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Abstract

The relationships between relative standard metabolic rate, aggression, territoriality, 

growth and subsequent life-history strategies were studied in juvenile Atlantic salmon. 

In order to do this a method of calculating mass-independent relative standard 

metabolic rates is presented. This procedure involved using individual deviations from 

aliometric predictions of standard metabolic rate based on body size (termed residual 

standard metabolic rate).

As in a previous study, it was found that salmon with higher relative standard 

metabolic rates were more likely to acquire dominance, in both pairs and groups. 

However, fish with higher standard metabolic rates appeared to have smaller metabolic 

scopes within which they had to carry out dominance-acquiring costly activities such as 

aggression, although fish with higher standard metabolic rates did indeed acquire 

dominance through greater aggression. Fish with higher standard metabolic rates, 

although having a higher cost of maintenance, were found to have a lower feeding 

motivation, possibly because they had a smaller metabolic scope and movements 

associated with foraging are themselves energetically costly. Therefore it appears that 

juvenile salmon with high standard metabolic rates and a limited metabolic scope opt to 

be more aggressive and thus acquire dominance and a feeding territory at the expense 

of higher foraging rates, since both behavioural strategies are energetically costly. It 

was also found that in an environment with little food, fish with high standard 

metabolic rates grew less well than predicted given their position in an artificial stream 

than conspecifics with lower costs of maintenance. This indicates a potential cost of a 

high standard metabolic rate.
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There is a temporal component to acquisition of territories since juvenile salmon 

emerge from gravel redds over several days. Through this ‘prior residence’ effect, fish 

introduced into a new environment first were more likely to acquire territories than 

later-arriving conspecifics. First-arriving fish, as a consequence of acquiring a feeding 

territory, grew faster and were more likely to smolt a year earlier than late-arriving 

juveniles. However, they did not appear to choose the most profitable territories, 

implying a time constraint to searching for the best sites. If a salmon takes too long to 

choose a territory, it risks the territories filling up with later-arriving fish and not 

acquiring one at all. Prior residence appears to be a powerful asymmetry when tested 

in both pairs and groups, intruders having to be relatively much larger to overcome it 

and acquire dominance. Relative standard metabolic rate did not predict dominance 

when prior residence was included as a competitive asymmetry. However, fish with 

higher standard metabolic rates were more likely to emerge first since they absorbed 

their yolk-sacs faster and so needed exogenous food sooner. Therefore, a high 

standard metabolic rate conferred an indirect benefit since it increased the likelihood of 

a fish being a prior resident.

Differences in aggression arising from differences in relative standard metabolic rate 

were also apparent in a hatcheiy situation. A group consisting entirely of salmon with 

high standard metabolic rates showed more aggression than a group of salmon with 

low standard metabolic rates. However, mean growth did not improve as a 

consequence of lower aggression rates, although the distribution of individual growth 

rates was more even in the group of fish with low standard metabolic rates. This may 

be a consequence of fewer fish in that group behaving despotically and monopolizing 

available food.
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As reported in earlier studies, differences in standard metabolic rate between the 

Upper and Lower Modal Groups of juvenile salmon became apparent during their first 

winter and spring. However, Upper Modal Group fish had higher weight-specific 

standard metabolic rates in December, earlier than previously documented, and higher 

mass-independent metabolic rates in May, prior to smoltification. This is suggested to 

be a pre-adaptation to the high metabolic demands the smolts will face when they 

migrate to sea. Individual residual standard metabolic rates varied more in the Upper 

Modal Group than the Lower Modal Group over winter and spring, possibly because 

respiratory enzymes in the Upper Modal Group were more seasonally adapted to the 

changing water temperatures of the period. They may have therefore worked 

inefficiently at the temperature at which metabolic rate was measured (since it 

remained constant while the ambient water temperature changed over time), being 

most inefficient when the difference between sampling and ambient water temperatures 

was greatest. However, individual residual standard metabolic rates remained broadly 

invariant throughout the period, demonstrating that individual standard metabolic rate 

is a relatively stable minimum to aerobic metabolic activity.
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General Introduction

Chapter 1: General Introduction

1.1 General salmon biology

The Atlantic salmon is an anadromous fish that, as with other salmonids, exhibits 

great flexibility tn life-history strategies (Thorpe, 1989). In October-November Atlantic 

salmon lay relatively few large, yolky eggs {ca. 3000-10000 per female) in gravel nests 

(redds) on stream beds in the cool, temperate waters of America and Europe (Thorpe 

et a i,  1992). Each batch of eggs is simultaneously fertilised by the male and then 

covered with gravel (Jones, 1959). Juvenile salmon hatch within the redd in the 

following spring and remain there until their yolk-sacs are almost completely absorbed 

(Brannas, 1988). The juveniles emerge from the redds prior to complete yolk-sac 

absorption, after which they defend feeding territories from one localised station 

(Kalleberg, 1958; Keenleyside & Yamamoto, 1962). The territoriality of juvenile 

salmonids has been extensively studied (Symons, 1968; Jenkins, 1969; Li & Brocksen, 

1977; Dill, 1978; Fausch, 1984; Grant, 1990), and is mediated through intraspecific 

aggression (Kalleberg, 1958). A social hierarchy is formed where dominant juveniles 

are thought to assume the energetically most profitable stream positions (the optimal 

focal point of a territory is in a low-velocity current to minimise energy expenditure, 

and is adjacent to a swift current where prey drift rate is high; Fausch, 1984). 

Subordinate juveniles assume poorer feeding positions, although other juveniles are 

forced downstream to die as the territories are filled up (Elliott, 1984; 1990). There is 

therefore strong evidence for a critical period with high mortality in the first few weeks 

after juvenile emergence. Variation in salmonid territory size is primarily explained by
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General Introduction

differences in body size (Grant et al., 1989; Grant & Kramer, 1990; Keeley & Grant,

1995). Therefore a consequence of territoriality is population regulation: population 

density should decrease with increasing body size. Juvenile salmonids, therefore, may 

self-thin in a manner similar to plants as body and territory size increase (Grant & 

Kramer, 1990; Elliott, 1993a). Moreover, very large individuals may be selected 

against, since they spend so much time in territorial defence that they are unable to 

obtain an adequate energy intake (Elliott, 19936).

1.2 Life-history strategies in juvenile salmon

1.2.1 Bimodality in juvenile salmon

Juvenile salmon, or parr, spend one to seven years in freshwater before entering the 

sea as smolts, and then return to their natal river to spawn after a further one or more 

years (Metcalfe & Thorpe, 1990). Alternatively, some fish may remain in freshwater 

and become sexually mature without having gone to sea (Dailey et al., 1983; 

Bagliniere & Maisse, 1985). Much of the variation in seaward migration and the onset 

of sexual maturity is under environmental control (Thorpe, 1989; Metcalfe & Thorpe, 

1990), and these two physiological decisions made by juveniles cause much of the 

flexibility in life-histories.

Whether juveniles migrate to sea after one year depends on individual growth 

trajectories in mid- to late summer, a few months after first feeding. Juvenile salmon 

that have maintained relatively high growth rates will migrate the following May, 

whereas fish with reduced growth rates will remain in freshwater for at least one more
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General Introduction

year (Thorpe, 1977; Higgins 1985; Nicieza et al., 1991). The proportion of fish 

maintaining high growth rates and smolting within one year is therefore under 

environmental control; more fish will turn into smolts in their second spring (1+ 

smolts) under conditions of high food availability and high temperature (Bagliniere & 

Champigneulle, 1986; Metcalfe & Thorpe, 1990). Whether or not a fish smolts 

becomes evident the previous autumn: the initially unimodal length-frequency 

distribution of a population of juvenile salmon becomes bimodal, with the faster 

growing Upper Modal Group (UMG) consisting of fish that will migrate to sea as 1+ 

smolts and the slower developing Lower Modal Group (LMG) deferring migration for 

a further year. Fish in the LMG subsequently lose appetite and enter a period of 

anorexia over the winter (Metcalfe et al., 1988; Metcalfe & Thorpe, 1992a; Bull et al.,

1996), whereas the UMG maintain relatively high growth rates (Metcalfe et al., 1986; 

1988). The phenomenon of bimodality occurs in both wild and hatchery populations 

(Thorpe, 1977; Bagliniere & Maisse, 1985; Bagliniere & Champigneulle, 1986; 

Heggenes & Metcalfe, 1991; Nicieza et al., 1991).

Therefore it appears that individual salmon adopt a developmental strategy 

dependent on reaching a threshold growth rate very early on in their life. This strategy 

remains fixed over winter. The physiological decision of which strategy to adopt 

appears to be reached during July and August: the correlation between monthly growth 

opportunity and proportion of fish subsequently entering the UMG is greatest in July 

(Thorpe et al., 1989). Also, until this point ratios of otolith to somatic growth are 

similar in fish destined for either modal group but deviate markedly thereafter; fish in 

the UMG maintain otolith and somatic growth whereas salmon in the LMG virtually 

cease somatic growth yet continue otolith growth (Wright et al., 1990). Moreover, the
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General Introduction

appetite of UMG and LMG fish is strongly divergent after August, indicating fixed 

strategies (Metcalfe et a l ,  1988). However, individual salmon adopt a life-history 

trajectory based on environmental cues. This must offer greater flexibility than a life- 

history under genetic control, so will often therefore have a selective advantage 

(Metcalfe, 1993).

1.2.2 Social status and life-history strategies

Since early growth rates determine the ability of an individual fish to achieve a 

threshold growth rate and migrate early, social as well as environmental factors must 

influence the decision of which life-history stategy to adopt. The social status and 

competitive ability of juvenile salmon should influence the age at which they migrate, 

through their impact on individuals’ ability to acquire food, As noted already, juvenile 

salmon defend feeding territories against competitors (Kalleberg, 1958; Keenleyside & 

Yamamoto, 1962). By comparing pairs o f fish in narrow raceways, Metcalfe et al. 

(1989) were able to identify the dominant juvenile salmon as the one which was 

consistently furthest upstream, and which obtained most food. However, larger fish 

were dominant in only 56% of pairs in June-July (two to three months after first 

feeding), and among LMG fish in the following April, larger fish were dominant in only 

48% of pairwise interactions (Huntingford et a l, 1990). This suggests that early social 

status depends on factors other than relative size; since dominant fish obtain 

preferential access to food, they are likely to grow faster (Fausch, 1984; Metcalfe, 

1986), so larger size is a consequence rather than a cause of dominance in juvenile
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General Introduction

salmon (Huntingford et al., 1990). Furthermore, fish of high status are more likely to 

join the UMG and smolt early, by both acquiring a disproportionate amount of food 

and suppressing the growth of fish lower in the hierarchy (Metcalfe et al., 1989; 

Metcalfe et al., 1990; Metcalfe, 1991; Thorpe et a l, 1992), In addition, fish of low 

status that are deferring migration are less able to feed in the presence of a competitor, 

suggesting they are subordinate in behaviour (Metcalfe, 1989).

Therefore it is clear that the fitness consequences of differing social status are 

considerable. However, the factors determining initial status are poorly understood, 

since larger size in juvenile salmon appears to be a consequence of dominance rather 

than a cause (Huntingford et al., 1990). As mentioned earlier, juvenile salmon emerge 

over several days from their redds prior to complete yolk-sac absorption. Several 

studies have shown that those juveniles emerging first and colonising the stream bed 

have an advantage in subsequent competition for feeding sites over those emerging 

later (Mason & Chapman, 1965; Chandler & Bjornn, 1988; Brannas, 1988), This is 

due to either a ‘prior residence’ advantage and/or because they are intrinsically more 

dominant. Metcalfe & Thorpe (19926) disassociated the two effects, discovering that 

early emerging fish were dominant over late emerging fish after controlling for prior 

residence. This suggested that there was something intrinsically different between early 

and late fish - a factor that promoted both earlier yolk-sac absorption and more 

dominant behaviour.

The conclusions of several studies have indirectly suggested that differences in 

metabolic rate may play a part in determining dominance; dominance and probability of 

establishing a territory in salmonids are correlated with the relative sizes of otoliths at 

emergence (Mosegaard, 1990; Titus & Mosegaard 1991; Metcalfe et al., 1992). Since
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rate of otolith deposition is more closely related to metabolic rate than somatic growth 

(Wright et a i, 1990; Wright, 1991), this implies that differences in metabolic rate may 

cause differences in dominance. Given this line of reasoning, Metcalfe et al. (1995) 

demonstrated that variation in standard metabolic rate (SMR; measured as oxygen 

consumption, see Chapter 2 for definitions) was directly responsible for governing 

relative dominance among pairs of post-emergence juvenile salmon tested in white 

plastic raceways. In this way, variation in metabolic rate is thought to be linked to life- 

history strategy through the medium of social status.

1.3 Metabolic rate and behaviour

By investigating how relative metabolic rate may determine relative social status in 

juvenile salmon, Metcalfe et al. (1995) contributed to a number of studies on the 

relationship between physiology and behaviour in animals. To date, most studies have 

concentrated on instances where differences in behaviour have caused differences in 

physiology, rather than variation in physiology causing differences in social status, as is 

the case in the above study. For example, dominant birds have elevated metabolic rates 

as a consequence of their high social rank (Roskaft et al., 1986; Hogstad, 1987; Bryant 

& Newton, 1994). In contrast to the situation with juvenile salmon, this elevated 

metabolic rate was interpreted as a disadvantage, since more energy would be needed 

to maintain a higher level of metabolism. It is unlikely that a similar causal relationship 

in juvenile salmon was observed by Metcalfe et al. (1995); variation in metabolic rate 

was thought to govern social status, rather than vice versa, since salmon subsequently

15



General Introduction

shown to be dominant already had larger otoliths at first-feeding (indicating a higher 

metabolic rate; Wright, 1991; Metcalfe et al., 1992), several days before the onset of 

aggressive behaviour (Dill, 1977).

In addition to the above studies on birds, behaviour-dependent differences in 

physiology have also been noted in several fish species. In Nile Tilapia, both the 

dominant and subordinate fish showed elevated metabolic rates due to social stress in 

the subordinate and the expression of an agonistic profile in the dominant, some 

agonistic actions being more costly than others (Fernandes & Volpato, 1993; 

Alvarenga & Volpato, 1995). Using physiological parameters other than metabolic 

rate, studies on Siamese fighting fish showed that losers in pairwise interactions 

oxidised mainly amino acids for energy (a stress-like response to losing), whereas 

winners degraded carbohydrates more quickly, and could produce more energy per 

unit time than losers (Haller & Wittenberger, 1988; Haller, 1994; Haller, 1995). 

Moreover, similar relationships are found in mammals; rats exposed visually (but not 

physically) to opponents responded by increases in plasma free fatty acids (Koolhaas & 

van Oortmerssen, 1988). In coyotes, Golightly (1981) found that the metabolic rates of 

both dominants and subordinates were elevated: when dominants were regularly 

challenged, their metabolic rates increased, while if the subordinates were continually 

harassed, their oxygen consumption also increased.

However, there are rather few reports that discuss how differences in physiology can 

influence variation in behaviour. In arthropods, endothermically elevated thoracic 

temperature has been shown to be advantageous in the scramble competition of 

bumblebees for nectar (Heinrich, 1976; Heinrich, 1996) and of dung beetles for dung 

(Heinrich & Bartholomew, 1979; Ybarrondo & Heinrich, 1996; Heinrich, 1996). In the
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latter case, high thoracic temperature is an important determinant of contest outcome; 

thoracic temperature is often actively regulated by using the flight muscles to shiver 

(Bartholomew & Heinrich, 1978), so beetles immediately arriving at dung piles usually 

win contests since their thoracic temperature is at high post-flight levels, compared to 

conspecifics that have been there for some time. Elevated thoracic temperature speeds 

up activity, so increasing a beetle’s effectiveness at fighting,

A study on spinyhead and roughhead blennies reported similar findings on oxygen 

consumption and dominance as Metcalfe et al. (1995) found with salmon. Spinyheads, 

with a significantly greater standard metabolic rate than roughheads, outcompeted 

roughheads for feeding sites, gaining superior feeding sites on coral reefs. This led to 

roughheads having to occupy microhabitats with lower food availability where 

spinyheads, with their higher cost of maintenance, would receive inadequate food; only 

rougheads, with a lower cost of maintenance, could survive there (Clarke, 1992). 

Similarly, differences in the cost of maintenance have been suggested as potential 

causes of intraspecific differences in growth as environmental conditions change. 

Under conditions of low prey abundance a high metabolic rate, which may ordinarily 

confer dominance in salmonids, would become a disadvantage since they have higher 

energy demands for survival and growth, and cannot meet them due to lack of food 

(Titus, 1990).

Therefore physiological processes such as metabolic rate, measured either as oxygen 

consumption or thoracic temperature, would seem to influence subsequent behaviour. 

Moreover, juvenile salmon are ideal study animals to further investigate this process 

due to the relative ease of measuring the metabolic rates of fish and the amount already 

known about salmonid social systems. The marked territoriality and differing life-
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history strategies within a population of juvenile salmon lend themselves well to a 

study on the behavioural consequences of individual physiology.

1.4 Outline of thesis

Chapter 2 describes the method of estimating oxygen consumption used throughout 

the thesis, presents a rationale of why that method was used, and defines basic 

metabolic terms such as standard metabolic rate. It also discusses an experiment on 

metabolic scope in juvenile salmon and how it may relate to the relationship between 

standard metabolic rate and dominance: metabolic scope (the difference between upper 

and lower levels of oxygen consumption) is thought to increase with increasing 

standard metabolic rate and so is an important factor in the study by Metcalfe et al. 

(1995). The relationship between individual variation in standard metabolic rate and 

metabolic scope is tested here.

Chapter 3 discusses feeding motivation and competitive asymmetries in juvenile 

salmon. Dominance status increases with increasing energy demand through the 

medium of greater feeding motivation (Johnsson & Bjornsson, 1994). Therefore the 

hypothesis that feeding motivation increases with increasing standard metabolic rate 

and its associated energy demand is tested here. In addition, the experiment carried out 

by Metcalfe et al. (1995) is repeated here in a semi-natural setting, with an additional 

asymmetry of prior residence. It is compared here with the asymmetries of relative 

standard metabolic rate and relative size in determining the outcome of pairwise 

contests.
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Chapter 4 is divided into two distinct experiments, both carried out in an artificial 

stream. Both experiments further investigate the relationship between metabolic rate 

and specific behaviours, and its subsequent effect on social status and life-history 

strategy. However, the first experiment attempts to elucidate the costs and benefits of 

a high standard metabolic rate, by investigating the effect of variation in food supply on 

the behaviour and growth of fish with known metabolic rates. The experiment tests the 

hypothesis (first suggested by Titus, 1990) that high metabolic rate may be a penalty 

during periods of low food abundance. The second experiment attempts to mimic the 

timing of emergence in a population of juvenile salmon, so in effect studies the effects 

of prior residence on subsequent behaviour and life-history strategy. It also investigates 

the relationship between the quality of individual salmon (measureable as social status) 

and their territories, given the assumption that the best territories will go to the most 

dominant individuals (Maynard Smith, 1974).

Chapter 5 investigates the effect of metabolic rate on aggression and subsequent 

growth depensation in an aquacultural situation. If high metabolic rate fish are more 

dominant, it may be as a result of aggression. Aggressive salmonids usually consume 

disproportionate amounts of food in hatchery tanks; this increases variance and skew 

of the size distribution of fish (McCarthy et al., 1992; Ryer & Olla, 1996). This chapter 

tests the hypothesis that aggression and subsequent growth depensation can be 

moderated in groups of juvenile salmon by varying the proportion of fish with high 

standard metabolic rates which may potentially exhibit dominance and depress the 

feeding of others.

Chapter 6 investigates how individual standard metabolic rates may change as a 

population of juvenile salmon diverge into the two modal groups in their first winter. It
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General Introduction

builds on previous studies which demonstrated that smolts have higher metabolic rates 

than salmon deferring migration. However, the timing of this physiological divergence 

is unclear. This chapter presents data on how the individual standard metabolic rates of 

a group of juvenile salmon vary through the winter and spring after bimodality has 

become apparent.

Chapter 7 contains a general synthesis o f all the results and their implications for 

salmon ecology, and discusses how each set o f results complements the other.

20



Methods & metabolic scope

Chapter 2: General methods and metabolic scope in juvenile Atlantic salmon

2.1 Introduction

Methods of estimating metabolic rate, measured as oxygen consumption, in juvenile 

salmon are used throughout this thesis, so are given once in detail here. This chapter 

also presents data on metabolic scope in juvenile salmon; Metcalfe et al. (1995) 

claimed that those fish with higher relative standard metabolic rates (definitions are 

presented below) are more dominant in pairwise contests, and hypothesised that the 

greater standard metabolic rate allowed for a greater metabolic scope (Priede, 1985) 

within which behaviour attributable to dominance (e.g. aggression) could be performed 

at a greater intensity. However, the relationship between standard metabolic rate and 

metabolic scope was untested in that study. Therefore the influence of standard 

metabolic rate on variation in metabolic scope is investigated here.

Standard metabolic rate (SMR) is the minimal maintenance or resting metabolic rate 

of unfed fish, below which physiological function is impaired (Brett & Groves, 1979; 

Priede, 1985). It can be measured either directly with unfed, inactive fish (e.g. 

Edwards, 1970; Soofiani & Hawkins, 1982) or by extrapolating measurements in 

active fish back to zero activity (e.g. Brett, 1964; Lucas & Priede, 1992). Ordinarily, 

fish live above this resting level due to activities such as feeding and locomotion, and 

the typical rate of metabolism that they experience is termed routine metabolic rate. 

However, there is an upper limit on aerobic metabolic rate termed the active metabolic 

rate (AMR). The difference between active and standard metabolic rate is termed the 

metabolic scope (Fry, 1947) and the animal must function within its confines.
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Methods & metabolic scope

Metabolic scope can either be expressed as the absolute difference between the two 

limits (in ml02.g'\h'% e.g. Wieser, 1985; Wieser & Medgyesy, 1990), or as a metabolic 

expansivity coefficient (AMR/SMR; e.g. Lucas & Priede, 1992), also known as 

factorial metabolic scope (Wieser & Forstner, 1986; Armstrong etal., 1992). Both the 

standard and active metabolic rates are mandatory and it has been assumed that 

individual animals cannot regulate their magnitude (Priede, 1985). However, other 

components of respiratory metabolism can be adjusted; metabolism due to the cost of 

tissue maintenance, locomotor activity and feeding metabolism must be carried out 

within the two limits (Brett & Groves, 1979). Feeding metabolism is associated with 

gut motility, digestive processes and post-feeding activity, and was described by 

Beamish (1974) as apparent specific dynamic action (SDA); metabolic rate is usually 

elevated (due to SDA) for some hours following feeding (Kleiber 1961; Beamish, 

1974; Elliott, 1976; Vahl & Davenport, 1979). Locomotor metabolism accounts for a 

large proportion of the metabolic scope, so in fish there is a continual conflict between 

locomotion and feeding. For example, in largemouth bass (handler & Beamish, 1981) 

and juvenile cod (Soofiani & Priede, 1985), feeding metabolism can occupy all the 

metabolic scope, theoretically allowing none for locomotion within the confines of 

aerobic metabolism. Therefore fish may have a potential power budgeting problem, 

especially when foraging (Brett & Groves, 1979; Priede, 1985).

Much attention has been given to the aliometric scaling of standard and active 

metabolic rate with mass; standard metabolic rate generally scales with size with a 

mass exponent of less than unity (<1), implying that heavier fish respire less on a per- 

gram basis, whereas active metabolic rate usually scales with size with a mass exponent 

of greater than unity (>1), implying that heavier fish have greater active metabolic rates
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on a per-gram basis. Consequently, on average the metabolic scope usually increases 

with fish size (Brett, 1965; Priede, 1985; Wieser, 1985; Goolish, 1991; Armstrong et 

al., 1992). However, little is known about how individual deviations from allometric 

predictions of standard metabolic rate affect deviations from predictions of active 

metabolic rate, after controlling for size. Deviations from predicted metabolic rate are 

measured as residuals (after subtracting the metabolic rate predicted on the basis of 

body mass from the actual metabolic rate). This method of investigating intraspecific 

variation in metabolic rate has been advocated across a wide range of taxa: mammals 

(McNab, 1988), birds (Daan et a l,  1990) and, more recently, fish (Metcalfe et a l, 

1995).

Therefore, this chapter outlines methods of measuring juvenile salmon oxygen 

consumption and presents data justifying the protocol used throughout the thesis, and 

also presents data on the effects of variation in standard metabolic rate on active 

metabolic rate and consequently metabolic scope.

2.2 Methods

2.2.1 Source and maintenance o f  fish

All fish used in this thesis were offspring of sea run adults from the River Almond, 

Perthshire, and were reared at the SOAFD Almondbank hatchery prior to removal to 

the University Field Station, Rowardennan, Loch Lomond. Prior to experiments, all 

fish were kept in tangential flow hatchery tanks at ambient temperature and 

photoperiod and fed ad lib. with commercial pelleted food.
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2.2.2 General respirometry methods

Oxygen consumption rates of juvenile salmon were measured by placing individual 

fish in perspex respirometry chambers through which water continually flowed, 

allowing the screening of large numbers of fish in a relatively short time. The size of 

chamber and water flow rate depended on the size of fish within them (Table 2.1). For 

this open method of respirometry the difference in oxygen content between water 

entering and leaving the chambers was measured, as was the flow rate of water. Water 

temperature was also noted in order to estimate the capacitance of oxygen in the water 

(PPFO2 , mlO: .1'*) (Mackereth et al., 1978; Table 2.2) during a series of oxygen 

consumption measurements. Water temperature was kept constant throughout by using 

a recirculating water supply and housing all equpment in a constant temperature 

cabinet. Water was pumped into a header tank through an ultra-violet steriliser to 

reduce bacterial respiration (Fig. 2.1). It was kept fully oxygen-saturated by means of 

an airstone, and then flowed by gravity through the respirometry chambers. A sample 

of header tank water was injected into a thermostatted Strathkelvin 1302 Oxygen 

electrode in order to calibrate a Strathkelvin Oxygen meter (Model 781) at 100% 

oxygen saturation, and a small amount o f sodium sulphite in 0.0IM <7/-sodium 

tetraborate solution was used to calibrate it at 0% oxygen saturation.

A rack of 20 chambers was set up, allowing the oxygen consumption rates of 20 

salmon to be measured on the same day. The fish were placed in the chambers 

overnight, and measurements commenced 20 hours later, as by this time they would 

have settled and evacuated their guts (Higgins & Talbot, 1985; also evidenced by 

faeces being washed out of the tubes by the water flow). The fish were kept in semi-
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Table 2.1: Respirometry chamber dimensions and water flow rates for examples of 
different size classes of juvenile salmon

Fork length + 
S.E.(mm) 

(range)

Weight ± S.E.(g) 
(range)

Flow rate + S.E. 
(l.h->) 

(range)

Respirometry 
chamber dimensions 
(length X breadth) 

(mm)
30.2+2.4

(26.8-33.5)
0.24±0.03

(0.14-0.34)
0.152+0.021
(0.086-0.271)

50 X 10

74.4+4.0
(64.5-84.3)

4.79±1.15
(2.65-6.92)

0.769±0.269
(0.276-1.428)

100x20

116.3±4.2
(97.0-131.0)

16.74+1.68
(9.19-22.80)

1.264+0.010
(1.209-1.303)

150x35
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Table 2.2: Solubility of oxygen from moist air at one atmosphere total pressure in 
ml.l'  ̂ for different temperatures in freshwater

Temperature (°C) Oxygen concentration (ml.l ')

8.0 8.280
8.5 8.183
9.0 8.086
9.5 7.988
10.0 7.891
10.5 7.802
11.0 7.713
11.5 7.623
12.0 7.534
12.5 7.452
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Fig. 2.1; Diagram of the respirometer with one of 20 respirometry chambers illustrated. 
The water in the header tank is saturated with oxygen using an air stone, and has been 
sterilised with an ultra-violet steriliser. Each chamber contains one fish, and the 
outflow from each chamber is injected into an oxygen electrode (not illustrated) 
calibrated with an inflow sample. Flow rate is measured by weighing the outflow 
collected in a beaker during a set period of time.
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darkness, since they are very inactive at low light levels. Flow rate (l.h'^) was measured 

by catching the water outflow from each tube in a beaker over a measured time period 

(a minimum of two minutes) and weighing it. Oxygen consumption (FO2 , mlOz.h ') was 

measured by first injecting 5ml of 100% oxygen saturated water from the header tank 

(representative of the water flowing into each chamber) into the oxygen electrode, and 

then injecting a 5ml sample of water flowing out of an occupied chamber and noting 

the percentage reduction in oxygen saturation from 100% (using a Belmont 

Instruments pen recorder connected to the oxygen meter). The percentage reduction in 

oxygen concentration was converted to an individual fish’s oxygen consumption (VO2 , 

mlOz.h ') with the equation;

FO2 = Fw.ACwOz (Eq. 2,1)

where Kv is the flow rate (l.h ') of water through the respirometry chamber and ACwO? 

is the difference in the oxygen concentration between the inflow and outflow water 

((% reduction/100). p IFO:, mlOi.l % where piTO: is the capacitance of oxygen in the 

water).

This procedure was repeated twice for each fish (with a minimum interval of 30 min. 

between measurements), and a third reading was taken if the initial two values were 

not in close agreement. ‘Close agreement’ was defined as the second value falling 

within the first value± 20%. The flow rate through each chamber was greater for larger 

fish (see Table 2.1), ensuring that the percentage reduction in oxygen concentration 

never dropped further than 25%. A greater reduction would result in undue stress for 

the fish. The entire procedure was identical for each fish, allowing a measure of relative 

standard metabolic rate for individual fish. All fish were anaesthetised, weighed (to 

O.Olg) and measured (fork length, to 0.1mm) after measurements of respiration rate
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were completed. This technique allowed a non-invasive mass screening of fish for 

experiments, and was thought to be an accurate measure of individual rates of oxygen 

consumption since only fish with very similar rates of oxygen consumption from their 

two or three readings were used in subsequent experiments.

2.2.3 Changes in metabolic rate during the settling period

To ensure that metabolic rate values measured during experiments were indeed those 

of resting fish, the rate of oxygen consumption of 8 fish (mean weight = 

2.21+0,25(S.E.)g) was measured at intervals over a 24 hour period from when they 

were first placed in respirometry chambers. The experiment was carried out in October 

1994, at a water temperature o f 9°C.

2.2.4 Calculating residual standard metabolic rate

To calculate whether a fish had a relatively high or low respiration rate for its size, 

the regression line of oxygen consumption (mlO^.h ') versus weight (g) on a double 

natural logarithmic scale was used to calculate the expected metabolic rate of a fish of 

a particular weight. This was then compared with its observed metabolic rate 

(mlOz.h"'). Absolute rather than proportionate (per gram) values were used, as 

proportionate values usually decrease with increasing body size, larger fish respiring 

less on a per gram basis than smaller fish. The difference between a fish’s observed and
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expected standard metabolic rate was termed the residual standard metabolic rate 

(rSMR, measured in ml0 2 .h‘‘); a positive value therefore indicated that a fish had a 

higher than expected oxygen consumption rate for its size while a negative value 

indicated a relatively low consumption rate.

The standard metabolic rates of 106 juvenile salmon (range: 0.17 - 0.95g; mean 

weight = 0.36+0.05g) were measured during June and July 1993 at 9‘’C to give an 

example of the inter-individual variation in standard metabolic rate for a small size 

range of fish.

2.2.5 Measuring metabolic scope

Metabolic scope (MS) was estimated for 63 juvenile salmon across a weight range of 

1 04-8.99g (mean weight = 3.86+0.21(S.E.)g) kept at an ambient temperature of 

However, for logistical reasons, the standard metabolic rates of the fish were measured 

at a constant temperature of 13°C in April 1994, Standard metabolic rate was 

measured as above, and residual standard metabolic rate (rSMR) calculated with the 

regression equation derived from the measurements of oxygen consumption for the 63 

fish. However, active metabolic rate (AMR) was measured in the same fish 20 hours 

prior to the standard metabolic rate measurements. Fish were transferred from a 

holding tank where they had been fed ad lib. and put in a bucket. Their routine 

metabolic rates will have already been elevated by the specific dynamic action (SDA) 

resulting from feeding (Beamish, 1974; Brett & Groves, 1979; Priede, 1985). The fish 

were agitated into burst swimming performance while in the bucket by being chased
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with a hand-net, immediately before being placed in the respirometry chambers. This is 

thought to induce active metabolic rate, as moving from a stationary position to a burst 

swimming speed is energetically very inefficient (Dickson & Kramer, 1971). Moreover, 

chasing protocols have been thought to be biochemically and physiologically analogous 

to exhaustive exercise (Wieser et a i, 1985; Pearson et a i, 1990; Reidy et al., 1995). 

The first metabolic measurement of each fish was taken ca. 20 minutes after they were 

placed in the chambers, since a change in measured oxygen concentration in the 

outflowing water lags behind a change in activity due to a wash-out effect o f the 

chamber, which in turn is due to a dilution factor (= ratio of water flow to volume of 

water in the respirometry chamber; Spoor, 1946; Frappell et al., 1989; Steffensen, 

1989). This first metabolic measurement was therefore assumed to be a measure of 

active metabolic rate. Factorial metabolic scope was calculated as the ratio of active to 

standard metabolic rate (FMS = AMR/SMR).

2.3 Results

2.3.1 Changes in metabolic rate during the settling period

A steady decrease in metabolic rate to an asymptote was evident over time (Fig. 2.2), 

with the basal level being reached after approximately 17 hours. Therefore the protocol 

o f leaving fish for 20+ hours in other experiments is clearly sufficient to allow them to 

evacuate their guts and to become acclimatised to conditions within the tubes, so 

allowing a measurement of standard metabolic rate.
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Fig. 2.2; Change in metabolic rate (mlOz.h'^) of 8 salmon measured 5 times over 24 
hours at 9°C; 0 hours being the time the fish were put into the respirometry chambers. 
Error bars denote standard error.
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2.3.2. Variation in residual standard metabolic rate

The relationship between standard metabolic rate (SMR, mlOs.h ') and fish weight 

(W, g) for the 106 juvenile salmon tested during June and July 1993 is described in 

equation 2.2 and Fig. 2.3. It provides an example of the variability in standard 

metabolic rate between fish. Both axes were transformed to natural logarithms to 

linearise the relationship.

lnSMR= l,16.1n(W) - 2.43 (Eq. 2.2)

(r '=  0.233, n -  106, p<0.005)

The mean standard metabolic rate (SMR) was 0.033+0.002 mlOs.h'V However, it is 

clear that there was much inter-individual variability in metabolic rate (mass exponent 

S.E. = 0.204); the mean residual standard metabolic rate (rSMR) was -0,011+0.005 

mlOs.h', while the minimum and maximum values were -0.292 and 0.057 mlO .̂h'  ̂

respectively.

2.3.3 Metabolic scope

Regression equations relating standard and active metabolic rate (ml02.h'^) to 

juvenile salmon weight (W, g) were:

ln.SMR = 0.85.1n(W)- 1.91 (Eq. 2.3)

(r  ̂= 0.575, n = 63, p<0.0001), and

ln.AMR = 0.83.1n(W)- 1.30 (Eq. 2.4)

(r  ̂= 0.643, n - 57, p<0.0001).
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Fig, 2.3: The relationship between body weight (g) and standard metabolic rate 
(mlOi.h'O for juvenile salmon (both axes are on a natural logarithmic scale).
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The standard errors of the mass exponents for Eqs. 2.3 and 2.4 were 0.301 and 0.271 

respectively.

Analysis of covariance indicated that the slopes of the two lines were not 

significantly different from each other (F(i,n8) = 0.22, p = 0.638). However, there was a 

significant difference in the elevations of the two lines (F(i,n8)= 100.89, p<0.0001, Fig. 

2.4), active metabolic rate being (not surprisingly) significantly greater than standard 

metabolic rate. Both standard and active metabolic rates were measured in 43 of the 

fish; factorial metabolic scope (FMS = AMR/SMR) did not vary significantly with fish 

mass (r  ̂= -0.024, n = 43, p = 0.950). On a per-gram, mass-dependent basis, active 

metabolic rate (AMR.g'^) varied significantly with standard metabolic rate (SMR.g'% 

m l02.h ‘'.g"‘):

AMR.g-' =0.62.(SMR.g-') + 0.15 (Eq. 2.5)

(r^= 0.136, n -  43, p<0.01, Fig. 2.5). The mass exponent (0.62) was less than unity. 

There was a similar positive relationship linking the mass-independent measures of 

standard and active metabolism, residual standard metabolic rate and the analagous 

residual active metabolic rate (E = 0.133, n = 43, p<0.01. Fig. 2.6). Again, the 

exponent (0.34) was less than unity. Furthermore, plotting the factorial metabolic 

scope of individual fish (FMS = AMR/SMR) against their residual standard metabolic 

rates (rSMR) showed a significant negative relationship (r^^ 0.359, n = 43, p<0.0001, 

Fig. 2.7). Therefore, fish with relatively high rates of resting metabolism for their size 

had low metabolic scopes, so that they had a smaller range from their lowest to their 

highest rates of metabolism. The mean factorial metabolic scope was 1.93+0.08 (S.E ).
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Fig. 2.4: The relationship between body weight (g) and standard (open circles) and 
active (closed circles) metabolic rates for juvenile salmon. Both axes are on a natural 
logarithmic scale.
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Fig. 2.5: The relationship between mass-dependent standard metabolic rate and mass- 
dependent active metabolic rate for juvenile salmon.
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Fig. 2 .6 : The relationship between residual standard metabolic rate and residual active 
metabolic rate for juvenile salmon.
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Fig, 2.7; The relationship between residual standard metabolic rate and factorial 
metabolic scope (active metabolic rate/standard metabolic rate) for juvenile salmon.
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2.4. Discussion

It was apparent that the fish quickly became acclimated to the respirometry 

chambers, so that oxygen consumption gradually declined to a resting asymptote 

within 17 hours. Similar decreases to standard levels in respirometry chambers have 

been documented in roach (Wieser & Medgyesy, 1990), northern pike (Armstrong et 

al., 1992), zebrafish (Lucas & Priede, 1992), and adult Atlantic cod (Reidy et a l,

1995). This suggests that oxygen consumption values measured 20 hours after the fish 

were placed in the respirometry chamber give a reliable measure of standard metabolic 

rate, and this protocol was used throughout the thesis.

The mass exponent (1.16+0.20 (=S.E)) of the regression equation relating standard 

metabolic rate to fish weight (Eq. 2.2) was greater than unity. This may be due to the 

very small size range of fish (0.17 - 0.95g); Wieser (1985) stresses the importance of 

determining metabolic rate over a wide range of sizes, although this was not possible 

for a study on first-feeding salmon, since they are quite uniform in size. Moreover, the 

mass exponent in Eq. 2.3 was less than unity (0.85+0.30), showing the variability in 

mass exponents from narrow size ranges of fish. There was no overlap in fish sizes 

between Eqs. 2.2 and 2.3, so the different mass exponents are not necessarily 

contradictory.

There was also considerable inter-individual variation in standard metabolic rate 

within each range of fish sizes, despite all fish being measured when unfed and at rest. 

Using oxygen consumption as a measure of standard metabolic rate in the mass- 

screening method discussed in this chapter was the only effective way to estimate 

individual relative metabolic rates for the numbers of fish necessary for the forthcoming
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experiments. However, the salmon lived at ambient temperatures prior to being 

introduced to the testing temperature and so were not acclimated to it, although they 

were all treated in exactly the same way. This would therefore result in measurements 

of absolute metabolic rates being possibly misleading, but those of individual relative 

standard and active metabolic rates would be valid, and it is these relative 

measurements that are important in the forthcoming chapters.

The inter-individual variation was reported to govern pairwise relative dominance in 

juvenile salmon (Metcalfe et al., 1995), fish with high residual standard metabolic rates 

tending to be more dominant than those with low residuals. This variation was unlikely 

to be a consequence of agonistic encounters, as dominant juvenile salmon tend also to 

have larger otoliths (an indicator o f higher metabolic rate in salmonids; Mosegaard et 

al., 1988; Wright, 1991) at first feeding (Metcalfe et al., 1992), which occurs several 

days before initiation of aggressive behaviour (Dill, 1977).

Regression equations for standard and active metabolic rates both had similar mass 

exponents (SMR = 0.85, AMR = 0.83), so the regressions did not differ significantly in 

slope. There was also no relationship between weight and factorial metabolic scope. 

This implies that factorial metabolic scope did not increase with fish size, and was in 

fact mass-independent. Moreover, on a mass-dependent basis, the mass exponent for 

the relationship between standard and active metabolic rate was less than unity 

(displaying negative allometry), suggesting that active metabolic rate increases at a 

lower rate than standard metabolic rate with fish size. This contradicts a previous 

study, in which the mass exponent for the same relationship in rainbow trout was 

greater than unity (Wieser, 1985). Metabolic scope has previously been reported to 

increase with fish weight in sockeye salmon (Brett & Glass, 1973), charr (Beamish,
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1978), Northern pike (Armstrong et al., 1992), and zebrafish (Lucas & Priede, 1992). 

This study did not concur with their findings. However, the mean metabolic scope of 

1.93 presented here is in close agreement with the metabolic scope expected for 

salmon of this size at the same temperature (Schmidt-Neilsen, 1984).

Despite evidence from the previously mentioned papers that metabolic scope 

increases with fish weight, there have also been studies stating that no relationship 

exists between scope and weight: Ivlev (1960) reported no difference between the 

mass exponents of standard and active metabolic rate in juvenile salmon, and Wieser & 

Forstner (1986) also found no relationship in juveniles of three species of cyprinid. 

This may also be due to the different weight ranges used in the studies, since Weiser 

(1985) has stressed the importance of determining metabolic rate over a wide range of 

sizes. The present study only measured metabolic rates of fish from 1.04-8.99g; 

similarly, Wieser & Forstner (1986) used a small size range of 0.001-0.400g. These 

studies contradict the accepted model for the development of active metabolism in 

poikilotherms that suggests that anatomical and physiological characteristics associated 

with a high active metabolic rate impose costs when at rest, giving a correspondingly 

high standard metabolic rate. Proposed characteristics for a high active metabolic rate 

are increased permeability of cell membranes that facilitates movements of metabolic 

substrates into cells; a concomitant of higher permeability may be ‘leakier’ cells and an 

increase in Na '̂-K  ̂transport that raises standard metabolic rates (Taigen, 1983).

However, Wieser (1984) and Goolish (1991) expressed caution in applying the same 

mass exponents to all stages of an animal’s ontogeny. In small, fast growing fish such 

as juvenile salmon, metabolism associated with the viscera is higher than metabolism 

associated with red muscle. The former is metabolism associated with food processing.
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and scales with negative allometry (mass exponent <1; Goolish & Adelman, 1988). 

This may explain the negative allometry in the relationship between mass-dependent 

standard and active metabolic rates shown here, and the lack of a relationship between 

size and metabolic scope. Despite the fish in this study being agitated to burst 

swimming performance (thought to express active metabolic rate; Dickson & Kramer, 

1971; Wieser et al., 1985; Pearson et al., 1990; Reidy et al., 1995), most of the 

measured active metabolic rate may have been due to visceral metabolism. Because 

different physiological activities are responsible for active metabolic rate (and hence 

metabolic scope) in different sized fish, it would seem unwise to use one single method 

of expressing active metabolic rate (e.g. swimming to exhaustion) across a wide range 

of animal sizes in order to generate a mass exponent (Goolish, 1991).

On a mass-independent basis, factorial metabolic scope was negatively correlated 

with residual standard metabolic rate, and the regression of residual active metabolic 

rate on residual standard metabolic rate had an exponent of less than unity. This 

suggests that active metabolic rate represents a ‘ceiling’ for metabolic activity on a 

mass-independent basis: if the basal, standard metabolic rate is higher, less scope for 

activity remains than if the standard level was lower. This has implications for Metcalfe 

et a /.’s (1995) study on relative standard metabolic rate and dominance, which also 

used residuals to express inter-individual variation in standard metabolic rate, and 

assumed higher residual values would correspond to a larger metabolic scope (in that 

metabolic scope increases with mass-dependent standard metabolic rate; Brett, 1965; 

Priede, 1985). In fact the opposite seems to be the case. Consequently, fish with high 

residual standard metabolic rates that tend to be more dominant actually have a smaller 

metabolic scope within which they must carry out dominance-acquiring activities such
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as aggression. More importance could therefore be attached to the fact that dominant 

fish have a relatively large standard metabolic rate, and a higher cost of maintenance. 

Instead of acquiring dominance through having a larger metabolic scope and being 

more physiologically able, they may have to be aggressive (and so acquire dominance) 

in order to monopolise a food source to maintain their higher cost of living.
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Chapter 3: Feeding motivation and competitive asymmetries in territorial
juvenile Atlantic salmon.

3.1 Introduction

Social dominance is determined by several asymmetries between individuals, such as 

size, age and sex (Arcese & Smith, 1985; Lemel & Wallin, 1993). However, 

competitive ability often seems not to conform to such fixed predictors of dominance; 

instead, the importance of status signals is conditional on the motivational state of 

contestants (Maynard Smith & Harper, 1988). Therefore, motivational state will also 

be an asymmetry that may affect the outcome of an interaction; hunger increases 

aggression and strengthens social hierarchies in birds (Andersson & Ahlund, 1991) and 

fish (Symons, 1968; Dill et al., 1981), with the proviso that higher hunger levels 

increase competitive ability through higher feeding motivation (Bernstein, 1981; 

Milinski & Parker, 1991). In rainbow trout, dominance status increased with energy 

demand and subsequent feeding motivation, by elevating aggression to promote 

competitive exclusion (Johnsson & Bjornsson, 1994). However, fasted trout with a 

high energy demand were only dominant for a short time, since their high feeding 

motivation was eventually offset by declining energy reserves reducing their 

competitive ability (Johnsson et al., 1996). Conversely, feeding motivation and hence 

tendency to compete will decrease as a fish nears satiation, for example, the distance 

moved to intercept prey decreases in coho salmon with decreasing hunger (Dunbrack 

& Orr, 1983; Dill & Fraser, 1984).

Moreover, in juvenile salmon differences in standard metabolic rate can account for 

differences in dominance. In pairwise contests, individuals with higher standard
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metabolic rates (after controlling for body size) than their opponents are more likely to 

be dominant (Metcalfe et al., 1995). It was hypothesised that individuals with a higher 

standard metabolic rate have a greater capacity for costly activities such as aggression, 

since Priede (1985) suggested that standard metabolic rate would correlate positively 

with metabolic scope. Consequently, Metcalfe et al. (1995) suggested that such fish 

may acquire dominance through a greater capacity for aggression (but see chapter 2).

Therefore, internal factors such as motivation and standard metabolic rate must be 

taken into account in dominance contests among fish as well as obvious asymmetries 

such as size. Furthermore, asymmetries in experience and/or knowledge must also be 

considered. Prior experience of either a site where contests occur or of the other 

contestant can contribute to resource holding power (Parker, 1974; Zayan, 1975; 

Henderson & Chiszar, 1977). The ‘prior residence’ effect was first described by 

Braddock (1949); in it the resident possesses knowledge of a territory (including its 

resource value). The resident is therefore more likely to expend energy in defence than 

an intruder, who is less likely to fight over a resource of unknown quality (Krebs, 

1982). Also, individuals may be fearful in a novel environment, whereas a resident has 

become habituated to novel stimuli, making it better able to engage in aggression than 

an intruder (Figler & Einhom, 1983). Dominance attributable to prior residence has 

been documented in a wide range of taxa. Site-related dominance was a highly 

significant asymmetry in predicting outcomes of contests between great tits (Sandell & 

Smith, 1991), differences in familiarity with an area had a decisive role in conflicts 

between convict cichlids (Henderson & Chiszar, 1977; Ratnasabapathi et al., 1992) 

and dart poison frogs (Baugh & Forester, 1994), and dominance due to prior residence 

is widespread amongst insects (Fitzpatrick & Wellington, 1983; van Buskirk, 1986).
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Juvenile salmonids are ideal animals for studying the relative effects of competitive 

asymmetries. They have often been used in studies of dominance (Metcalfe, 1989, 

1991; Metcalfe et al., 1989, 1990, 1992, 1995) and feeding motivation (Metcalfe & 

Thorpe, 1992a; Johnsson & Bjornsson, 1994; Bull et al., 1996; Johnsson et al., 1996). 

Moreover, there is variation of up to several weeks in the date on which juvenile 

salmonids emerge from a single redd and begin to search for territories (Gustafson- 

Marjanen & Dowse, 1983; Brannas, 1987). Early emerging salmonids may therefore 

benefit from the asymmetry of prior residence in a natural situation. This chapter aims 

to study how feeding motivation varies with relative standard metabolic rate in juvenile 

Atlantic salmon, given that salmon with higher relative standard metabolic rates are 

more dominant (Metcalfe et al., 1995), and salmonids with higher feeding motivation 

also tend to have a higher social status (Johnsson & Bjornsson, 1994; Johnsson et al.,

1996). I therefore test the hypothesis that juvenile salmon with high standard metabolic 

rates will have a correspondingly higher feeding motivation to fuel their greater cost of 

maintenance. Furthermore, the relative effects and interactions of a set of competitive 

asymmetries (relative size, relative standard metabolic rate, and prior residence) on the 

outcome of pairwise encounters in juvenile salmon is also investigated, and the 

standard metabolic rates of early and late emerging salmon are compared, to see 

whether early emerging fish have the hypothesised benefit of a higher relative standard 

metabolic rate (Metcalfe et al., 1995) in addition to the potential advantages of prior 

residence.
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3.2 Methods

3.2.1 Feeding motivation trials

The standard metabolic rates of 64 0+ juvenile salmon were measured at a constant 

temperature of 9°C from 11 th June to 27th July 1995 (methods outlined in chapter 2). 

After measurement of standard metabolic rate, fish were placed singly in sections 

(25cm X 10cm, water depth of 5cm) of long raceways through which water flowed at a 

slow rate. Each section contained a small opaque shelter under which fish could hold 

station (Bull et al., 1996). The fish were unmarked, being identified only by the order 

they were placed in the sections (salmon in respirometry chamber 1 placed in section 1, 

respirometry chamber 2 to section 2 etc.). The fish were constrained to their individual 

sections by upstream and downstream meshes, preventing them from moving to other 

sections and confusing identification.

The fish were allowed to settle for 48 hours and were not fed during this time, giving 

a total food deprivation time of 68 hours (including the settling time in the 

respirometry chambers). In this way all fish should have had equally empty stomachs; 

fish were not fed during the settling period because initial differences in feeding 

motivation would cause differences in stomach fullness by the start of the appetite 

trials, potentially affecting any subsequent measurement of feeding motivation. Feeding 

motivation measurements were carried out between 0900h and 1700h, on the third day 

after the fish were moved to the raceways. Seven trials were carried out in total; 

numbers of fish in each trial were 6, 13, 3, 11, 5, 13, 13 respectively. Feeding 

motivation was assessed as the response of a fish to five commercial food pellets, 

presented singly ca. 10cm upstream of the fish at intervals of 30 min. Responses were
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scored as: 0 = no response, 1 = orientates head but does not move, 2 = turns back after 

initially moving towards food pellet, 3 = attacks food pellet but misses, 4 = ingests and 

subsequently rejects food pellet, 6 = consumes food pellet {sensu Metcalfe et al., 1986; 

Bull et al., 1996). The advantage of this scoring method is that it should provide a 

measure of feeding motivation as the scores included movement and intent of the fish, 

and not just intake rate. The mean of the five responses was used as an index of the 

feeding motivation of an individual fish. After the trials the fish were removed, weighed 

(g), measured (fork length, mm) and transferred back to a holding tank where they 

were fed ad lib.. Since fish were not weighed until after scoring for feeding motivation 

all the data were collected blind with regard to residual standard metabolic rate.

3.2.2 Dominance trials

Juvenile salmon from a single egg batch (0+ age class) were segregated into two 

groups on the basis of yolk-sac size a few days before the first fish were ready to feed. 

Fish with mostly absorbed yolk sacs were classified as early first-feeders, while fish 

with more of their yolk sac remaining were classified as late first-feeders. The standard 

metabolic rates of the juvenile salmon were measured at a constant temperature of 9°C 

(methods outlined in chapter 2) after the yolk sacs had been totally absorbed in both 

groups. After measurement of standard metabolic rate, the fish were anaesthetised, 

weighed (g) and measured (fork length, mm) for calculation of residual standard 

metabolic rate (see chapter 2). Measurements of metabolic rate were therefore made 

before any dominance trials, to control for the effects of winning/ losing encounters on

49



Feeding motivation & competitive asymmetries

oxygen consumption. Early first-feeding fish (with faster yolk sac absorption and 

potentially higher standard metabolic rates) were then paired with late first-feeding fish 

to test for factors determining dominance. One randomly-chosen fish from each pair 

was marked with an alcian blue dye spot on the dorsal surface to aid identification.

When investigating the relationship between relative metabolic rate, relative size, and 

dominance, pairs of fish were introduced into small contest arenas simultaneously, and 

relative dominance status was assessed after a settling period of 48 hours. If the effects 

of prior residence on relative dominance were also being assessed, one fish was placed 

in the contest arena for 48 hours before a competitor was introduced, and relative 

dominance status assessed after a further 48 hours. In such prior residence trials, I 

alternated between marking the prior resident and the intruding fish to remove any bias 

associated with the mark itself. Furthermore, when the intruder was introduced into the 

contest arena (with a small hand net), the resident was similarly netted and released to 

control for any stress the intmder might have experienced when being caught and 

released. The intruder had no prior knowledge of the contest arena.

The contest arenas consisted of a single 24 x 11cm gravelled enclosure within each 

of twelve 41 x 31cm observation tanks. The enclosures were walled with plastic mesh 

to allow flow-through of water, and water depth was maintained at 10cm with 

standpipes. Two water inflow nozzles per enclosure provided a continuous water 

current through the enclosure. Observations were made through slits in a screen placed 

in front of the tanks, which allowed the observer to measure relative dominance 

without disturbing the fish. The gravelled, flat substratum of the arenas provided a 

more natural environment for the fish, in contrast to previous, similar studies which 

consisted of white, plastic V-shaped channels which were deliberately designed to
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prevent the pairs of fish from swimming side by side (Metcalfe et al. 1990, 1992, 

1995). Dominance was assessed using repeated feeding and positional trials, following 

a protocol similar to that adopted by Metcalfe et al. (1990, 1992, 1995) and Johnsson 

& Bjornsson (1994). The preferred feeding position was assumed to be upstream of 

the other fish and facing into the current, as this would ensure first access to food 

(Fausch, 1984). Six observations were recorded for each pair; one every 20 minutes. 

At each observation a commercial fish food pellet was dropped into the water current 

from a pipette (hidden by the screens). A scoring system was used to determine which 

fish was dominant: a fish scored one point each time it was furthest upstream and 

facing into the current, and another point for every food pellet ingested. If the food 

pellet was contested by both fish, the successful fish scored an extra point. The fish 

with the highest total score was considered to be the more dominant individual of the 

pair. Differences in scores within pairs of fish would range from 1: incomplete 

dominance, to 12: complete dominance.

Differences in residual standard metabolic rate for each pair were calculated after the 

trials, so again the behavioural data were collected blind with regard to relative 

standard metabolic rate. The fish were returned to a holding tank after the dominance 

trials and fed ad lib., and were not used in subsequent dominance trials. This ensured 

that fish in future dominance trials had no prior knowledge of the contest arenas. Both 

simultaneous entry and prior residence experiments were carried out between June and 

August, 1994 and 1995.
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3,3 Results

3.3.1 Feeding motivation

The 64 fish scored for feeding motivation had a mean weight of 0.44+0.03 (S.E.)g 

and fork length of 35.39+0.61mm. The mean residual standard metabolic rate (rSMR) 

was -0.003+0.003ml0a.h'‘ (range: -0.039 to O.OVlmlOa.h' respectively), calculated 

from Eq. 2.2 (Chapter 2). Since the experiment was carried out over 2 months, any 

seasonal trends in feeding motivation exhibited by all the fish could potentially obscure 

any effects of individual residual standard metabolic rate and size on feeding 

motivation. Therefore I tested the mean feeding motivation scores from each trial for 

any significant trends over time; there were no significant differences in mean feeding 

motivation between trials (one-way ANOVA; Ff6 ,s7 i= 1.81, p = 0.113, Fig. 3.1), which 

justified pooling the results from all the trials for subsequent analysis.

There was no significant relationship between size (fork length, mm) and feeding 

motivation (r^= 0.001, n = 64, p = 0.306). However, there was a weak but significant 

negative relationship between residual standard metabolic rate and feeding motivation 

(r  ̂= 0.043, n = 64, p ^  0.05, Fig. 3.2), implying that those fish with high residual 

standard metabolic rates have a lower feeding motivation than those with low residual 

standard metabolic rates. It might be argued that since fish with a high residual 

standard metabolic rate may be more dominant (see below), their lower feeding 

motivation might simply be due to their being in a better nutritional state at the start of 

the experiment. There was little evidence of this: condition factor (K = 

W(g)/(FL(mm))^) was unrelated to feeding motivation (r“= -0.016, n = 64, p = 0.985). 

Moreover, there was little variation in condition factor amongst the experimental fish
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Fig. 3.1: Mean feeding motivations of juvenile salmon across 7 trials (n = 6, 13, 3, 11, 
5, 13, 13 fish per trial). There was no significant difference in feeding motivation 
between trials (see text). Bars denote standard errors.
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Fig. 3.2; The relationship between residual standard metabolic rate (mlOo.h') and 
individual mean feeding motivation in juvenile salmon.
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(mean condition factor = 0.931+0.011), and condition was generally high. Therefore, 

differences in feeding motivation appear to be related to differences in residual 

standard metabolic rate between juvenile salmon, independent of nutritional state.

3.3.2 Dominance

In dominance trials where fish were introduced to contest arenas simultaneously, 

early first-feeding fish were paired with late first-feeding fish in 53 contests. Early fish 

did not differ significantly in size from late fish (‘early’ mean weight and fork length: 

0.350+0.017 (S.E.)g, 34.1+0.5mm; Tate’ mean weight and fork length: 0.368+0,021g, 

34.3+0.6mm, n = 53; paired t-test comparing members of a pair, t = 0.368, 51 d .f, p = 

0.714). However, early first-feeding fish did have significantly higher residual standard 

metabolic rates (rSMR) than late first-feeding fish (‘early’ mean rSMR = 

0 .003+0.0 0 6 mlO2 .h ’, Tate’ mean rSMR = -0.013+0.006ml0:.h '; paired t-test, t = 

2,182, 51 d.f, p<0.05). The mean difference in percentage size by fork length between 

fish was 4.12+0.58% (range, 0.00-16.39, n =53), and the mean difference in residual 

standard metabolic rate between fish was 0.028+0.005ml0\h'^ (range, 0.001- 

0.174mlO2.h'% n = 53), so there was considerable variation in relative standard 

metabolic rate between competitors.

In these 53 pairwise encounters, there was no size difference in 8 pairs, and in the 

remaining 45 pairs the dominant fish was the larger of the two in 22 (45.9%) of the 

pairs (mean percentage size difference = 4.71+0.80; Fig, 3.3a). However, the 

likelihood of being dominant did increase with the size difference, fish greater than
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Fig. 3.3:(a) The probability of dominance for the earlier feeding member of pairs of 
juvenile salmon that were larger and smaller than their opponent (n = 2 2  and 23 
respectively) in pairwise contests. Relative size did not significantly predict dominance 
(see text) and (b) the probability of dominance for the earlier feeding member of pairs 
of juvenile salmon with higher and lower relative standard metabolic rates than their 
opponents (n = 34 and 19 respectively). Juvenile salmon with higher relative standard 
metabolic rates were significantly more likely to acquire dominance (see text).
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12% larger than their opponent invariably winning (Fig. 3.4). This size advantage was 

unlikely to be very important, since in 40 of the 53 dyads (75%) the size difference was 

less than 6% (Fig. 3.4). Furthermore, the size frequency distribution in the pairs is a 

realistic depiction of size differences for juvenile salmon at first feeding, as pairs of 

competing fish were picked at random with regard to size.

In contrast, 34 of the dominant fish (64.2%) had higher residual standard metabolic 

rates than their competitors (Fig. 3.36). Hierarchical log-linear analysis showed that 

fish with higher relative standard metabolic rates had a significantly greater chance of 

acquiring dominance (Likelihood-ratio chi-square: xLr == 3.524, 1 d.f, p = 0.05), 

whereas relative size did not significantly predict dominance (x\ r = 3.066, 1 d.f, p = 

0.216). Relative standard metabolic rate was thus more important than relative size in 

determining dominance when neither competitor had prior knowledge of a potential 

territory.

A further 53 dyads of juvenile salmon were used to test the effect of prior residence 

on subsequent dominance. The mean mass and forklength of the fish was 

0.464+0.017g and 36.4+0.4mm, and their mean residual standard metabolic rate was 

0.000+0.003 mlOz.h , ranging from -O.OSdmlOa.h"' to O.lOlmlO^.h'. The mean 

percentage size difference between prior residents and intruding fish was 5.9+0.9%, 

ranging from 0.0 to 33.7%. The mean difference in residual standard metabolic rate 

amongst pairs was 0.027+0.003mlO2.h'\ ranging from 0.001 to 0 .128ml02.h‘'.

Significantly more resident juvenile salmon won the trials than intruders: 40 out of 53 

dyads were won by the resident (75.5%; goodness-of-fit test, x  ̂ ^  29.380, 1 d .f, 

p<0.0001). The mean dominance score for dominant residents was 9.57+0.53, 

compared to 7.31+1.25 (n = 13) for dominant intruding fish. I also investigated
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Fig. 3.4: The frequency distribution of the size discrepancy in 53 pairs of juvenile 
salmon (hatched bars), and the probability of dominance for the larger fish of a pair 
across the range of size discrepancies (closed circles). There was a general trend of 
increasing probabilities of dominance with increasing size advantage of the larger fish 
(Spearman’s rank correlation: Rs= 0.682, n = 9, p<0.05), but large size discrepancies 
were rare (the numbers along the top denote sample sizes for each size group).
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whether relative standard metabolic rate and relative size had any effect on the 

outcome of the trials, despite the asymmetry o f prior residence, and whether there was 

any significant interaction between the three asymmetries. Table 3.1 presents a detailed 

breakdown of the characteristics of dominant fish, with regard to prior residence, 

relative standard metabolic rate and relative size. It is apparent that within the powerful 

asymmetry of prior residence, larger size confers a greater probability of dominance 

(0.92 for larger versus 0.62 for smaller residents, 0.38 versus 0.08 for intruders), and 

greater relative standard metabolic rate confers a greater advantage when the resident 

is smaller than the intruder (probability of dominance for smaller residents with high 

rSMR: 0.72, smaller residents with low rSMR: 0.45). Furthermore, in larger dominant 

intruders, a higher relative standard metabolic rate appears to confer a further 

advantage (probability of dominance = 0.55, compared to 0.28 if the intruder had a 

lower relative standard metabolic rate). Hierarchical log-linear analysis was used to test 

interactions between the three asymmetries. Prior residence was a significant predictor 

of the outcome of dominance trials (xtr= 19.239, 3 d.f, p<0.0005), concurring with 

the ordinary goodness-of-fit test (see above). Second-order, or two-way effects, using 

prior residence interacting with relative standard metabolic rate and relative size were 

almost significant (x\ r = 7.320, 3 d .f, p = 0.062). However, the interaction term 

between prior residence and relative size did significantly predict dominance (partial 

chi-square: = 6.805, 1 d .f, p< 0.01), whereas the interaction between prior

residence and relative standard metabolic rate did not (partial chi-square: 0.170, 1

d.f, p = 0.680).

Therefore, involving all three variables did not significantly improve the predictive 

power of the model. The effect of prior residence alone best modelled the outcome of
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Table 3.1: Probabilties of dominance for 53 dyads of juvenile salmon with differing 
asymmetries (prior residence, relative standard metabolic rate and relative size).

Status Relative
size

compared
to

opponent

Mean 
percentage 

difference in 
size +S.E. 

compared to 
opponent

Relative
standard

metabolic
rate

compared
to

opponent

Mean 
differences in 

residual 
standard 

metabolic rate 
±S.E. 

(mlOi.L')

Probability of dominance (dyads 
won: total dyads)

Larger 5.82±L19 Higher 0.041+0.013 0.92 0.92
(12:13)

Resident Lower -0.012+0.036 0.75 (22:24) 0.91
(10:11)

Smaller -7.11+1.29 Higher 0.022+0.005 (40:53) 0 62 0 J 2
(13:18)

Lower -0.030+0.011 (18:29) 0.45
(5:11)

Larger 6.53+2.83 Higher 0.027+0.005 0.38 0.55
(6:11)

Intruder Lower -0.029+0.011 0.25 (9:29) 0.28
(548)

Smaller -1.50 Higher 0.012 (13:53) 0 08 0 09
(1:11)

Lower -0.011 (&24) 0 08
(1:13)
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the trials, with relative size the next most important asymmetry, through its interaction 

with prior residence (larger residents being more likely to win than smaller; Table 3.1). 

Incorporation of relative standard metabolic rate did not significantly improve the 

model.

3.4 Discussion

Juvenile salmon with high residual standard metabolic rates had significantly lower 

feeding motivation than fish with low residual standard metabolic rates. This 

contradicts the hypothesis that fish with relatively high costs of maintenance and 

energy demand will have a higher feeding motivation in order to survive. 

Consequently, fish with greater energy demands must balance their energy budget by 

alternative methods. Energy expended in intercepting food items is a substantial 

proportion of overall energetic costs in salmonids. In a study on wild coho salmon, 

Puckett & Dill (1985) reported that although feeding took up only 13% of the coho’s 

time, it accounted for 26% of their energy costs, so maintaining a basic energy 

requirement is itself energetically expensive. It has already been stated that salmon with 

higher relative standard metabolic rates have a greater probability of dominance 

(Metcalfe et a/., 1995), so it would appear that they are not acquiring dominance 

through the asymmetry o f greater feeding motivation, as documented in fasted rainbow 

trout (Johnsson et al., 1996) and salmonids manipulated with exogenous growth 

hormone (Markert et a i ,  1977; Johnsson & Bjornsson, 1994). Instead, fish with higher 

relative standard metabolic rates probably acquire dominance simply through greater
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aggression. It was shown in chapter 2 that such fish have a smaller metabolic scope 

than fish with low relative standard metabolic rates. If this is so, they may opt for a 

strategy of elevating aggression at the expense of elevated foraging, as both are costly 

within a limited metabolic scope: movements associated with aggression and feeding 

such as acceleration and turning can be six times more energetically expensive than 

forced swimming (Webb, 1991; Krohn & Boisclair, 1994). Furthermore, within a 

salmonid social hierarchy aggression will increase the probability of acquiring a feeding 

territory (Fausch, 1984; Puckett & Dill, 1985; Grant, 1990). Since salmonid social 

hierarchies can persist for several months (Jenkins, 1969), fish with a high relative 

standard metabolic rate may be able to guarantee a food source to maintain their 

greater energy demand for a considerable length of time if they use aggression to 

secure a territory. The territorial salmonid will have a virtual monopoly on food items 

passing through its territory (Elliott, 1984, 1990), so even by opting to reduce costly 

levels of foraging (measured as feeding motivation), it may still be able to maintain its 

greater cost of maintenance.

Although fish in the feeding motivation trials were not subsequently tested for 

dominance, the absence of competitors in the raceways should not have altered the 

feeding motivation of the fish, provided that lower feeding motivation is indeed an 

adopted strategy. This was the case in a previous study on juvenile salmon, where 

subordinate Lower Modal Group fish maintained a reduced feeding motivation in the 

absence of a competitor, as they had adopted a strategy of low appetite and reduced 

growth (Metcalfe et al., 1988).

During dominance trials when pairs of juvenile salmon where placed into the contest 

arena simultaneously, relative size did not significantly predict dominance. This
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concurs with previous studies on juvenile salmon, where large size was found to be a 

consequence of dominance and not a cause (Huntingford et al., 1990). However, when 

there was a large size discrepancy (>12%), larger fish were almost certain to become 

dominant. This, in turn, agrees with the established tenet that large size is a superior 

asymmetry in determining dominance; together with weapons and prior experience, 

size is one of the principal indicators of resource holding power (Maynard Smith, 

1982; Turner & Huntingford, 1986). It has been well documented in conferring 

dominance in birds (Garnet, 1981; Jarvi & Bakken, 1984), fish (Francis, 1983; Abbott 

et a i,  1985; Johnsson, 1993), mammals (Booth & Parrot, 1986) and invertebrates 

(Evans & Shehadi-Moacdieh, 1988; Glass & Huntingford, 1988; Wells, 1988). 

However, in the case of first-feeding juvenile salmon, where there is relatively little 

variation in size, size-based dominance will be a rare event, and other asymmetries 

must account for relative social status.

In agreement with a previous study (Metcalfe et a i, 1995), size-controlled 

differences in relative standard metabolic rate significantly predicted the outcome of 

dominance trials when neither fish had prior residence. The relationship between 

relative standard metabolic rate and dominance was not so pronounced as in the 

previous study, in which there was a significant relationship between the degree of 

difference in standard metabolic rate and subsequent probability of dominance. 

However, the study by Metcalfe et al. (1995) tested dominance in V-shaped white 

plastic raceways, and may have made existing differences in dominance more 

pronounced since pairs of fish could not swim side by side, and the fish furthest 

upstream was credited as being more dominant. Flat, gravelled substrata were used in 

this study for a more natural setting. These occasionally resulted in the two fish
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swimming side by side, potentially obfuscating the measurement of dominance, 

especially as the fish with the lower relative standard metabolic rate (and therefore 

possibly the subordinate) may have had a higher feeding motivation.

However, the semi-natural conditions of the contest arena may allow for a more 

robust test of the hypothesis, and since the data obtained during the present study 

agree with those of Metcalfe et al. (1995), they only reinforce the hypothesis that 

differences in standard metabolic rate can predict dominance in pairs of juvenile 

salmon.

In dominance trials investigating the effects of prior residence, prior residents were 

indeed far more likely to acquire dominance after as little as 48 hours at a site. This 

effect concurs with previous studies that state that prior residence determines 

dominance when the size difference is small (Zayan, 1975; Henderson & Chiszar, 

1977; Figler & Einhorn, 1983; Beaugrand & Beaugrand, 1991; Beaugrand et al., 1991; 

Ratnasabapathi et al., 1992; Beaugrand et a i,  1996). After prior residence the next 

most important asymmetry was relative size, larger residents and intruders having a 

greater probability of dominance than smaller ones. This means that the two 

asymmetries influence dominance through an additive process, so that an intruder can 

potentially offset its disadvantage if it has a large enough size advantage. This is also in 

agreement with previous studies where asymmetries in size and prior residence or 

information work together to determine the probability of dominance (Pitcher et al., 

1986; Wazlavek & Figler, 1989; Beaugrand et al., 1991; Turner, 1994; Beaugrand et 

a i,  1996).

Relative standard metabolic rate had no real contributory effect in determining 

dominance when prior residence was included as an asymmetry. This may be due to the
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overriding effect of prior residence. In such situations, the only way to dominate and 

displace a prior resident would be to have a considerable size advantage, which is a 

potent and obvious status signal (Turner & Huntingford, 1986). This leads to relative 

size being statistically the second best predictor of dominance. Prior residence or 

experience may have great importance in salmonid social hierarchies, as their relative 

long term stability (Jenkins, 1969) is a consequence of using experience as a social cue, 

as opposed to a greater reliance on continual assessment of status signals in 

intermittent or short term hierarchies (Abbott et al., 1985; Begin et al., 1996), such as 

those in mouthbrooding cichlids (Turner, 1994).

Early first-feeding salmon had significantly higher standard metabolic rates than late 

first-feeders. This is unsurprising, as early first-feeders use a greater amount of their 

yolk reserves over a set period of time due to their high standard metabolic rate, and 

must switch to exogenous food earlier (Metcalfe et al., 1995). Early first-feeders 

emerge from the gravel redds and establish feeding territories sooner (Mason & 

Chapman, 1965; Fausch & White, 1986; Chandler & Bjornn, 1988). Therefore fish 

with higher residual standard metabolic rates may also gain dominance advantages 

indirectly, since they are more likely to become prior residents.

However, emerging too early can result in heavy mortalities from predation 

(Brannas, 1995), as the earliest emergers do not enjoy the ‘dilution effects’ resulting 

from the presence of many conspecifics. Newly emerged salmonids are especially 

vulnerable to predation since they persist in vertical swimming movements until they 

reach a state of neutural buoyancy (Dill, 1977; Godin, 1982). Conversely, late 

emergers often suffer from habitat saturation, emerging to find no suitable unoccupied 

feeding habitats (Brannas, 1995). Consequently, they must migrate further downstream
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to inferior feeding sites (Elliott, 1989). Therefore juvenile salmonids tend to emerge 

synchronously over an approximately three night period (Gustavson-Marjanen and 

Dowse, 1983), in order to offset the opposing risks from predation and habitat 

saturation. Although prior residence can have strong effects after less than three days 

(48 hours in this study), many juveniles emerging within such a short time could 

relegate the asymmetry of prior residence to a comparatively minor role in the natural 

world, and relative standard metabolic rate could play a greater part as an asymmetry 

in determining dominance.
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Chapter 4: The effects of metabolic rate and prior residence on aggression and
growth in juvenile Atlantic salmon.

4.1 Introduction

It is well known that differences in competitive ability in territorial species have 

major short- and long-term consequences. Even in the absence of strict territories, 

individuals of high status in a dominance hierarchy and good competitive ability may 

obtain preferential access to resources, such as food or mates, have a higher survival 

rate (Huntingford & Turner, 1987), and higher growth rates (Metcalfe et al., 1989; 

1990). Juvenile Atlantic salmon have been extensively studied in this respect. Together 

with other salmonids, their life history is highly plastic (Thorpe, 1989). Within a single 

year class of juvenile salmon wide discrepancies in growth rate soon occur, in as little 

as four months after emergence. Juvenile salmon exceeding a threshold growth rate by 

August of their first year will metamorphose into the marine smolt phase the following 

spring, forming an Upper Modal Group (UMG), whereas slower growing salmon (the 

Lower Modal Group, LMG) will defer metamorphosis for up to 8 years (Thorpe, 

1977; 1989; Metcalfe & Thorpe, 1990).

It has been shown that relative dominance and competitive ability of juvenile salmon 

in the first few months post-emergence influence subsequent life-history strategies 

through their effect on growth rates (Metcalfe et a l, 1989; 1990; Metcalfe, 1991). 

Juvenile salmonids in general are territorial, and work on other salmonids such as 

brown trout has shown that the inability of a young salmonid to acquire a feeding 

territory will result in a forced emigration downstream, resulting either in taking up
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inferior feeding sites or in starvation (Elliott, 1984; 1990). The consequences of 

differences in competitive ability are therefore well understood, although the 

differences in physiology and behaviour underpinning individual life-history decisions 

have been relatively neglected.

Recent studies, however, have established links between the physiology of an 

individual animal and its subsequent behaviour. Work on brown trout showed that a 

fish’s prospects of establishing a territory and surviving are correlated with the relative 

size o f its otoliths at emergence (Mosegaard, 1990; Titus & Mosegaard, 1991). 

Further work on Atlantic salmon demonstrated that otolith size was not related to fish 

size at first feeding, but was correlated with dominance status (Metcalfe et a i, 1992). 

Furthermore, evidence suggested that otolith growth is more closely linked to 

metabolic rate than to somatic growth rate (Wright et a l, 1990; Wright, 1991), 

implying that dominant fish with larger otoliths at first feeding have higher metabolic 

rates. This was directly tested in pairwise dominance interactions: juvenile salmon with 

higher standard metabolic rates (SMR), after controlling for size, were indeed found to 

be more dominant (Metcalfe et a l, 1995). A similar relationship has been found 

interspecifically in spinyhead and roughhead blennies, spiny heads gaining better feeding 

grounds through a higher standard metabolic rate which was hypothesised to give them 

an advantage in agonistic interactions (Clarke, 1992).

It has also been suggested, however, that subordinate salmonids, forced to occupy 

less profitable feeding stations, may adopt a strategy of minimizing energy expenditure, 

such as maintaining stations in areas of low current. This reduces metabolic costs to a 

minimum so that subordinates may still continue to grow, despite the low abundance of 

drifting food at these sites (Metcalfe, 1986). Therefore it has been suggested that
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under conditions of low prey abundance the advantages of a high metabolic rate 

(conferring dominance) could be negated, the environmental conditions instead 

favouring individuals with lower metabolic rates and hence lower energy demands for 

survival and growth (Titus, 1990).

In salmonids, a confounding variable in elucidating any links between individual 

physiology and subsequent aggressive and foraging behaviour is prior residence of a 

territory (see chapter 3). Juvenile Atlantic salmon exhibit a normally distributed 

temporal pattern of emergence from both their natural spawning grounds and from 

artificial redds (Gustavson-Marjanen & Dowse, 1983; Brannas, 1987) with a duration 

of approximately two weeks, although the majority tend to emerge synchronously over 

a three night period (Gustavson-Marjanen & Dowse, 1983). Early emerging juveniles 

are competitively superior to their later emerging conspecifics, by being first to acquire 

the available territorial space, and are also larger by the time other juveniles emerge 

(Mason & Chapman, 1965; Chandler & Bjornn, 1988; Metcalfe & Thorpe, 19926). 

Such differences in competitive ability due to relative time of emergence could obscure 

differences in competitive ability due to physiology.

Many previous studies of salmonid behaviour have taken place in laboratory tanks, 

and are unrealistic in that fish may not be setting up true territories as would occur 

under natural conditions. Therefore this chapter aims to investigate further the 

relationship between metabolic rate and social status, and the behavioural mechanisms 

conferring dominance, in the semi-natural setting of an artificial stream. The results of 

two separate experiments are presented. In experiment I, I manipulated food 

abundance for two groups of fish (one fed ad lib., the other on reduced rations), to 

investigate the costs and benefits of having a high standard metabolic rate; juvenile
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salmon with a high standard metabolic rate might ordinarily become dominant with 

plentiful food, but may be disadvantaged when food becomes limited.

Because prior residence is such a confounding variable in studying causal links 

between physiology and behaviour, and how behaviour influences subsequent success 

(Stamps & Krishnan, 1994), the second experiment (experiment II) tested the relative 

effects of prior residence and differences in metabolic rate on subsequent behaviour 

and success, by releasing groups of juvenile salmon into the stream sequentially. It also 

examined which individuals obtained which territories within each group of introduced 

fish, given the virtually untested assumption that the best territories will go to 

individuals of highest rank (Maynard Smith, 1974).

4,2 Methods

4.2.1. Methods fo r  experiment I

In April 1994 the standard metabolic rates of 48 11-month old juvenile salmon were 

measured at a constant temperature of 9°C, and their residual standard metabolic rates 

(rSMR) calculated (see chapter 2 for full account of respirometry methods). The fish 

(mean fork length of 72.0+3.4 (S.E.) mm) were full siblings reared under laboratory 

conditions at the University Field Station, Rowardennan, and were divided into two 

groups of 24, designated as a control and an experimental group. To keep size 

differences, and potential size effects, to a minimum within each group (so increasing 

the chances of revealing any effects of metabolic rate) the smaller fish were assigned to 

the control group and the larger fish to the experimental group (mean initial fork
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lengths, 63.9+8.8 (S.E.) and 80,1+8.3 mm respectively). Each fish was marked prior to 

the experiment with combinations of alcian blue dye spots on both sides so that the fish 

were individually recognisable when viewed laterally.

The two groups of fish were placed in the two separate straight arms of a U-shaped 

artificial stream. The arms of the artificial stream were both 3m long and 0.55m wide, 

and were landscaped with gravel (mean diameter of gravel = 0.03+0.02m) and small 

pebbles (mean diameter of pebbles = 0.10+0.03m) into an identical series of pools and 

riffles to simulate a stream setting (Fig. 4.1), consisting of three pools separated by 

two riffles. Fish were kept within each arm by upstream and downstream mesh screens. 

The depth of each pool was 0.28m, with a mean water velocity of 0.11+O.Olms f  The 

two riffles were situated Im and 2m downstream of the first screen, and were 0.19m 

deep, with a mean water velocity through them of 0.15+0.01 ms''.

Each arm of the flume was partitioned into thirty 0.1m wide strips using marks on 

the inner glass-sided wall and the opposite opaque wall. This enabled the observer to 

read positions of fish in terms of zones individually numbered from the upstream ends 

of the two arms.

Automatic feeders were hung above the most upstream part of the two sections, to 

allow food to drift downstream towards the fish. The control group (group 1) was fed 

ad lib. on commercial pelleted slow-sinking food dispensed in small amounts every 30 

minutes 24 hours a day. The feeder for the experimental group (group 2) was switched 

off for the first stage of the experiment (five weeks), although a very small amount of 

uneaten food from the control group was recirculated into the section of the flume 

occupied by the experimental fish. The experimental group was placed on an identical 

food regime to the control group for the second stage of the experiment (three weeks).
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Riffles

Pools

Standpipe

Fig. 4.1 : Plan view of the artificial stream. The arrows denote direction of water flow. 
Water drains from the right hand side and is circulated through a pump. The 
intermediate hatching denotes slope, the darkest corresponding to pool areas. Each 
arm is 3m long and 0.55m wide.
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Three one hour behavioural observations of the fish were made every day within the 

time periods 0900-1200, 1400-1700 and 1800-2000h for the duration of the 

experiment. Observations consisted of recording during scan samples the distance of 

each fish downstream from the feeder (i.e. the zone occupied) and whether the fish was 

touching the substratum or swimming in the water column. The rate of aggression was 

measured by observing each fish in turn for a one minute period and recording the 

number of interactions and the identities of the attacking and attacked fish. Aggression 

was defined as charges towards a conspecific; repeated charges were counted as 

separate incidents. This method was chosen because the fish initiating aggression 

invariably won, the attacked fish swimming away from the aggressor.

Owing to changes in the total number of fish present during the course of the 

experiment (due to mortality), the rate of aggressive interactions was standardised by 

dividing the number of aggressive interactions by the number of fish present, giving 

aggressive interactions fish ' minute ' .

Both groups of fish were removed and anaesthetised once a week to be weighed (to 

the nearest O.Olg) and fork lengths measured (to the nearest 0.1mm), and were then 

allowed to settle for 24 hours after replacement before any further behavioural 

observations were taken. The fish recovered from anaesthesia quickly, resuming 

feeding and aggressive activity, and resumed their favoured positions almost 

immediately. Size data were used to calculate weekly specific growth rates (percentage 

change in weight per day). The observations were carried out from May to July 1994, 

a total number of 64 observation days and 192 observation sessions, under ambient 

photo period and temperature conditions. The percentage of fish present that were 

detected in each observation session was high (90.0+4.0(S.E.)%); there was no
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evidence of bias towards fish being seen only when involved in aggression or when in a 

particular location.

4.2.2 Methods for experiment II

In August 1994 the standard metabolic rates of three successive randomly-chosen 

groups of 0+ juvenile salmon were measured at a constant temperature of 9°C, and 

their residual standard metabolic rates (rSMR) were calculated (see Chapter 2 - 

general respirometry methods). The fish were full siblings, previously reared under 

hatchery conditions at the University Field Station, Rowardennan. The three groups 

consisted of 14, 17, and 11 salmon respectively and were introduced into the artificial 

stream exactly seven days apart in order of group number. As a consequence, the fish 

in the three groups were of similar size at any one time but differed in average size at 

the time each was introduced to the stream: mean fork lengths at the time of 

introduction were 52.2+0.9 (S.E.)mm (group 1), 53.1+0.7mm (group 2), and 

57.0+1.2mm (group 3) (ANOVA: F(2 .3 9)= 7.13, p< 0.005). In this experiment the entire 

length of the artificial stream was used, the U-bend being a long (1.25m) pool with a 

depth of 0.28m and a mean water velocity o f 0.11+0.01 (S.E.)ms ', with an identical 

gravelled substratum to that of the arms. The arms were each landscaped into the same 

pattern of three pools (0.28m deep) and two riffles (0.19m deep), as in experiment I. 

Frozen Daphnia were thawed out in a reservoir above the most upstream part of the 

artificial stream. The reservoir received a constant slow inflow of water and 

overflowed into the artificial stream, maintaining a relatively constant, low influx of
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prey items into the water. The reservoir was replenished thrice daily with frozen 

Daphnia, after each observation session.

As in experiment I, fish were marked on both sides with a combination of alcian blue 

dye spots to aid identification, and aggression, position and growth were measured 

using the same methods as for that experiment. Individual feeding rates were also 

measured: each fish was observed for one minute per observation session and the 

number of movements towards food recorded as feeding attempts (attempts.min"'). 

Successful prey capture rates (items, min’’) were also recorded within feeding attempts.

Once the favoured feeding positions of the fish were established, defined as the 

position where each individual fish spent the greatest percentage of its time, the quality 

of these positions was assessed by catching prey drift in a mesh net (15x20.5cm) 

suspended in the water column for five minutes. The sampled prey were dried out and 

the dry weight of food passing each point per minute calculated. Water velocity at the 

same sampling sites was measured with an OTT flow-meter. The experiment was 

carried out from August to October 1994, a total of 60 obsei*vation days and 180 

observations.

4.3.1 Results for experiment I

4.3.1.1 Group effects on growth and aggression

Changes in fish size during the course of the experiment are presented in Table 4.1. 

As mentioned in the methods, fish in group 2 (experimental group) were larger than 

group 1 (control group) at the start of the experiment. This was deliberate, so as to
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Table 4.1: Mean sizes of group 1 (control) and group 2 (experimental) fish at the end 
of each week in experiment I (group 2 fish were on reduced rations during weeks 1-5).

Group 1 Group 2

Week Mean fork 
length (mm) + 

S.E. (n)

Mean weight 
(g) ± S.E. (n)

Mean fork 
length (mm) + 

S.E. (n)

Mean weight 
(g) ± S.E. (n)

t-test between 
groups by 
weight (g)

1-2 66.87+1.37
(20)

2.86+0.21
(20)

79.79+0.89
(22)

4.86+0.18
(22)

* *

3 70.22+1.61
(17)

3.70+0.31
(17)

80.22+0 79 
(17)

5.28+0.18
(17)

*

4 74.69+1.70
(17)

4.60+0.38
(17)

81.56+0.99
(13)

5.18+0.21
(13)

NS

5 79.99+2.57
(13)

5.78+0.64
(13)

82.61+1.36
(10)

5.38+0.39
(10)

NS

6 86.32+2.71
(12)

7.48+0.82
(12)

86.95+1.81
(10)

7.21+0.53
(10)

NS

7 89.48+2.39
(12)

8.78+0.98
(12)

92.27+2.45
(9)

8.97+0.80 (9) NS

8 91.80+2,39
(11)

8.77+0.83
(11)

98.76+2.37
(7)

10.63+1.02
(7)

NS

N.b.: denotes significance at p< 0.0001, denotes significance at p< 0.001.
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reduce possible size effects within groups and highlight effects of variation in residual 

standard metabolic rate. However, both groups were similar in size by the end of the 

period that group 2 received reduced food (week 5), indicating that the experimental 

manipulation had affected the growth of group 2. Between-group differences in body 

condition were analysed for each of the eight weeks of the experiment by comparing 

the log 10 transformed regressions o f fish weight (g) against fork length (mm) of each 

group, using analysis of covariance (Table 4.2). There were no significant differences 

between the regression slopes of the two groups for the duration of the experiment. 

However, there were significant differences in elevation from week 3 to week 5 (the 

last week of reduced food for group 2), group 2 having the lower elevation (i.e. a 

lower body weight for a given fork length). This implies that group 2 maintained 

skeletal growth (fork length) at the expense of body weight, which did not increase at 

the same rate. Regression elevations did not differ significantly between the groups 

during the period of ad lib. feeding for group 2 (weeks 6-8), implying that group 2 fish 

quickly recovered condition. Fig. 4.2a shows the relationship between loglO weight 

(g) and log 10 fork length (mm) for both groups at the start of the experiment 

(combined r^= 0.967, n == 47, p<0.0001), while Fig. 4.26 shows the same relationship 

during week 5; group 2 is similar to group 1 in fork length but the fish are significantly 

lighter in weight (group I; r^= 0.986, n = 13, p<0.0001, group 2; r^= 0.806, n = 10, 

p<0.0005, see Table 4.2). Fig. 4.2c shows the relationship between loglO weight (g) 

and log 10 fork length (mm) at the end of the experiment (week 8). Group 2 has 

recovered condition and there are no significant differences in slope or elevation 

between the groups (combined r^= 0.952, n = 19, p<0.0001).
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Table 4.2; Analyses of covariance comparing the regression lines of log 10 weight (g) 
on loglO fork length (mm) for group 1 (control) and 2 (experimental) at the end of 
each week in experiment I. Group 2 fish were on reduced rations during weeks 1-5.

Analyses of covariance
Slope Elevation

Week F test (d.f.) Probability F test (d.f.) Probability

1 2.30(1,43) 0.137 0.27 (1,44) 0.609
2 2.97 (1,37) 0.093 0.41 (1,38) 0.528
3 2.91 (1,30) 0.099 5.35(1,31) 0.028
4 0.74 (1,28) 0.398 26.02 (1,29) 0.00001
5 0.27(1,19) 0.610 25.77(1,20) 0.00006
6 0.02(1,19) 0.885 2.02(1,20) 0.170
7 1.00(1,17) 0.332 0.24(1,18) 0.628
8 0.12(1,15) 0.734 1.19(1,16) 0.291
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Fig. 4.2; The relationship between log 10 transformed fork length (mm) and log 10 
transformed weight (g) for the fed and reduced food groups during (a) week 1, (b) 
week 5 and (c) week 8 of experiment I. Open circles and solid line denote the control 
group and closed circles and dashed line the reduced food group. See text for analysis 
of covariance between the two groups.
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Table 4.3 presents information on growth rates in terms of weight. Control fish 

maintained a high growth rate after the initial weeks of the experiment, while the 

experimental group unsurprisingly grew at a significantly lower growth rate than the 

(fed) control group during the period of food restriction. When put onto an identical 

feeding regime as the control group, they showed a compensatory growth response, 

growing faster than the control group, but for only one week, showing similar growth 

rates to the control group for the remainder o f the experiment.

Aggression rates in Table 4.4 are presented as the total number o f aggressive acts 

(initiated and received) involving a focal individual during a minute observation, 

divided by the number of fish in the group at the time. A mean aggression rate was 

calculated for each individual per week, and the mean of those means is presented in 

Table 4.4. Aggression was generally low, and surprisingly there were no differences in 

aggression rate between the groups during the period that the experimental group 

received reduced rations, with the exception of weeks 4 and 5, the last two weeks of 

reduced rations. This is the result of a gradual increase in mean aggression rates of the 

experimental group over the period of reduced food, becoming significantly greater 

than the control group by week 4. However, mean aggression rate of the experimental 

group for week 5 was not significantly greater than week 4 (Mann-Whitney U-test; U 

= 5.00, p = 0.221). Moreover, the experimental group did not show a significantly 

higher aggression rate than the control group when they were put onto similar rations 

at the beginning of week 6.
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Table 4.3: Mean specific growth rates in weight of group 1 (control) and group 2 
(experimental) salmon in experiment I. Group 2 fish were on reduced rations during

weeks 1-5.

Mean growth (%.d‘‘) + S.E. (n)

Week Group 1 Group 2 Significance (ANOVA)

1-2 0.24+0.08 (20) 0.03+0.03 (22) F(i.40)=5.75; p<0.05

3 1.16+0.06(17) 0.52+0.04(17) Fn.32)=72.15; p<0.0001

4 1.08+0.09(17) 0.05+0.07 (13) F(i.28)=70.87; p<0.0001

5 1.14+0.08 (13) 0.11+0.17(10) Fa,2i)” 36.46; p<0.001

6 1.27+0.07 (12) 1.57+0.07 (10) Ffi.20)=11.60; p<0.005

7 0.94+0.13 (12) 1.19+0.18(9) F(ij9)~1'36; p = 0.258

8 0.88+0.11 (11) 0.72+0.10(7) Fnjerl-O l; p = 0.331
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Table 4.4: Comparison of aggression rates (acts.fish‘Vmin‘0 between control (group 1) 
and experimental (group 2) groups in experiment I Group 2 were on reduced rations

during weeks 1-5,

Week

Mean aggression rate +S.E. 
(no. fish) (acts fish ' min ')

Significance (Mann- 
Whitney U test)

Group 1 Group 2

1 0.009+0.003 (20) 0.026+0.015 (22) U =  12.00; 
p = 0.34

2 0.052+0.034 (17) 0.045+0.035 (17) U = 8.00;
p -  1.00

3 0.076+0.030(17) 0.047+0.020(13) U =  10.80;
p — 0.68

4 0.007+0.004 (13) 0.189+0.094(10) U = 0.00; 
p<0.05

5 0.021+0.010(12) 0.227+0.025 (10) U = 0.00;
p< 0.01

6 0.022+0.013 (12) 0.063+0.048 (9) U = 7.00;
p -0 .7 7

7 * *

8 0.073+0.010 (11) 0.060+0.007 (7) U -  4.00; 
p = 0.25

N.b.; Asterisks denote no aggression data for both groups during week 7.
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4.3.1.2 Individual variation and performance in the control group (group I)

Net aggression for each fish over the entire eight week period (i.e. the balance 

between the number of attacks initiated versus the number received) was measured by 

subtracting the rate of being attacked fi'om the rate of aggressions initiated (both rates 

being expressed as per fish present at the time per min.). Net aggression (an index of 

social status) varied greatly between individuals, and increased significantly with an 

individual’s residual standard metabolic rate (r  ̂= 0.165, n = 22; p< 0.05, Fig. 4.3).

The percentage of time spent in the water column (i.e. the percentage of scan 

samples when each fish was recorded as being in the water column) was also found to 

vary significantly with residual standard metabolic rate (Fig. 4.4). The best fit to the 

data was obtained by a polynomial regression, since the relationship was apparently Li- 

shaped:

Arcsine %time in column = -119.2(rSMR) + 484.8(rSMR") + 45.3 (Eq. 4.1)

(r^= 0.412, n = 22, p< 0.01), although any conclusions drawn from this can only be 

tentative.

Mean individual specific growth rate by weight (%.d ') over the eight week period 

also correlated significantly with arcsine transformed percentage time in water column 

(Fig. 4.5), the relationship being described by the polynomial equation:

%wt(g)d ‘ = 0.146(arcsin%time in column) - 0.001 (arcsin%time in column)^ - 2.570

(Eq. 4.2)

(r^= 0.244, n = 22, p< 0.05), although again, the relationship is weak and conclusions 

must be tentative.
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Fig. 4.3; The relationship between residual standard metabolic rate (mlOz.h'O and net 
aggression (act.fish'^min ') for the fed group in experiment I.
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Fig. 4.4: The relationship between residual standard metabolic rate (mlO^.h') and 
arcsine transformed percentage time in water column for the fed group in experiment I. 
See text for the polynomial regression equation.
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Fig. 4.5: The relationship between arcsine transformed percentage time in water 
column and mean specific growth rate (%.d ') over 8 weeks for the fed group in 
experiment I. See text for the polynomial regression equation.
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4.3.1.3 Individual variation and performance in the experimental group (group 2)

In the experimental group, residual standard metabolic rate had no effect on 

subsequent aggression during the period of either reduced (r  ̂= -0.044, n = 24, p = 

0.847) or ad lib. (r^= 0.118, n =10, p = 0.176) feeding. Similarly, percentage time in 

the water column had no effect on growth, unlike in the control group (r^= -0.047, n = 

24, p = 0.922).

The only predictor of growth in the reduced food period of the experimental group 

was each fish’s distance from the upstream mesh divider (i.e. the food source). 

Distance from this point was calculated on the basis of the data on the zone occupied 

by each fish during observation sessions: a fish’s main feeding station was taken to be 

the single zone in which it spent the greatest amount of its time (based on scan sample 

data). The fish were very site faithful, spending an average of 34.06+1.43 (S.E.)% of 

their observed time in one particular zone. These zones were where the fish would 

ultimately return to, after bouts of feeding and aggression in the other zones, or after 

being temporarily displaced by other fish.

Mean growth (%.d“‘) of fish during the reduced food period decreased significantly 

with distance of their main feeding station from the food source (r" = 0.201, n = 22, p< 

0.05, Fig. 4.6). The preferred site of 13 out of 22 fish was in the middle of the most 

downstream pool, approximately 2.45m downstream of the food source (Fig. 4.6). 

However, residual standard metabolic rate (r  ̂ = 0.044, n = 24, p = 0.166), net 

aggression (ri= -0.043, n = 24, p = 0.831), and initial size of fish (r^= 0.005, n = 24, p 

= 0.300) had no effect on their proximity to the food source.
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Fig. 4.6: The relationship in the experimental group between distance (m) of a fish’s 
preferred feeding station (see text) from the upstream mesh (i.e. the food source) and 
mean specific growth rate (%.d'^) during the reduced food period of experiment I.
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Those fish surviving into the period of ad. lib. food tended to maintain the same 

relative positions with respect to each other, despite a general shift closer towards the 

food source (Fig. 4.7). Growth rates of survivors did not differ significantly from those 

that subsequently died: mean growth rate of survivors was 0.224+0.074 (S.E.)%.d'' 

(n=10), whereas those that died had been growing at 0.132+0.045 %.d ' (n=14; t-test: 

t = -1.09, d.f. =21, p = 0.288).

Did physiological parameters influence growth performance, after controlling for the 

effect of distance from the food source in the period of reduced food? I examined this 

by calculating the expected growth for each fish given the distance from the feeder of 

its most frequently adopted position (from the regression equation to Fig. 4.6). 

Residual growth was calculated in a similar manner to residual standard metabolic rate 

(see chapter 2 - methods), as the residual from this regression line, negative values 

denoting a fish doing worse than expected for its particular location, positive values 

denoting a better than expected performance.

There was a negative relationship between residual standard metabolic rate and 

residual growth calculated in this way, those fish with high residual standard metabolic 

rates growing less than expected given their position in the artificial stream (r  ̂= 0.143, 

n = 18, p<0.05. Fig. 4.8). However, since residual growth data was derived from a 

regression based on skewed data (Fig. 4.6), conclusions must be treated tentatively. 

Despite this. Fig. 4.6 was a good depiction of how salmon organise themselves in 

space, since their despotic nature would force most of the fish to take up crowded, 

subordinate positions in the artificial stream.
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Fig. 4.7; The relationship between the preferred feeding station (distance (m) from the 
upstream mesh) of group 2 fish during the reduced and ad lib. food periods of 
experiment I (r^= 0.363, n = 10, p< 0.05).
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Fig. 4.8: The relationship between residual standard metabolic rate (mlOz.h ') and mean 
residual specific growth rate (%.d'0 given each fish’s preferred feeding station, during 
the reduced food period of group 2 in experiment I. See text for further explanation.
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4,3.2 Results for experiment II

Of the 14 fish introduced in group 1, six subsequently defended large territories 

(mean area = 0.50+0.06 (S.E.) m )̂. The remaining eight fish were constrained to one 

riffle area, also 0.50m^ in area. From the next two introduced groups (17 and 11 fish 

respectively), only one fish from group 2 obtained a territory, also 0.5m^ in area. Thus 

once all the groups had been introduced, only seven fish were in possession of large 

territories, and a disproportionate number of these (n = 6) belonged to group 1 

(goodness of fit test: = 10.54, 2 d .f, p< 0.01). As the artificial stream prevented any

emigration, the remaining 35 fish were all constrained on the same riffle, where the 

maximum area defended by one fish was 0.03m^. Hereafter these fish are termed ‘non- 

territoriaf while those defending areas o f greater than 0.40m^ are termed ‘territorial’.

Of the fish in group 1, those obtaining a territory were significantly larger than the 

non-territorial fish (fork length of territory holders = 55.08+1.12mm (n = 6); non- 

territorial fish = 50.11+0.67mm (n = 8), ANOVA; F(,j2) = 16.34, p< 0.005, Fig. 4.9). 

Larger fish in group 1 tended also to be more aggressive than smaller fish, in that they 

initiated more attacks than they received (ri=  0.219, n = 13, p<0.05, Fig. 4.10). While 

this was partly due to territorial fish being significantly more aggressive than their 

counterparts (mean net aggression of territory holders and non-territorial fish was 

0.005+0.002 (== S.E.) acts fish'min ' (n = 7) and -0.001+0.001 acts fish 'min' (n = 35) 

respectively, Mann-Whitney U test: U= 7.00, p<0.05), there was also a relationship 

between size and aggression in non-territorial fish (see later). There was no 

relationship, however, between residual standard metabolic rate and net aggression 

(r^“  -0.004, n = 14, p = 0.348).
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Fig. 4.9; Differences in initial fork length (mm) between territorial and non-territorial 
fish for group 1 fish in experiment II. Error bars denote standard errors.

93



Metabolic rate, prior residence, aggression & growth

0,014

S 0.010 
%

^  0.006

-0.006
58 60 6254 5646 50 5248

Initial fork length for group 1 (mm)

Fig. 4,10: The relationship between initial size (fork length (mm)) and net aggression 
(acts.fish ^min'O for group 1 of experiment II.
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To investigate whether those fish from group 1 that obtained territories chose superior 

sites, 12 sites along the artificial stream were sampled for prey drift and water velocity 

(Table 4.5). Sites 1-6 and 10 corresponded to a territory holders’ position, the 

sampling net being held at the point most frequently occupied by the territory holder. 

Sites 7 and 8 corresponded to upstream and downstream of the riffle area occupied by 

83.3% of the fish, and 9, 11 and 12 were unoccupied. Using the dry weight of food 

collected per minute per litre of water flowing past the site as a measure of territory 

quality, there were no significant differences in quality between the 6 sites the territory 

holders in group 1 chose as territories and the 6 sites (including the 3 unoccupied sites) 

the remaining fish were forced to occupy (mean quality of territories = 0.136+0.003 

mg.F (n = 6), mean quality of remaining sites = 0.174+0.006 mg.f* (n = 6), ANOVA;

= 0,401, p = 0.541). This is despite 6 out of the 7 territorial fish belonging to 

group 1, and therefore having the greatest opportunity to sample various sites.

Flowever, territory holders did benefit from a greater food intake. Fish with 

territories fed at a significantly greater rate than non-territorial fish (territory holders = 

6.33+1.11 feeding movements fish'm in' (n = 7), non-territorial fish = 4.58+0.33 

feeding movements fish'min ' (n = 35); ANOVA: F(i,3 7) = 3.64, p = 0.05). This may be 

due to the monopoly on food items that each territory holding fish will have; despite no 

apparent preference for the best sites, territory holders had exclusive access to a large 

foraging area. Conversely, each of the non-territorial fish on the riffle had to share an 

area similar in size to a territory with 34 competitors. By recording the positions of 

fish, the percentages of total drift available to that position (assuming that all drift was 

available for consumption by the fish; Table 4.5) and the percentage of that drift 

available to individual fish after correction for the number of neighbouring fish also
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Table 4.5: Profitability of different potential feeding positions in the artificial stream in
experiment II.

Site no. (type of 
fish present)

Dry weight 
(mg) min ' 
±1.0 (S.E.)

Percentage of 
total sampled 
drift per site 

(%)

Water velocity 
(l.min ')± S.E,

Dry weight per 
litre 

(mg.E)

1 (territorial) 3.0 7,89 186.0+13.3 0.016

2 (territorial) 1.0 2.63 111.6+18.6 0.009

3 (territorial) 4.0 10.53 874.2+16.2 0,005

4 (territorial) 1.0 2.63 1116+18 6 0.009

5 (territorial) 3.0 7,89 297.6+18.6 0.010

6 (territorial) 2.0 5^6 130.2±5.7 0.015

7 (non-territorial) 7,0 18.42 223.2+24.8 0.031

8 (non-territorial) 3.0 7.89 260.4+3.7 0,011

9 (unoccupied) 2,0 5^6 279.0+13.3 0.007

10 (territorial) 4,0 10.53 130.2+9.3 0.031

11 (unoccupied) 4.0 10,53 130.2+9.3 0.031

12 (unoccupied) 4,0 10.53 558.0+18.6 0.007

96



Metabolic rate, prior residence, aggression & growth

exploiting the same site, it was possible to test whether territorial fish benefited from 

their exclusive access to a food supply. In group 1, growth rate increased significantly 

with the percentage of food available to individual fish (Spearman’s Rank correlation, 

0.639, n = 14, p< 0.05, Fig. 4.11). Analysis was restricted to group 1 fish, since 

they experienced the same initial conditions and were very similar in initial size. They 

also experienced the largest variation in food availability, since most of the territorial 

fish came from this group.

Despite the majority of fish being constrained to the riffle, there seemed to be a 

distinct hierarchy within this group of non-territorial fish. During each observation 

session, positions of individual fish within the group were recorded in terms of whether 

they were at the front, middle or back of the riffle. In this way I could estimate the 

percentage of time spent by fish in these positions; the front of the riffle was assumed 

to be the preferred feeding station. Net aggression correlated with initial fork length 

for the fish on the riffle ( r  = 0.095, n = 35, p< 0.05, Fig. 4.12), Initial fork length was 

the fork length (mm) of the fish from all 3 groups measured on the day group 3 was 

introduced, to remove any bias of using fork lengths for groups 1 and 2 measured prior 

to the introduction of group 3. Initially larger fish also spent significantly more time at 

the front of the riffle than small ones (Spearmans rank correlation: R ,= 0,415, n = 35, 

p<0.05, Fig. 4,13), presumably as a consequence of their greater aggression. Initial 

fork length also correlated with an index of prey available to individual fish. The index 

was created by multiplying the percentage time spent at the front of the riffle by the 

amount of prey drift there; the more time spent at the front of the riffle, the larger the 

amount of food potentially obtained by individual fish. Therefore initially larger fish 

may potentially have acquired more food through spending more time at the front of
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Percentage of drifting sampled food available to individual fish in group 1

Fig. 4.11: The relationship between the percentage of the total food potentially 
available to individual fish and their mean specific growth rate (%.d’’) in group 1 of 
experiment II.
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Fig. 4.12: The relationship between initial fork length (mm) and subsequent net 
aggression (act.fish hmin 0 for non-territorial fish in experiment II.
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Fig. 4.13; The relationship between initial fork length (mm) and percentage of time 
spent at the front of the riffle for non-territorial fish in experiment II.
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the riffle. There was indeed a correlation between time spent at the front of the riffle 

and subsequent mean specific growth rate (Spearman’s rank correlation: = 0.442, n

= 35, p<0.05, Fig. 4.14).

Group 1 on the whole grew faster than the other two later-arriving groups, 

presumably due to a prior residence effect, whereby they were more likely to obtain 

territories (mean specific growth rates over the course of the experiment: group 1 = 

0.411+0.038(8.E.)%, group 2 = 0.340+0.039%, and group 3 = 0.260+0.061%. One­

way ANOVA between groups: F(2,3 0)= 2.699, p = 0.05; Tukey post-hoc comparison of 

means shows a significant difference (p = 0.05) between groups 1 and 3, Fig. 4.15), 

However, there were no significant differences in growth rate between the groups 

when the territorial fish were removed from the analysis (mean specific growth rate of 

non-territorial fish: group 1 = 0.335+0.040%, group 2 = 0.333+0.042%, and group 3 

= 0.260+0.061%. ANOVA: 0.74, p = 0.487).

At the end of the experiment in October, six fish had a fork length of greater than 

75mm and were destined for the Upper Modal Group (UMG; Thorpe, 1977), Five of 

these salmon were from the group of six surviving territory holders, compared with 

only one out of 35 non-territorial fish (goodness of fit test; = 24.440 at 1 d.f, 

p<0.001). Four of the territorial fish destined for the UMG came from group 1, the 

other from group 2. The non-territorial fish destined for the UMG was also from group 

2. A higher proportion of the UMG therefore belonged to group 1 (4 out of 12), 

compared to groups 2 and 3 (2 out of 14 and 0 out of 15 respectively. Fig. 4.16) 

although it was not quite significant (goodness of fit test; = 4.000 at 2 d .f, p = 

0 . 10).
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Fig. 4.14; The relationship between the percentage of time spent at the front of the 
riffle for non-territorial fish and mean specific growth rate (%,d‘‘) in experiment II.
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Fig. 4.15; Differences in mean specific growth rate (%.d*') between the 3 groups in 
order of their introduction into the artificial stream in experiment II; n = 14, 17, and 11 
fish respectively. Error bars denote standard errors.
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Fig. 4.16: The percentage of fish from each group destined for the Upper Modal 
Group (fork length> 75mm at the end of experiment II).
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4.4 Discussion

4.4.1. Group effects on growth in experiment I

Juvenile salmon in group 2 unsurprisingly had significantly lower growth rates 

throughout the reduced food period. However, their gradual loss of condition implies 

that they attempted to maintain structural growth, measured as fork length, at the 

expense of weight. Weatherley & Gill (1981) showed with rainbow trout that the 

effects of slow growth resulting from reduced rations, as experienced here by group 2, 

resemble those of severe starvation. When a fish starves, its length changes little, 

implying that fish are composed of two different tissue types- reserve weight and 

structural weight. Fatty reserves and remobilizable musculature constitute reserve 

weight, whereas structural weight is composed of skeletal, circulatory and nervous 

tissues and cannot be remobilised (Broekhuizen et al., 1994). Fork length is thus a 

measure of structural weight. Nicieza et al. (1991) described a threshold length in 

juvenile salmon, below which individuals could not smolt. Moreover, larger smolts 

have higher survival rates, measured as return rates, and higher growth rates while at 

sea (Eriksson et al., 1987; Lundqvist et al., 1988; Lundqvist et a i,  1994). As reserve 

weight can be quickly recovered during compensatory growth, it may be prudent for 

juvenile salmon to maintain skeletal growth at the expense of fatty tissue and 

musculature.

105



Metabolic rate, prior residence, aggression & growth

4.4.2. Individual variation and performance in groups 1 and 2 (experiment I)

Net aggression was found to increase with residual standard metabolic rate in the 

control group (group 1). Metcalfe et a i  (1995) found that a higher residual standard 

metabolic rate conferred dominance in pairwise contests, but the mechanism conferring 

dominance remained unclear. Several studies have shown that competitive ability 

influences growth and subsequent smolting strategy in juvenile Atlantic salmon 

(Metcalfe, 1989, 1991), but these were also pairwise contests in small tanks. 

Aggression has been shown to confer dominance in juvenile brook charr in real 

streams, which in turn leads to the acquisition of superior territories and subsequently 

greater feeding rates (Grant, 1990), and dominance was shown to confer superior 

growth rates in three species of salmonid in an artificial stream (Fausch, 1984). The 

present study illustrates, in a semi-natural setting, that physiology (variation in standard 

metabolic rate) plays a role in social status through its effect on aggression. Percentage 

time in the water column also varied significantly with residual standard metabolic rate, 

the relationship being described by a U-shaped polynomial curve. This implies that fish 

with a low residual standard metabolic rate, with low net aggression, spent similar 

amounts of time in the water column to high residual standard metabolic rate fish with 

high net aggression. Given their differences in aggression, this possibly suggests that 

the fish with negative net aggression values (i.e. fish that were attacked more often 

than initiating attacks themselves) were kept off the substratum by more aggressive 

dominant individuals, which spent a similar amount of time off the substratum to 

maintain their dominance through aggression. The situation of fish with markedly 

different levels of aggression but spending similar amounts of time in the water column
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corresponds to the observations on juvenile coho salmon by Puckett and Dill (1985). 

They identified different behavioural strategies, e.g. territorial fish, spending most of 

their time in a defended area, and ‘floaters’, which were unable to defend a territory 

and existed in the spaces between territories. Floaters were attacked more through 

entering the territorial space of more aggressive fish and subsequently spent more time 

off the substrate ‘floating’. This also corresponds to observations of rainbow trout 

where subdominant fish were forced to maintain increased levels of activity due to 

saturation of territories by more dominant trout (Li & Brocksen, 1977). More 

aggressive, territorial fish would benefit from spending large amounts of time in the 

water column since this allows them either to feed or to defend their territories, a high 

cost-high return strategy that involves more aggression because they are competing for 

food in the water column with other dominant fish (Metcalfe, 1986).

Mean growth rate initially increased with the percentage of time spent in the water 

column, but decreased in those fish spending very high proportions of time spent off 

the substratum, suggesting an optimum percentage of time to spend off the substratum 

foraging and being aggressive. Intermediate levels of both aggression and time spent in 

the water column may result in reduced routine metabolic costs and hence greater 

growth efficiency (Paloheimo & Dickie, 1965). Similar findings were described by 

Metcalfe (1986), where the optimum strategy in subordinate fish was to minimize 

energy expenditure rather than maximize food intake through greater time spent in the 

water column.

Unlike group 1, in group 2 there were no significant relationships between residual 

standard metabolic rate and aggression or time spent in the water column. The only 

predictor of growth in the group 2 fish was the distance from the food source for each
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108

fish; almost 60% of the fish spent most of their time in close proximity to each other in

the most downstream pool, and grew less than the fish on the riffles and in the

upstream pool. Potential profit declined with increasing distance from the food source,

as the probability of food depletion by upstream fish increased. Compared to group I,

the m^ority of group 2 fish opted for the low energetic cost of staying in the low

current speed environment o f a pool. Aggression gradually increased during the period 4

of reduced food; this has been suggested as a mechanism to increase territory size in

salmonids when food is scarce (Symons, 1968; Slaney & Northcote, 1974; Dill et al.,

1981). However, most of the fish did not hold large territories, instead they spent most 

of their time close together in the pool. Rather, the increase in aggression may have 

been due to increased intruder pressure (since there were fewer fish in the pool after 

the group were put onto ad lib. food), a result of the fish opting for the low energetic 

cost of living in the pool. Moreover, increased intruder pressure has been suggested as 

causing smaller defended territories in brook trout (McNicol & Noakes, 1984) and 

coho salmon (Dill et al., 1981). Furthermore, high densities of fish (as found in the 

pool) have been suggested as influencing dominance relationships in a study on 

juvenile largemouth bass; when confined to a small area the social order became 

relatively simple and uncomplicated by dominance relations based on relative 

aggression (Fleming & Johansen, 1984).

Although there was no dominance hierarchy based on aggression, initial size or 

residual standard metabolic rate, fish surviving into the ad lib. food period responded j

to the change in food regime by moving further upstream (upstream positions being 

more profitable; Fausch, 1984), but tended to maintain position relative to each other.

Therefore a hierarchy based on position and subsequent growth was at work.
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Throughout the period of reduced food each fish had experience of its relative 

position, and possibly this experience resulted in the fish maintaining their positions 

with respect to each other. The social structure may thus have been maintained by 

prior experience rather than current assessment, in a similar sense to salmonids using 

experience to settle contests rather than a continued assessment o f fighting ability, 

which reduces the cost of aggression to both participants (Abbott et a i, 1985), 

Because the fish spread out upstream when put onto ad lib. rations, intruder pressure 

was reduced and aggression subsequently decreased.

It was shown for the group 1 fish that a high residual standard metabolic rate can 

increase an individual’s success through an increase in aggression. However, after 

calculating expected growth for each fish in group 2 it was found that the higher the 

residual standard metabolic rate, the lower the actual growth, given a fish’s position. 

Fish with higher standard metabolic rates (a higher metabolic turnover) will have a 

higher cost of living (Priede, 1985). When food abundance is high, as in group 1, a 

high metabolic turnover may allow allocation of resources to both growth and 

aggression (Titus, 1990). However in group 2 (low food abundance), the same high 

metabolic turnover that ordinarily confers a behavioural advantage becomes a 

disadvantage; instead the environment favours individuals with a lower metabolic 

turnover and hence lower energy demands for growth and survival.
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4.4.3 Individual variation and performance in Experiment II

In this experiment, almost half of the first group of introduced fish obtained and 

defended large territories, the remaining fish in the group being constrained to an area 

approximately the size of one large territory, along with almost all of the fish from the 

subsequent two groups. This result strengthens the evidence that prior residence 

affects the outcome of intraspecific interactions. Similar findings have been 

documented for other species of salmonid in artificial streams: first emerging coho 

salmon fry had ‘settler’s rights’ to the environment and created and maintained a size 

gap between themselves and later emerging fry (Mason & Chapman, 1965); the first 

juvenile rainbow trout introduced to an artificial stream also established a permament 

size gap compared with later introductions of trout (Chandler & Bjornn, 1988). Prior d

residence also affects interspecific interactions, a similar phenomenon being 

documented between chinook salmon and brown trout (Glova & Field-Dodgson,

1995), and between coho salmon, brook trout, and brown trout (Fausch & White,

1986). However, these studies used longer time intervals between early and late fish, 

e.g: 22 days in both Mason & Chapman (1965) and Chandler & Bjornn (1988). This 

gave fish time to create a size advantage. In this study the time intervals were much 

shorter: 7 days between each group, 14 days in total for all the fish to be introduced.

All fish were of similar size, showing that prior residence alone, and not the size 

advantage it may subsequently confer, has a strong influence on which individuals 

obtain territories. Prior residence is thus a superior competitive asymmetry distinct 

from any physical advantage attributable to it (see chapter 3).
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Across all groups, aggression correlated significantly with size and not with residual 

standard metabolic rate as shown in experiment I. This may be due to prior residence 

being such a strong asymmetry in gaining territories, coupled with relatively small 

numbers of fish in each group, masking any effects differences in standard metabolic 

rate might have. In salmonids, there is often a clear correlation between status and size 

(Jenkins, 1969), possibly because dominant fry grow faster (Huntingford et al., 1990), 

and dominant fish tend to hold the most profitable positions (Fausch, 1984). However, 

it is unclear whether increased aggression is a consequence of territory ownership or a 

cause; increased aggression on establishing a territory has been described as the 

competitive threat hypothesis. For example. Dill (1978) described juvenile coho salmon 

attacking larger intruders at a greater distance than equal sized or smaller fish, and 

Abbott et al. (1985) demonstrated in rainbow trout that dominants increased their 

levels of aggression towards subordinates after subordinates had increased their weight 

by up to 13%, making them more of a perceived competitive threat. This behavioural 

plasticity would obfuscate the quality of individuals attaining territories, since they 

might become aggressive as a consequence. Furthermore, most studies are based on 

observations of already established territory holders, and cannot disassociate the 

effects of territory quality and phenotypic quality on an individual’s behaviour. 

However, the results from the present study showed a good relationship between size 

and aggressiveness between the ‘non-territorial’ fish constrained to the riffle. This 

provides further evidence of the correlation between status and size. Furthermore, it 

suggests that increased aggression was not a consequence of larger fish obtaining 

territories in group 1, but a cause. In addition, it is probable that the larger territorial 

fish obtained their increased size as a consequence of being more aggressive in the
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hatchery tanks prior to the start of the experiment (Metcalfe & Thorpe, 19926; 

Metcalfe et al. 1992).

Although the larger, more aggressive fish in group 1 did obtain and defend large 

territories, they did not appear to choose the most profitable sites in terms of water 

velocity and particulate drift, as has been documented before in several studies 

(Fausch, 1984; Grant, 1990). These earlier studies have provided evidence for the 

assumption that higher quality individuals will obtain territories, and the best territories 

will belong to those of highest rank (Maynard Smith, 1974; Arcese, 1989). However, 

in these studies the competitors had prior knowledge of the potential territories, so that 

superior competitiors could exploit the best territories as they became vacant (Stamps 

& Krishnan, 1994). In the present experiment the fish had no knowledge of potential 

territory quality before introduction to the artificial stream. Consequently, there may be 

a cost in searching for the best territory; with no prior knowledge of the environment 

there may be a risk in taking time to sample sites, as these sites may at the same time 

become occupied and defended by conspecifics. A similar conclusion was made in a 

study on pied flycatchers (Slagsvold et al., 1988), where the synchronous arrival of 

competing females on breeding grounds in spring results in their showing a pattern of 

restricted searching for mates, as it is very important to start breeding as soon as 

possible, for a delay in breeding means a reduction in reproductive success (Harvey et 

al., 1985). Similarly, after emergence, juvenile salmon are all searching for territories 

at approximately the same time, due to fairly synchronous emergence (Gustavson- 

Maijanen & Dowse, 1983; also see Chapter 3); this may also curtail sampling time. 

Moreover, in salmonids the social structure can be very stable for months after 

territory acquisition (Jenkins, 1969), so it will not be in an individual’s best interests to
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risk failure to secure a territory due to sampling time. This may explain why territorial 

fish in group 1 fail to exploit the most profitable sites, despite having the greatest 

sampling opportunity (and the least competition).

However, although territorial fish did not occupy superior sites, they did feed at 

significantly greater rates than fish constrained to the riffle. This concurs with previous 

studies (Grant, 1990), in which by keeping neighbours farther away, the aggressive 

territorial fish decrease competition for drifting prey and increase their own feeding 

rate. Conversely, the 34 non-territorial fish were constrained to an area similar in size 

to one large territory and suffered feeding rate depensation as a result. Furthermore, 

territorial fish benefitted from their exclusive access to a food supply: group 1 fish 

grew faster if they had a greater exclusivity to passing prey items, territorial fish having 

the most exclusive access to food. This complements earlier studies that hypothesise 

that more aggressive fish have a higher gross gain rate than less aggressive fish 

(Puckett & Dill, 1985; Grant, 1990).

There seemed to be a distinct hierarchy within the non-territorial fish. Larger fish 

were more aggressive and spent more time at the upstream end of the riffle (the 

preferred feeding site; Fausch, 1984), monopolising more potential prey and growing 

faster. This is unlike the result from experiment I, where the social hierarchy was less 

pronounced under greater intruder pressure and reduced rations. Therefore relatively 

plentiful food may be an environmental cue that prompts a fish to maintain a feeding 

station with aggression, so strengthening a hierarchy, unlike the case for fish on 

reduced rations in experiment I. Brown’s (1964) economic defendability theory 

suggests that an animal should only defend a feeding station or territory if the energetic 

benefits (food intake) outweigh the costs (time and energy involved in aggression, risk
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of energy). Here it can be hypothesised that in the poor environment experienced by 

the experimental group in experiment I the costs in maintaining an aggression-based 

hierarchy outweighed the benefits of obtaining what little food there was, whereas in 

experiment II the environment was rich enough to favour an aggression-based 

hierarchy amongst the fish constrained to the riffle.

The mean growth rates of group 1 fish in experiment II were higher than those of the 

other two groups, due to the territorial fish mostly belonging to this group. Moreover, 

most of the fish which had the greatest probability of joining the Upper Modal Group 

and smolting after one year belonged to this group, and were territorial; most territorial 

but virtually no non-territorial fish entered the Upper Modal Group. This is further 

evidence, but in the semi-natural setting of an artificial stream, that ability to obtain a 

preferred feeding station and withstand competition influences the age at which 

juvenile salmon migrate to sea (Metcalfe, 1989; 1991).
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Chapter 5: Aggression and growth depression in juvenile salmon - the 
consequences of variation in metabolic rate.

5.1 Introduction

Intraspecific competition is a potentially serious problem in salmonid aquaculture. 

Competitive interactions for food are a major source of growth rate variation under 

aquaculture conditions, since they result in aggressive individuals consuming a 

disproportionate amount of food and accelerating their growth relative to less 

aggressive individuals. The principal effects are increasing variance and skew of the 

size distribution of fish (Brett, 1979; Kinghorn, 1983; Jobling, 1985; McCarthy et a i,  

1992; Ryer & 011a, 1996), Differences in growth manifest themselves quickly and the 

size disparity increases, exacerbating the monopolization of food by large fish (Gila et 

al., 1992) and suppressing the feeding activity of subordinates (Metcalfe, 1989). 

Furthermore, if growth rate is more dependent on competitive ability than 

physiological efficiency, selection for faster growing fish will favour more aggressive 

and competitive fish, rather than those that maximise the efficiency of growth 

(Weatherley, 1976; Doyle & Talbot, 1986; Swain & Riddell, 1990). However, 

selection studies on medaka showed a reduction in aggression when selecting for faster 

growing fish in a high interaction environment (Ruzzante & Doyle, 1991; 1993). This 

was thought to be due to relatively unaggressive, indifferent fish growing faster, since 

agonistic interactions are energetically costly (Li & Brocksen, 1977; Metcalfe, 1986). 

The markedly different findings of Ruzzante & Doyle may have been due to the high
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population densities at which the selection experiments were carried out, selection for 

fast growth being more effective at higher population densities.

Several methods have been developed to reduce aggression in an aquaculture 

situation. In juvenile chum salmon, Davis & 011a (1987) showed that a high food ration 

resulted in less variation in growth than intermediate and low rations, competition for 

food being lower when food is more abundant. Resource patterning (the spatial and 

temporal distribution of food) also influences the intensity of agonistic interactions; 

aggression is more intense if food is distributed from a single, defensible point source 

(allowing a dominance hierarchy to be established), whereas if the food is dispersed 

and indefensible no dominance hierarchy is developed and aggression is lower (011a et 

al., 1992; Grant, 1993; Ryer & 011a, 1996). Increasing current flow also reduces 

aggression. Costs of aggression are greater in a fast current, since more energy must be 

expended when fish move to initiate an attack (Grant & Noakes, 1992). Fish living in 

fast currents may therefore reduce their aggression to reduce total energy expenditure. 

Fish swimming against a strong current are also more polarised and so their trajectories 

are less likely to cross (a common cause of interactions). Such a reduction in 

aggression with increasing current flow has been shown experimentally with brook 

charr (McNicol & Noakes, 1981; East & Magnan, 1987) and arctic charr (Christiansen 

& Jobling, 1990; Jobling et al., 1994; Adams et al., 1995) in aquaculture conditions.

However, an alternative method of reducing aggression would be to remove the fish 

most predisposed to aggression, thus improving the growth rate of the remaining fish. 

It is clear that larger fish are more dominant in hatchery tanks (Wankowski & Thorpe, 

1979; Abbott & Dill, 1989; Metcalfe, 1994), but larger size is probably a consequence 

o f dominance and not a cause (Huntingford et al., 1990; Metcalfe et al., 1992). As
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rearing is often initiated with juvenile salmonids of uniform size, the initial factors that 

allow fish to out-compete others of the same size is relatively unclear. A recent study 

demonstrated that more dominant juvenile salmon in pair-wise experiments had higher 

relative standard metabolic rates, after controlling for body size (Metcalfe et a i, 1995). 

If such a relationship between standard metabolic rate (SMR) and dominance persists 

in a hatchery tank environment, it may be possible to select out the potentially 

dominant fish by measuring their standard metabolic rate and removing those fish with 

very high relative standard metabolic rates. Moreover, Ruzzante & Doyle (1991) 

suggested that their faster growing, non-aggressive medaka (see above) may have had 

a relatively more efficient standard metabolism (5 /c.) than their more aggressive 

conspecifics, implying that individual variation in physiology can have consequences on 

individual growth, mediated by behaviour.

Therefore, the aims of this chapter are to investigate any links between relative 

standard metabolic rate and intensity of agonistic interaction in a hatchery tank 

environment by varying the ratios of juvenile salmon with high and low relative 

standard metabolic rates. I also investigated the effect of differences in aggression 

between groups on subsequent average growth and growth variation.

5.2 Methods

In August 1995, the standard metabolic rates (SMR) of 70 0+ juvenile salmon 

derived from a pair of sea-run adults were measured at a constant temperature of 9°C. 

The residual standard metabolic rates of individual fish were then calculated (see
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Chapter 2) and each fish was categorised as ‘high’ or ‘low’, according to whether it 

had a positive or a negative residual standard metabolic rate. Ten fish were excluded, 

as their standard metabolic rate equalled the predicted value (i.e: their residual was 

zero). The 60 remaining fish consisted of 30 high and 30 low standard metabolic rate 

fish; these two categories of fish were kept in separate holding tanks and fed ad. lib., 

prior to individually marking their ventral sides with combinations of alcian blue dye 

spots at the start of the experiment.

The experiment used 3 circular tangential flow tanks (diameter = 0.5m), whose water 

depth was maintained at 0.2m using standpipes. The floor of each tank consisted of 

radial black and white stripes to create a more heterogeneous substratum, since this 

promotes the establishment of territories (Mikheev et a i, in press). Twenty high SMR 

fish were placed in one tank, and 20 low SMR fish were placed in another. The third
:

tank held 10 high and 10 low SMR fish. This group is referred to as the control since it

contained approximately the same normal distribution of residual standard metabolic |

rates as the stock population. The tanks were deep sided and were raised off the 

ground, so that the fish were unable to see directly anyone standing adjacent to them. 

Behavioural observations were therefore made from a vantage point Im away, with the 

aid of an overhead angled mirror. At no time during observations did the observer 

stand over or go nearer to the tanks. Compared with their startled behaviour when a 

hand was moved over the tanks, being observed with the mirror did not seem to alarm 

the fish.

During August and September 1995 observations were carried out twice daily (in the 

morning and afternoon) over 34 days; these consisted of observing each tank of 

salmon for 10 minutes and noting the total number of aggressive interactions between
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fish. Each tank received ad lib. pelleted food from an automatic feeder every 30 

minutes, 24 hours a day; the food was delivered from a point source to encourage 

aggression. In addition, the salmon were hand fed the same food five minutes before 

each observation. Initially, it was not possible to ascribe any aggressive interaction to 

any one individual fish as the fish were marked only on their ventral sides for individual 

identification during weighing and measuring. Therefore only absolute levels of 

aggression could be measured for each tank. However, towards the end of the 

experiment individual fish could be identified to an extent, as size differences became 

more apparent; data were then collected separately for three size categories of fish 

(large, medium, and small). Aggressive interactions consisted of charges, chases, and 

nips. Charges consisted of a rapid, direct and unambiguous motion towards another 

fish, chases followed a charge and consisted of pursuit resulting in the displacement of 

the attacked fish from its original position, and nips were any biting motion made by 

the aggressor towards another fish. These normally occurred after a chase (Abbott et 

a i,  1985; Adams et a i,  1995). Charges alone were the most common form of 

aggression, making up 80% of the total number of observed interactions. The 

remaining 20% consisted o f charges followed by a chase, or charges followed by both 

a chase and a nip. Due to mortalities during the course of the experiment, aggression 

was standardised for between-tanks analysis as the number of aggressive interactions, 

fish’’, min’. At the end of the experiment 17 salmon remained in both the ‘low’ and 

control groups, and 15 salmon remained in the ‘high’ group.

The salmon were anaesthetised, weighed (to the nearest O.Olg) and measured (fork 

length, to the nearest 0.1mm) once every two weeks to calculate individual specific 

growth rates (SGR) using the equation:
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SGR= 100((ln.IL(2) - In.JTd))/1) (Eq. 5.1), 

where = initial weight (g), JV(2)= final weight (g) and t = time elapsed in days. 

Mean specific growth rate and the distribution of individual growth rates could then be 

compared between the tanks.

Following each two-weekly measurement, groups were put into a different tank from 

the ones they were in before to remove possible tank effects. In this way the 3 groups 

spent at least one week during the experiment in each tank.

5.3 Results

At the start of the experiment, mean fork length and weight for the ‘high’ group was 

45.56+1.193 (S.E.)mm and 0.92+0.07g (n = 20) respectively. The ‘low’ group 

measured 45.24+1.49mm and weighed 0.93+0.09g (n = 20), and the control group 

measured 49.50+0.99mm in fork length and weighed 1.19+0.07g (n = 20). The 

weights of the ‘high’ and ‘low’ fish within this control group did not differ significantly 

from each other (‘high’ fish weight = 1.19+0.07g (n = 10), ‘low’ fish weight ^  

1.20+0.07g (n = 10); one way ANOVA, F(i_,8)= 0.001, p = 0.974). Residual standard 

metabolic rates were calculated from a regression equation of a double logarithmic plot 

of standard metabolic rate (SMR, mlOi.h ’) against salmon weight (W, g) for a sample 

of 227 juvenile salmon:

In(SMR) = -2.71+ 0.65.ln(W) (Eq. 5.2)

(r  ̂ = 0.412, n = 227, p<0.005; some of the fish used to establish this relationship were 

also used in the experiments of chapter 3).
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The 20 juvenile salmon with positive residual standard metabolic rates in the ‘high’ 

group had a mean residual o f 0.039+0.006 (S.E.)ml02.h'% the 20 fish in the control 

group had a mean residual of 0.015+0.019mlO2.h ’, and the 20 fish with negative 

residual standard metabolic rates in the ‘low’ group had a mean residual of 

-0.020+0.002mlO2.h'h Residual standard metabolic rates between the ‘high’ and ‘low’ 

groups were, of course, significantly different (one-way ANOVA across all three 

groups; F(2,5 7)= 5.05, p<0.05, Tukey post-hoc comparison of means: ‘high’ vs. ‘low’, 

p<0.05; Fig.5.1).

There were no significant differences between aggression rates measured during the 

morning and afternoon (Wilcoxon’s matched pairs test, comparing rates on the same 

day; ‘high’ group: Z = 0.809, p = 0.418; control group: Z = 1.483, p = 0.138; ‘low’ 

group: Z = 0.761, p = 0.447), so morning and afternoon aggression rates for each 

group were pooled for subsequent analysis. Mean values of aggression for each tank 

were: ‘high’ group = 0.059+0.009 (S.E.)acts.fish ’.m in co n tro l group = 0.047+0.005, 

and ‘low’ group = 0.022+0.002. Aggression in the ‘low’ group was significantly lower 

than both the ‘high’ and control groups, but there were no significant differences 

between the control and ‘high’ groups (Repeated measures ANOVA: F(2 .%)= 10.35, p< 

0.005. Tukey post-hoc comparison of means: ‘high’ vs. ‘low’, p< 0.0005; control vs. 

‘low’, p< 0.01; control vs. ‘high’, p = 0.243, Fig. 5.2).

To check whether these results were due to just a few very aggressive fish that had 

been included in the ‘high’ group only by chance, I separated the data from this group 

into 3 size classes of fish and allocated percentages of total observed aggression to 

each class during 24 trials at the end of the experiment (when fish could be reliably 

classified into size categories by eye; Table 5.1). The largest fish did tend to be the
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Fig. 5.1: The mean residual standard metabolic rates of the io w ’ group (20 juvenile 
salmon with negative residual standard metabolic rates), the ‘high’ group (20 juvenile 
salmon with positive residual standard metabolic rates), and the control group (equal 
proportions of juvenile salmon with either positive or negative residual standard 
metabolic rates, n = 20). Bars denote standard errors.
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Fig. 5.2: Mean aggressive acts.fish'*.min'^ in the ‘low’ group, the ‘high’ group, and the 
control group. Bars denote standard errors.
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Table 5.1: The distribution of total observed aggression between 3 size classes of 
juvenile salmon in the ‘high’ (positive residual standard metabolic rate) group over 24

observations.

Size category (range 
in fork-lengths, mm)

Number of fish Number of 
aggressive 
interactions

Percentage of total 
observed aggression 
contributed by size 

class
Small (51 -60) 10 53 22.1

Medium (61 - 70) 4 98 40.8

Large (71 - 80) 1 89 37.1
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most aggressive, although the remaining 14 salmon shared 62.9% of the total 

aggression in the group. Excluding the most aggressive fish, the amended mean 

aggression rate for the ‘high’ group was 0.037+0.008 acts.fish'fmin \  which was still 

significantly greater than aggression in the low tank (Repeated measures ANOVA: 

F(2.6 G) = 15.14, p<0.005. Tukey post-hoc comparison of means: ‘high’ vs. ‘low’, p< 

0.05). Therefore the high levels of aggression associated with the ‘high’ group would 

seem to be due to the fish being generally more aggressive, rather than the chance 

inclusion of an aggressive fish.

Mean specific growth rates over the course of the six week experiment by weight for 

each tank were 0.781+0.068(S.E.)%.d‘‘ (‘high’ group), 0.639+0.047%.d"' (control 

group) and 0.747+0.041%.d ' (‘low’ group). There were no significant differences 

between tanks in mean growth rate (Kruskal-Wallis one-way ANOVA; H(2,n=4 9)= 3.20, 

p = 0.202, Fig. 5.3). However, the distribution in growth rates was markedly different 

between tanks, since growth in the ‘high’ group was very skewed compared to the 

other two treatments (Fig. 5.4). By measuring the skewness and its standard error, I 

could establish whether the frequency distributions were skewed by testing them 

against the null hypothesis that skew equalled zero (i.e.: the distribution was normal; 

Sokal & Rohlf, 1981). The skewness of each group was: ‘high’group, 1.327+0.580 

(S.E. of skewness); control group, 0.087+0.550; ‘low’ group, 0.376+0,550. Only the 

‘high’ group differed significantly from normal (two-tailed t,= 2.288, p<0.05), both the 

control and ‘low’ groups being approximately normal (t̂  = 0.158, p>0.05 and t̂  = 

0.684, p>0.05 respectively). This implies that a few individuals were growing relatively 

fast in the ‘high’ group, at the expense of the majority of juvenile salmon in that group.
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Low Control High

Fig. 5.3: Mean specific growth rates (%.d'’) for the Mow’ group, the control group, 
and the ‘high’ group. Bars denote standard errors.
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Fig. 5.4: The frequency distribution o f mean specific growth rates (%.d ’) in (a) the 
‘high’ group (juvenile salmon with positive residual standard metabolic rates), (b) the 
control group (group with equal proportions of juvenile salmon with either positive or 
negative residual standard metabolic rates), and (c) the ‘low’ group (juvenile salmon 
with negative residual standard metabolic rates), over the course of the experiment.
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5.4 Discussion

There was an overall significant difference in mean residual standard metabolic rate 

between the three groups, and mean aggression increased as the proportion of fish with 

high residual standard metabolic rates increased. The highest levels of aggression, 

observed in the ‘high’ metabolic rate group, were not due to the chance inclusion of an 

aggressive fish, since removing the most aggressive fish in that group would only 

reduce aggression by 37% i.e., still resulting in the group being significantly more 

aggressive than the ‘low’ group. It is apparent that segregating fish on the basis of 

relative standard metabolic rate significantly reduced aggression for the ‘low’ group, 

although the potentially dominant fish in the ‘high’ group tended to fight amongst 

themselves. This concurs with a previous study (Metcalfe et a i, 1990) that makes a 

distinction between absolute and relative status, whereby absolute status is defined as 

the fish’s inherent ability to dominate conspecifics in a large group, and relative status 

as the fish’s ability to be dominant in a smaller group, dependent on the quality of that 

group. Fish in the ‘low’ group, although showing the same potential range in relative 

status as those in the ‘high’ group, were probably lower in absolute status through 

their lower relative standard metabolic rates. This low absolute status is reflected in 

their low levels of aggression (cf. Abbott et al., 1985). Conversely, fish in the ‘high’ 

group, while covering the complete spectrum of relative social status amongst 

themselves, may have had a greater mean absolute status through their relatively high 

standard metabolic rates. This too is reflected in their greater aggression. This parallels 

the study by Metcalfe et al. (1990), in which the group consisting of low absolute
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status fish showed a less clearly defined hierarchy, and the fish of low relative status in 

that group did not experience growth depensation.

Average growth was not improved by segregating high and low residual standard 

metabolic rate fish. However, growth variation in the ‘high’ group was significantly 

skewed, presumably due to the greater proportion of more competitive individuals, 

greater intensity of agonistic interactions, and subsequently stronger dominance 

hierarchy. Dominant fish tend both to grow faster and to suppress the feeding of 

subordinates (Jobling, 1985; Metcalfe, 1991; Ryer & 011a, 1996). Consequently, very 

few fish from this group grew quickly. None of the fish from the control and ‘low’ 

groups grew as fast as the fastest growing fish in the ‘high’ group, but their growth 

variation was more normally distributed. Furthermore, they may have been less 

stressed as a result o f lower levels of aggression, since aggression in salmonids also 

increases physiological stress in subordinates, when measured either as levels of brain 

chemicals (e.g.: monoamines and derived metabolites; Winberg et a i, 1991), or 

elevated metabolic rates (Pickering, 1992). Moreover, in a study on arctic charr, fish 

that had been subjected to aggressive encounters and had bite marks on their fins grew 

less well than fish without bite marks (Christiansen & Jobling, 1990). It is unclear from 

the present experiment, however, whether the poor growth of subordinates was due to 

aggression-induced stress or an inability to acquire food. Fish in the control tank did 

not have significantly different aggression rates from those in the ‘high’ tank, but 

nonetheless showed less growth depensation. Therefore, it can be implied that growth 

depensation in the ‘high’ tank was due to inability of the subordinates to acquire food, 

rather than to stress. Both dominant and subordinate fish are victims of attack and 

concominant stress (Abbott & Dill, 1989; Adams et a l, 1995), so we can assume that
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fish in the control and ‘high’ tank were equally stressed, leaving the inability of 

subordinate fish to acquire food as a possible explanation for the greater growth 

depensation of fish in the ‘high’ tank.

However, there is a case for reducing stress if not improving mean growth in 

hatchery tanks through lowering aggression (Christiansen & Jobling, 1990; Winberg, 

1991; Pickering, 1992; Adams et a i, 1995). Segregating fish through measuring 

individual standard metabolic rates is labour intensive and impractical on a commercial 

scale, although it gives an indication of relative potential dominance amongst fish of 

uniform size. It has been observed, however, that juvenile salmon with high relative 

standard metabolic rates absorb their yolk sacs quicker, and start eating exogenous 

food sooner (Metcalfe et a l, 1995; Chapter 3), Therefore it may be possible to crudely 

screen for those fish with very high standard metabolic rates by identifying those that 

have absorbed their yolk sacs relatively early. Removing these fish may eliminate 

potential despots in a hatchery tank.

Aggressiveness is known to be a heritable trait in salmonids (Taylor, 1990; Dunbrack 

et a l, 1996). Furthermore, this study shows variation in aggression to have a basis in 

intraspecific variation in physiological state. It complements previous studies on 

salmonids, in which induced differences in physiology were found to predict 

differences in competitive ability and subsequent dominance; Johnsson & Bjornsson 

(1994) and Johnsson et a l  (1996) showed that injections of exogenous growth 

hormone positively affected dominance in rainbow trout, although there was no 

evidence that dominance was correlated with endogenous growth hormone levels. 

None the less, the above studies and this experiment suggest a link between 

physiology, subsequent behaviour and growth. Given the heritability of aggressiveness
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and its suggested physiological basis, it may be feasible to select out potential despots 

through monitoring rates of yolk-sac absorption.
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Chapter 6: Changes in standard metabolic rate after the onset of size bimodality
in juvenile Atlantic salmon.

6.1 Introduction

During the first six months of life, sibling populations of juvenile Atlantic salmon 

diverge into those fish that will migrate to sea as smolts the following spring, and those 

that will defer migration for a further year. They are recognizable on the basis of size; 

by late autumn the initially unimodal length-frequency distribution has diverged into a 

clearly bimodal distribution, the upper mode fish (Upper Modal Group, UMG) 

subsequently migrating to sea as one-year old smolts, or S i’s, and the lower mode fish 

(Lower Modal Group, LMG) remaining in freshwater for a further year and deferring 

migration until at least the following spring (82’s; Simpson & Thorpe, 1976; Thorpe, 

1977; Thorpe et al., 1980). Although these size differences are apparent in the autumn, 

the initiation of differential growth rates occurs in June/July, evidenced by changes in 

the relative rates of RNA and DNA synthesis in skeletal muscle at that time (Villarreal, 

1983; Thorpe, 1987). Moreover, the appetite of fish destined for the Lower Modal 

Group decreases by late August (Metcalfe et al., 1986), whereas the Upper Modal 

Group maintain their appetite and growth (Metcalfe et a l, 1988).

Given that the growth rates of the two modal groups are so markedly different, 

studies have been carried out on whether metabolism differs between the modal groups 

and also between smolts (SI) and parr o f the same age that are deferring migration 

(S2). Because the discovery that juvenile salmon become segregated into a bimodal 

length-ffequency distribution prior to smoking is comparatively recent, more work has 

been done on the consequence of the bimodal distribution, i.e. metabolic differences
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between smolts and juvenile salmon remaining in freshwater. Baraduc & Fontaine 

(1956) showed that resting oxygen consumption per unit weight at 8°C was 30% 

higher in smolts when compared to salmon deferring migration. Power (1959) reported 

the opposite below 13.5°C, but above that temperature smolts had higher weight- 

specific resting metabolic rates. Higgins (1985) also showed that smolts have greater 

standard metabolic rates, after allowing all fish to evacuate their guts and taking 

oxygen consumption measurements continuously over 24 hours, Maxime et al. (1989) 

also showed weight-specific standard metabolic rate to be higher in smolts than parr.

However, few comparisons have been made between the two modal groups prior to 

smoking. Higgins (1985), in addition to his work on smolts, recorded higher weight- 

specific standard metabolic rates in Upper Mode than Lower Mode juvenile salmon, 

once the bimodal split had become pronounced. Wright et al. (1990) implied a lower 

metabolic rate in Lower Mode fish on the basis of slower rates of otolith accretion in 

these fish; otolith growth was more closely linked to metabolic rate than somatic 

growth (Mosegaard et al., 1988). This was directly tested by Wright (1991), who 

found that otolith accretion and standard metabolic rate were indeed both lower in the 

Lower Modal Group.

However, the above studies did not track individual fish from both modal groups 

from the onset of bimodality through to the spring. This chapter presents a time course 

of measurements of standard metabolic rate from fish of both modal groups over a 

period of seven months, and aims to highlight the dynamics of changing standard 

metablic rates in both modal groups over a period of time when the ambient water 

temperature decreased sharply before rising again. Individual variation in standard 

metabolic rates is measured on a weight-independent basis, rather than a weight-
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Specific one, by calculating deviations o f the observed standard metabolic rate away 

from a value predicted from a weight vs. standard metabolic rate regression equation 

(residual standard metabolic rates; see Chapter 2). This method of measuring individual 

variation in metabolic rate between individuals has been espoused by McNab (1988), 

Daan et al. (1990), and Metcalfe et al. (1995), and avoids the problem of interpreting 

results from fish of markedly different size ranges (the two modal groups), when large 

fish respire much less than small fish on a weight-specific basis (Schmidt-Nielsen, 

1984). Data are also presented on the consistency of these residual values for each 

individual, given that the faster growing fish in the Upper Modal Group are increasing 

in size, and will have a progressively greater predicted standard metabolic rate at each 

sampling period.

6.2 Methods

Rather than tracking ambient water temperature and measuring the standard 

metabolic rates of the same fish at a different temperature each time, the standard 

metabolic rates of 62 juvenile Atlantic salmon were measured 6 times from November 

1994 to June 1995 at 13“C. Sampling dates were 10-14th November, 10-14th 

December, 20-24th January, 18-21st March, 7-8th May, and 3rd June, with a mean 

inter-sampling period of 41+6d. Ambient water temperatures at times of sampling were 

9.4+0.3, 7.7+0.2, 4.9+0.2, 4.3+0.2, 9.8+0.2 and 12.5°C respectively; salmon were kept 

at ambient water temperature between sampling periods. Fish from both modal groups 

were all treated similarly, and standard metabolic rate was measured as described in
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Chapter 2. Each fish was individually marked with a combination of alcian blue dye 

spots to aid identification, and fish were fed ad lib, with commercial pelleted food in a 

holding tank between measurements. Fish were assigned to modal groups on the basis 

of size, those fish with a fork length greater than 75mm in November (first sampling 

period) being assigned to the Upper Modal Group (n = 27 of the 62 fish), following 

Metcalfe et al. (1988). Fork length (mm) and weight (g) were measured after each 

measurement of oxygen consumption in order to calculate specific growth rate (%d*’).

6,3 Results

As juvenile salmon were measured at 13°C throughout the experiment, temperature 

differences between the measuring temperature and ambient temperature for each 

sampling period (November, December, January, March, May and June) were 3.6, 5.3, 

8.1, 8.7, 3.2 and 0.5°C respectively. The growth rates of the fish over the winter 

indicated that the original assignment to modal groups in November was 100% 

accurate. Mean weights for the two modal groups during the 6 sampling periods are 

presented in Table 6.1. Due to mortalities there were no UMG fish in the sixth 

sampling period. Regression equations of standard metabolic rate against weight (both 

axes were natural log. transformed) of both modal groups for each sampling period are 

given in Table 6.2i, and significance values for each regression equation are presented 

in Table 6.2ii.
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Table 6.1 : Mean weights of UMG and LMG juvenile salmon at the time of the six
sampling periods over 7 months.

Sampling period UMG mean weight+S.E.(g)
(n)

LMG mean weight+S.E.(g) 
(n)

November 6.68+0.47 (27) 1.99+0.10(35)
December 6.76+0.46 (24) 2.12+0.10(28)

January 7.84+0.50 (24) 2.32±0.11 (22)
March 10.30+0.67 (24) 2.49±0.12(17)
May 16.90±1.02 (21) 3.20+0.24(14)
June * 4.40+0.39(10)

*: no data for UMG in June due to mortalities.
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Table 6.2i: Regression equations for the double-logarithmic relationship between 
standard metabolic rate (mlOz.h"') and weight (g) in Upper and Lower Modal Group 

juvenile salmon during each sampling period. Also given are the results of ANCOVA 
analyses comparing regression intercepts and mass exponents.

Sampling period Intercept Mass exponent ANCOVA
LMG UMG LMG UMG Intercept Mass exponent

November -1.731 -1.708 0.621 0.748 F(i,59)~ 1.21, p= 0.28 F(,,59)= 0.32, p= 0.58

December -1.482 -2.688 0.324 1.314 N/A F(1,45)“  10.61, 
p< 0.005

January -1.847 -2.742 0.970 1.431 F(i,42)~ 3.15, p= 0.08 F(L41)= 2.18, p= 0.15

March -2.200 -2.317 1.260 1.202 FH.3«)=0.83,p= 0.37 Fn.37)= 0.03, p= 0.87

May -2.323 -1.834 0.842 0.872 F(i,32)= 8.76, p< 0.01 F(,.3,r 0.189, 
p=0.89

Table 6.2ii: Significance values of the double-logarithmic regression equations of 
standard metabolic rate (miOa.h’’) against weight (g) in Upper and Lower Modal 

Group juvenile salmon during each sampling period.

Sampling period UMG LMG
November r"- 0.555, n= 27, p< 0.001 r"= 0.228, n= 35, p< 0.005
December r^- 0.485, n= 24, p< 0.001 r^= 0.087, n= 28, p= 0.06

January r̂ == 0.676, n= 24, p< 0.001 0.601, n= 22, p< 0.001
March r'= 0.706, n=24, p< 0.001 0.368, n= 17, p< 0.01
May r ^  0.726, n= 21, p< 0.001 0.571, n -  14, p< 0.005
June * 0.376, n - 10, p< 0.05

no data for UMG in June due to mortalities.
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Regression equations of standard metabolic rate (mlO^.h ') against salmon weight (g) 

for both modal groups within each sampling period differed significantly in slope only 

during December (Fig. 6. W) and in elevation only during May (Fig 6.\b, Table 6.2i & 

6.2Ü).

However, comparisons of regression lines between the two modal groups are 

difficult since there was such a size difference between the two groups of fish. In order 

to compare fish of different modal groups but comparable sizes and acclimation 

temperatures I contrasted the standard metabolic rate vs. weight relationships of 

Lower Modal Group fish in May (when they weighed an average of 3.20+0.16g, range 

2.01 - 5.47g) with that of the Upper Modal Group in November (mean weight = 

6.68+0.47g, range 2.72 -11.59g). Regression equations between standard metabolic 

rate (mlOz.h') and weight (g) for both groups (see Table 6.2ii) did not differ 

significantly in slope (F̂ î ĝ) = 0.11, p = 0.754). However, the two groups differed 

significantly in elevation (F(,,3g) = 20,24, p<0.0001, Fig. 6.2). This implies that LMG 

fish in May were consuming oxygen at a lower rate than UMG fish of the same size in 

November.

To determine the effects o f time of year and modal group on the residual standard 

metabolic rates, I calculated residuals of each measurement from the pooled ‘common’ 

regression line of oxygen consumption on weight, calculated by using all measurements 

across all sampling periods. The common regression equation of standard metabolic 

rate (FO 2 , ml02.h'‘) against weight (W, g; both axes were natural log. transformed) 

was

F02=0.96.W - 1.98 (Eq. 6.1)
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Fig. 6.1; Relationship between salmon weight (g) and standard metabolic rate 
(ml02.h ‘) for UMG (•) and LMG (o) fish in (a) December and (b) May (both axes 
natural log. transformed).
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Fig. 6.2: Relationship between salmon weight (g) and standard metabolic rate 
(mlOa.h"') for UMG salmon in November (•) and LMG fish in May (o). See text for 
statistical comparison).
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(P =  0.834, n = 245, p<0.0001. Fig. 6.3). This represented fish ranging in size from 

l.OOg to 24.37g (mean weight = 5.79+0.3Ig). Changes in residual standard metabolic 

rate for each modal group over the six months are presented in Fig. 6.4. Time of year 

had a significant effect on residual standard metabolic rate for both the UMG and 

LMG (Repeated measures ANOVA, F(4 .6 4) ^  9.34, p<0.0001 and F(4 ,s2) = 9.40, 

p<0.0001 respectively). Furthermore, residual standard metabolic rates for UMG 

salmon were significantly greater than those for LMG salmon in January and March, 

but there was no difference in May. Conversely, residual standard metabolic rates for 

LMG salmon were significantly greater than those for UMG salmon in November 

(Table 6.3). The interaction term (time of year x modal group) also had a significant 

effect on residual standard metabolic rate (F(4,2 2 2>= 6.25, p<0.0001), implying that time 

of year had a bigger effect on one modal group, namely the UMG (Fig. 6.4).

Individual fish within modal groups had consistently high or low residual standard 

metabolic rates, as indicated by Kendall’s coefficient of concordance (a non-parametric 

test of association between residual values for each fish from each month) of the 

residuals from each sampling period calculated from the pooled regression equation 

(Eq. 6.1; Kendall’s coefficient of concordance for UMG = 0.414 (n == 17, 4 d.f.) and 

LMG == 0.413 (n = 14, 4 d.f), both were significant at p<0.001). Fig. 6.5 shows that 

many of the fish did maintain a relatively similar residual standard metabolic rate over 

the seven months. However, while fish from both modal groups were consistent in 

their relative rankings of residual standard metabolic rates, individual fish from the 

UMG showed significantly greater monthly variation in residual standard metabolic 

rate, standard deviations being significantly higher in the UMG than the LMG (mean
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Fig. 6.3; Relationship between salmon weight (g) and standard metabolic rate 
(mlOs.h^) pooling all six sampling periods (both axes natural log. transformed).
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Fig. 6.4: Changes in residual standard metabolic rate (mlOa.h ') for UMG (•) and LMG 
(o) juvenile salmon by month. Significant differences between modal groups (see Table 
6.3) are represented by asterisks: *, p< 0.01; **, p< 0.005. Bars denote standard 
errors.
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Table 6.3: One-way ANOVA’s between residual standard metabolic rates of the Upper 
and Lower Modal Groups during each sampling period.

Sampling period One-way ANOVA

November F(i.60)= 7.54, p<0.01

December F(i_47)= 0.06, p — 0.807

January F(i,43)= 6.02, p<0.01

March F(,.39)= 8.75, p<0.005

May F(i.33)= 0.33, p = 0.568
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from Eq. 6 .1. Bars denote standard errors.
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UMG S.D. -  0.377+0.053 (S.E.), n = 17, mean LMG S.D. = 0.119+0.011, n = 14; 

one-way ANOVA, 18.87, p<0.0005).

When juvenile salmon from both modal groups were combined, a significant 

correlation was observed between an individual’s mean residual standard metabolic 

rate (calculated from Eq. 6.1) and specific growth rate by weight over the seven 

months (%d"’; Spearman’s Rank correlation, r̂  = 0.515, n = 31, p<0.005). However, 

within modal groups mean growth between November and May did not correlate 

significantly with residual standard metabolic rate (LMG, r, = -0.257, n = 14, p = 

0.375; UMG, r^^ 0.056, n = 17, p = 0,830). Rather, mean growth differed significantly 

between modal groups: over the entire period (from November to May) mean specific 

growth rate in the UMG was 0.236+0.009%d'' (n = 17), and in the LMG was 

0.067+0.015%d ' (n -  14, one-way ANOVA: Fo.ao) = 100.27, p<0.0001). Data for 

specific growth rates in both modal groups are presented in Table 6.4; as expected the 

UMG grew significantly faster than the LMG throughout the experiment.
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Table 6.4; Mean specific growth rates in weight for UMG and LMG juvenile salmon 
between 5 sampling periods over 6 months, with significance values from one-way

ANOVA.

Sampling period Mean specific growth rate (%.d’’±S.E.) ANOVA

UMG LMG
November-
December

0.149+0.033 0.014+0.022 F(].46)= 12.93,
p<0.001

December-January 0.148±0.010 0.037+0.015 37.10,
p<0.0001

January-March 0.203+0.008 0,004+0.008 Fo,39)= 278.90,
p<0.0001

March-May 0.442+0.019 0.210+0.040 F(i,33)= 33.28,
p<0.0001
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6.4 Discussion

The Upper Modal Group grew faster than the Lower Modal Group throughout the 

winter, although fish in the lower mode had increased their growth rate by May. This is 

consistent with previous studies on the time-divergence in length between modal 

groups (Thorpe et aL, 1980; Thorpe et a l, 1982; Higgins, 1985). The first differences 

in weight-specific metabolic rate between the two modal groups of juvenile salmon 

were apparent in December, when the regression equations of standard metabolic rate 

against weight for both modal groups differed significantly in slope (Upper Modal 

Group mass exponent = 1.314, Lower Modal Group mass exponent = 0.324). This 

difference in measured oxygen consumption occurred earlier than that recorded by 

previous studies (Higgins (1985), Maxime et a l  (1989) and Wright (1991) all carried 

out their studies in late winter-spring). However, my results agree with the general 

findings of the above studies in that the Upper Modal Group usually have higher 

weight-specific standard metabolic rates than the Lower Modal Group. No further 

weight-specific metabolic differences were reported until May, when a significant 

difference in elevation between the regression equations for both modal groups was 

apparent (UMG intercept = -1.834, LMG intercept = -2.323). Despite fish from both 

groups being markedly different in size, this implies that Upper Modal Group salmon 

of similar size to Lower Modal Group salmon are still consuming oxygen at a greater 

rate on a mass-independent basis. Higgins (1985) found that upper mode salmon had 

significantly larger hearts as a function of body weight than lower mode fish, pointing 

to a difference in respiratory activity between the two groups. This may explain the 

difference in standard metabolic rates in December. However, by May the Upper
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Modal Group are about to smolt; Higgins (1985) found no difference in heart size 

between smolts and parr, whereas Poupa et al. (1974) found an increase in relative 

heart weight after migration, preceded by a thickening in the ventricular shell of the 

smolts. Higher metabolic rates in the Upper Modal Group in winter and prior to 

smoltification, possibly due to increasing heart size, have been suggested as pre­

adaptations to future long distance marine migrations with associated high metabolic 

demands (Armstrong & West, 1994).

However, the difference in regression lines recorded in May (Fig. 6.2b) provides only 

weak evidence of weight-specific differences in standard metabolic rate, due to the 

disparity in size between the two modal groups. Differences in standard metabolic rate 

between fish of different modal groups but of comparable size were directly examined 

by comparing Upper Modal Group salmon in November with Lower Modal Group fish 

in May. The regression equations of standard metabolic rate against weight for both 

groups of fish differed only in elevation, directly showing that the Upper Modal Group 

have significantly higher weight-specific standard metabolic rates than Lower Modal 

Group fish of comparable size.

Differences in regression equations between groups of fish (namely, the Upper and 

Lower Modal groups) give only an indirect impression of how the metabolism of 

individual fish from both groups changes over time. Therefore, individual deviations 

away from an oxygen consumption value predicted by a regression equation of 

standard metabolic rate against weight (residual standard metabolic rate) were used as 

a measure of individual variation. Both modal group and time of year had significant 

effects on residual standard metabolic rate. Moreover, time of year had a greater effect 

on the Upper Modal Group (Fig. 6.4). While mean monthly residual standard
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metabolic rates in the Lower Modal Group remained relatively static, residuals for fish 

in the Upper Mode steadily increased until March before decreasing to a value similar 

to that of the Lower Mode by May. This variation in the Upper Modal Group may be a 

consequence of the Upper Modal Group’s metabolic responsiveness to temperature 

change; Power (1959) found that weight-specific standard metabolic rate was lower in 

smolts than in fish deferring migration below 13.5°C, but was higher above that 

temperature. He therefore hypothesised that they were metabolically more responsive 

to temperature change. Conversely, residual standard metabolic rates in the Lower 

Modal Group are relatively invariant throughout the winter; they may be 

demonstrating a suppressed metabolic response relative to the Upper Modal Group, in 

a similar fashion to their suppressed food intake and growth during winter (Simpson & 

Thorpe, 1976; Higgins, 1985).

However, it is possible that the apparent seasonal changes in metabolic rate may 

instead be due to differences in the optimal temperature for enzymatic activity. Studies 

o f the enzymes involved in respiration has shown differences in enzyme efficiency 

between the two modal groups. Lactate dehydrogenase (LDH), an enzyme that 

converts pyruvate to lactate during glycolysis has been extensively examined in studies 

of thermal adaptation. Graham (1994) showed that LDH in Upper Modal Group 

salmon becomes seasonally adapted, so that the reduction of pyruvate to lactate is 

most efficient at current environmental temperatures, whereas Lower Modal Group 

fish show much less of a seasonal adaptation. Enzyme efficiency is measured with the 

Michaelis constant (K^), and is most efficient when enzyme-substrate affinity is highest 

and Km is low. In the present experiments, fish would have been acclimated to the 

ambient temperature regime but metabolic rates were always measured at 13“C.
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Therefore in mid-winter Upper Modal Group fish might have had an elevated 

metabolic rate because the temperature at which oxygen consumption was measured 

was significantly higher than the temperature to which they were acclimated, so that 

for the short duration of the measurement of metabolism their metabolic enzymes were 

working inefficiently. In May and November, when the difference between ambient and 

sampling temperatures was relatively small (approximately 3.0°C), the Upper Mode 

residual standard metabolic rates were lower and more similar to those of the Lower 

Modal Group. This suggests more efficient functioning of their metabolic enzymes 

during the measurement period. Conversely, since such seasonal enzyme adaptation is 

not apparent in the Lower Modal Group (Graham, 1994), one would not expect the 

residual standard metabolic rate of those fish to vary significantly throughout the time 

sampled.

However, differences between individuals in their residual standard metabolic rates 

were fairly consistent from month to month in both modal groups. The reproducibility 

o f measurements may reflect the fact that the standard metabolic rate is a fixed 

minimum rate of oxygen consumption, below which physiological function is impaired 

(Priede, 1985). It has been hypothesised that deviations of basal metabolic rates away 

from an allometric predicted value in a variety of taxa are due to relative organ masses. 

This has been shown in several species of birds, where residuals of basal metabolic rate 

were correlated with residuals of metabolically active organs such as the heart and 

kidneys (Daan et al., 1990). In mammals, no association was found between relative 

basal metabolic rate and relative brain size, although this did not preclude organs 

directly involved in energy mobilization having an effect on relative basal metabolic 

rate (McNab & Eisenberg, 1989). Therefore, it can be hypothesised that the
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consistency of residual standard metabolic rates in both modal groups may be due to 

relative organ masses remaining broadly invariant within an individual throughout the 

sampling period, especially in the Lower Modal Group.

Variation in residual standard metabolic rate was significantly higher in the Upper 

Modal Group; this may be due to changes in relative organ size that have been 

reported for this modal group. By spring, fish in the Upper Modal Group have 

significantly larger hearts as a function of body weight than lower mode salmon 

(Higgins, 1985), and the greater variation in residual standard metabolic rate 

throughout the study may be a reflection of that, as individual upper mode fish are 

undergoing greater physiological change relative to the Lower Modal Group.
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General Discussion

Chapter 7: General Discussion

7.1 Variation in standard metabolic rate and subsequent behaviour

One of the tenets of the hypothesis that higher relative standard metabolic rates 

confer dominance in juvenile salmon is that higher standard metabolic rates correlate 

with large metabolic scopes (Priede, 1985; Metcalfe et al., 1995). However, this study 

suggests that active metabolic rate represents a ceiling for aerobic metabolic activity 

that gets lower as standard metabolic rate increases in juvenile salmon of a narrow size 

range. This is because the relationship between weight-specific standard and active 

metabolic rate displayed negative allometry. In addition, on a mass-independent basis 

(using individual deviations, or residuals, from allometric predictions of standard 

metabolic rate), factorial metabolic scope was negatively correlated with residual 

standard metabolic rate (Chapter 2). Both findings imply that if the standard metabolic 

rate is high, less metabolic scope for activity remains than if the standard metabolic rate 

is lower. This is contrary to the assumption in Metcalfe et al. (1995) that suggests that 

salmon with high relative standard metabolic rates have correspondingly greater 

metabolic scopes within which they can acquire dominance by carrying out greater 

activity such as aggression. However, the present study found that juvenile salmon 

with high relative standard metabolic rates were indeed more aggressive than fish with 

low relative standard metabolic rates, although the data imply that the more aggressive 

fish have a smaller metabolic scope.

Hayes et al. (1992) hypothesised that any correlation between metabolic rate and 

life-history arose from consequences o f resource allocation. The principle o f resource
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allocation states that available energy is partitioned between maintenance, growth and 

reproduction (Gadgil & Bossert, 1970). This would manifest itself as variation in, for 

instance, mammalian litter size (a life-history variable) correlating with variation in 

costs of maintenance, or basal metabolic rate (Hayes et a l, 1992). The principle of 

resource allocation is analogous to partitioning the components of metabolism such as 

locomotor activity and feeding metabolism within the limits of standard and active 

metabolic rate (Brett & Groves, 1979; Priede, 1985). Therefore, increased allocation 

to one component such as maintenance reduces energy available for other uses (e.g. 

growth and reproduction), if total energy is fixed (Hayes et a l, 1992). In addition to 

higher relative standard metabolic rates reducing energy available to other components 

of metabolic scope, individuals with higher metabolic rates require more food (Titus, 

1990; Clarke, 1992) to maintain their higher levels of maintenance. However, juvenile 

salmon with high standard metabolic rates, although requiring more food, appeared to 

maintain a lower feeding motivation when tested in isolation (Chapter 3). They 

achieved a higher dominance status, however, through greater aggression (whether in 

pairs or in groups. Chapters 3 & 4), and therefore were more likely to obtain a 

territory. By this means individuals with a high cost of maintenance could guarantee a 

reliable access to available food (Elliott, 1984; 1990), since salmonid social hierarchies 

are quite stable over time (Jenkins, 1969; Grant et a l, 1989).

In the territorial system of juvenile salmon, individuals of differing relative standard 

metabolic rates may employ alternative methods of balancing their energy budgets; 

salmon with high standard metabolic rates and hence smaller metabolic scopes employ 

greater aggression in order to guarantee a food source, at the expense of movements 

associated with foraging. Foraging movements, measured here as feeding motivation.
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are themselves energetically costly (Puckett & Dill, 1985; Krohn & Boisclair, 1994). 

Since aggression increases the probability of acquiring a feeding territory in a salmonid 

social hierarchy (Fausch, 1984; Puckett & Dill, 1985; Grant, 1990), salmon with high 

costs of maintenance and limited metabolic scope may opt for using that scope 

primarily for aggression, affording them a territory within which they can then feed and 

maintain their high standard metabolic rate. However, territory holders within groups 

of salmon tested in an artificial stream did forage at greater rates than fish without 

territories (Chapter 3). This may be a consequence of territory size and not the 

motivational state of the territory holder, as neighbours will be kept further away, 

decreasing competition for passing prey items (Puckett & Dill, 1985; Grant, 1990).

Moreover, the relatively small metabolic scope of fish with high relative standard 

metabolic rates manifests itself further in an environment with little food. Juvenile 

salmon with high metabolic rates can afford to be aggressive when food is plentiful, 

and still allocate resources to somatic growth, especially as they may have already 

acquired a feeding territory. However, when food is in short supply high metabolic rate 

fish grow less well than predicted for a particular location; their high costs of 

maintenance prevent them from allocating as much resources to growth as conspecifics 

with low standard metabolic rate (Chapter 4). This is similar to Clarke’s work on 

blennies (1992): roughhead blennies could live in poor areas of coral reef as they had 

lower costs of maintenance, whereas spinyhead blennies inhabited the more profitable 

areas through competitive exclusion.

The relationship between standard metabolic rate and behaviour was also apparent in 

hatchery tanks. Aggression was greater in the group containing only fish with high 

standard metabolic rates (Chapter 5). This is despite the variation in relative standard
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metabolic rate and relative status between the fish probably being similar to that in the 

group containing only low standard metabolic rate fish, since relative status is the fish’s 

ability to dominate and is dependent on the quality of the fish with which it interacts. 

Greater aggression amongst the high metabolic rate fish was therefore probably due to 

their higher absolute status, which is their inherent ability to dominate conspecifics and 

is independent of the quality of the conspecifics. An aim of this study was to improve 

mean growth in hatchery tanks. This was done by taking out the potentially dominant 

salmon with high standard metabolic rates which might monopolise disproportionate 

amounts of food. Mean growth was not significantly better in the group of low 

metabolic rate fish, but the distribution of individual mean growth rates was more 

even. This concurs with an earlier study (Metcalfe et al., 1990), in which a group of 

fish with low absolute status showed a less clearly defined hierarchy, and the 

subordinates of that group did not experience growth depensation, allowing a more 

even distribution of growth rates.

7.2 Behaviour, prior residence and life-history strategies

In an artificial stream, relative standard metabolic rate correlated with net aggression 

and the percentage time spent in the water column: fish with high relative standard 

metabolic rates were both highly aggressive and very mobile in the water column 

(Chapter 4). Conversely, fish with low relative standard metabolic rates were relatively 

unaggressive yet spent similar amounts of time in the water column. This may 

correspond to different behavioural strategies outlined in earlier salmonid studies. One
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strategy is that territorial fish actively defend an area, a high cost-high return strategy 

involving more aggression and competition for food in the water column with other 

territorial fish (Metcalfe, 1986). Another strategy is to ‘float’: ‘floating’ fish spend 

similar amounts of time in the water column as territorial fish as a consequence of 

being attacked. Floaters are unable to defend a territory and live in the spaces between 

territories (Li & Brocksen, 1977; Puckett & Dill, 1985). However, fish with standard 

metabolic rates and aggression rates intermediate between the two extremes spent a 

correspondingly intermediate time in the water column, and also grew faster than fish 

spending most of their time in the water column. Such fish may be employing a 

strategy of reducing routine metabolic costs and hence gaining greater growth 

efficiency (Paloheimo & Dickie, 1965; Metcalfe, 1986). These strategies, possibly 

employed depending on individual standard metabolic rate, may be partly responsible 

for population regulation in a stream. When the denisty of non-territorial fish is high, 

the largest territorial fish could spend so much time in territorial defence that there 

would be insufficient time to obtain an adequate energy intake (Elliott, 1993). 

Increasing defence costs have been hypothesised as eliminating larger juveniles at high 

initial fish densities, and increasing selection intensity for an optimum fish size (Elliott, 

1990; 1993).

When prior residence was added as a factor in determining dominance (Chapters 3 & 

4), it tended to swamp any effects of relative standard metabolic rate on subsequent 

behaviour. Introducing prior residence was an attempt to make the overall design of 

the experiments more natural. Although the majority of salmonid fry in a single redd 

emerge fairly synchronously over about three days (Gustavson-Marjanen & Dowse, 

1983), the total emergence time can be several weeks long (Brannas, 1987). In both
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pairs and groups of fish, relative size was the next best predictor (after prior residence) 

of aggression and dominance. In the artificial stream, only fish from the first group to 

be introduced actually acquired and defended large territories. However, the size range 

between groups was quite small, showing that prior residence alone, and not 

necessarily the size advantage it may confer (e.g. Mason & Chapman, 1965; Chandler 

& Bjornn, 1988) had a strong influence on subsequent dominance. In addition, there 

was a correlation between aggression and size, the larger fish acquiring territories 

through increased aggression. This is consistent with previous studies (Jenkins, 1969; 

Fausch, 1984). The data implied that aggressive fish acquired territories, rather than 

that territory-holders subsequently became dominant, since there was also a clear 

correlation between aggression and size in fish which failed to acquire territories.

In experiments using only pairs of fish, the resident was dominant in the majority of 

cases, especially if it was larger, and an intruder would only acquire dominance if it 

was much larger (> 7%). This parallels the findings above, showing that size is a good 

indicator of status (Turner & Huntingford, 1986).

In the artificial stream, the first group of fish to enter the habitat grew faster, due to 

most of the territory-holders belonging to that group (Chapter 4). Moreover, these 

initial residents were on average more aggressive, and they were more likely to end up 

joining the Upper Modal Group. Although these fish did not have significantly higher 

standard metabolic rates, and instead appeared to acquire dominance through prior 

residence and relative size, there is still a strong argument for metabolic rate having an 

influence on subsequent life-history strategy: fish with higher metabolic rates are more 

dominant (due to their greater aggression) when there is no prior residence asymmetry, 

and aggression in hatchery tanks can be moderated by removing them (Chapter 5).
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These results were found in both first-feeding salmon and juveniles that were several 

months old, so would appear to be persistent. More competitive dominant fish 

maintain high growth rates, and are subsequently more likely to enter the Upper Modal 

Group and smolt relatively early (Metcalfe et al., 1989; 1990; Metcalfe, 1991). 

Furthermore, possibly due to variation in standard metabolic rate, some fish are 

intrinsically dominant, with an innate tendency for greater aggression (suggested by 

Huntingford et al., 1990).

Numerous genetic studies have reported correlations between variation at enzyme 

coding loci and fitness-related characters such as metabolism, developmental rates, and 

growth (Pollard et al., 1994). Research on rainbow trout has linked the PGM-1 ̂  allele 

with both faster developmental rates and greater aggression (Ferguson & Danzmann, 

1985). This suggests a genetic component to the decision as to which life-history an 

individual will follow (e.g. time of maturation appears to be heritable, especially in the 

progeny of precociously mature male parr; Thorpe & Morgan, 1980). In addition, a 

variant of the same gene (PGM-lr*6) is associated with faster embryonic 

development, including earlier hatching and emergence, and larger body size in 

juveniles (Leary et a i, 1983; Ferguson & Danzmann, 1985). It has been shown that 

fish with high standard metabolic rates have faster rates of yolk-sac absorption, 

possibly leading them to also emerge earlier (Metcalfe et al., 1995; Chapter 3). In 

juvenile salmon it is possible that variation in standard metabolic rate causing variation 

in emergence times and subsequent behaviour (by both prior residence effects and 

innate aggressiveness) may itself be driven by variants of a gene similar to that found in 

rainbow trout.
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7.3 Metabolism in juvenile salmon

This study showed that individual relative standard metabolic rates were relatively 

invariant in both modal groups (Chapter 6). The reproducibility of measurements may 

reflect the hypothesis that standard metabolic rate is a fixed minimum rate o f oxygen 

consumption, below which physiological function is impaired (Priede, 1985), and that 

standard metabolic rate was being successftilly measured in this study. Its relative 

invariance and correlation with behavioural measurements demonstrated throughout 

the thesis suggests that behaviour is a consequence of variation in standard metabolic 

rate rather than a cause. Also, salmon subsequently shown to be dominant already have 

larger otoliths (an indicator of higher metabolic rate; Wright, 1991) at first feeding 

(Metcalfe et a i, 1992), several days before the onset of aggressive behaviour (Dill, 

1977), It is certainly the case that social rank can have an effect on routine metabolic 

rate. Dominant fish have been observed to consume more oxygen than subordinates 

(Farr & Andrews, 1978; Haller, 1995) as a result of fighting and the stress of 

dominance. Furthermore, relatively unaggressive salmonids can reduce their routine 

costs and hence grow faster, as mentioned above (Paloheimo & Dickie, 1965; 

Metcalfe, 1986). However, these are measurements of routine metabolic rate, which is 

the day-to-day fluctuation of metabolic rate above the standard level measured in this 

thesis (Brett & Groves, 1979; Priede, 1985). It is unlikely, therefore, that variation in 

standard metabolic rate is a consequence of differences in behaviour.

However, oxygen consumption is only one measure of metabolism in fish, and it is 

naive to expect standard metabolic rate measured as oxygen consumption to singly

160



General Discussion

explain initial differences in individual behaviour. Oxygen consumption is only one of 

many physiological features which vary between individuals. Life-history strategies are 

strongly dependent on early growth rates (Metcalfe et al. 1988; Thorpe et a i, 1989), 

and individual costs of maintenance (measured here as oxygen consumption) have been 

shown to affect growth (Chapter 4). This implies that there are differences in growth 

efficiency due to differences in relative standard metabolic rate. Such differences in 

growth efficiency may be due to individual differences in protein synthesis and 

degradation, another measure of metabolism. Inefficient, slower growing fish have a 

higher energetic cost of growth due to higher protein synthesis and degradation rates 

(McCarthy et a i,  1994). This would be an alternative measure of costs of 

maintenance, and since it is an important determinant of the growth performance of 

individual fish (McCarthy et al., 1994), it would be a valid parameter to study in 

conjunction with life-history strategies and metabolic rate.
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Appendix: List of Latin species names mentioned in text

Species name Latin name Chapter

1 2 3 4 5 6 7

Insecta:

African dung 
beetle

Bumble bee

Amphibia:

Dart-poison frog

Pisces:

Arctic charr 

Atlantic cod 

Atlantic salmon 

Brook charr 

Brown trout 

Chinook salmon

Chum salmon 

Coho salmon

Convict cichlid

Largemouth
bass

Medaka

Moutlibrooding
cichlid

Nile Tilapia

Northern pike

Scarabaem
laevistriatus

Bombus terhcola

Dendrobates
pumilio

Salvelinus alpinus

Gadus morhua

Sa I mo salar

Salvelinus fontinalis

Salma trutta

Oncorhynchus
tshawytscha

Oncorhynchus keta

Oncorhynchus
kisutch

Cichlasoma
nigrofasciatum

Micropterus
salmoides

Oryzias latipes

Oreochromis
mossambicus

Oreochromis
niloticus

Esox lucius
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Appendix

Species name Latin name Chapter

Rainbow trout

Roach

Roughhead
blenny

Siamese fighting 
fish

Spinyhead
blenny

Zebra fish

Oncorhynchus
mykiss

Rutilus rutilus

Acanthemblemaria
aspera

Betta splendens

Acanthemblemaria
spinosa

Brachydario rerio

Aves:

Great tit Parus major

Pied flycatcher Ficedula hypoleuca

Mammalia:

Coyote

Rat

Canis latrans 

Rattus rattus
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