography before 

absorption spectra were recorded. The purified B800-840h LH2 complex produces Qy peaks at 
798 nm, 802 nm, with a shoulder that varies between 835- 840 nm. The purified B800
complex produces Qy peaks at 798 nm, 802 nm, and 840 nm. There is no variation between the 
carotenoid peaks of the purified B800-840 LH2 complex types. The B800 peak produced by the 

840h LH2 produces a distinct peak at 798 nm with the 802 nm showi
840p LH2 produces a flat B800 peak with both the 798 nm and 802 nm peaks of equal 

840p was used as the standard B800-840 LH2 complex in further 

characterisation as it was found in highest abundance with the l

between preparations.  

850 LH2 complex type  

shows the comparison of the absorption spectra of the different 

850 LH2 complex types from Alc. vinosum grown under different 
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840h (dark yellow) and 
840p (red) LH2 complex types in 0.02 % DDM produced  under thiosulphate (T), high 

pes were separated from each other using anion exchange chromatography before 
840h LH2 complex produces Qy peaks at 

840 nm. The purified B800-840p LH2 
complex produces Qy peaks at 798 nm, 802 nm, and 840 nm. There is no variation between the 

840 LH2 complex types. The B800 peak produced by the 
840h LH2 produces a distinct peak at 798 nm with the 802 nm showing as a shoulder. The 
840p LH2 produces a flat B800 peak with both the 798 nm and 802 nm peaks of equal 

840 LH2 complex in further 

characterisation as it was found in highest abundance with the least variation 

shows the comparison of the absorption spectra of the different 

grown under different 
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conditions. The B800-850 LH2 complexes produced under high light, 40 ̊C growth 

conditions seem to be nearly identical regardless of sulphur source, producing 

maxima at 796 nm, 802 nm and 847 ± 1 nm (Figure 3.31 dark red and black). This 

LH2 complex type is most similar to the standard B800-850 Rsp. acidophila 

model, bar the split B800 peak. When this complex is contrasted with the B800-

850 complexes produced under THL30 and SHL30 there is a variation in the 

intensity of the “B850-like” BChl Qy peak (Figure 3.31 green and red). The red-

most Qy peak is of equal or lower intensity relative to the B800 peaks present in 

these complexes. For this reason the B800-850 complexes produced under these 

growth conditions were dubbed the alternative B800-850 (B800-850a), and the 

more standard-like B800-850 from the high light conditions is the classic B800-

850 (B800-850c). 

Under SLL40 growth conditions Alc. vinosum produces a B800-850 LH2 complex 

type that produces maxima at 848 nm, 796 nm and 802 nm (Figure 3.31 blue). 

This B800-850 has a lower intensity “B850-like” Qy peak than the B800-850c 

complexes produced under high light 40 ̊C conditions but it is still of a higher 

intensity than the B800 absorption peaks. The B800-850a LH2 complex type 

produced under THL30 growth conditions produces a “B850-like” Qy peak at 845 

±1 nm, with a more intense 796 nm peak relative to the 802 nm peak (Figure 

3.31 red). It is observed that the “B850-like” Qy peak is of a lower intensity 

relative to the B800 peaks therefore establishing this as an alternative B800-850. 

The peak of the B800-850a produced under SHL30 growth conditions centres at 

848 ± 1 nm and there is a large difference between the intensity of the B800 and 

“B850-like” peaks. Between the two B800 peaks, the 796 nm absorption peak is 

of a much higher intensity relative to the 802 nm. The Qx peak produced by 

these complex types is a distinct peak at 588 nm.  

The carotenoid composition between the complexes produced under the 

different growth conditions shows small to negligible variation. The main 

carotenoid peak centres at ~ 460 ± 0.5 nm, 487.5 nm ± 0.5 nm, and ~522 ± 0.5 

nm in the B800-850c from THL40 conditions. The B800-850c from SHL40 produces 

carotenoid peaks at ~ 463 ± 0.5 nm, 488 ± 0.5 nm, and ~523.5 ± 0.5 nm. The 

B800-850a complex type from THL30 produces carotenoid peaks at ~461 ± 1 nm, 

487 ± 0.5 nm, and ~520 ± 0.5 nm. The B800-850a produced under SHL30 growth 



 

 

conditions produce carotenoid peaks at ~463 ± 1 nm, 488 ± 0.5 nm, and ~521 ± 1 

nm. The carotenoid peaks produced by the B800

centre at ~ 463 nm, 488.5, and ~ 521.5 ± 0.5 nm.

Figure 3.31 Normalised absorption spectra of the purified B800
0.02 % DDM produced from five different growth cond itions, SHL40 (black), THL40 (dark 
red), SHL30 (green), THL30 (red), and SLL40 (blue) by 
The different growth conditions of 
(S), under low light (LL) or high light (HL), at 30 
each other using anion exchange chromatograph
NIR Qy absorption peaks of the B800
802 nm, and 847 ± 1 nm. Two types of B800
850 (B800-850c) and th
850 LH2 complex types derives from the ratio of the B800 peak to the B850 peak. If the B800 peak 
is higher than the B850 peak the LH2 complex is identified as a B800
higher than the B800 peak, as observed in most other well characterised B800
types, it is identified as a B800
which is of a higher intensity, in the B800
growth conditions the 796 nm peak is the highest intensity. In the B800
SHL40 growth conditions the peaks are of similar intensities. The carotenoid peaks centre at 488 
nm with two absorption should
of variation in the carotenoid peaks between the different B800

As the carotenoid composition within the different complex types varies it is 

clear that while there ma

conditions produce carotenoid peaks at ~463 ± 1 nm, 488 ± 0.5 nm, and ~521 ± 1 

nm. The carotenoid peaks produced by the B800-850 from SLL40 condition 

centre at ~ 463 nm, 488.5, and ~ 521.5 ± 0.5 nm.

Normalised absorption spectra of the purified B800 -850 LH2 complex type in 
0.02 % DDM produced from five different growth cond itions, SHL40 (black), THL40 (dark 
red), SHL30 (green), THL30 (red), and SLL40 (blue) by Alc. vinosum
The different growth conditions of Alc. vinosum were in the presence of thiosulphate (T) or sulphide 
(S), under low light (LL) or high light (HL), at 30 ̊C or 40 C̊. LH2 complex types were separated from 
each other using anion exchange chromatography before absorption spectra were recorded. The 
NIR Qy absorption peaks of the B800-850 produced under all growth conditions centre at 796 nm, 

1 nm. Two types of B800-850 LH2 complex were identified, the classic B800
850c) and the alternative B800-850 (B800-850a). The distinction between the two B800

850 LH2 complex types derives from the ratio of the B800 peak to the B850 peak. If the B800 peak 
is higher than the B850 peak the LH2 complex is identified as a B800-850a and if the B
higher than the B800 peak, as observed in most other well characterised B800
types, it is identified as a B800-850c LH2 complex type. There is variation in the B800 peaks as to 
which is of a higher intensity, in the B800-850 LH2 complexes from SLL40, SHL30 and THL30 
growth conditions the 796 nm peak is the highest intensity. In the B800-850 from THL40 and 
SHL40 growth conditions the peaks are of similar intensities. The carotenoid peaks centre at 488 
nm with two absorption shoulders at ~ 461 nm ± 1 nm and ~ 521 ± 1 nm. There is only a small level 
of variation in the carotenoid peaks between the different B800-850 LH2 complexes. 

As the carotenoid composition within the different complex types varies it is 

clear that while there may be biases towards the incorporation of certain 
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y be biases towards the incorporation of certain 



 

 

carotenoids into LH2 complex types, this is not the only factor affecting the 

carotenoid complement. This will probably be due to what carotenoids are most 

abundant during LH2 formation, which will be regula

within the growth conditions.

3.6 Gel filtration 

Molecular sieve chromatography was used after complexes were purified via 

anion exchange chromatography to desalt the sample and remove any residual 

impurities according to their size

2.5.4). All LH2 complex types eluted between 

variation (± 0.5 ml) between the elution of the LH2 complex types the 

hypothesis is that the different complex types are approximat

size (Figure 3.32). 

Figure 3.32 Normalised size exclusion chromatogram of the B800
840p, B800-850a, and B800
Elution was monitored using the A
(B800-840p elution), cyan (B800
elution). 

carotenoids into LH2 complex types, this is not the only factor affecting the 

carotenoid complement. This will probably be due to what carotenoids are most 

abundant during LH2 formation, which will be regulated by different factors 

within the growth conditions. 

Gel filtration  

Molecular sieve chromatography was used after complexes were purified via 

anion exchange chromatography to desalt the sample and remove any residual 

impurities according to their size (as outlined in Methods and Materials section 

. All LH2 complex types eluted between 92 ± 1 ml. As there was only small 

variation (± 0.5 ml) between the elution of the LH2 complex types the 

hypothesis is that the different complex types are approximat

 

Normalised size exclusion chromatogram of the B800 -820, B800
850a, and B800 -850c LH2 complex types from Alc. vinosum
monitored using the A280 and all complexes eluted at 92 ± 1 ml

840p elution), cyan (B800-820 elution), and dark yellow lines (B800
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carotenoids into LH2 complex types, this is not the only factor affecting the 

carotenoid complement. This will probably be due to what carotenoids are most 

ted by different factors 

Molecular sieve chromatography was used after complexes were purified via 

anion exchange chromatography to desalt the sample and remove any residual 

as outlined in Methods and Materials section 

± 1 ml. As there was only small 

variation (± 0.5 ml) between the elution of the LH2 complex types the 

hypothesis is that the different complex types are approximately the same ring 

 

820, B800-840h, B800-
Alc. vinosum.  

1 ml as shown by the red 
820 elution), and dark yellow lines (B800-840h and B800-850a 
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3.6.1 Comparison of the room, and low temperature, absorp tion 
spectra of the purified LH2 complex types of Alc. vinosum. 

The differences in the Qy absorption bands are most pronounced when the 

different LH2 complex types are directly compared (Figure 3.33). The B800 

absorption band is at the highest intensity in the B800-820 complex (Figure 3.33 

red), being approximately four times larger than the Qx peak. The intensity of 

the B800 band is lower in the B800-840p (Figure 3.33 dark yellow) and B800-850a 

(Figure 3.33 green) until it is at the lowest intensity in the B800-850c LH2 

complex type (Figure 3.33 purple) where it is only approximately three times the 

intensity of the Qx peak. The broad nature of the Qx peak observed in the B800-

820 complex types is more obvious in comparison to the other complexes and 

may be a product of increased or different heterogeneity of the B800-820 

complex type.  

From the absorption spectra, the carotenoid composition of the B800-850 and 

B800-840 complex types appears to be similar while the B800-820 has a more 

pronounced ~ 510 nm absorption shoulder and the main peak is red shifted to 

491 nm. This variation in the carotenoid content may be due to both growth 

conditions and the LH2 complex type the carotenoid is incorporated into. 

There are several isosbestic points observed between these LH2 complex types. 

The B800-820 intercepts the B800-850c absorption at 832 nm, the B800-850a at 

832.5 nm and the B800-840p at 830 nm. The B800-850c intercepts the B800-850a 

at 831 nm and the B800-840p at 836 nm. The B800-850a intercepts the B800-

840p at 842 nm. 

 

 

 

 

 



 

 

Figure 3.33 Normalised absorption spectra of the purified B800
(green), B800- 840p (dark yellow), and the B800
vinosum.  
LH2 complex types were 
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 
The NIR Qy absorption peaks of the B800
847 ± 1 nm. The NIR Qy absorption peaks of the B800
2 nm. The NIR Qy absorption peaks of the B800
818 ± 1 nm. The B800-
absorption shoulders at ~ 461 nm 
centre at 489 nm and two shoulders at ~460 and ~510 nm. The B800
centre at 489 nm and two shoulders at ~460 
carotenoid content between the different complex types. There are isosbestic points between the 
B800-820 LH2 complex and the B800
and the B800-850c (832 
850a (842 nm) and the B800
B800-850c centres at 831 nm. There is 1
B800-820 and B800-850 LH2 complex types, but the difference between the B800
other complex types are most substantial (up to 10 nm).

Absorption spectra were recorded at 77 K (Figure 3.

Niedzwiedzki, to aid in the analysis 

the SDCG and membranes, the B800 BChl produce a split peak at 792 nm and 804 

nm in the B800-850a LH2 complex type 

conditions and the B800

Normalised absorption spectra of the purified B800 -850c (purple), B800
840p (dark yellow), and the B800 -820 (red) LH2 complex types from 

LH2 complex types were sourced from Alc. vinosum grown under different growth conditions, in the 
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 
The NIR Qy absorption peaks of the B800-850c and B800-850a centres at 796 nm

1 nm. The NIR Qy absorption peaks of the B800-840p centres at 796 nm, 802 nm, and 840 
2 nm. The NIR Qy absorption peaks of the B800-820 centres at 796 nm, 802 nm, and shoulder at ~ 

-850c and B800-850a carotenoid peaks centre at 488 nm with two 
absorption shoulders at ~ 461 nm ± 1 nm and ~ 521 ± 1 nm. The B800-820 LH2 carotenoid peaks 
centre at 489 nm and two shoulders at ~460 and ~510 nm. The B800-840p LH2 carotenoid peaks 
centre at 489 nm and two shoulders at ~460 and ~520 nm. Some variation is observed in the 
carotenoid content between the different complex types. There are isosbestic points between the 

820 LH2 complex and the B800-840 LH2 complex (830 nm), and the B800
850c (832 nm). There are isosbestic points between the B800

850a (842 nm) and the B800-850c (836 nm). The isosbestic point between the B800
850c centres at 831 nm. There is 1-2 nm difference in the isosbestic points between the 

850 LH2 complex types, but the difference between the B800
other complex types are most substantial (up to 10 nm). 

Absorption spectra were recorded at 77 K (Figure 3.34), with the help of Darek 

Niedzwiedzki, to aid in the analysis of the isolated complexes. As observed in 

the SDCG and membranes, the B800 BChl produce a split peak at 792 nm and 804 

850a LH2 complex type (Figure 3.34 purple

conditions and the B800-840p LH2 complex type (Figure 3.34 dark yell
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850c (purple), B800 -850a 
820 (red) LH2 complex types from Alc. 

grown under different growth conditions, in the 
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 ̊C or 40 ̊C. 

850a centres at 796 nm, 802 nm, and 
840p centres at 796 nm, 802 nm, and 840 ± 

820 centres at 796 nm, 802 nm, and shoulder at ~ 
aks centre at 488 nm with two 

820 LH2 carotenoid peaks 
840p LH2 carotenoid peaks 

and ~520 nm. Some variation is observed in the 
carotenoid content between the different complex types. There are isosbestic points between the 

840 LH2 complex (830 nm), and the B800-850a (832.5 nm), 
nm). There are isosbestic points between the B800-840p and the B800-

850c (836 nm). The isosbestic point between the B800-850a and 
2 nm difference in the isosbestic points between the 

850 LH2 complex types, but the difference between the B800-840p and the 

), with the help of Darek 

of the isolated complexes. As observed in 

the SDCG and membranes, the B800 BChl produce a split peak at 792 nm and 804 

34 purple) from SHL30 

34 dark yellow) from 
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THL30 growth conditions. The split B800 peak centres at 794 nm and 803 nm in 

the B800-820 LH2 complex type (Figure 3.34 red) from TLL30 growth conditions. 

The split peaks of the B800-820 produce less of a dip at ~ 800 nm than observed 

in the B800-840p and B800-850a complex types. The Qy peak of the B800-820 

LH2 complex type sourced from TLL30 growth conditions produces a Qy peak 

that red-shifts to 820-821 nm with a shoulder at ~ 850 nm. The Qx peak 

produced varies from the other LH2 complex types as it produces a broad peak 

with an apex at 590 nm. The absorption peaks of the carotenoids observed at 

low temperature centre at 469-470 nm, 489-490 nm, 503 nm, 528 nm, and 545 

nm. 

The “B850-like” Qy peak of the B800-840p is observed at 861-862 nm with a 

small peak at 818 nm. These peaks correspond closely to the absorption bands 

observed in the SDCG, supporting the findings that the B800-840p is the primary 

LH2 complex type produced under THL30 growth conditions. The decrease in 

absorbance of the peak at 818 nm and the increase of absorbance at 861 nm in 

the purified sample illustrates the removal of the B800-820 LH2 complex type 

and enrichment for the B800-840p LH2 complex type. The 818 nm peak is still 

present in the purified sample of B800-840p, which may mean there is residual 

B800-820 complex present or that some of the peptides that comprise the B800-

840p complex are the same as those found in the B800-820. The Qx peak narrows 

in the purification from SDCG supporting the concept that the broad Qx peak is 

attributed to the B800-820 LH2 complex type.  The carotenoid bands present in 

the B800-840p complex centre at 466 nm, 488 nm, 501-502 nm, 527 nm, and 546 

nm. 

In the low temperature absorption of the B800-850a, the “B850-like” Qy 

maximum centres at 867 in the SDCG and is red-shifted to 869 nm in the purified 

B800-850a LH2 complex type. The shoulder at ~ 818 nm and the 804 nm split 

peak are reduced in intensity after purification as these shifts are due to the 

removal of the B800-820 LH2 complex type. There is a possible shoulder still 

present at ~818 nm, which may imply B800-820 contamination or the presence of 

peptides typically found in the B800-820 LH2 complex type in the B800-850a LH2 

complex. The carotenoid maxima present in the B800-850a from SHL30 growth 



 

 

conditions centre at 485 nm, 489 nm, ~ 502 nm, and 528 nm. All data are 

summarised in table 3.

Figure 3.34 Normalised low temperature (77 K) absorption spectr a of the purified B800
(purple), B800- 840p (dark yellow), and the B800
from Alc. vinosum.  
LH2 complex types were sourced from
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 
NIR Qy absorption peaks of the B800
absorption peaks of the B800
absorption peaks of the B800
The B800-850a carotenoid peaks centre at 485 nm, 489 nm, 528 nm with an absorption shoulder 
at ~ 502 nm. The B800
and 546 nm. The B800-
545 nm. The B800-840p produces the highest intensity B800 peaks while the B800
complex produces the lowest intensity B800 peaks. As the red
through the B800-840p and B800
818 nm peak. The carotenoid peaks observed are in similar positions b
may indicate differences in carotenoid composition.

 

 

conditions centre at 485 nm, 489 nm, ~ 502 nm, and 528 nm. All data are 

summarised in table 3.4. 

Normalised low temperature (77 K) absorption spectr a of the purified B800
840p (dark yellow), and the B800 -820 (red) LH2 complex types in 0.02 % DDM 

LH2 complex types were sourced from Alc. vinosum grown under different growth conditions, in the 
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 
NIR Qy absorption peaks of the B800-850a centres at 792 nm, 804 nm, and 869 nm. The NIR Qy 
absorption peaks of the B800-840p centres at 792 nm, 804 nm, 818 nm and 861 nm. The NIR Qy 
absorption peaks of the B800-820 centres at 794 nm, 803 nm, 821 nm, and shoulder at ~ 850 nm. 

850a carotenoid peaks centre at 485 nm, 489 nm, 528 nm with an absorption shoulder 
The B800-840p LH2 carotenoid peaks centre at 466 nm, 488 nm, 501 nm, 527 nm 

-820 LH2 carotenoid peaks centre at 470 nm, 490 nm, 503 nm, 528 nm, and 
840p produces the highest intensity B800 peaks while the B800

complex produces the lowest intensity B800 peaks. As the red-most Qy peak shifts to the blue 
840p and B800-820 LH2 complexes there is an increase in the intensity of the 

818 nm peak. The carotenoid peaks observed are in similar positions but vary in intensity, which 
may indicate differences in carotenoid composition. 
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Normalised low temperature (77 K) absorption spectr a of the purified B800 -850a 
820 (red) LH2 complex types in 0.02 % DDM 

rent growth conditions, in the 
presence of thiosulphate (T) or sulphide (S), under low light (LL) or high light (HL), at 30 ̊C. The 

850a centres at 792 nm, 804 nm, and 869 nm. The NIR Qy 
centres at 792 nm, 804 nm, 818 nm and 861 nm. The NIR Qy 

820 centres at 794 nm, 803 nm, 821 nm, and shoulder at ~ 850 nm. 
850a carotenoid peaks centre at 485 nm, 489 nm, 528 nm with an absorption shoulder 

840p LH2 carotenoid peaks centre at 466 nm, 488 nm, 501 nm, 527 nm 
820 LH2 carotenoid peaks centre at 470 nm, 490 nm, 503 nm, 528 nm, and 

840p produces the highest intensity B800 peaks while the B800-820 LH2 
most Qy peak shifts to the blue 

820 LH2 complexes there is an increase in the intensity of the 
ut vary in intensity, which 
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Table 3.4 Showing the Qy peaks of LH2 complex types  produced by Alc. vinosum under 
different growth conditions at room temperature (RT ) and the 77K absorption spectra (LT) of 
the B800-850a, B800-840p and B800-820 from SHL30, T HL30 and TLL30 respectively.  
Alc. vinosum growth conditions are S: sulphide, T: thiosulphate, HL: High light, LL: Low light, 30 ̊C 
or 40 ̊C. 

 Qy maxima (RT) B800-850 B800-840p B800-840h B800-820 LT 

S
H

L
4
0
 

B800 QyB(nm)   

  QyR (nm) 

798 

802 

NA NA NA NA 

B850 Qy (nm) 847 ±1     
Carotenoid peaks  ~463 ±0.5 

488 ±0.5 

~523.5  ±0.5 

    

T
H

L
4
0
 

B800 QyB(nm)   

  QyR (nm) 

798 

802 

NA NA NA NA 

B850 Qy (nm) 846.5 ±1     
Carotenoid peaks ~460.7 ±0.5 

487.5 ±0.5 

~522.5 ±0.5 

    

S
H

L
3
0
 

B800 QyB(nm)   

  QyR (nm) 

798 

802 

NA NA 798 

802 

792 

804 
B850 Qy (nm) 848 ± 1   ~ 818  869 

Carotenoid peaks  ~463.5 ±1 

488 

~521 

NA NA ~463  

488 

~521 

485 

489 

~502 

528 

T
H

L
3
0
 

B800 QyB(nm)   

  QyR (nm) 

798 

802 

798 

802 

798 

802 

798 

802 

792 

804 
B850 Qy (nm) 846 ±1 840 ±1 ~ 840  ~ 818 861-862/818 

Carotenoid peaks  ~461  ±1 

487 

~520 ±0.5 

~461 ±1 

487 ±0.5 

~521 ±1 

~461 ±1 

487 ±0.5 

~521 ±1 

~461 ±0.5 

488.5 

~522 

466 

488 

501-502 

527 

546 

S
L
L
4
0
 

B800 QyB(nm)   

  QyR (nm) 

798 

802 

NA NA 798 

802 

NA 

B850 Qy (nm) 848 ±1   ~ 818  
Carotenoid peaks  ~463 

488.5 

~522 

  ~460 

489 

~510 

~520 

 

T
L
L
4
0
 

B800 QyB(nm)   

  QyR (nm) 

NA 798 

802 

798 

802 

798 

802 

NA 

B850 Qy (nm)  840 ±1 ~ 840 818-819  
Carotenoid peaks   ~461 

488.5 

~520 

 

~460 

489 

~508 

~525 

~460 

489 

~510 

525 

 

S
L
L
3
0
 

B800 QyB(nm)   

  QyR (nm) 

NA NA 798 

802 

798 

802 

NA 

B850 Qy (nm)    818-819  
Carotenoid peaks    ~463 

488.5 

~525 

~ 463 ±1 

490 

~525  ±0.5 

 

T
L
L
3
0
 

B800 QyB(nm)   

  QyR (nm) 

NA 798 

802 

798 

802 

798 

802 

794 

803 
B850 Qy (nm)  840 ±1 ~ 840 818-819 820-821 

Carotenoid peaks   ~460 

488 

~519 

~460 

488 

~520 

~460.5 ±1 

489±0.5 

~510±2 

~550 

469-470 

489-490 

503 

528 

545 
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3.7 Summary 

Alc. vinosum is able to limit the LH2 complex types it produces depending on the 

growth and nutrient conditions it is grown under. The LH2 complex types were 

separated from the LH1/RC “core” complex via sucrose density centrifugation, 

and anion exchange chromatography was used to partially fractionate the LH2 

complex mix and enrich for certain LH2 complex types. The LH2 complex types 

identified were the B800-820, B800-840, and the B800-850 LH2 complex types. 

The B800-840 and B800-850 LH2 complex types were identified as having LH2 

complex subtypes; the B800-840h and B800-840p LH2 complex subtypes, and the 

B800-850a and B800-850c LH2 complex subtypes. Both B800-850 LH2 subtypes 

eluted at the same salt concentration, as do both B800-840 LH2 subtypes, 

indicating similar levels of anionic interaction with the resin. This suggests small 

changes in the peptide composition between these different LH2 complex 

subtypes that affects the NIR absorption peaks without dramatically changing 

the anionic interactions. In cases such as the B800-840 LH2 complex type, a lack 

of resolution of the LH2 complex type mix makes it difficult to make any definite 

analyses.  

Absorption spectra of the fractions collected between the main elution peaks 

during anion exchange chromatography indicate that there are intermediate LH2 

complexes formed between the different LH2 complex types. This suggests that 

the LH2 complexes of Alc. vinosum form a continuum however there are 

preferential LH2 complex types that are created in larger quantities, identified 

as the B800-820, B800-840, and the B800-850 LH2 complex types.  

Isosbestic points in the NIR absorption spectra of the different LH2 complex 

types indicate that there are several elements that change across the different 

LH2 complex types. This indicates that there are multiple polypeptides different 

between the different LH2 complex types however this requires further analysis 

to identify the different polypeptides present within all of the LH2 complex 

types (see Chapter 4). 

Low temperature spectroscopy successfully identified peaks that were hidden at 

room temperature. This was useful in elucidating the potential mix of LH2 
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complexes during purification as well as the purity of the LH2 complex mix after 

purification.  

The observations on the carotenoid mix imply that there are several factors at 

play as to the carotenoid composition of an LH2 complex type. In the case of the 

differences observed in the carotenoid mix present in the LH2 complexes 

produced under the low light, 40 ̊C growth conditions it appears unlikely that 

carotenoid incorporation is solely due to the carotenoids present during LH2 

formation. This may indicate that certain complex types preferentially 

incorporate certain carotenoids. However, in complexes such as the B800-820 

from THL30 growth conditions the carotenoid complement appears to be closer 

to that observed in the B800-840 and B800-850 LH2 complex types. This suggests 

that the different complex types are not entirely restricted in the carotenoids 

they can incorporate, although there may be a bias under some growth 

conditions. The carotenoid complement requires more in depth study that will 

be covered in chapter four.  
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 Chapter 4- Characterisation of the purified LH2 
complex types of Allochromatium (Alc.) 
vinosum. 

4.1 Introduction 

The aim of the following work was to characterise the LH2 complexes in light of 

the current structural (62, 63, 99) and genomic understanding (10, 157) to start 

to explore the basis of the differences between the LH2 complex types produced 

by Alc. vinosum. This will help in illuminating whether these complexes are 

distinct from each other or form a continuum. 

Questions surrounding the basis of the variation between the different LH2 

complex types produced by Alc. vinosum can be answered now that they can be 

separated effectively, as outlined in Chapter three. From observations made in 

Chapter three, the basis of the variation between the NIR absorption of the 

different LH2 complex types is due to differences in the peptides that ‘tune’ the 

spectra of the pigments rather than dramatic changes in the composition of the 

pigments themselves. The different LH2 complex types of Alc. vinosum are most 

probably heterogeneous, meaning they contain non-identical heterodimer 

subunits, like those identified from other species such as Rps. palustris (101, 

103, 104). This highlights the need to identify which of the puc genes of Alc. 

vinosum (10) contribute to each LH2 complex type. The changes in the 

carotenoid composition between the different LH2 complex types was analysed 

to determine the basis of the variation in the green region of the absorption 

spectra.  

Unlike the LH2 complex types of most other purple photosynthetic bacteria, the 

LH2 complexes from Alc. vinosum produce a split B800 peak (72, 141). Earlier 

work (113) found that both peaks of the split B800 are produced from within the 

same LH2 complex. How two different B800 populations exist within the same 

ring is part of the investigation covered in the following chapter.  
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4.2 Polypeptide analysis of the different LH2 compl exes 
of Alc. vinosum 

As outlined in the Introduction section 1.2.3.2, the structural determination of 

the LH2 complex (62, 72, 80, 99, 154) confirmed that the LH2 complex is formed 

from oligomerised heterodimer subunits consisting of alpha and beta 

polypeptides that hold the pigments in position. The position of the NIR 

absorption peak, the Qy band, of the BChl was determined to be due to a 

combination of the site energy and pigment-pigment interactions. The site 

energy is the protein-pigment interactions and binding, through the direct 

binding of the central Mg2+ ion and H bonding on the rest of the chlorin ring. 

Further ‘tuning’ occurs if the BChl are excitonically coupled, as this red-shifts 

the Qy peak (34).  

The importance of the polypeptides in ‘tuning’ the BChl absorption necessitates 

a thorough analysis of the protein complement of the different LH2 complex 

types of Alc. vinosum. The annotation of the genome of Alc. vinosum (10) 

identified six possible puc gene pairs (Figure 4.1), which can code for the alpha 

and beta peptides. It is unknown whether all or only some of these genes are 

transcribed, and if so, under what growth conditions they contribute to the LH2 

complexes.  

 

Figure 4.1Schematic diagram showing the puc operons of the purple photosynthetic 
bacterium Alc. vinosum.  
A total of six puc operons have been identified (10) that code for the alpha and beta polypeptides 
that form the LH2. The puc genes are named A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, and B6. 
There are three clusters of puc operons that sit in proximity to each other, the 4, 5 and 6 operons 
and the 1 and 2 operons. Operon 3 sits separately from the other puc operons.   
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4.2.1 Sequence alignments and preliminary peptide allocat ions to 
different LH2 complex types 

The protein sequences of the potential different peptides from Alc. vinosum can 

be extrapolated from the identified puc genes (10) and then compared to 

peptides from well characterised LH2 complexes. The shift in the absorption 

band of the LH2 complex is due to a change in the site energy of the BChl due to 

differences in H bond donor residues on the alpha peptide. On the basis of 

changes in these key H bonding residues it may be possible to predict the 

peptides that are present in the different complex types from Alc. vinosum.  

The structures of both the B800-850 and B800-820 from Rps. acidophila have 

been determined, and the basis of the shift from 850 nm to 820 nm is 

understood (Introduction section 1.2.3.3). Some strains of Phs. molischianum are 

also able to produce a B800-820 LH2 complex type (94, 95). The structure of the 

B800-850 LH2 from Phs. molischianum (80) is known to differ in the binding of 

the B800 from the B800-850 from Rps. acidophila. Even without a B800-820 LH2 

complex structure from Phs. molischianum, a comparison between the alpha 

peptides of the two LH2 complex types from Phs. molischianum may indicate the 

structural basis of the shift from B850 to B820, if it is similar to that observed in 

the LH2 from Rps. acidophila. 

Figure 4.2 shows the twelve potential alpha and beta peptides from Alc. vinosum 

aligned to the BChl coordinating histidine of the B800-850 and B800-820 alpha 

and betas from Rps. acidophila 10050 (B800-850), Rps. acidophila 7050 (B800-

820), and Phs. molischianum DSM 120. The LH2 complexes from both Rps. 

acidophila and Phs. molischianum bind the B800 BChl with different residues on 

the alpha peptide. The LH2 complex from Phs. molischianum binds the B800 

BChl via an aspartic acid residue at position 6 while Rps. acidophila binds using a 

formyl-methionine residue at position 1 (Figure 4.2 red). Analysis of the alpha 

peptides of Alc. vinosum found there are two aspartic acid residues at the 

position of the B800 BChl binding site in peptides A2, A3, and A6, and one 

aspartic residue on the A1, A4 and A5 peptides. This suggests that the B800 

binding may be is akin to that observed in the LH2 of Phs. molischianum but 

there is variation in the B800 binding site between the peptides. The conserved 
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histidine on both the alpha and beta that coordinates with the central ion of the 

dimerised BChl is observed in all the residues aligned (Figure 4.2 red H).  

The residues known to ‘tune’ the position of the Qy absorption peak of the 

excitonically coupled BChl in the B800-850 and B800-820 LH2 complex types 

from Rps. acidophila are highlighted blue in figure 4.2. These residues are the 

αTrp45 (position +14 relative to the conserved αHis) and αTyr44 (position +14) 

that form H bonds with the B850 BChl, and the αTyr41 (position +10) that forms 

an H bond with the B820 BChl. In the B800-850 LH2 complex from Phs. 

molischianum it is the αTrp45 (position +11) and βTrp44 (position + 27) residues 

that bind the B850 BChl in the (Figure 4.2 purple). The basis for the difference 

between the B800-850 and B800-820 LH2 complex types from Phs. molischianum 

is the same as the complexes from Rps. acidophila (80), as the tryptophan is 

replaced by a phenylalanine on the alpha peptide of the B800-820 LH2 complex. 

Analysis of the beta peptides from Alc. vinosum shows the βTrp is present at 

position + 27 relative to the conserved βHis, indicating that all of the beta 

peptides are able to form an H bond with the B850 BChl. The LH2 beta peptides 

of Alc. vinosum show high conservation showing the highest homology between 

the peptides of Alc. vinosum and the beta peptides of Phs. molischianum (Figure 

4.2). 

Analysis of the alpha peptides from Alc. vinosum identified the αTrp at the 

position + 11 relative to the conserved αHis in peptides A1 and A6, and at 

position + 10 in peptides A2 and A3. This indicates that these peptides are all 

able form H bonds to BChl and are potential B800-850 peptides. Peptides A2, A3, 

and A6 all contain amino acids that could be alternative H bond donors; peptides 

A2 and A3 contain a Gln at position +11, and the A6 peptide contains a Thr at 

position + 10. This suggests that there may be competition for H bond formation 

with the BChl.  

The A5 peptide has a substitution of the tryptophan to phenylalanine at position 

+ 11, which is observed in the B800-820 alpha peptides of both Phs. 

molischianum and Rps. acidophila. This suggests that the A5 peptide may be 

found in the B800-820 LH2 complex type. The A4 peptide contains an αTrp at 

position + 8 that indicates it may be unable to form an H bond to the B850 BChl, 

which suggests that the A4 peptide may also be found in the B800-820 LH2 
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complex type. However, there doesn’t appear to be a suitable tyrosine present 

on either the A5 or A4 peptides that may form an H bond with the BChl in place 

of the tryptophan. At the equivalent position +10 relative to the αHis there are 

glycine residues on all of the alpha peptide of Alc. vinosum bar the A6 alpha 

peptide, which contains a threonine. This may indicate that, assuming all of the 

peptides are expressed and incorporated into LH2 complexes, the B850 binding 

by the A1, A2, A3, A4, and A5 peptides require the flexibility or lack of steric 

hindrance facilitated by a glycine residue. 

Without a B800-840 LH2 complex structure to compare with, it is difficult to 

preliminarily determine which peptides are expressed in this complex. The B800-

840 may be a mix of B800-850 and B800-820 peptides or may include other 

peptides that can form different H bonds than those from the known structures.  



 

 

Figure 4.2 Alignments of the alpha and beta peptides from 
type, Rsp. molischianum DSM120 B800-850 LH2 complex type, 
(10). 
The alignments were made to the conserved B850 coordinating histidine on both the alpha and beta peptides (red H). The B800 B
peptides is the methionine at position 1 of the alpha peptide (red M) however the B800 BChl
D). In the alpha peptides of Alc. vinosum there are two aspartic acid residues present in A2, A3, and A6. In peptides A1, A4, and A5 there is only one aspartic acid 
residue. The B850 BChl binding site of the Rps. acidophila
acidophila alpha peptide is a αTyr41 (blue Y). The B850 BChl binding site of the 
binding site of the Rsp. molischianum alpha peptide is a substitution of the 
alpha peptides of Alc. vinosum. The α45 is substituted for a phenylalanine in the A5 peptide. The 
Alignments were performed using the ClustelW, in BioEdit

Alignments of the alpha and beta peptides from Rps. acidophila 7050 B800-820 LH2 complex type, Rps. acidophila
850 LH2 complex type, Rsp. molischianum DSM 120 mutant B800-820 (94), and 

The alignments were made to the conserved B850 coordinating histidine on both the alpha and beta peptides (red H). The B800 B
peptides is the methionine at position 1 of the alpha peptide (red M) however the B800 BChl binding of the Rsp. molischianum 

there are two aspartic acid residues present in A2, A3, and A6. In peptides A1, A4, and A5 there is only one aspartic acid 
Rps. acidophila alpha peptide is a αTyr44 and αTrp45 (blue Y and W). However, the B820 BChl binding site of the 

Tyr41 (blue Y). The B850 BChl binding site of the Rsp. molischianum is a αTrp45 and βTrp44 (purple W). However, the B820 BChl 
alpha peptide is a substitution of the αTrp45 to αPhe45 (purple F). The αTrp45 is conserved across the A1, A2, A3, A4, and A6

stituted for a phenylalanine in the A5 peptide. The βTrp44 residue is conserved throughout all the beta peptides aligned. 
Alignments were performed using the ClustelW, in BioEdit (158). 
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Rps. acidophila 10050 B800-850 LH2 complex 
and Alc. vinosum stain D identified by 

The alignments were made to the conserved B850 coordinating histidine on both the alpha and beta peptides (red H). The B800 BChl binding of the Rps. acidophila 
Rsp. molischianum peptides is an aspartic acid residue (red 

there are two aspartic acid residues present in A2, A3, and A6. In peptides A1, A4, and A5 there is only one aspartic acid 
Trp45 (blue Y and W). However, the B820 BChl binding site of the Rps. 

Trp44 (purple W). However, the B820 BChl 
Trp45 is conserved across the A1, A2, A3, A4, and A6 

Trp44 residue is conserved throughout all the beta peptides aligned. 
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4.2.2 SDS PAGE of membranes, crude LH2 extracts and purif ied 
LH2 complexes from Alc .vinosum 

SDS PAGE is able to separate the different alpha and beta peptides present in 

the different LH2 complex types of Alc. vinosum, and potentially differentiate 

between the different types of alpha and beta. The separated peptides can then 

be analysed by mass spectroscopy to confirm the identities of the peptides and 

determine the composition of the different LH2 complexes. An AnykD (Biorad) 

gel was used to effectively separate small molecular weight proteins, although 

the exact percentage of the gels is an industry secret. 

The proteins present within the membranes from Alc. vinosum grown under 

different growth conditions were separated by SDS PAGE (as described in 

Methods and Materials section 2.8). The growth conditions tested were Alc. 

vinosum grown in the presence of thiosulphate or sulphide under high light (HL) 

or low light (LL) intensity, at 30 ̊C or 40 ̊C. The membrane samples were heated 

to 70 ̊C for 20 min with additional 2 % SDS to better denature the complexes 

present. SimplyBlue Safestain (Life Technologies) was found to bind the light-

harvesting peptides sufficiently to visualise them on the finished gel. The 

resulting gel (Figure 4.3) showed multiple bands of different molecular weights 

due to the large amount of proteins present within the membranes. There 

appeared several resolved bands <10 kDa that could be the alpha and beta 

peptides from both the LH1 and LH2 light-harvesting complexes. The RC 

peptides, L, M, and H, are also present but due to their hydrophobic nature the 

molecular weights observed are not correct. The bands that correspond to the 

RC peptides are found at ~ 20 kDa (L subunit), ~ 25 kDa (M subunit), and <37 kDa 

(H subunit) as observed in previous work (159). 



 

 

Figure 4.3 SDS PAGE of
different growth and nutrient conditions. 
Alc. vinosum cells were grown in the presence of thiosulphate (T) 
(HL) or low light (LL) intensity
due to the abundance of proteins present within the membranes. The three bands under 
are the alpha and beta 
peptides are expected to be the bands in the range between 20
these were observed at 20 kDa (L subunit), ~ 25 kDa (M subunit), and <37 kDa (H subunit)
observed previously (159)

The crude LH2 fraction was extracted from the different membrane samples, 

using sucrose density centrifugation, and analysed

Methods and Materials section 

separates the LH2 from the proteins and complexes of different density. 

4.4 shows the reduction in non

density centrifugation

sample observed in the gel

under all growth conditions and a

not observed in the

proteins between 37 

light-harvesting complex. 

the SDS PAGE of separated membrane prote

present in the crude LH2 fraction. This suggests that these are the alpha and 

beta proteins from the LH2 complex types; the heavier band is the larger alphas 

SDS PAGE of  membranes prepared from Alc. vinosum cells grown under 
different growth and nutrient conditions.  

cells were grown in the presence of thiosulphate (T) or sulphide 
intensity, at 30 ̊C. There are multiple protein bands were observed on the gel 

due to the abundance of proteins present within the membranes. The three bands under 
alpha and beta light-harvesting peptides of the LH2 and LH1 complex types. The RC 

peptides are expected to be the bands in the range between 20-37 kDa found in each sample, 
these were observed at 20 kDa (L subunit), ~ 25 kDa (M subunit), and <37 kDa (H subunit)

(159).  

The crude LH2 fraction was extracted from the different membrane samples, 

se density centrifugation, and analysed by SDS PAGE

Methods and Materials section 2.8) (Figure 4.4). Sucrose density centrifugation 

separates the LH2 from the proteins and complexes of different density. 

the reduction in non-light-harvesting proteins present

ensity centrifugation, although there are still residual impurities present 

sample observed in the gel. There are bands at ~ 10 kDa in fractions produced 

under all growth conditions and a ~15 kDa band in the HL40 and HL30 samples

not observed in the fractions grown under low light. There are low levels of 

proteins between 37 – 50 kDa in all fractions that don’t appear to be linked to a 

harvesting complex. The two bands below 10 kDa previously observed in 

the SDS PAGE of separated membrane proteins are the most abundant proteins 

present in the crude LH2 fraction. This suggests that these are the alpha and 

beta proteins from the LH2 complex types; the heavier band is the larger alphas 
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cells grown under 

or sulphide (S), under high light 
There are multiple protein bands were observed on the gel 

due to the abundance of proteins present within the membranes. The three bands under 10 kDa 
LH2 and LH1 complex types. The RC 

37 kDa found in each sample, 
these were observed at 20 kDa (L subunit), ~ 25 kDa (M subunit), and <37 kDa (H subunit) as 

The crude LH2 fraction was extracted from the different membrane samples, 

by SDS PAGE (as outlined in 

Sucrose density centrifugation 

separates the LH2 from the proteins and complexes of different density. Figure 

harvesting proteins present after sucrose 

, although there are still residual impurities present in the 

in fractions produced 

in the HL40 and HL30 samples 

There are low levels of 

50 kDa in all fractions that don’t appear to be linked to a 

The two bands below 10 kDa previously observed in 

ins are the most abundant proteins 

present in the crude LH2 fraction. This suggests that these are the alpha and 

beta proteins from the LH2 complex types; the heavier band is the larger alphas 



 

 

and the lighter band is the betas. The presence of only two ban

separation of the different alpha types and beta types has not been achieved. 

Figure 4.4 SDS PAGE of t
different growth and nut
Growth conditions for Alc. vinosum
under high light (HL) or low light 
residual impurities. The bands at 2 and 
the LH2 complex. 

The LH2 complex types were further purified via anion exchange and size 

exclusion chromatographies before they were 

and stained with SimplyBlue SafeS

were well resolved 

suggesting that SDS PAGE is not effective at separating the different alpha and 

betas from each other. 

and the band at ~ 10 kDa is still present. The band at ~ 10 kDa may be a SDS 

induced dimer, but only mass spec of this band would confirm this.

and the lighter band is the betas. The presence of only two ban

separation of the different alpha types and beta types has not been achieved. 

SDS PAGE of t he crude LH2 fraction prepared from Alc. vinosum
different growth and nut rient conditions.  

Alc. vinosum cells were the presence of thiosulphate 
or low light (LL) intensity, at 30 ̊C. Bands observed between 15 

residual impurities. The bands at 2 and 5 kDa are postulated as the alpha and beta peptides from 

The LH2 complex types were further purified via anion exchange and size 

exclusion chromatographies before they were analysed using an

and stained with SimplyBlue SafeStain (Figure 4.5). The three bands <10 kDa 

solved but without any further separation of alpha and beta bands, 

that SDS PAGE is not effective at separating the different alpha and 

betas from each other. The band at 2 kDa has faded strongly after purification, 

and the band at ~ 10 kDa is still present. The band at ~ 10 kDa may be a SDS 

induced dimer, but only mass spec of this band would confirm this.
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and the lighter band is the betas. The presence of only two bands shows that the 

separation of the different alpha types and beta types has not been achieved.  

 

Alc. vinosum grown under 

cells were the presence of thiosulphate (T) or sulphide (S), 
. Bands observed between 15 – 100 kDa are 

5 kDa are postulated as the alpha and beta peptides from 

The LH2 complex types were further purified via anion exchange and size 

analysed using an AnykD SDS PAGE 

The three bands <10 kDa 

but without any further separation of alpha and beta bands, 

that SDS PAGE is not effective at separating the different alpha and 

strongly after purification, 

and the band at ~ 10 kDa is still present. The band at ~ 10 kDa may be a SDS 

induced dimer, but only mass spec of this band would confirm this. 



 

 

Figure 4.5 SDS PAGE of
different growth and nutrient conditions.
Growth conditions for Alc. vinosum
under high light (HL) or low light 
harvesting peptides. The band at ~ 2 kDa, most probably the beta peptides, is highly faded in 
comparison with previous gels. The 5 kDa band is still observed and is most probably the alpha 
peptides. The band at 10 kDa is 
contamination.  
 

4.2.3 Polypeptide composition analysis using HPLC and MAL DI
TOF of THL40 B800
B800-820 

SDS PAGE was insufficient in resolving the different peptides and

with higher accuracy and sensitivity such as high pressure liquid chromatography 

(HPLC) and Matrix-assisted laser desorption/ionisation time of flight mass 

spectroscopy (MALDI

Marie Carey, collaborated with Dr Zheng

peptides from the three main complex types of 

HPLC. This was followed by MALDI

The B800-820, B800

were purified in 0.02 % DDM 

and sent to Dr Wang

percentage composition

the LH1 from Rsp. rubrum

allow the percentage composition to be determined. Composition was calculated 

SDS PAGE of  purified LH2 complexes prepared from Alc. vinosum
different growth and nutrient conditions.   

Alc. vinosum cells were the presence of thiosulphate 
or low light (LL) intensity, at 30 ̊C. Bands <10 kDa are postulated the light
The band at ~ 2 kDa, most probably the beta peptides, is highly faded in 

comparison with previous gels. The 5 kDa band is still observed and is most probably the alpha 
peptides. The band at 10 kDa is still present potentially indicating a SDS induced dimer or 

Polypeptide composition analysis using HPLC and MAL DI
TOF of THL40 B800 -850c, THL30 B800- 840p, and TLL30 

 

SDS PAGE was insufficient in resolving the different peptides and

with higher accuracy and sensitivity such as high pressure liquid chromatography 

assisted laser desorption/ionisation time of flight mass 

spectroscopy (MALDI-TOF) were implemented. Our team, headed by Dr Anne

ollaborated with Dr Zheng-Yu Wang-Otomo to separate the 

peptides from the three main complex types of Alc. vinosum

This was followed by MALDI-TOF mass spectroscopy as described by 

820, B800-840p, and B800-850c LH2 complex types from 

were purified in 0.02 % DDM (as outlined in Methods and Materials section 

and sent to Dr Wang-Otomo to determine the peptides present and the 

percentage composition within the different LH2 complex types

Rsp. rubrum and LH2 from Tch. tepidum were used as standards to 

allow the percentage composition to be determined. Composition was calculated 
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Alc. vinosum grown under 

cells were the presence of thiosulphate (T) or sulphide (S), 
s <10 kDa are postulated the light-

The band at ~ 2 kDa, most probably the beta peptides, is highly faded in 
comparison with previous gels. The 5 kDa band is still observed and is most probably the alpha 

still present potentially indicating a SDS induced dimer or 

Polypeptide composition analysis using HPLC and MAL DI-
840p, and TLL30 

SDS PAGE was insufficient in resolving the different peptides and so techniques 

with higher accuracy and sensitivity such as high pressure liquid chromatography 

assisted laser desorption/ionisation time of flight mass 

, headed by Dr Anne-

Otomo to separate the 

Alc. vinosum using reverse phase 

TOF mass spectroscopy as described by (160). 

850c LH2 complex types from Alc. vinosum 

(as outlined in Methods and Materials section 2.5.1) 

esent and the 

within the different LH2 complex types. Peptides from 

were used as standards to 

allow the percentage composition to be determined. Composition was calculated 
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from peak areas and extinction coefficients deduced from the tryptophan and 

tyrosine residues present in each peptide. In the case of some of the peptides 

that could not be separated by HPLC due to similarities in their hydrophobicity, 

the TOF/MS spectral counts were used to find relative abundance. 

The peptides present in the B800-820, B800-840p and B800-850c were identified 

(Figure 4.6) and quantified as shown in table 4.1. The HPLC elution profiles of 

the LH2 complex types from Alc. vinosum showed the first peptides to elute 

were the beta peptides followed by the alpha peptides, as observed with LH1 

and LH2 complexes from other bacteria (120, 160-163). The β2 and β3 peptides 

were not able to be separated using this technique due to close homology 

between them, and they presented as a single peak on chromatograms.  

The α4 and β4 peptides were not observed in any of the complexes measured. 

The A1 peptides observed tended to be one of six truncated versions, dubbed 

A1-1, A1-2, A1-3, A1-4, A1-5, and A1-6. The A5 also was observed in two 

truncated versions. 

It was found that the B800-850c complex shows the lowest level of heterogeneity 

and is made up of three types of alpha and beta; α1, α2, α3, β1, β2, and β3. The 

different types of beta seem to be in similar amounts with the β1 and β2 at 37 

and 39 % respectively and the β3 with 24 %, while the primary alpha present by 

far is the α1, making up 56 % of the alpha peptide composition. The α2 and α3 

make up the rest of the B800-850 α composition at 27 and 17 % respectively. The 

peptides of the B800-850 LH2 complex type eluted as follows β1, followed 

jointly by the β2 and β3. The α 1 peptide and the different modifications of 

alpha1, A1-1, A1-2, A1-3, A1-4, A1-5, and A1-5, eluted before the other alphas 

present, which were the α2 and α3 in this case.  

The B800-840p contains the same peptides as the B800-850c but with the 

addition of the α6 and β5. The α1 and α2 peptides are in similar quantities (35 % 

and 32 %) followed by the α6 at 23 % and the α3 was at the lowest amount at 10 

%. Not all truncations of α1 were observed. The β5 makes up half of all the β 

peptides present, followed by the β2 (21 %), β1 (18 %) and β3 (11 %). The 

peptides eluted in the following order β5, β1, β2+3 followed by α1-1, α1-5, and 

α1-6. The α2 and α6 peptides eluted closely together followed by the α3. 
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In the B800-820 the highest level of heterogeneity is observed with four α 

peptides, and five β peptides expressed. Unlike in the B800-850 and B800-840p 

no α1 peptide was observed, but α5 and β6 were found to be present when they 

were not found in either of the two other complex types. The primary αlpha 

peptide present is the α6 (39 %) followed by the α5 (30 %), α3 (16 %) and finally 

the α2 (15 %). The primary β peptide is the β5 (49 %) followed by the β6 (16 %), 

β1 (12 %), β2 (12 %), and the β3 (11 %). The peptides eluted as follows β6, β5, 

β1, β2+3, α5, α6, α2 and then α3. Percent composition of the peptides in the 

different LH2 complexes is summarised in table 4.1. 

 

Figure 4.6 HPLC chromatograms of the peptide comple ment from the B800-850c, B800-840p, 
and B800-820 LH2 complex types from Alc. vinosum as published in Carey et al, 2014 (164).  
The B800-850c LH2 complex consisted of truncated A1 peptides (A1-1, A1-2, A1-3, A1-4, A1-5, 
and A1-6), and the A2, A3, B1, B2, and B3 peptides. The B2 and B3 peptides elute as a single 
peak due to high sequence identity. The B800-840p LH2 complex consisted of truncated A1 
peptides (A1-1, A1-5, and A1-6), and the A2, A3, A6, B1, B2, B3, and B5 peptides. The A2 and A6 
peptides eluted together as do the B2 and B3 peptides due to high sequence identity. The B800-
820 LH2 complex consisted of A2, A3, A6, B1, B2, B3, B5 and B6 peptides. The A2 and A6 
peptides eluted together as do the B2 and B3 peptides due to high sequence identity. 
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Table 4.1 The α and β peptide percentage composition with ± 5 % error of  the B800-850c, 
B800-840p, and B800-820 complex types produced by Alc. vinosum.  
As published in (164). 

 α 1 α 2 α 3 α 5 α 6 β 1 β 2 β 3 β 5 β 6 

B800-850c 56 27 17 - - 37 39 24 - - 

B800-840p 35 32 10 - 23 18 21 11 50 - 

B800-820 - 15 16 30 39 12 12 11 49 16 

 

Some of the structural elements highlighted previously as corresponding to the 

B800-820 or B800-850 like complexes can now be compared with the actual 

peptide complement. The A1 and A6 peptides both contain a Trp at position + 11 

relative to the conserved αHis however only the A1 was found in the B800-850 

LH2 complex, while the A6 is found in both the B800-820 and B800-840 LH2 

complex types. This suggests that the presence of a threonine in place of a 

glycine affects the ability of the Trp to H bond either through steric hindrance or 

competition for H bond formation. This would mean an H bond from the 

Threonine, or a complete lack of H bond, changes the orientation of the C3-

acetyl and blue shift the wavelength at which the Qy band absorbs. The A2 and 

A3 peptides were found in all of the LH2 complex types and contain a Trp at 

position +10 indicating that amino acids at this position are still able to form H 

bonds with the B850 BChl, however they do not convey a specific spectral shift. 

The A4 was not observed within any of the LH2 complex types. The A5 peptide 

was found exclusively within the B800-820 LH2 complex type, confirming that 

the substitution of the phenylalanine for the tryptophan at the position +11 

creates a blue shift as observed in other species. The convoluted peptide 

composition of the different LH2 complex types suggests that residues at 

position +10/+11 are important in the ‘tuning’ of LH2 complex absorption 

spectra in Alc. vinosum but are not the only factor. 

There is high conservation between the different beta peptides however the 

different LH2 complex types contain different beta compositions. Full operons 
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are not translated together as the B800-840 LH2 complex contains the A6 

peptide and not the B6, which are contained within the same operon.  

The peptides of the LH2 of Alc. vinosum had several modifications identified. All 

of the alpha peptides bar α5 had the N terminal methionine removed and the α1 

and α5 peptides had several versions due to truncation of the C terminus. This 

indicates that the methionine cannot be involved in the binding of the B800 BChl 

as observed in Rps. acidophila. Thus supporting the hypothesis that it is an 

aspartic acid residue that coordinates to the Mg2+ of the BChl as observed in Phs. 

molischianum. The presence of multiple truncations of the C terminus of the α1 

peptide may indicate post-translational modification (160) or alternatively may 

be due to degradation or cleavage during the purification process. The C 

terminal residues are predominantly hydrophilic and most probably exist outside 

of the membrane structure. Structural modelling of the α1 peptides against the 

alpha peptides from both Phs. molischianum and Rps. acidophila using the 

modelling software Phyre suggests these residues are indeed external to the 

membrane and will be suspetible to cleavage.  

The post-translational modifications of the beta peptides are N terminal 

methionine removal and methylation. The removal of the methionine is observed 

in all but the β6 peptide, and has been observed in other bacterial species (165). 

The beta peptides that are methylated at the N terminus are the β1, β2, and β5.   

 

 

 

 



 

 

Figure 4.7 Alignments of the expected gene products of each of  the 
peptides and their modifications identified by HPLC  and MALDI
The A1 peptide is a product of the Alvin_2578 
truncated versions named A1
the Alvin_2576 puc gene and was observed with the n
peptide is a product of the Alvi
removed. The A4 peptide was not observed in any of the LH2 complexes analysed. The A5 peptide 
is a product of the Alvin_0705 
c-terminal truncations. The A6 peptide is a product of the Alvin_0703 
modifications were observed.
observed with the n-terminal methionine removed and methylation of the n terminu
peptide is a product of the Alvin_2577 
removed and methylation of the n terminus. The B3 peptide is a product of the Alvin_2760 
gene and was observed with the n
The B4 peptide was not observed in any of the LH2 complexes analysed. The B5 peptide is a 
product of the Alvin_0706 
methylation of the n terminus.
observed with the n-terminal methionine removed and is the only beta peptide observed that did 
not contain methylation of the n terminus.

4.2.4 Polypeptide composition analysis of the B800
complex type

After the work covering the main LH2 complex types was published, it was seen 

as prudent to further elucidate the basis of the difference between the B800

850c and the B800-

Alignments of the expected gene products of each of  the 
peptides and their modifications identified by HPLC  and MALDI -TOF. 

1 peptide is a product of the Alvin_2578 puc gene and was observed as multiple c
truncated versions named A1-1, A1-2, A1-3, A1-4, A1-5, and A1-6. The A2 peptide is a product of 

gene and was observed with the n-terminal methionine removed. The A3 
peptide is a product of the Alvin_2759 puc gene and was observed with the n
removed. The A4 peptide was not observed in any of the LH2 complexes analysed. The A5 peptide 
is a product of the Alvin_0705 puc gene and two versions were observed (A5

terminal truncations. The A6 peptide is a product of the Alvin_0703 puc
modifications were observed. The B1 peptide is a product of the Alvin_2579 

terminal methionine removed and methylation of the n terminu
peptide is a product of the Alvin_2577 puc gene and was observed with the n
removed and methylation of the n terminus. The B3 peptide is a product of the Alvin_2760 
gene and was observed with the n-terminal methionine removed and methylation of the n terminus.
The B4 peptide was not observed in any of the LH2 complexes analysed. The B5 peptide is a 
product of the Alvin_0706 puc gene and was observed with the n-terminal methionine removed and 
methylation of the n terminus. The B6 peptide is a product of the Alvin_0704 

terminal methionine removed and is the only beta peptide observed that did 
not contain methylation of the n terminus. 

Polypeptide composition analysis of the B800
mplex type  

After the work covering the main LH2 complex types was published, it was seen 

as prudent to further elucidate the basis of the difference between the B800

-850a. The B800-850a was purified and peptides extracted and 
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Alignments of the expected gene products of each of  the puc genes and the 
TOF.  

and was observed as multiple c-terminal 
6. The A2 peptide is a product of 

terminal methionine removed. The A3 
gene and was observed with the n-terminal methionine 

removed. The A4 peptide was not observed in any of the LH2 complexes analysed. The A5 peptide 
gene and two versions were observed (A5-1 and A5-2) with the 

puc gene and no 
The B1 peptide is a product of the Alvin_2579 puc gene and was 

terminal methionine removed and methylation of the n terminus. The B2 
gene and was observed with the n-terminal methionine 

removed and methylation of the n terminus. The B3 peptide is a product of the Alvin_2760 puc 
ved and methylation of the n terminus. 

The B4 peptide was not observed in any of the LH2 complexes analysed. The B5 peptide is a 
terminal methionine removed and 

he B6 peptide is a product of the Alvin_0704 puc gene and was 
terminal methionine removed and is the only beta peptide observed that did 

Polypeptide composition analysis of the B800 -850a LH2 

After the work covering the main LH2 complex types was published, it was seen 

as prudent to further elucidate the basis of the difference between the B800-

850a was purified and peptides extracted and 



138 
 

 

sent to Dr Bill Mullen for Tandem MS-MS (as outlined in Methods and Materials 

section 2.9).  

The peptides identified from the B800-850a were the α1, α2, β1, β2, β3, β5 and 

the β6 (Table 4.2). The β5 peptide did not fragment well and was not identified 

until the threshold for peaks was lowered. The α3 peptide was not observed at 

all although it is present in all of the other complexes currently analysed. The 

absence of the α3 peptide may be due to low concentrations or loss during the 

extraction procedure. The use of the molecular sieve chromatography using 

LH60 resin could mean that any smaller molecular weight peptides could be lost 

if they elute simultaneously with the carotenoid and BChl pigments. The 

molecular weight of the α3 peptide (5760 kDa) is close to that observed for the 

α2 peptide (5719 kDa) (164), indicating that as the α2 peptide is observed it is 

unlikedly that the α3 was lost during the purification procedure. The β6 and the 

β5 peptides observed are not found in the B800-850c complex type. The β6 

peptide is only found in the B800-820 complex type and β5 is found in both the 

B800-840 and B800-820 LH2 complex types. This may indicate that the 

differences in the absorption spectrum between the B800-850 LH2 complex types 

is due to differences in the binding by the beta peptides, not the just the alpha 

peptides. The lack of the α3 peptide may indicate that not all peptides from the 

B800-850a LH2 complex type were extracted or that the peptide did not 

fragment well. 
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Table 4.2 The peptides identified by tandem MS-MS m ass spectroscopy from the B800-850a complex and the ir modifications.  
* are peptides observed in some form in other LH2 complex types but with or without the modifications observed in the B800-850a LH2 complex type.  

Peptide Sequence 
MH + 
[Da] Modification Observed in 

A1 MAIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVEAAPAAQ 7402 none B800-850 and B800-840p 
A1-1 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVEAAPAAQ 7271 N/C term trunc B800-850 and B800-840p 
A1-4 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVE 6762 N/C term trunc B800-850 
A1-4.2 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAV 6633 N/C term trunc None  
A1-5 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAA 6333 N/C term trunc B800-850 and B800-840p 
A1-6 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPA 6262 N/C term trunc B800-850 and B800-840p 
A2 MSDVAKPKNPEDDWKIWLVVNPATWLMPIFYALLVLAIAVHAVVFSVGLGWQ 5848 N term trunc All LH2 complexes* 
  SDVAKPKNPEDDWKIWLVVNPATWLMPIFYALLVLAIAVHAVVFSVGLGWQ 5717 N/C term trunc All LH2 complexes 
B1 MADMKSLSGLTEQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 5296 none All LH2 complexes* 
B2 MAEQSLSGLTEQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 5179 none All LH2 complexes* 
B3 METKSMASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 5484 none All LH2 complexes* 
  SMASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 4995 N term trunc All LH2 complexes* 
  MASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 4907 N term trunc All LH2 complexes* 
  ASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 4776 N term trunc All LH2 complexes 
B5 MAEQQKSLSGLTEQQAKEFHEQFKVTYTAFVGLAALAHMMVIAANPWW 5436 none B800-820 and B800-840p  
B6 MNGLTEQQAKEFHAQFKVTYTAFVGLAALAHLMVLANNPWF 4607 none B800-820 LH2 complex 
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The modifications observed for the previous peptides were not all observed in 

the peptides from the B800-850a. Several truncation products of the A1 peptide 

were observed including one not seen before. This previously unseen A1 peptide 

was between the A1-4 and A1-5 and so was dubbed the A1.4.2. The A1-1, A1-4, 

A1-4.2, and A1-6 were all observed.  

4.3 Carotenoid composition 

The pigment other than BChl bound within the protein scaffold, in the light-

harvesting machinery of purple photosynthetic bacteria, is the carotenoid (as 

outlined in Introduction section 2.2.1). Previous work (11, 166) and genomic 

analysis (10) has established that the carotenoids that Alc. vinosum can 

synthesise are those of the spirilloxanthin pathway i.e. lycopene, rhodovibrin, 

anhydrorhodovibrin, spirilloxanthin, and rhodopin. Like BChl, the absorbance of 

the carotenoids is affected by their binding environment within the LH2 

complex. The established heterogeneity of the LH2 complexes means that the 

carotenoids are bound within multiple different binding sites and that the 

absorption spectrum observed is an average of these.  

The diversity of the carotenoids that Alc. vinosum can produce, in addition to 

the heterogeneity of the LH2 complex types makes deducing the carotenoid 

complement impossible without extracting the carotenoids. 

Between the LH2 complexes of Alc. vinosum there is a slight colour difference 

between the B800-820 and B800-850 that can be observed by the human eye, 

wherein the B800-820 is more pink than the B800-850 LH2 complex. In room 

temperature absorption spectra the most pronounced difference observed 

between 400-600 nm is the red-most absorption shoulder at ~520 nm (Figure 

4.8). The B800-820 LH2 complex produces a higher intensity peak at ~520 nm 

than the other LH2 complex types. Room temperature absorption spectroscopy 

doesn’t sufficiently resolve the absorption bands of all the carotenoids present 

therefore low temperature absorption spectra were acquired.  



 

 

Figure 4.8 Normalised absorption spectra of carotenoid p
B800-850a, and B800 -
The B800-820 (red) produces the main carotenoid peak at 490 nm with a broad shoulder between 
490 nm – 525 nm. The shoulder at ~ 463 nm is not well defined and a
the carotenoid peaks from the other complexes. 
carotenoid peak at 489 nm with a shoulder at ~ 520 nm and ~ 460 nm.  The B800
produces the main carotenoid peak at 488
B800-850c (purple) produces the main carotenoid peak at 488 nm with a shoulder at ~ 520 nm and 
~ 460 nm. The B800-850a produces the lowest intensity ~ 520 nm shoulder. Both the B800
and B800-850a produce higher intensity ~460 nm absorption shoulders than the B800
B800-840p complexes.

At 77 K the absorption bands are narrowed, improving the resolution of the 

peaks observed and distinguishing between the several peaks that cumulate in 

the room temperature spectrum

of the carotenoid complement present. The low temperature absorption spectra 

of the LH2 complex types shows the absorption peaks of the carotenoid 

molecules that are at a high enough concentr

The peaks observed in the absorption spectra of the B800

LH2 complex types are well resolved showing several discrete peaks but the 

B800-820 complex type produces less distinct peaks. Regardless of thi

in resolution between the complex types, there are a total of four distinct 

absorption bands (Figure 

~528 nm) and two shoulders observed (Figure 

Normalised absorption spectra of carotenoid p eaks of the B800
-850c LH2 complex types from Alc. vinosum.  

820 (red) produces the main carotenoid peak at 490 nm with a broad shoulder between 
525 nm. The shoulder at ~ 463 nm is not well defined and appears red shifted relative to 

the carotenoid peaks from the other complexes.  The B800-840p (dark yellow) produces the main 
carotenoid peak at 489 nm with a shoulder at ~ 520 nm and ~ 460 nm.  The B800
produces the main carotenoid peak at 488 nm with a shoulder at ~ 520 nm and ~ 460 nm. The 

850c (purple) produces the main carotenoid peak at 488 nm with a shoulder at ~ 520 nm and 
850a produces the lowest intensity ~ 520 nm shoulder. Both the B800
ce higher intensity ~460 nm absorption shoulders than the B800

840p complexes. 

K the absorption bands are narrowed, improving the resolution of the 

and distinguishing between the several peaks that cumulate in 

perature spectrum. This improved resolution shows the complexity 

the carotenoid complement present. The low temperature absorption spectra 

of the LH2 complex types shows the absorption peaks of the carotenoid 

molecules that are at a high enough concentration to be visualised (Figure 

The peaks observed in the absorption spectra of the B800-850 and B800

LH2 complex types are well resolved showing several discrete peaks but the 

820 complex type produces less distinct peaks. Regardless of thi

in resolution between the complex types, there are a total of four distinct 

absorption bands (Figure 4.9 absorption peaks at ~ 470 nm, ~ 489 nm, ~ 503 nm, 

~528 nm) and two shoulders observed (Figure 4.9, ~ 440 nm and ~ 545 nm). 
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eaks of the B800 -820, B800-840p, 
 

820 (red) produces the main carotenoid peak at 490 nm with a broad shoulder between 
ppears red shifted relative to 

840p (dark yellow) produces the main 
carotenoid peak at 489 nm with a shoulder at ~ 520 nm and ~ 460 nm.  The B800-850a (green) 

nm with a shoulder at ~ 520 nm and ~ 460 nm. The 
850c (purple) produces the main carotenoid peak at 488 nm with a shoulder at ~ 520 nm and 

850a produces the lowest intensity ~ 520 nm shoulder. Both the B800-850c 
ce higher intensity ~460 nm absorption shoulders than the B800-820 and 

K the absorption bands are narrowed, improving the resolution of the 

and distinguishing between the several peaks that cumulate in 

. This improved resolution shows the complexity 

the carotenoid complement present. The low temperature absorption spectra 

of the LH2 complex types shows the absorption peaks of the carotenoid 

ation to be visualised (Figure 4.9). 

850 and B800-840p 

LH2 complex types are well resolved showing several discrete peaks but the 

820 complex type produces less distinct peaks. Regardless of this variation 

in resolution between the complex types, there are a total of four distinct 

peaks at ~ 470 nm, ~ 489 nm, ~ 503 nm, 

~ 440 nm and ~ 545 nm).  
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In the B800-850 LH2 complex type (Figure 4.9 purple), the peaks in order of 

decreasing intensity are 488 nm, 528 nm, 503 nm, 470 nm, and 440 nm while the 

sixth absorption shoulder is negligible to non-existent. The B800-840p complex 

type (Figure 4.9 dark yellow) peaks in order of decreasing intensity are 489 nm, 

503 nm, 528 nm, 470 nm, and 440 nm and it produces an absorption shoulder for 

the absorption band at ~ 545 nm. In the B800-820 complex type (Figure 4.9 red), 

peaks 490 nm and 503 nm are of highest intensity, followed by peaks 470 nm and 

528 nm, and lastly peaks 440 nm and 545 nm. The highest intensity carotenoid 

peak in the B800-850 and B800-840p complex types is the peak at 489 and 488 

nm respectively, while this peak is of equal intensity to the peak at 503 nm, in 

the B800-820 complex type. These data suggest that while the type of 

carotenoids found in the LH2 complexes are the same, the relative amounts of 

each carotenoid vary, most significantly between the B800-820 and the other 

complex types.   

When the spectra are normalised to the distinct peak at ~528 nm, the peaks at 

~489 nm and 528 nm appear to be at the same relative intensity in all LH2 

complex types and therefore are most probably produced by the same 

carotenoid. The shared trend between the peaks at 503 nm and ~ 545 nm that 

are at their highest intensity in the B800-820 complex type and the lowest in the 

B800-850 complex type indicates that they are produced by the same 

carotenoid. The peaks at ~440 nm and ~470 nm are of highest intensity in the 

B800-850 and the lowest intensity relative to the other peaks in the B800-820. 

This implies the B800-850 has proportionally more carotenoids with shorter 

conjugation lengths that absorb in the blue end of the carotenoid region (peaks 

at 440 nm and 470 nm) while the B800-820 contains more carotenoids with 

longer conjugation lengths that absorb towards the red-end of the carotenoid 

region (Peaks 503 nm and ~545 nm). This would indicate that the B800-820 LH2 

complex type contains a higher amount of spirilloxanthin (n=13) and the B800-

850c LH2 complex type contains shorter conjugation length carotenoids such as 

Rhodopin (n=11) and lycopene (n=11).  



 

 

Figure 4.9 Normalised low temperature (77 
B800-820, B800-840p, and B800
All LH2 complexes produced four peaks with two shoulders.
nm, 489 nm, 503 nm, 528 nm, and 
at ~489 nm and 528 nm
types, suggesting that these are produced by the same carotenoid. Additionally, peaks 
545 nm increase in intensity
B800-820. This may indicate that the peaks are produced by the same carotenoid and that this 
carotenoid is increasing in abundance through these LH2 complex types. 

4.3.1 Thin layer chromatogra
LH2 complex types.

The differences in carotenoid complement can only be determined if the 

carotenoids are extracted and identified independently. Thin layer 

chromatography (TLC) is a classic biochemical technique that 

molecules according to their hydrophobicity, and has previously been used 

successfully with carotenoids. TLC plates were performed on the extracted 

carotenoids from the different LH2 complex types as a preliminary analysis of 

the carotenoids pres

complexes (as described in Methods and Materials section 

Separation of the carotenoid complement on t

four distinct carotenoid bands present in all the LH2 complex types. Band 1 is 

Normalised low temperature (77 K) absorption spectra of carotenoid peaks of the 
840p, and B800 -850a LH2 complex types produced by 

All LH2 complexes produced four peaks with two shoulders. The absorption peaks centre at 
nm, 489 nm, 503 nm, 528 nm, and two absorption shoulders at ~ 440 nm and

528 nm have the same intensity relative to each other across all LH2 complex 
types, suggesting that these are produced by the same carotenoid. Additionally, peaks 

increase in intensity from the B800-850, to the B800-840, and are at their highest in the 
820. This may indicate that the peaks are produced by the same carotenoid and that this 

carotenoid is increasing in abundance through these LH2 complex types. 

Thin layer chromatogra phy of the carotenoids from different 
LH2 complex types.  

The differences in carotenoid complement can only be determined if the 

carotenoids are extracted and identified independently. Thin layer 

chromatography (TLC) is a classic biochemical technique that 

molecules according to their hydrophobicity, and has previously been used 

successfully with carotenoids. TLC plates were performed on the extracted 

carotenoids from the different LH2 complex types as a preliminary analysis of 

the carotenoids present and to visualise any large differences between the 

(as described in Methods and Materials section 2

Separation of the carotenoid complement on the TLC plate (Figure 

four distinct carotenoid bands present in all the LH2 complex types. Band 1 is 
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of carotenoid peaks of the 
850a LH2 complex types produced by Alc. vinosum.  

The absorption peaks centre at ~470 
rs at ~ 440 nm and ~ 545 nm. The peaks 

have the same intensity relative to each other across all LH2 complex 
types, suggesting that these are produced by the same carotenoid. Additionally, peaks 503 nm and 

840, and are at their highest in the 
820. This may indicate that the peaks are produced by the same carotenoid and that this 

carotenoid is increasing in abundance through these LH2 complex types.  

phy of the carotenoids from different 

The differences in carotenoid complement can only be determined if the 

carotenoids are extracted and identified independently. Thin layer 

chromatography (TLC) is a classic biochemical technique that separates 

molecules according to their hydrophobicity, and has previously been used 

successfully with carotenoids. TLC plates were performed on the extracted 

carotenoids from the different LH2 complex types as a preliminary analysis of 

ent and to visualise any large differences between the 

2.10). 

he TLC plate (Figure 4.10) showed 

four distinct carotenoid bands present in all the LH2 complex types. Band 1 is 
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the most abundant carotenoid as well as being the most polar, having moved the 

shortest distance in the solvent. Band 2 is a pink band that moved the same 

distance as the spirilloxanthin band from the LH1/RC control. The third band 

was rather faint and orange in colour. The final band was yellow and travelled 

just behind the solvent front showing the most hydrophobic carotenoid present 

in the carotenoid composition of Alc. vinosum. The relative amounts of the 

different carotenoids to each other seem similar across the different LH2 

complex types, this indicates that TLC is not sensitive enough to visualise any 

differences. 

 

Figure 4.10 The carotenoids of the B800-820, B800-8 40p, and B800-850c LH2 complexes 
from Alc. vinosum separated by thin-layer chromatography.  
Four bands were observed in all LH2 complex types, presenting as an orange band (band 1), pink 
band (band 2), a faint orange band (band 3) and a yellow band (band 4). The LH1/RC “core” 
complex was run as a control as spirilloxanthin is its primary carotenoid (60). Band 4 is the most 
hydrophobic carotenoid as it moved the furthest up the TLC plate, while band 1 is the least 
hydrophobic carotenoid as it travelled the least distance.  

The bands were scraped from the TLC plate and re-suspended in acetone in 

order to extract the carotenoids and record the absorption spectra (Figure 4.11, 

the lycopene absorption spectrum was omitted as it is identical to rhodopin). 

Carotenoids were identified through the comparison of their absorption 

spectrum and their hydrophobic character from the TLC plate. Rhodopin and 

lycopene contain the same chromaphore and so produce the same absorption 

spectrum, however rhodopin contains a hydroxyl group. As bands 1 and 4 both 

produced absorption peaks at 448 nm, 474 nm, and 505 nm (Figure 4.11 blue) 



 

 

this indicated that 

of these two carotenoids enables them to be differentiated as band 4 is highly 

hydrophobic this would indicate that it is lycopene, and therefore band 1 is the 

more polar rhodopin

was spirilloxanthin. The absorption spectrum of band 2 (Figure 4.11 green) 

produced peaks at 465 nm, 492 nm, and 525 nm confirming the carotenoid as 

spirilloxanthin. The absorption spectrum of band 3 (Figure 4.11

recorded and the absorption peaks centred at 459 nm, 488 nm, and 522 nm 

indicating it is either rhodovibrin or anhydrorhodovibrin. Due to the 

hydrophobicity of the carotenoid it is most probably anhydrorhodovibrin. 

Rhodovibrin was not observed bu

quantities and produce

as it contains the same chromaphore.

 
Figure 4.11 Normalised absorption spectra of t
complex types of Alc. vinosum
Spirilloxanthin was identified (green) from the TLC producing peaks at 
nm. Rhodopin (blue) and lycopene share the same chromophore and produced peaks
474 nm, and 505 nm. A
absorption spectrum at 
between the different carotenoids is indicative of the 
chromophore length increases the positions of the peaks red shift. The conjugation lengths of the 
different carotenoids are Rhodopin n = 11, anhydrorhodovibrin = 12, and spirilloxanthin n = 13.

The carotenoids identified were confirmed 

purifying the carotenoids from known sources and running a TLC plate for a 

direct comparison (Figure 

described in Methods and Materials section 

 they are rhodopin and lycopene. The hydrophobic character 

of these two carotenoids enables them to be differentiated as band 4 is highly 

hydrophobic this would indicate that it is lycopene, and therefore band 1 is the 

more polar rhodopin. Band 2 ran parallel to the control, indicating that that it 

was spirilloxanthin. The absorption spectrum of band 2 (Figure 4.11 green) 

produced peaks at 465 nm, 492 nm, and 525 nm confirming the carotenoid as 

spirilloxanthin. The absorption spectrum of band 3 (Figure 4.11

and the absorption peaks centred at 459 nm, 488 nm, and 522 nm 

indicating it is either rhodovibrin or anhydrorhodovibrin. Due to the 

hydrophobicity of the carotenoid it is most probably anhydrorhodovibrin. 

Rhodovibrin was not observed but would be expected to be present in small 

quantities and produce an absorption spectrum identical to anhydrorhodovibrin 

the same chromaphore.  

 
Normalised absorption spectra of t he carotenoids extracted from the LH2 

Alc. vinosum by TLC plate.  
Spirilloxanthin was identified (green) from the TLC producing peaks at 465 nm, 492 nm, and 525 

. Rhodopin (blue) and lycopene share the same chromophore and produced peaks
. Anhydrorhodovibrin (red) was identified from the peaks observed in the 

absorption spectrum at 459 nm, 488 nm, and 522 nm. The difference in peak position observed 
between the different carotenoids is indicative of the π-conjugation length of their chromophore, as 
chromophore length increases the positions of the peaks red shift. The conjugation lengths of the 
different carotenoids are Rhodopin n = 11, anhydrorhodovibrin = 12, and spirilloxanthin n = 13.

identified were confirmed by individually extracting and 

purifying the carotenoids from known sources and running a TLC plate for a 

direct comparison (Figure 4.12). All carotenoids were extracted as previously 

in Methods and Materials section 2.10. Lycopene wa
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they are rhodopin and lycopene. The hydrophobic character 

of these two carotenoids enables them to be differentiated as band 4 is highly 

hydrophobic this would indicate that it is lycopene, and therefore band 1 is the 

lel to the control, indicating that that it 

was spirilloxanthin. The absorption spectrum of band 2 (Figure 4.11 green) 

produced peaks at 465 nm, 492 nm, and 525 nm confirming the carotenoid as 

spirilloxanthin. The absorption spectrum of band 3 (Figure 4.11 red) was 

and the absorption peaks centred at 459 nm, 488 nm, and 522 nm 

indicating it is either rhodovibrin or anhydrorhodovibrin. Due to the 

hydrophobicity of the carotenoid it is most probably anhydrorhodovibrin. 

t would be expected to be present in small 

an absorption spectrum identical to anhydrorhodovibrin 

he carotenoids extracted from the LH2 

465 nm, 492 nm, and 525 
. Rhodopin (blue) and lycopene share the same chromophore and produced peaks at 448 nm, 

(red) was identified from the peaks observed in the 
. The difference in peak position observed 

ugation length of their chromophore, as 
chromophore length increases the positions of the peaks red shift. The conjugation lengths of the 
different carotenoids are Rhodopin n = 11, anhydrorhodovibrin = 12, and spirilloxanthin n = 13. 

by individually extracting and 

purifying the carotenoids from known sources and running a TLC plate for a 

). All carotenoids were extracted as previously 

. Lycopene was extracted from 



 

 

tomato paste, anhydrorhodovibrin and spirilloxanthin were extracted from 

rubrum S1, and rhodopin was extracted from 

shows these four carotenoids run in parallel to the carotenoid comple

extracted from the B800

sourced carotenoids ran parallel to the carotenoids extracted from the B800

LH2 complex type. This would support the identifications made from the 

hydrophobic character and ab

Figure 4.12 The carotenoids of the B800
individually purified carotenoids separated by thin
Four bands were observed in 
pink band (band 2), a faint orange band (band 3) and a yellow band (band 4). 
preliminarily identified as rhodopin, spirilloxanthin, anhydrorhodovibrin, and lycopene. To confirm 
this identification carotenoids were extracted from known sources; lycopene (tomato paste), 
anhydrorhodovirbin (Rsp. rubrum
vinosum strain D). The four bands observed in the B800
individually purified carotenoids suggesting the

4.3.2 Determining the carotenoid composition of the B800
B800-840p and B800

Thin layer chromatography was effective in separating the caroteno

percentage composition of the carotenoids could not be determined using this 

technique. Additionally, photobleaching 

the identification of

technique of HPLC 

nhydrorhodovibrin and spirilloxanthin were extracted from 

S1, and rhodopin was extracted from Alc. vinosum 

shows these four carotenoids run in parallel to the carotenoid comple

extracted from the B800-850c LH2 complex type. Each of the individually 

sourced carotenoids ran parallel to the carotenoids extracted from the B800

LH2 complex type. This would support the identifications made from the 

hydrophobic character and absorption spectra. 

The carotenoids of the B800 -850 LH2 complex from Alc. vinosum
individually purified carotenoids separated by thin -layer chromatography. 
Four bands were observed in the B800-850 LH2 complex, presenting as an orange band (band 1), 
pink band (band 2), a faint orange band (band 3) and a yellow band (band 4). 
preliminarily identified as rhodopin, spirilloxanthin, anhydrorhodovibrin, and lycopene. To confirm 

arotenoids were extracted from known sources; lycopene (tomato paste), 
Rsp. rubrum S1), Spirilloxanthin (Rsp. rubrum S1), and Rhodopin (

strain D). The four bands observed in the B800-850 LH2 complex ran parallel 
carotenoids suggesting they were the same carotenoids

Determining the carotenoid composition of the B800
840p and B800 -850c LH2 complex types by HPLC

Thin layer chromatography was effective in separating the caroteno

percentage composition of the carotenoids could not be determined using this 

technique. Additionally, photobleaching of the carotenoids on the plate impeded

the identification of any carotenoids present at very low concentrations

technique of HPLC has the capacity to quantitatively determine the carotenoid 

146 

nhydrorhodovibrin and spirilloxanthin were extracted from Rsp. 

 Strain D. Figure 4.12 

shows these four carotenoids run in parallel to the carotenoid complement 

850c LH2 complex type. Each of the individually 

sourced carotenoids ran parallel to the carotenoids extracted from the B800-850 

LH2 complex type. This would support the identifications made from the 

 

Alc. vinosum and 
layer chromatography.  

, presenting as an orange band (band 1), 
pink band (band 2), a faint orange band (band 3) and a yellow band (band 4). These were 
preliminarily identified as rhodopin, spirilloxanthin, anhydrorhodovibrin, and lycopene. To confirm 

arotenoids were extracted from known sources; lycopene (tomato paste), 
S1), and Rhodopin (Alc. 

850 LH2 complex ran parallel to the 
y were the same carotenoids. 

Determining the carotenoid composition of the B800 -820, 
850c LH2 complex types by HPLC  

Thin layer chromatography was effective in separating the carotenoids but the 

percentage composition of the carotenoids could not be determined using this 

of the carotenoids on the plate impeded 

any carotenoids present at very low concentrations. The 

quantitatively determine the carotenoid 
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differences between complexes as well as the sensitivity to identify all the 

carotenoids present. 

The preliminary studies on the carotenoid complement of the LH2 complex types 

of Alc. vinosum were taken on for further analysis by post doctorial researcher 

Dr Anne-Marie Carey. This work was published as part of the Carey, et al 2014 

publication. Carotenoids from the B800-820, B800-840 and B800-850c LH2 

complex types were extracted and separated using reverse phase HPLC (RP 

HPLC) in a method adapted from (135). The peak area of each carotenoid for 

absorption at a known wavelength (470 nm for lycopene and rhodopin, 475 nm 

for spirilloxanthin, 482 nm for anhydrorhodovibrin) was used with the relevant 

extinction coefficient (37) to determine the percentage composition of the 

carotenoid observed.  

Five peaks were observed in the HPLC chromatogram from in each of the LH2 

complex types (Figures 4.13-4.16). The identity of the pigments was determined 

via absorption spectroscopy and their relative hydrophobicity, as with the TLC 

plates. The first pigments to elute from the column during reverse phase HPLC 

are those with the highest polarity, followed by pigments with increasing 

hydrophobicity. The elution order of the pigments was identical for the pigment 

mix from all three LH2 complex types but the intensity of the peaks and the 

retention times varied. As the most polar of the pigments, BChl eluted first 

(Figures 4.13-4.16 peak a) followed by rhodopin (Figures 4.13-4.16 peak b), 

spirilloxanthin (Figures 4.13-4.16 peak c), anhydrorhodovibrin (Figures 4.13-4.16 

peak d), and finally the most hydrophobic carotenoid, lycopene (Figures 4.13-

4.16 peak e). Variations in retention times are most probably due to 

temperature differences between runs. 

During RP HPLC of the B800-820 LH2 complex (Figure 4.13) BChl eluted at 16 min 

(Figure 4.13, peak a) followed by rhodopin at 22:30 min (Figure 4.13, peak b), 

spirilloxanthin at 24:30 min (Figure 4.13, peak c), anhydrorhodovibrin at 26 min 

(Figure 4.13, peak d), and then lycopene at 27 min (Figure 4.13, peak e). 

Rhodopin produced the highest intensity peak (0.7 A.U.) followed by 

spirilloxanthin (0.3 A.U.), and then anhydrorhodovibrin (0.2 A.U.). Lycopene 

produced the lowest intensity peak (>0.1 A.U.). 



 

 

Figure 4.13 The A 470 of the carotenoids of the B800
separated by reverse phase 
Five peaks eluted at 16 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) and 
27 min (peak e). The fractions were collected and identified by their absorption spectra and their 
relative hydrophobicity. Peak a is 
anhydrorhodovibrin, and
(peak b) and is the most abundant carotenoid in the B800
by spirilloxanthin (peak c)

The retention times of the carotenoids

4.14) was similar to those observed in the carotenoids from the B800

complex but the pigments eluted slightly quicker. Once again rhodopin (Figure 

4.14, peak b) produces the highest intensity peak (0.7 A.U.), 

spirilloxanthin (Figure 4.14, peak b, 0.2 A.U.), anhydrorhodovibrin (Figure 4.14, 

peak b, 0.1 A.U.), and finally lycopene (Figure 4.14, peak b, >0.1 A.U.). The 

level of spirilloxanthin and anhydrorhodovibrin is lower than that observed in the 

B800-820 LH2 complex type.

 

of the carotenoids of the B800 -820 LH2 complex from 
separated by reverse phase HPLC.  

eluted at 16 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) and 
eak e). The fractions were collected and identified by their absorption spectra and their 

relative hydrophobicity. Peak a is BChl, peak b is rhodopin, peak c is spirilloxanthin, 
anhydrorhodovibrin, and peak e is lycopene. The highest intensity peak is 

and is the most abundant carotenoid in the B800-820 LH2 complex type, closely followed 
(peak c). As published in Carey et at,. 2014 (164). 

The retention times of the carotenoids from the B800-840 LH2 complex (Figure 

4.14) was similar to those observed in the carotenoids from the B800

complex but the pigments eluted slightly quicker. Once again rhodopin (Figure 

4.14, peak b) produces the highest intensity peak (0.7 A.U.), 

spirilloxanthin (Figure 4.14, peak b, 0.2 A.U.), anhydrorhodovibrin (Figure 4.14, 

peak b, 0.1 A.U.), and finally lycopene (Figure 4.14, peak b, >0.1 A.U.). The 

level of spirilloxanthin and anhydrorhodovibrin is lower than that observed in the 

820 LH2 complex type. 
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820 LH2 complex from Alc. vinosum 

eluted at 16 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) and 
eak e). The fractions were collected and identified by their absorption spectra and their 

spirilloxanthin, peak d is 
ak is produced by rhodopin 

820 LH2 complex type, closely followed 

840 LH2 complex (Figure 

4.14) was similar to those observed in the carotenoids from the B800-820 LH2 

complex but the pigments eluted slightly quicker. Once again rhodopin (Figure 

4.14, peak b) produces the highest intensity peak (0.7 A.U.), followed by 

spirilloxanthin (Figure 4.14, peak b, 0.2 A.U.), anhydrorhodovibrin (Figure 4.14, 

peak b, 0.1 A.U.), and finally lycopene (Figure 4.14, peak b, >0.1 A.U.). The 

level of spirilloxanthin and anhydrorhodovibrin is lower than that observed in the 



 

 

Figure 4.14 The A 470 of the carotenoids of the B800
separated by reverse phase 
Five peaks eluted at 16 min (peak a), 22:30 min (peak b), 2
and 27 min (peak e). The fractions were collected and identified by their absorption spectra and 
their relative hydrophobicity. Peak a is 
anhydrorhodovibrin, and
(peak b) and is the most abundant carotenoid in the B800
by spirilloxanthin (peak c)

The retention times of the carotenoids from the B800

4.15) were similar to those observed in the carotenoids from the B800

complex type. Once again rhodopin (Figure 4.15, peak b) produces the high

intensity peak (0.95 A.U.), but the intensity of both the spirilloxanthin (Figure 

4.15, peak b, 0.15 A.U.) and anhydrorhodovibrin peaks are the same (Figure 

4.15, peak b, 0.15 A.U.). Lycopene was the final carotenoid to elute (Figure 

4.15, peak b, >0.1 

HPLC chromatograms from all the LH2 complex types. The level of 

spirilloxanthin and anhydrorhodovibrin is lower than that observed in the B800

820 LH2 complex type.

 

of the carotenoids of the B800 -840 LH2 complex from 
separated by reverse phase HPLC.  

eluted at 16 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 25:30 min (peak d) 
and 27 min (peak e). The fractions were collected and identified by their absorption spectra and 
their relative hydrophobicity. Peak a is BChl, peak b is rhodopin, peak c is 

n, and peak e is lycopene. The highest intensity peak is 
and is the most abundant carotenoid in the B800-840 LH2 complex type, closely followed 

(peak c). As published in Carey et at,. 2014 (164). 

The retention times of the carotenoids from the B800-850 LH2 complex (Figure 

4.15) were similar to those observed in the carotenoids from the B800

complex type. Once again rhodopin (Figure 4.15, peak b) produces the high

intensity peak (0.95 A.U.), but the intensity of both the spirilloxanthin (Figure 

4.15, peak b, 0.15 A.U.) and anhydrorhodovibrin peaks are the same (Figure 

4.15, peak b, 0.15 A.U.). Lycopene was the final carotenoid to elute (Figure 

 A.U.) and was of a similar intensity to that observed in the 

HPLC chromatograms from all the LH2 complex types. The level of 

spirilloxanthin and anhydrorhodovibrin is lower than that observed in the B800

820 LH2 complex type. 
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840 LH2 complex from Alc. vinosum 

4:30 min (peak c), 25:30 min (peak d) 
and 27 min (peak e). The fractions were collected and identified by their absorption spectra and 

peak c is spirilloxanthin, peak d is 
highest intensity peak is produced by rhodopin 

0 LH2 complex type, closely followed 

850 LH2 complex (Figure 

4.15) were similar to those observed in the carotenoids from the B800-840 LH2 

complex type. Once again rhodopin (Figure 4.15, peak b) produces the highest 

intensity peak (0.95 A.U.), but the intensity of both the spirilloxanthin (Figure 

4.15, peak b, 0.15 A.U.) and anhydrorhodovibrin peaks are the same (Figure 

4.15, peak b, 0.15 A.U.). Lycopene was the final carotenoid to elute (Figure 

A.U.) and was of a similar intensity to that observed in the 

HPLC chromatograms from all the LH2 complex types. The level of 

spirilloxanthin and anhydrorhodovibrin is lower than that observed in the B800-



 

 

Figure 4.15 The A 470 of the carotenoids of the B800
separated by reverse phase 
Five peaks eluted at 16:30 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) 
and 27 min (peak e). The fractions were collected and identified by their absorption spectra and 
their relative hydrophobicity. Peak a is 
anhydrorhodovibrin, and
(peak b) and is the most abundant carotenoid in the B800
by spirilloxanthin (peak c) and anhydrorhodovibrin (peak d)
(164). 

The spirilloxanthin peak (peak c) varies most between the different LH2 complex 

types, which is highest in the B800

type. The concentration of anhydrorhodovibrin changes slightly between the 

different LH2 complex types, as sh

B800-820 and lowest in the B800

The percentage composition of the different carotenoids was determined using 

the extinction coefficients and the peak area from the chromatogra

abundant carotenoid in all LH2 complex types is rhodopin, followed by 

spirilloxanthin, anhydrorhodovibrin, and then lycopene. The relative amounts of 

these carotenoids vary across the different LH2 complex types, most 

prominently between spirillox

was at its highest in the B800

then the B800-850c had the lowest levels. 

This data was repeated as part of collaborative work with the Frank lab

of the Magdaong et al

purified (as outlined in Methods and Materi

of the carotenoids of the B800 -850 LH2 complex from 
separated by reverse phase HPLC.  

eluted at 16:30 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) 
e). The fractions were collected and identified by their absorption spectra and 

their relative hydrophobicity. Peak a is BChl, peak b is rhodopin, peak c is 
anhydrorhodovibrin, and peak e is lycopene. The highest intensity peak i

and is the most abundant carotenoid in the B800-820 LH2 complex type, closely followed 
(peak c) and anhydrorhodovibrin (peak d). As published in Carey et at,. 2014

anthin peak (peak c) varies most between the different LH2 complex 

types, which is highest in the B800-820 and lowest in the B800

type. The concentration of anhydrorhodovibrin changes slightly between the 

different LH2 complex types, as show in variations on peak d, highest in the 

820 and lowest in the B800-840p and B800-850c LH2 complex types

The percentage composition of the different carotenoids was determined using 

the extinction coefficients and the peak area from the chromatogra

abundant carotenoid in all LH2 complex types is rhodopin, followed by 

spirilloxanthin, anhydrorhodovibrin, and then lycopene. The relative amounts of 

these carotenoids vary across the different LH2 complex types, most 

prominently between spirilloxanthin and rhodopin. The level of spirilloxanthin 

was at its highest in the B800-820 LH2 complex, followed by the B800

850c had the lowest levels.  

This data was repeated as part of collaborative work with the Frank lab

of the Magdaong et al, (2016) publication (167). The LH2 complex types were 

purified (as outlined in Methods and Materials section 2.5.1) and sent to 
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850 LH2 complex from Alc. vinosum 

eluted at 16:30 min (peak a), 22:30 min (peak b), 24:30 min (peak c), 26 min (peak d) 
e). The fractions were collected and identified by their absorption spectra and 

peak c is spirilloxanthin, peak d is 
highest intensity peak is produced by rhodopin 

820 LH2 complex type, closely followed 
As published in Carey et at,. 2014 

anthin peak (peak c) varies most between the different LH2 complex 

820 and lowest in the B800-850c LH2 complex 

type. The concentration of anhydrorhodovibrin changes slightly between the 

ow in variations on peak d, highest in the 

LH2 complex types. 

The percentage composition of the different carotenoids was determined using 

the extinction coefficients and the peak area from the chromatogram. The most 

abundant carotenoid in all LH2 complex types is rhodopin, followed by 

spirilloxanthin, anhydrorhodovibrin, and then lycopene. The relative amounts of 

these carotenoids vary across the different LH2 complex types, most 

anthin and rhodopin. The level of spirilloxanthin 

820 LH2 complex, followed by the B800-840p, and 

This data was repeated as part of collaborative work with the Frank lab as part 

. The LH2 complex types were 

.5.1) and sent to Dr Nikki 
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Magdaong for analysis by normal phase HPLC. Rhodovibrin was identified in 

addition to the four carotenoids identified in the Carey paper. Rhodovibrin 

contains the same chromophore as anhydrorhodovibrin but with an additional 

hydroxyl group, so has the same absorption spectrum but has a different 

hydrophobic character.  

The relative abundances of the carotenoids in the B800-850 LH2 complex type 

were rhodopin (70 % ± 2 (Carey), 59 % ± 7 (Magdaong)), spirilloxanthin (19 % ±1 

(Carey), 6.0 % ± 0.7 (Magdaong)), anhydrorhodovibrin (7 % ± 3 

(Carey), 9 % ± 1 (Magdaong)), rhodovibrin (not observed (Carey), 22 %± 3 

(Magdaong)), and lycopene (4 % ± 0.4 (Carey), 3.8 % ± 0.4 (Magdaong)). The 

B800-840 LH2 complex type contained rhodopin (66 % ± 4 (Carey), 62 % ± 7 

(Magdaong)), spirilloxanthin (22 % ±4 (Carey), 15 % ± 2 (Magdaong)), 

anhydrorhodovibrin (8 % ± 1 (Carey), 9 % ± 1 (Magdaong)), rhodovibrin (not 

observed (Carey), 11 % ± 1 (Magdaong)), and lycopene (4 % ± 1 (Carey), 4.1 % ± 

0.5 (Magdaong)). In the B800-820 LH2 complex type the relative abundances of 

carotenoids were rhodopin (47 % ± 1(Carey), 44 % ± 5 (Magdaong)), 

spirilloxanthin (40 % ± 2 (Carey), 23 % ± 3 (Magdaong)), anhydrorhodovibrin (12 % 

± 1 (Carey), 17 % ± 2 (Magdaong)), rhodovibrin (not observed (Carey), 14 % ± 2 

(Magdaong)), and lycopene (2 % ± 0.1 (Carey), 2.3 % ± 0.3 (Magdaong)). These 

data are outlined in table 4.2. 

The relative abundances observed between the Cogdell lab for the Carey paper 

and the Frank lab for the Magdaong paper were similar but varied most due to 

the identification of rhodovibrin by the Magdaong group. The higher levels of 

rhodovibrin corresponded predominantly to a reduction in the level of 

spirilloxanthin and, to a lesser degree, rhodopin. This may indicate that the 

spirilloxanthin peak observed by Carey (2015) was insufficiently separated 

spirilloxanthin and rhodovibrin. The relative amounts of anhydrorhodovibrin and 

lycopene do not change very much across the different complex types in either 

the data from Magdaong et al,(2016)(167) or Carey et al, (2014) (164).  

Carey et al determined that the differences in the LH2 complex types’ spectra 

within the carotenoid region are due to changes in the ratio of spirilloxanthin to 

rhodopin. The data from Carey et al (2014) and Magdaong et al (2016) generally 

agreed that there is an increase of longer conjugation length carotenoids (n=12 
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and n=13) in the B800-820 produced under low light, 30 ̊C growth conditions in 

comparison to the B800-850 and B800-840 produced under high light growth 

conditions. This concurs with the speculation made that the variations observed 

in the low temperature absorption spectra are due to changes in the levels of 

spirilloxanthin between the different LH2 complex types. This supports the 

evidence put forward in section 3.3 and previous work (113) that there is a 

larger amount of carotenoids that contain longer chromophores in the B800-820 

LH2 complex type.  

Table 4.3 The percentage composition of the differe nt carotenoids identified in the B800-
820, B800-840p and B800-850c LH2 complex types prod uced by Alc. vinosum identified by 
Carey et al,. (2014) (164)and Magdaong et al,. (201 6) (167). 
LH2 complex 

type/carotenoid 

B800-820 B800-840p B800-850c n = 

Rhodopin  

Carey et al 

Magdaong et al 

 

47 ± 1 

44 ± 5  

 

66 ± 4  

62 ± 7 

 

70 ± 2 

59 ± 7 

11 

Lycopene 

Carey et al 

Magdaong et al 

 

2 ± 0.1 

2.3 ± 0.3 

 

4 ± 1  

4.1 ± 0.5 

 

4 ± 0.4 

3.8 ± 0.4 

11 

Anhydrorhodovibrin 

Carey et al 

Magdaong et al 

 

12 ± 1 

17 ± 2 

 

8 ± 1 

9 ± 1 

 

7 ± 3 

9 ± 1 

12 

Rhodovibrin 

Carey et al 

Magdaong et al 

 

- 

14  ± 2 

 

- 

11 ± 1 

 

- 

22 ± 3 

12 

Spirilloxanthin  

Carey et al 

Magdaong et al 

 

40 ± 2 

23 ± 3 

 

22 ±4 

15 ± 2 

 

19 ±1 

6.0 ± 0.7 

13 

 

4.4 Fluorescence of the different LH2 complex types  of 
Alc. vinosum 

The B800-820, B800-840p, and B800-850 LH2 complex types were purified (as 

described in Methods and Materials section 2.5.1) and the fluorescence emission 

spectra were recorded. The B800-850 LH2 complex produces an emission peak at 

853 nm with a small shoulder at ~ 810 nm (Figure 4.16 red). The emission at ~ 

810 nm is from the B800 BChl whereas the emission at 852 nm is produced by the 

B850 BChl. There is energy transfer from the B800 BChl to the B850 BChl 



 

 

resulting in only a small amount of fluore

840p LH2 complex produces an emission peak at 850 nm with a shoulder at ~ 820 

nm (Figure 4.16 green

it is obscured by the fluorescence from the dimeric BChl. The B800

complex type produces an emission peak at 

of the growth conditions it is produced under. There is a single emission peak 

observed from the B820 BChl, as the emission from the B800 BChl is obscured 

beneath the B820 emission. 

Figure 4.16 Fluorescence emission spectra of the B800
LH2 complex types from 
The B800-820 complex type
LH2 complex type (green)
820 nm. The B800-850
shoulder at ~ 810 nm. Emission spec
data. The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to 
the dimeric BChl. The B800
and the B800-820 produces the most blue

The emission peaks of both the B800

B800-850c LH2 complex (Figure 4.17 blue) centre at the same wavelength, 853 

nm. Unlike the B800

only a small amount of fluorescence from the B800 BChl

840p LH2 complex produces an emission peak at 850 nm with a shoulder at ~ 820 

6 green). There is no emission peak observed for the B800 BChl as 

it is obscured by the fluorescence from the dimeric BChl. The B800

complex type produces an emission peak at 827 nm (Figure 4.16 blue) regardless 

of the growth conditions it is produced under. There is a single emission peak 

observed from the B820 BChl, as the emission from the B800 BChl is obscured 

20 emission.  

Fluorescence emission spectra of the B800 -820, B800-840p and the B800
LH2 complex types from Alc. vinosum.  

820 complex type (blue) produces a single emission peak at 827 nm. The B800
(green) and produces an emission peak at 850 nm with a slight shoulder at ~ 
850c LH2 complex type produces an emission peak at 853

. Emission spectra were divided by 105 at the Qy maxima to normalise the 
The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to 

the dimeric BChl. The B800-850c LH2 complex produces the most red-shifted emission spectra 
820 produces the most blue-shifted emission spectra.  

The emission peaks of both the B800-850a LH2 complex (Figure 4.17 green) and 

850c LH2 complex (Figure 4.17 blue) centre at the same wavelength, 853 

nm. Unlike the B800-850c LH2 complex, the B800-850a LH2 complex produces a 

153 

e from the B800 BChl. The B800-

840p LH2 complex produces an emission peak at 850 nm with a shoulder at ~ 820 

. There is no emission peak observed for the B800 BChl as 

it is obscured by the fluorescence from the dimeric BChl. The B800-820 LH2 

(Figure 4.16 blue) regardless 

of the growth conditions it is produced under. There is a single emission peak 

observed from the B820 BChl, as the emission from the B800 BChl is obscured 

 

840p and the B800 -850c 

emission peak at 827 nm. The B800-840p 
with a slight shoulder at ~ 

complex type produces an emission peak at 853 nm with a small 
tra were divided by 105 at the Qy maxima to normalise the 

The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to 
shifted emission spectra 

850a LH2 complex (Figure 4.17 green) and 

850c LH2 complex (Figure 4.17 blue) centre at the same wavelength, 853 

a LH2 complex produces a 



 

 

pronounced shoulder at ~810 nm

LH2 complex type but the shoulder is more distinct and the main emission peak 

is more red-shifted in the B800

Figure 4.17 Fluorescence emission spectra of the B800
complex types from Alc. vinosum
The B800-850c complex type
LH2 complex type (green)
The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to the 
dimeric BChl.  

Fluorescence excitation spectra provides the

efficiency of the intra

by comparing the total energy absorbed by the carotenoids (1

the energy that contributes to emission at a specific wavelength (Excitation 

fluorescence). As fluorescence is in a linear mode the absorption measurement is 

measured as percent transmittance. A comparison of these values gives the 

excitation energy transfer efficiency (EET).

Work published (167)

used a more up-to-

pronounced shoulder at ~810 nm. This appears to be similar to the B800

LH2 complex type but the shoulder is more distinct and the main emission peak 

shifted in the B800-850a LH2 complex.  

Fluorescence emission spectra of the B800 -850a and the B800
Alc. vinosum.  

complex type (blue) produces a single emission peak at 853 nm. The B800
(green) and produces an emission peak at 853 nm with a shoulder at ~ 810 nm. 

The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to the 

Fluorescence excitation spectra provides the means to determinin

efficiency of the intra-complex energy transfer from the carotenoids to the BChl 

by comparing the total energy absorbed by the carotenoids (1

contributes to emission at a specific wavelength (Excitation 

. As fluorescence is in a linear mode the absorption measurement is 

measured as percent transmittance. A comparison of these values gives the 

excitation energy transfer efficiency (EET). 

(167) from the collaboration with the Frank lab (section 

-date Fluorolog-3 FL3-22 fluorimeter (Horiba Jobin Yvon) with 
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LH2 complex type but the shoulder is more distinct and the main emission peak 

 

850a and the B800 -850c LH2 

(blue) produces a single emission peak at 853 nm. The B800-850a 
with a shoulder at ~ 810 nm. 

The emission at ~ 810 nm relates to the B800 BChl while the main emission peaks relate to the 

means to determining the 

complex energy transfer from the carotenoids to the BChl 

by comparing the total energy absorbed by the carotenoids (1-Transmittance) to 

contributes to emission at a specific wavelength (Excitation 

. As fluorescence is in a linear mode the absorption measurement is 

measured as percent transmittance. A comparison of these values gives the 

with the Frank lab (section 4.3.2) 

22 fluorimeter (Horiba Jobin Yvon) with 
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better calibration into the red end of the spectrum that corrected our emission 

values. Percent transmittance and excitation fluorescence spectra were 

recorded and the excitation energy transfer for the different complex types was 

determined. 

The emission peak of the B800-820 LH2 complex centred at 830 nm (Figure 4.18 

blue), red-shifted by 3 nm compared to previous data. The 1-T (Figure 4.18 

black) and fluorescence excitation (Figure 4.18 red) spectra were near identical 

when overlaid, with the exception of the carotenoid peaks. The Qx dipole at ~ 

590 nm, Soret peak at ~ 370 nm, and the BChl Qy absorption peaks were 

observed and overlaid well in both spectra, and this was the case for all the LH2 

complex types measured. Comparison of the carotenoid region of the 1-T and 

the fluorescence excitation found the EET from the carotenoids to the BChl is 38 

%.  



 

 

Figure 4.18 Normalised 1
LH2 complex type from 
A single fluorescence emission peak (blue) was observed at 830 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm
excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due to o
of the energy absorbed by the carotenoids (1
the difference between the 1
spectra were recorded after excitation at 588 nm in the 
were recorded for emission at 

The emission peak of the 

blue), red-shifted by 5 nm compared to previous data. The fluorescence 

emission spectra still showed a slight asymmetry of the emission peak with a 

shoulder at ~810 nm. Com

fluorescence excitation (Figure 4.19 red) found the EET from the carotenoids to 

the BChl is 33 %. 

Normalised 1 -T, fluorescence excitation and emission spectra of the B800
LH2 complex type from Alc. vinosum.  

emission peak (blue) was observed at 830 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm in the 1-T (black) and fluorescence 
excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due to o
of the energy absorbed by the carotenoids (1-T) transferring on the BChl. 
the difference between the 1-T and fluorescence excitation and was found as 38 %.
spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence excitation spectra 
were recorded for emission at 830 nm. As published as part of Magdaong et al,. (

emission peak of the B800-840p LH2 complex centred at 855 nm (Figure 4.19 

shifted by 5 nm compared to previous data. The fluorescence 

emission spectra still showed a slight asymmetry of the emission peak with a 

shoulder at ~810 nm. Comparison between the 1-T (Figure 4.19 black) and the 

fluorescence excitation (Figure 4.19 red) found the EET from the carotenoids to 
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T, fluorescence excitation and emission spectra of the B800 -820 

emission peak (blue) was observed at 830 nm. The Qx dipole at 586 nm, the 
T (black) and fluorescence 

excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due to only some 
T) transferring on the BChl. The percentage EET is 

T and fluorescence excitation and was found as 38 %. The emission 
Qx band. Fluorescence excitation spectra 

Magdaong et al,. (2016) (167). 

LH2 complex centred at 855 nm (Figure 4.19 

shifted by 5 nm compared to previous data. The fluorescence 

emission spectra still showed a slight asymmetry of the emission peak with a 

T (Figure 4.19 black) and the 

fluorescence excitation (Figure 4.19 red) found the EET from the carotenoids to 



 

 

Figure 4.19 Normalised 1
LH2 complex type from 
A single fluorescence emission peak (blue) was observed at 855 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm
fluorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 
to only some of the energy absorbed by the carotenoids (1
percentage EET is the difference between the 1
33 %. The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 
excitation spectra were recorded for emission at 
(2016)(167). 

The emission peak of the 

blue), red-shifted by 14 nm compared to previous data. The fluorescenc

emission spectra shows the small peak at ~ 810 nm that relates to emission from 

the B800 BChl. Comparison between the 1

fluorescence excitation (Figure 4.20 red) found the EET from the carotenoids to 

the BChl is 38 %. 

 

Normalised 1 -T, fluorescence excitation and emission spectra of the B800
LH2 complex type from Alc. vinosum.  

single fluorescence emission peak (blue) was observed at 855 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm and 840 nm in the 1
luorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 

to only some of the energy absorbed by the carotenoids (1-T) transferring on the BChl. 
percentage EET is the difference between the 1-T and fluorescence excitation and was found as 

The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 
excitation spectra were recorded for emission at 855 nm. As published as part of

emission peak of the B800-850c LH2 complex centred at 867 nm (Figure 4.20 

shifted by 14 nm compared to previous data. The fluorescenc

emission spectra shows the small peak at ~ 810 nm that relates to emission from 

the B800 BChl. Comparison between the 1-T (Figure 4.20 black) and the 

fluorescence excitation (Figure 4.20 red) found the EET from the carotenoids to 
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emission spectra of the B800 -840p 

single fluorescence emission peak (blue) was observed at 855 nm. The Qx dipole at 590 nm, the 
and 840 nm in the 1-T (black) and 

luorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 
T) transferring on the BChl. The 

excitation and was found as 
The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 

. As published as part of Magdaong et al,. 

LH2 complex centred at 867 nm (Figure 4.20 

shifted by 14 nm compared to previous data. The fluorescence 

emission spectra shows the small peak at ~ 810 nm that relates to emission from 

T (Figure 4.20 black) and the 

fluorescence excitation (Figure 4.20 red) found the EET from the carotenoids to 



 

 

Figure 4.20 Normalised 1
LH2 complex type from 
A single fluorescence emission peak (blue) was observed at 867 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm
fluorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 
to only some of the energy absorbed by the carotenoids (
percentage EET is the difference between the 1
38 %. The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 
excitation spectra were record
(2016) (167). 

4.5 The origin of the split B800 peak

The split B800 peak that is observed in the LH2 complex types of 

fairly unusual in the LH2 complexes of purple photosynthetic bacteria with the 

exception of Thr. tepidum

previous work (113)

same complex. This result could be due to a second pool of BChl within the LH2 

complex types produced by 

from Rps. acidophila

Normalised 1 -T, fluorescence excitation and emission spectra of the B800
LH2 complex type from Alc. vinosum.  

single fluorescence emission peak (blue) was observed at 867 nm. The
soret peak at ~370 nm, BChl Qy absorption at ~ 800 nm and 848 nm in the 1
fluorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 
to only some of the energy absorbed by the carotenoids (1-T) transferring on the BChl. 
percentage EET is the difference between the 1-T and fluorescence excitation and was found as 

The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 
excitation spectra were recorded for emission at 867 nm. As published as part of

The origin of the split B800 peak  

The split B800 peak that is observed in the LH2 complex types of 

fairly unusual in the LH2 complexes of purple photosynthetic bacteria with the 

Thr. tepidum (160). The basis of the split peak is unknown but 

(113) discovered that both B800 peaks origin

same complex. This result could be due to a second pool of BChl within the LH2 

complex types produced by Alc. vinosum. From the structure of the B800

Rps. acidophila the ratio of BChl/carotenoids is known as 3:1, which would 
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T, fluorescence excitation and emission spectra of the B800 -850c 

single fluorescence emission peak (blue) was observed at 867 nm. The Qx dipole at 590 nm, the 
and 848 nm in the 1-T (black) and 

fluorescence excitation (red) spectra overlapped almost perfectly. The carotenoid region varies due 
T) transferring on the BChl. The 

e excitation and was found as 
The emission spectra were recorded after excitation at 588 nm in the Qx band. Fluorescence 

. As published as part of Magdaong et al,. 

The split B800 peak that is observed in the LH2 complex types of Alc. vinosum is 

fairly unusual in the LH2 complexes of purple photosynthetic bacteria with the 

. The basis of the split peak is unknown but 

discovered that both B800 peaks originate from within the 

same complex. This result could be due to a second pool of BChl within the LH2 

. From the structure of the B800-850 

the ratio of BChl/carotenoids is known as 3:1, which would 



 

 

change to 4:1 if additional BChl were present. Dr Anne

the BChl and carotenoids from the B800

compared the absorption spectra to the B800

(168). The mean ratio of the BChl/carotenoid was 1:1.2 ± 0.02 for the B800

LH2 complex from Alc. vinosum 

Rps. acidophila (Figure 4.

vinosum doesn’t contain an extra BChl per heterodimer subunit. Small 

differences observed in the intensity of the carotenoid peaks will be due to the 

different extinction coefficients of the different carotenoids present between 

the LH2 complexes of 

Figure 4.21 Normalised absorption spectra of the pigment mix ex tracted from the B800
LH2 complex from Rps. acidophila
Absorption spectrum of the pigments extracted from the B800
Rps. acidophila showed peaks at relating to the free BChl at 770 nm (Qy), 600 nm (Qx), and 370 
nm (Soret) and carotenoids between 450 nm
intensity carotenoid peak was 
1:1.10 ± 0.01 for the B800
BChl molecule per heterodimer subunit i
Löhner et al, 2015 (168)

Differences in the B800 BChl binding within an individual LH2 complex can be 

further elucidated through the use of single molecu

if additional BChl were present. Dr Anne-Marie Carey extracted 

the BChl and carotenoids from the B800-850 complex from 

compared the absorption spectra to the B800-850 LH2 from 

. The mean ratio of the BChl/carotenoid was 1:1.2 ± 0.02 for the B800

Alc. vinosum and 1:1.10 ± 0.01 for the B800

(Figure 4.21). The similar ratios suggest the LH2 from 

contain an extra BChl per heterodimer subunit. Small 

differences observed in the intensity of the carotenoid peaks will be due to the 

different extinction coefficients of the different carotenoids present between 

the LH2 complexes of Rps. acidophila and Alc. vinosum. 

Normalised absorption spectra of the pigment mix ex tracted from the B800
Rps. acidophila the B800- 850 LH2 complex from 

Absorption spectrum of the pigments extracted from the B800-850 LH2 from 
showed peaks at relating to the free BChl at 770 nm (Qy), 600 nm (Qx), and 370 

nm (Soret) and carotenoids between 450 nm- 550 nm. The ratio of the Qy peak to the highest 
intensity carotenoid peak was 1:1.2 ± 0.02 for the B800-850 LH2 complex from 
1:1.10 ± 0.01 for the B800-850 LH2 from Rps. acidophila. This suggests there isn’t an additional 
BChl molecule per heterodimer subunit in the LH2 of Alc. vinosum. This 

(168). 

Differences in the B800 BChl binding within an individual LH2 complex can be 

further elucidated through the use of single molecule spectroscopy, to 
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850 complex from Alc. vinosum and 

850 LH2 from Rsp. acidophila 

. The mean ratio of the BChl/carotenoid was 1:1.2 ± 0.02 for the B800-850 

the B800-850 LH2 from 

). The similar ratios suggest the LH2 from Alc. 

contain an extra BChl per heterodimer subunit. Small 

differences observed in the intensity of the carotenoid peaks will be due to the 

different extinction coefficients of the different carotenoids present between 

 

Normalised absorption spectra of the pigment mix ex tracted from the B800 -850 
850 LH2 complex from Alc. vinosum.  

850 LH2 from Alc. vinosum (red) and 
showed peaks at relating to the free BChl at 770 nm (Qy), 600 nm (Qx), and 370 

he Qy peak to the highest 
850 LH2 complex from Alc. vinosum and 
. This suggests there isn’t an additional 

. This data were published in 

Differences in the B800 BChl binding within an individual LH2 complex can be 

le spectroscopy, to 
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determine the level of variation between the different B800 BChl. Low 

temperature, single molecule fluorescence excitation spectroscopy of the B800-

850c LH2 complex type from Alc. vinosum was acquired by Prof Alexander 

Löhner and Jurgen Kohler working closely with Dr Anne-Marie Carey as part of 

this work (168). Recording the fluorescence-excitation spectrum for single LH2 

complexes allows the resolution of some of the absorption bands of individual 

B800 BChl bound within the LH2 complex that are not observable in the 

ensemble fluorescence-excitation spectrum. Variations observed in the B800 

BChl absorption bands relate to the differences in site energy between the B800 

BChl. However, there may not be absorption bands for all the BChl in each 

spectrum due to the level of delocalisation that occurs over several of the BChl 

present in the ring (169). As in absorption spectroscopy, the low temperature 

narrows the emission and excitation bands observed and improves the resolution 

of them.  

The B800-850c LH2 complex was purified (as described in Methods and Materials 

section 2.5.1) and diluted to either 20 pM for the single complex spectra or 6 nM 

for ensemble spectra. The absorption lines observed were compared to the 

standard models of the B800-850 LH2 complexes from Rps. acidophila and Phs. 

molischianum. 

The study (168) found that the number of B800 BChl absorption bands observed 

for the B800-850 LH2 from Rps. acidophila averaged between 2 and 5, with a 

mean of 3.1 ± 0.2 absorption bands (Figure 4.22). For the B800-850 LH2 from 

Phs. molischianum the number of B800 BChl bands observed ranged from 2 to 6, 

with an average of 3.4 ± 0.3 absorption bands. Multiple absorption bands were 

observed for the LH2 from Alc. vinosum with a range of between three and nine 

absorption bands observed with a mean of 6.8 ± 0.15 bands. This indicated that 

the B800-850c LH2 complex from Alc. vinosum has more than double the average 

number of B800 BChl absorption bands recorded in comparison with B800-850 

from Phs. molischianum and Rps. acidophila. 
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Figure 4.22 Number of absorption bands observed fro m the B800 BChl in the B800-850 LH2 
complex from Rps. acidophila, Phs. molischianum, and Alc. vinosum using single molecule 
fluorescence spectroscopy.  
The range of the number of B800 BChl absorption bands observed for the B800-850 LH2 from 
Rps. acidophila averaged between 2 and 5 (red), with a mean of 3.1 ± 0.2. The range of the 
number of absorption bands observed for the B800-850 LH2 from Phs. molischianum (black) was 
from 2 to 6, with a mean of 3.4 ± 0.3. The range in the number of absorption bands observed for 
the B800-850 LH2 from Alc. vinosum (blue) was between 3 and 9 absorption bands observed with 
an average 6.8 ± 0.15. The average number of absorptions recorded for the B800-850 LH2 from 
Alc. vinosum is higher than that observed for the B800-850 LH2 complex from both Phs. 
molischianum and Rps. acidophila. This data were published in Löhner et al, 2015 (168). 

The bigger the range of B800 absorption bands, the larger number of different 

site energies and angles present in the LH2 complex. Being that the range was 

more than double that observed in that of either Phs. molischianum or Rps. 

acidophila this would imply more than double the number of site energies for 

the B800 from Alc. vinosum. This would concur with the heterogeneity of the 

LH2 complexes and the fact that there are two differently bound populations of 

B800 BChl. 

The fluorescence excitation spectra were modelled through several Monte Carlo 

simulations to re-create the ensemble spectrum and ultimately test the 

understanding of the system. Deductions from earlier in this work were 

incorporated into the simulations such as similarities of the peptide binding of 

the B800 BChl to the B800-850 of Phs. molischianum (section 4.2.1) and the 

implication of a larger ring size than that of either the two known model LH2s 

that is probably a 12-mer (115, 119). The final simulation was created on the 

basis that the B800 BChl are excitonically coupled, rotated at 10 º with respect 
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to the B850 BChl, as in Phs. molischianum (80), within a 12-mer ring. It was 

found that these considerations suitably recreated the native B800-850 LH2 

fluorescence ensemble spectrum from Alc. vinosum (168).  

4.5.1 Circular dichroism of the different LH2 complex typ es from 
Alc. vinosum 

Circular dichroism (CD) can be used to measure the conformational integrity of 

the light-harvesting system and can be used to yield information on the excitonic 

coupling state of the BChl. This technique was used to investigate whether the 

B800 BChl are excitonically coupled as indicated by the Monte Carlo simulations 

(section 4.5.1). Previous CD studies have shown that monomeric BChl are 

observed as a single peak (170) whileas excitonic coupling exhibits a doublet 

(positive and negative Cotton effects) in the NIR region of the spectrum (171).  

The NIR CD spectra were recorded for the different LH2 complex types of Alc. 

vinosum and the B800-850 LH2 from Rps. acidophila. The B800-820, B800-840p, 

and B800-850c LH2 complexes were prepared as outlined in Methods and 

Materials section 2.5.1. The CD spectrum of the B800-850 LH2 from Rps. 

acidophila was acquired (as outlined in Methods and Materials section 2.7) and 

the spectrum observed (Figures 4.22-4.26 black) matched previously published 

data (72, 141). There was a negative singlet at ~795 nm, and a doublet 

consisting of a positive maximum at 850 nm followed by a negative minimum at 

872 nm in the CD spectrum.  

The CD spectra of all the complex types of Alc. vinosum show a doublet 

consisting of a positive maximum at ~ 786 nm followed by a zero crossing at 796 

nm and a negative minimum at  ~ 807 nm or ~ 810 nm. This doublet relates to 

the B800 BChl. The spectral characteristics and the magnitude of the peaks 

observed at longer wavelengths were found to differ for each LH2 complex type. 

The B800-850c LH2 complex type produces a doublet with a maximum at ~786 

followed by a minimum at ~807 nm, with intensities of 5 mdeg and -10 mdeg 

respectively (Figure 4.23 blue and red). Only the B800-850 from SHL40 growth 

conditions (Figure 4.23 blue) produce a zero crossing at 838 nm while the B800-

850 from THL40 (Figure 4.23 red) dips towards a zero crossing. In both B800-850c 



 

 

LH2 complexes, there is a second doublet observed that relates to the B850 

BChl. The B800-850c produces a minimum at 

16 mdeg (SHL40). The B800

double at ~786 and ~807 nm

zero crossing is present at 838 nm but it is further from zero than in the B800

850c complexes. The 

850c LH2 complex and the magnitude is the same as 

under THL40 growth conditions.

Figure 4.23 NIR room temperature circular dichroism spect
types produced by  Alc. vinosum 
to the B800- 850 LH2 from 
The B800-850 LH2 complex from 
a doublet with a maximum at 850 nm followed by a minimum at 872 nm.
complex from THL40 growth conditions 
maximum at ~786 followed by a minimum at
838 nm and minimum at 
a zero crossing. The B800
doublets at the same wavelengths as the B800
but it produces a brief zero crossing at 838 nm. The B800
conditions (green) produces two doublets at the same wavelengths as the B800
without a zero crossing. Additionally
those observed in the B800
(164). 

The CD spectra of both the B800

4.24 red) LH2 complex types 

LH2 complexes, there is a second doublet observed that relates to the B850 

850c produces a minimum at 864 nm of – 14 mdeg (THL40) or 

The B800-850a LH2 complex (Figure 4.23

~786 and ~807 nm but with larger peak magnitudes

zero crossing is present at 838 nm but it is further from zero than in the B800

complexes. The peaks furthest into the NIR form a doublet as in the B800

and the magnitude is the same as the B800

THL40 growth conditions. 

NIR room temperature circular dichroism spect ra of the B800
Alc. vinosum under different growth and nutrient conditions comp ared 

850 LH2 from Rps. acidophila.  
850 LH2 complex from Rps. acidophila (black) produces a singlet 

a doublet with a maximum at 850 nm followed by a minimum at 872 nm.
complex from THL40 growth conditions (dark red) produces two doublets in the spectrum with a 

followed by a minimum at ~807 nm, and the second doublet wit
minimum at 864 nm. The B800-850c from THL40 growth conditions does not produce 

a zero crossing. The B800-850c LH2 complex from SHL40 growth conditions (blue) produces two 
doublets at the same wavelengths as the B800-850c LH2 complex from THL40 growth conditions 
but it produces a brief zero crossing at 838 nm. The B800-850a LH2 complex from SHL30 growth 
conditions (green) produces two doublets at the same wavelengths as the B800
without a zero crossing. Additionally, the 786 nm and 807 nm peaks are of a higher intensity than 
those observed in the B800-850c LH2 complex types. Data were published in Carey, et al 2014

CD spectra of both the B800-840h (Figure 4.24 cyan) and B800

red) LH2 complex types exhibits doublets relating to the B800 BChl
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a doublet as in the B800-
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cyan) and B800-840p (Figure 
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centred at the same wavelengths observed in the B800

(786 nm and 807 nm). The intensities

840h and B800-840p 

The 807 nm minimum of both B800

followed by a dip towards zero. After a small increase in intensity there is a 

further negative minimum at ~850 nm in the B80

SLL30 growth conditions and at ~ 855 nm in the B800

THL30 growth conditions. The intensity of the second negative peak is 

for the B800-840p and 

 

 

 

Figure 4.24 NIR room temperature circular dichroism spectra of the B800
types produced by  Alc. vinosum 
to the B800- 850 LH2 from 
The B800-850 LH2 complex from 
a doublet with a maximum at 850 nm followed by a minimum at 872 nm.
complex from THL30 growth conditions

at the same wavelengths observed in the B800-850 LH2 complex types 

86 nm and 807 nm). The intensities of these peaks are identical 

840p LH2 complex types, at 9 mdeg and -12.5 mdeg respectively. 

The 807 nm minimum of both B800-840 LH2 complex types is a distinct peak 

followed by a dip towards zero. After a small increase in intensity there is a 

further negative minimum at ~850 nm in the B800-840h from cells grown in 

SLL30 growth conditions and at ~ 855 nm in the B800-840p from cells grown in 

THL30 growth conditions. The intensity of the second negative peak is 

840p and -8 mdeg for the B800-840h.  

NIR room temperature circular dichroism spectra of the B800
Alc. vinosum under different growth and nutrient conditions comp ared 

850 LH2 from Rps. acidophila.  
850 LH2 complex from Rps. acidophila (black) produces a singlet 

a doublet with a maximum at 850 nm followed by a minimum at 872 nm.
0 growth conditions (red) produces two doublets in the s

164 

850 LH2 complex types 

are identical in the B800-

12.5 mdeg respectively. 

840 LH2 complex types is a distinct peak 

followed by a dip towards zero. After a small increase in intensity there is a 

840h from cells grown in 

840p from cells grown in 

THL30 growth conditions. The intensity of the second negative peak is -10 mdeg 

 

NIR room temperature circular dichroism spectra of the B800 -840 LH2 complex 
under different growth and nutrient conditions comp ared 

(black) produces a singlet at 795 nm, followed by 
a doublet with a maximum at 850 nm followed by a minimum at 872 nm. The B800-840p LH2 

two doublets in the spectrum with a 
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maximum at ~786 followed by a minimum at ~807 nm, and the second doublet with a maximum at 
838 nm and minimum at ~ 855 nm. The B800-840h LH2 complex from SLL30 growth conditions 
(cyan) produces the first doublet at the same wavelengths as the B800-840p LH2 complex but the 
second doublet centres at ~ 838 nm with a minimum at ~ 850 nm. The first doublet is of the same 
intensity in both the B800-840h and B800-840p LH2 complexes, however the minimum of the 
second doublet is red-shifted and of a more negative intensity in the B800-840p LH2 complex. Data 
were published in Carey, et al 2014 (164).  

The NIR CD spectra produced by the B800-820 complex type (Figure 4.25 pink) 

shows the ~786 nm maximum at an amplitude of 10 mdeg followed by a broad 

(from ~ 810 nm to ~830 nm) negative minimum of -15 mdeg that centres at 820 

nm.  

When comparing all of the LH2 complex types from Alc. vinosum with the B800-

850 LH2 from Rsp. acidophila (Figure 4.25 black) consistent differences are 

observed in the CD spectra. The B800 associated maxima and minima produced 

by the LH2 complex types of Alc. vinosum (Figure 4.25 dark red, green, red, 

pink) form a doublet unlike the singlet observed from the B800-850 from Rsp. 

acidophila. Additionally, the B800 BChl associated minimum at 806 nm in the 

LH2 complexes of Alc. vinosum is more red-shifted than the B800-850 from Rsp. 

acidophila at 795 nm. None of the LH2 complex types of Alc. vinosum cross the 

origin between the B800 and dimeric BChl associated peaks. The LH2 complex 

types of Alc. vinosum produce more blue-shifted doublets associated with the 

dimeric BChl than the standard B800-850 LH2 model from Rsp. acidophila 10050.  



 

 

Figure 4.25 NIR room temperature circular dichroism spectra of the LH2 complex types 
produced by  Alc. vinosum 
The B800-850 LH2 complex from 
a doublet with a maximum at 850 nm followed by a minimum at 872 nm.
complex (dark red) produces two doublets in the spectrum with a maximum at ~786 followed by a 
minimum at ~807 nm, and the second doublet with a maximum at 838 nm and minimum at 864 nm
The B800-840p LH2 complex (red) from 
~786 followed by a minimum at
minimum at ~ 855 nm. The B800
~786 followed by a minimum at
830 nm. Data were published in Carey, et al 2014.

These differences observed in the CD spectra

BChl in all the LH2 complex types of 

B800-850 LH2 complex from 

for the B800 BChl is indicative of excitonic coupling and may 

split peak is produced from a population of excitonically coupled BChl. 

4.6 Resonance Raman spectroscopy

Resonance Raman spectroscopy has been used previously to 

information on the 

groups within the light

(87, 89, 172-174).  

room temperature circular dichroism spectra of the LH2 complex types 
Alc. vinosum compared to the B800-850 LH2 from Rps. acidophila

850 LH2 complex from Rps. acidophila (black) produces a singlet 
h a maximum at 850 nm followed by a minimum at 872 nm.

produces two doublets in the spectrum with a maximum at ~786 followed by a 
minimum at ~807 nm, and the second doublet with a maximum at 838 nm and minimum at 864 nm

840p LH2 complex (red) from produces two doublets in the spectrum with a maximum at 
followed by a minimum at ~807 nm, and the second doublet with a maximum at 

. The B800-820 LH2 complex produces a one doublet w
followed by a minimum at ~810 nm. The minimum produces a plateau between 807 nm and 

published in Carey, et al 2014.  

observed in the CD spectra imply that the organisation of the 

BChl in all the LH2 complex types of Alc. vinosum is different from those in the 

850 LH2 complex from Rps. acidophila. The presence of the doublet peak

for the B800 BChl is indicative of excitonic coupling and may 

split peak is produced from a population of excitonically coupled BChl. 

Resonance Raman spectroscopy  

Resonance Raman spectroscopy has been used previously to 

 structures of pigments and hydrogen bonding of ch

groups within the light-harvesting complexes of purple photosynthetic bacteria 
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room temperature circular dichroism spectra of the LH2 complex types 
Rps. acidophila.  

(black) produces a singlet at 795 nm, followed by 
h a maximum at 850 nm followed by a minimum at 872 nm. The B800-850c LH2 

produces two doublets in the spectrum with a maximum at ~786 followed by a 
minimum at ~807 nm, and the second doublet with a maximum at 838 nm and minimum at 864 nm. 

two doublets in the spectrum with a maximum at 
the second doublet with a maximum at 838 nm and 

820 LH2 complex produces a one doublet with a maximum at 
. The minimum produces a plateau between 807 nm and 

imply that the organisation of the 

is different from those in the 

. The presence of the doublet peaks 

for the B800 BChl is indicative of excitonic coupling and may mean that the B800 

split peak is produced from a population of excitonically coupled BChl.  

Resonance Raman spectroscopy has been used previously to determine 

hydrogen bonding of chemical 

harvesting complexes of purple photosynthetic bacteria 
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It was hoped that resonance Raman spectroscopy would illuminate the H bonding 

involved in the B800 BChl and “B850”-like binding sites to identify the changes 

that form the basis for the spectral changes. The peak frequencies of interest 

relate to the C3-acetyl and keto carbonyl groups of the BChl ring that are known 

to be hydrogen bonded in LH2 complex structures. The peaks relating to the 

keto carbonyl groups and unbound C3 acetyl groups are observed in the higher 

frequencies. The peaks that relate to unbound C3-acetyls and keto carbonyl 

groups shift to lower frequencies upon H-bonding; the amount of shift depends 

on the strength of the H bond formed. In the LH1 there are peaks at 1645 cm-1 

that have been assigned to the bound C3 acetyl, and at 1667 and 1676 cm-1 that 

relate either to a H bound 131 keto carbonyl or unbound C3. Unbound 131 keto 

carbonyls centre at about 1700 cm-1. 

The B800-850 and B800-820 LH2 complex types were purified (as described in 

Materials and Methods section 2.5.1) and sent to collaborators Prof. David Bocian 

and Qun Tang. Samples were excited in the soret peak of the BChl at 371 nm and 

the Raman spectra recorded. The peak relating to the carbon-carbon double 

bond of the carotenoids was observed at 1520 cm-1 and 1526 cm-1 in the B800-

850c LH2 complex (Figure 4.26 bottom spectrum) and B800-820 LH2 complex 

(Figure 4.26 top spectrum), respectively. The methine bridge of BChl a (172) was 

observed at 1608/1609 cm-1 in both the B800-850 and B800-820 LH2 complex. In 

the higher frequencies, there is too much background noise to be able to 

distinguish individual peaks. In the B800-820 LH2 Raman spectrum small peaks 

were observed at 1691 cm-1 and 1817 cm-1. In the B800-850c LH2 Raman 

spectrum a small peak at 1674 cm-1 was observed. This could potentially relate 

to a H bound 131 keto carbonyl or unbound C3 acetyl group although there is 

very poor resolution in this area of the spectra due to fluorescence. 



 

 

Figure 4.26 Resonance Raman spectra of the B800
from Alc. vinosum excited at 371 nm. 
The B800-820 LH2 complex (top spectrum) produced peaks 
1158 cm-1, 1211 cm-1, 1285
1, and 1817 cm-1. The B800
spectrum at 1065 cm-1, 1156
cm-1, 1609 cm-1, and 1674
carbon carbon double bond within the carotenoids, while the peak at 1608 
methine bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 

Resonance Raman spectra were repeated in the presence of 70 % glycerol (v/

in preparation for low temperature Raman studies to confirm there were no 

changes in the spectra due to the addition of glycerol. 

glycerol caused shifts 

spectrum) and B800

shifts observed of the high frequency peaks of the B800

1691 cm-1 without glycerol 

peak in the presence of glycerol. 

shifts to 1659 cm-1 

frequencies suggest that

 

Resonance Raman spectra of the B800 -820 and B800- 850c LH2 complex types 
excited at 371 nm.  

820 LH2 complex (top spectrum) produced peaks in the Raman spectrum at 1064
, 1285 cm-1, 1343 cm-1, 1436 cm-1, 1526 cm-1, 1584
B800-850c LH2 complex (middle spectrum) produced peaks in the Raman 
, 1156 cm-1, 1211 cm-1, 1285 cm-1, 1347 cm-1, 1435

, and 1674 cm-1. The peaks at ~ 1520 cm-1 is known to be associated with the 
carbon carbon double bond within the carotenoids, while the peak at 1608 

bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 

Resonance Raman spectra were repeated in the presence of 70 % glycerol (v/

in preparation for low temperature Raman studies to confirm there were no 

changes in the spectra due to the addition of glycerol. The presence of 70 % 

glycerol caused shifts in some of the peaks of both the B800

and B800-850 (Figure 4.27 bottom spectrum) LH2 complex types

shifts observed of the high frequency peaks of the B800-820 LH2 complex is from 

without glycerol to 1665 cm-1 and a loss of the potential 1817 

peak in the presence of glycerol.  In the B800-850 LH2 complex the 

 when in the presence of glycerol. These shifts to lower 

suggest that the presence glycerol induces H bonding in the B800
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850c LH2 complex types 

in the Raman spectrum at 1064 cm-1, 
, 1584 cm-1, 1608 cm-1, 1691 cm-

850c LH2 complex (middle spectrum) produced peaks in the Raman 
, 1435 cm-1, 1520 cm-1, 1583 

is known to be associated with the 
carbon carbon double bond within the carotenoids, while the peak at 1608 cm-1 relates to the 

bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3-acetyl and 
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 cm-1. 

Resonance Raman spectra were repeated in the presence of 70 % glycerol (v/v) 

in preparation for low temperature Raman studies to confirm there were no 

The presence of 70 % 

both the B800-820 (Figure 4.27 top 

bottom spectrum) LH2 complex types. The 

820 LH2 complex is from 

and a loss of the potential 1817 cm-1 

LH2 complex the 1674 cm-1 

when in the presence of glycerol. These shifts to lower 

glycerol induces H bonding in the B800-



 

 

820 and may enhance the H bonding in the B800

repeated with fresh samples in 70 % sucrose and the same result was observed. 

This suggests that both glycerol and sucrose interact with the complexes and 

alter H bonding meaning that low temperature Resonance Raman cannot be 

conducted with either of these

Figure 4.27 Resonance Raman spectra of the B800
from Alc. vinosum excited at 371 nm in 70 % glycerol (v/v). 
The B800-820 LH2 complex (top 
1158 cm-1, 1211 cm-1, 1285
1, and 1817 cm-1. The B800
spectrum at 1065 cm-1, 1156
cm-1, 1609 cm-1, and 1674
carbon carbon double bond within the carotenoids, while the peak at 1608 
methine bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 

Additional experiments were conducted using other ex

try and explore the BChl binding further. These experiments were hampered by 

the intense fluorescence signals in the 

due to the BChl soret peak

Ultimately, the issues with high fluorescence

remedied and the resolution of the red region of spectrum was not forthcoming. 

820 and may enhance the H bonding in the B800-850. Experiments were 

repeated with fresh samples in 70 % sucrose and the same result was observed. 

This suggests that both glycerol and sucrose interact with the complexes and 

meaning that low temperature Resonance Raman cannot be 

conducted with either of these standard cryoprotectants. 

 

Resonance Raman spectra of the B800 -820 and B800- 850c LH2 complex types 
excited at 371 nm in 70 % glycerol (v/v).  

820 LH2 complex (top spectrum) produced peaks in the Raman spectrum at 1064
, 1285 cm-1, 1343 cm-1, 1436 cm-1, 1526 cm-1, 1584
B800-850c LH2 complex (middle spectrum) produced peaks in the Raman 
, 1156 cm-1, 1211 cm-1, 1285 cm-1, 1347 cm-1, 1435

, and 1674 cm-1. The peaks at ~ 1520 cm-1 is known to be associated with the 
carbon carbon double bond within the carotenoids, while the peak at 1608 
methine bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 

Additional experiments were conducted using other excitation wavelengths to 

try and explore the BChl binding further. These experiments were hampered by 

the intense fluorescence signals in the high frequency region

soret peak, which prevented the measurement of Raman signals.

Ultimately, the issues with high fluorescence from the BChl

remedied and the resolution of the red region of spectrum was not forthcoming. 
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850. Experiments were 

repeated with fresh samples in 70 % sucrose and the same result was observed. 

This suggests that both glycerol and sucrose interact with the complexes and 

meaning that low temperature Resonance Raman cannot be 

850c LH2 complex types 

spectrum) produced peaks in the Raman spectrum at 1064 cm-1, 
, 1584 cm-1, 1608 cm-1, 1691 cm-

850c LH2 complex (middle spectrum) produced peaks in the Raman 
, 1435 cm-1, 1520 cm-1, 1583 

is known to be associated with the 
carbon carbon double bond within the carotenoids, while the peak at 1608 cm-1 relates to the 
methine bridge of the BChl. The higher frequency peaks in the spectrum relate to the C3-acetyl and 
keto carbonyl chemical groups. There is very poor resolution of the peaks above 1609 cm-1. 

citation wavelengths to 

try and explore the BChl binding further. These experiments were hampered by 

high frequency region of the spectrum 

, which prevented the measurement of Raman signals. 

from the BChl could not be 

remedied and the resolution of the red region of spectrum was not forthcoming. 
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The poor resolution of the high frequency peaks could very well be due to 

heterogeneous complexes producing multiple site energies within a single 

complex.  

4.7 Summary 

The peptides incorporated into the B800-820, B800-840p, B800-850a, and B800-

850c LH2 complex types of Alc. vinosum were identified using a mix of reverse 

phase HPLC, MALDI-TOF and tandem MS-MS. This confirmed the heterogeneity of 

these LH2 complex types and explains some of the trends in data observed using 

other techniques. The peptides from the puc B4/A4 operon were not identified 

in any of the LH2 complexes analysed. Of the LH2 complex types, the B800-820 

has the most heterogeneity, consisting of four alphas and five betas, while the 

B800-850c has the least heterogeneity consisting only three alphas and betas. 

The B800-850a LH2 complex appears to have a similar peptide content to the 

B800-850c LH2 complex with the exception that the A3 and B2 peptides were not 

observed. Additionally, the B6 peptide, exclusively found in the B800-820 LH2 

complex, and the B5 peptide were observed in the B800-850a LH2 complex.  

The modifications of the alpha peptides included the removal of the N terminal 

methionine. The presence of either an Asp-Asp or Asn-Asp motif indicate the 

B800 BChl binding site is most probably akin to the Phs. molischianum as 

opposed to that of Rps. acidophila. The conservation throughout the beta 

peptides of Alc. vinosum of the βTrp at position + 26, indicate the beta peptides 

are probably involved in H bonding the BChl as observed in the LH2 complexes of 

Phs. molischianum.  

The ‘tuning’ of the Qy absorption band of the dimeric BChl by the alpha peptides 

in the case of the A5 peptide appears to be the same as that observed in the 

B800-820 LH2 complexes of both Phs. molischianum and Rps. acidophila. For all 

other peptides identified within the LH2 complexes of Alc. vinosum, the basis of 

the variation in the Qy absorption is more convoluted. Amino acids in positions 

+10 and +11 are potentially able to form H bonds with the BChl C3-acetyl groups 

however in the cases of peptides A2, A3, and A6 there are H bond donors in both  

of these positions. This indicates there may be competition for H bonding and 
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this will affect the angle of the C3-acetyl group and ultimately the wavelength 

shift.  

The B800-840 LH2 complex type shares peptide in common with both the B800-

820 and the B800-850 LH2 complex types, however it lacks the A5 peptide and 

has a high abundance of B5. This indicates that the LH2 complexes of Alc. 

vinosum are not necessarily descrete complexes but that there may be a range 

of peptide compositions. 

The range of carotenoids observed in the different LH2 complex types didn’t 

change. It was found that the amount of spirilloxanthin was higher in the B800-

820 than the B800-850 LH2 complex type and that the level observed in the 

B800-840p was intermediate between the two LH2 complex types. The EET 

identified from the different complex types showed little variation in overall 

efficiency regardless of the LH2 complex type or the variations in carotenoid 

content. This suggests that the change in carotenoid content is not in order to 

increase the efficiency of energy transfer between the carotenoid and BChl 

under different growth conditions. It also suggests that the primary role of the 

carotenoid in the LH2 complex types from Alc. vinosum may not be light-

harvesting due to the low efficiency of energy transfer.  

Single molecule data and Monte Carlo simulations published in conjuction with 

this work (113) supported previous findings that both B800 absorption peaks in 

the LH2 complexes from Alc. vinosum are produced from within the same 

complex. The range of the B800 absorption bands observed confirmed the 

heterogeneity of the LH2 complexes observed from the peptide analysis. 

Examination of the potential B800 BChl binding region of the different peptides 

identified by MALDI-TOF implied there are two different B800 BChl binding sites 

within the different LH2 complex types, either a double aspartic acid or an 

asparagine followed by an aspartic acid. This suggested the basis for the 

difference between the two B800 peaks may lie partially in the binding of the 

B800 BChl. CD spectra supported the hypothesis from the Monte Carlo 

simulations that the B800 are excitonically coupled.   

Resonance Raman spectroscopy was unsuccessful at illuminating the H bonding 

on the BChl due to high fluorescence and the inability to perform data 
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acquisition at low temperatures as both cryo-protectants used, sucrose and 

glycerol, appeared to cause changes in the hydrogen bonding of the BChl. 

Data from this chapter was published in 

Carey, A. Hacking, K. Picken, N. Honkanen, S. Kelly, S. Niedzwiedski, D.M. 

Blankenship, R.E. Shimizu, Y. Wang-Otomo, Z. Cogdell, R.J. “Characterisation of 

the LH2 spectral variants produced by the photosynthetic purple sulphur 

bacterium Allochromatium vinosum”. 2014. Biochimica et Biophysica Akta. 

(1837). 1849-1860. 

Löhner, A. Carey, A. Hacking, K. Picken, N. Kelly, S. Cogdell, R. Köhler, J. “The 

origin of the split B800 absorption peak in the LH2 complexes from 

Allochromatium vinosum”. 2015. Photosyn. Res. (123) 23-31 

And the accepted manuscript  

Magdaong, N.M. LaFountain, A.M. Hacking, K. Niedzwiedzki, D.M., Gibson, G.N., 

Cogdell, R.J. Frank, H.A. “Spectral heterogeneity and carotenoid-to-

bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from 

Allochromatium vinosum”. 2016. Photosyn. Res. (127). 171-187 
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 Chapter 5 - Creation of a carotenoidless LH2 from 

Alc. vinosum  

5.1 Introduction 

The aims of this chapter were to create a carotenoidless LH2 complex from Alc. 

vinosum for reversible dissociation trails. This will take a multi-pronged 

approach to create carotenoid-depleted LH2 complexes either through 

inhibition, genetic ‘knock-out’, or extraction of the carotenoid after the 

complex has formed.  

Reconstitution has been used effectively in past research to examine the 

relationships between different structural elements within the LH1 (121-123, 

127, 175). The process of reconstitution involves taking the complex apart and 

putting it back together (reversible dissociation) or creating a complex from 

component parts. Dissociation of LH1 is best achieved in the absence of 

carotenoids, as this increases the yield of reconstituted complex (122). 

Carotenoidless mutants are therefore useful for reconstitution studies. A 

carotenoidless LH2 complex from Alc. vinosum must be developed as a 

reconstitution candidate to prepare for reversible dissociation studies.  

Previous work has used carotenoidless mutants (121), light-harvesting complexes 

produced under carotenoid biosynthesis inhibition conditions (128), or 

alternatively the carotenoids were from the light-harvesting complexes using a 

benzene wash (68).  

5.2 Inhibition studies 

One method of creating carotenoid depleted light-harvesting complexes has 

been to use carotenoid biosynthesis inhibitors. Diphenylamine (DPA) inhibits the 

carotenoid biosynthesis pathway (as outlined in Introduction section 1.4) through 

the inhibition of the phytoene desaturase enzyme (CrtI) (83, 133, 135, 137, 176-

178). DPA has been found to be effective at inhibiting the carotenoid 

biosynthesis in Alc. vinosum previously (134) but the correct concentration range 

of DPA to create carotenoidless LH2 complexes needs to be established. 
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5.2.1 Confirming effective DPA concentration range 

Previous studies identified concentrations above ~ 70 µM DPA to be effective in 

inhibiting the carotenoid biosynthesis pathway without preventing cell growth in 

Alc. vinosum (134), Rps. palustris (83), and Alc. minuitissimum (135).  

Alc. vinosum was grown under a range of DPA concentrations from 0 µM to 100 

µM DPA (as described in Materials and Methods section 2.11.1). There was no 

observable change in colour of the cells in concentrations of DPA beneath 40 µM 

(Figure 5.1 control, 10 µM, 20 µM, and 30 µM bottles), after which there is a shift 

from red/orange to yellow/green (Figure 5.1 40 µM). At 50 µM the colour is 

pronouncedly more green (Figure 5.1), but there are still carotenoids produced 

under these conditions. 

 

Figure 5.1 Alc. vinosum cultured in the presence of DPA between 0 µM and 50 µM under 
sulphide, high light, 40 ºC growth conditions.   
The control culture grew and produced pigmented cells that were red/pink in colour. In the 
presence of 10 µM, 20 µM, and 30 µM DPA there are no visible changes in growth or carotenoid 
content. In the presence of 40 µM DPA the culture produced is yellow in colour indicating an 
abundance of carotenoids with shorter chromophores, a by-product of the inhibition of phytoene 
desaturase. At 50 µM DPA the culture appears green, indicating that there may be some 
carotenoids still present but they have much shorter chromophores and so their absorbance is 
further towards the blue part of the absorption spectrum. 

Alc. vinosum cultures grown at 65 µM DPA were a grey-green colour, while 

cultures grown at 70 µM DPA were a grey-blue colour (Figure 5.2). At 100 µM 

DPA, growth of Alc. vinosum cells was completely inhibited due to the toxic 

effects of DPA. 



 

 

Figure 5.2 Alc. vinosum
sulphide, high light, 40 
The control culture grew and produced pigmented cells that were red/pink
presence of 65 µM DPA the colour of the culture appears to be somewhat green
indicating a reduction in the carotenoid content and that the carotenoids present have shorter 
chromophores. At 70 µM DPA the culture appears blue
level of carotenoids. In the presence of 100 
suggesting this is a toxic concentration for the 

Production of the carotenoidless LH2 complex was up

volumes for DPA concentrations between 65 µM and 80 µM (as described in 

Methods and Materials section 

between 65 µM to 75 µM grew well and were blue in colour (Figure 5.3). The 

blue colour is due the fact that level of carotenoid is too low to absorb any of 

the blue-green light indicating that there is little to no carotenoid present in the 

cultures. 

 

Alc. vinosum cultured in the presence of DPA between 65 
sulphide, high light, 40 ºC growth conditions.   
The control culture grew and produced pigmented cells that were red/pink

µM DPA the colour of the culture appears to be somewhat green
indicating a reduction in the carotenoid content and that the carotenoids present have shorter 
chromophores. At 70 µM DPA the culture appears blue-grey, indicating that there is a negligible 
level of carotenoids. In the presence of 100 µM DPA no growth of the cultures was observed, 
suggesting this is a toxic concentration for the Alc. vinosum cells. 

Production of the carotenoidless LH2 complex was up-scaled to larger culture 

volumes for DPA concentrations between 65 µM and 80 µM (as described in 

Methods and Materials section 2.11.2). Cultures grown in the presence of DPA 

µM to 75 µM grew well and were blue in colour (Figure 5.3). The 

is due the fact that level of carotenoid is too low to absorb any of 

green light indicating that there is little to no carotenoid present in the 
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indicating a reduction in the carotenoid content and that the carotenoids present have shorter 
indicating that there is a negligible 

M DPA no growth of the cultures was observed, 

ed to larger culture 

volumes for DPA concentrations between 65 µM and 80 µM (as described in 

.2). Cultures grown in the presence of DPA 

µM to 75 µM grew well and were blue in colour (Figure 5.3). The 

is due the fact that level of carotenoid is too low to absorb any of 

green light indicating that there is little to no carotenoid present in the 
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Figure 5.3 Alc. vinosum cultured in the presence of DPA at 65 µM, 70 µM and 75 µM under 
sulphide, high light, 30 ºC growth conditions.   
The control culture grew and produced pigmented cells that were red/pink in colour. In the 
presence of 65 µM DPA the colour of the culture appears to be somewhat blue-grey colour 
indicating a reduction in the carotenoid content and that the carotenoids present have shorter 
chromophores. At 70 µM and 75 µM DPA the culture appears blue, indicating that there is a 
negligible level of carotenoids. In the range of DPA concentrations between 65-75 µM the level of 
inhibition that could be assayed by eye was similar, suggesting this is definitely an effective 
concentration range to use to create carotenoid depleted light-harvesting complexes.  

5.2.2 Carotenoid biosynthesis inhibition under different growth 
conditions using DPA 

Having confirmed the effective concentration range of DPA for inhibiting 

carotenoid biosynthesis, further work required testing the effect of carotenoid 

depletion on the different LH2 complex types, by growth under different growth 

conditions. Alc. vinosum was grown in the presence of DPA under different 

growth conditions (as described in Methods and Materials section 2.11.2) as 

different LH2 complex types are produced depending on the growth and 

nutritional conditions as outlined in chapter 3. It was unknown whether all or 

only some of the LH2 complex types are able to be carotenoid depleted.  

Absorption spectra of DPA treated and untreated whole cells were recorded to 

preliminarily confirm the presence of the light-harvesting complexes and 

carotenoids. As ascertained in chapter 3 section 3.3 of this work, in whole cells 

and membranes the peak at ~ 890 nm is associated with the LH1/RC “core” 

complex while the other two peaks in the NIR, such as the broad peak at 807 nm 



 

 

and the variable second peak

complex types present.

Cells grown under thiosulphate, high light, 40 ºC growth conditions produce 

absorption peaks at 807 nm, 856 nm (LH2), and 890 nm (LH1) in the NIR (Fig

5.4 black). In cells grown under the same growth conditions but in the presence 

of DPA (Figure 5.4 red) produce the 807 nm and 856 nm peaks but the 890 nm 

absorption peak is reduced in intensity to a shoulder. The peaks associated with 

the carotenoids at ~460 nm, ~ 490 nm, ~ 525 nm, and ~ 550 nm are present in 

the cells treated with DPA but the level of light scattering is higher than that 

observed in untreated cells. 

Figure 5.4 Normalised absorption spectra of 
high light, 40 º C growth conditions in the presence of 75 µM DPA co ntrasted with untreated 
cells.  
Cells grown without DPA treatment 
890 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550nm produce humps at 
~460 nm, ~490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at the same positions in the NIR as untre
reduced to a shoulder. In the carotenoid region there is an increase in light scattering but the 
carotenoid peaks are still observed. 
to those from untreated cells.

and the variable second peak between 820 – 850 nm correspond to the LH2 

complex types present. 

Cells grown under thiosulphate, high light, 40 ºC growth conditions produce 

absorption peaks at 807 nm, 856 nm (LH2), and 890 nm (LH1) in the NIR (Fig

5.4 black). In cells grown under the same growth conditions but in the presence 

of DPA (Figure 5.4 red) produce the 807 nm and 856 nm peaks but the 890 nm 

absorption peak is reduced in intensity to a shoulder. The peaks associated with 

at ~460 nm, ~ 490 nm, ~ 525 nm, and ~ 550 nm are present in 

the cells treated with DPA but the level of light scattering is higher than that 

observed in untreated cells.  

Normalised absorption spectra of Alc. vinosum cells grown under thiosulphate, 
C growth conditions in the presence of 75 µM DPA co ntrasted with untreated 

DPA treatment (black) produce absorption peaks at 807 nm, 
(LH1).  The carotenoid peaks in the region between 450 nm and 550nm produce humps at 

~460 nm, ~490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at the same positions in the NIR as untreated cells although the 890 nm peak is

a shoulder. In the carotenoid region there is an increase in light scattering but the 
carotenoid peaks are still observed. The carotenoid peaks present appear to

ted cells. 
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Cells grown under thiosulphate, high light, 40 ºC growth conditions produce 

absorption peaks at 807 nm, 856 nm (LH2), and 890 nm (LH1) in the NIR (Figure 

5.4 black). In cells grown under the same growth conditions but in the presence 

of DPA (Figure 5.4 red) produce the 807 nm and 856 nm peaks but the 890 nm 

absorption peak is reduced in intensity to a shoulder. The peaks associated with 

at ~460 nm, ~ 490 nm, ~ 525 nm, and ~ 550 nm are present in 

the cells treated with DPA but the level of light scattering is higher than that 

 

cells grown under thiosulphate, 
C growth conditions in the presence of 75 µM DPA co ntrasted with untreated 

at 807 nm, 857 nm (LH2) and 
(LH1).  The carotenoid peaks in the region between 450 nm and 550nm produce humps at 

~460 nm, ~490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
ated cells although the 890 nm peak is 

a shoulder. In the carotenoid region there is an increase in light scattering but the 
The carotenoid peaks present appear to be in similar positions 



 

 

Alc. vinosum cells grown in the presence of sulphide under high light at 40 ºC 

growth conditions (Figure 5.5 black) produce absorption peaks at the same 

wavelengths as cells cultured under thiosulphate, high light,

conditions. When cells were grown in the presence of DPA (Figure 5.5 red), the 

856 nm peak red-shifted by 1

from their positions in the absorption spectrum of untreated cells. The 

absorption peaks observed in the carotenoid 

in cells grown in the presence of DPA. The increase in scattering observed under 

THL40 growth conditions was also observed under SHL40 growth conditions. 

There was change in intensity of the Qy peaks associated with the L

however the peak at ~ 890 nm associated with the LH1 complex shows a slight 

decrease in intensity relative to the 856 nm peak associated with the LH2.

 

Figure 5.5 Normalised absorption spectra of
light, 40 º C growth conditions in the presence of 75 µM DPA co ntrasted with untreated cells. 
Cells grown without DPA treatment 
890 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 
~460 nm, ~490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at 807 nm, 858 nm, and 887 nm. The carotenoid peaks are reduced
after DPA treatment and are not well resolved due to the light
carotenoid peaks present appear to be in similar positions to those from untreated cells.

cells grown in the presence of sulphide under high light at 40 ºC 

growth conditions (Figure 5.5 black) produce absorption peaks at the same 

wavelengths as cells cultured under thiosulphate, high light,

cells were grown in the presence of DPA (Figure 5.5 red), the 

shifted by 1-2 nm and the 890 nm peak blue

from their positions in the absorption spectrum of untreated cells. The 

absorption peaks observed in the carotenoid region are completely levelled out 

in cells grown in the presence of DPA. The increase in scattering observed under 

THL40 growth conditions was also observed under SHL40 growth conditions. 

There was change in intensity of the Qy peaks associated with the L

however the peak at ~ 890 nm associated with the LH1 complex shows a slight 

decrease in intensity relative to the 856 nm peak associated with the LH2.

Normalised absorption spectra of  Alc. vinosum cells grown under sulphide, high 
C growth conditions in the presence of 75 µM DPA co ntrasted with untreated cells. 

DPA treatment (black) produce absorption peaks at 807 nm, 85
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at 807 nm, 858 nm, and 887 nm. The carotenoid peaks are reduced
after DPA treatment and are not well resolved due to the light-scattering from the membranes.  The 
carotenoid peaks present appear to be in similar positions to those from untreated cells.
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cells grown in the presence of sulphide under high light at 40 ºC 

growth conditions (Figure 5.5 black) produce absorption peaks at the same 

wavelengths as cells cultured under thiosulphate, high light, 40 ºC growth 

cells were grown in the presence of DPA (Figure 5.5 red), the 

2 nm and the 890 nm peak blue-shifted by 4-5 nm, 

from their positions in the absorption spectrum of untreated cells. The 

region are completely levelled out 

in cells grown in the presence of DPA. The increase in scattering observed under 

THL40 growth conditions was also observed under SHL40 growth conditions. 

There was change in intensity of the Qy peaks associated with the LH2 complex 

however the peak at ~ 890 nm associated with the LH1 complex shows a slight 

decrease in intensity relative to the 856 nm peak associated with the LH2. 

 

cells grown under sulphide, high 
C growth conditions in the presence of 75 µM DPA co ntrasted with untreated cells.  

at 807 nm, 856 nm (LH2) and 
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

490 nm, 525 nm, and 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at 807 nm, 858 nm, and 887 nm. The carotenoid peaks are reduced in intensity 

scattering from the membranes.  The 
carotenoid peaks present appear to be in similar positions to those from untreated cells. 



 

 

When cells were grown under sulphide in high light at

(Figure 5.6 black) the absorption peaks centred at 807 nm, 853 nm, with a 

shoulder at ~ 890 nm. The carotenoid peaks observed centred at ~ 460 nm, 486 

nm, and 525 nm. Cells grown under the same growth conditions but in the 

presence of DPA produced a red shift of the peak at 853 nm to 856 nm and the 

shoulder at ~890 nm blue shifted to ~ 885 nm. There was no increase in light 

scattering in the carotenoid region of the spectra. There were little to no 

carotenoid peaks observed between 

Figure 5.6 Normalised absorption spectra of 
light, 30 º C growth conditions in the presence of 75 µM DPA co ntrasted with 
Cells grown without DPA treatment 
890 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 
~460 nm, 485 nm, and 525 nm.
maxima at 807 nm, 856
intensity after DPA treatment and are not well resolved due to the light
membranes.  The overall level of 
is grown under other growth conditions.

The peaks observed in the absorption spectrum of cells grown under high light at 

30 ºC in the presence of thiosulphate centre at ~ 460 nm, 490 nm, ~ 

When cells were grown under sulphide in high light at 30 ºC growth conditions 

(Figure 5.6 black) the absorption peaks centred at 807 nm, 853 nm, with a 

shoulder at ~ 890 nm. The carotenoid peaks observed centred at ~ 460 nm, 486 

nm, and 525 nm. Cells grown under the same growth conditions but in the 

of DPA produced a red shift of the peak at 853 nm to 856 nm and the 

shoulder at ~890 nm blue shifted to ~ 885 nm. There was no increase in light 

scattering in the carotenoid region of the spectra. There were little to no 

carotenoid peaks observed between 450 – 550 nm over the light

Normalised absorption spectra of Alc. vinosum cells grown under sulphide, high 
C growth conditions in the presence of 75 µM DPA co ntrasted with 

DPA treatment (black) produce absorption peaks at 807 nm, 85
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

~460 nm, 485 nm, and 525 nm.  Cells grown in the presence of DPA (red) produce absorption 
6 nm, and a shoulder at ~ 880 nm. The carotenoid peaks are reduced in 

intensity after DPA treatment and are not well resolved due to the light-scattering from the 
The overall level of light-scattering is far lower than that observed when 

is grown under other growth conditions. 

The peaks observed in the absorption spectrum of cells grown under high light at 

30 ºC in the presence of thiosulphate centre at ~ 460 nm, 490 nm, ~ 
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30 ºC growth conditions 

(Figure 5.6 black) the absorption peaks centred at 807 nm, 853 nm, with a 

shoulder at ~ 890 nm. The carotenoid peaks observed centred at ~ 460 nm, 486 

nm, and 525 nm. Cells grown under the same growth conditions but in the 

of DPA produced a red shift of the peak at 853 nm to 856 nm and the 

shoulder at ~890 nm blue shifted to ~ 885 nm. There was no increase in light 

scattering in the carotenoid region of the spectra. There were little to no 

550 nm over the light-scattering. 

 

cells grown under sulphide, high 
C growth conditions in the presence of 75 µM DPA co ntrasted with untreated cells.  

at 807 nm, 853 nm (LH2) and 
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

resence of DPA (red) produce absorption 
nm. The carotenoid peaks are reduced in 

scattering from the 
scattering is far lower than that observed when Alc. vinosum 

The peaks observed in the absorption spectrum of cells grown under high light at 

30 ºC in the presence of thiosulphate centre at ~ 460 nm, 490 nm, ~ 525 nm, ~ 



 

 

550 nm, 807 nm, 849 nm, and 889 nm (Figure 5.7 black). The absorption 

spectrum of cells grown in the presence of DPA (Figure 5.7 red) shows a red

of the 849 nm peak to 856 nm. In addition to this, the 807 nm peak is reduced in 

intensity in whole treated whole cells relative to the untreated cells. 

Figure 5.7 Normalised absorption spectra of 
high light, 30 º C growth conditions in the presence of 75 
cells.  
Cells grown without DPA treatment 
889 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 
~460 nm, 485 nm, ~ 525 nm, 
absorption maxima at 807 nm, 85
reduced in intensity after DPA treatment and are not well resolved due to the light
the membranes.  The overal
is grown under other growth conditions.

As an adaption to low light conditions, 

membranes it produces (as outlined in Introduction section 1.2.3). This results in 

higher light scattering in the absorption spectra of cells cultured under low light 

conditions. To be able to visualise the carotenoid region, low l

lysed and the membranes analysed (as outlined in Methods and Materials section 

550 nm, 807 nm, 849 nm, and 889 nm (Figure 5.7 black). The absorption 

spectrum of cells grown in the presence of DPA (Figure 5.7 red) shows a red

of the 849 nm peak to 856 nm. In addition to this, the 807 nm peak is reduced in 

whole treated whole cells relative to the untreated cells. 

Normalised absorption spectra of Alc. vinosum cells grown under thiosulphate, 
C growth conditions in the presence of 75 µM DPA contrasted with untreated 

DPA treatment (black) produce absorption peaks at 807 nm, 8
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

~460 nm, 485 nm, ~ 525 nm, and ~ 550 nm.  Cells grown in the presence of DPA (red) produce 
absorption maxima at 807 nm, 856 nm, and a shoulder at ~ 880 nm. The carotenoid peaks are 
reduced in intensity after DPA treatment and are not well resolved due to the light

The overall level of light-scattering is lower than that observed when 
is grown under other growth conditions. 

As an adaption to low light conditions, Alc. vinosum increases the amount of 

membranes it produces (as outlined in Introduction section 1.2.3). This results in 

higher light scattering in the absorption spectra of cells cultured under low light 

conditions. To be able to visualise the carotenoid region, low l

lysed and the membranes analysed (as outlined in Methods and Materials section 
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550 nm, 807 nm, 849 nm, and 889 nm (Figure 5.7 black). The absorption 

spectrum of cells grown in the presence of DPA (Figure 5.7 red) shows a red-shift 

of the 849 nm peak to 856 nm. In addition to this, the 807 nm peak is reduced in 

whole treated whole cells relative to the untreated cells.  

 

cells grown under thiosulphate, 
µM DPA contrasted with untreated 

at 807 nm, 849 nm (LH2) and 
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm produce humps at 

Cells grown in the presence of DPA (red) produce 
nm. The carotenoid peaks are 

reduced in intensity after DPA treatment and are not well resolved due to the light-scattering from 
lower than that observed when Alc. vinosum 

increases the amount of 

membranes it produces (as outlined in Introduction section 1.2.3). This results in 

higher light scattering in the absorption spectra of cells cultured under low light 

conditions. To be able to visualise the carotenoid region, low light cells were 

lysed and the membranes analysed (as outlined in Methods and Materials section 



 

 

2.11.2). Membranes from 

under low light at 30 

822 nm, 890 nm, with the main carotenoid peak at 485 nm with two shoulders at 

~ 460nm and ~ 525 nm. Membranes produced by cells grown in the presence of 

DPA (Figure 5.8 red) produced NIR absorption peaks at 807 with a shoulder at ~ 

818 nm. The 890 nm peak is 

treated cells. The carotenoid peaks are still present but are blue

larger shoulder at ~ 460 nm than that observed in membranes from untreated 

cells. 

Figure 5.8 Normalised absorption spectra of membranes from 
under sulphide, low light, 30 
with untreated cells.  
Membranes from cells grown without
822 nm (LH2) and 890 
produce humps at ~460 nm, 485 nm, ~ 525 nm, and ~ 550 nm.
the presence of DPA (red) produce ab
818 nm. The main carotenoid peak still centres at 485 but the shoulder at 525 nm is
and reduced in intensity
increase in the number of shorter chromophore length carotenoids.

.2). Membranes from Alc. vinosum cells grown in the presence of sulphide, 

under low light at 30 ̊C (Figure 5.8 black) produce absorption peaks at 807 nm, 

nm, 890 nm, with the main carotenoid peak at 485 nm with two shoulders at 

~ 460nm and ~ 525 nm. Membranes produced by cells grown in the presence of 

DPA (Figure 5.8 red) produced NIR absorption peaks at 807 with a shoulder at ~ 

818 nm. The 890 nm peak is blue shifted to 885 nm in membranes from DPA 

treated cells. The carotenoid peaks are still present but are blue

larger shoulder at ~ 460 nm than that observed in membranes from untreated 

Normalised absorption spectra of membranes from Alc. vinosum
under sulphide, low light, 30 ºC growth conditions in the presence of 70 µM DPA co ntrasted 

 
Membranes from cells grown without DPA treatment (black) produce absorption peaks 

 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550 nm 
produce humps at ~460 nm, 485 nm, ~ 525 nm, and ~ 550 nm.  Membranes from c
the presence of DPA (red) produce absorption maxima at 807 nm, 887 nm, and 

main carotenoid peak still centres at 485 but the shoulder at 525 nm is
reduced in intensity. The shoulder at ~ 460 nm is increased in intensity this 

in the number of shorter chromophore length carotenoids.  
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cells grown in the presence of sulphide, 

C (Figure 5.8 black) produce absorption peaks at 807 nm, 

nm, 890 nm, with the main carotenoid peak at 485 nm with two shoulders at 

~ 460nm and ~ 525 nm. Membranes produced by cells grown in the presence of 

DPA (Figure 5.8 red) produced NIR absorption peaks at 807 with a shoulder at ~ 

blue shifted to 885 nm in membranes from DPA 

treated cells. The carotenoid peaks are still present but are blue-shifted with a 

larger shoulder at ~ 460 nm than that observed in membranes from untreated 

 

Alc. vinosum cells grown 
C growth conditions in the presence of 70 µM DPA co ntrasted 

) produce absorption peaks at 807 nm, 
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm 

Membranes from cells grown in 
nm, and a shoulder at ~ 

main carotenoid peak still centres at 485 but the shoulder at 525 nm is blue shifted 
. The shoulder at ~ 460 nm is increased in intensity this indicates an 
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Membranes produced by Alc. vinosum grown under low light at 30 ºC in the 

presence of thiosulphate (Figure 5.9 black) produce absorption peaks at 807 nm, 

822 nm, and 890 nm in the NIR and at 485 nm, 520 nm, with two absorption 

shoulders at ~ 460 nm and ~ 550 nm in the carotenoid region. The absorption 

spectrum of membranes from cells treated with DPA (Figure 5.9 red) shows 820 

nm peak is red-shifted to 853 nm and the 890 nm is reduced in intensity to a 

shoulder. The main absorption peak from the carotenoids is still at 485 nm but 

peak at 520 nm is reduced in intensity to a shoulder and the shoulder at ~ 460 

nm is increased in intensity. The Qx peak is also narrower in the membranes 

from DPA treated cells. 

 

 

 

 



 

 

Figure 5.9 Normalised absorption s
under thiosulphate, low light, 30 
contrasted with untreated cells. 
Membranes from cells grown without
820 nm (LH2) and 890 
produce humps at ~460 nm, 485 nm, 510 nm, and ~ 550 nm.
presence of DPA (red) prod
853 nm and the 890 peak obscured as a shoulder
but the absorption at 510 nm is
shoulder at ~ 460 nm is increased i
chromophore length carotenoids.

Of the carotenoid biosynthesis inhibition observed under all the growth 

conditions, SHL30 growth conditions showed the lowest levels of carotenoid with 

the least change to the NIR absorption spectra. This suggests SHL30 growth 

conditions are the optimum for DPA inhibition studies to create carotenoid 

depleted LH2 complexes. The absorbance spectra of whole cells from high light 

conditions and from membranes from 

of carotenoid biosynthesis inhibition is far higher under high light growth 

conditions. 

Normalised absorption s pectra of membranes from Alc. vinosum
under thiosulphate, low light, 30 ºC growth conditions in the presence of 75 µM DPA 
contrasted with untreated cells.  
Membranes from cells grown without DPA treatment (black) produce absorption peaks 

 nm (LH1).  The carotenoid peaks in the region between 450 nm and 550 nm 
produce humps at ~460 nm, 485 nm, 510 nm, and ~ 550 nm.  Membranes from c
presence of DPA (red) produce absorption maxima at 807 nm with the 820 nm peak red
853 nm and the 890 peak obscured as a shoulder. The main carotenoid peak still centres at 485 
but the absorption at 510 nm is red shifted to a shoulder at ~ 520 nm and 
shoulder at ~ 460 nm is increased in intensity this indicates an increase in the number of shorter 
chromophore length carotenoids.  

Of the carotenoid biosynthesis inhibition observed under all the growth 

conditions, SHL30 growth conditions showed the lowest levels of carotenoid with 

st change to the NIR absorption spectra. This suggests SHL30 growth 

conditions are the optimum for DPA inhibition studies to create carotenoid 

depleted LH2 complexes. The absorbance spectra of whole cells from high light 

conditions and from membranes from low light conditions suggest that the level 

of carotenoid biosynthesis inhibition is far higher under high light growth 
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Alc. vinosum cells grown 
C growth conditions in the presence of 75 µM DPA 

(black) produce absorption peaks at 807 nm, 
(LH1).  The carotenoid peaks in the region between 450 nm and 550 nm 

Membranes from cells grown in the 
820 nm peak red-shifted to 

main carotenoid peak still centres at 485 
red shifted to a shoulder at ~ 520 nm and reduced in intensity. The 

indicates an increase in the number of shorter 

Of the carotenoid biosynthesis inhibition observed under all the growth 

conditions, SHL30 growth conditions showed the lowest levels of carotenoid with 

st change to the NIR absorption spectra. This suggests SHL30 growth 

conditions are the optimum for DPA inhibition studies to create carotenoid 

depleted LH2 complexes. The absorbance spectra of whole cells from high light 

low light conditions suggest that the level 

of carotenoid biosynthesis inhibition is far higher under high light growth 
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The 30 ̊C thiosulphate growth conditions produce large shifts in the NIR 

absorption spectra after DPA treatment. The LH2 peak associated with the 

dimeric BChl red-shifts and the LH1 peak blue-shifts. The 807 nm peak 

associated with the monomeric BChl is of a lower intensity after cells were 

treated with DPA. The red-shift of the dimeric BChl and the reduction in the 807 

nm peak suggests that the carotenoid inhibition is affecting the LH2 complexes 

produced. This may be either directly through unknown effects on the 

polypeptide production or due to stability differences between the LH2 complex 

types meaning that certain LH2 complex types are not stable enough to exist 

without carotenoids present.  

5.2.3 Carotenoid incorporation into the different light-h arvesting 
complexes of Alc. vinosum under carotenoid inhibition by 
DPA. 

Spectra of whole cells and membranes cannot show whether the carotenoids 

present are equally distributed between the LH1/RC “core” and LH2 complexes 

or whether there is a preferential incorporation into one complex type over 

another. To determine how the limited carotenoid content is incorporated into 

the complex types present the light-harvesting complexes must be separated 

using sucrose density centrifugation. Membranes were prepared and solubilised 

(as per Methods and Materials sections 2.3 and 2.5.1) to determine the whether 

the level of carotenoid in the different light-harvesting complex types.  

Sucrose density centrifugation gradients (SDCG) separated the LH1/RC and LH2 

complex types (Figure 5.10). The top most band of observed in the SDCG are 

free pigments, followed by the LH2 complex band, and the bottom most band is 

the LH1/RC “core” complex band. The strong difference in carotenoid content 

between the light-harvesting complexes produced under low light and high light 

can be assayed by eye. Across all growth conditions the carotenoid content 

appears to be higher in the LH2 than the LH1/RC band. This concurs with 

previous work that found that the carotenoids that were present under 

carotenoid biosynthesis inhibition with DPA were preferentially incorporated into 

the LH2 complexes present (83). The LH2 and LH1/RC “core” complexes 

produced under HL 30 ºC growth conditions both show high levels of carotenoid 

depletion. There is very little free pigment observed in the SDCG produced from 



 

 

SHL30 growth conditions and only a small amount in the THL30

and LH1/RC complexes from low light conditions show a reduced amount of 

carotenoid present but are still red pigmented.  The LH1/RC and the LH2 bands 

from cells grown under TLL30 growth conditions show a higher level of 

carotenoid depletion 

conditions. The LH1/RC “core” band in the SDCG from TLL30 shows a large 

reduction in the level of carotenoid present.

Figure 5.10 LH2 and LH1/RC “core” 
70-75 µM DPA under different growth conditions separated b y sucrose density 
centrifugation.  
Growth conditions for Alc. vinosum 
or low light (LL) intensity
complex, while the band that equilibrates to ~ 1.0 M sucrose is the larger LH1/RC “core” complex. 
Unbound carotenoid pigments equilibrate in a band above the LH2 co
complexes produced under SHL30 growth conditions, the LH2 band is dark green and is larger 
than the LH1/RC “core” band, which is blue
yellow in colour in a band above th
produced under THL30 growth conditions, the LH2 band is dark green and is larger than the 
LH1/RC “core” band, which is blue
SDCG of light-harvesting complexes produced under SLL30 growth conditions, the LH2 band is 
dark red and is larger than the LH1/RC “core” band, which is red. The free pigment present above 
the LH2 complex band is orange in colour. In the SDCG of light
under TLL30 growth conditions, the LH2 band is dark red
“core” band, which is pale pink. The free pigment present is orange in colour.
content is higher in the LH2 complexes than the LH1/RC “cor
conditions.  

Absorption spectra of the crude LH1/RC “core” complex fraction from SDCG 

produced by Alc. vinosum

conditions show a high level of carotenoid inhibition (Figure 5

SHL30 growth conditions and only a small amount in the THL30

and LH1/RC complexes from low light conditions show a reduced amount of 

carotenoid present but are still red pigmented.  The LH1/RC and the LH2 bands 

from cells grown under TLL30 growth conditions show a higher level of 

carotenoid depletion than the bands from cultures grown under SLL30 growth 

conditions. The LH1/RC “core” band in the SDCG from TLL30 shows a large 

reduction in the level of carotenoid present. 

LH2 and LH1/RC “core” complexes from Alc. vinosum grown in the presence of 
M DPA under different growth conditions separated b y sucrose density 

Alc. vinosum cells were thiosulphate (T) or sulphide (S), under high light (HL) 
intensity, at 30 ̊C. The top band that equilibrates to ~ 0.8 M sucrose is the LH2 

complex, while the band that equilibrates to ~ 1.0 M sucrose is the larger LH1/RC “core” complex. 
Unbound carotenoid pigments equilibrate in a band above the LH2 complex. 
complexes produced under SHL30 growth conditions, the LH2 band is dark green and is larger 
than the LH1/RC “core” band, which is blue-purple. There is a small amount of free pigment that is 
yellow in colour in a band above the LH2 band. In the SDCG of light-harvesting complexes 
produced under THL30 growth conditions, the LH2 band is dark green and is larger than the 
LH1/RC “core” band, which is blue-purple. The free pigment band present is pink in colour. In the 

harvesting complexes produced under SLL30 growth conditions, the LH2 band is 
dark red and is larger than the LH1/RC “core” band, which is red. The free pigment present above 
the LH2 complex band is orange in colour. In the SDCG of light-harvesting complexe
under TLL30 growth conditions, the LH2 band is dark red-brown and is larger than the LH1/RC 
“core” band, which is pale pink. The free pigment present is orange in colour.
content is higher in the LH2 complexes than the LH1/RC “core” complex

Absorption spectra of the crude LH1/RC “core” complex fraction from SDCG 

Alc. vinosum grown under different nutritional and growth 

conditions show a high level of carotenoid inhibition (Figure 5
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SHL30 growth conditions and only a small amount in the THL30 SDCG. The LH2 

and LH1/RC complexes from low light conditions show a reduced amount of 

carotenoid present but are still red pigmented.  The LH1/RC and the LH2 bands 

from cells grown under TLL30 growth conditions show a higher level of 

than the bands from cultures grown under SLL30 growth 

conditions. The LH1/RC “core” band in the SDCG from TLL30 shows a large 

 

grown in the presence of 
M DPA under different growth conditions separated b y sucrose density 

cells were thiosulphate (T) or sulphide (S), under high light (HL) 
C. The top band that equilibrates to ~ 0.8 M sucrose is the LH2 

complex, while the band that equilibrates to ~ 1.0 M sucrose is the larger LH1/RC “core” complex. 
mplex. Of the light-harvesting 

complexes produced under SHL30 growth conditions, the LH2 band is dark green and is larger 
purple. There is a small amount of free pigment that is 

harvesting complexes 
produced under THL30 growth conditions, the LH2 band is dark green and is larger than the 

purple. The free pigment band present is pink in colour. In the 
harvesting complexes produced under SLL30 growth conditions, the LH2 band is 

dark red and is larger than the LH1/RC “core” band, which is red. The free pigment present above 
harvesting complexes produced 

brown and is larger than the LH1/RC 
“core” band, which is pale pink. The free pigment present is orange in colour. The carotenoid 

e” complex produced under all growth 

Absorption spectra of the crude LH1/RC “core” complex fraction from SDCG 

grown under different nutritional and growth 

conditions show a high level of carotenoid inhibition (Figure 5.11). The HL30 
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growth conditions have the least carotenoid present in the LH1/RC “core” 

complexes (Figure 5.11 green and red), while the LH1/RC “core” from SLL30 

growth conditions (Figure 5.11 cyan) has the highest amount of carotenoid. 

LH1/RC “core” produced under TLL30 growth conditions (Figure 5.11 purple) has 

a low level of carotenoid but still produces peaks at 485 nm, with shoulders at ~ 

460 nm, and ~ 525 nm. All the carotenoid peaks present are blue-shifted from 

those observed in the untreated LH1/RC “core” complex indicating an increase 

in shorter length chromophores in the carotenoids present. The Qy peaks show a 

small blue shift of 5 nm in LH1/RC complexes from all growth conditions except 

those produced under SLL30 growth conditions. This blue shift in the absence of 

carotenoids was observed in previous studies on the LH1/RC “core” (121). 

 

 



 

 

Figure 5.11 Normalised absorption spectra of the LH1/RC complex es from 
grown under different growth and nutritional condit i
DPA and separated by sucrose density centrifugation .
Growth conditions for Alc. vinosum 
or low light (LL) intensity
(black) produces a peak at 889 nm and 801 nm in the NIR
the carotenoid region. The LH1/RC “core” complex produced under SHL30 growth conditions 
(green) in the presence of DPA produces a peak at 885 nm and 802 nm. The LH1/RC “core” 
complex produced under THL30 growth conditions (red) in the presence of DPA pro
at 885 nm and 802 nm.  
conditions under SHL30 and THL30 growth conditions produce small to negligible peaks in the 
450-550 region of the spectrum. 
conditions (violet) in the presence of DPA produce
514 nm with a shoulder at ~460 nm in the carotenoid region
produced under SLL30 growth conditions (cyan) in the p
nm, 802 nm, 488 nm and 514 nm with a shoulder at ~ 460 nm. 
produced under SLL30 growth conditions in the presence of DPA has the largest amount of 
coloured carotenoids of all the LH1/RC “core”
inhibitive conditions.  

The absorption spectra of the crude LH2 complex fraction extracted from 

vinosum under carotenoid biosynthesis inhibiting conditions show different levels 

of carotenoid depletion

is a large depletion in the carotenoid content of the crude LH2 fraction from 

cells grown in the presence of DPA under SHL30 growth conditions (Figure 5.12 

Normalised absorption spectra of the LH1/RC complex es from 
grown under different growth and nutritional condit ions in the presence of 70 
DPA and separated by sucrose density centrifugation . 

Alc. vinosum cells were thiosulphate (T) or sulphide 
intensity, at 30 ̊C. The LH1/RC “core” complex produced by untreated 

(black) produces a peak at 889 nm and 801 nm in the NIR, and 488 nm, 515 nm, and 550 nm 
. The LH1/RC “core” complex produced under SHL30 growth conditions 

(green) in the presence of DPA produces a peak at 885 nm and 802 nm. The LH1/RC “core” 
complex produced under THL30 growth conditions (red) in the presence of DPA pro
at 885 nm and 802 nm.  The LH1/RC “core” complex produced under carotenoid biosynthesis 
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550 region of the spectrum. The LH1/RC “core” complex produced under TLL30 growth 
conditions (violet) in the presence of DPA produces peaks at 886 nm and 802 nm
514 nm with a shoulder at ~460 nm in the carotenoid region.  The LH1/RC “core” complex 
produced under SLL30 growth conditions (cyan) in the presence of DPA produces a peak at 889 

488 nm and 514 nm with a shoulder at ~ 460 nm. The LH1/RC “core” complex 
produced under SLL30 growth conditions in the presence of DPA has the largest amount of 
coloured carotenoids of all the LH1/RC “core” complexes produced under carotenoid biosynthesis 

The absorption spectra of the crude LH2 complex fraction extracted from 

under carotenoid biosynthesis inhibiting conditions show different levels 

of carotenoid depletion depending on the growth conditions (Figure 5.12). There 

is a large depletion in the carotenoid content of the crude LH2 fraction from 

cells grown in the presence of DPA under SHL30 growth conditions (Figure 5.12 
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. The LH1/RC “core” complex produced under SHL30 growth conditions 

(green) in the presence of DPA produces a peak at 885 nm and 802 nm. The LH1/RC “core” 
complex produced under THL30 growth conditions (red) in the presence of DPA produces a peak 
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conditions under SHL30 and THL30 growth conditions produce small to negligible peaks in the 
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The LH1/RC “core” complex 
resence of DPA produces a peak at 889 

The LH1/RC “core” complex 
produced under SLL30 growth conditions in the presence of DPA has the largest amount of 

complexes produced under carotenoid biosynthesis 

The absorption spectra of the crude LH2 complex fraction extracted from Alc. 

under carotenoid biosynthesis inhibiting conditions show different levels 

depending on the growth conditions (Figure 5.12). There 

is a large depletion in the carotenoid content of the crude LH2 fraction from 

cells grown in the presence of DPA under SHL30 growth conditions (Figure 5.12 
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green). In the NIR region, the maxima observed centre at 798 nm, and 845 nm. 

The red-most maximum of the “B850”-like BChl is blue-shifted relative to the 

crude LH2 fraction from untreated cells. 

Under THL30 growth conditions, a similar level of carotenoid inhibition is 

observed in the LH2 crude fraction (Figure 5.12 red). The level of carotenoid is 

negligible and far below the intensity of the Qx peak. The differences in the NIR 

region of the spectrum suggest that the LH2 is the basis of the differences 

observed in the whole cell spectrum. The “B850”-like peak is red-shifted to 844 

nm from 841 nm in the LH2 fraction from untreated cells. This confirms the 

observations from the whole cell spectra, that the LH2 complex type produced 

under these conditions is changed due to the presence of DPA. 

The crude fraction LH2 spectrum from cells cultured under TLL30 growth 

conditions (Figure 5.12 purple) have an observable but reduced level of 

carotenoid present. The largest difference in the crude LH2 spectrum is in the 

NIR region of the spectrum where the “B850”-like peak red shifts to 847 nm 

after DPA treatment while the “B850”-like peak from LH2 from untreated cells 

centres at ~ 821 nm. The level of carotenoid still present in the LH2 from SLL30 

growth conditions (Figure 5.12 cyan) is the highest observed from all the LH2 

complex types and is the only crude LH2 fraction that produces only one peak, 

at ~800 nm with a shoulder at ~818 nm, as observed in untreated cells.  
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Alc. vinosum cells were thiosulphate (T) or sulphide (S), under high
intensity, at 30 ̊C. The B800-850 LH2 complex produced by untreated 

(black) produces a split peak at ~ 800 nm between 796 nm and 802 nm,
In the carotenoid region, the LH2 complex produced by untreated cells produces peaks 

at 590 nm (Qx peak) and 488 nm with two shoulders at ~ 525 nm and ~ 460 nm (carotenoid 
. The LH2 complex produced under SHL30 growth conditions (green) in the presence of 

DPA produces a peak at 845 nm and 800 nm. The LH2 complex produced under THL30 growth 
conditions (red) in the presence of DPA produces a peak at 844 nm and 800 nm.  
complexes produced under carotenoid biosynthesis conditions under SHL30 and THL30 growth 
conditions produce small carotenoid peaks at the same wavelengths as the LH2 complex from 
untreated cultures. This suggests the LH2 complexes produced under these con
carotenoid depleted but the complement of carotenoids they do contain appears to be similar to 
that of the standard LH2 complex.The LH2 complex produced under TLL30 growth conditions 
(violet) in the presence of DPA produces a peak at 847 nm and 800 nm,

The LH2 complex produced under SLL30 growth conditions (cyan) in the pre
488 nm, with shoulders at ~ 460 nm, ~ 525 nm, ~434 nm

LH2 complex produced under SLL30 growth conditions in the presence of DPA has the largest 
amount of coloured carotenoids of all the LH2 complexes produced under carotenoid biosynthesis 

 

Previous work on other bacteria observed a blue shift of the “B850”

850 LH2 complexes in the absence of carotenoid (135)

observed in the crude LH2 fraction from the SHL30 growth conditions but not 
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complexes produced under carotenoid biosynthesis conditions under SHL30 and THL30 growth 

peaks at the same wavelengths as the LH2 complex from 
untreated cultures. This suggests the LH2 complexes produced under these conditions are 
carotenoid depleted but the complement of carotenoids they do contain appears to be similar to 

The LH2 complex produced under TLL30 growth conditions 
,464 nm, 488 nm, and 522 

The LH2 complex produced under SLL30 growth conditions (cyan) in the presence of DPA 
~434 nm and ~ 818 nm. The 

nditions in the presence of DPA has the largest 
amount of coloured carotenoids of all the LH2 complexes produced under carotenoid biosynthesis 

Previous work on other bacteria observed a blue shift of the “B850”-like peak in 

(135). This was 

observed in the crude LH2 fraction from the SHL30 growth conditions but not 
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under other conditions where a red-shift was observed. This may be due to other 

factors than the absence of carotenoid such as the change of which LH2 complex 

is being produced.  

5.2.4 Carotenoid incorporation into the different LH2 com plex 
types of Alc. vinosum under carotenoid inhibition by DPA. 

The crude LH2 extract from Alc. vinosum grown under SHL30 growth conditions 

was separated using anion exchange chromatography (as outline in Methods and 

Materials section 2.5.3.3). As was determined earlier in this work (Chapter 3 

section 3.4.3), SHL30 growth conditions produce both the B800-850 and B800-820 

LH2 complex types. Anion exchange chromatography can be used to determine 

whether the B800-820 LH2 complex type is still produced under carotenoid 

biosynthesis inhibitive conditions. If the B800-820 LH2 complex is still present, 

the level of carotenoid incorporation into the different LH2 complex types can 

be examined spectroscopically. This could indicate whether the change in LH2 

complex is due to unknown non-carotenoid inhibitive effects of the DPA on the 

polypeptides produced/incorporated into LH2 complexes or whether the B800-

820 requires the presence of carotenoid to form. 

When the crude LH2 extract from cells treated with DPA and grown under SHL30 

was separated on a Biocad anion exchange column both the B800-820 and B800-

850a LH2 complex types as well as the B800-850c were observed. The LH2 

complex types eluted at the same salt concentration as those in crude extracts 

from untreated cells. There was not a lot of B800-820 present but enough to 

record an absorption spectrum (Figure 5.13 red). There was a higher amount of 

carotenoid incorporated into the B800-820 than the B800-850 fractions, which 

was also visible to the human eye. The absorption spectra reflected this showing 

carotenoid peaks higher than the Qx peak of the BChl in the fractions of the 

B800-820 LH2 complex type. The level of carotenoid present in the B800-850a 

LH2 complex type (Figure 5.13 green) was greatly reduced from that in the 

B800-820 LH2 complex type showing peaks of half the intensity of the Qx. The 

fractions that B800-850c LH2 complex type (Figure 5.13 blue) showed the lowest 

level of carotenoid incorporation observed with negligible absorption peaks 

between 450-550 nm.  



 

 

Figure 5.13 Normalised absorbance spectra the
chromatography of the crude LH2 SDCG fraction from 
of sulphide, under high light, 30 
The B800-820 LH2 complex eluted at 240 mM NaCl, while the B800
followed by the B800-850c after several fractions. The B800
SHL30 growth conditions (red) in the presence of DPA produced the split B80
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~ 460 nm. The carotenoid peaks observed were higher than the Qx peak (590 nm). The B800
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the NIR and 487 nm, 461 nm, 430 nm, and a shoulder at ~ 525 nm. The level of the carotenoid 
peaks was far lower than the intensity of the Qx peak, indicating a reduction in the level of 
carotenoid as opposed to just a ch
type produced under SHL30 growth conditions (blue) in the presence of DPA produces peaks at 
845 nm and 800 nm in the NIR and had negligible peaks present in the region of the spectrum 
between 425-550 nm.  

The B800-850c from SHL30 growth conditions had the highest level of carotenoid 

depletion and so was pooled and then further purified using SEC (as outlined in 

Methods and Materials section 

any large changes to the ring size. The carotenoid depleted B800

complex type eluted at the same point at the LH2 from untreated cells, eluting 

at ~92 ± 0.5 ml suggesting that there was no change in ring size. 

Normalised absorbance spectra the  fractions eluted after anion exchange 
chromatography of the crude LH2 SDCG fraction from Alc. vinosum
of sulphide, under high light, 30 ̊C growth conditions in the presence of 75 

820 LH2 complex eluted at 240 mM NaCl, while the B800-850a eluted at 310 mM NaCl 
850c after several fractions. The B800-820 LH2 complex produced under 

SHL30 growth conditions (red) in the presence of DPA produced the split B80
shoulder at ~ 818 nm in the NIR, with carotenoid peaks at 488 and two shoulders at ~525 nm and 
~ 460 nm. The carotenoid peaks observed were higher than the Qx peak (590 nm). The B800
LH2 produced under SHL30 growth conditions (green) produced peaks at 845 nm and 800 nm in 
the NIR and 487 nm, 461 nm, 430 nm, and a shoulder at ~ 525 nm. The level of the carotenoid 
peaks was far lower than the intensity of the Qx peak, indicating a reduction in the level of 
carotenoid as opposed to just a change in the carotenoid content. The B800
type produced under SHL30 growth conditions (blue) in the presence of DPA produces peaks at 
845 nm and 800 nm in the NIR and had negligible peaks present in the region of the spectrum 

 

850c from SHL30 growth conditions had the highest level of carotenoid 

depletion and so was pooled and then further purified using SEC (as outlined in 

Methods and Materials section 2.5.4) to desalt and assess whether there were 

changes to the ring size. The carotenoid depleted B800

complex type eluted at the same point at the LH2 from untreated cells, eluting 

ml suggesting that there was no change in ring size. 
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.5.4) to desalt and assess whether there were 

changes to the ring size. The carotenoid depleted B800-850a LH2 

complex type eluted at the same point at the LH2 from untreated cells, eluting 

ml suggesting that there was no change in ring size.  
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When comparing the absorption spectra of the purified carotenoidless B800-850a 

(Figure 5.14 blue) LH2 complex and the standard B800-850a LH2 complex (Figure 

5.14 red) there was a blue-shift of the B850 peak by ~3 nm. This was observed in 

previous work on carotenoid depleted LH2 complexes from Alc. minutissimum 

(135). Additionally, the red-most Qy peak is no longer at a lower intensity 

relative to the B800 BChl peak, suggesting a more B800-850c like LH2 complex. 

The B800 BChl peaks still show a higher 797 nm peak relative to the 803 nm 

peak, as observed in the standard B800-850a LH2 complex type. The region 

between 400 nm to 550 nm, where the carotenoids absorb, shows the most 

pronounced differences. The absorption peaks of the carotenoid molecules are 

no longer present in the DPA treated B800-850a, indicating an absence of 

coloured carotenoids within the LH2 complex. Comparison between the B800-

850c LH2 complex type (Figure 5.14 dark red) shows similarities in the ratio of 

the B800:B850 peaks but the difference in the 797 nm 802 nm peak intensities. 

This may indicate a change in the peptide composition of the B800-850a LH2 

complex type. 



 

 

Figure 5.14 Normalised absorption spectra comparing the standar d purified B800
B800-850c LH2 complexes against the carotenoid depleted B800
The standard B800-850a LH2 complex 
peaks at 488 nm and 521 nm with a shoulder at ~460 nm produced by the caroteno
The standard B800-850c LH2 complex produces a peak at 847 nm and 802 nm in the NIR and a 
single peak at 488 nm with two shoulders at ~ 460 nm and ~525 nm. The carotenoid depleted 
B800-850 LH2 complex type produces peaks at 841 nm and 796 nm in
discernable peaks between 450
carotenoids present within the LH2 complex.

Circular dichroism was used to determine whether there was any carotenoids, 

colourless or otherwise, bound within the LH2 complexes 

of the visible part of the spectrum of the B800

(Figure 5.15 red) shows a broad maximum at ~ 350 nm with a shoulder at ~ 370 

nm, which relate to the Soret peak, and a peak at 590 nm produced by the Qx 

band of the BChl (179)

present and consist of two minima at 408 nm and 452 nm with a shoulder at ~ 

473 nm followed by maxima at ~ 502 nm and 528 nm. 

In the CD spectrum of the carotenoid depleted B800

5.15 blue) from cells treated with DPA there are maxima at 336 nm and 39

with a minimum at 368 nm. There is a small maximum at 584 nm that relates to 

Normalised absorption spectra comparing the standar d purified B800
850c LH2 complexes against the carotenoid depleted B800-850a LH2 complex. 

850a LH2 complex produces peaks at 847 nm and 796 nm in the NIR, and two 
peaks at 488 nm and 521 nm with a shoulder at ~460 nm produced by the caroteno

850c LH2 complex produces a peak at 847 nm and 802 nm in the NIR and a 
single peak at 488 nm with two shoulders at ~ 460 nm and ~525 nm. The carotenoid depleted 

850 LH2 complex type produces peaks at 841 nm and 796 nm in the NIR and produces no 
discernable peaks between 450-550 nm that would indicate there are very few, if any, coloured 
carotenoids present within the LH2 complex. 

Circular dichroism was used to determine whether there was any carotenoids, 

erwise, bound within the LH2 complexes (135)

of the visible part of the spectrum of the B800-850 LH2 from untreated cells 

(Figure 5.15 red) shows a broad maximum at ~ 350 nm with a shoulder at ~ 370 

nm, which relate to the Soret peak, and a peak at 590 nm produced by the Qx 

(179). The other peaks are due to the carotenoid complement 

t of two minima at 408 nm and 452 nm with a shoulder at ~ 

473 nm followed by maxima at ~ 502 nm and 528 nm.  

In the CD spectrum of the carotenoid depleted B800-850 LH2 complex (Figure 

5.15 blue) from cells treated with DPA there are maxima at 336 nm and 39

with a minimum at 368 nm. There is a small maximum at 584 nm that relates to 
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850 LH2 complex (Figure 

5.15 blue) from cells treated with DPA there are maxima at 336 nm and 398 nm 

with a minimum at 368 nm. There is a small maximum at 584 nm that relates to 



 

 

the Qx band. In the absence of carotenoid, the soret peaks are expected to 

centre at 405 nm, 374.5 nm with a shoulder at ~ 352 nm 

to the values observed here. Previous work was unable to identify whether 

phytoene was present due to the CD peaks being obscured by the soret bands 

(179). This CD spectrum suggests that there are negligible levels of coloured 

carotenoid present but cannot confirm the absence of any phytoene. 

Figure 5.15 Circular dichroism spectra of the carotenoid region  of carotenoidless B800
and standard B800- 850 LH2 complexes from 
The standard B800-850 LH2 complex (red) produces a broad maximum at ~ 350 nm relating to the 
soret peak, followed by mi
maximum at 525 nm with a shoulder at ~ 502 nm, followed by a small peak at 590 nm, which 
relates to the Qx peak. In the carotenoid depleted B800
maxima at 336 nm and 398 nm with a minimum at 368 nm that correspond to the Soret peak. 
There are no other discernible peaks observed
 

5.2.5 Tandem MS
complex type from 

The changes observed in the NIR regi

850a LH2 complex type from SHL30 growth conditions suggest the LH2 complex 

the Qx band. In the absence of carotenoid, the soret peaks are expected to 

centre at 405 nm, 374.5 nm with a shoulder at ~ 352 nm (179)

to the values observed here. Previous work was unable to identify whether 

phytoene was present due to the CD peaks being obscured by the soret bands 

. This CD spectrum suggests that there are negligible levels of coloured 

carotenoid present but cannot confirm the absence of any phytoene. 

Circular dichroism spectra of the carotenoid region  of carotenoidless B800
850 LH2 complexes from Alc. vinosum.  

850 LH2 complex (red) produces a broad maximum at ~ 350 nm relating to the 
soret peak, followed by minima at 408 nm, and 452 nm with a shoulder at ~ 473 nm. There is a 
maximum at 525 nm with a shoulder at ~ 502 nm, followed by a small peak at 590 nm, which 
relates to the Qx peak. In the carotenoid depleted B800-850 LH2 complex (blue) there are distinct 

xima at 336 nm and 398 nm with a minimum at 368 nm that correspond to the Soret peak. 
ther discernible peaks observed.   

Tandem MS -MS of the carotenoid depleted B800
complex type from Alc. vinosum 

The changes observed in the NIR region of the absorption spectrum of the B800

850a LH2 complex type from SHL30 growth conditions suggest the LH2 complex 
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(179), which are similar 

to the values observed here. Previous work was unable to identify whether 

phytoene was present due to the CD peaks being obscured by the soret bands 

. This CD spectrum suggests that there are negligible levels of coloured 

carotenoid present but cannot confirm the absence of any phytoene.  

 

Circular dichroism spectra of the carotenoid region  of carotenoidless B800 -850a 

850 LH2 complex (red) produces a broad maximum at ~ 350 nm relating to the 
nima at 408 nm, and 452 nm with a shoulder at ~ 473 nm. There is a 
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on of the absorption spectrum of the B800-
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type produced may shift over fully to a B800-850c LH2 complex type. To 

determine whether this is the case tandem MS-MS mass spectroscopy was 

performed with Dr Bill Mullen (as described in Methods and Materials section 

2.9). The polypeptides identified were the α1, α2, β1, β2, β3, and β6 (Table 5.1) 

as observed in the standard B800-850a LH2 complex type (Chapter 4 section 

4.2.4). The β5 peptide observed in the standard B800-850a LH2 complex type 

was not observed. The β5 peptide was observed as not fragmenting well during 

experiments on the standard B800-850a LH2 complex, however even if the 

threshold for peak identification was lowered for the carotenoid depleted B800-

850a LH2 complex type the β5 was not observed. This would indicate that the 

small differences in the Qy band of the B850 are due to changes in the beta 

peptides incorporated into the LH2 complex. 
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Table 5.1 The peptides identified by tandem MS-MS m ass spectroscopy from the carotenoid depleted B800- 850a complex and their modifications.  
* are peptides observed in some form in other LH2 complex types but with or without the modifications observed in the B800-850a LH2 complex type.  

Peptide  Sequence  MH+ [Da] Modification  Observed in  
A1 MAIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVEAAPAAQ 7402 none B800-850 and B800-840p 
A1-1 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVEAAPAAQ 7271 N/C term trunc B800-850 and B800-840p 
A1-4 MAIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVE 6893 C term trunc B800-850 
A1-4 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAVE 6762 N/C term trunc B800-850   
A1-4.2 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAAEAV 6633 N/C term trunc B800-850 and B800-840p 
A1-5 MAIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAA 6464 C term trunc B800-850 and B800-840p 
A1-5 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPAA 6393 N/C term trunc B800-850 and B800-840p 
A1-6 MAIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPA 6333 C term trunc B800-850 and B800-840p 
A1-6 AIEFMGYKPLENDYKFWLVVNPATWLIPTLIAVALTAILIHVVAFDLEGQGWHAPA 6262 N/C term trunc B800-850 and B800-840p 
A2  MSDVAKPKNPEDDWKIWLVVNPATWLMPIFYALLVLAIAVHAVVFSVGLGWQ 5848 none All LH2 complexes* 
A2 SDVAKPKNPEDDWKIWLVVNPATWLMPIFYALLVLAIAVHAVVFSVGLGWQ 5717 N term trunc All LH2 complexes 
B1 MADMKSLSGLTEQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 5296 none All LH2 complexes* 
B2  MAEQSLSGLTEQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 5179 none All LH2 complexes* 
B3 MASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 4907 none All LH2 complexes* 
B3 ASLSGLTDQQAKEFHEQFKVTYTAFVGLAALAHLFVIAANPWW 4776 N term trunc All LH2 complexes* 
B6 MNGLTEQQAKEFHAQFKVTYTAFVGLAALAHLMVLANNPWF 4607 none B800-820 LH2 complex 



197 
 

 

5.3 Deletion of the phytoene desaturase (CrtI) gene  

The use of DPA to inhibit carotenoid biosynthesis and create carotenoid depleted 

LH2 complexes confirmed what had previously been observed in Alc. 

minutissimum, that the B800-850 LH2 complex type from Alc. vinosum is stable 

enough to exist without carotenoid in all carotenoid binding pockets. DPA in high 

concentrations is toxic to cell growth and is degraded by white light therefore 

cells must be grown behind a red filter (section 5.2). The size of the red filter 

reduces the volume of cells that can be cultured at any one time and could 

potentially have effects on phytochromes that regulate the light-harvesting 

machinery (64). The creation of a carotenoid mutant through DNA ‘knock-out’ 

would remove these limitations and consistently produce fully carotenoidless 

LH2 complexes. This can be done by replacing the CrtI gene within the Alc. 

vinosum genome with an insert lacking the functional gene.  

5.3.1 Creation of the blunt CrtI - insert 

The genome of Alc. vinosum identified two potential CrtI genes that code for the 

phytoene desaturase enzyme, which forms the conjugated double bond system 

of the carotenoid (Introduction section 1.4). Creating a CrtI- mutant by ‘knocking 

out’ the phytoene desaturase (CrtI) genes will create a mutant unable to form 

coloured carotenoids but that should still be able to produce light-harvesting 

complexes.  

Genomic DNA was extracted from Alc. vinosum as per (142) to source the 

template DNA for the ‘knock-out’ (Methods and Material section 2.12.1). Primers 

were designed by Dr Sarah Henry (Methods and Material section 2.12.2) to 

complement the upstream (US) and downstream (DS) sections of the DNA around 

the CrtI gene. These primers were used for the PCR-driven overlap extension 

technique (143) to create a CrtI- insert (as described in methods and materials 

section 2.12.2). The US and DS sections have overlapping, complementary 3’ 

ends that allow them to anneal to each other. The complementary section codes 

for a start and a stop codon, this will replace the CrtI gene in the insert, 

meaning that no protein is coded for at all.  



 

 

The US and DS PCR products initially amplified well, but the US segment began 

to produce low to negligible levels during PCR. A gradient PCR with different 

annealing temperatures o

methods and materials section 

that produced the best amplification, PCR products were analysed by gel 

electrophoresis (as described in methods and materials sect

agarose gel of the US PCR product

reactions between 50 

US segment (480 bp). The brightest bands were from PCR products annealed at 

64.9 ̊C – 57 C̊. This is the ideal annealing temperature range. In light of this 

information the standard annealing temperature during the PCR cycles was 

maintained at 60 ̊C. 

Figure 5.16 PCR products of the upstream
performed.  
Different tubes were subjected to different annealing temperatures, with denaturation and 
polymerisation stages of 98 
from 68 ̊C to 50 C̊, with temperatures of 68 
seconds. The expected product was 480 bp in size and was observed as amplified under all 
annealing temperatures. The PCR products from annealing temperatures between 64.9 
had the brightest bands, and thus the highest amount of DNA.

Once the US and DS sections were amplified at sufficient concentrations as 

observed by bright bands

A) they were ligated together using the splice, overlap, extension (SOE) method. 

The SOE method involves cycles of denaturation and annealing in the absence of 

DNA polymerase to bind the complementary over

and downstream primers. Phusion polymerase (Biolabs) and nucleotides were 

added to the mix and a standard PCR method was run (98 

extending the DNA construct into a complete blunt ended CrtI

purification using an agarose gel a single bright band at ~ 780 bp was observed 

confirming the ligation of the two sequences together (Figure 5.17 B).

The US and DS PCR products initially amplified well, but the US segment began 

to produce low to negligible levels during PCR. A gradient PCR with different 

annealing temperatures over eight tubes was performed (as described in 

methods and materials section 2.12.2). To determine the annealing temperature 

that produced the best amplification, PCR products were analysed by gel 

electrophoresis (as described in methods and materials sect

agarose gel of the US PCR products show bands at ~ 500 bp from the PCR 

tween 50 - 68 ̊C (Figure 5.16). The band is the correct size to be the 

US segment (480 bp). The brightest bands were from PCR products annealed at 

C. This is the ideal annealing temperature range. In light of this 

information the standard annealing temperature during the PCR cycles was 

C.  

PCR products of the upstream  segment of the CrtI - insert after a gradient PCR 

Different tubes were subjected to different annealing temperatures, with denaturation and 
polymerisation stages of 98 ̊C and 72 C̊. The annealing temperature gradient across the tubes ran 

C, with temperatures of 68 ̊C, 67 ̊C, 64.9 ̊C, 57 ̊C, 53.5 C̊, 52 
seconds. The expected product was 480 bp in size and was observed as amplified under all 

ealing temperatures. The PCR products from annealing temperatures between 64.9 
had the brightest bands, and thus the highest amount of DNA. 

Once the US and DS sections were amplified at sufficient concentrations as 

observed by bright bands at ~ 480 bp and ~ 300 bp on an agarose gel (Figure 5.17 

A) they were ligated together using the splice, overlap, extension (SOE) method. 

The SOE method involves cycles of denaturation and annealing in the absence of 

DNA polymerase to bind the complementary overlap sections of the upstream 

and downstream primers. Phusion polymerase (Biolabs) and nucleotides were 

added to the mix and a standard PCR method was run (98 ̊C

extending the DNA construct into a complete blunt ended CrtI

purification using an agarose gel a single bright band at ~ 780 bp was observed 

confirming the ligation of the two sequences together (Figure 5.17 B).
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The US and DS PCR products initially amplified well, but the US segment began 

to produce low to negligible levels during PCR. A gradient PCR with different 

ver eight tubes was performed (as described in 

.2). To determine the annealing temperature 

that produced the best amplification, PCR products were analysed by gel 

electrophoresis (as described in methods and materials section 2.12.3). An 

show bands at ~ 500 bp from the PCR 

C (Figure 5.16). The band is the correct size to be the 

US segment (480 bp). The brightest bands were from PCR products annealed at 

C. This is the ideal annealing temperature range. In light of this 

information the standard annealing temperature during the PCR cycles was 

 

insert after a gradient PCR 

Different tubes were subjected to different annealing temperatures, with denaturation and 
C. The annealing temperature gradient across the tubes ran 

C, 52 ̊C, and 50 ̊C for 30 
seconds. The expected product was 480 bp in size and was observed as amplified under all 

ealing temperatures. The PCR products from annealing temperatures between 64.9 ̊C – 57 ̊C 

Once the US and DS sections were amplified at sufficient concentrations as 

480 bp and ~ 300 bp on an agarose gel (Figure 5.17 

A) they were ligated together using the splice, overlap, extension (SOE) method. 

The SOE method involves cycles of denaturation and annealing in the absence of 

lap sections of the upstream 

and downstream primers. Phusion polymerase (Biolabs) and nucleotides were 

C, 60 ̊C, 72 ̊C) thus 

extending the DNA construct into a complete blunt ended CrtI- insert. After 

purification using an agarose gel a single bright band at ~ 780 bp was observed 

confirming the ligation of the two sequences together (Figure 5.17 B). 



 

 

Figure 5.17 PCR products of the separate upstream and 
insert (A) and the CrtI
The upstream (US) segment observed after PCR was ~ 500 bp (480 bp) and the downstream (DS) 
segment was 250-500 bp (300 bp) which were within the correct range of sizes for each segment.
Following the extraction of the US and DS segments they were  amalgamated into a full CrtI
through the use of splice, overlap, extension (SOE) method follow
band of 750-1000 bp after the SOE and PCR was performed, whic
CrtI- insert (780 bp).  

5.3.2 Cloning of the blunt CrtI
and creation of CrtI

Agarose gels confirm that the CrtI

sequenced to ensure there have been no substitutions during PCR. The CrtI

insert is blunt ended and so was cloned into the pJET1.2/blunt vector (Figure 

5.18 A) (Thermo scientific), as per the manufacturer’s instructions. The pJET1.2

CrtI- vector was then used to transform 

treatment and grown overnight on LB agar plates (as described in Materials and 

Methods section 2.12

observed (Figure 5.18 B) each of whic

LB/ampicillin media that was grown overnight at 37 

using the Thermo Scientific miniprep kit and sent for sequencing. Colony six was 

found to contain the correct 780 bp insert and was taken on for

processes. 

PCR products of the separate upstream and downstream segments of the CrtI
insert (A) and the CrtI - insert (B).  
The upstream (US) segment observed after PCR was ~ 500 bp (480 bp) and the downstream (DS) 

500 bp (300 bp) which were within the correct range of sizes for each segment.
Following the extraction of the US and DS segments they were  amalgamated into a full CrtI
through the use of splice, overlap, extension (SOE) method followed by PCR

1000 bp after the SOE and PCR was performed, which is the correct range for the 

Cloning of the blunt CrtI - insert into the pJET1.2/blunt vector 
and creation of CrtI - with ‘sticky ends’ by restriction digests

Agarose gels confirm that the CrtI- insert is the correct size, but it 

sequenced to ensure there have been no substitutions during PCR. The CrtI

insert is blunt ended and so was cloned into the pJET1.2/blunt vector (Figure 

5.18 A) (Thermo scientific), as per the manufacturer’s instructions. The pJET1.2

as then used to transform E.coli strain DH5α cells using heat shock 

treatment and grown overnight on LB agar plates (as described in Materials and 

12.4). After incubation six transformed colonies were 

observed (Figure 5.18 B) each of which were used to inoculate 5 ml of 

LB/ampicillin media that was grown overnight at 37 ̊C. Plasmids were extracted 

using the Thermo Scientific miniprep kit and sent for sequencing. Colony six was 

found to contain the correct 780 bp insert and was taken on for
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downstream segments of the CrtI - 

The upstream (US) segment observed after PCR was ~ 500 bp (480 bp) and the downstream (DS) 
500 bp (300 bp) which were within the correct range of sizes for each segment. 

Following the extraction of the US and DS segments they were  amalgamated into a full CrtI- insert 
ed by PCR. There was a single 
h is the correct range for the 

insert into the pJET1.2/blunt vector 
with ‘sticky ends’ by restriction digests  

insert is the correct size, but it must be 

sequenced to ensure there have been no substitutions during PCR. The CrtI- 

insert is blunt ended and so was cloned into the pJET1.2/blunt vector (Figure 

5.18 A) (Thermo scientific), as per the manufacturer’s instructions. The pJET1.2-

strain DH5α cells using heat shock 

treatment and grown overnight on LB agar plates (as described in Materials and 

.4). After incubation six transformed colonies were 

h were used to inoculate 5 ml of 

C. Plasmids were extracted 

using the Thermo Scientific miniprep kit and sent for sequencing. Colony six was 

found to contain the correct 780 bp insert and was taken on for further 
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Figure 5.18 Schematic diagram of the pJET1.2/blunt (Thermo Scientific) cloning vector (A) 
and six E.coli strain DH5 α colonies on a LB agar plate (B).  
A: The pJET1.2/blunt vector schematic shows the multiple cloning site (MCS) where the blunt 
ended insert is incorporated into the vector. Also shown is the restriction site of HindIII present at 
position 253 within the vector. This restriction site is also found within the CrtI- insert (not shown). 
Vector was visualised and annotated using pDraw. B: LB agar plate enriched with 100 mM 
ampicillin with pJET1.2/blunt-CrtI- transformed DH5α colonies after growth overnight at 37 ºC. 
There were six transformed colonies identified that were circled and numbered.  

5.3.3 Ligation of the CrtI - insert into the pK18mobsacB vector 

The CrtI- insert must then be extracted and to be incorporated into the final 

pK18mobsacB vector (144), in order to do this both the vector and the CrtI- 

insert requires ‘sticky ends’. The pk18mobsacB vector contains HindIII and EcoRI 

restriction sites (Figure 5.19) and so these were incorporated into the CrtI- via 

the primers. The external primers for the SOE method incorporated two 

restriction sites into the CrtI- insert, an EcoRI restriction site at the 5’ end and a 

HindIII restriction site at the 3’ end.  
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Figure 5.19Schematic diagram of the pK18mobsacB clo ning vector showing the HindIII and 
EcoRI restriction sites.  
After restriction digests with HindIII and EcoRI enzymes, the vector will contain ‘sticky ends’ 
suitable for incorporation of the CrtI- insert. The DNA cut out from the vector by restriction cleavage 
is 51 bp. Vector was visualised and annotated using pDraw.  

The pJET1.2-CrtI- vector was simultaneously digested with both EcoRI and HindIII 

(as described in Methods and Materials section 2.12.5) to produce a CrtI- insert 

with ‘sticky ends’. The digestion products were visualised by gel electrophoresis 

and three bands were observed, at ~ 750 bp, 2500-3000 bp, and 3000-4000 bp 

(Figure 5.20). The smallest band at ~ 750 bp is most probably the 780 bp insert 

and so was excised and then extracted using a gel extraction kit (Thermo 

Scientific). The band at 2500-3000 bp is most probably the pJET1.2 vector 

without the CrtI- insert (2974 bp) while the band at 3000-4000 bp is probably the 

uncleaved pJET1.2 vector still containing the CrtI- insert (3706 bp). The insert 

was then ready to be incorporation into the pK18mobsacB vector. 



 

 

Figure 5.20 pJET1.2- CrtI
Three digestion products were observed, at 750 bp
The 750 bp – 1000 bp band is within the correct range to be the CrtI
bands observed were the pJET1.2 without the CrtI
(3706 bp). 

To prepare the pK18mobsacB vector for incorporation it was PK18mobsacB 

vector was digested overnight with HindIII and EcoRI to prepare it for the CrtI

insertion. Figure 5.21 shows a single, bright band present after Eco

digestion of pK18mobsacB suggesting there are ample amounts of vector 

that digestion was effective as the presence of additional bands would be 

indicative of supercoiled, liner, and circular DNA. A faint band can be seen at 

the bottom of the gel that may be the excised DNA, although this fragment is 

only 51 bp and most probably ran off the gel.

 

 

CrtI - digestion products after digests with HindIII and E coRI. 
digestion products were observed, at 750 bp-1000 bp, 2500-3000 bp, and 3000

1000 bp band is within the correct range to be the CrtI- insert (780 bp). The two other 
bands observed were the pJET1.2 without the CrtI- insert (2974 bp) and 

To prepare the pK18mobsacB vector for incorporation it was PK18mobsacB 

vector was digested overnight with HindIII and EcoRI to prepare it for the CrtI

insertion. Figure 5.21 shows a single, bright band present after Eco

digestion of pK18mobsacB suggesting there are ample amounts of vector 

digestion was effective as the presence of additional bands would be 

indicative of supercoiled, liner, and circular DNA. A faint band can be seen at 

the gel that may be the excised DNA, although this fragment is 

only 51 bp and most probably ran off the gel. 
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digestion products after digests with HindIII and E coRI.  
3000 bp, and 3000-4000 bp. 

insert (780 bp). The two other 
 uncleaved pJET1.2-CrtI- 

To prepare the pK18mobsacB vector for incorporation it was PK18mobsacB 

vector was digested overnight with HindIII and EcoRI to prepare it for the CrtI- 

insertion. Figure 5.21 shows a single, bright band present after EcoRI and HindIII 

digestion of pK18mobsacB suggesting there are ample amounts of vector and 

digestion was effective as the presence of additional bands would be 

indicative of supercoiled, liner, and circular DNA. A faint band can be seen at 

the gel that may be the excised DNA, although this fragment is 
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Figure 5.21Digestion product after restriction dige sts of pK18mobsacB with HindIII and 
EcoRI overnight at 37 ºC. 
One band was observed, at 5000 bp -6000 bp. The band is within the correct range to be the 
cleaved pK18mobsacB vector (5669bp) however the 1 % agarose (w/v) gel is unlikely to separate 
the cleaved (5669 bp) from the uncleaved vector (5719 bp). A faint band is observed at the bottom 
of the gel that might be the excised 51 bp DNA, although it is likely that this DNA ran off the end of 
the gel. 

The CrtI- insert was then ligated into the pK18MobsacB vector and was then used 

to transform JM109 cells using heat shock treatment. Transformed cells were 

then plated onto LB plates enriched with kana, 6 ul 1 M IPTG, 40 ul 20 mg/ml X-

GAL to induce the lac operon (145), and grown overnight at 37 ̊C. At this point in 

the process issues arose as the colonies that were produced on the LB plate after 

overnight incubation were very small and numerous so determining the colour of 

the individual colonies was very difficult, although they appeared to be white. 

Several colonies were picked and used to inoculate 5 ml of LB/kana (30 µg/ml 

kana), and incubated overnight at 37 ̊C. These cultures failed to grow, even 

when incubated for longer. Transformations of JM109 cells were repeated with 

freshly ligated pK18mobsacB-CrtI- and the plated on LB/kana (30 µg/ml) and 

incubated overnight at 37 ̊C. Numerous but small colonies were observed so the 

plate was left for an additional 6 hours in an attempt to produce larger colonies, 

however no additional growth occurred. When the colonies were used to 

inoculate 5 ml LB/kana (30 µg/ml kanamycin) no growth occurred.  



 

 

These issues with creating transformants may be due to the CrtI

ligating instead of ligating into the vector. The products of the ligation were 

separated on a 1 % agarose gel to confirm the absence of a CrtI

product. After analysis using gel electrophoresis (Figure 5.22) a single band was 

observed between 6000 

pK18mobsacB-CrtI- 

1 % agarose (w/v) gel poorly separates such large DNA products. Any insert 

should be visible at 780 bp and any self ligated insert that would be expected at 

~ 1500 bp. The absence of a band at 780 bp in

of the CrtI- insert into the pK18mobsacB vector or that the concentration of 

insert is too low. 

Figure 5.22 Ligation products of the pK18mobsacB vector with th e CrtI
One ligation product was observed at 6000 bp
insert ligated into the pK18mobsacB vector (6499 bp)
(5669 bp). There was no band at 1560 bp that indicates the insert i
band at 780 bp suggesting the CrtI
of incorporation into the vector.

A potential problem highlighted is the low level of CrtI

would result in a low yield of transformed pK18mobsacB. Sequential and 

simultaneous digests of the pJET1.2

whether the yield of CrtI

These issues with creating transformants may be due to the CrtI

ligating instead of ligating into the vector. The products of the ligation were 

arated on a 1 % agarose gel to confirm the absence of a CrtI

product. After analysis using gel electrophoresis (Figure 5.22) a single band was 

observed between 6000 – 8000 bp. This band will consist of both ligated 

 vector (6499 bp) as well as unligated vector (5719 bp) as the 

1 % agarose (w/v) gel poorly separates such large DNA products. Any insert 

should be visible at 780 bp and any self ligated insert that would be expected at 

~ 1500 bp. The absence of a band at 780 bp indicates either high incorporation 

insert into the pK18mobsacB vector or that the concentration of 

Ligation products of the pK18mobsacB vector with th e CrtI
ligation product was observed at 6000 bp-8000 bp. The band is most probably both the 

insert ligated into the pK18mobsacB vector (6499 bp) as well as the unligated pk18mobsacB vector 
There was no band at 1560 bp that indicates the insert is not self ligating. There is no 

band at 780 bp suggesting the CrtI- insert concentration may be too low or that there is a high level 
of incorporation into the vector. 

A potential problem highlighted is the low level of CrtI- insert present, as this 

result in a low yield of transformed pK18mobsacB. Sequential and 

simultaneous digests of the pJET1.2-CrtI- vector were compared to determine 

whether the yield of CrtI- insert reclaimed from the pJET1.2 plasmid could be 
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These issues with creating transformants may be due to the CrtI- insert self 

ligating instead of ligating into the vector. The products of the ligation were 

arated on a 1 % agarose gel to confirm the absence of a CrtI-CrtI- ligation 

product. After analysis using gel electrophoresis (Figure 5.22) a single band was 

8000 bp. This band will consist of both ligated 

6499 bp) as well as unligated vector (5719 bp) as the 

1 % agarose (w/v) gel poorly separates such large DNA products. Any insert 

should be visible at 780 bp and any self ligated insert that would be expected at 

dicates either high incorporation 

insert into the pK18mobsacB vector or that the concentration of 

 

Ligation products of the pK18mobsacB vector with th e CrtI -.  
most probably both the CrtI- 

as well as the unligated pk18mobsacB vector 
s not self ligating. There is no 

insert concentration may be too low or that there is a high level 

insert present, as this 

result in a low yield of transformed pK18mobsacB. Sequential and 

vector were compared to determine 

insert reclaimed from the pJET1.2 plasmid could be 



 

 

improved (as described in Methods and Materials section 

CrtI- construct only contains the EcoRI restriction site, incorporated within the 

CrtI- insert, and so was digested first with EcoRI for 90 min.  Gel electrophoresis 

was used to purify the DNA and observe the level of DNA present (Figure 5.23). A 

bright band observed between 3000 bp 

pJET1.2-CrtI-. This band will consist of both the cleaved and uncleaved vectors 

as there is no difference observ

excised and reclaimed using a Thermo Scientific gel extraction kit and digested 

overnight at 37 C̊ with HindIII.

Figure 5.23 Digestion product after EcoRI res
A single digestion product was observed at 3000 bp
to be the once cleaved pJET1.2

The pJET1.2 vector contains a 

restriction site present within the CrtI

the HindIII enzyme and so the digestion time was extended to overnight. The 

products of HindIII digestion were run on a 1 % ag

and size of the DNA present (Figure 5.24). Three DNA bands were observed 

between 250 bp -500 bp, 750 bp 

~3000 bp is the appropriate size to be the empty pJET1.2 vector (2974 bp) an

the empty vector without the region of DNA between the MCS and the HindIII 

restriction site (2721 bp). The bands at ~ 780 bp and ~ 250 bp are the CrtI

and the region of DNA between the HindIII restriction sites, respectively. The 

improved (as described in Methods and Materials section 2.

only contains the EcoRI restriction site, incorporated within the 

insert, and so was digested first with EcoRI for 90 min.  Gel electrophoresis 

urify the DNA and observe the level of DNA present (Figure 5.23). A 

bright band observed between 3000 bp - 4000 bp, suggesting a high amount of 

. This band will consist of both the cleaved and uncleaved vectors 

as there is no difference observed in the size of the DNA fragment. This DNA was 

excised and reclaimed using a Thermo Scientific gel extraction kit and digested 

C with HindIII. 

Digestion product after EcoRI res triction digests of pJET1.2
A single digestion product was observed at 3000 bp-4000 bp. The band is within the correct range 
to be the once cleaved pJET1.2-CrtI- vector or the uncleaved vector (3706 bp).  

The pJET1.2 vector contains a HindIII restriction site in addition to the 

restriction site present within the CrtI- insert. This will result in competition for 

the HindIII enzyme and so the digestion time was extended to overnight. The 

products of HindIII digestion were run on a 1 % agarose gel to assay the amount 

and size of the DNA present (Figure 5.24). Three DNA bands were observed 

500 bp, 750 bp – 1000 bp, and 2500 bp – 3000 bp. The band at 

~3000 bp is the appropriate size to be the empty pJET1.2 vector (2974 bp) an

the empty vector without the region of DNA between the MCS and the HindIII 

restriction site (2721 bp). The bands at ~ 780 bp and ~ 250 bp are the CrtI

and the region of DNA between the HindIII restriction sites, respectively. The 

205 

.12.5). The pJET1.2-

only contains the EcoRI restriction site, incorporated within the 

insert, and so was digested first with EcoRI for 90 min.  Gel electrophoresis 

urify the DNA and observe the level of DNA present (Figure 5.23). A 

4000 bp, suggesting a high amount of 

. This band will consist of both the cleaved and uncleaved vectors 

ed in the size of the DNA fragment. This DNA was 

excised and reclaimed using a Thermo Scientific gel extraction kit and digested 

 

triction digests of pJET1.2 -CrtI- for 60 min.   
4000 bp. The band is within the correct range 

(3706 bp).   

HindIII restriction site in addition to the 

insert. This will result in competition for 

the HindIII enzyme and so the digestion time was extended to overnight. The 

arose gel to assay the amount 

and size of the DNA present (Figure 5.24). Three DNA bands were observed 

3000 bp. The band at 

~3000 bp is the appropriate size to be the empty pJET1.2 vector (2974 bp) and 

the empty vector without the region of DNA between the MCS and the HindIII 

restriction site (2721 bp). The bands at ~ 780 bp and ~ 250 bp are the CrtI- insert 

and the region of DNA between the HindIII restriction sites, respectively. The 



 

 

DNA bands observed at ~ 3000 bp and ~780 bp were much fainter than those 

observed after EcoRI digestion suggesting the level of DNA was greatly reduced 

after the gel extraction.

Figure 5.24 Digestion products after the sec
cleaved pJET1.2-CrtI -. 
Three digestion products were observed, at 2500 bp
band observed between 2500 bp
vector (2974 bp). The band between 750
ended’ CrtI- insert (780 bp). The faint band between 250
part of the vector between the multiple cloning site and the HindIII 
pJET1.2 vector (253 bp). 

This was compared to simultaneous digests of the pJET1.2

HindIII and EcoRI that were run overnight at 37 

bands were observed at ~ 2500 bp, ~

band at ~ 250 bp. The band at ~ 2500 bp is the empty pJET1.2 vector (2721 bp) 

with the CrtI- excised as well as the ~ 250 segment between the CrtI

restriction site and the restriction site found on the pJ

at ~ 1500 bp is the CrtI

bp) between the two HindIII restriction sites. The ~ 750 bp band is the CrtI

insert (780 bp). The faint band at ~ 250 bp is the segment of DNA betwe

two HindIII restriction sites. There is no band present at ~4000 bp that would 

indicate uncleaved pJET1.2

ed at ~ 3000 bp and ~780 bp were much fainter than those 

observed after EcoRI digestion suggesting the level of DNA was greatly reduced 

after the gel extraction. 

Digestion products after the sec ond restriction digest with HindIII of once 
.  

Three digestion products were observed, at 2500 bp- 3000 bp, 750-1000 bp, and 250
band observed between 2500 bp-3000 bp is within the correct range to be the empty pJET1.2 

or (2974 bp). The band between 750-1000 bp is within the correct range to be the ‘sticky 
insert (780 bp). The faint band between 250-500 bp is in the correct range to be the 

part of the vector between the multiple cloning site and the HindIII restriction site present within the 
pJET1.2 vector (253 bp).  

This was compared to simultaneous digests of the pJET1.2-

HindIII and EcoRI that were run overnight at 37 ̊C (Figure 5.25). Three bright 

bands were observed at ~ 2500 bp, ~ 1500 bp, and ~ 750 bp and a single dimmer 

band at ~ 250 bp. The band at ~ 2500 bp is the empty pJET1.2 vector (2721 bp) 

excised as well as the ~ 250 segment between the CrtI

restriction site and the restriction site found on the pJET1.2 plasmid. The band 

at ~ 1500 bp is the CrtI- insert still attached to the 253 bp section of DNA (1033 

bp) between the two HindIII restriction sites. The ~ 750 bp band is the CrtI

insert (780 bp). The faint band at ~ 250 bp is the segment of DNA betwe

two HindIII restriction sites. There is no band present at ~4000 bp that would 

indicate uncleaved pJET1.2-CrtI- vector.  
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1000 bp, and 250-500 bp. The 
3000 bp is within the correct range to be the empty pJET1.2 

1000 bp is within the correct range to be the ‘sticky 
500 bp is in the correct range to be the 

restriction site present within the 

-CrtI- vector with both 

C (Figure 5.25). Three bright 

1500 bp, and ~ 750 bp and a single dimmer 

band at ~ 250 bp. The band at ~ 2500 bp is the empty pJET1.2 vector (2721 bp) 

excised as well as the ~ 250 segment between the CrtI- HindIII 

ET1.2 plasmid. The band 

insert still attached to the 253 bp section of DNA (1033 

bp) between the two HindIII restriction sites. The ~ 750 bp band is the CrtI- 

insert (780 bp). The faint band at ~ 250 bp is the segment of DNA between the 

two HindIII restriction sites. There is no band present at ~4000 bp that would 
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Figure 5.25 Digestion products after simultaneous r estriction digests of pJET1.2-CrtI - with 
EcoRI and HindIII overnight at 37 ºC.  
Four bands were observed at 250-500 bp, 750-1000 bp, ~ 1500 bp, and ~ 2500 bp. The band at ~ 
2500 bp is within the correct range to be the empty pJET1.2 vector without the fragment between 
the two HindIII restriction sites (2721 bp). The band between 750-1000 bp is within the correct 
range to be the CrtI- insert (780 bp). The band at ~ 1500 bp is within the range of the CrtI- insert 
attached to the DNA segment between the two HindIII restriction sites.  The faint band at ~ 250 bp 
is the section of DNA between the two HindIII restriction sites. 

This suggests that the sequential digests work effectively in ensuring that both 

HindIII sites are cleaved unlike during simultaneous digests. The issue with the 

sequential digests appears to be the loss of DNA during the gel extraction 

process. A Thermo Scientific Nanodrop 1000 spectrophotometer was used to 

confirm the levels of DNA present after extractions as well as to assay the purity 

of the DNA acquired. During gel extraction, multiple elution washes of 10 µl 

were performed to assay the impurities as well as the concentration of DNA. The 

nanodrop accurately records the absorbance in the UV in volumes of 1 nl, and so 

is an effective and less wasteful way to assay DNA samples for purity and 

concentration. The ideal concentrations should be ~ 50 ng insert in a 3:1 ratio to 

the vector to ensure interaction and ligation. Nucleotides, single stranded and 

double stranded DNA and RNA absorb at 260 nm, protein absorbs at 280 nm, 

while some carbohydrates, guanidine HCl and cyclic compounds such as phenol 

absorb at 230 nm. Impurities in the DNA sample effect upstream processes such 

as ligation and so ratios between the 260/230 and 260/280 are useful to 

determine purity. Sambrook (145) states that any value over 2.0 for the 260/280 

ratio is of a sufficient purify for most upstream processes (142). Additionally, the 

260/230 ratio must be above ~1.8 to ensure that upstream processes are 

unaffected by impurities. It was found that the 260/280 values averaged > 2 in 

the first elution wash. The 260/230 values were < 0.2 implying a high level of 

impurities absorbing at ~230 nm. The concentrations of DNA were observed were 

< 50 ng.  
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An alternative gel extraction kit (Qiagen) was used and the same low DNA 

concentrations and ratios were observed, implying the issue does not originate 

from the kit but due to issues in the sample. 

The binding buffer elution and wash buffer elution steps were collected and the 

absorbance at 230 nm, 260 nm, and 280 nm recorded using the nanodrop to 

determine whether the DNA was not binding effectively and was being washed 

off before the elution wash. As the binding buffer contains guanidine 

isothiocyanate, which absorbs at ~260 nm, it is difficult to determine whether 

the DNA was washed off at this early stage. The 260 nm values for each of the 

washes was <0.4 and probably related to guanidine isothiocyanate being washed 

off as the value is lower after each wash. The elution washes were performed 

with heated elution buffer (70 ̊C) that was incubated on the column for 5-10 min 

before the elution spin. The first elution showed the highest concentration of 

DNA. Sodium acetate pH 5.2 was added to ensure the binding buffer pH was 

optimum for DNA binding to prevent DNA being prematurely washed off with the 

binding buffer, however there was no improvement in the 260 nm absorption 

values observed in the elution wash. 

Mini-preps were repeated and DNA eluted in volumes of 10-20 ul to increase DNA 

concentration without reducing yield too greatly. Ligations were repeated but 

the previous results of small colonies that failed to reach turbidity after media 

inoculations was observed each time. Due to time constraints the creation of the 

CrtI- “knock-out” was unable to be completed. The CrtI- insert should be 

recreated with a new set of primers and potentially an alternative vector could 

be used for subcloning. 

5.4 Carotenoid extraction through the use of solven ts 

Previous studies created carotenoidless complexes by extracting the carotenoids 

out of the already formed LH1 complexes using a benzene wash (32, 121), 

resulting in the removal of up to 90 % of the carotenoids present (68). Benzene is 

highly toxic and not all complexes were resilient enough to remain intact after a 

benzene wash, so toluene was used as an alternative. Small percentages of more 

polar solvents were added to compensate for the less polar nature of toluene 
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with regards to benzene, and used to wash 1 mg of freeze dried Alc. vinosum 

membranes (as described in Methods and Materials section 2.13).  

Alc. vinosum membranes from cells grown under sulphide, low light, 30 ̊C growth 

conditions were used as the base material for carotenoid extraction. Total 

carotenoid content was determined by washing 1 mg of membranes with 

methanol and then acetone to remove all carotenoids. It was observed that 

acetone only achieved total carotenoid extraction (confirmed by a blue pellet) 

after a methanol wash. The pellet observed after all of the different solvent mix 

washes stayed red pigmented and did not go blue suggesting the presence of 

carotenoid in the membranes and complexes.  

The absorption spectra of the supernatant from acetone washed Alc. vinosum 

membranes were recorded and the average taken to determine the full 

carotenoid content from 1 mg of membranes. This was used as the benchmark 

for 100 % carotenoid extraction. The absorption spectra of the supernatant 

containing the extracted carotenoids from the different solvent mix washes were 

recorded and the average determined to identify the level of carotenoid 

extraction. Toluene extractions were found to extract 56.76 % ± 1.93 % of the 

total carotenoid content of the membranes (Figure 5.26 black line). 

Toluene/Diethyl ether mixes of between 1 % and 10 % diethyl ether showed 

negligible differences in the level of carotenoid content extracted (52.37 % ± 

0.55 % to 52.21 % ± 2.28 %). At 5 % diethyl ether there was a reduction in the 

amount of carotenoid extracted (44.65 % ± 1.25 %) than observed at 1 % or 10 % 

diethyl ether (Figure 5.26 green data points). 

In toluene/acetone mixes the level of carotenoid extracted increased from 55.32 

% ± 3.02 % at 1 % acetone (v/v) to 55.58 % ± 3.31 % at 5 % acetone (v/v) and 

64.87 % ± 3.31 % at 10 % acetone (v/v) (Figure 5.26 blue data points). It appears 

that a percentage acetone beneath 10 % produces negligible effects on the level 

of carotenoid extraction. 

The toluene/ethyl acetate mix showed a similar trend to the toluene/acetone 

washes, showing an increase in carotenoid extracted of 55.20 % ± 4.56 % at 1 % 

ethyl acetate (v/v) to 60.80 % ± 2.75 % at 5 % ethyl acetate (v/v) and 66.56 % ± 

1.56 % at 10 % ethyl acetate (v/v) (Figure 5.26 red data points). This suggests 
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that the extraction of carotenoids may be more sensitive to small increases in 

ethyl acetate than acetone.  

The level of carotenoid extracted using 10 % acetone (v/v) and 10 % ethyl 

acetate (v/v) is only a small amount (~ 8 %) more than extracted when using 100 

% toluene and is of a similar amount to the extractions with acetone without a 

methanol wash beforehand (Figure 5.26 purple line). This suggests that 10 % 

acetone or 10 % ethyl acetate in toluene could be used to extract carotenoids 

but examination of the residual pellet will determine the effects of these 

solvents on the light-harvesting complexes. 



 

 

Figure 5.26 Graph showing the average percentage removal of car otenoid by different toluene
The percentage carotenoid removed by a 100 % toluene is 56.76 
line). The percentage carotenoid extracted in different percentages of ethyl ether (red data points) is 55.20 
(10 %). The percentage carotenoid extracted in different percent
3.31 % (10 %). The percentage carotenoid extracted in different
and 52.21 % ± 2.28 % (10 %). The trend observed in increasing percentages of acetone is the same as that observed in increasing concentrations of acetone.
10 % acetone and ethyl acetate the level of carotenoid extracted is equivalent to the
carotenoid extracted from 100 % toluene but only by 6 - 7 %.

 

Graph showing the average percentage removal of car otenoid by different toluene -solvent mixes at 1 %, 5 %, and 10 %.
The percentage carotenoid removed by a 100 % toluene is 56.76 ± 1.93 % (black line) however 100 % acetone with no methanol wash extract

percentages of ethyl ether (red data points) is 55.20 ± 4.56 % (1 %), 60.80 
percentages of acetone (blue data points) is 55.32 % ± 3.02 % (1 %), 55.58 % ± 3.31 % (5 %), and 64.87 % ± 

different percentages of diethyl ether (green data points) is 52.37 % ± 0.55 % (1 %), 44.65 % ± 1.25 %
The trend observed in increasing percentages of acetone is the same as that observed in increasing concentrations of acetone.

10 % acetone and ethyl acetate the level of carotenoid extracted is equivalent to the level extracted with 100 % acetone. There is an improvement in the level of 
7 %. 
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solvent mixes at 1 %, 5 %, and 10 %.   
1.93 % (black line) however 100 % acetone with no methanol wash extracts 65.91 ± 2.69 % (purple 

4.56 % (1 %), 60.80 ± 2.75 (5 %), and 66.56 % ± 1.56 % 
acetone (blue data points) is 55.32 % ± 3.02 % (1 %), 55.58 % ± 3.31 % (5 %), and 64.87 % ± 

percentages of diethyl ether (green data points) is 52.37 % ± 0.55 % (1 %), 44.65 % ± 1.25 % (5 %), 
The trend observed in increasing percentages of acetone is the same as that observed in increasing concentrations of acetone. At both 

level extracted with 100 % acetone. There is an improvement in the level of 
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The membrane pellets of the 100 % toluene wash as well as the acetone/toluene 

and ethyl acetate/toluene mixes were re-suspended in 20 mM TRIS-HCl, pH 8.0 and 

the absorption spectrum measured to determine the effect of the different solvent 

washes on the light-harvesting complexes present (as described in Materials and 

Methods section 2.13). As the diethyl ether/toluene mix was ineffective at 

extracting carotenoids, the absorption spectra of the re-suspended pellets were not 

included. 

The absorption spectrum of the membranes from Alc. vinosum grown under 

sulphide, low light, 30 ̊C growth conditions produce absorption peaks at 807 nm, 

822 nm, and 890 nm in the NIR (Figure 5.27 black). The B800 NIR absorption peak 

blue shifted to 802 nm and reduced in intensity after membranes were washed in 

100 % toluene (Figure 5.27 purple), suggesting a potential loss of the B800 BChl. The 

absorption peak associated with the B820 BChl red-shifts by 2 nm to 824 nm, 

however the most substantial change is the blue shift of the LH1 absorption peak to 

878 nm. The blue shift of the LH1 peak suggests a loss of the carotenoid as 

observed in previous studies (125).  



 
 

 

Figure 5.27 Normalised absorption spectra of membranes from 
after washing in 100 % toluene. 
Membranes were prepared from 
conditions. The standard 
nm, and 890 nm. After washing with toluene 
nm, 824 nm, and 878 nm. 
reduction in intensity and the blue shifting of the B800 peak suggests a loss of the B800 BChl. 

Alc. vinosum membranes were washed in 1 %, 5 %, or 10 % acetone (v/v) in toluene 

and compared with standard membranes (Figure 5.28 black). The Qy absorption 

peaks observed after 1 % (Figure 5.28 dark red) and 5 % acetone (v/v) (Figure 5.28 

red) washes were centred at 802nm, 824 nm, and 878 nm and were at similar 

intensities. However after the 10 % acetone wash there was a dramatic reduction in 

the 802 nm peak relative to t

BChl. 

 

Normalised absorption spectra of membranes from Alc. vinosum
after washing in 100 % toluene.  
Membranes were prepared from Alc. vinosum grown in sulphide, under low light, at 30 

The standard SLL30 membranes (black) produce NIR absorption peaks at 807 nm, 822 
After washing with toluene (purple) the membranes absorption 

nm. The blue-shifting of the LH1 peak is indicative of the loss of carotenoids. The 
n intensity and the blue shifting of the B800 peak suggests a loss of the B800 BChl. 

membranes were washed in 1 %, 5 %, or 10 % acetone (v/v) in toluene 

and compared with standard membranes (Figure 5.28 black). The Qy absorption 

d after 1 % (Figure 5.28 dark red) and 5 % acetone (v/v) (Figure 5.28 

red) washes were centred at 802nm, 824 nm, and 878 nm and were at similar 

intensities. However after the 10 % acetone wash there was a dramatic reduction in 

the 802 nm peak relative to the 824 nm peak. This suggests the loss of the B800 
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Alc. vinosum cells before and 

grown in sulphide, under low light, at 30 ºC growth 
roduce NIR absorption peaks at 807 nm, 822 

absorption peaks shifted to 802 
shifting of the LH1 peak is indicative of the loss of carotenoids. The 

n intensity and the blue shifting of the B800 peak suggests a loss of the B800 BChl.  

membranes were washed in 1 %, 5 %, or 10 % acetone (v/v) in toluene 

and compared with standard membranes (Figure 5.28 black). The Qy absorption 

d after 1 % (Figure 5.28 dark red) and 5 % acetone (v/v) (Figure 5.28 

red) washes were centred at 802nm, 824 nm, and 878 nm and were at similar 

intensities. However after the 10 % acetone wash there was a dramatic reduction in 

he 824 nm peak. This suggests the loss of the B800 



 
 

 

Figure 5.28 Normalised absorption spectra of membranes from 
after washing in 1 %, 5 %, and 10 % acetone in tolu ene. 
Membranes were prepared from 
conditions. The standard 
nm, and 890 nm. After washing with 
to 802 nm, 824 nm, and 
802 nm peak was greatly reduced relative to the 824 nm peak, and the LH1 associated peak
shifted to  absorption peaks 
is indicative of the loss of carotenoids. The reduction in intensity and the blue shifting of the B800 peak 
suggests a loss of the B800 BChl. 

There was no substantial difference in the position of the NIR absorption peaks 

produced by Alc. vinosum

(Figure 5.29 red), and 10 % (Figure 5.29 pink) ethyl acetate (v/v). The NIR 

absorption peaks centre at 

peak reduced in intensity but less substantially than observed in other solvent 

mixes.  

 

Normalised absorption spectra of membranes from Alc. vinosum
after washing in 1 %, 5 %, and 10 % acetone in tolu ene.  

mbranes were prepared from Alc. vinosum grown in sulphide, under low light, at 30 
The standard SLL30 membranes (black) produce NIR absorption peaks at 807 nm, 822 

After washing with 1 % (dark red) and 5 % (red) acetone the absorption 
nm, and 878 nm. After washing with 10 % acetone in toluene

802 nm peak was greatly reduced relative to the 824 nm peak, and the LH1 associated peak
peaks shifted to 802 nm, 824 nm, and 877 nm.  The blue

is indicative of the loss of carotenoids. The reduction in intensity and the blue shifting of the B800 peak 
suggests a loss of the B800 BChl.  

e was no substantial difference in the position of the NIR absorption peaks 

Alc. vinosum membranes washed in 1 % (Figure 5.29 dark red), 5 % 

(Figure 5.29 red), and 10 % (Figure 5.29 pink) ethyl acetate (v/v). The NIR 

absorption peaks centre at 802nm, 824 nm, and 878 nm. The 802 nm absorption 

peak reduced in intensity but less substantially than observed in other solvent 
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Alc. vinosum cells before and 

grown in sulphide, under low light, at 30 ºC growth 
SLL30 membranes (black) produce NIR absorption peaks at 807 nm, 822 

1 % (dark red) and 5 % (red) acetone the absorption peaks shifted 
in toluene (pink) the intensity of the 

802 nm peak was greatly reduced relative to the 824 nm peak, and the LH1 associated peak blue 
The blue-shifting of the LH1 peak 

is indicative of the loss of carotenoids. The reduction in intensity and the blue shifting of the B800 peak 

e was no substantial difference in the position of the NIR absorption peaks 

membranes washed in 1 % (Figure 5.29 dark red), 5 % 

(Figure 5.29 red), and 10 % (Figure 5.29 pink) ethyl acetate (v/v). The NIR 

802nm, 824 nm, and 878 nm. The 802 nm absorption 

peak reduced in intensity but less substantially than observed in other solvent 



 
 

 

Figure 5.29 Normalised absorption spectra of membranes from 
after washing in 1 %, 5 %, and 10 % ethyl acetate i n toluene. 
Membranes were prepared from 
conditions. The standard 
nm, and 890 nm. After washing with 
shifted to 802 nm, 824 nm, and 
carotenoids.  

5.5 Conclusions

DPA inhibition studies confirmed that 

the absence of carotenoids, and the LH2 complexes produced are heavily 

carotenoid depleted. The B800

coloured carotenoids 

present into the B800

produce B800-820 and B800

observed if the cells grew or if carotenoid inc

red-shift of the dimeric BChl 

 

Normalised absorption spectra of membranes from Alc. 
after washing in 1 %, 5 %, and 10 % ethyl acetate i n toluene.  
Membranes were prepared from Alc. vinosum grown in sulphide, under low light, at 30 

The standard SLL30 membranes (black) produce NIR absorption pe
After washing with 1 % (dark red) and 5 % (red) ethyl acetate the absorption 

nm, and 878 nm.  The blue-shifting of the LH1 peak is indicative of the loss of 

Conclusions  

DPA inhibition studies confirmed that Alc. vinosum can produce LH2 complexes in 

the absence of carotenoids, and the LH2 complexes produced are heavily 

carotenoid depleted. The B800-850 LH2 complex was produced in the absence of 

coloured carotenoids however there was preferential incorporation of carotenoids 

present into the B800-820 LH2 complex. Under growth conditions that usually 

820 and B800-840 LH2 complex types, either very low inhibition was 

observed if the cells grew or if carotenoid incorporation was very low there was a 

dimeric BChl Qy peak. This suggests that carotenoid biosynthesis 
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Alc. vinosum cells before and 

grown in sulphide, under low light, at 30 ºC growth 
SLL30 membranes (black) produce NIR absorption peaks at 807 nm, 822 

1 % (dark red) and 5 % (red) ethyl acetate the absorption peaks 
shifting of the LH1 peak is indicative of the loss of 

can produce LH2 complexes in 

the absence of carotenoids, and the LH2 complexes produced are heavily 

produced in the absence of 

there was preferential incorporation of carotenoids 

820 LH2 complex. Under growth conditions that usually 

either very low inhibition was 

orporation was very low there was a 

Qy peak. This suggests that carotenoid biosynthesis 
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inhibition is affecting the LH2 peptides that are expressed, either directly or 

indirectly.  

The sulphide, high light, 30 ̊C growth conditions were identified as ideal for Alc. 

vinosum to produce nearly fully coloured carotenoid depleted B800-850 LH2 

complex. Tandem MS-MS was used to determine the peptide composition of the 

carotenoid depleted B800-850a LH2 complex, finding that all the peptides from the 

standard B800-850a were observed with the exception of the β5. 

The CrtI- ‘knock-out’ strain of Alc. vinosum was not completed within the time 

restraints of this project due to low yields of insert DNA during purification and 

complications in ligation into the final vector. To remedy this, new primers will be 

designed to create a new CrtI- insert. If this fails to produce a suitable yield, an 

alternative subvector will be used to amplify the insert for incorporation into 

PK18mobsacB. The creation of a carotenoidless Alc. vinosum mutant will allow 

large scale production of carotenoidless LH2 complexes. Additionally, this will allow 

the growth of Alc. vinosum under standard growth conditions without the use of a 

red filter. This will prevent any potential light effects on phytochrome regulation of 

production of the light-harvesting complexes. 

Carotenoid extractions using toluene suggest that toluene is not able to extract the 

same amount of carotenoids present within the membranes as benzene. Benzene 

washes can extract up to 90 % of carotenoids present (68), whereas the highest 

level of carotenoid extraction was 66 % by 10 % ethyl acetate (v/v). The B800 peak 

of the LH2 complex, and the LH1 absorption peak blue shifted after washes with the 

toluene-solvent mixes however the LH2 peak associated with the B820 BChl did not 

shift substantially. This may indicate that the carotenoids were extracted 

predominantly from the LH1 complex and not the LH2 complex, which has been 

observed previously (68). The effects of the solvent washes on the stability of the 

light-harvesting complexes appear to be minimal, however the experiments must be 

repeated on purified complexes to confirm this.  
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 Chapter 6 - Reversible dissociation of the 
carotenoidless B800-850 LH2 complex from Alc. 
vinosum 

6.1 Introduction 

This chapter aims to test that reversible dissociation can be performed on the 

carotenoid depleted B800-850 LH2 complex type from Alc. vinosum developed in 

this work (Chapter 5 section 5.2) using the reconstitution protocol developed for 

LH1 by the Loach group. 

Reconstitution is a standard biochemical technique wherein a complex is taken 

apart and put back together again or created de novo from constituent parts. 

Alternative components can be substituted during the process, determining the 

importance of different structural elements to protein binding, function, and 

complex formation. This process has been successfully developed by the Loach 

group and applied to the LH1 complex from several different purple photosynthetic 

bacterial species (68, 122, 123, 125). The LH1 complexes were associated with non-

native pigments and/or altered polypeptides substituted in place of native 

polypeptides. This process has been instrumental in elucidating important 

structural-function relationships due to the changes in function observed e.g. 

absorption maxima positions and intensities, energy transfer efficiencies, and 

formation of the complex.  

The process of reversible dissociation of the LH1 complex has relied on the use of 

detergent such as octyl glucoside (OG) in high concentrations to dissociate a 

carotenoidless complex (32, 121-123). This process is then reversed by the dilution 

of detergent and addition of carotenoid that moves the equilibrium towards 

complex reformation (as outlined in Introduction section 1.4). Alternatively, the 

LH1 can be created from scratch (de Novo) with the separate isolated and purified 

components, e.g. BChl, alpha and beta polypeptides, and carotenoids. The 

components are then placed in conditions that favour complex formation.  
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Reconstitution has rarely been used successfully on an LH2 complex (127, 128) as 

most LH2 complexes cannot form in the absence of carotenoid. A carotenoid 

depleted B800-850 LH2 complex was developed previously in this work (Chapter 5 

section 5.2) and provides an opportunity to perform reversible dissociation studies. 

Successful reconstitution studies on a carotenoid depleted B800-850 LH2 complex 

would prove that the process can work and future studies can work to optimise LH2 

reconstitution. 

6.2 Dissociation using detergents of both standard and 
carotenoid depleted B800-850 LH2 complexes 

Reversible dissociation as a method of reconstitution involves the addition of an 

excess of detergent, usually OG, in order to pull the complex of interest apart. 

Upon dilution of the detergent the complex should begin to reform, initially the 

heterodimer subunits and then, upon a further reduction in detergent 

concentration, the full complex.  

The carotenoid plays an important role in stabilising the LH2 complex, indicating 

that the presence or absence of carotenoid should affect the ability of detergent to 

disassemble the LH2 complex. The standard B800-850 LH2 complex was exposed to 

high concentrations of several detergents to identify whether the presence of 

carotenoids prevented dissociation, and if not whether the complex could be 

reformed after dissociation occurred (as described in Methods and Materials section 

2.14.2). These experiments were then repeated on carotenoid depleted B800-850 

LH2 complex types produced by Alc. vinosum in the presence of the carotenoid 

biosynthesis inhibitor DPA. These experiments will confirm whether the LH2 

complexes can be reconstituted without needing to create a carotenoidless LH2. 

Additionally, the results will determine whether the carotenoid depleted B800-850 

LH2 samples can be reversibly dissociation while still containing some coloured 

carotenoids. 

Most previous work has used 3.5 – 5 % OG, depending on the concentration of light-

harvesting complexes, to dissociate the carotenoid depleted complex (68, 121, 125) 
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added from a 20 % OG stock (32). Alternatively, Ghosh et al (131) used 

lauryldimethylamine oxide (LDAO) on the LH1 from Rsp. rubrum G9 to dissociate 

the complex, however LDAO has been implicated as too detrimental to the 

complexes to allow reformation after dissociation (126).  

In order to detergent exchange the complexes into LDAO and OG they were purified 

in DM (as outlined in Methods and Materials section 2.5.2), as DM is easily dialysed 

out. The LH2 complexes from Alc. vinosum were detergent exchanged into the CMC 

of LDAO or OG.  

Temperature affects on detergent have to be taken into consideration during 

reconstitution specifically in the case of the non-ionic detergent OG. There is an 

increase in the CMC of OG as temperature decreases (180). Reducing the 

temperature is thus used to move the LH2 complexes towards reformation, as has 

been done previously with reconstitution of the LH1 (68). It was established that, at 

room temperature, 0.6-0.8 % OG was the concentration of OG required to reform 

the subunit of the LH1 and reducing the concentration down to 0.3-4 % OG pushes 

towards whole complex reformation (121). The initial process of reforming the 

subunit is very quick while the reformation of the full complex takes longer, usually 

overnight (121).  

Absorbance spectroscopy is effective at monitoring the status of the LH2 

complexes, as when the detergent disrupts the structure it affects the binding of 

the pigments and thus the absorption spectrum. As the complex falls apart and the 

pigments are released into solution the Qy peaks of the BChl blue-shift towards the 

wavelength at which free, unbound BChl absorb (~780 nm). Absorption spectra of 

the B800-850 LH2 complex type were obtained at several stages of the process. The 

initial absorption spectrum was of the LH2 complex in buffer containing the CMC of 

the relevant detergent to determine the state of the complex before dissociation. A 

concentrated solution of detergent was added and the sample left at room 

temperature for an hour before the second absorption spectrum was recorded. If 

little to no difference was observed in the absorption spectrum the sample was left 
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at room temperature overnight (ON). The final spectrum was obtained to determine 

the level of dissociation that had occurred. 

6.2.1 Detergent dissociation of the standard B800-850 LH2  complex 
using LDAO and OG 

The stability of the standard B800-850 LH2 from Alc. vinosum was tested through 

the use of high concentrations of several detergents known to dissociate 

carotenoidless light-harvesting complexes, LDAO and OG.  

The standard B800-850 LH2 complex was detergent exchanged into 0.1 % LDAO (v/v) 

from DM (Figure 6.1 black) causing the NIR absorption peaks to centre at 802 nm 

and 836 nm. After the detergent concentration was increased (Figure 6.1 blue) 

there was no change in the wavelength at which the absorption peaks centred after 

the increase in detergent concentration but there was a reduction in their 

intensity. The 802 nm reduced to a lower intensity relative to the other split B800 

peak at 798 nm. A shoulder in the absorption at ~ 780 nm develops after an hour at 

2 % (v/v) LDAO. A peak at ~ 780 nm is often associated with free BChl suggesting 

that some of the BChl are no longer bound within the protein scaffold. After the 

sample was left at room temperature overnight (Figure 6.1 red), the red-most 

absorption peak red shifted to 839 nm and there was a further reduction in the split 

B800 peaks. The absorption shoulder at ~780 nm increased in intensity and a peak 

at ~ 680 nm was observed. The peak at ~ 680 nm suggests the BChl are becoming 

oxidised. This presence of free BChl suggests that there is BChl loss from the LH2 

however the relative stability of the position of the B850 peak suggests the complex 

is not dissociating. 



 
 

 

Figure 6.1 Normalised absorption spectra of the standard B800
vinosum in 0.1 % LDAO and at 2% LDAO. 
At 0.1 % LDAO (black) the peaks of the B800
the concentration of LDAO is increased to 2 % 
shoulder develops at ~ 780 nm
intensity after the B800
nm, indicating the oxidation of the BChl.

Fresh B800-850 LH2 complex was detergent exchanged into OG to determine 

whether the standard LH2 complex would dissociate in OG. The absorption 

spectrum after detergent exchange into OG produced peaks in the N

and 827 nm (Figure 6.2 black). The concentration of OG was increased to 5 % (w/v)

(Figure 6.2 blue) and the position of the Qy peaks did not change 

intensity was reduced. After the sample was left overnight no further differences

the spectra were observed (Figure 6.2 red). This suggests the standard B800

LH2 complex is relatively stable in OG even at 5 % OG. 

tested successfully dissociated standard B800

presence of the carotenoid prevents dissociation. 

 

Normalised absorption spectra of the standard B800 -850 LH2 complex from 
in 0.1 % LDAO and at 2% LDAO.  

(black) the peaks of the B800-850 LH2 complex centre at 
the concentration of LDAO is increased to 2 % (blue) there is a loss in intensity of the Qy peaks and a 

at ~ 780 nm suggesting the presence of free BChl. The peaks are further reduced in 
intensity after the B800-850 LH2 has been left overnight (red). Additionally, a peak develops at 
nm, indicating the oxidation of the BChl. 

850 LH2 complex was detergent exchanged into OG to determine 

whether the standard LH2 complex would dissociate in OG. The absorption 

spectrum after detergent exchange into OG produced peaks in the N

and 827 nm (Figure 6.2 black). The concentration of OG was increased to 5 % (w/v)

(Figure 6.2 blue) and the position of the Qy peaks did not change 

intensity was reduced. After the sample was left overnight no further differences

the spectra were observed (Figure 6.2 red). This suggests the standard B800

LH2 complex is relatively stable in OG even at 5 % OG. None of the detergents 

tested successfully dissociated standard B800-850 LH2 complex, 

the carotenoid prevents dissociation.  
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850 LH2 complex from Alc. 

850 LH2 complex centre at 802 nm and 836 nm. When 
here is a loss in intensity of the Qy peaks and a 

suggesting the presence of free BChl. The peaks are further reduced in 
850 LH2 has been left overnight (red). Additionally, a peak develops at ~680 

850 LH2 complex was detergent exchanged into OG to determine 

whether the standard LH2 complex would dissociate in OG. The absorption 

spectrum after detergent exchange into OG produced peaks in the NIR at 804 nm 

and 827 nm (Figure 6.2 black). The concentration of OG was increased to 5 % (w/v) 

(Figure 6.2 blue) and the position of the Qy peaks did not change however their 

intensity was reduced. After the sample was left overnight no further differences in 

the spectra were observed (Figure 6.2 red). This suggests the standard B800-850 

None of the detergents 

850 LH2 complex, indicating that the 



 
 

 

Figure 6.2 Normalised absorption spectra of the standard B800
vinosum in 0.7 % OG and at 5 % OG. 
At 0.7 % OG (black) the peaks of the B800
concentration of OG is increased to 5 % (blue) t
positions don not change. The peaks do not change further if the sample is left overnight at 5 % OG 
(red). The peaks are further reduced in intensity after the B800

6.2.2 Reversible dissociation of the carotenoid depleted B800
using LDAO and OG

The stability of the carotenoidless B800

through the use of high concentrations of LDAO and OG. Upon dissociation, the 

detergent concentration was diluted back to the CMC in an attempt to reform the 

LH2 complexes.  

The carotenoid depleted B800

LDAO (v/v) and the Qy bands of the LH2 complexes centred at 794 nm and 832 nm 

 

Normalised absorption spectra of the standard B800 -850 LH2 complex from 
in 0.7 % OG and at 5 % OG.  

OG (black) the peaks of the B800-850 LH2 complex centre at 804 nm and 827 nm
concentration of OG is increased to 5 % (blue) there is a reduction in the peak intensity but the peak 
positions don not change. The peaks do not change further if the sample is left overnight at 5 % OG 
(red). The peaks are further reduced in intensity after the B800-850 LH2 has been left overnight (red). 

Reversible dissociation of the carotenoid depleted B800
using LDAO and OG  

The stability of the carotenoidless B800-850 LH2 from Alc. vinosum

through the use of high concentrations of LDAO and OG. Upon dissociation, the 

detergent concentration was diluted back to the CMC in an attempt to reform the 

The carotenoid depleted B800-850 LH2 complex was detergent exchanged into 0.1

LDAO (v/v) and the Qy bands of the LH2 complexes centred at 794 nm and 832 nm 
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850 LH2 complex from Alc. 

804 nm and 827 nm. When the 
reduction in the peak intensity but the peak 

positions don not change. The peaks do not change further if the sample is left overnight at 5 % OG 
850 LH2 has been left overnight (red).  

Reversible dissociation of the carotenoid depleted B800-850 

Alc. vinosum was tested 

through the use of high concentrations of LDAO and OG. Upon dissociation, the 

detergent concentration was diluted back to the CMC in an attempt to reform the 

850 LH2 complex was detergent exchanged into 0.1 % 

LDAO (v/v) and the Qy bands of the LH2 complexes centred at 794 nm and 832 nm 
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(Figure 6.3 green). The peak at 832 nm was dramatically lower than the B800 split 

peaks, and there is a shoulder in the absorbance at ~ 780 nm. The NIR absorption 

peaks observed are blue-shifted relative to the positions from the standard B800-

850 in 0.1 % LDAO (v/v) by 2 nm for the 796 nm peak and by 4 nm for the B850 

peak. This may indicate that the LH2 complexes were beginning to dissociate at low 

LDAO concentrations. The concentration of LDAO was increased to 2 % (Figure 6.3 

blue) and the absorption peaks further blue shifted to peaks at 776 and 689 nm with 

a shoulder at ~830 nm. These values suggest the BChl are no longer bound to the 

proteins and are free in solution therefore the complexes are fully dissociated at 2 

% LDAO (v/v). Only the peak at 689 nm increased after the sample was left at room 

temperature overnight (Figure 6.3 red). The concentration of the detergent was 

diluted down to 0.1 % LDAO (v/v) and the sample placed on ice to encourage 

reconstitution of the complex (Figure 6.3 red dotted line). After the sample was 

diluted back to 0.1 % LDAO (v/v) the Qy peak did not shift towards the red end of 

the spectrum. This implies the complex did not begin to reform. This suggests that 

dissociation with LDAO causes negative effects on the LH2 complex to the degree 

that dissociation is non-reversible. 



 
 

 

Figure 6.3 Normalised absorption spectra of the carotenoid dep leted B800
from Alc. vinosum in 0.1 % LDAO and at 2% LDAO. 
At 0.1 % LDAO (green) the peaks of the B800
the concentration of LDAO is incre
presence of free BChl, and an increase of the peak at 689 nm indicating the BChl was oxidising. There 
was no change in peak position after the sample was left overnight (red) or when the concentra
detergent was diluted (red dotted line).

Reversible dissociation was repeated on the carotenoid depleted B800

complex using OG. The LH2 complex was detergent exchanged into 0.7 % OG (w/v) 

and the NIR absorption peaks centred at 804 nm with 

6.4 green). The concentration of OG was increased to 5 % (w/v) (Figure 6.4 blue) 

and the absorption peaks blue shifted to a single peak at 792 nm with a shoulder at 

~830 nm. After the sample was left overnight at room tempera

the peak blue shifted further to 788 nm. The position of the peak indicated the LH2 

complexes had dissociated and so the detergent concentration was reduced. The 

NIR absorption spectrum showed a single peak at 805 nm after the concent

 

Normalised absorption spectra of the carotenoid dep leted B800
in 0.1 % LDAO and at 2% LDAO.  

(green) the peaks of the B800-850 LH2 complex centre at 794 nm and 832
the concentration of LDAO is increased to 2 % (blue) the peaks shift to 776 nm suggesting the 
presence of free BChl, and an increase of the peak at 689 nm indicating the BChl was oxidising. There 
was no change in peak position after the sample was left overnight (red) or when the concentra
detergent was diluted (red dotted line). 

Reversible dissociation was repeated on the carotenoid depleted B800

complex using OG. The LH2 complex was detergent exchanged into 0.7 % OG (w/v) 

and the NIR absorption peaks centred at 804 nm with a shoulder at ~ 820 nm (Figure 

6.4 green). The concentration of OG was increased to 5 % (w/v) (Figure 6.4 blue) 

and the absorption peaks blue shifted to a single peak at 792 nm with a shoulder at 

~830 nm. After the sample was left overnight at room tempera

the peak blue shifted further to 788 nm. The position of the peak indicated the LH2 

complexes had dissociated and so the detergent concentration was reduced. The 

NIR absorption spectrum showed a single peak at 805 nm after the concent
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Normalised absorption spectra of the carotenoid dep leted B800 -850 LH2 complex 

850 LH2 complex centre at 794 nm and 832 nm. When 
ased to 2 % (blue) the peaks shift to 776 nm suggesting the 

presence of free BChl, and an increase of the peak at 689 nm indicating the BChl was oxidising. There 
was no change in peak position after the sample was left overnight (red) or when the concentration of 

Reversible dissociation was repeated on the carotenoid depleted B800-850 LH2 

complex using OG. The LH2 complex was detergent exchanged into 0.7 % OG (w/v) 

a shoulder at ~ 820 nm (Figure 

6.4 green). The concentration of OG was increased to 5 % (w/v) (Figure 6.4 blue) 

and the absorption peaks blue shifted to a single peak at 792 nm with a shoulder at 

~830 nm. After the sample was left overnight at room temperature (Figure 6.4 red) 

the peak blue shifted further to 788 nm. The position of the peak indicated the LH2 

complexes had dissociated and so the detergent concentration was reduced. The 

NIR absorption spectrum showed a single peak at 805 nm after the concentration of 



 
 

 

OG was diluted (Figure 6.4 dotted pink line). The red

nm after OG dilution suggests the LH2 complexes are at least partially reforming; 

suggesting that dissociation with OG is reversible.

Figure 6.4 Normalised absorption spectra of the carotenoid dep leted B800
from Alc. vinosum in 0.7 % OG and at 5% OG. 
At 0.7 % OG (green) the peaks of the B800
818 nm. When the concentration of OG is increased to 5 % (blue) the peaks shift to 792  nm 
suggesting the presence of free BChl, and a small increase of the peak at 689 nm indicating the BChl 
was oxidising. There was a small blue shift in the peak position after
(red) to 788 nm. After the dilution of OG
absorption shoulder at ~ 818 nm failed to reform

In the case of OG, full dissociation of all the complexes doesn’t occur there

small shoulder present at ~830 nm. Previous work with OG 

remove the shoulder fully an excess of 20 % OG was needed. The benefits of this 

would be outweighed by the chemical changes that can occur on the BChl in the 

 

OG was diluted (Figure 6.4 dotted pink line). The red-shift of the Qy peak to 804 

nm after OG dilution suggests the LH2 complexes are at least partially reforming; 

suggesting that dissociation with OG is reversible. 

Normalised absorption spectra of the carotenoid dep leted B800
in 0.7 % OG and at 5% OG.  

OG (green) the peaks of the B800-850 LH2 complex centre at 804 nm
. When the concentration of OG is increased to 5 % (blue) the peaks shift to 792  nm 

suggesting the presence of free BChl, and a small increase of the peak at 689 nm indicating the BChl 
was oxidising. There was a small blue shift in the peak position after the sample was left overnight 

fter the dilution of OG, the absorption peak red-shifted 
at ~ 818 nm failed to reform. 

In the case of OG, full dissociation of all the complexes doesn’t occur there

small shoulder present at ~830 nm. Previous work with OG 

remove the shoulder fully an excess of 20 % OG was needed. The benefits of this 

would be outweighed by the chemical changes that can occur on the BChl in the 
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shift of the Qy peak to 804 

nm after OG dilution suggests the LH2 complexes are at least partially reforming; 

 

Normalised absorption spectra of the carotenoid dep leted B800 -850 LH2 complex 

at 804 nm with a shoulder at ~ 
. When the concentration of OG is increased to 5 % (blue) the peaks shift to 792  nm 

suggesting the presence of free BChl, and a small increase of the peak at 689 nm indicating the BChl 
the sample was left overnight 
ed to 804 nm, however the 

In the case of OG, full dissociation of all the complexes doesn’t occur there is still a 

small shoulder present at ~830 nm. Previous work with OG (121) found that to 

remove the shoulder fully an excess of 20 % OG was needed. The benefits of this 

would be outweighed by the chemical changes that can occur on the BChl in the 
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presence of OG, namely the formation of 132-hydroxy-BChl that absorbs at 777 nm 

but is not able to reconstitute within the complex (32). The failure of the 

complexes to reform after reform in LDAO indicates that the detergent may be 

having a deleterious effect on either the proteins or the pigments, preventing the 

re-association.  

6.3 Reversible dissociation of the carotenoid deple ted 
B800-850 with carotenoid addition 

The addition of carotenoid to dissociated LH1 is known to push the equilibrium 

towards complex reformation, and so carotenoid addition is used in conjunction 

with detergent dilution to re-associate the complex. Reversible dissociation was 

repeated using carotenoid depleted B800-850 LH2 complexes in OG, but with the 

addition of carotenoid (as described in Methods and Materials section 2.14.4). The 

addition of carotenoid should increase the yield of reconstituted complex by adding 

more structural stability. Previous work in this study (Chapter 4 section 4.3) has 

confirmed the carotenoids present within the LH2 complexes of Alc. vinosum are of 

the spirilloxanthin series (164). As the carotenoids of the spirilloxanthin series are 

naturally found in the LH2 complexes of Alc. vinosum the carotenoid binding site 

should be able to accommodate them easily. This should test the procedure without 

any carotenoid binding difficulties. Carotenoids were extracted as outlined in 

Methods and Materials section 2.14.1. 

To test proof of concept these native carotenoids of the spirilloxanthin pathway 

(spirilloxanthin, lycopene, and rhodopin) were added to detergent dissociated 

carotenoid depleted LH2 complexes of Alc. vinosum.  

RD with spirilloxanthin 

Spirilloxanthin is one of the carotenoids identified in Alc. vinosum previously in this 

work (Chapter 4 section 4.3.2) as the second most prevalent carotenoid across all 

LH2 complex types (19 ±1% (164) or 6.0 ± 0.7 % (Magdong et al, 2015) in the B800-

850 LH2 complex). Spirilloxanthin was extracted and purified from Rsp. rubrum S1 
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using a deactived alumina column (as described in Methods and Materials section 

2.14.1). Carotenoid depleted B800-850 LH2 complexes from Alc. vinosum (Figure 

6.5 green) were not carotenoidless but had a dramatically reduced carotenoid 

content. The NIR absorption peaks centre at 796 nm and 830 nm due to the effects 

of OG detergent. The LH2 complexes were dissociated and spirilloxanthin was 

added in as the detergent concentration was reduced. After the RD LH2 complexes 

were detergent exchanged into 0.02 % DDM (w/v) the B850 absorption peak (Figure 

6.5 pink) red-shifted back to 838 nm with a single peak present at 796 nm for the 

split B800 peak. The ratio observed between the B800 and B850 Qy peaks is close to 

1:1 in the reversibly dissociated sample. In the standard B800-850 LH2 complex, the 

Qy peaks centre at 847 nm and 796 nm in DDM (Figure 6.5 dark red) and the 847 nm 

peak is higher than the 796 nm peak. Whereas the fully carotenoidless LH2 complex 

(Figure 6.5 blue) produces absorption peaks at 841 and 796 nm. The absorption 

peaks of the RD LH2 complex do not red-shift as far as observed in either the 

standard LH2 complex or the carotenoidless LH2 complex suggesting that the 

complex is only partially reformed. The level of carotenoid observed is still much 

lower than that observed in the standard LH2 complex. 



 
 

 

Figure 6.5 Normalised absorption spectra of the carotenoid dep leted B800
vinosum pre and post reversible dissociation with spirillox anthin. 
The standard B800-850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 
carotenoidless B800-850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 
nm. The carotenoid depleted B800
produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with spirilloxanthin and detergent exchange into 0.02 % DDM (red) the LH2 
complex produces peaks at 838 nm, 796nm, 484 nm, with shou
carotenoid absorption peaks are higher 

The post-RD LH2 complex was concentrated down and visually compared with the 

pre-RD carotenoid depleted B800

850 LH2 complex was visibly red while the carotenoid depleted LH2 complex was 

green in colour. Potentially this may be due to free carotenoid pigments that are 

not within the LH2 complexes. Further purification by eit

centrifugation or anion exchange would confirm the removal of any unbound 

carotenoids but the concentration of RD B800

either technique.  

 

Normalised absorption spectra of the carotenoid dep leted B800
pre and post reversible dissociation with spirillox anthin.  

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 
The carotenoid depleted B800-850 LH2 complex (green) in 0.7 % OG (w/v) prior to disso

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with spirilloxanthin and detergent exchange into 0.02 % DDM (red) the LH2 
complex produces peaks at 838 nm, 796nm, 484 nm, with shoulders at ~ 430 nm, and ~ 525 nm. T

peaks are higher after RD but there is more scattering than normally observed.

RD LH2 complex was concentrated down and visually compared with the 

RD carotenoid depleted B800-850 LH2 complex (Figure 6.6). The post

850 LH2 complex was visibly red while the carotenoid depleted LH2 complex was 

green in colour. Potentially this may be due to free carotenoid pigments that are 

not within the LH2 complexes. Further purification by either sucrose density 

centrifugation or anion exchange would confirm the removal of any unbound 

carotenoids but the concentration of RD B800-850 LH2 complex was too low for 
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Normalised absorption spectra of the carotenoid dep leted B800 -850a from Alc. 
 

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 841 nm and 796 
850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with spirilloxanthin and detergent exchange into 0.02 % DDM (red) the LH2 

lders at ~ 430 nm, and ~ 525 nm. The 
but there is more scattering than normally observed.  

RD LH2 complex was concentrated down and visually compared with the 

complex (Figure 6.6). The post-RD B800-

850 LH2 complex was visibly red while the carotenoid depleted LH2 complex was 

green in colour. Potentially this may be due to free carotenoid pigments that are 

her sucrose density 

centrifugation or anion exchange would confirm the removal of any unbound 

850 LH2 complex was too low for 



 
 

 

Figure 6.6 Visua l comparison of the carotenoid depleted B800
after reversible dissociation with spirilloxanthin.  
The pre-RD B800-850 LH2 complex was visibly green in colour, due to the low level of carotenoids 
present. After RD with spirilloxan
the presence of carotenoids in the sample. The volume and concentration of the sample was very low.

RD with lycopene

Previously in this work (Chapter 4 section 

in all the analysed LH2 complexes of 

than 5 % of the usual carotenoid complement 

lycopene will indicate whether the carotenoid binding sites have a level of 

exclusivity with regards to the carotenoids that are able to bind and may indicate 

whether differences in carotenoid composition are due to the binding pocket or

simply the abundance of the carotenoid during LH2 complex formation. Lycopene 

was extracted and purified from tomato paste using an alumina column (as 

described in Methods and Materials section 

850 LH2 complex was dis

diluted to 1 % and lyocpene added (as described in Methods and Materials section 

2.14.4). After reversible dissociation the LH2 complexes were detergent exchanged 

into DDM and purified by sucrose dens

enough to travel through the sucrose gradient. Only one band was observed in the 

sucrose density gradient, equilibrating at ~ 0.8 M sucrose (Figure 6.7) and this was 

of a yellow colour suggesting the incorporatio

 

 

l comparison of the carotenoid depleted B800 -850 LH2 complex before and 
after reversible dissociation with spirilloxanthin.   

850 LH2 complex was visibly green in colour, due to the low level of carotenoids 
present. After RD with spirilloxanthin the B800-850 LH2 complex was red/orange in colour indicating 
the presence of carotenoids in the sample. The volume and concentration of the sample was very low.

RD with lycopene  

Previously in this work (Chapter 4 section 4.3.2), lycopene was identifie

in all the analysed LH2 complexes of Alc. vinosum, however lycopene makes up less 

than 5 % of the usual carotenoid complement (164). Reversibl

lycopene will indicate whether the carotenoid binding sites have a level of 

exclusivity with regards to the carotenoids that are able to bind and may indicate 

whether differences in carotenoid composition are due to the binding pocket or

simply the abundance of the carotenoid during LH2 complex formation. Lycopene 

was extracted and purified from tomato paste using an alumina column (as 

described in Methods and Materials section 2.14.1). The carotenoid depleted B800

850 LH2 complex was dissociated with 5 % OG overnight before the detergent was 

diluted to 1 % and lyocpene added (as described in Methods and Materials section 

.4). After reversible dissociation the LH2 complexes were detergent exchanged 

into DDM and purified by sucrose density centrifugation as lycopene is not dense 

enough to travel through the sucrose gradient. Only one band was observed in the 

sucrose density gradient, equilibrating at ~ 0.8 M sucrose (Figure 6.7) and this was 

of a yellow colour suggesting the incorporation of lycopene.
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850 LH2 complex before and 

850 LH2 complex was visibly green in colour, due to the low level of carotenoids 
850 LH2 complex was red/orange in colour indicating 

the presence of carotenoids in the sample. The volume and concentration of the sample was very low. 

.3.2), lycopene was identified as present 

, however lycopene makes up less 

. Reversible dissociation with 

lycopene will indicate whether the carotenoid binding sites have a level of 

exclusivity with regards to the carotenoids that are able to bind and may indicate 

whether differences in carotenoid composition are due to the binding pocket or 

simply the abundance of the carotenoid during LH2 complex formation. Lycopene 

was extracted and purified from tomato paste using an alumina column (as 

.1). The carotenoid depleted B800-

sociated with 5 % OG overnight before the detergent was 

diluted to 1 % and lyocpene added (as described in Methods and Materials section 

.4). After reversible dissociation the LH2 complexes were detergent exchanged 

ity centrifugation as lycopene is not dense 

enough to travel through the sucrose gradient. Only one band was observed in the 

sucrose density gradient, equilibrating at ~ 0.8 M sucrose (Figure 6.7) and this was 

n of lycopene. 



 
 

 

Figure 6.7 Sucrose density centrifugation gradient of B800
dissociated with lycopene. 
The sucrose concentrations of the sucrose density gradient are shown to the le
B800-850 LH2 complex equilibrated to ~ 0.8 M sucrose and appeared as a yellow band, suggesting 
the incorporation of lycopene. Unbound lycopene did not move through the gradient. 

The absorption spectrum of the purified RD B800

produces peaks at 797 nm and 843 nm in the NIR. The red

is not to the extent of the standard B800

847 nm. However, the red

than that observed in the carotenoidless LH2 complex (Figure 6.8 blue). This 

suggests the incorporation of lycopene is causing the Qy peak to red

of the B800 peak to the B850 peak is 1:1, indicating that the complex may o

partially reformed as in both the standard and carotenoid depleted LH2 complexes 

the B850 peak is substantially higher than the B800 peak. The pre

complexes produces (Figure 6.8 green) peaks at 

shoulder at ~ 526 nm

with lycopene the peaks at 452 nm, 484 nm, and ~ 526 nm all increase in intensity 

but the peak at 431 nm does not. The three peaks that increase in intensity relate 

to lycopene, supporting the fact that the level of lycopene in the LH2 complexes 

has increased. 

 

 

Sucrose density centrifugation gradient of B800 -850 LH2 complex reversibly 
dissociated with lycopene.  

ucrose concentrations of the sucrose density gradient are shown to the le
850 LH2 complex equilibrated to ~ 0.8 M sucrose and appeared as a yellow band, suggesting 

the incorporation of lycopene. Unbound lycopene did not move through the gradient. 

The absorption spectrum of the purified RD B800-850 LH2 complex (Figure 6.8 pink) 

produces peaks at 797 nm and 843 nm in the NIR. The red-shift of the B850 Qy band 

is not to the extent of the standard B800-850 LH2 complex (Figure 6.8 dark red) at 

847 nm. However, the red-shift of the B850 Qy RD B800-850 LH2 c

than that observed in the carotenoidless LH2 complex (Figure 6.8 blue). This 

suggests the incorporation of lycopene is causing the Qy peak to red

of the B800 peak to the B850 peak is 1:1, indicating that the complex may o

partially reformed as in both the standard and carotenoid depleted LH2 complexes 

the B850 peak is substantially higher than the B800 peak. The pre

complexes produces (Figure 6.8 green) peaks at 431 nm, 452 nm, 484 nm, and a 

at ~ 526 nm in the carotenoid region of the absorption spectrum

with lycopene the peaks at 452 nm, 484 nm, and ~ 526 nm all increase in intensity 

but the peak at 431 nm does not. The three peaks that increase in intensity relate 

orting the fact that the level of lycopene in the LH2 complexes 
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850 LH2 complex reversibly 

ucrose concentrations of the sucrose density gradient are shown to the left of the tube. The RD 
850 LH2 complex equilibrated to ~ 0.8 M sucrose and appeared as a yellow band, suggesting 

the incorporation of lycopene. Unbound lycopene did not move through the gradient.  

2 complex (Figure 6.8 pink) 

shift of the B850 Qy band 

850 LH2 complex (Figure 6.8 dark red) at 

850 LH2 complex is further 

than that observed in the carotenoidless LH2 complex (Figure 6.8 blue). This 

suggests the incorporation of lycopene is causing the Qy peak to red-shift. The ratio 

of the B800 peak to the B850 peak is 1:1, indicating that the complex may only be 

partially reformed as in both the standard and carotenoid depleted LH2 complexes 

the B850 peak is substantially higher than the B800 peak. The pre-RD B800-850 LH2 

431 nm, 452 nm, 484 nm, and a 

in the carotenoid region of the absorption spectrum. After RD 

with lycopene the peaks at 452 nm, 484 nm, and ~ 526 nm all increase in intensity 

but the peak at 431 nm does not. The three peaks that increase in intensity relate 

orting the fact that the level of lycopene in the LH2 complexes 



 
 

 

Figure 6.8 Normalised absorption spectra of the carotenoid dep leted B800
vinosum pre and post reversible dissocia
The standard B800-850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 
carotenoidless B800-850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks a
nm. The carotenoid depleted B800
produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with lycopene and detergen
complex produces peaks at 843 nm, 797 nm, 461 nm, 
increase in the carotenoid peaks at 452 nm, 484 nm, and 526 nm after RD 
level of carotenoid present.

To confirm that the carotenoids observed in the absorption spectrum of the RD 

B800-850 are incorporated within the LH2 complex the fluorescence emission 

spectrum was obtained (as described in Methods and Materials section 

fluorescence emission of the carotenoid depleted B800

green) before reversible dissociation produces an emission peak at ~850 nm at an 

intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 

 

Normalised absorption spectra of the carotenoid dep leted B800
pre and post reversible dissocia tion with lycopene.  

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks a
The carotenoid depleted B800-850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with lycopene and detergent exchange into 0.02 % DDM (pink), the LH2 
complex produces peaks at 843 nm, 797 nm, 461 nm, 452 nm, 484 nm, and ~ 526 nm
increase in the carotenoid peaks at 452 nm, 484 nm, and 526 nm after RD 

present. 

To confirm that the carotenoids observed in the absorption spectrum of the RD 

850 are incorporated within the LH2 complex the fluorescence emission 

spectrum was obtained (as described in Methods and Materials section 

mission of the carotenoid depleted B800-850 LH2 complex (Figure 6.9 

green) before reversible dissociation produces an emission peak at ~850 nm at an 

intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 
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Normalised absorption spectra of the carotenoid dep leted B800 -850a from Alc. 

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 841 nm and 796 
850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
t exchange into 0.02 % DDM (pink), the LH2 

452 nm, 484 nm, and ~ 526 nm. There is an 
increase in the carotenoid peaks at 452 nm, 484 nm, and 526 nm after RD indicating an increase in the 

To confirm that the carotenoids observed in the absorption spectrum of the RD 

850 are incorporated within the LH2 complex the fluorescence emission 

spectrum was obtained (as described in Methods and Materials section 2.6). The 

850 LH2 complex (Figure 6.9 

green) before reversible dissociation produces an emission peak at ~850 nm at an 

intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 



 
 

 

dissociation with lycopene (

was similar, centring at ~ 850 nm with a shoulder at ~ 810 nm however the intensity 

was much higher at ~ 12,000 counts. The increase in energy transfer indicates a 

larger amount of carotenoids are able

BChl. As energy transfer from the carotenoids to the BChl can only occur within van 

der Waals distance, the emission from the BChl suggests the carotenoids are bound 

close to the BChl thus within the protein sc

emission peak implies the BChl seem to be properly bound but this would need to 

be confirmed by a technique such as CD 

Figure 6.9 Fluorescence emission spectra of the carotenoid dep leted B8
vinosum pre and post reversible dissociation with lycopene.  
The carotenoid depleted B800
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociati
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 
wavelengths but of a higher intensity, up to ~ 12,000 counts from ~ 4000. 

 

dissociation with lycopene (Figure 6.9 red) the emission spectrum the peak profile 

was similar, centring at ~ 850 nm with a shoulder at ~ 810 nm however the intensity 

was much higher at ~ 12,000 counts. The increase in energy transfer indicates a 

larger amount of carotenoids are able to be excited and transfer the energy to the 

BChl. As energy transfer from the carotenoids to the BChl can only occur within van 

der Waals distance, the emission from the BChl suggests the carotenoids are bound 

close to the BChl thus within the protein scaffold. The correct position of the 

emission peak implies the BChl seem to be properly bound but this would need to 

be confirmed by a technique such as CD (121).  

Fluorescence emission spectra of the carotenoid dep leted B8
pre and post reversible dissociation with lycopene.   

The carotenoid depleted B800-850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociati
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 
wavelengths but of a higher intensity, up to ~ 12,000 counts from ~ 4000. 
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was similar, centring at ~ 850 nm with a shoulder at ~ 810 nm however the intensity 

was much higher at ~ 12,000 counts. The increase in energy transfer indicates a 

to be excited and transfer the energy to the 

BChl. As energy transfer from the carotenoids to the BChl can only occur within van 

der Waals distance, the emission from the BChl suggests the carotenoids are bound 
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Fluorescence emission spectra of the carotenoid dep leted B8 00-850a from Alc. 

850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociation with lycopene 
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 
wavelengths but of a higher intensity, up to ~ 12,000 counts from ~ 4000.  
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RD with rhodopin 

Rhodopin was used as the reconstitution carotenoid as it is the most abundant 

carotenoid present in the LH2 complex types of Alc. vinosum and will determine 

whether the limitations are due to the current protocol. Rhodopin was extracted 

and purified from Alc. vinosum membranes (as previously described in Methods and 

Materials section 2.14.1). The process of reconstitution and purification with 

sucrose density gradients was repeated as per the lycopene RD studies. The 

absorption peaks in the NIR from the B800-850 LH2 complex after RD (Figure 6.10 

pink) with rhodopin observed centre at 843 nm and 797 nm as observed in the LH2 

complexes reversibly dissociated with lycopene. The position of the Qy from the 

B850 BChl is blue-shifted relative to the standard B800-850 LH2 complex (Figure 

6.10 dark red) however it is red-shifted relative to the carotenoidless B800-850 LH2 

complex (Figure 6.10 blue). The carotenoids peaks of the carotenoid depleted B800-

850 LH2 complex (Figure 6.10 green) centre at  431 nm, 452 nm, 484 nm, and a 

shoulder at ~ 526 nm. After RD the peaks at 452 nm, 484 nm, and ~ 526 nm 

increased in intensity indicating an increase in the level of carotenoid present.  



 
 

 

Figure 6.10 Normalised absorption spectra of the carotenoid dep leted B800
vinosum pre and post reversible dissociation with rhodopin.  
The standard B800-850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488
carotenoidless B800-850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 
nm. The carotenoid depleted B800
produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with rhodopin and detergent exchange into 0.02 % DDM (pink), the LH2 
complex produces peaks at 843 nm, 797 nm, 461 nm, 
increase in the carotenoid peaks at 452 nm, 484 nm, and 526 nm after RD 
level of carotenoid present.

Emission fluorescence was recorded to determine whether the carotenoids had 

been incorporated into the 

carotenoid depleted B800

at an intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 

dissociation (6.11 red) the fluorescence 

position however the intensity increased to ~ 13,000 counts. This increase of 8

 

Normalised absorption spectra of the carotenoid dep leted B800
pre and post reversible dissociation with rhodopin.   

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
802 nm, 847 nm, and 488 nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 
The carotenoid depleted B800-850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with rhodopin and detergent exchange into 0.02 % DDM (pink), the LH2 
complex produces peaks at 843 nm, 797 nm, 461 nm, 452 nm, 484 nm, and 
increase in the carotenoid peaks at 452 nm, 484 nm, and 526 nm after RD 
level of carotenoid present. 

Emission fluorescence was recorded to determine whether the carotenoids had 

been incorporated into the LH2 complexes. The level of energy transfer in the 

carotenoid depleted B800-850 LH2 complex (6.11 green) was observed at ~ 850 nm 

at an intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 

dissociation (6.11 red) the fluorescence emission peak position did not change 

position however the intensity increased to ~ 13,000 counts. This increase of 8
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Normalised absorption spectra of the carotenoid dep leted B800 -850a from Alc. 

850 LH2 complex (dark red) in 0.02 % DDM (w/v) produces absorption peaks at 
nm with two absorption shoulders at ~ 460 nm and ~ 525 nm. The 

850 LH2 complex (blue) in 0.02 % DDM (w/v) produces peaks at 841 nm and 796 
850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 

produced peaks at 796 nm, 830 nm, 431 nm, 452 nm, 484 nm, and a shoulder at ~ 526 nm. After 
reversible dissociation with rhodopin and detergent exchange into 0.02 % DDM (pink), the LH2 
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LH2 complexes. The level of energy transfer in the 

850 LH2 complex (6.11 green) was observed at ~ 850 nm 

at an intensity of ~ 4000 counts with a small shoulder at ~ 810 nm. After reversible 

emission peak position did not change 

position however the intensity increased to ~ 13,000 counts. This increase of 8-9000 



 
 

 

counts is similar to but slightly higher than observed after reversible dissociation 

with lycopene.  

Figure 6.11 Fluorescence emission spectra of the carotenoid dep leted B800
vinosum pre and post reversible dissociation with rhodopin.
The carotenoid depleted B800
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociation with rhodopin 
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 
wavelengths but of a higher intensity, up to ~ 13,000 counts f

Comparison of reversibly dissociated B800
either lycopene or rhodopin 

The level of carotenoid incorporation into the B800

similar between the purified LH2 complexes. To determine whether there w

substantial difference in the level of incorporation of lycopene or rhodopin 

differential spectra were created. The absorption spectrum of the carotenoid 

depleted B800-850 LH2 complex type was subtracted from the reversibly 

 

counts is similar to but slightly higher than observed after reversible dissociation 

Fluorescence emission spectra of the carotenoid dep leted B800
pre and post reversible dissociation with rhodopin.  

The carotenoid depleted B800-850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociat
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociation with rhodopin 
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 
wavelengths but of a higher intensity, up to ~ 13,000 counts from ~ 4000. 

Comparison of reversibly dissociated B800 -850 LH2 complexes with 
either lycopene or rhodopin  

The level of carotenoid incorporation into the B800-850 LH2 complex type was 

similar between the purified LH2 complexes. To determine whether there w

substantial difference in the level of incorporation of lycopene or rhodopin 

differential spectra were created. The absorption spectrum of the carotenoid 

850 LH2 complex type was subtracted from the reversibly 
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Fluorescence emission spectra of the carotenoid dep leted B800 -850a from Alc. 

850 LH2 complex (green) in 0.7 % OG (w/v) prior to dissociation 
produced a peak at ~ 850 nm with a shoulder at ~ 810 nm. After reversible dissociation with rhodopin 
and detergent exchange into 0.02 % DDM (red), the LH2 complex produces peaks at the same 

rom ~ 4000.  
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differential spectra were created. The absorption spectrum of the carotenoid 

850 LH2 complex type was subtracted from the reversibly 



 
 

 

dissociation B800-850 LH2 c

carotenoid region after lycopene reversible dissociation (Figure 6.12 blue) shows an 

increase of 0.3 A.U. at the 485 nm carotenoid peak. However, the difference in the 

carotenoid region after rhodopin rever

increase of 0.4 A.U. at the 485 nm carotenoid peak. This may suggest a slightly 

higher incorporation of rhodopin than lycopene.

Figure 6.12 Differential absorpt
complex reversibly dissociated with either lycopene  or rhodopin. 
The B800-850 LH2 complex reversibly dissociated with rhodopin (red) produced an increase in 
absorbance at 485 nm by 0.4 A.U.
(blue) produced an increase in absorbance at 485 nm by 0.3 A.U. This indicates a slightly higher 
incorporation of rhodopin in reversible dissociation.

There appears to be little or no difference in the level of incorporation of the 

different carotenoids into the reversibly dissociated LH2 complexes of 

This suggests a limitation in the technique either in the process, or the lack of fully 

carotenoid depleted LH2 complexes. The increase in the absorption spectrum in the 

 

850 LH2 complex absorption spectrum. The difference in the 

carotenoid region after lycopene reversible dissociation (Figure 6.12 blue) shows an 

increase of 0.3 A.U. at the 485 nm carotenoid peak. However, the difference in the 

carotenoid region after rhodopin reversible dissociation (Figure 6.12 red) shows an 

increase of 0.4 A.U. at the 485 nm carotenoid peak. This may suggest a slightly 

higher incorporation of rhodopin than lycopene. 

Differential absorpt ion spectra of the carotenoid region of the B800
complex reversibly dissociated with either lycopene  or rhodopin.  

850 LH2 complex reversibly dissociated with rhodopin (red) produced an increase in 
absorbance at 485 nm by 0.4 A.U. The B800-850 LH2 complex reversibly dissociated with lycopene 
(blue) produced an increase in absorbance at 485 nm by 0.3 A.U. This indicates a slightly higher 
incorporation of rhodopin in reversible dissociation. 

There appears to be little or no difference in the level of incorporation of the 

different carotenoids into the reversibly dissociated LH2 complexes of 

This suggests a limitation in the technique either in the process, or the lack of fully 

rotenoid depleted LH2 complexes. The increase in the absorption spectrum in the 
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850 LH2 complex reversibly dissociated with rhodopin (red) produced an increase in 
850 LH2 complex reversibly dissociated with lycopene 

(blue) produced an increase in absorbance at 485 nm by 0.3 A.U. This indicates a slightly higher 

There appears to be little or no difference in the level of incorporation of the 

different carotenoids into the reversibly dissociated LH2 complexes of Alc. vinosum. 

This suggests a limitation in the technique either in the process, or the lack of fully 

rotenoid depleted LH2 complexes. The increase in the absorption spectrum in the 
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carotenoid region has the same line profile after reversible dissociation with both 

lycopene and rhodopin. This is due to the fact that lycopene and rhodopin contain 

the same chromophore. 

6.4 Preliminary De Novo reconstitution 

Initial results from the reversible dissociation suggested that this process can work 

with the LH2 complexes from Alc. vinosum. This was pushed further in a 

preliminary experiment to discern whether de novo creation of the LH2 complex 

from individually purified components could be effective (as described in Methods 

and Materials section 2.14.5.2). Figure 6.13 shows the spectra of the spirilloxanthin 

(red), BChl (green) and the reconstituted sample in 0.7 % OG after it was left at 4 ̊C 

overnight (blue). An absorption peak at 680 nm developed in the reconstituted 

sample after reconstitution overnight indicating a high level of oxidised BChl. After 

reconstitution, the peak of free BChl at 777 nm broadens to include a shoulder at ~ 

850 nm. This suggests either the re-formation of the LH2 complex type or formation 

of BChl dimers (121). The small amount of reconstituted sample was run down a 1g 

De52 sepharose anion exchange column (Whatman) at 4 ̊C in order to separate free 

pigments and reversibly dissociated sample. The pigmented sample settled on top 

of the resin and failed to elute even with 2 M NaCl elution buffer. This indicated 

that the peak at ~ 850 nm observed was most probably BChl dimers and that the 

process of reconstitution had not been successful.  



 
 

 

Figure 6.13 Normalised absorption spectra of de novo reconstitu tion of the B800
complex with the spectrum of spirilloxanthin and BC hl. 
The absorption spectrum of spirilloxanthin (r
and 525 nm. The absorption spectrum of the free BChl (green) in methanol produced peaks that 
centred at 770 nm (Qy) and 580 nm (Qx). After the peptides, BChl, and carotenoid were mixed and left 
to reconstitute the absorption spectrum produced peaks at 680 nm, 770 nm, and a shoulder at ~ 850 
nm. The absorption shoulder at ~ 850 nm is potentially reconstituted BChl or dimeric BChl free in 
solution. Spectra were normalised at their highest peak to 1.
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The carotenoid depleted B800

biosynthesis conditions by 

but not LDAO. The process of reversible dissociation was able to incorporate 

separately isolated and purified native carotenoids

spirilloxanthin. The level of

the carotenoid incorporated. This suggests that the limitation is not due to 

differences in the carotenoid but in the

carotenoidless B800

 

Normalised absorption spectra of de novo reconstitu tion of the B800
complex with the spectrum of spirilloxanthin and BC hl.  

absorption spectrum of spirilloxanthin (red) in acetone produced three peaks at 465 nm, 492 nm, 
and 525 nm. The absorption spectrum of the free BChl (green) in methanol produced peaks that 
centred at 770 nm (Qy) and 580 nm (Qx). After the peptides, BChl, and carotenoid were mixed and left 

nstitute the absorption spectrum produced peaks at 680 nm, 770 nm, and a shoulder at ~ 850 
nm. The absorption shoulder at ~ 850 nm is potentially reconstituted BChl or dimeric BChl free in 

Spectra were normalised at their highest peak to 1. 

usions  

The carotenoid depleted B800-850 LH2 complex produced under carotenoid 

biosynthesis conditions by Alc. vinosum is able to be reversibly dissociated using OG 

but not LDAO. The process of reversible dissociation was able to incorporate 

ated and purified native carotenoids; lycopene, rhodopin, and 

. The level of carotenoid incorporation was the same regardless of 

the carotenoid incorporated. This suggests that the limitation is not due to 

differences in the carotenoid but in the reversible dissociation

carotenoidless B800-850 LH2 complex may be more successful as residual 
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carotenoids within the LH2 complex may inhibit the full dissociation of the LH2 

complex. The attempt at de Novo reconstitution from constituent parts was 

unsuccessful, potentially due to aggregation of the BChl. Other factors may include 

incorrect ratios of the alpha peptides to beta peptides as the extraction technique 

preferentially extracts alpha peptides. Further work would require purification of 

the individual peptides using HPLC. Alpha and beta peptides can then be combined 

in a 1:1 ratio, as observed in the standard LH2 models (62, 63, 80) and during 

peptide composition analysis in chapter 4 of this work. The peptides can be 

combined in appropriate compositions identified to recreate the different LH2 

complex types. Once the de Novo reconstitution protocol is optimized and the 

native complexes can be reconstituted alternative peptide compositions can be 

tested. This can be used to analyse and deduce the basis for the variation between 

the changes in the Qy absorption bands as well as deducing whether there are two 

B800 BChl binding sites. 
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Conclusions and future outlook 

The energy from our local star showers the planet Earth with a huge amount (4.3 x 

1020 J per hour (181) of renewable energy. This stream of solar energy could 

provide the means to help fulfil human energy requirements if it could be 

effectively harvested and harnessed. Current energy demand shows the human race 

meeting 70 % of current energy demands by burning fossil fuels (181). This has 

multiple effects not least of which being the change to the climate as sequestered 

carbon re-enters the atmosphere. These resources are finite and will ultimately run 

out and need to be replaced by alternatives, such as solar energy that can fill the 

energy shortfall. Multiple organisms in nature have evolved the process of 

photosynthesis to harvest the abundant solar energy and convert it into chemical 

energy. Understanding how these processes proceed in vivo, and how the proteins 

and pigments function in their respective roles of light-harvesting and absorption 

‘tuning’ will aide in the development of man-made artificial photosynthetic 

systems. Understanding how how pigments are bound within natural systems and 

how this affects how they absorb and transfer energy is essential for creating new 

pigments and incorporating them into artificial light-harvesting systems.  

Reconstitution has been an effective tool in understanding key structural features 

within the LH1 complex (32, 68, 121-123, 125) of purple photosynthetic bacteria. 

This understanding can be applied in the development of artificial light-harvesting 

systems. The LH2 complex is built on a similar modular principle to the LH1 

complex however due to the inability of the LH2 complex to form in the absence of 

carotenoids there has only been one successful LH2 reconstitution study (127). As 

the LH2 complexes from Alc. vinosum were postulated as able to form in the 

absence of carotenoids, work was conducted to identify potential LH2 

reconstitution candidates to develop a potential new system for reconstitution. 

This work contributed to multiple publications and the development of the 

understanding of the LH2 complexes of Alc. vinosum in light of recent genomic (10) 
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and LH2 structural understanding (62, 63, 80, 99). The different LH2 complex types 

were identified and the complexes characterised with some of their defining 

features elucidated. This was to create an adequate knowledge base to identify a 

suitable carotenoidless reconstitution LH2 complex candidate and perform 

preliminary reconstitution experiments.  

It was long established that Alc. vinosum produces different NIR absorption spectra 

depending on the growth conditions it was grown under (6, 109, 110, 146, 153). 

Further work determined that these variations were due to Alc. vinosum producing 

three LH2 complex types, the B800-820, B800-840, and B800-850 under different 

growth conditions (182).  

Peptide analysis confirmed previous biophysical studies (113) that all the LH2 

complexes are heterogeneous, with the highest levels of heterogeneity in the B800-

820 and B800-840 LH2 complex types. Due to the high level of heterogeneity and 

limited number of peptides, all of the LH2 complex types share peptides with each 

other. Determining whether the different LH2 complex types are distinct or form a 

continuum is convoluted. It was noted that during anion exchange the elution peaks 

for each of the LH2 complex types were not discrete, with progressive fractions 

showing a red-shift in the position of the dimeric BChl Qy absorption peaks. This 

indicates that between the different LH2 complex types produced under the same 

growth conditions there are multiple intermediate LH2 complexes formed. It would 

appear that there is a continuum of LH2 complexes between the B800-820, B800-

840, and B800-850c LH2 complex types.   

This work has been able to identify the growth conditions that produce the 

different LH2 complex types and improve the purification protocol for each. Anion 

exchange chromatography identified LH2 complex subtypes of the B800-850 and 

B800-840 LH2 complex types; the B800-840h, B800-840p, B800-850a, and B800-850c 

LH2 complex types. The peptide composition difference between the B800-840h 

and B800-840p LH2 complex subtypes was not explored as part of this work but the 

peptide composition of the B800-850c and B800-850a LH2 complex subtypes were 

compared by tandem MS-MS and MALDI-TOF. The β5 and β6 peptides were observed 
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in the B800-850a LH2 complex subtype and not in the B800-850c. As there is high 

conservation between the different beta peptides, this change in composition 

would be unlikely to effect the anionic interactions. This may indicate a role of the 

beta peptides in binding the BChl (80) but also in ‘tuning’ the B850 Qy band 

between different LH2 complex subtypes. Unusually, the α3 was not observed in the 

B800-850a although it has been observed in all other LH2 complex types (164). 

Potentially, this may indicate that the α3 peptide does not fragment well during 

analysis however this must be confirmed. Alternatively, the lack of an α3 peptide 

may form the basis of the difference between the two B800-850 LH2 complex 

subtypes. This would be unusual as the α3 peptide is a component of all the LH2 

complex types analysed as part of this work. The tandem MS-MS data must be 

repeated to ensure that all the peptides are being extracted and identified. Once 

the absence of the α3 is confirmed, percentage composition can be determined and 

further deductions made on the contribution from the different alpha and beta 

peptides on the BChl ‘tuning’. 

The basis of the blue-shift of the B850 BChl Qy absorption band from the B800-850 

to the B800-820 LH2 complex type appears, in part, to be the same as that 

observed in the LH2 complexes from other species, namely Rps. acidophila (62, 99), 

and Phs. Molischianum (80, 94). The blue shift is due to the loss of a hydrogen bond 

donor residue at the position +11 relative to the conserved histidine on the alpha 

peptides. Only one alpha peptide, α5, contains a phenylalanine at the relevant 

position to result in a loss of hydrogen bonding and is found in the B800-820 LH2 

complex type. The α6, found in the B800-820 and B800-840, may not form a 

hydrogen bond or may form an alternative hydrogen bond due to a tyrosine at 

position + 10 preceding a tryptophan at position + 11. The other α peptides of Alc. 

vinosum contain a glycine at position +10, which alternatively may indicate that a 

glycine at position +10  may be integral to the hydrogen bond formation from the 

tryptophan. In the absence of a glycine, steric hindrance may prevent the bond 

formation. This could be further analysed through mutagenasis studies to substitute 

the tyrosine for the glycine and see whether this red-shifts the B840 BChl Qy 

absorption band of the B800-840 LH2 complex.  
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This work contributed to the determination of the origin of the split B800 peak 

observed in all the LH2 complex types from Alc. vinosum (168). Both the peaks 

within the B800 split peak had been identified as produced from within the same 

LH2 complex due to the speed of energy transfer from the 796 nm peak to the 802 

nm peak (113). Confirmation of the heterogeneity of the LH2 complex types and 

analysis of the peptides showed that there are two potential B800 BChl binding sites 

observed in all the LH2 complex types, two aspartic residues or a single aspartic 

acid residue following an asparagine or glutamine residue (164). These differences 

in the B800 binding site were postulated as the basis for the split B800 peak. Single 

molecule spectroscopy performed in collaboration with this work (168) confirmed 

the high level of heterogeneity within the B800 binding sites as well as the larger 

ring size of the LH2 complexes of Alc. vinosum in comparison to the current LH2 

structures (115).  

Previous EM work identified two ring sizes in the purified LH2 complex types; a 

dodecamer or 13-mer and something larger than a nonamer (115). Further work 

determined that that 13-mers were not electronically favourable and that the 

potential ring sizes were 8, 9, 10, or 12-mers (119) suggesting that the LH2 complex 

types from Alc. vinosum were most likely dodecamers. This work did not find any 

indicators that the ring size of the different LH2 complex types identified varied 

substantially enough to be visualised in purification methods such as size exclusion 

chromatography. This indicates that Alc. vinosum grown under the growth 

conditions covered in this work only produces LH2 complex types of a single ring 

size. Small angle neutron scattering or analytical ultracentrifugation could be used 

to potentially discern the ring size of the different LH2 complex types.  

The fluorescence excitation spectrum of the split B800 peak of the B800-850 LH2 

complex was reconstructed well using Monte Carlo simulations that factored in 

potential excitonic coupling between the two binding populations of the B800 BChl. 

Excitonic coupling of the BChl is observed clearly in the CD spectrum of the LH2 

complex types. Previous NIR CD data gathered of the B800-850 LH2 from Alc. 

vinosum (141) observed a negative minimum followed by a small maximum and then 
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a large maximum before a large minimum, indicating there was no excitonic 

coupling of the B800 BChl. New data acquired in this work of the LH2 complex types 

in DDM as opposed to LDAO showed a sigmoidal profile for the B800 double peaks 

for all three LH2 complex types from Alc. vinosum. In data collected previously in 

this work (Chapter 3, section 3.2.3) LDAO was observed as possibly degrading the 

796 nm peak, explaining the loss of the excitonic coupling of the B800 BChl. To 

confirm the excitonic coupling of the B800 BChl, further work should include hole 

burning spectroscopy as if the BChl are excitonically coupled both peaks should 

bleach when a hole is burnt in one peak.  

Collaborations within this work illuminated the small but consistent variation within 

the carotenoid composition of the different LH2 complex types, which showed an 

increase in the level of carotenoids with longer chain chromophores in the low light 

LH2 complexes. It was not clear whether the differences in carotenoid composition 

were due to preferential binding of certain carotenoids by the LH2 complex types 

or due to different growth conditions upregulating spirilloxanthin. Further work 

would include sourcing the B800-840 LH2 complex types from low light growth 

conditions and using HPLC analysis to determine the carotenoid composition and 

whether there is an increase in the long chain chromophores in other LH2 complex 

types. 

Once the standard LH2 complex types could be produced consistently and the 

peptide and pigment composition determined, work towards a carotenoidless LH2 

complex began. Previous work had used carotenoid biosynthesis inhibition 

successfully with Alc. vinosum (134) and on the relative Alc. minutissimum (135). 

Alc. vinosum grew well enough in the presence of DPA and successfully produced 

carotenoidless LH1 and carotenoid depleted LH2 complexes. Curiously, under high 

levels of carotenoid biosynthesis inhibition there is a change in the LH2 complexes 

produced when Alc. vinosum is grown under growth conditions that do not produce 

a B800-850 LH2 complex type. All of the LH2 complexes that were highly carotenoid 

depleted produced LH2 complexes with strongly red-shifted dimeric BChl Qy peaks, 

producing “B800-850-like” LH2 complex types when usually a B800-820 or B800-840 
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LH2 complex should be produced. This occurred in the LH2 complexes produced in 

both low light and high light grown cells. This indicated that either there were 

direct effects from the DPA on the regulation or production of the alpha and beta 

peptides, or that the loss of the carotenoid from the LH2 complex types caused Alc. 

vinosum to shift to producing a B800-850 LH2 complex type. This indicates that the 

B800-850 LH2 complex is a more structurally stable LH2 complex type than the 

B800-820 or B800-840. This may be an adaptation for the bacterium to be able to 

grow at 40 ̊C, as the B800-850c is the only LH2 complex produced under these 

growth conditions. The B800-850c LH2 complex from Alc. vinosum is very similar to 

the LH2 complex from its thermophilic relative, Thr. Tepidum (160). This may 

indicate that the B800-850 LH2 complex is a more thermostable LH2 complex. To 

explore this further, thermostability studies using CD on both the B800-820 and 

B800-850 LH2 complex types would indicate if there are any differences in the 

stability of the complexes. The carotenoid depleted B800-850a LH2 complex was 

identical in peptide composition to the standard B800-850a LH2 complex type with 

the exception that the β5 peptide was absent. This suggests the changes in the 

ratio of the two BChl Qy absorption bands in the absorption spectrum relate to the 

loss of the β5 peptide. 

The overall aim of this work was to develop a protocol for LH2 reconstitution, and 

to ascertain whether the LH2 complexes of Alc. vinosum were suitable 

reconstitution candidates. The production of a carotenoid ‘knock-out’ strain of Alc. 

vinosum was not completed within this work, but through the use of carotenoid 

biosynthesis inhibition, carotenoid depleted B800-850 LH2 complexes were purified 

and prepared for reversible dissociation trials. Due to time constraints the protocol 

could not be optimized, however successful reversible dissociation experiments 

indicated that the native carotenoids could be reincorporated into the carotenoid 

depleted LH2 complex types of Alc. vinosum. After reversible dissociation only a 

small level of carotenoid was incorporated regardless of the carotenoid used for 

reconstitution. However this confirmed the B800-850 LH2 complex from 

Alc.vinsoum as suitable for the development of a reconstitution protocol. 
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Appendices 

Appendix 1   

Alc. vinosum growth media 

Sodium thiosulphate medium (6) 

Solution 1  

Sodium Chloride (NaCl) 60 g 

Potassium dihydrogen orthophosphate (KH2PO4 ) 1 g 

Dipotassium hydrogen orthophosphate (K2HPO4) 1 g 

Ammonium Chloride (NH4Cl)  2 g 

Calcium Chloride (CaCl2•2H2O)  0.33 

Magnesium Chloride (MgCl2• 6H2O) 2.033 

Make up to 1 L 

Solution 2  

Sodium Thiosulphate (Na2S203) 6 g 

Sodium Hydrogen Carbonate (NaHCO3) 8 g 

Make up to 1 L 

Solution 3  

Ferrous sulphate (FeSO4 .7H20) 1.6 g 

EDTA 3 g 

Make up to 1 L and store in cold room 

Final solution  

Solution 1 1 L 

Solution 2 1 L 

Solution 3 8 ml 

Adjust final pH to 7.8 
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Sodium sulphide medium (5) 

Solution A  

KH2PO4 34g 

NH4Cl  34g 

KCl 34g 

pH to 7.0 and make up to 1 L 

Solution B  

EDTA   3.0g  

FeSO3  1.1g  

CoCl2 190mg  

MnCl2 50mg 

ZnCl2  42mg  

NiCl2  24mg  

Na2MoO4 18mg 

H3BO3  300mg  

CuCl2  2mg 

pH to 6.0 and make up to 1 L 

Solution C  

Vitamin B12 2 mg 

Make up to 1 L 

Solution D  

Na2S  1.2 g 

Make up to 10 ml 

Solution A 10 ml 

Solution B 1 ml 

Solution C 1 ml 

Solution D 1.5 ml 

Made up to 1 L with deionised water 
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Appendix 2 

LB recipe  

Typtone 10 g 

Yeast extract 5 g 

NaCl 10g 

 

Components were dissolved in 1 L of deionised water and autoclaved at 121-124 ̊C. 

For LB agar plates 1.5 % (w/v) agar was added before autoclaving.  

 

 

 

 

 

 

 

 

 



  249 
 

 

Reference List 

 

 (1)  Clayton RK. Photosynthesis: physical mechanisms and chemical 
patterns. Cambridge: Cambridge University Press; 1980. 

 (2)  Wisniak J. Phlogiston: The rise and fall of a theory. Indian journal of 
chemical technology 2004;11:732-43. 

 (3)  Dworkin M. Sergei Winogradsky: a founder of modern microbiology and 
the first microbial ecologist. FEMS Microbiology Reviews 2011;36:364-
79. 

 (4)  van Niel CB. On the morphology and physiology of the purple and green 
sulphur bacteria. Hopkins Marine Station of Stanford University, 
California; 1931. 

 (5)  Hayashi H, Morita S. Near-infrared absorption spectra of light 
harvesting bacteriochlorophyll protein complexes from Chromatium 
vinosum. Journal of Biochemistry 1980;88:1251-8. 

 (6)  Malik KA. A modified method for the cultivation of phototrophic 
bacteria. Journal of microbiological methods 1983;1:343-52. 

 (7)  Pfennig N. Rhodopseudomonas acidophila, sp. n., a new species of the 
budding purple nonsulphur bacteria. Journal of Bacteriology 
1969;99(2):597-602. 

 (8)  Angerhofer A, Cogdell RJ, Hipkins MF. A spectral characterisation of 
the light-harvesting pigment-protein complexes from 
Rhodopseudomonas acidophila. Biochimica et Biophysica Acta 
1986;848:333-41. 

 (9)  Henderson R. The structure of the purple membrane from 
Halobacterium halobium: Analysis of the X-ray diffraction pattern. 
Journal of Microbiology 1974;93:123-38. 

 (10)  Weissgerber T, Renate Zigann, David Bruce, Yun-juan Chang, John 
C.Detter, Cliff Han, et al. Complete genome sequence of 
Allochromatium vinosum DSM 180. Standards in genomic sciences 
2011;5:311-30. 

 (11)  Kilby BA. The photosynthetic bacteria. New York and London: Plenum 
Press; 1978. 

 (12)  Firsow NN, Drews G. Differentiation of the intracytoplasmic membrane 
of Rhodopseudomonas palustris induced by vairations of oxygen 
partial pressure or light intensity. Archives of microbiology 
1977;115:299-306. 

 (13)  Schumacher A, Drews G. Effects of light intensity on membrane 
differentiation in Rhodopseudomonas capsulata. Biochimica et 
Biophysica Acta 1979;547:417-28. 

 (14)  Niederman RA. Membrane development in purple photosynthetic 
bacteria in response to alterations in light intensity and oxygen 
tension. Photosynthesis research 2013;116:333-48. 

 (15)  Madigan MT, Jung DO. An overview of Purple Bacteria: Systematics, 
Physiology, and Habitats. In: Hunter CN, Daldal F, Thurnauer M, Beatty 
JT, editors. The Purple Phototrophic Bacteria.Dordrecht: Springer; 
2009. p. 1-15. 



  250 
 

 

 (16)  Remsen C. Comparative Subcellular Architecture of Photosynthetic 
Bacteria. In: Clayton RK, Sistrom WR, editors. The Photosynthetic 
Bacteria.New York and London: Plenum Press; 1978. p. 31-60. 

 (17)  Pierson BK, Sands VM, Frederick JL. Spectral irradiance and 
distribution of pigments in a highly layered marine microbial mat. 
Applied and environmental microbiology 1990;56(8):2327-40. 

 (18)  Berg JM, Tymoczko JL, Stryer L. Biochemistry. Sixth ed. New York: 
W.H. Freeman and Company; 2007. 

 (19)  Brandt U, Trumpower B. The protonmotive Q cycle in mitochondria 
and bacteria. Critical reviews in Biochemistry and Molecular Biology 
1994;29(3):165-97. 

 (20)  Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC, Feher G. X-ray 
structure determination of the cytochrome C2: Reaction centre 
electron transfer complex from Rhodobacter sphaeroides. Journal of 
Molecular Biology 2002;319:501-15. 

 (21)  Mitchell P. Coupling of phosphorylation to electron and hydrogen 
transfer by a chemi-osmotic type of mechanism. Nature 1961;191:144-
8. 

 (22)  Abrahams JP, Leslie AGW, Lutter R, Walker JE. Structure at 2.8 A 
resolution of F1-ATPase from bovine heart mitochondria. Nature 
1994;370:621-8. 

 (23)  Drews G. Structure and functional organisation of the light-harvesting 
complexes and photochemical reaction centres in membranes of 
phototrophic bacteria. Microbiological Reviews 1985;49(1):59-70. 

 (24)  Sturgis JN, Tucker JD, Olsen JD, Hunter CN, Niederman RA. Atomic 
Force Microscopy of native photosynthetic membranes. Biochemistry 
2009;48(17):3680-98. 

 (25)  Turro NJ, Ramamurthy V, Scaniano JC. Principles of molecular 
photochemistry: An introduction. University Science Books; 2009. 

 (26)  Van der Meulen DL, Govindjee. Is there a triplet state in 
photosynthesis? Journal of scientific and industrial research 
1973;32(2):62-9. 

 (27)  Scheer H. Chlorophylls. In: Renger G, editor. Primary process of 
photosynthesis - Part 1. Principles and applications.Cambridge: The 
Royal Society of Chemistry; 2008. p. 101-29. 

 (28)  Scheer H, Svec WA, Cope BT, Studier MH, Scott RG, Katz JJ. Structure 
of bacteriochlorophyll b. Journal of American chemical society 
1974;96(11):3714-6. 

 (29)  Gest H, Favinger JL. Heliobacterium chlorum, an anoxygenic brownish-
green photosynthetic bacterium containing a "new" form of 
bacteriochlorophyll. Archives of microbiology 1983;136:11-6. 

 (30)  Fujita Y, Bauer CE. The light-independent protochlorophyllide 
reductase: a nitrogen-like enzyme catalyzing a key reaction for 
greening in the dark. In: Kadish KM, Smith KM, Guilard R, editors. The 
Porphyrin Handbook: Chlorophylls and bilins: biosynthesis, synthesis, 
and degradation.San Diego: Academic Press; 2003. p. 109-53. 

 (31)  Katz JJ, Strain HH, Harkness AL, Studier MH, Svec WA, Janson TR, et 
al. Esterifying alcohols int he chlorophylls of purple photosynthetic 



  251 
 

 

bacteria. A new chlorophyll, baceriochlorophyll (gg), all-trans-
Geranylgeranyl bacteriochlorophyllide a. Journal of the American 
chemical society 1972;94(22):7938-9. 

 (32)  Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U, Loach PA. Probing 
the bacteriochlorophyll binding site by reconsititution of the light-
harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll 
a analogues. Biochemistry 1990;29:2951-60. 

 (33)  Telfer A, Pascal A, Gall A. Carotenoids in Photosynthesis. In: Britton G, 
Liaaen-Jensen S, Pfander H, editors. Carotenoids.Berlin: Springer; 
2008. p. 265-309. 

 (34)  Cogdell RJ, Howard TD, Isaacs NW, McLuskey K, Gardiner AT. 
Structural factors which control the position of the Qy absorption band 
of bacteriochlorophyll a in purple bacterial antenna complexes. 
Photosynthesis research 2002;74:135-41. 

 (35)  Fowler GJS, Sockalingum GD, Robert B, Hunter CN. Blue shifts in 
bacteriochlorophyll absorbance correlate with changed hydrogen 
bonding patterns in light-harvesting 2 mutants of Rhodobacter 
sphaeroides with alterations at a-Tyr-44 and a Tyr45. Biochemistry 
1994;299:695-700. 

 (36)  Sturgis JN, Robert B. The role of chromophore coupling in tuning the 
spectral properties of peripheral light-harvesting protein of purple 
bacteria. Photosynthesis research 1996;50:5-10. 

 (37)  Young A, Britton G. Carotenoids in photosynthesis. First ed. London: 
Chapman & Hall; 1993. p. 282-3. 

 (38)  Andersson PO, Gillbro T, Ferguson L, Cogdell RJ. Absorption spectral 
shifts of carotenoids related to medium polarizability. Photochemistry 
and photobiology 1991;54(3):353-60. 

 (39)  Cogdell RJ, Frank HA. How carotenoids function in photosynthetic 
bacteria. Biochimica et Biophysica Acta 1987;895:63-79. 

 (40)  Lang HP, Hunter CN. The relationship between carotenoid biosynthesis 
and the assembly of the light-harvesting LH2 complex in Rhodobacter 
sphaeroides. Biochemical Journal 1994;298:197-205. 

 (41)  Griffiths M, Sistrom WR, Cohen-Bazire G, Stanier RY. Function of 
carotenoids in photosynthesis. Nature 1955;176(4495):1211-4. 

 (42)  Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W. 
How carotenoids protect bacterial photosynthesis. Philosophical 
Transactions of the Royal Society 2000;1345-9. 

 (43)  Hashimoto H, Fujii R, Yanagi K, Kusumoto T, Gardiner AT, Cogdell RJ, 
et al. Structures and functions of carotenoids bound to reaction 
centres from purple photosynthetic bacteria. Pure Applied Chemistry 
2006;78(8):1505-18. 

 (44)  Slouf V, Chabera P, Olsen JD, Martin EC, Qian P, Hunter CN, et al. 
Photoprotection in a purple phototrophic bacterium mediated by 
oxygen-dependent alteration of carotenoid excited-state properties. 
Proceedings of the national academy of science of the united states of 
america 2012;109(22):8570-5. 

 (45)  Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochemistry 
and photobiology 1996;63(3):257-64. 



  252 
 

 

 (46)  Kakitani Y, Akahane J, Ishii H, Sogabe H, Nagae H, Koyama Y. 
Conjugation length dependence of the T1 lifetimes of carotenoids free 
in solution and incorporated into the LH2, LH1, RC and RC-LH1 
complexes: possible mechanisms of triplet-energy dissipation. 
Biochemistry 2007;46:2181-97. 

 (47)  Magdaong NM, LaFountain AM, Greco JA, Gardiner AT, Carey A, Cogdell 
RJ, et al. High efficiency light harvesting by carotenoids in the LH2 
complex from photosynthetic bacteria: unique adaptation to growth 
under low-light conditions. The journal of physical chemistry 
2014;118:11172-89. 

 (48)  Polivka T, Sundstrom V. Ultrafast dynamics of carotenoid excited 
states- from solution to natural and artificial systems. Chemical 
Reviews 2004;104:2021-71. 

 (49)  Ostroumov EE, Mulvaney RM, Anna JM, Cogdell RJ, Scholes GD. Energy 
transfer pathways in light-harvesting complexes of purple bacteria as 
revealed by global kinetic analysis of two-dimensional transient 
spectra. Journal of Physical Chemistry 2013;117:11349-62. 

 (50)  Borland CF, Cogdell RJ, Land EJ, Truscott TG. Bacteriochlorophyll a 
triplet state and its interactions with bacterial caroteniods and 
oxygen. Journal of photochemisty and photobiology, B: Biology 
1989;3:237-45. 

 (51)  Frank HA, Young AJ, Britton G, Cogdell RJ. The Photochemistry of 
Carotenoids. Dordrecht: Kluwer; 1999. 

 (52)  Krinsky NI. Non-photosynthetic functions of carotenoids. Philosophical 
Transactions of the Royal Society 1978;284:581-90. 

 (53)  Foote CS, Denny RW. Chemistry of singlet oxygen. VII. Quenching by B-
carotene. Journal of the American chemical society 1968;90(22):6233-
5. 

 (54)  Hirayama O, Nakamura K, Hamada S, Kobayasi Y. Singlet oxygen 
quenching ability of naturally occurring carotenoids. Lipids 
1994;29(2):149-50. 

 (55)  Okamura MY, Steiner LA, Feher G. Characterization of reaction centres 
from photosynthetic bacteria. I. Subunit structure of the protein 
mediating the primary photochemistry in Rhodopseudomonas 
spheroides R-26. Biochemistry 1974;13(7):1394-403. 

 (56)  Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the 
protein subunits in the photosynthetic reaction centre of 
Rhodopseudomonas viridis at 3 A resolution. Nature 1985;318:618-24. 

 (57)  Deisenhofer J, Michel H. The photosynthetic reaction centre from the 
purple bacterium Rhodopseudomonas viridis. Bioscience reports 
1988;9(4):383-419. 

 (58)  Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJS, Hunter CN, 
et al. Temporally and spectrally resolved subpicosecond energy tansfer 
within the peripheral antenna complex (LH2) and from LH2 to the core 
antenna complex in photosynthetic purple bacteria. Proceedings of the 
national academy of science of the united states of america 
1995;92:12333-7. 



  253 
 

 

 (59)  Walz T, Jamieson SJ, Bowers CM, Bullough PA, Hunter N. Projection 
structures of three photosynthetic complexes from Rhodobacter 
sphaeroides: LH2 at 6 A, LH1 and RC-LH1 at 25 A. Journal of Molecular 
Biology 1998;282:833-45. 

 (60)  Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, et 
al. Crystal structure of the RC-LH1 core complex from 
Rhodopseudomonas palustris. Science 2003;302:1969-72. 

 (61)  Niwa S, Yu L, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z, et al. 
Structure of the LH1-RC complex from Thermochromatium tepidum at 
3.0 A. Nature 2014;508:228-32. 

 (62)  McDermott G, Prince SM, Freer AA, Hawthornwait-lawless AM, Papiz 
MZ, Cogdell RJ, et al. Crystal structure of an integral membrane light-
harvesting complex from photosynthetic bacteria. Nature 
1995;374:517-21. 

 (63)  Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-
Lawless AM, Cogdell RJ, et al. Apoprotein structure in the LH2 complex 
from Rhodopseudomonas acidophila strain 10050: modular assembly 
and protein pigment interactions. Journal of Molecular Biology 
1997;268:412-23. 

 (64)  Evans K, Fordham-Skelton AP, Mistry H, Reynolds CD, Lawless AM, 
Papiz MZ. A bacteriophytochrome regulates the synthesis of LH4 
complexes in Rhodopseudomonas palustris. Photosynthesis research 
2005;85:169-80. 

 (65)  Gabrielsen M, Gardiner AT, Cogdell RJ. Peripheral complexes of purple 
bacteria . In: Hunter N, Daldal F, Thurnauer M, Beatty J, editors. The 
purple phototrophic bacteria. Springer science; 2009. p. 135-53. 

 (66)  Aagaard J, Sistrom WR. Control of synthesis of reaction centre 
bacteriochlorophyll in photosynthetic bacteria. Photochemistry and 
photobiology 1972;15:209-25. 

 (67)  Bauer CE, Bird TH. Regulatory circuits controlling photosynthesis gene 
expression. Cell 1996;85:5-8. 

 (68)  Chang MC, Meyer L, Loach PA. Isolation and characterisation of a 
structural subunit from the core light-harvesting complex of 
Rhodobacter sphaeroides 2.4.1 and puc705-BA. Photochemistry and 
photobiology 1990;51(4):873-81. 

 (69)  Feick R, Drews G. Protein subunits of bacteriochlorophylls B802 and 
B855 of the light-harvesting complex II of Rhodopseudomonas 
capsulata. ZEITSCHRIFT FUR NATURFORSCHUNG C-A JOURNAL OF 
BIOSCIENCES 1978;34:196-9. 

 (70)  Kiley PJ, Donohue TJ, Havelka WA, Kaplan S. DNA sequence and In 
vitro expression of the B875 light-harvesting polypeptides of 
Rhodobacter sphaeroides. Journal of Bacteriology 1987;769(2):742-
50. 

 (71)  Rucker O, Kohler A, Behammer B, Sichau K, Overmann J. Puf operon 
sequences and inferred structures of light-harvesting complexes of 
three closely related Chromatiaceae exhibiting different absorption 
characteristics. Archives of microbiology 2012;194:123-34. 



  254 
 

 

 (72)  Cogdell RJ, Isaacs NW, Freer AA, Arrelano J, Howard TD, Papiz MZ, et 
al. The structure and function of the LH2 (B800-850) complex from the 
purple photosynthetic bacterium Rhodospeudomonas acidophila strain 
10050. Progess in biophysics and molecular biology 1997;68(1):1-27. 

 (73)  Francia F, Wang J, Venturoli G, Melandri BA, Barz WP, Oesterhelt D. 
The reaction centre-LH1 antenna complex of Rhodobacter sphaeroides 
contains one PufX molecule which is involved in dimerisation of this 
complex. Biochemistry 1999;38:6834-45. 

 (74)  Sener M, Hsin J, Trabuco LG, Villa E, Qian P, Hunter CN, et al. 
Structural model and excitonic properties of the dimeric RC-LH1-PufX 
complex from Rhodobacter sphaeroides. Chemical physics 
2009;357:188-97. 

 (75)  Qian P, Papiz MZ, Jackson PJ, Brindley AA, Ng IW, Olsen JD, et al. 
Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-
PufX complex: dimerisation and quinone channels promoted by PufX. 
Biochemistry 2013;52:7575-85. 

 (76)  Cogdell RJ, Lindsay G, MacDonald W, Reid GP. The subunit structure of 
the B800-850 light-harvesting pigment protein complex from 
Rhodopseudomonas sphaeroides strain 2.4.1. Biochemical Society 
Transactions 1979;7:184-7. 

 (77)  Youvan DC, Ismail S. Light-harvesting II (B800-850 complex) structural 
genes from Rhodopseudomonas capsulata. Proceedings of the national 
academy of science of the united states of america 1985;82:58-62. 

 (78)  Tichy H, Oberle B, Stiehle H, Schiltz E, Drews G. Genes downstream 
from pucB and pucA are essential for formation of the B800-850 
complex of Rhodobacter capsulatus. Journal of Bacteriology 
1989;171(9):4914-22. 

 (79)  Tichy H, Albien K, Gad'on N, Drews G. Analysis of the Rhodobacter 
capsulatus puc operon: the pucC gene plays a central role in the 
regulation of LH2 (B800-850 complex) expression. The EMBO Journal 
1991;10(10):2949-55. 

 (80)  Koepke J, Hu X, Muenke C, Schulten K, Michel H. The crystal structure 
of the light-harvesting complex II (B800-850) from Rhodospirillum 
molischianum. Structure 1996;4(5):581-97. 

 (81)  Cranston LJ, Roszak AW, Cogdell RJ. Crystallisation and preliminary X-
ray diffraction analysis of the peripheral light-harvesting complex LH2 
from marichromatium purpuratum. Acta Crystallographica 
2014;F70:808-13. 

 (82)  Cogdell RJ, Crofts AR. Analysis of the pigment content of an antenna 
pigment-protein complex from three strains of Rhodopseudomonas 
sphaeroides. Biochimica et Biophysica Acta 1978;502:409-16. 

 (83)  Gall A, Henry S, Takaichi S, Robert B, Cogdell RJ. Preferential 
incorporation of coloured-carotenoids occurs in the LH2 complexes 
from non-sulphur purple bacteria under carotenoid-limiting conditions. 
Photosynthesis research 2005;86:25-35. 

 (84)  Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ, Prince SM. 
How photosynthetic bacteria harvest solar energy. Journal of 
Bacteriology 1999;181(13):3869-79. 



  255 
 

 

 (85)  Cogdell RJ, Gall A, Kohler J. The architecture and function of the 
light-harvesting apparatus of purple bacteria: from single molecules to 
in vivo membranes. Quarterly reviews of biophysics 2006;39:227-324. 

 (86)  Fowler GJS, Visschers RW, Grief GG, van Grondelle R, Hunter CN. 
Genetically modified photosynthetic antenna complexes with 
blueshifted absorbance bands. Nature 1992;355:848-50. 

 (87)  Sturgis JN, Robert B. Pigment binding-site and electronic properties in 
light-harvesting proteins of purple bacteria. Journal of Physical 
Chemistry 1997;101:7227-31. 

 (88)  Sturgis JN, Jirsakova V, Reiss-Husson F, Cogdell RJ, Robert B. 
Structure and properties of the bacteriochlorophyll binding site in 
peripheral light-harvesting complexes of purple bacteria. Biochemistry 
1995;34:517-23. 

 (89)  Iwata K, Hayashi H, Tasumi M. Resonance Raman studies of the 
conformations of all-trans carotenoids in light-harvesting systems of 
photosynthetic bacteria. Biochimica et Biophysica Acta 1985;810:269-
73. 

 (90)  Koyama Y. Structures and functions of carotenoids in photosynthetic 
systems. Journal of photochemisty and photobiology, B: Biology 
1991;9:265-80. 

 (91)  Sturgis JN, Niederman RA. Organisation and assembly of light-
harvesting complexes in the purple bacterial membrane. In: Hunter N, 
Daldal F, Thurnauer M, Beatty J, editors. The purple phototrophic 
bacteria. 2009. p. 254-73. 

 (92)  Saleh MH, Tan B. Separation and identification of Cis/Trans carotenoid 
isomers. Journal of Agricultural and Food Chemistry 1991;39:1438-43. 

 (93)  Gardiner AT, Cogdell RJ, Takaichi S. The effect of grown conditions on 
the light-harvesting apparatus in Rhodospeudomonas acidophila. 
Photosynthesis research 1993;38:159-67. 

 (94)  Sauer PRR, Lottspeich F, Unger E, Mentele R, Michel H. Deletion of a 
B800-850 light-harvesting complex in Rhodospirillum molischianum 
DSM119 leads to "Revertants" expressing a B800-820 complex: insights 
into pigment binding. Biochemistry 1996;35:6500-7. 

 (95)  Mascle-Allemand C, Duquesne K, Lebrun R, Scheuring S, Sturgis JN. 
Antenna mixing in photosynthetic membranes from Phaeospirillum 
molischianum. Biochemistry 2010;107(12):5357-62. 

 (96)  Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ, Amesz J. 
Antenna organization of Rhodopseudomonas acidophila: a study of the 
excitation migration. Biochimica et Biophysica Acta 1991;1060:125-31. 

 (97)  Gardiner AT, Takaichi S, Cogdell RJ. The effect of changes in light 
intensity and temperature on the peripheral antenna of 
Rhodopseudomonas acidophila. Biochemical Society Transactions 
1992;21. 

 (98)  Heinemeyer E, Schmidt K. Changes in carotenoid biosynthesis caused 
by variations of growth conditions in cultures of Rhodopseudomonas 
acidophila strain 7050. Archives of microbiology 1983;134:217-21. 

 (99)  McLuskey K, Prince SM, Cogdell RJ, Isaacs NW. The crystallographic 
structure of the B800-820 LH3 light-harvesting complex from the 



  256 
 

 

purple bacteria Rhodopseudomonas acidophila strain 7050. 
Biochemistry 2001;40:8783-9. 

(100)  Tadros MH, Waterkamp K. Multiple copies of the coding regions for the 
light-harvesting B800-850 alpha and beta polypeptides are present in 
the Rhodopseudomonas palustris genome. The EMBO Journal 
1989;8(5):1303-8. 

(101)  Brotosudarmo THP, Kunz R, Böhm P, Gardiner AT, Moulisova V, Cogdell 
RJ, et al. Single-molecule spectroscopy reveals that individual low-
light LH2 complexes from Rhodopseudomona palustris 2.1.6. have a 
heterogeneous polypeptide composition. Biophysical journal 
2009;97:1491-500. 

(102)  Tadros MH, Katsiou E, Hoon MA, Yurkova N, Ramji DP. Cloning of a new 
antenna gene cluster and expression analysis of the antenna gene 
family of Rhodopseudomonas palustris. European Journal of 
biochemistry 1993;217:867-75. 

(103)  Evans MB, Hawthornwaite AM, Cogdell RJ. Isolation and 
characterisation of the different B800-850 light-harvesting complexes 
from low- and high-light grown cells of Rhodopseudomonas palustris, 
strain 2.1.6. Biochimica et Biophysica Acta 1990;1016:71-6. 

(104)  Nishimura Y, Shimada K, Yamazaki I, Mimuro M. Energy transfer 
processes in Rhodopseudomonas palustris grown under low-light 
conditions. Heterogeneous composition of LH2 complexes and parallel 
energy flow pathways. FEBS 1993;329(3):319-23. 

(105)  Gall A, Robert B. Characterisation of the different peripheral light-
harvesting complexes from high- and low-light grown cells from 
Rhodopseudomonas palustris. Biochemistry 1999;38:5185-90. 

(106)  Moulisova V, Luer L, Hoseinkhani S, Brotosudarmo THP, Collins AM, 
Lanzani G, et al. Low light adaptation: Energy transfer processes in 
different types of light harvesting complexes from Rhodopseudomonas 
palustris. Biophysical journal 2009;97:3019-28. 

(107)  Tharia HA, Nightingale TD, Papiz MZ, Lawless AM. Characterisation of 
hydrophobic peptides by RP-HPLC from different spectral forms of LH2 
isolated from Rps. palustris. Photosynthesis research 1999;61:157-67. 

(108)  Vredenberg WJ, Amesz J. Absorption bands of bacteriochlorophyll 
types in purple bacteria and their response to illumination. Biochimica 
et Biophysica Acta 1966;126:244-53. 

(109)  Mechler B, Oelze J. Differentiation of the photosynthetic apparatus of 
Chromatium vinosum, strain D. I. The Influence of growth conditions. 
Archives of microbiology 1978;78(118):91-7. 

(110)  Bril C. Studies on bacterial chromatophores: I. reversible disturbance 
of transfer of electronic excitation energy between 
bacteriochlorophyll types in Chromatium. Biochimica et Biophysica 
Acta 1959;39:287-96. 

(111)  Cusanovich MA, Kamen MD. Light-induced electron transport in 
Chromatium strain D: I. Isolation and characterisation of Chromatium 
chromatophores. Biochimica et Biophysica Acta 1967;153:376-96. 

(112)  Hendley DD. Endogenous Fermentation in Thiorhodaceae. Journal of 
Bacteriology 1955;70:625-34. 



  257 
 

 

(113)  Niedzwiedzki DM, Bina D, Picken N, Honkanen S, Blankenship RE, 
Holten D, et al. Spectroscopic studies of 2 spectral variants of LH2 
from Allochromatium vinosum. Biochimica et Biophysica Acta 
2012;1817:1576-87. 

(114)  Cogdell RJ, Scheer H. Circular dichroism of light-harvesting complexes 
from purple photosynthetic bacteria. Photochemistry and photobiology 
1985;42(6):669-78. 

(115)  Kereiche S, Bourinet L, Keegstra W, Arteni AA, Verbavatz J, Boekema 
EJ, et al. The peripheral light-harvesting complexes from purple 
sulphur bacteria have different 'ring' sizes. FEBS Letters 
2008;582:3650-6. 

(116)  Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T, Amesz J. 
Femtosecond dynamics in isolated LH2 complexes of various species of 
purple bacteria. Journal of Physical Chemistry 1997;101:7827-34. 

(117)  Schmidt K. Die carotenoide der thiorhodaceae II. 
Carotinoidzusammensetzung von Thiospirillum jenense Winogradsky 
und Chromatium vinosum Winogradsky. Archiv fur mikrobiologie 
1963;46:127-37. 

(118)  Noguchi T, Hayashi H, Tasumi M. Factors controlling the efficiency of 
energy transfer from carotenoids to bacteriochlorophyll in purple 
photosynthetic bacteria. Biochimica et Biophysica Acta 
1990;1017:280-90. 

(119)  Cleary L, Chen H, Chuang C, Silbey RJ, Cao J. Optimal fold symmetry 
of LH2 rings on a photosynthetic membrane. Proceedings of the 
national academy of science of the united states of america - 
biophysics and computational biology 2013;110(21):8537-42. 

(120)  Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, 
Riccobono JR, et al. Isolation and characterisation of a subunit form of 
the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 
1987;26:5055-62. 

(121)  Parkes-Loach PS, Sprinkle JR, Loach PA. Reconstitution of the B873 
Light-harvesting complex of Rhodospirillum rubrum from the 
separately isolated a- and b-polypeptides and bacteriochlorophyll a. 
Biochemistry 1988;27:2718-27. 

(122)  Davis CM, Bustamante PL, Loach PA. Reconstitution of the bacterial 
core light-harvesting complexes of Rhodobacter sphaeroides and 
Rhodospirillum rubrum with isolated alpha and beta-polypeptides, 
bacteriochlorophyll a, and carotenoid. The journal of biological 
chemistry 1995;270(11):5793-804. 

(123)  Pandit A, Visschers RW, van Stokkum IHM, Kraayenhof R, van Grondelle 
R. Oligomerisation of Light-harvesting I antenna peptides of 
Rhodospirillum rubrum. Biochemistry 2001;40:12913-24. 

(124)  Pandit A, van Stokkum IHM, Georgakopoulou S, van der Zwan G, van 
Grondelle R. Investigations of intermediates appearing in the 
reassociation of the light-harvesting 1 complex of Rhodospirillum 
rubrum. Photosynthesis research 2003;75:235-48. 



  258 
 

 

(125)  Heller BA, Loach PA. Isolation and characterisation of a subunit form of 
the B875 light-harvesting complex from Rhodobacter capsulatus. 
Photochemistry and photobiology 1990;51(5):621-7. 

(126)  Loach PA, Parkes-Loach PS. Structure-Function relationships in 
bacterial light-harvesting complexes investigated by reconstitution 
techniques. In: Hunter CN, Daldal F, Thurnauer M, Berg JM, editors. 
The Purple Phototropic Bacteria. Springer Science; 2009. p. 181-98. 

(127)  Todd JB, Parkes-Loach PS, Leykam JF, Loach PA. In vitro 
reconstitution of the core and peripheral light-harvesting complexes of 
Rhodospirillum molischianum from separately isolated components. 
Biochemistry 1998;37:17458-68. 

(128)  Toropygina OA, Makhneva ZK, Moskalenko AA. Reconstitution of 
okenone into light harvesting complexes from Allochromatium 
minutissimum. Biochemistry 2005;70(11):1231-7. 

(129)  Fiedor L, Scheer H. Trapping of an assembly intermediate of 
photosynthetic LH1 antenna beyond B820 subunit. The journal of 
biological chemistry 2006;280(22):20921-6. 

(130)  Clayton RK. Absorption spectra of photosynthetic bacteria and their 
chlorophylls. In: Gest H, San Pietro A, Vernon LP, editors. Bacterial 
photosynthesis.Yellow Springs, Ohio: The Antioch Press; 1963. 

(131)  Ghosh R, Hauser H, Bachofen R. Reversible dissociation of the B873 
light-harvesting complex from Rhodospirillum rubrum G9. Biochemistry 
1987;27:1004-14. 

(132)  Drews G, Leutiger I, Ladwig R. Production of Protochlorophyll, 
Protophcophytin, and Bacteriochlorophyll by the Mutant A la of 
Rhodopseudomonas capsulata. Archives of microbiology 1971;76:349-
63. 

(133)  Jensen SL, Stanier RY, Cohen-Bazire G. Inhibition of carotenoid 
synthesis in photosynthetic bacterium. Nature 1958;181:250-2. 

(134)  Bril C. Studies on bacterial chromatophores: II. Energy transfer and 
photooxidative bleaching of bacteriochlorophyll in relation to 
structure in normal and carotenoid-depleted chromatium. Biochimica 
et Biophysica Acta 1962;66:50-60. 

(135)  Makhneva Z, Bolshakov M, Moskalenko A. Heterogeneity of carotenoid 
content and composition in LH2 of the purple sulphur bacterium 
Allochromatium minutissimum grown under carotenoid-biosynthesis 
inhibition. Photosynthesis research 2008;98:633-41. 

(136)  Britton G, Liaaen-Jensen S, Pfander H. Carotenoids: Natural functions. 

Berlin: Birkhauser.; 2008. 
(137)  Moskalenko AA, Makhneva ZK. Light-harvesting complexes from purple 

sulphur bacteria Allochromatium minutissimum assembled without 
carotenoids. Journal of photochemisty and photobiology, B: Biology 
2011;108:1-7. 

(138)  Serrano W, Amann R, Rossello-Mora R, Herbert RA, Fischer U. The 
genus Allochromatium (Chromatiales Chromatiaceae) revisited: A 
study on its intragenic structure based on multilocus sequence analysis 
(MLSA) and DNA-DNA hybridisation (DDH). Systematic and Applied 
Microbiology 2011;34:590-4. 



  259 
 

 

(139)  Law CJ, Cogdell RJ. The effect of chemical oxidation on the 
fluorescence of the LH1 (B880) complex from the purple bacterium 
Rhodobium marinum. FEBS Letters 1998;432:27-30. 

(140)  Pucheu NL, Kerberm NL, Garcia AF. Isolation and purification of 
Reaction Centre from Rhodopseudomonas viridis NHTC 133 by means 
of LDAO. Archives of microbiology 1976;109:301-5. 

(141)  Georgakopoulou S, Frese RN, Johnson E, Koolhaus C, Cogdell RJ, van 
Grondelle R, et al. Absorption and CD Spectroscopy and Modeling of 
Various LH2 Complexes from Purple Bacteria. Biophysical journal 
2002;82:2184-97. 

(142)  Sambrook J, Russell DW. Preparation and analysis of Eukaryotic 
genomic DNA. Molecular cloning A laboratory manual. Third ed. New 
York: Cold Spring Harbor Laboratory Press; 2001. p. 6.4-6.11. 

(143)  Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven 
overlap extension. Nature Protocols 2007;2(4):924-32. 

(144)  Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 
Small mobilisable multi-purpose cloning vectors derived from the 
Escherichia coli plasmids and pK18 and pK19: selectrion of defined 
deletions in the chromosome of Corynebacterium glutamicum. Gene 
1994;145:69-73. 

(145)  Sambrook J, Russell DW. Plasmids and their usefulness in molecular 
cloning. Molecular Cloning A Laboratory Manual. Third ed. New York: 
Cold Spring Harbor Laboratory Press; 2001. p. 1.123-1.129. 

(146)  Thornber JP. Photochemical reactions of Purple Bacteria as revealed 
by studies of three spectrally different carotenobacteriochlorophyll-
protein complexes Isolated from Chromatium, strain D. Biochemistry 
1970;9(13):2688-98. 

(147)  Goodwin TW, Osman HG. Studies in carotenogenesis 9. General cultural 
conditions controlling carotenoid (spirilloxanthin) synthesis in the 
photosynthetic bacterium Rhodospirillum rubrum. Biochemistry 
1952;53:541-6. 

(148)  Tonn SJ, Gogel GE, Loach PA. Isolation and Characterization of an 
Organic Solvent Soluble Polypeptide Component from Photoreceptor 
Complexes of Rhodospirillum rubrum. Biochemistry 1977;16(5):877-
85. 

(149)  Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in 
proteins. Biochemistry 1967;6(7):1948-54. 

(150)  Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and 
predict the molar absorption coefficient of a protein. Protein Science 
1995;4:2411-23. 

(151)  van der Rest M, Gingras G. The pigment complement of the 
photosynthetic reaction centre isolated from Rhodospirillum rubrum. 
The journal of biological chemistry 1974;249(20):6446-53. 

(152)  Clayton RK, Clayton BJ. B850 pigment-protein complex of 
Rhodopseudomonas sphaeroides: Extinction coefficients, circular 
dichroism, and the reversible binding of bacteriochlorophyll. 
Proceedings of the national academy of science of the united states of 
america - biological sciences 1981;78(9):5583-7. 



  260 
 

 

(153)  Hayashi H, Nozawa T, Hatano M, Morita S. Circular Dichroism of 
bacteriochlorophyll a in light harvesting bacteriochlorophyll protein 
complexes from Chromatium vinosum. Biochemistry 1981;89:1853-61. 

(154)  Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW. The structure 
and thermal motion ofthe B800-850 LH2 complex from Rps. acidophila 
at 2.0 A resolution and 100 K: New structural features and functionally 
revelant motions. Journal of Molecular Biology 2003;326:1523-38. 

(155)  Parson WW. The role of P870 in bacterial photosynthesis. Biochimica 
et Biophysica Acta 1968;153:248-59. 

(156)  Brotosudarmo THP, Collins AM, Gall A, Roszak AW, Gardiner AT, 
Blankenship RE, et al. The light intensity under which cells are grown 
controls the type of peripheral light-harvesting complexes that are 
assembled in a purple photosynthetic bacterium. Biochemistry 
2011;440:51-61. 

(157)  Weissgerber T, Dobler N, Polen T, Latus J, Stockdreher Y, Dahl C. 
Genome-wide transcriptional profiling of the purple sulphur bacterium 
Allochromatium vinosum DSM 180 during growth on different reduced 
sulphur compounds. Journal of Bacteriology 2013;195:4231-45. 

(158)  Bioedit a user-friendly biological sequence alignment editor and 
analysis program for Windows 95/98/NT.  Nucl. Acids. Symp. Ser. 
41:95-98).  [computer program]. 1999. 

(159)  Mulvaney RM. Studies of light harvesting complexes from purple 
photosynthetic bacteria. University of Glasgow; 2013. 

(160)  Sekine F, Horiguchi K, Kashino Y, Shimizu Y, Yu L, Kobayashi M, et al. 
Gene sequencing and characterisation of the light-harvesting complex 
2 from thermophilic purple sulphur bacterium Thermochromatium 
tepidum. Photosynthesis research 2012;111:9-18. 

(161)  Wagner-Huber R, Brunisholz RA, Bissig I, Frank G, Suter F, Zuber H. 
The primary structure of the antenna polypeptides of 
Ectothiorhodospira halochloris and Ectothiorhodospira halophilaa. 
European Journal of biochemistry 1992;205:917-25. 

(162)  Wang Z, Shimonaga M, Muraoka Y, Kobayashi M, Nozawa T. Methionine 
oxidation and its effect on the stability of a reconstituted subunit of 
the light-harvesting complex from Rhodospirillum rubrum. European 
Journal of biochemistry 2001;268:3375-82. 

(163)  Wang Z, Shimonaga M, Suzuki H, Kobayashi M, Nozawa T. Purification 
and characterisation of the polypeptides of core light-harvesting 
complexes from purple sulphur bacteria. Photosynthesis research 
2003;78:133-41. 

(164)  Carey A, Hacking K, Picken N, Honkanen S, Kelly S, Niedzwiedzki D, et 
al. Characterisation of the LH2 spectral variants produced by the 
photosynthetic purple sulphur bacterium Allochromatium vinosum . 
Biochimica et Biophysica Acta 2014;1837:1849-60. 

(165)  Wang Z, Shimonaga M, Kobayashi M, Nozawa T. N-terminal methylation 
of the core light-harvesting complex in purple photosynthetic bacteria. 
FEBS Letters 2002;519:164-8. 

(166)  K.Schmidt. Die carotenoide der thiorhodaceae II. 
Carotinoidzusammensetzung von Thiospirillum jenense Winogradsky 



  261 
 

 

und Chromatium vinosum Winogradsky. Archiv fur mikrobiologie 
1963;46:127-37. 

(167)  Magdaong NM, LaFountain AM, Hacking K, Niedzwiedzki D, Gibson GN, 
Cogdell RJ, et al. Spectral heterogeneity and carotenoid-to-
bacteriochlorophyll energy transfer in LH2 light-harvesting complexes 
from Allochromatium vinosum. Photosynthesis research 2016. 

(168)  Lohner A, Carey A, Hacking K, Picken N, Kelly S, Cogdell RJ, et al. The 
origin of the split B800 absorption peak in the LH2 complexes from 
Allochromatium vinosum. Photosynthesis research 2015;123:23-31. 

(169)  Hofmann C, Ketelaars M, Matsushita M, Michel H, Aartsma TJ, Kohler J. 
Single-molecule study of the electronic couplings in a circular array of 
molecules: Light-Harvesting-2 complex from Rhodospirillum 
molischianum. Physical review letters 2003;90(1):1-4. 

(170)  Sauer K, Cogdell RJ, Prince SM, Freer AA, Isaacs NW, Scheer H. 
Structure-based calculations of the optical spectra of the LH2 
bacteriochlorophyll-protein complex from Rhodopseudomonas 
acidophila. Photochemistry and photobiology 1996;64(3):564-76. 

(171)  Koolhaus MHC, van der Zwan G, Frese RN, van Grondelle R. Red shift of 
the zero crossing in the CD spectra of the LH2 antenna complex of 
Rhodopseudomonas acidophila: a structure based study. Journal of 
Physical Chemistry 1997;101:7262-70. 

(172)  Olsen JD, Sturgis JN, Westerhuis WHJ, Fowler GJS, Hunter CN, Robert 
B. Site-directed modification of the ligands to the bacteriochlorophylls 
of the light-harvesting LH1 and LH2 complexes of Rhodobacter 
sphaeroides. Biochemistry 1997;36:12625-32. 

(173)  Naveke A, Lapouge K, Sturgis JN, Hartwich G, Simonin I, Scheer H, et 
al. Resonance Raman spectroscopy of metal-substituted 
bacteriochlorophylls: Characterisation of Raman bands sensitive to 
bacteriochlorin conformation. Journal of Raman spectroscopy 
1997;28:599-604. 

(174)  Collins AM, Qian P, Tang Q, Bocian DF, Hunter NC, Blankenship RE. 
Light-harvesting antenna system from the phototrophic bacterium 
Roseiflexus castenholzii. Biochemistry 2010;49:7524-31. 

(175)  Parkes-Loach PS, Majeed AP, Law CJ, Loach PA. Interactions stabilising 
the structure of the core light-harvesting complex (LH1) of the 
photosynthetic bacteria and its subunit (B820). Biochemistry 
2004;43:7003-16. 

(176)  Goodwin TW, Osman HG. Studies in carotenogenesis: General cultural 
conditions controlling carotenoid (spirilloxanthin) synthesis in the 
photosynthetic bacterium Rhodospirillum rubrum. Biochemical Journal 
1953;53(4):541-6. 

(177)  Moskalenko A, Toropygina OA, Zhuravleva ZA, Erokhin YE. Effect of 
carotenoids on the interaction between pigment-protein complexes in 
membranes of the sulphur photosynthetic bacterium Chromatium 
minutissimum. Doklady Biochemistry and Biophysics 2001;381:423-6. 

(178)  Theiss C, Leupold D, Moskalenko AA, Razjivin AP, Eichler HJ, Lokstein 
H. Femtosecond spectroscopy of native and carotenoidless purple-



  262 
 

 

bacterial LH2 clarifies functions of carotenoids. Biophysical journal 
2008;94:4808-11. 

(179)  Georgakopoulou S, van der Zwan G, Olsen JD, Hunter CN, Niederman 
RA, van Grondelle R. Investigation of the effects of different 
carotenoids on the absorption and CD signals of light-harvesting 1 
complexes. Journal of Physical Chemistry 2006;110:3354-61. 

(180)  da Graca Miguel M, Eidelman O, Ollivon M, Walter A. Temperature 
dependence of the vesicle-micelle transition of egg 
phosphatidylcholine and octyl glucoside. Biochemistry 1989;28:8921-
8. 

(181)  Cogdell RJ, Brotosudarmo THP, Gardiner AT, Sanchez PM, Cronin L. 
Artificial photosynthesis - solar fuels: current status and future 
prospects. Biofuels 2010;1(6):861-76. 

(182)  Kramer H, Amesz J. Antenna organisation in the purple sulphur 
bacteria Chromatium tepidum and Chromatium vinosum. 
Photosynthesis research 1996;49:237-44. 

 

 


