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Abstract

The 2-oxoacid dehydrogenase multienzyme complexes are high Mr assemblies 

occupying key positions in intermediary metabolism. Their function is to catalyse the 

irreversible oxidative decarboxylation of 2-oxoacids by the coordinated action of 

multiple copies of three separate enzymes termed El (2-oxoacid dehydrogenase), E2 

(dihydrolipoamide acyl transferase) and E3 (dihydrolipoamide dehydrogenase). The 2- 

oxoacid dehydrogenase multienzyme complex family consists of the pyruvate 

dehydrogenase complex (PDC), 2-oxoglutarate dehydrogenase complex (OGDC) and 

branched chain 2-oxoacid dehydrogenase complex (BCDC). These complexes have 

been purified from a wide variety of organisms and in all complexes studied, the E2 

component forms a symmetrical structural core to which the El and E3 subunits bind. 

The E l and E2 components perform complex specific reaction steps, while the E3 

component is responsible for the reoxidation of the lipoamide group in each of the 

complexes.

In eukaryotes, these nuclear encoded complexes are located in the 

mitochondrion, loosely associated with the inner face of the inner membrane. The in 

vivo translocation, folding and assembly of such large structures is an intriguing 

process which is at present not fully understood.

This thesis examines the GdnHCl-induced deactivation and subsequent 

reactivation on dilution from dénaturant of OGDC and PDC from bovine heart and 

PDC from E. coli. Activity is found to be lost at relatively low GdnHCl 

concentrations in each complex (below 0.3 M). The E. coli PDC is shown to have 

spontaneous reactivation after higher concentrations of GdnHCl incubation than the 

bovine heart complexes. The deactivation and reactivation of the individual complex 

components has also been studied. The E2 component was found to reactivate after 

higher concentration GdnHCl incubations than the peripheral subunits. The 

deactivation and reactivation curves of complex intact and isolated components have 

been compared. For E. coli E3 this revealed a marked difference, with the intact E3

11



being considerably more stable than its isolated counterpart. This effect is thought to 

be due to the hydrophobic association of the E3 dimer with the E2 core, which has 

been shown to be reactivated after higher GdnHCl incubations.

The refolding environment of the E3 component has been studied in more detail 

in Chapter 5. E3 is a member of flavin-containing pyridine nucleotide-disulphide 

oxidoreductases. All members of this group studied to date are homodimers 

containing one flavin adenine dinucleotide (FAD) per subunit and a redox active 

disulphide. Purified E3 from bovine heart, yeast and E, coli have been unfolded using 

GdnHCl (as determined by CD spectra) and refolding has been attempted under a 

variety of conditions. The attempts to refold yeast and bovine E3 from a completely 

unfolded state have proved unsuccessful. The addition of the molecular chaperones 

groEL and groES (and ATP) to the refolding buffer of E. coli E3 gave a 15% 

recovery of activity, compared to no recovery when the protein was diluted into 

buffer alone. The effects of protein concentration and oxidation state of the refolding 

buffer have also been investigated. The single most important factor, however, has 

been found to be inclusion of FAD in the refolding buffer. A 5Told molar excess of 

FAD (compared to E3 monomers) in the refolding buffer gave a 22% recovery of 

activity. It is thought that the FAD is creating a folding nucléation site on the E3 

protein which encourages the protein down the correct folding pathway towards the 

native state.

I l l
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Abbreviations

The abbreviations used in this thesis are set out in the Biochemical Journal 

"Instructions to Authors" with the following additions.

ATP adenosine triphosphate

BCDC branched chain 2-oxoacid dehydrogenase complex

BSA bovine serum albumin

CD circular dichroism

CS citrate synthase

(k)Da (kilo)Daltons

DCPIP 2,6-dichlorophenol-indophenol

DTT dithiothreitol

E3 lipoamide dehydrogenase

EDTA ethylene diamine tetra acetate

FPLC fast protein liquid chromatography

GdnHCl guanidinium chloride

h hour ,

Hsp heat shock protein

IPTG isopropyl (3-D-thiogalactopyranoside

min minute

mM millimolar

MOPS 3~[N-Morpholino] propane-sulphonic acid

Mr relative molecular mass

MPa mega pascals

MSUD maple syrup urine disease

NAD+ nicotineadenosine dinucleotide

NADH reduced nicotinamide adenine dinucleotide
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OAA oxaloacetate

OGDC 2-oxoglutarate dehydrogenase complex I
3

PAGE polyacrylamide gel electrophoresis 1•:‘i.
PEG primaiy biliary cirrhosis Î
PDC pyruvate dehydrogenase complex ,3:

PDI protein disulphide isomerase 1
PEG poly ethylene glycol .3%
PMSF phenymethanesulphonyl fluoride

PPI peptidyl prolyl cis-trans isomerase

SDS sodiumdodecyl sulphate ■1
TCA trichloroacetic acid/tricarboxylic acid cycle

TEMED N,N,n 1 JN 1-tetramethylethylene diamine I
ThDP thiamine diphosphate f
Tris Tris(hy droxymethy l)aminomethane 1uv ultra violet "3

w
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1.12-OXOACID DEHYDROGENASE MULTIENZYME COMPLEXES

1.1.1 Three principal systems

The 2-oxoacid dehydrogenase complexes represent classical examples of 

multienzyme complexes. The pyruvate dehydrogenase complex (PDC), 2-oxoglutarate i

dehydrogenase complex (OGDC) and branched chain 2-oxoacid dehydrogenase 

complex (BCDC) are all members of the thiamine pyrophosphate-requiring 2-oxoacid 

dehydrogenase complex family. As our understanding of macromolecular assembly and |

organisation of protein structure and function stands to benefit directly from a deeper

knowledge of these complexes and because of the key positions in metabolism they

occupy (see Figure 1.1), they have been studied in detail from numerous sources since ÿ

the initial purification and characterisation of PDC from Escherichia coli (Koike et al.,

1960, 1963; Reed and Willms, 1965; Linn etaL, 1972; Danson etciL, 1979; Henderson 

and Perham, 1980; Stanley and Perham, 1980; Kresze and Ronft, 1981; Jaenicke and 

Perham, 1982). In eukaryotes, the complexes are present in the mitochondria and have 

high Mr values (2.5 x 10^ to 9.0 x 10^) (Linn et al, 1972). They can be seen as particles 1
■ î

of 30 to 40 nm in the electron microscope and are significantly larger than ribosomes i
'I

(Oliver and Reed, 1982).

I

1.1.2 Reaction sequence of the 2-oxoacid dehydrogenase complexes

The 2-oxoacid dehydrogenase complexes catalyse the decarboxylation and 

dehydrogenation of 2-oxoacids in a sequential and co-ordinated multistep process 

involving the activities of multiple copies of three separate enzymes to generate CO 2 

and the corresponding acyl CoA and NADH (Reed, 1974; Yeaman, 1989). The overall
,1

reaction catalysed by the 2-oxoacid dehydrogenases can be summarised as follows:

_____________________________



RCO-COOH + CoASH + NAD+^ ■^RCOSCoA + CO2 + NADH + H+

These complexes were first postulated to be one of the classic examples of a "swinging 

arm" mechanism (Reed, 1974; Hammes, 1981), whereby rotation of the substrate is 

permitted between the three active sites in the constituent enzymes whose participation 

is required in the overall catalysis. More recently it has been found that the swinging 

arm alone is not sufficient to allow adequate rotation of the substrate, and that the whole 

lipoyl domain has a highly flexible conformation. Figure 1.2 schematically represents 

the reaction mechanism of the 2-oxoacid dehydrogenase complexes where each 

component has a specific role in the catalytic process. The substrate-specific El enzyme 

(2-oxoacid dehydrogenase), which requires thiamine pyrophosphate (ThDP) as an 

essential cofactor, catalyses the decarboxylation of the appropriate 2-oxoacid with the 

formation of a ThDP intermediate and a molecule of CO2- El is also responsible for the 

reductive acylation of the lipoic acid moiety which is covalently attached to 

dihydrolipoamide acyltransferase (E2) as is discussed later. E2 transfers the acyl group 

to the CoA acceptor leaving the dithiolane ring of the lipoic acid in the reduced state. E2 

also forms the structural core of the complexes and is arranged in octahedral (24 

subunits) or icosahedral (60 subunits) symmetry depending on the specific complex, and 

in the case of PDC on the source of the complex (see section 1.2.2). Dihydrolipoamide 

dehydrogenase (E3) then reoxidises the lipoamide group, transferring the reducing 

equivalents onto NAD+ via its tightly bound FAD cofactor (Brown and Perham, 1976).

:
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PDCLeucine

Isoleucine
BCDC

2-oxogmtarateFumarate TCA
Cycle

OGDC
Succinyl CoA-

Valine
Methionine
Tlueonine
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Figure 1.1 An outline of the tricarboxylic acid cycle illustrating the pivotal 

positions of the 2-oxoacid dehydrogenase complexes in central metabolism
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2-oxoacid + CoA + NAD^ NADH + Acyl CoA + CO]

E3

NAD

NADH+ H

E3
OH

RC=TPPCO [UpS [FADÎ

El E2

CqASH

Figure 1.2 Schematic representation of the reaction mechanism of the 2-oxoacid 

dehydrogenase complexes highlighting the specific reactions catalysed by the 

component enzymes
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1.2 COMPONENT ENZYMES OF 2-OXOACID DEHYDROGENASE 

MULTIENZYME COMPLEXES

1.2.1 2-oxoacid dehydrogenase (El)

The 2-oxoacid dehydrogenase (El) component catalyses the only irreversible 

reaction in the miiltistep activity of the 2-oxoacid dehydrogenases. This is the first 

reaction in the complex: the thiamin diphosphate-dependent oxidative decarboxylation 

of the 2-oxoacid is followed by the reduction of the lipoyl group covalently bound to a 

specific lysine residue of the E2 lipoyl domain. To enable this reaction to proceed, El 

non-covalently binds thiamin diphosphate (ThDP), a cofactor widely employed by 

enzymes catalysing reactions involving the rupture of the carbon-carbon bonds adjacent 

to a 2 - 0 X 0  (keto) group. The decarboxylation step is the rate-limiting step in the overall 

reaction catalysed by the complexes (Danson etal., 1978; Akiyama and Hammes, 1980; 

Cate etal., 1980). The reaction is thought to proceed via a covalent adduct of ThDP with 

the formation of a ThDP-bound intermediate and one molecule of CO2 (Reed, 1974).

There are two different forms of the El component. The first is a homodimer 

(a2) with a subunit Mr of approx. 100 000 and is found in octahedral OGDC and PDC. 

The second is a heterotetramer (a2P2) with subunit Mr values of approximately 41 000 

and 36 000 respectively and is found in the octahedral BCDC and icosahedral PDC. In 

the heterotetrameric form, the El a  subunit appears to comprise two large domains with 

Mr values of 31 000 and 10 000 (Koike et al., 1992). The genes encoding the El a  and 

Elp chains of PDC and BCDC and the unsplit E l chain of OGDC may share a common 

ancestor (Matuda etal., 1991). However, sequences available for E l of PDC and OGDC 

show little homology even when extracted from the same source (Daiiison et al., 1984), 

As an example, the El chains from E. coli PDC and OGDC show a pronounced lack of 

sequence similarity (Guest etal,, 1989). A 30-amino acid residue motif has, however,
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1.2.2 Dihydrolipoamide acyltransferase (E2)

domain, as well as the "swinging arm", is intrinsic to the coupling process (Miles etal., 

1988; Machado etal., 1993). The role of the lipoyl domains is that of guiding the

been identified in all known ThDP-dependent enzymes, irrespective of their lack of 

sequence homology, which is predicted to be involved in ThDP binding (Hawkins et al.,

1989). 2

The dihydrolipoamide acyltransferase (E2) component of the complexes is the 

key to their structure and function. It has three major roles. Firstly, it forms a structural 

core to which the El and E3 components bind. Secondly, it is an acyltransferase,
:

catalysing the formation of the acyl-CoA product. Thirdly, it provides the attachment

I
4

site for the lipoic acid cofactor which interacts with the different active sites in the 

complexes. All E2 enzymes possess highly segmented structures containing several 

functional domains (Bleile etal., 1979; Perham 1991). A schematic representation of the

domain structure of E2 from various sources is shown in Figure 1.3. The C-terminus of I?
'2

the E2 polypeptide forms a compact inner domain which contains the E2 binding sites 

allowing the E2 polypeptides to interact with each other to form the core of the complex.

This domain also contains the catalytic activity of E2 (Packman etal., 1988). Adjacent 

to this domain, there is a distinct region of polypeptide consisting of approximately 50 

amino acids which is responsible for the binding of E3 to the central core. At the N- 2

terminus of the E2 polypeptide are the lipoate domains. The lipoyl moieties are attached 

via an amide linkage to the 8-amino group of a lysine residue within a lipoate domain.

This linkage provides a flexible arm about 14 Â in length permitting the lipoyl moiety to

rotate amongst the active sites of E l, E2 and E3 in what is called a "swinging arm"
i2

active site coupling mechanism (Koike et al., 1963). The flexibility of the whole

cofactor lipoamide through the various active centres. In order to promote reductive



:
■s

i

s

(W
I  I
S: s

<uK

ĉ3
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acylation of the dithiolane ring by the El component, the lipoyl group must be attached 

to a specific lipoyl domain. This indicates that the decarboxylase subunit binds and 

recognises the domain itself and not only the lipoyl group (Packman et al., 1988).

The complexes vary in the number of lipoyl domains which are present in the E2 

polypeptide. E2 from PDC of E. coli is remarkable in that it contains three highly- 

conserved lipoyl domains (Stephens e ta l, 1983). Surprisingly, deletion of two of the 

three lipoate domains by site-specific mutagenesis still allows assembly of a functional 

complex with full catalytic activity (Guest etal., 1985). The catalytic activity can be 

abolished when all three domains are deleted or rendered unlipoylatable by lipoyl- 

Lys-»Gln substitutions (Allen eta l, 1989). Complexes containing mixtures of wild-type 

and mutant lipoyl domains possess high levels of activity, although some impairment 

has been reported when the only wild-type domain is the one closest to the peripheral 

subunit binding domain (Allen eta l, 1989). Presumably this is a reflection of the 

reduced conformational flexibility of this construct. A reduction in complex activity is 

also observed by increasing the number of lipoyl domains to between four and nine per 

E2 chain. Under-lipoylation of the domains participating in catalysis and steric 

hindrance from unlipoylated domains are thought to be involved in the partial activity 

loss (Machado eta l, 1992). As the additional domains are not required for the catalytic 

functioning of the complex, the interesting question remains as to the purpose of this 

duplication. However, while deletion of two of the three E. coli lipoyl domains still 

allows a complex with full catalytic activity to assemble, there is evidence that when 

these bacteria are cultured with wild-type E. coli, the wild-type has a greater growth rate 

(Guest et al, 1985). This is thought to be due to the increased flexibility of the outer f ;

lipoyl domain allowing the surrounding El components to be serviced more effectively. ;|

The domains are joined together by conformationally flexible linker regions, rich in 

alanine, proline and acidic residues, which facilitate active site coupling. The importance f
I

of these linker regions to a high catalytic efficiency is inferred from the impairment that #



accompanies the deletion or shortening of these sequences, and by the enhancement 

which occurs on incorporating a polyproline linker (Miles etal.y 1988; Turner etaL, 

1993).

It has been found that the domain sequences are sufficiently well-conserved in 

evolution for analogous segments to be clearly identified in E2 components of all of the 

2-oxoacid dehydrogenase complexes studied so far. As well as the variations in the 

number of lipoate domains per E2 chain, however, differences are also apparent in the 

lengths and compositions of the interdomain linker sequences (Guest etaL, 1989; 

Perham and Packman, 1989). A search for amino acid sequences similar to the C- 

terminal domain of the E2 subunit of E. coli PDC has found nine sequences with 

extensive similarity, eight of which are E2 subunits from a variety of species (Russell 

and Guest, 1991). The other was for a mitochondrial ribosomal protein, MRP3, from 

Neurospora crassa, now also thought to be an E2 component. Russell and Guest (1991) 

have compared 13 E2 sequences, including those from human, bovine, rat, yeast and E. 

coli sources. This study has revealed that 34% of the aligned residues are identical or 

show a high degree of conservation and has also helped identify residues which are 

potentially important for structure, catalytic activity and substrate-specificity of the 

acyltransferases.

The E2 components of the complexes are arranged with point group symmetry. 

OGDC and BCDC have 24 copies of E2 arranged with octahedral (cubic) symmetry as 

does PDC from Gram-negative bacteria. In contrast, PDC from mammals, birds, yeast 

and Gram-positive bacteria have 60 copies of B2 arranged in icosahedral symmetry 

(Perham etaL, 1987). The structure and molecular architecture of the 2-oxoacid 

dehydrogenase multienzyme complexes is discussed in more detail in a later section.



Dihydrolipoamide + NAD+ ^ ^Lipoamide + NADH + H+

During the reaction, electrons are transferred from lipoamide first via the 

disulphide/di thiol and then via its cofactor FAD to NAD+ as the final electron acceptor

Î

I

1,2.3 Dihydrolipoamide dehydrogenase (E3)

Dihydrolipoamide dehydrogenase (E3) is responsible for the NAD+ dependent 

re-oxidation of the dihydrolipoamide groups present on the E2 components, thus 

allowing the acyltransferase component to re-enter the catalytic cycle (Yeaman, 1989),
it

E3 also functions as an integral component of the glycine decarboxylase complex 

(GDC) which, like the 2-oxoacid dehydrogenase complexes, is located in the 

mitochondrion in eukaryotic cells. E3 has also been discovered in the absence of the 

aforementioned complexes. In the bloodstream form of Trypanosoma brucei there is a

single mitochondrion and an absence of the multienzyme complexes mentioned above. If

E3 has been found located outside the mitochondrion, associated with the plasma II
I

membrane (Danson et aL, 1987; Jackman et al., 1990). Serrano (1992) has reported the 

presence of E3 activity in two cyanobacteria, the unicellular Synechoccus PCC 6301 and 

the filamentous Anabaena cylindrica. The 2-oxo acid dehydrogenase complexes are 

believed to be absent in filamentous cyanobacteria (Smith, 1973; Bothe and 

Nolteernsting, 1975). Since a low GDC activity was detected in cell free extracts of 

Anabaena cylindrica ,the function of cyanobacterial E3 remains unclear. It has been
■I

suggested that E3 may be involved in a glycine cleavage system (Serrano, 1992). The I

overall reaction catalysed by E3 is:

■1.

(Ghisla and Massey, 1989). All E3 enzymes isolated to date have been found to be ÿ

homodimers with a subunit Mr of approximately 50 000. Each subunit contains a |
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molecule of non-covalently bound FAD. Four distinct domains can be identified within 

each monomer. From the N-terminus these are; an FAD binding domain, an NAD 

binding domain, a central domain and an interface domain. The structural similarities 

between the FAD and NAD binding domains suggest that they may have evolved from a 

common ancestor.

E3 has been isolated from a wide variety of sources and is generally believed to 

be the identical gene product in all three members of the 2-oxoacid dehydrogenase
■3

complexes as well as in GDC (for a review, see Carothers et ai, 1989). However, there k
I

is some conflicting evidence suggesting the existence of isoforms of E3. In rat liver 

mitochondria two immunologically distinct forms of E3 have been identified. It has been 

suggested that from this source the E3 associated with GDC is different from that 

associated with the 2-oxoacid dehydrogenase complexes (Carothers et al., 1987).
-I:'

The sequencing of E3 enzymes from a wide variety of sources has provided 

much information allowing comparisons to be made between species. It has been shown 

that E3 is a highly conserved enzyme across species. For example, the sequence of 

human liver E3 exhibits 96% homology with that of E3 from porcine heart (Otulakowski 

and Robinson, 1987) and 44% identity with E. coliE5 (Pons etaL, 1988). Three 

dimensional structures have also been determined for E3 components from several 

sources including yeast (Takenaka etaL, 1988), Pseudomonasputida (Mattevi etaL,

1992a) and Pseudomonas fluorescens (Mattevi et al., 1992b). It has also been reported 

that E3 exhibits both structural and functional similarities with several members of the 

pyridine nucleotide disulphide oxidoreductases, in particular with glutathione reductase i|

(GR) (Takanaka et al., 1988). GR is responsible for catalysing the NADPH dependent 

reduction of glutathione disulphide. Therefore E3 and GR act in opposite directions by 

passing reducing equivalents to NAD+ or from NADPH respectively. Both enzymes 

contain a redox-active disulphide bridge that undergoes oxidation-reduction during I
catalysis causing them to cycle between oxidised and 2 electron reduced forms

•'7 7 - • - ■ • .  •_   . . _ . . . . .     .. .



(Williams et ai, 1989). As well as GR and E3, other members of the family of 
.homodimeric FAD-dependent disnlphide oxidoreductases include mercuric reductase, 

thioredoxin reductase and trypanothione reductase. E3 is the only member of this family 

that belongs to a multienzyme complex, although an increasing number of non-complex 

bound functions of E3 are being reported, (Williams, 1992 and references therein) as 

discussed earlier in this section.

Each subunit of E3 binds non-covalently a molecule of flavin adenine 

dinucleotide (FAD). Attachment of this cofactor is thought to occur during the folding of 

mature polypeptides within the mitochondrion and it has previously been suggested that 

this may represent a key step in the folding of E3 and the subsequent assembly of the 

mature complex (Yeaman, 1986). The involvement of FAD in the folding of E3 is 

investigated further in Chapter 5.

1,2.4 Component X

In addition to its three constituent enzymes, mammalian PDC has been found to 

contain a tightly-associated 50 0(X)-Mr polypeptide termed component X (De Marcucci 

and Lindsay, 1985). It was initially suggested that component X was a proteolytic

fragment of E2, but this suggestion was ruled out using refined immunological 

techniques employing subunit-specific antisera and the finding that anti-X serum elicits 

no cross-reaction with the other components including the intrinsic kinase of PDC (De 

Marcucci and Lindsay, 1985). Component X has been found to contain an additional 

lipoate domain and it was first thought that there were about 6 copies of the protein per 

complex (Jilka etaL, 1986; Hodgson etaL, 1986). More recent evidence suggests that 

there are 12 copies of X in bovine PDC, although it is not yet known if they are bound to 

the complex individually or as 6 dimers (Sanderson et aL, 1996). A similar protein has 

been found in PDC from yeast (Behai et aL, 1989). There is no evidence to date for the
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existence of a component X in PDC from prokaryotes, nor in OGDC or BCDC, but this 

possibility cannot be ruled out at present.

The role of component X in PDC remains unclear. Limited proteolysis of 

component X in mammalian PDC leads to a lower affinity of E3 for the core assembly, 

so one possibility is that it is involved with the binding of the E3 component and 

facilitating its participation in electron transfer (Gopalakrishnan et aL, 1989; Neagle et 

aL, 1991; Lawson et aL, 1991). Mutagenesis of the yeast gene for component X has 

indicated that it is not required for the formation of the E2 core, that it is essential for E3 

binding and that the lipoyl domain can be deleted without effect (Lawson etaL, 1991). 

Its lipoyl domain, though capable of becoming reductively acetylated (Jilka et aL, 1986;

Hodgson etaL, 1986), apparently serves no catalytic function.
I 
I:

1.3 COMPLEX CONTROL

PDC is well designed for fine regulation of its activity. Phosphorylation of the
I

El subunit causes inactivation of the complex by a dramatic reduction of the Vmax-
I

Interconversion of the active and inactive forms of El is a dynamic process that leads

rapidly to the establishment of steady states, in which the fraction of phosphorylated f

enzyme can be varied over a wide range, BCDC is controlled in a similar fashion, 

although the kinases and phosphatases are specific for each complex. The kinases are 

tightly bound to, and copurify with, their respective complexes, whereas the 1; j

phosphatases are loosely associated and are purified as distinct, soluble enzymes. The 

pyruvate dehydrogenase kinase has been purified to apparent homogeneity from extracts 

of bovine kidney mitochondria and its structure elucidated (Stepp et aL, 1983). It is a 

hetero-dimer consisting of subunits termed a  and jJ, which have molecular masses of 48 

000 and 45 000 respectively. Limited proteolytic studies first indicated that the a- 

subunit contained the kinase active site and that the (3-subunit may serve a regulatory

■I
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role (Stepp etaL, 1983). Using purification, N-terminal sequencing and cDNA cloning 

and sequencing, rat heart has been shown to contain two PDC kinases, termed p45 and

14

Ip48. Northern blotting has shown that mRNA for p45 is abundant in most rat tissues 

studied whereas p48 is abundant only in heart (Popov etal., 1993; Popov etaL, 1994).

Limited immunological data suggest that the bovine kidney kinase ot-subunit may 

correspond to rat heart p45 (Priestman et aL, 1994). Kinase activity appears to be 

specific for pyruvate dehydrogenase as little activity is exhibited toward a number of 

other substrates including BCDC, rabbit skeletal muscle phosphorylase b, glycogen 

synthase a, histones or casein (Reed et aL, 1985). The kinase has been found to 

phosphorylate three serine residues on the a-subunit of El (Yeaman, etal., 1978;

Sugden et aL, 1979). Phosphorylation occurs markedly faster at site 1 than at the other y

two sites, and phosphorylation at site 1 correlates closely with inactivation of El. The 

activity of the kinase is stimulated by acetyl-CoA and NADH, products of the complex, 

and this stimulation is antagonised by the substrates CoA and NAD+. Inhibition is also 

caused by pyruvate and by ThDP, which presumably binds directly to the active site of 

the El substrate and thereby alters the conformation about phosphorylation site 1 so that

Î

"3
the serine hydroxyl group is less accessible to the kinase (Reed and Yeaman, 1987). :

IPyruvate dehydrogenase phosphatase has been isolated from bovine heart and 

kidney mitochondria (Teague et at., 1982; Pratt et at., 1982). It has been found to have a 

molecular mass of approximately 150 000 and consists of two subunit types, the 

catalytic activity residing in a subunit of 50 (XX) and the larger subunit containing a 

molecule of FAD (Teague et at., 1982). The phosphatase is highly specific for PDC,

with minimal activity against phosphorylated BCDC (Damuni et aL, 1984). Also, it has I ;
7

been found that the phosphatase has an absolute requirement for Mg^+ and is stimulated 

by micromolar concentrations of Ca^+ which act by promoting binding of the 

phosphatase to the E2 core of the complex, NADH inhibits phosphatase activity, and 

this inhibition is reversed by NAD+ (Pettit et at., 1975). The amino acid sequences of

'



1.3.1 Acute control of the complexes
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Î
pyruvate dehydrogenase phosphatases from several sources have recently been deduced.

Sequence alignment of sequences from rat (Tamura etal., 1989), rabbit and human

(Mann eta l, 1992), Saccharomyces cerevisiae (Maeda et aL, 1993) and the protozoan

parasite Leishmania chagasi (Burns etal., 1983) has revealed five distinct regions of
. .

significant sequence identity. Site-directed mutagenesis is being carried out with the

pyruvate dehydrogenase phosphatase catalytic subunit to ascertain whether the highly 

conserved residues are involved in Mg^+ binding, substrate binding and/or catalysis 

(Reed etal., 1996).

As the 2-oxoacid dehydrogenase complexes occupy key positions in :p
intermediary metabolism it is essential that their activities be precisely regulated. All 

members of the family are subject to product inhibition which is reversed competitively 

by the substrates. The activities of both OGDC and PDC are also subject to control by 

changes in the intramitochondrial concentrations of free Ca^+ (Denton and McCormack, 

1985). The effect of Ca^+ ions on OGDC is via direct binding to the complex, causing 

allosteric activation by reducing the Km for the substrate, 2-oxoglutarate (Lawlis and 

Roche, 1981). This effect is antagonised by ATP which increased the Km for 2- 

oxoglutarate. This mechanism is thought to underlie the activation of OGDC by Ca^+- 

mobitising hormones such as vasopressin and the a-adrenergic action in liver (Denton 

and McCormack, 1985). PDC can also be activated by such hormones, however, this 

activation is not via direct allosteric activation but via stimulation of PDC phosphatase 

as discussed in the previous section.



1.4.1 Mitochondrial targeting and assembly

PDC, OGDC and BCDC in eukaryotes are located in the mitochondrion, 

probably in loose association with the inner face of the inner membrane. The individual

16

1.4 STRUCTURE OF THE 2-OXOAClD DEHYDROGENASE MUETIENZYME 

COMPLEXES

.
The structure of these complexes is such that a number of E2 polypeptides form 

a core around which are arranged multiple copies of El and E3 components which bind
.'I

non-covalently (Reed, 1974). As mentioned in section 1.2.2, the arrangement of the E2 

core is complex and species-specific as there are two distinct core structures, the cube 

and the pentagonal dodecahedron. OGDC and BCDC have 24 subunits of E2 arranged 

with octahedral symmetry as does PDC from Gram negative bacteria such as E. coli as 

illustrated in Figure 1.4 (Oliver and Reed, 1982). The second E2 core arrangement is

i
I

composed of 60 subunits arranged with icosahedral symmetry and is found in PDC from

Gram positive sources, yeast such as S. cerevisiae, and also from mammalian, avian and
.fungal sources (Perham, 1991). In E2 cores with octahedral symmetry, twelve El dimers 

bind along the twelve edges of the core and six E3 dimers bind along the six faces. In 

E2 cores with icosahedral symmetry, 20-30 El tetramers bind to the thirty edges and 

again six E3 dimers bind to six of the twelve faces of the pentagonal dodecahedron 

(Reed et aL, 1975; Barrera etal., 1972). The number of E3 dimers bound to each 

complex, however, has recently been reexamined due to the evidence that component X 

facilitates the binding of E3 dimers to the complex in PDC (Lawson et aL, 1991 ; De 

Marcucci etal., 1995). As evidence suggests that there are 12 copies of component X in 

bovine PDC, up to 12 E3 dimers could be bound to the core complex (Sanderson et aL, 

1996).



Figure 1.4 Model of the pyruvate dehydrogenase complex from E. coli

The transacetylase core (E2) is shown hatched, the pyruvate dehydrogenase 

component (El) is shown in black and the dihydrolipoyl dehydrogenase component (E3) 

is shown in white. This figure is reproduced from Stryer (3rd edition, p381).

17
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polypeptides of the complexes are nuclear coded, since all the translation products of the 

mitochondrial genome have been identified as components of the major respiratory 

chain complexes of the inner membrane involved in oxidative phosphorylation (Chomyn 

et al., 1985). The translocation and assembly of such large complexes is necessarily a 

multistage process involving a sequence of molecular events, the details of which are 

gradually being elucidated.

As with the majority of mitochondrial precursors, the initial cytosolic translation 

products of the components would each be expected to contain amino-terminal 

extensions which are proteolytically cleaved during or shortly after entry into the 

organelle. This has been found to be the case for each of the complexes, PDC (Hunter 

and Lindsay, 1986), OGDC (De Marcucci eta l, 1988) and BCDC (Clarkson and 

Lindsay, 1991). The E2 components of the complexes, however, have been found to 

possess extended presequences, approx. 55-75 amino acids in length (Lindsay, 1989). 

There is some evidence that elongated signal sequences contain additional information 

to that which is present in shorter (25-35 amino acid) amino-terminal sequences, perhaps 

to specify more precisely the delivery destination i.e. the inner membrane, outer 

membrane or intermembrane space (Hurt etal., 1985). Chaperone proteins may well be 

involved in maintaining the individual polypeptides in a loosely-folded state which is 

required to facilitate their movement across organelle membranes and may also be 

involved in their folding once inside the mitochondrion, which is discussed further in 

Chapter 5. In vitro evidence that bovine PDC can regain full catalytic activity when its 

purified native components are mixed in the absence of chaperone proteins, suggests that 

their assistance is not required in the assembly of the folded components within the 

mitochondrion. As the E2 and X subunits form the core to which the other components 

of the complex bind, the construction of the correct core conformation probably holds 

the key to the assembly of the complexes. Three general schemes of assembly of the 

central core can be envisioned. Firstly a sequential mechanism, in which individual

I



1.5 PHYSIOLOGICAL DISORDERS

I
monomelic subunits are combined to generate progressively larger E2-X multimers, 

with one subunit being added at each step. Secondly a random mechanism, in which 

different oligomeric structures, composed of varying numbers of individual E2 subunits,
A;combine spontaneously to form the final structure. Thirdly an ordered mechanism in

which a single defined oligomeric E2 intermediate assembles into progressively larger
I;:

I-

E2-X structures, Behai et a.L (1994) have found evidence supporting the third suggested
Imechanism using sedimentation velocity analysis on reassembling E2-X complexes. The 

detection of a stable 8 S oligomeric structure strongly suggests that there is a key 

assembly intermediate between the monomeric 1.5-3 S species and the mature 32 S E2- 

X subcomplex in bovine PDC. This assembly intermediate is widely believed to be a 

trimer (Behai eta l, 1994; Wynn eta l, 1994). Component X is not thought to be 

influential in the E2 assembly process. Lawson etal. (1991) demonstrated that 

component X is not required for E2 assembly in yeast PDC, Bovine PDC E2 has also 

shown reversible dissociation in the absence of component X (De Marcucci et al, 1995),

3 
I

The importance of the 2-oxoacid dehydrogenase complexes and their control is 

demonstrated by the occurrence and severity of a number of related disorders.

Primary biliary cirrhosis (PBC) is a chronic liver disease characterised by 

progressive inflammatory destruction of intrahepatic bile ducts which leads to fibrosis, 

liver cell damage and ultimately liver failure (Kaplan, 1987; Sherlock and Dooley,

1993). PBC-specific auto-antibodies can be detected by indirect immunofluorescence 

(Walker eta l, 1965). A serological marker for the diagnosis of this autoimmune process 

is the presence of antimitochondrial autoantibodies directed against a family of antigens 

termed M2. Several constituents of the M2 antigens are components of PDC, OGDC and 

BCDC. The major autoantigen is believed to be the PDC E2 component (Palmer etal.. I

19 f



1993) and the lipoic acid moiety is thought to play an important role in antibody 

recognition (Fussey e ta l, 1990).

Various forms of metabolic acidosis can be traced to regulatory abnormalities of 

the 2-oxoacid dehydrogenase complexes, such as Maple Syrup Urine Disease (MSUD). 

This autosomal recessive inborn error of metabolism results in an accumulation of 

branched-chain amino acids in the urine of sufferers and was first characterised by its 

high prevalence in the Mennonite populations of Pennsylvania (DiGeorge, 1982).

Several phenotypes have been described, ranging from the classical form, characterised 

by severe mental and physical impairment and early death (Menkes eta l, 1954; Dancis 

eta l, 1959), to a number of milder conditions with later onset (Dancis etal, 1967; 

Schulman eta l, 1970; Scriver etal., 1971). Molecular analysis of BCDC in cell lines 

derived from patients with MSUD has revealed that the mutations causing this disease 

are heterogeneous and include missense, deletion, insertion and splicing abnormalities of 

any subunit of BCDC (reviewed by Indo and Matsuda, 1996).

Blass et al. (1971) documented a second inborn error of metabolism involving 

deficiencies of PDC causing abroad spectrum of conditions characterised by low 

complex activity (below 30% of normal). These deficiencies are associated with primary 

lactic acidosis and neurological disabilities of varying severity including Leigh’s disease, 

an autosomal recessive condition affecting normal brain function (Johnston et al, 1984). 

Until relatively recently, little was known of the genetic mutations associated with these 

conditions. Since complex activity depends on the correct translation of El, E2 and E3 

(and in PDC El a, E ip and X) as well as the regulatory enzymes, mutations in many 

gene loci are possible. Using assays of individual component activities, immunological 

screening with component-specific antisera and assessment at the mRNA level 

employing cDNA clones encoding individual components, several types of specific

20
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El a  gene on chromosome X in haploid spermatozoa is resolved by testis-specific

21

I
genetic mutations have been identified. The most common form of PDC deficiency is 

due to mutations located in the El a  gene of chromosome X (Robinson et al., 1989). 

Initial information suggested that males were more severely affected by such mutations, 

the frequency and range of severity being greater in females. However, due to the 

unpredictable patterns of inactivation of the 2 X-linked El a  alleles in females, there is a 

variable degree of penetrance, especially within the brain (Brown et al., 1989). While 

mutations found in males appear to be associated with predicted preservation of minimal 

El a  function, heterozygous females can survive with certain mutations that would not 

be predicted to have any residual function. In such females, cells in which the normal 

allele is expressed should function normally, while neighbouring cells expressing the

abnormal allele would not be expected to survive (Dahl, 1995). It is still unclear which
'

stage of development may be the most vulnerable to the deficiency caused by these
.

mutations. During normal male reproduction, the problem of lack of expression of the

expression of the E la  gene on chromosome 4 (lannello etal., 1993). It is possible that

ova containing a defective El a  allele which is not able to produce any PDC activity may

not survive in the ovary, accounting for the apparently frequent disappearance of these
.alleles (Kerr et al., 1996). The notable rarity of E3-linked deficiencies reflects the 

severity of the associated condition. Impairment of E3 function causes a reduction in all 

three 2-oxoacid dehydrogenase complex activities resulting in the accumulation of 

lactic, 2 -0 X 0 - and branched-chain amino acids and their derivatives in the plasma and 

urine of sufferers (Liu etal., 1993).

It has been suggested that deficiencies in OGDC activity are linked to 

Alzheimer’s disease. Lowered interconversion between 2-oxoglutarate and glutamate, 

caused by impaired 2-oxoglutarate oxidation, is believed to result in the accumulation of 

glutamate, a potent neurotoxin when energy metabolism is suppressed (Beal, 1992).



Sheu et al. (1994) have studied cultured skin fibroblasts from familial Alzheimer
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Î
patients. Their studies have revealed defective OGDC activity and abnormalities of the 

E2 component. Other mitochondrial proteins including PDC were found to have normal 

activity levels. Mutations in the gene encoding E2 may cause the defect in OGDC 

activity.
I

3

1.6 THE PROTEIN FOLDING PROBLEM
I;

The first half of the genetic pathway whereby information from DNA is 

transferred into a three-dimensional functional protein has been well characterised. Until 

relatively recently, however, little research has been undertaken to elucidate the steps 

undergone by the nascent polypeptide during and after emerging from the ribosome to iS

reach its final native structure. Pioneering work by Christian Anfinsen beginning in the 

1960s on bovine pancreatic ribonuclease led to the acceptance of the thermodynamic 

hypothesis which states that the amino acid sequence of a given protein determines its 

tertiary structure (Anfinsen, 1973). The extrapolation from early experimental results of 

this type was that a protein in vivo could fold and assemble spontaneously in a process 

intrinsic to its primary structure, independent of other factors. Levinthal (1968) has 

estimated that it would take in the order of 10^^ years for a polypeptide of 100 amino f
.aLv

acid residues to reach a particular conformation by random processes and although the '
I:

figure is probably a little lower when taking steric hindrance into account, it is obvious 

that an ordered folding pathway of some description is in operation. The way in which 

amino acid sequence dictates tertiary structure, however, is not a simple code like the 

mRNA triplet code. It can be shown that amino acid substitutions are allowed at many 

residue positions without drastic changes in the folding pattern. Furthermore strikingly

similar structures have been determined for evolutionary distant proteins with only a few



amino acids in common. Determining the folding pathway may be the principal means 

of understanding the complexity of the folding process itself.

A general folding pathway for monomeric proteins may be described in simple 

terms by the equation

fast slow

where U, I and N represent the unfolded, intermediate and native states, respectively. 

The initial fast steps in protein folding involve the rapid formation of secondary 

structure, which occurs on the millisecond time scale, and the formation of an 

intermediate structure represented by I in the above equation (Ptitsyn et a l, 1990; 

Christensen and Pain, 1991). This intermediate state, termed a molten globule or 

compact folding intermediate, differs from the native by the absence of close packing 

throughout the molecule and by a substantial increase of fluctuations in side chains as 

well as of larger segments of the molecule. The molten globule form exists in rapid 

equilibrium with the unfolded state. The rate determining step in protein folding is the 

transition from I to the native state, a process which involves changes in tertiary 

structure. Not all proteins have been found to fit with this framework model. For 

example the folding of barstar, the inhibitor of barnase in the bacterium Bacillus 

amyloliquefaciens, can be explained better by the hydrophobic collapse model (Agashe 

e ta l, 1995). This model gives overriding precedence to a non-specific collapse of the 

polypeptide chain which facilitates subsequent formation of specific secondary and 

tertiary structures.

The folding process is not always completely successful as incorrect intra- or 

inter-polypeptide interactions can take place. This can lead to the formation of inactive 

aggregates and has been observed in vitro where the yield of refolded protein varies 

greatly depending on the chosen conditions and in vivo in the case of formation of

23
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1.6.1 Comparing in vitro and in vivo protein folding

■A

inclusion bodies during protein overexpression (LaVallie etal., 1992) or during heat

shock and other stress conditions within the cell (Parsell etal., 1993). Aggregation of

this type is thought to be caused by the exposure of hydrophobic residues on the molten
.globule. A growing list of human diseases are being found also to involve altered protein 

folding. Cystic fibrosis, for example, has been found to be caused by mutations of the 

gene encoding an ATP-dependent Cl" channel called the cystic fibrosis transmembrane 

conductance regulator (CFTR). In 70% of cases the mutation is a deletion of residue 

508, located in the amino-terminal nucleotide-binding domain of this five domain 

protein. As a consequence. Cl" conductance is decreased in diseased epithelial cells. 

Thermodynamic studies in vitro have shown that this mutation does not have a large 

effect upon the stability of the native state, which is functional under physiological 

conditions, but dramatically destabilises a 67 amino acid peptide model of a folding 

intermediate (Thomas etal., 1992). These findings strongly suggest that the defect is in 

the folding pathway itself (Thomas etal., 1995).

■:r

The traditional approach to studying the folding process, with a view to 

understanding the pathway involved, is to investigate the purified protein in an in vitro 

system. Chaotropic agents are used to denature the protein and these agents are then 

removed to initiate refolding. Commonly used chaotropes include urea and guanidinium 

chloride (GdnHCl) which unfold the protein by interfering with hydrophobic 

interactions. In many studies, these agents have helped provide information on the 

structure of intermediates on the refolding pathway using techniques such as circular 

dichroism and fluorescence spectroscopy, ^H-exchange NMR, gel exclusion 

chromatography, urea gradient gel electrophoresis and analytical ultracentrifugation (e.g. 

Holladay etal., 1974; Christensen and Pain, 1991; Zhi etal., 1992; Behai etal., 1994).
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Protein folding in vivo, however, happens cotranslationally, that is, elements of 

secondary structure, or even whole domains, can fold before the synthesis of the 

polypeptide is complete. Indeed, it has been found in many cases that protein refolding
' A3

occurs more quickly than its synthesis in the cell. Failure of a protein to refold may be

caused in some cases by the sequential nature of the process. For example, when the

synthesis of a polypeptide consisting of 100 amino acids is complete, around 40 residues

remain within the ribosome. Unfolding the native state of such a protein cannot therefore

recreate the conditions experienced by the nascent chain, and may effect the folding

process. Following co- and post-translational events within the cell is a relatively recent

field and poses many practical problems, despite which some interesting progress is

being made. Allen etal. (1995) have investigated the co-translational A-linked

glycosylation of tissue-type plasminogen activator (t-PA) in cell culture. This study uses

a pulse-chase approach in conjunction with immunoprécipitation and reducing and non-

reducing SDS-PAGE to demonstrate that folding and disulphide bond formation in t-PA

determines its extent of core A -̂linked glycosylation.

In vitro, aggregation can be suppressed by varying the conditions of the refolding

environment. The temperature, pH and protein concentration of an optimum refolding 
.

reaction can be far removed from the situation encountered by the same protein in the
7 '

cell. Indeed in the highly viscous intracellular environment where protein concentration

can be 200 mg/ml it is unclear whether spontaneous folding is possible at all.
.........................................

Refolding in vitro varies in time from seconds to hours and is often dependent on

the chosen experimental conditions. Indeed some proteins, particularly multi-subunit

ones such as glutamate dehydrogenase, have eluded all attempts to refold after unfolding

of the polypeptide chains to date. There are many factors which govern the differences

observed in the efficiencies of nascent folding and refolding respectively. As the length

of a polypeptide chain increases, there is a tendency to form domains within the chain

which can unfold and refold independently. The rate limiting step in the formation of

1



1.7 CATALYSIS OF PROTEIN FOLDING
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active protein is often the correct ’pairing’ of these domains. During the biosynthesis of 

proteins, it is likely that co-translational folding may help to prevent incorrect pairing by 

allowing domains to fold sequentially (Jaenicke, 1981 ; Tsou, 1988). Also, pauses in 

translation due to rare codons may give time for structural correction and adjustment 

during biosynthesis (Purvis etal,, 1987). Part of the discrepancy between in vivo and in 

vitro (re)folding can be accounted for by the fact that the cell contains additional 'tools' 

for efficient folding, such as protein disulphide isomerase, peptidyl prolyl cis-trans 

isomerase and chaperone proteins, which are discussed in more detail in the following 

sections.

Despite the discrepancies between the time-scale of (re)folding, the product of

the in vitro or in vivo pathway is a protein with identical conformation, biological |
'3activity and relative molecular mass for a given substrate (Jaenicke, 1987). This would 

suggest that the in vitro method of studying protein folding is indeed a valid way of 

providing valuable information about the folding process. There are benefits and 

drawbacks of studying both the in vivo and in vitro systems, but it is clear that the whole 

picture will only be obtained by combining results from both types of experiments.

7

The rate-determining steps of protein folding in vitro, and thus presumably in I -

vivo, involving the isomérisation of covalent bonds can be catalysed by protein 

disulphide isomerase and peptidyl prolyl cis-trans isomerase. These enzymes do not I
determine the folding pathway but accelerate the slowest steps of the folding process.

I . . . .  I ■ - ,  - ,  ■■ ' ■
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1.7.1 Protein Disulphide Isomerase

Protein disulphide isomerase (PDI) is an abundant soluble protein which

catalyses thiol ; di sulphide interchange reactions in protein substrates. This leads to a net 

protein disulphide formation, isomérisation or reduction, depending on the initial I
substrates and imposed thiol : disulphide redox potential. PDI is found within the lumen 

of the endoplasmic reticulum (E.R.) and it has been found that the level of secretory 

protein synthesis of different cell types correlates well with the abundance of PDI 

(Freedman, 1989). In vitro research has shown that the rate of protein folding can be 

increased by PDI. The human chorionic gonadotropin beta subunit (hCG-beta), for

27

.example, based on the gel migration of folding intermediates and the order of formation

of six disulphide bonds, has been shown to have indistinguishable in vivo and in vitro 

folding pathways. The same rate-limiting step was found in both environments. 

However, the half time for this step in the cell is 4 min whereas in vitro the half time is 

over 80 min. PDI has been shown to significantly decrease the in vitro half time without 

changing the order of disulphide bond formation (Huth e ta i, 1993).

The mammalian enzyme is a dimer with identical Mr 57 000 subunits, each 

containing duplications of domains which show a strong homology to thioredoxin 

reductase (Edman etal., 1985). Like thioredoxin, the active site of PDI has two 

conserved cysteine residues in the sequence WCGHCK which participate in the thiol : 

di sulphide exchange reactions. The enzyme is identical to the p-subunit of prolyl-4- 

hydroxylase (Pihlajaniemi etal., 1987), an enzyme which causes extensive modification 

of proline residues in nascent collagen molecules. As yet it is unknown whether the 

active site cysteine residues involved in the thiol : di sulphide exchange reaction are also 

involved in the hydroxylation reaction. PDI also shows homology to a surprisingly large 

number of other proteins suggesting that it may have multiple roles concerned with

protein modification and assembly within the E.R.. In addition, PDI is also a component

'il
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1.7.2 Peptidyl prolyl cis-trans isomerase
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.
of the microsomal triglyceride transfer protein complex which facilitates the 

incorporation of triglycerides into nascent very low density lipoproteins within the E.R.

(Wetterau etal., 1990).

Interestingly it has been proposed that PDI itself is a chaperone protein, one 

which also contains PDI activity (Wang and Tsou, 1993) John etal. (1993) have shown 

that the ^-subunit of prolyl-4-hydroxylase, which is identical to PDI, is essential for the 

correct folding and assembly of the a2p2 functional complex of prolyl-4-hydroxylase, 

as it prevents the misfolding and aggregation of the a-subunit. As the PDI also forms
;;Â

part of the final functional complex, this chaperone-like function is quite different from
■■ ■

those already documented. However, the enzyme has also been shown to bind peptides 

which have no obvious sequence similarities to the a-subunit, a property similar to 

chaperone proteins which is discussed in more detail later. The binding by PDI of a 

number of denatured polypeptides and their release only in the presence of ATP (Nigam 

etal., 1994) outlines the intriguing dual action of PDI in vitro which has still to be

confirmed in vivo.

Peptidyl prolyl cis-trans isomerase (PPI) has been shown to catalyse a rate- 

limiting step in in vitro protein folding, the cis-trans isomérisation of proline peptide 

bonds. The efficiency of catalysis of rotation around the X-pro peptide bond by PPI is 

variable and dependent on the target protein. The slow steps of refolding can be 

accelerated rapidly in the case of immunoglobulin light chains (Lang et at., 1987) and 

ribonuclease T1 (Fischer et al., 1989) while more moderate catalysis is observed with 

porcine ribonuclease (Lang etal., 1987) and type III collagen (Bachinger, 1987). Other 

proteins, such as bovine ribonuclease A, show no acceleration of refolding in the 

presence of PPI. Lang etal. (1987) have proposed that the variability observed in the
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efficiency of catalysis by PPI may be due to the fact that in some cases the Xaa-Pro bond 

is simply inaccessible owing to earlier folding events on the folding pathway creating
7

pockets of native tertiary structure.

PPls are highly abundant ubiquitous proteins found in the endoplasmic reticulum 

of all tissues and organisms from bacteria to mammals. The three-dimensional structure 

of two different representatives of the PPI family has been elucidated and this evidence 

supports a 'catalysis by distortion' mechanism (Jaenicke, 1995). As has been suggested 

for PDI, PPI may also have a chaperone-like activity, for example in preventing the 

aggregation of carbonic anhydrase (Freskgard etal., 1992). More direct evidence is

required to fully implicate PPIs as catalysts of protein folding.

1.8 MOLECULAR CHAPERONE PROTEINS

■

The term molecular chaperone was first reported by Laskey etal. (1978) to

describe the function of nucleoplasmin, an acidic nuclear protein that mediates the in
.

vitro assembly of nucleosomes from separated histones and DNA but is not a component

of the nucleosome. The term was later extended to describe the postulated roles of a

wider range of different proteins in mediating protein folding and assembly. Molecular

chaperones are now described as a functional class of unrelated families of protein that

mediate the correct non-covalent assembly of other polypeptide-containing structures,

but are not normally components of these assembled structures when the latter are

carrying out their normal biological functions. All of the molecular chaperones studied

to date act not by providing steric information essential for assembly, but by inhibiting

incorrect interactions which would produce non-functional structures and, in some cases,

large insoluble aggregates. Structural homology is seen between members of the same
.

chaperone class but not between classes. The major chaperone proteins are briefly 

discussed in the following section with particular emphasis on the prokaryotic



1.8.1 The Nucleoplasmins
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chaperonins groEL and groES and their role in the sequential mechanism of chaperone

proteins.

Nucleoplasmin is a nuclear protein, most abundant in amphibian oocytes where it

can constitute up to 10% of total nuclear protein (Mills etal., 1980). At physiological

ionic strength, nucleosome cores are unable to form in the absence of nucleoplasmin,

resulting from the formation of a precipitate between the basic histones and acidic DNA.

In the presence of a molar excess of nucleoplasmin the strong positive charge of the

histones is shielded by the binding of the chaperone. In this way initial non-specific 
.DNA-histone interactions are prevented allowing the formation of the most energetically

stable conformation, the nucleosome (Laskey etal., 1978). Nucleoplasmin is believed to

be Mg-ATP independent, which distinguishes it from other known chaperone proteins

such as the Hsp 70 and chaperonin 60 classes discussed later. As it has been

demonstrated that under non-physiological conditions, nucleosomes can be reconstituted
.

from separated DNA and histones in the absence of nucleoplasmin, by prolonged 

dialysis from high salt concentration (2M NaCl) to lower salt concentrations (Felsenfeld,

1978), it is clear that the chaperone imparts no steric information during its action.

Since the discovery of nucleoplasmin, several homologues have been identified, 

including the nucleolar protein XLNO-38 which is thought to mediate the assembly of 

ribosomes. A family of nucleoplasmin-like proteins may exist which carry out various 

chaperoning functions within the cell (Dingwall and Laskey, 1990).

I
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1.8.2 The hsp70 family

The hspTO proteins were initially discovered as proteins whose synthesis was 

increased on heat-shock. They are now recognised as a large, highly conserved group, 

not all of which are heat inducible, found throughout eukaryotic cells. E, coli contains a 

heat-inducible hsp70 called dnaK. DnaK genes in other bacteria have not as yet been 

extensively studied, but most bacteria contain only one (Lund, 1995). In the yeast 

Saccharomyces cerevisiae, however, the situation is far more complex with at least six 

hsp70 homologues in the cytosol (SSA1-SSA4, SSBl and SSB2), the mitochondria 

(SSClp) and in the endoplasmic reticulum (Kar2), (Craig et al., 1993). Studies in other 

eukaryotic cells show that hsp70 proteins can migrate to the nucleus, are present in 

chloroplasts and their presence in other organelles has also been postulated.

Genetic studies show that these proteins are important and sometimes essential 

for cell function. Although E. coli can survive the loss of its dnaK gene, such cells are 

clearly distressed as they only grow at low temperatures and tend to form filaments. 

Overexpression of DnaK has been observed to stimulate the membrane translocation of 

a hybrid protein which is usually unable to cross the inner membrane (Phillips and 

Silhavy, 1990). Strong associations have been observed in mammalian cell lines 

between hsp70 and ribosomes by immunoprécipitation experiments, suggesting that the 

hsp70 is binding to proteins as they emerge from the ribosome to prevent their 

aggregation or misfolding (Beckmann et ai, 1990). The ability of hsp70 to bind to 

unfolded proteins in vitro has led to the suggestion that one of their roles in vivo is the 

protection of partially denatured proteins (Pelham, 1986), although they may also target 

some denatured proteins to the degradative pathways. It has also been demonstrated that 

hsp70s play a role in reactivation of damaged proteins. This was shown with the enzyme 

luciferase, which is rapidly inactivated in E. coli that is heated to 43°C but recovers 

activity on return of the cells to 37°C. This reactivation is substantially reduced in dnaK

31
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mutant cells, although this is obviously not the only component involved as a reduction 

in recovery of luciferase activity is also observed in cells with mutant dnaj, groEL and 

groES genes (Schroeder eta i, 1993). The dnaj gene was first identified in E. coli 

because mutations in this gene block DNA replication of phage, X. The dnaJ gene is 

located in an operon immediately downstream of dnaK and considerable amino acid 

conservation has been observed between DnaJ proteins from a number or sources, 

particularly in a 70 amino acid section termed the J region (Silver and Way, 1993). It has 

been suggested that certain DnaJ proteins interact with only certain Hsp70s, implying 

that DnaJ, and not solely the peptide-binding pocket of Hsp70, determine substrate 

specificity (Brodsky etal., 1993). Alternatively, Hsp70 could be targeted to a particular 

substrate via cocompartmentalization of certain DnaJs and Hsp70s (e.g. Caplan eta l,

1992; Hattori etal, 1993). Many studies have shown that proteins need to be in an 

unfolded state to cross membranes (Eilers and Schatz 1988), and it seems likely that 

hsp70 homologues on both sides of the membrane maintain protein in this state to enable 

membrane translocation to occur.

Hsp70 proteins have been shown to be involved in protein translocation across 

membranes, protein translation and protection and recovery from heat shock. Other 

roles, such as uncoating of clathrin cages, initiation of DNA replication and sensing the 

temperature of the cell, have also been suggested. Interaction with proteins with DnaJ 

motifs appears to be an important part of at least some of these processes, all of which 

seem likely to stem from the interaction of hsp70 with the unfolded or partially unfolded 

protein. Hsp70 proteins , certainly in the case of BiP, the hsp70 homologue found in the 

endoplasmic reticulum, are believed to exist in an oligomeric form which can be 

mobilised into an active monomeric form on the binding of substrate polypeptides 

(Blond-El guindi etal., 1993), This binding takes place with the C-terminal region of the 

hsp70 protein and is weakened in the presence of hydrolysable ATP (Flynn etal., 1989;

Langer et al., 1992a). Nucleotide binding to the N-terminus causes a conformational



change in the hsp70 protein, as judged by protease susceptibility (Liberek etal., 1991a), 

which is presumably transmitted to the C-termina1 domain, causing the polypeptide to be 

released. Hsp70 chaperones are believed to interact with other proteins in vivo, including 

Dnaj and Gq^E, which help to regulate the chaperones ATPase activity and thus 

polypeptide release (Liberek etal., 1991b).

1.8.3 The Hsp90 family

Another abundant and ubiquitous class of heat-shock proteins which have some 

properties typical of molecular chaperones in vivo are in the 80-90 kDa range, and are 

generally referred to as the hsp90 proteins. Like hsp70s, members of the hsp90 class of 

chaperones are highly conserved in bacteria, yeast and mammals with approximately 

40% identity between the various eukaryotic hsp90s and the E. coli homologue HtpG, 

which is actually a rather diminutive member of this family at 62.5 kDa (Bardwell and 

Craig, 1988). In eukaryotic cells, hsp90s comprise 1-2% of cytoplasmic protein under 

normal conditions, a figure which rises under conditions of stress (Hendrick and Hartl, 

1993). In S. cerevisiae two homologues of hsp90 exist. The first, Hsc82, is constitutively 

expressed while the second, Hsp82, has a low basal level of expression which can be 

induced 10 to 15 fold on heat-shock (Borkovich et ai, 1989). Inactivation of both of 

these genes is lethal at any temperature, although cells can survive single mutations at 

temperatures up to 37.5°C. Studies on HtpG have shown that it helps the cell grow more 

efficiently at high temperature, but it is not essential for growth.

Hsp90s have been found to associate with a variety of other proteins including 

cellular protein kinases and steroid hormone receptors (Gething and Sambrook, 1992) 

where the common role of the hsp90 protein in these cases seems to be in stabilising the 

target protein in a non-native conformation. Hsp90-bound steroid receptors retain a high 

affinity for the steroid hormone but are unable to bind DNA and therefore unable to
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1,8.4 The sHSP family

a

;

activate transcription. The displacement of hsp90 from the receptor occurs on steroid 

binding which then enables the steroid/steroid receptor complex to bind DNA and 

activate transcription (Sanchez et ai, 1987). ît has also been shown that hsp90s can aid 

the prevention of aggregation of chemically denatured proteins such as citrate synthase 

and the Fab fragment of a monoclonal antibody providing further evidence of the 

chaperoning properties of this class of proteins (Wiech etaL, 1992).

Nadeau etal. (1993) have shown that members of the hsp90s have ATPase 

activity which can sometimes be stimulated by the binding of substrate proteins. The 

mechanistic role of this stimulation is not yet clear. Hsp90s also undergo slow 

autophosphorylation on serine and threonine residues which has been found to have no 

effect on the ATPase activity but has been suggested that this may regulate the ability of 

hsp90 to bind its protein targets. It appears that hsp90s have a multitude of functions 

conferred by the ability to bind reversibly to proteins with exposed hydrophobic 

surfaces. The interaction of hsp90s with such proteins and with other classes of 

chaperone proteins may well be crucial in the regulation of a wide range of intracellular 

processes.

3
j-;-
;l

Small heat shock proteins (sHSP) are a conserved group of heat-shock inducible

proteins with molecular masses between 15 and 30 kDa. The sHSPs have been shown to
.be homologues of oc-crystallin, a predominant eye lens protein which is also present in

other tissues, not only at the amino acid sequence level (deJong eta l, 1988) but also on
.a structural level (Merck etal.y 1993). The sHSPs share functional chaperone properties 

with the oc-crystallins in that they prevent misfolding of a variety of thermally and

chemically denatured proteins (Horwitz, 1992; Jakob et al., 1993; Merck et al., 1993).

This reactivation, certainly in the case of both citrate synthase and oc-glucosidase, in the
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presence of either sHSPs or oc-crystallin seems to be independent of ATP (Jacob et ai, 

1993). It remains to be seen whether the sHSPs have specific functions within the cell, 

independent of other chaperone proteins, or whether they act in concert with other 

regulatory proteins in vivo.

1.8.5 The hsp60 family

The hsp60 proteins were the first proteins to be recognised as having chaperone 

function (Hemmingsen etaL, 1988). Like the hsp70 proteins, they are encoded by highly 

conserved genes and are found in all organisms and many cellular locations. This family 

of proteins, also called the chaperonins, includes two types of protein, generally called 

chaperonin 60 and chaperonin 10, or GroEL and GroES in E. coli, the organism on 

which a large proportion of chaperonin research has been carried out (Sabil and Wood, 

1993). GroEL is a heat-shock protein which can be increased from about 1% to 10% of 

the total soluble cytoplasmic protein following cellular stress (Hemmingsen etal., 1988) 

but is essential for eellular growth at all temperatures (Fayet etal., 1989). The groE 

gene, which encodes both groEL and its partner chaperonin groES, was initially 

discovered because mutations in it prevented the growth of several bacteriophages. 

Assembly of the bacteriophage X and T4 head structures and T5 tail structures does not 

proceed in the absence of groEL (Georgopoulos et al., 1972; Georgopoulos etal., 1973; 

Zweig and Cummings, 1973). Hsp60 was first identified in mitochondria in 

Tetmhymena thermophilia as a groEL related stress protein during heat shock conditions 

(McMullen and Hallberg, 1987). Early studies such as these indicated a role in the 

assembly of other proteins and it now seem clear that this is a general function for these 

proteins within the cell. Highly related hsp60 homologues have not been detected in the 

eukaryotic cytosol or the endoplasmic reticulum. However, in the cytosol of many 

organisms including thermophilic archaebacteria, plants and mammals, proteins with
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1.8.5.1 Structure and function of groEL and groES

.:P
weak hsp60 homology have been identified which appear to have chaperonin-like 

functions (Lewis a/., 1992; Trent e/a/., 1991; Yaffe e/a/., 1992; Mummert

1993). This group of proteins, typified originally by the mouse protein called TCPl, 

assemble into a hetero-oligomeric protein complex called TRiC (TCPl ring complex) 

within the cell and are generally referred to as the TRiC family. The TRiC family may 

be regarded as a sub-class of chaperonins which are postulated to carry out groEL-like 

functions within the eukaryotic cytoplasm. As yet no equivalent of the co-chaperonin, 

groES, has been identified for TRiC. It may be that a co-chaperonin is not required, 

since studies comparing the refolding of tubulin by TRiC and the E. coli chaperonins 

demonstrated that TRiC was able to fold tubulin efficiently while groEL was only able 

to do so in the presence of groES (Burston and Clarke, 1995).

!■

GroEL is an oligomeric protein consisting of 14 identical subunits arranged in 2

stacked 7-membered rings with a central cavity, known as the 'double doughnut ' (Hohn

et al., 1979; Hendrix 1979). Each subunit has a molecular mass of 57.3 kDa, giving a
.

total molecular mass of over 800 kDa (Hemmingsen et ai, 1988). Electron microscope 

analysis of negatively stained oligomeric groEL has indicated that the overall cylindrical 

shape has a height and diameter of approximately 160 nm and 130 nm respectively (Ishii 

et al., 1992; Langer et al., 1992b). Each subunit consists of three distinct domains. The 

largest of these, the equatorial domain, contains the N-terminal and C-terminal residues 

which from crystallographic data appear to project into the central channel (Braig et al.,

1994). The equatorial domain is highly a-helical and serves as the structural foundation 

providing most of the contacts with adjacent subunits in the ring and in addition contains 

the ATP binding site. The apical domain forms the opening of the central channel and 

possesses a degree of local flexibility enabling a wide range of unfolded polypeptides to
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I"be accommodated. The intermediate domain, as its name suggests, forms the link
■3between the equatorial and apical domains. Flexibility has also been observed en-hloc 

with the intermediate domain acting as a hinge between the two other domains, GroEL i

possesses a weak ATPase activity (kcat G.Ob sec"  ̂ per subunit) (Braig et al., 1993) 

which is dependent on the presence of Mg2+ and K+ ions for maximal activity ( Viitanen si
.■ 's

et al., 1990).The crystal structure of groEL complexed to ATP-y-S has been resolved to |
3

2.4 Â, providing additional structural information (Boisvert etal., 1996). Each subunit of 

ATP is observed to bind to a novel pocket, formed from amino acids which are highly 

conserved among chaperonins. Further, conformational shifts in the equatorial domain 

have been identified on ATP binding.

The gro E operon also encodes groES which has a subunit Mr of 10 368 

(Hemmingsen etal., 1988). GroES exists in a homo-oligomeric form composed of seven 

subunits arranged in a ring-like structure 8 nm in diameter with a 2 nm electron dense 

central channel (Chandrasekhar et al, 1986). GroES has been defined as a (co-) 

chaperonin as have its homologues in mitochondria (HsplO) and plastids (cpnlO) which 

have a similar structural arrangement (Hemmingsen et al, 1988). The crystal structure 

of groES has been resolved to 2.8 Â (Hunt eta l, 1996) confirming the domed shape of :
I

the heptamer, the inside surface of which is hydrophilic and highly charged. Each 3|

subunit of groES contains a mobile loop segment which is involved in groEL binding. In 

the crystal structure this loop is disordered in six of the subunits. The single well - 

ordered copy is observed to extend from the bottom outer rim of the groES dome,
'■13

suggesting that the cavity within the dome is continuous with the polypeptide binding #

chamber of groEL in the chaperonin complex (Hunt et al, 1996). Crystal structures of 

other members of the cpn 10 family have also revealed a flexible region extending from 

the lower rim of the dome (e.g. cpn 10 from Mycobacterium leprae. Mande et al,

1996a).
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1.8.5.2 Method of groEL and groES action and their role in the sequential 

mechanism of chaperone proteins

Studies indicate that groEL binds one molecule of substrate protein within the 

central cavity in a conformation resembling the molten globule (Martin et aL, 1991; 

Langer eta l, 1992; Braig etaL, 1993; Chen etal., 1994; Hayer-Hartl etal., 1994). 

Protein folding is achieved through cycles of ATP dependent protein release and 

rebinding (Martin etal,, 1991; Weissman etal., 1994). This process is thought to be 

regulated by groES which binds nucleotide-dependently to one end of the groEL 

cylinder, leaving the cavity of one toroid available for the association of substrate 

protein (Martin etal., 1991; Langer eta l, 1992). GroES binding increases the 

cooperativity of the groEL ATPase activity and after ATP hydrolysis, stabilises the 

seven interacting groEL subunits in the ADP-bound state (Martin etal, 1993). GroES 

dissociates after ATP hydrolysis in the uninhibited groEL toroid and its reassociation 

with the substrate bound groEL complex results in ATP-dependent protein release. This 

sequence of events is illustrated in Figure 1.5.

The main stress proteins of E. coli function in an ordered protein-folding 

reaction. First DnaK (hsp70) recognises the nascent peptide chain and cooperates with 

DnaJ in stabilising an intermediate conformational state lacking ordered tertiary 

structure. The protein is then transferred to groEL (hsp60) via GrpE and ATP 

hydrolysis. GroEL then interacts with groES as described above in order to produce the 

native protein. In this way, groEL and groES are the final stage of the protein folding 

mechanism (Langer eta l, 1992a). Homologues of each of the chaperones involved in 

this E. coli sequence exist in mammalian cells where a similar pathway is thought to 

operate.
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Figure 1.5 Model for the groEL-groES assisted folding of polypeptides

1. The groEL-groES complex is favoured under physiological conditions. The 

groEL ring associated with gro ES is stabilised in a high affinity ADP-binding state 

(shown in bold type), the other ring has a lower affinity for ADP. 2. Upon binding of the 

unfolded polypeptide (U), ADP and consequently groES dissociate. 3. ATP binds, 

weakening the interaction between the polypeptide and groEL, and allows groES to 

rebind. Proteins with a low affinity with groEL may be released at this stage. 4. ATP 

hydrolysis releases the bound polypeptide into the central cavity, allowing it to fold. 

Proteins attaining (near) native structure after this cycle are released (N) 5. Generation 

of the ADP state increases the binding affinity of groEL for groES. Polypeptides which 

have still not reached the (near) native state rebind and the reaction cycle continues 

(from step 2.) Between steps 5. and 2. the groEL protein is rotated 180°, with the 

substrate polypeptide remaining bound in the same ring. This model was taken from 

Martin etal, (1993).
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1.9 PROTEIN (RE)FOLDING STUDIES
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Since the refolding experiments on bovine pancreatic ribonuclease (Anfinsen, 

1961), the unfolding by various methods and refolding of a vast number of proteins, 

both monomeric and oligomeric, have been studied. A wide range of physical 

parameters and solvent compounds have been used as denaturing agents including 

GdnHCl, urea, SDS, LiCl, high temperatures, extremes of pH and high hydrostatic 

pressure (Tanford, 1968; Tanford, 1970). The extent to which the native structure is 

perturbed differs widely with the protein being studied, but to a certain extent, 

dénaturants show additive effects. As a result of the structure-function relationship of 

proteins, monitoring biological function represents the most sensitive method of 

following the refolding process. Secondary and tertiary structural probes, and in 

oligomeric proteins, the state of association are also important approaches used to 

characterise the folding process.

It has been adequately demonstrated that the majority of denatured proteins, both 

monomeric and oligomeric, can be renatured to a degree under appropriate conditions 

(Ghèlis and Yon, 1982). In general, a low protein concentration is employed during

I.

renaturation to minimise undesirable side reactions such as aggregation and sulfhydryl 
.

oxidation. It has also been found that the addition of ligands, such as substrates of 

enzymes, and even low concentrations of detergents can increase the degree of 

renaturation of a protein (Tandon and Horwitz, 1987; Mendoza etaL, 1991).

Much interest has been shown in the refolding of nuclear encoded mitochondrial 

proteins as it is known that such proteins cross the mitochondrial membranes in an 

unfolded conlbrmation and so folding and, for oligomeric proteins, subsequent 

association, occurs after translocation. The deactivation and reactivation of citrate 

synthase (CS) has been studied by several laboratories (Srere, 1966; Wu and Yang, 

1970; Greenblatt and Sarkissian, 1972; West eta l, 1990; Zhi etaL, 1992). West e/at.

" ■■■ !• ■■



(1990) showed that deactivation of CS in GdnHCl at concentrations less than 1.5M 

caused substantial activity loss. On dilution this loss of activity is completely reversed. 

The loss of activity in GdnHCl occurs at much lower concentrations than changes in 

circular dichroism, fluorescence and exposure of sulphydryl groups, which all occur 

between 1.8M and 3M GdnHCl. This suggests that GdnHCl at low concentration causes 

a change in CS that is more subtle than global unfolding which occurs at higher 

concentrations. Zhi etal. (1992) have studied the reactivation of GdnHCl-denatured CS 

under a variety of conditions. The addition of bovine serum albumin (BSA), 

oxaloacetate (OAA) and glycerol to the renaturation buffer were found to promote 

reactivation. The effect of these substrates was found to be additive with respect to the 

yield of folded CS. The precise mechanism by which BSA, OAA and glycerol promote 

refolding is uncertain. BSA is generally thought to stabilise structures that approach the 

native conformation. The action of glycerol may be similar to that of BSA, as substances 

like polyethylene glycol, which mimics the water exclusion and viscosity effects of 

glycerol, do not enhance renaturation. OAA may bind to a partially formed active site, 

which then acts as a folding nucléation point.

The refolding of denatured CS by the groE system has also been investigated 

(Buchner etal., 1991; Zhi etal., 1992). Folding assistance is demonstrated by groE in 

both these reports, although the conclusions about the essential presence of groES are 

different in the two studies. It is worth noting that while reports of in vitro renaturation 

of proteins with the assistance of only groEL are interesting mechanistically, their 

importance is probably limited owing to the presence of both components of the groE 

system in cellular protein folding.

To date, the groE assisted refolding of relatively few chosen proteins appears to 

have been studied in detail. Some, such as firefly luciferase, have been chosen because 

of the availability of extremely sensitive assay techniques, in this case a luminescence- 

based enzyme assay. Firefly luciferase is also a useful substrate because its spontaneous
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refolding upon dilution from dénaturant is inefficient (Nimmersgern and Hard, 1993).

Other substrates, such as rhodanese were perhaps initially selected because of the 

relative simplicity of a monomeric system (Mendoza etal., 1991). Additionally, some 

substrates have been studied which are capable of folding reversibly under in vitro 

conditions in the absence of additional components, such as enolase (Kubo et ai, 1993), 

lactate dehydrogenase (Badcoe et ai, 1991) and dihydrofolate reductase (Viitanen et ai,

1991). The addition of groEL to these systems which are capable of spontaneous 

refolding has been found to dramatically reduce the yield of refolded protein, showing 

that groEL is recognising an intermediate state of the folding protein. To further the 

understanding of groE-mediated folding, it is important that in future a wider range of 

substrate proteins are employed as it is clear that a large number of proteins in vivo 

associate with the groE system during folding.

The dissociation, unfolding and unassisted renaturation of bovine heart PDC has 

recently been reported (West etal., 1995). The results of this study show that the 

integrity of this complex is perturbed by relatively low levels of GdnHCl which lead to 

dissociation of the El and E3 components from the E2/X complex core. It was found 

that this dissociation leads to loss of the overall activity of the complex without causing 

any major loss of structure of the individual components of the complex. It was further 

reported that the individual components lose secondary and tertiary structure, as

monitored by far-UV CD and protein fluorescence respectively, at higher levels of 

GdnHCl incubation than those at which activity is lost. Also, it was found that the ability 

to regain activity on subsequent dilution of the GdnHCl to 0.03M correlated with the 

integrity of the secondary and tertiary structure. In this respect, the components of 

bovine PDC behave in a manner typical of a number of other imported mitochondrial 

enzymes, such as glutamate dehydrogenase (West and Price, 1988), fumarase (Kelly and #

Price, 1991), citrate synthase (West eta l, 1990) and NAD+-dependent isocitrate 

synthase (Kelly et al., 1993).
.
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bacterial chaperone proteins groEL and groES.

44

This thesis details the purification and characterisation of 2-oxoacid

dehydrogenase multienzyme complexes from various sources. The deactivation and

reactivation of the complexes and their component subunits has been studied using a
.variety of techniques to monitor structural and activity changes during these processes.

Î
various in vitro refolding environments to be investigated, including the addition of the

E3 from bovine, yeast and bacterial sources has been purified to enable the effect of

■I



CHAPTER 2

MATERIALS AND METHODS



obtained from Sigma Chemical Co., Poole, Dorset, England. 

2.1.2 Enzymes and proteins

Maidstone, Kent.

45

2.1 MATERIALS

2.1.1 Chemicals and biochemicals

4
Acrylamide, dithiothreitol (DTT), 2-mercaptoethanol, polyethylene glycol

(PEG), sodium dodecyl sulphate (SDS) and N,N,N^N ^-tetramethylethyiene diamine

were obtained from BDH Chemicals Ltd., Poole, Dorset, England. N,N^-

methylenebisacrylamide and Triton X-100 were obtained from Fisons, Loughborough,

England. Guanidine hydrochloride (GdnHCl) and isopropylthio-(3-D-galactoside were

obtained from Gibco BRL, Paisley, Scotland. Acetyl coenzymeA (acetyl-1- ‘̂̂ C) was

obtained from Dupont, Belgium. Bactotryptone and yeast extract were obtained from 
.Difco, Detroit, Michigan, U.S.A. All other chemicals were of analytical grade and were

I

Ï 

Z
I  

;
Bovine serum albumin (BSA), yeast PDC and molecular mass markers for gel

.filtration chromatography were obtained from Sigma Chemical Co., Poole, Dorset.

Molecular mass marker proteins for M^ determination by SDS-PAGE were purchased 

from Pharmacia Ltd., Milton Keynes.

2.1.3 Chromatography media

Sephacryl S-200 was obtained from Pharmacia, Milton Keynes,

Buckinghamshire. DEAE-cellulose was obtained from Whatman Biochemicals,

I
I

I
i
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2.1.5 Bacterial strains

2.1.6 Media

Sterilisation was achieved by autoclaving at ISpsi.

46

2.1.4 Pre-packed media

Pre-packed Mono Q, Resource Q, alkyl-Superose and Superose 6 columns were 

obtained from Pharmacia and used on a Pharmacia FPLC system.

■3

The bacterial strain E, coli JRG2872 carrying the plasmid pG5501 was used to 

overproduce E. coli PDC (Russell et al, 1992), This IPTG-inducible system 

overexpresses PDC on a ^  promoter.

For overexpression of groEL, the bacterial strain was E. coli DHl carrying the 

plasmid pGT3270. This plasmid contains the groE genes on a 2.1 kb Eco Rl-M/W III 

DNA fragment (McLennan et at., 1993), a gift from Dr. N. F. McLennan, University of 

Edinburgh, Scotland.

Bacterial stocks were prepared by mixing 5 ml of L-broth culture taken after 

overnight growth, with an equal volume of sterile glycerol and stored frozen at -70°C.

j 
'

Luria broth has been used to grow Escherichia coli cells and consists of:- 

Bactotryptone lOg/1

Yeast extract 5g/l 

NaCl lOg/1

a

1
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pH measurements were carried out using a CD 620 digital pH meter (Cambridge.

2.2.2 Dialysis

Dialysis was carried out using tubing obtained from Medicell International Ltd., 

London, which was of 6.3 or 14.3 mm diameter depending on the volume to be dialysed. 

The tubing was pre-treated by boiling for 10 min in 2% (w/v) NaHCOg, 1 mM EDTA 

pH 8. Pre-treated tubing was stored in 100% (v/v) ethanol and rinsed thoroughly in 

distilled water before use.

2.2.3 French pressure cell

Cells were broken by 2 passages through an automatic French pressure cell at 95 

MPa (14000 psi internal pressure). The cell was precooled on ice before use (cat. no. 4- 

3398A, American Instruments Company, Silver Spring, Maryland, U.S.A.).

2.2.4 Protein estimation

Protein concentrations were determined by the method of Bradford (1976) with 

BSA as standard.

47
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2.2 GENERAL LABORATORY PROCEDURES

2.2.1 Measurement of pH

ij

U.K.) calibrated at room temperature.

!
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2.3 PREPARATION OF PDC AND OGDC FROM BOVINE HEART

PDC and OGDC were prepared by initially taking 600g of either fresh beef heart

i

or beef heart stored at -80°C within 3 h of slaughter, from which fat and connective 

tissue had been removed. Cubes of tissue were blended and extracted in 50mM MOPS

I
buffer, pH 7.0, containing 2.7 mM-EDTA, 3% (v/v) Triton X~100,0.1 mM-DTT, 0.1 

mM-PMSF, 0.1 mM-benzamidine/HCl and 0.2% (v/v) anti-foam. After spinning at 

15000g for 20 min, the collected supernatant was adjusted to pH 6.45 with 10% (v/v) 

acetic acid. At this stage the extracts contained assayable amounts of OGDC activity. 

The presence of lactate dehydrogenase made PDC activity difficult to estimate this early 

in the purification. Both complexes were precipitated by the addition of 0.12 vol. of a 

35% (w/v) PEG solution. After stirring on ice for 30 min, the solution was spun at 

30000g for 15 min. Pellets were re suspended in 50 mM-MOPS, pH 6.8, containing 1% 

(v/v) Triton X-100,2.7 mM-EDTA, 0.1 mM-DTT, 0.1 mM-PMSF and 0.1 mM- 

benzamidine by homogenisation with a loose-fitting Teflon-glass homogenizer. This 

extract was adjusted to 13 mM-MgCl2 and 50mM-sodium phosphate, pH 7.0. The pH 

was then again lowered to 6.45 with 10% (v/v) acetic acid before the addition of 0.12 

vol. 35% (w/v) PEG for a second precipitation. The 2-oxoacid dehydrogenase 

complexes were separated by differential precipitation with PEG. Usually between 0.04- 

0.06 vol. 35% (w/v) PEG was required to precipitate 90% of the OGDC activity, OGDC 

was pelleted by spinning at 40000g for 10 min prior to overnight re suspension in a 

minimal volume of 50 mM-MOPS buffer, pH 7.0, containing 1% (v/v) Triton X-100, 2.7 

mM EDTA, 0.1 mM-DTT, 0.1 mM-PMSF and 0.1-mM benzamidine. The PDC 

containing supernatant fraction was concentrated by centrifugation for 2.5 h at 150000g 

in a Beckman Ti70 rotor. The pellets were re suspended in the same buffer as the 

OGDC. Both complexes were stored at a final concentration of 5-10 mg/ml at 4°C or in 

50% (v/v) glycerol at -20°C.

48
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experimentally.

2.5 PREPARATION OF PDC FROM Escherichia coli

49

2.4 PREPARATION OF E3 FROM BOVINE HEART OGDC

The method for mammalian E3 purification was developed by Ms. Saiqa Khan,

Division of Biochemistry and Molecular Biology, University of Glasgow. NaCl was
3added to the purified complex to 2M giving a protein concentration of -̂ 3 mg/ml. This 

solution was incubated on ice for 15 min to allow adequate time for component 

dissociation. A further incubation at 65°C for 10 min then followed, which induced 

dénaturation and aggregation of the less stable complex components. Centrifugation was 

then carried out at 15000g for 10 min to pellet the insoluble aggregates. The E3

remained in the supernatant and was dialysed to remove salt before using

E. coli strain JRG 2872, kindly donated by Prof. J. R. Guest, University of 

Sheffield, overexpresses PDC from a ̂  promoter (Russell, et at., 1992). Cultures (250 

ml) in Luria broth containing glucose (0.2% w/v) and ampicillin (50/<g/ml) were grown 

at 37°C with vigorous shaking to mid-exponential phase (A^so^O 25-0.50) and induced 

by the addition of IPTG to 60jaM. After 6-8 h, cells were harvested, washed in buffer 1 

[20 mM-potassium phosphate, pH 7.8, containing 2 mM-Na2EDTA, 1 mM- 

benzamidine/HCl and 1 mM-PMSF] and disrupted using a French pressure cell in the 

same buffer, as detailed in section 2.2.3. The crude extracts were clarified by 

centrifugation at 150000g for 30 min. PDC was sedimented by further centrifugation at 

150000g for 4h. The PDC containing pellet was re suspended in buffer 1 and further 

purified by FPLC ion-exchange chromatography using a Resource Q column with a 0- 

700 mM-NaCl gradient in buffer 1. Fractions containing PDC were pooled and



' -

concentrated by sedimentation as before. Purified complexes were stored in buffer 1 plus

glycerol (50% v/v) at -20°C.

2.6 PREPARATION OF E3 FROM BACTERIAL PDC

2.7 PREPARATION OF GroEL

3 ’

Bacterial E3 was purified from two stages of the whole complex preparation. The 

supernatant from the final high speed spin was found to contain large amounts of E3 

(28-40% of total yield). This was purified using an adaptation of the method described 

in section 2.4. NaCl was added to the supernatant to a final concentration of 2M and 

then incubated at 65°C for 20-30 min. Again the sample was spun for 10 min at 15000g 

and the salt removed by dialysis into the appropriate buffer before using experimentally. 

Secondly, a small amount (3-7% of total yield) of E3 was located in a peak from the 

Resource Q salt gradient, the final step in the bacterial PDC purification process. Heat 

treatment was carried out on the pooled fractions from this peak to further purify if 

required.

'•'A

i

The groEL purification protocol described below was based on adaptations, 

obtained from Dr. G. J. Thomson, to the procedure described previously (Hendrix, 1979; 

Chandresekhar, 1986). Solutions throughout the preparation were kept at 4°C. GroEL 

could not be assayed as the ATPase activity is too weak, so a Phastgel system was used 

to identify groEL containing fractions. The bacterial strain used was E. coli DHl 

carrying the plasmid pGT3270 containing the groE genes on a 2.1 kb Eco REHindlll 

DNA fragment, kindly donated by Dr. N. F. McLennan, ICMB, University of 

Edinburgh, Scotland, UK (McLennan etal., 1993). Bacterial stocks were stored at -70°C 

in 50% (v/v) glycerol. The E. coli were grown on Luria broth containing glucose (0.1%

■
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w/v) until the cell suspension had reached saturation (OD^OO of approximately 5) before 

harvesting the cells by centrifugation (4500g for 15 min). Cells could be used 

immediately or stored in pellet form at -20°C until use, the latter option aiding the next 

step in the purification process. Around 20g of wet weight cells were obtained from a 

typical 41 culture. Cells were re suspended in extraction buffer (50mM Tris-HCl buffer, 

pH 8.0, 5 mM 2-mercaptoethanol, 1 mM PMSF, 1 mM benzamidine) and broken using a 

French pressure cell as detailed previously. Cell wall debris was then removed by 

centrifugation at 15000g for 40 min. Following cell breakage an equal volume of 

streptomycin sulphate (0.05 mg/ml) was added to the supernatant which was stirred on 

ice for 1 h. The extract was then centrifuged for 45 min at 25000g. At this stage the 

solution was gradually brought to 55% (w/v) saturation by addition of solid (NH4)2S04 

and, after stirring for 1 h on ice, the precipitated protein was collected by centrifugation 

at 30000g for 30 min. Precipitated protein was resuspended in 4 ml of S-200 buffer 

(50mM Tris-HCl, pH 8.0, containing 5 mM EDTA, 10% (w/v) glycerol, 5 mM 2- 

mercaptoethanol, IM KCl and 0.5% (w/v) Triton X-100) and loaded onto a Sephacryl S- 

200 column (120 cm x 3 cm) equilibrated in the same buffer. GroEL containing 

fractions, eluting in the void volume of the column, were pooled and dialysed against 

Mono Q 10/10 buffer (20 mM Tris-HCl, pH 7.5, containing 5 mM EDTA). The dialysed 

solution was applied to the anion exchange column and eluted with a 25 ml 0-1M linear 

NaCl gradient in the above buffer. Fractions containing groEL were pooled and dialysed 

against Alkyl-Superose buffer (50mM potassium phosphate pH 7.0, containing 1.5M 

(NH4)2S04). This was then loaded onto an Alkyl-Superose HR 5/5 hydrophobic 

interaction chromatography column equilibrated in the above buffer. GroEL was eluted 

with a linear 1.5-OM (NH4)2S04 gradient.

I
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2.8 STORAGE OF PURIFIED PROTEIN
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I

Purified mammalian OGDC, bacterial PDC and groEL were dialysed against 100 

volumes of 50mM Tris-HCl, pH 7.6, containing 50% (v/v) glycerol and stored at -20°C.

2.9 DENATURATION CONDITIONS

I
The unfolding of the complexes and purified components was studied in 50mM- 

potassium phosphate pH 7.6. Solutions of protein (final concentration 0.5-1.0 mg/ml) 

were incubated in the presence of varying concentrations of GdnHCl for 15 min at 4°C 

before measurements of catalytic activity, CD or fluorescence were taken. There was no 

further significant change on incubation for a further 45 min.

2.10 PREPARATION OF DIHYDROLIPOAMIDE

Dihydrolipoamide was prepared from the oxidised form of DL-6,8-thioctic acid 

amide (DL-Iipoamide). 60 mg of DL-lipoamide was dissolved in 1.2 ml of 50% (v/v)
_

ethanol in IM potassium phosphate buffer pH 8, to which 2.4 mg of freshly prepared 5%

(w/v) NaBH4 was added for 10 min. This was then neutralised with 1.2 ml of 3M HCl.

The dihydrolipoamide was extracted into the upper solvent layer by adding 3 x 3 ml 

volumes of toluene. Evaporation of the toluene under N2 left crystalline 

dihydrolipoamide which was stored at -20°C until use (Kochi and Kikuchi, 1976).

I
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2.11 ENZYME ASSAYS

2.11.1 2-oxoacid dehydrogenase complexes

2.11.2 2-oxoacid dehydrogenase (El)

53

The whole complex activities of PDC and OGDC were assayed 

spectrophotometrically at 340nm, as the rate of formation of NADH, at 30°C (Danson et 

al., 1978). Approximately 2-5/ig of complex were assayed in the presence of 670/d 

Solution A (SOmM potassium phosphate, pH 7.6, containing 3 mM NAD+, 2 mM 

MgCl2 and 0.2 mM ThDP), 14/il Solution B (0.13M cysteine-HCl, 0.13 mM 

Li2CoASH) and 14/d Solution C (100 mM pyruvic acid/2-oxoglutarate for PDC and 

OGDC respectively). The above assay solution was preincubated at 30°C and the 

reaction initiated by the addition of enzyme.

The activity of the El component, pyruvate dehydrogenase in PDC and 2~ 

oxoglutarate dehydrogenase in OGDC, was measured by following the reduction of 2,6- 

dichlorophenol-indophenol (DCPIP) at 600 nm. The protein was first incubated at 30°C 

in solution A (as described in the previous section) and DCPIP. The reaction was then 

initiated by the addition of the appropriate solution C (as described in the previous 

section) (Khailova et al, 1976).

Ia
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2.11.3 Dihydrolipoamide acetyltransferase (E2)

The activity E. coli E2 was measured isotopically via the conversion of 11- 

acetyl-CoA to the radiolabelled S-acetyl dihydrolipoamide intermediate which is 

extracted into toluene, leaving the unreacted [1- acetyl-CoA in the aqueous phase 

(Butterworth etal., 1974). The reaction mixture contained O.l ml of 50 mM potassium 

phosphate, pH 7.4, containing 5 mM cysteine and various amounts of GdnHCl, 10 pi of 

10 mM dihydrolipoamide in ethanol, 20 pi of 2.5 mM of mixed cold acetyl-CoA and [ 1 - 

I'^C] acetyi-CoA, giving a specific activity of 3 x 10^ cpm/pmol. 5-10 pg of PDC and 

water made the total volume of the reaction mixture 0.2 ml. The reaction was started by 

the addition of the acetyl-CoA mixture and incubated at 25°C for 2 min. At this stage the 

reaction was stopped by adding 0.5 ml of toluene and the mixture shaken for 10 s on a 

Vortex mixer to extract the radioactive S-acetyldihydrolipoamide. An aliquot (0.1 mi) of 

the toluene layer was then withdrawn and radioactivity measured in a Beckman liquid 

scintillation spectrometer. Controls were also carried out from which enzyme (or 

dihydrolipoamide) was omitted. This background reading, typically around 40 cpm, was 

subtracted from the experimental readings.

I

2.11,4 Dihydrolipoamide dehydrogenase (E3)

Assays were performed using the method of Jackman et al. (1990) at 30°C. The 

assay buffer used was 50 mM-potassium phosphate, pH 7.6, containing 3 mM-NAD^ I 

mM MgCl2, 0.2mM ThDP and 24pg of dihydrolipoamide (for preparation see section

2.10). The reaction was initiated by the addition of enzyme and the activity followed by
.

monitoring NADH formation at 340nm.

I
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2.12 ATPase ACTIVITY OF GroEL

The ATPase activity of groEL was measured spectrophotometrically by coupling 

the hydrolysis of ATP to the oxidation of NADH by the coupling enzymes pyruvate 

kinase and lactate dehydrogenase. Assays were performed in 50 mM triethanolamine 

buffer pH 8.0 containing 10 mM magnesium acetate. Concentrations of substrates and 

coupling enzymes in the buffer were; 0.5 mM ATP, 1.0 mM phospho^rtt?/ pyruvate, 0.15 

mM NADH, 25 pg/ml pyruvate kinase and 8.3 pg/ml lactate dehydrogenase. The 

oxidation of NADH was monitored at 340 nm (Price et al, 1993).

i

2.13 SDS POLYACRYLAMIDE GEL ELECTROPHORESIS

I
Electrophoresis in the presence of SDS was performed using the method of 

Laemmii (1970), with a 3% stacking gel and a 10% or 12% running gel. The ratio of 

acrylamide : bisacrylamide was 30 : 0.8 for each gel. Polymerisation was induced by the

I

jj

addition of 0.03% (v/v) TEMED and 0.05% (w/v) ammonium persulphate. After 

electrophoresis, protein on the gels was visualised by staining with Coomassie blue for 

at least 90 min at room temperature whilst rotating at slow speed on a shaker. The 

Coomassie reagent was 0.1% (w/v) Coomasie Brilliant Blue G250 in 50% (v/v) 

methanol and 10% (v/v) glacial acetic acid. Destaining was carried out in 10% (v/v) 

methanol and 10% (v/v) glacial acetic acid, the destain being replaced at intervals until 

the background was fully destained and bands clearly visible.

2.14 CIRCULAR DICHROISM

Circular dichroism (CD) is a spectroscopic property which is sensitive to 

molecular conformation, and thus is widely used in the study of protein structure. The
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near-ultraviolet (UV) CD bands of proteins (340-250 nm) are principally due to 

tryptophan, tyrosine, phenylalanine and cystinyl groups, and they reflect the tertiary and 

quaternary structure of the protein. The far-UV CD bands of proteins (260-178 nm) 

derive from the amide chromophore and reflect the secondary structure of the protein 

(a-helix, ^-sheet etc.). For most proteins the native state has a much more intense CD 

spectra over most of the far- and near-UV wavelength. The large loss of intensity which 

occurs in both of the wavelength regions upon treatment of the protein with a 

dénaturant, such as GdnHCl, combined with fluorescence measurements, allow the 

stability of tertiary and secondary structure to be compared.

CD spectra were recorded at 20°C on a JASCO J-600 spectropolarimeter. All 

spectra were recorded by Dr. Sharon Kelly, Department of Biological and Molecular 

Sciences, University of Stirling.

2.15 FLUORESCENCE

Fluorescence spectroscopy is a sensitive technique which can be employed 

continuously or discontinuously to obtain information on protein tertiary structure 

around fluorogenic amino acids. Fluorescence emission is observed on the return to the 

ground state of an excited electron. Nonfluorescent compounds lose the energy of the 

excited molecule as heat, while fluorescent compounds emit part of this energy as light. 

Due to the energy loss, the fluorescence emission is shifted to a longer wavelength 

compared to that of excitation. In the fluorescence experiments shown in Chapter 5, the 

excitation wavelength is 290 nm and emission has been monitored either by scanning 

from 310 nm to 400 nm, or at 340nm each second over 5 min to follow the tertiary 

structural changes during protein refolding.

Fluorescence changes were recorded at 25°C on a Perkin Elmer LS50 

spectrofluorimeter with slit width setting at 5.0.
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2.16 LIGHT SCATTERING MEASUREMENTS

57

:
1

Light scattering is a useful tool in following the association and dissociation of
. :

subunits of multimeric proteins. It has the advantage over other methods that 

measurements can be made very rapidly. The protein solution is illuminated with a beam 

of light with a wavelength far from any absorption band in the solvent or the protein.

The amount of light scattered in directions other than that of the incident beam is 

proportional to the Mr of the protein in solution. Subunit association or aggregation can 

therefore be detected by an increase in intensity of scattered light over time.

Light scattering experiments were carried out at 25“ C using a Perkin Elmer LS50 

spectrofluorimeter. The illuminating wavelength was 350 nm. Detection of scattered 

light (350 nm) was at 90“ to the incident beam. Slit width setting was 2.5.



CHAPTER 3

PURIFICATION AND INVESTIGATION OF THE 2-0X 0ACID 
DEHYDROGENASE COMPLEXES



,

3.1 Introduction

:
The effect of structural changes on the activity of enzymes has been widely

studied. Changes in primary structure aside, chaotropes such as urea and GdnHCl have

been instrumental in enabling detailed information to be collected on the unfolding and
.subsequent renaturation processes. Comparison of the unfolding and inactivation of 

several enzymes in the presence of GdnHCl and urea have suggested that the active sites

are usually situated in a limited region of the enzyme molecule that is more susceptible 

to dénaturants than the protein as a whole (Tsou, 1986). It has been noted that different 

chaotropes do not necessarily produce the same end product. The dimeric pig heart 

citrate synthase, for example, is dissociated into monomers on treatment with GdnHCl 

but remains dimeric when incubated with a comparable concentration of urea (Wu and 

Yang, 1970). Subtle differences exist, therefore, in the mechanism of action these 

reagents in disrupting non-covalent interactions both within and between polypeptide 

chains. Previous work (West et al., 1990) has suggested that GdnHCl denatures 

multienzyme complexes in three steps. Initially, subunit dissociation occurs at low 

GdnHCl concentrations. This is followed by local perturbation of the active site of 

individual components of the complex at intermediate GdnHCl concentrations. Beyond 

this secondary and tertiary structural changes occur progressively with increasing 

dénaturant concentrations. Throughout this investigation GdnHCl has been employed, 

primarily to enable this work to be usefully compared to that of West et al. (1995).

:#

This chapter deals with the purification and characterisation of OGDC and PDC 

from bovine heart and PDC from E. coli strain JRG 2872. Purification was followed by 

assay of intact complex activity, monitoring NADH formation spectrophotometrically at
'

340nm, and by SDS-PAGE. Initial characterisation of the complexes was carried out
.

using GdnHCl-induced unfolding and subsequent refolding which was again monitored
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using the intact complex. Also, circular dichroism has been employed to monitor 

secondary structural changes resulting from GdnHCl-induced dénaturation.

3.2 OGDC and PDC purification from bovine heart

OGDC and PDC were purified from bovine heart as described in the Materials 

and Methods section. This protocol is based on that of Stanley and Perham (1980), with 

adaptations, outlined by De Marcucci et al. (1985). The same preparation can be used to 

purify both complexes although the amount of PEG used in the final cut is an important 

factor in the purity of the complex. Throughout the procedure estimates of protein 

concentration were made using the Bradford assay. Whole complex activity was also 

monitored. A typical set of data for the OGDC purification procedure is shown in Table 

3.1. Purification was also followed by SDS-PAGE. Figure 3.1 shows samples taken 

from an OGDC preparation at the same stages as are shown in Table 3.1.

In this way both complexes were obtained with specific activities of 3-5 units/mg 

when assayed at 25°C. The extent of cross-contamination was estimated to be less than 

1% on the basis of activity measurements.

3.3 Loss of activities of PDC and OGDC from bovine heart

The loss of activity of the complexes when incubated with and assayed in the 

presence of increasing GdnHCl concentrations is illustrated in Figure 3.2A. From this 

graph it can be seen that both complexes have lost all activity after incubation in 0.3M 

GdnHCl. OGDC activity is reduced to 50% of its original value at 0.1 IM GdnHCl 

whereas for PDC this value is 0.07M.
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Figure 3.1 SDS-PAGE analysis of samples taken during trypic digestion of purified 

bovine heart OGDC

OGDC was resolved on 10% SDS-PAGE and stained with Coomassie blue. Lane 

M, low Mr proteins (10 pig); lanes 1 to 6, 15 pig samples taken at the same stages of the 

preparation as are shown in Table 3.1.

61



Mr
(x 10-3)

94-

43-
« - E 2

30-

1 2 3 4 5 6



3.4 Reactivation of beef heart OGDC and PDC by dilution of GdnHCl

.The results of experiments in which either OGDC or PDC were incubated in 

GdnHCl for 15 min at 4°C, and then diluted into buffer for assay so as to lower the 

residual GdnHCl concentration to below 0.03M, are shown in Figure 3.2B. It is clear 

that the ability of PDC to regain complex activity decreases dramatically when the initial 

GdnHCl concentration is above 0.7M and is lost completely after pre-exposure to
■ " I

concentrations above 1.8M. OGDC can be seen to be more sensitive to GdnHCl

incubation as its ability to regain complex activity decreases rapidly when it is incubated
.above 0.3Nt. For OGDC 50% of activity is regained after dilution from 0.5M GdnHCl 

incubation, a concentration at which PDC regains all of its activity.

3.5 PDC purification from E. coli

3.6 Loss of activity and subsequent reactivation of E. coli PDC

PDC was purified from E. coli strain JRG 2872 using the procedure reported by 

Russell etal. (1992), with minor adaptations which are outlined in Materials and 

Methods. Throughout the procedure estimates of protein concentration were made using 

the Bradford assay. Whole complex activity was also monitored as described previously. 

A typical set of data for the purification procedure is shown in Table 3.2. Purification 

was also followed using SDS-PAGE. Figure 3.3 shows samples taken from an PDC 

preparation at the same stages as are shown in Table 3.2.

Ï

i
I

The loss of intact complex activity was monitored after incubation with GdnHCl 

for 15 min at 4°C. The results are shown in Figure 3.4. Comparing Figure 3.4 with 

Figure 3.2 it can be seen that the reversible nature of inhibition of bovine PDC by
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Figure 3.2 Inactivation and reactivation of bovine heart PDC and OGDC
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Enzyme complexes were incubated at4“C in 50mM potassium phosphate, pH

7.6 containing GdnHCl for 15 min before the extent of inhibition (shown in A where 

assay mixture contained the same [GdnHCl] as incubation) or reactivation (shown in B 

where [GdnHCl] is reduced to below 0.03M by dilution) was assayed. The 

concentrations of PDC (■) and OGDC (#) were both I mg/ml. In each case the changes 

are expressed relative to control sample from which GdnHCl was omitted. Results 

shown are averages of 3 readings taken from different preparations.
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Figure 3.3 SDS-PAGE analysis of samples taken throughout the E. coli PDC 

purification process

Samples from the various stages of the E. coli PDC preparation stated below 

were diluted to approximately 0.5 mg/ml and \5 pi\ of each was mixed with an equal 

volume of Laemmli sample buffer and resolved on a 10% (w/v) SDS-polyacrylamide 

gel. Lane I-homogenate, lane 2- after clarification spin, lane 3- resuspended pellet after 

4 h ultracentrifuge step, lane 4- supernatant after 4 h ultracentrifuge step, lane 5- 

resuspended pellet after filtering and lane 6- after Resource Q column step.

6 6



Mr
(X 10-3)

94- -  El

67-

43-

E3
E2

30-



«

I
I
«

1 00 4

8 0

6 0

4 0

2 0

0 ■>----*—r T-------- '-------- 1-------- r
0.0 0 .5  1 .0  1.5

[GdnHCl] (M)
2 . 0

Figure 3.4 Inactivation and reactivation of bacterial PDC

PDC was incubated at 4°C in 50mM potassium phosphate, pH 7.6 containing 

GdnHCl for 15 min before the extent of inhibition (A, with assay mixture containing the 

same GdnHCl concentration) or reactivation (A, GdnHCl concentration reduced to 

below 0.03M by dilution) was assayed. In each case the changes are expressed relative 

to control sample from which GdnHCl was omitted. Results shown are averages of 3 

readings taken from different preparations.
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GdnHCl is lost as the concentration of dénaturant is increased above 0.7M and this 

ability is completely lost when incubated at GdnHCl concentrations above 1.5M. The E. 

coli PDC loss of re activation range is from 0.9-2.0M, with 38% re activation occurring 

after incubation in 1.6M GdnHCl, conditions from which the bovine complexes show no 

significant recovery of activity. Thus, it can be seen then that the bacterial complex is 

the most resilient of those studied to incubation in GdnHCl.

3.7 Unfolding of bovine heart OGDC and PDC and E. coli PDC as monitored by 

changes in CD properties

Figure 3.5 (A, B and C) shows the far-uv CD spectra of beef heart OGDC (A) 

and PDC (B) and E. coli PDC (C). The results are shown in Figure 3,6 in terms of the 

changes of ellipticity at 225nm relative to the total changes occurring between 0 and 6M 

GdnHCl. Figure 3.6 presents the ellipticity data for the three complexes together and 

from this it can be seen that the OGDC and PDC from the same source behave in a very 

similar fashion when incubated in GdnHCl with the majority of secondary structure 

being lost at GdnHCl concentrations above 4M. PDC from E. coli can be seen to be 

more resistant to secondary structural changes when incubated in low levels of GdnHCl 

(0-1,5 M) than the bovine complexes. However, at incubations above 2.0 M GdnHCl the 

three complexes studied show little difference in the pattern of loss of secondary 

structure.
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Figure 3.5A Changes in the far-UV CD spectra on dénaturation of bovine heart

OGDC with GdnHCl

Spectra were obtained in 50mM potassium phosphate buffer, pH 7.6 at 20°C. 

Unfolding of OGDC (90/rg/ml) was carried out in the presence of GdnHCl for 15 min at 

4°C. Spectra were recorded by Sharon Kelly in the laboratory of Prof. Nicholas Price at 

Stirling University.
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Figure 3.5B Changes in the far-UV CD spectra on dénaturation of bovine heart

PDC with GdnHCl

Spectra were obtained in 50 mM potassium phosphate buffer, pH 7.6, at 20°C. 

Unfolding of PDC (80/fg/ml) was carried out in the presence of GdnHCl for 15 min at 

4°C. Spectra were recorded by Sharon Kelly in the laboratory of Prof. Nicholas Price at 

Stirling University.
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Figure 3.5C Changes in the far-UV CD spectra on dénaturation of E. coli PDC with

GdnHCl

Spectra were obtained in 50 mM potassium phosphate buffer, pH 7.6, at 20°C. 

Unfolding of PDC (80//g/ml) was carried out in the presence of GdnHCl for 15 min at 

4°C. Spectra were recorded by Sharon Kelly in the laboratory of Prof. Nicholas Price at 

Stirling University.
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Figure 3.6 Comparing the GdnHCl induced unfolding of E. coli PDC, bovine heart 

PDC and OGDC using circular dichroism I

The data shown in Figures 3.5A and 3.5B have been used to calculated the 

percentage of the total change occurring between 0 and 6M GdnHCl incubations. 

Ellipticity of E, coli PDC (A), bovine heart PDC (■) and OGDC (#) were measured at 

225nm. I
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3.8 Discussion

This chapter describes the purification and basic characterisation of E. cnli PDC 

and bovine heart OGDC and PDC complexes. The E. coli PDC purification (detailed in 

Table 3.2 and Figure 3.3) provided a reproducible method for PDC overproduction with 

around 30% recovery. It has previously been shown that PDC purified using this method 

has an excess of E3 subunits and a reduced amount of El subunits and it is thought that 

hyper production of E3 may limit the extent of El binding (Russell etal, 1992). As can 

be seen from Figure 3.3, PDC forms a major part of the original homogenate. Two of the 

contaminating polypeptides whose Mr are between those of the El and E3 subunits can 

be seen in Figure 3.3 in lanes 3 and 4. The upper band (lane 4) has been shown to be 

lysine decarboxylase. The lower band (lane 3) was first thought to be a proteolytic 

fragment of El because a tryptic fragment of this subunit migrates with approximately 

the same mobility (Russell and Guest, 1990). However, sequencing has shown that this 

lower band is identical to the chaperonin, GroEL, over 30 residues (Russell et al, 1992). 

The presence of GroEL is interesting as it has been implicated in the folding of many 

proteins and is investigated further in Chapter 5, However, it is unclear whether its 

appearance here is due to the increased number of PDC molecules requiring folding 

assistance or stress that may be caused by the addition of ÏPTG.

The E. coli PDC unfolding and renaturation after GdnHCl incubation is shown in 

Figure 3.4. From this it can be seen that the complex activity is perturbed by relatively 

low levels of GdnHCl (in the range 0-0.3M). The ability to regain activity on dilution 

from GdnHCl is lost gradually after incubation in GdnHCl solutions between 0.9-2.0M. 

This shows that while PDC activity can be recovered after its total loss during GdnHCl 

incubation, refolding from a totally unfolded state is not possible under these conditions. 

Bovine OGDC and PDC both behave similarly to the E. coli PDC on incubation in 

GdnHCl, with activity being lost in the range 0 0.3M, again relatively low levels (Figure
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3.2A). For bovine PDC it has been demonstrated that this loss of activity is due to the 

dissociation of the El and E3 components from the E2/X core (West ef al., 1995). As 

this dissociation occurs in full at O.IM GdnHCl, it is clear that on dilution spontaneous 

reassociation of the subunits occurs. Both bovine complexes appear to be less resilient to 

dilution from GdnHCl incubation (Figure 3.2B). It is clear from Figure 3.6 that only a 

small percentage of the total secondary structural change has taken place after 

incubation of bovine OGDC and PDC in l.OM GdnHCl. It appears that after around 

15% of total secondary structure has been lost during GdnHCl incubation, activity can 

not be recovered on dilution. This loss of complex activity may be due to the misfolding 

of one of the subunits causing its lack of activity and thus inactivity of the whole 

complex. The unfolding and reactivation of the individual subunits of each of the 

complexes is investigated in detail in Chapter 4.
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4.1 Introduction

Following the unfolding and reactivation of OGDC and PDC by monitoring the 

effects of GdnHCl on overall complex activity and CD and fluorescence properties gives 

an overview of the effects on the individual components. Since the individual folded 

chains might be expected to expose more hydrophobic side-chains prior to association, it 

seems reasonable to assume that a multi-subunit assembly is likely to lead to 

stabilisation of each subunit. Other features such as loops which might offer a suitable 

target for proteolysis in vivo may also be concealed during the association process 

adding to the increased stability. Although in some cases dissociation precedes 

unfolding, quantitative data on the increased stability afforded by association are in other 

cases difficult to obtain because conditions promoting dissociation can lead to partial 

unfolding of the subunits themselves, particularly where tightly associated subunits, 

such as the bovine OGDC El and E2 components, are concerned. Work by Chan and 

Mosbach (1976) is in general agreement with the assumption made above. This has 

shown that single matrix-bound subunits are more susceptible to dénaturation than the 

same subunit assayed within the oligomeric complex, although the possibility that the 

matrix environment is complicating the interpretation of the results cannot be excluded. 

The 2-oxoacid dehydrogenase multienzyme complexes provide an interesting model to 

investigate this association stabilisation as the individual components can be assayed in 

the presence or absence of the rest of the complex.

In this chapter the stability of the individual components of the complexes are 

studied. The results for the component enzymes are compared between complexes. 

Isolation of E3 from various sources has been carried out to enable comparison of its 

deactivation and reactivation as free enzyme or in the intact complex. Results in this
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chapter are obtained using assays of the individual components of the complex and by 

monitoring CD and fluorescence changes after incubation in the presence of dénaturant.

4.2 Unfolding and reactivation of the El component

over the range 0.6-2. IM GdnHCl.

80

A clearer picture of the unfolding events which occur during whole complex 

inactivation can be obtained by monitoring the loss and regain of activity of the 

individual components of the complex upon treatment with dénaturant and subsequent 

dilution. Figure 4.1 shows the effects of GdnHCl treatment where the activity of 

complex-bound El from bovine heart OGDC is monitored. It can be seen that 98% of 

El activity is lost after incubation and assaying in 1 .OM GdnHCl. The ability to regain 

activity is progressively lost over the range 0.8-2.2M GdnHCl. The unfolding and

reactivation of El isolated from bovine heart PDC is shown in Figure 4.2. It has been

shown previously that there is no significant difference between unfolding and 

reactivation experiments performed on isolated and complex intact bovine PDC El (S. 

M, West, unpublished work). From Figure 4.2 it can be seen that all El activity is lost 

after incubation and assaying in l.OM GdnHCl and that reactivation upon dilution of 

dénaturant decreases progressively between 0.8 and 1.6M. Figure 4.3 shows similar data 

for PDC El from E. coli. El from this source appears to be marginally more sensitive to 

GdnHCl inactivation with no activity remaining after incubation and assaying in 0.75M 

GdnHCl. The ability to regain activity after incubation is progressively lost in this case
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Figure 4.1 Deactivation and reactivation of bovine heart OGDC E l

Bovine heart OGDC (1 mg/ml) was incubated at 4“C in 50mM potassium 

phosphate, pH 7.6 containing GdnHCl for 15 min before the extent of inhibition (with 

assay mixture containing the same GdnHCl concentration, ■ ) or reactivation (GdnHCl 

concentration reduced to below 0.03M by dilution, □) was assayed for El activity as 

outlined in Materials and Methods. In each case the changes are expressed relative to 

control sample from which GdnHCl was omitted. Results shown are averages of 3 

readings taken from different preparations differing by no more than plus or minus 5%.
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Figure 4.2 Deactivation and reactivation of bovine heart PDC El

El was isolated from bovine heart PDC and was incubated at 1 mg/ml at 4°C in 

50mM potassium phosphate, pH 7.6 containing GdnHCl for 15 min before the extent of 

inhibition (with assay mixture containing the same GdnHCl concentration, ■) or 

reactivation (GdnHCl concentration reduced to below 0.03M by dilution, □) was 

assayed for El activity as outlined in Materials and Methods. In each case the changes 

are expressed relative to control sample from which GdnHCl was omitted. Results 

shown are averages of 3 readings taken from different preparations differing by no more 

than plus or minus 5%. These data are in agreement with those of West etal. (1995).
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Figure 4.3 Deactivation and reactivation of E. coli PDC El

E. coli PDC (1 mg/ml) was incubated at 4°C in 50mM potassium phosphate, pH

7.6 containing GdnHCl for 15 min before the extent of inhibition (with assay mixture 

containing the same GdnHCl concentration, A) or reactivation (GdnHCl concentration 

reduced to below 0.03M by dilution, A) was assayed for El activity as outlined in 

Materials and Methods. In each case the changes are expressed relative to control 

sample from which GdnHCl was omitted. Results shown are averages of 3 readings 

taken from different preparations differing by no more than plus or minus 5%.
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4.3 Tryptic digestion of bovine OGDC

E2 core and conduct similar unfolding and reactivation experiments to those shown in

4.4 Unfolding and reactivation of E l

To investigate whether the other complex components are contributing to the 

stability of the bovine OGDC El component it was necessary to dissociate El from the

Figure 4.1. As the E l and E2 components of OGDC are tightly associated and there is

no published procedure to date to separate these components without dénaturation, a

proteolytic method was employed. Low levels of trypsin have been shown to promote a

rapid, highly-selective cleavage of El as can be seen in Figure 4.4. This cleavage
,

produces a large stable, 100 000 Mr fragment, designated E l , and a small peptide with 

an estimated Mr value of 10 000 which is not detected in the gel system used in Figure
■

4.4. Previous work has shown that the cleaved N-terminal region of bovine OGDC El

exhibits significant sequence similarity with corresponding sequences from the lipoyl 

domains of the E2 and protein X components of eukaryotic PDCs, (Rice et aL, 1992). 

This region of bovine OGDC El has been found to be highly immunogenic as it induces 

the majority of the antibody response to intact El. Rice et aL ( 1992) have also observed 

that tryptic digestion of bovine OGDC causes loss of overall OGDC activity due to the 

dissociation of the El and E3 components, although the El ' fragment retains full 

catalytic activity.

■Ï

%
,

Figure 4.5 compares the unfolding and reactivation of E l to El assayed in the 

intact complex. From these data it can be seen that the tryptic digestion of El does not 

affect the loss or regain of El activity. Both the undigested and digested El show a 

complete loss of activity after incubation and assaying in 1.2M GdnHCl at which 

concentration 50% of activity can be recovered on dilution of the dénaturant. As in the
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intact E l, ability to recover activity reduces progressively over the range 0.8-2.2M 

GdnHCl.

4.5 Investigating the effect of calcium on E l and E l of bovine heart OGDC
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To investigate whether the tryptic digestion of El to El affects the calcium 

requirements of the component, calcium was removed from the complex by dialysis 

against 3 x 100 volumes of 20 mM TrisHCl, pH 7.0 containing the calcium chelator 

EGTA at 0.1 mM. This procedure removed the calcium from the solution and no 

changes were observed when dialysis was carried out with 6 x 100 volumes of buffer 

over 6 days, although it is possible that tightly associated calcium ions remained with 

the complex. The dialysed OGDC was then selectively digested with trypsin as 

described in section 4.3. The digestion was found to proceed more slowly than that 

carried out with calcium present and trypsin levels were increased to 0.15% (w/w) to 

avoid incubating the complex at 30°C for longer than was necessary to minimise 

possible structural damage to other constituent enzymes. The results displayed in Figure

4.6 were carried out on intact or digested OGDC at a concentration of 1 mg/ml. In the 

digested complex the El and E3 components have been shown previously to dissociate 

from the complex while the smaller 10 000 Mr N-terminal fragment yielded by the
.tryptic digestion remains tightly bound to the core (Rice et al, 1992). From Figure 4.6 it 

can be seen that there is a distinct difference in Km from 4.4 xlO"^ to IxlO ^M when El 

activity is assayed in the presence and absence of calcium respectively. For E l' the 

change in Km is similarly distinct, from 8 xlO“5 to lxlO~3 M when assayed in the 

presence and absence of calcium respectively.



Figure 4.4 Selective digestion of OGDC E l with trypsin

Bovine OGDC was diluted to a final concentration of 1 mg/ml with 50mM 

potassium phosphate buffer, pH 7.6 containing 0.2 mM ThDP, 3 mM NAD**" and 1 mM 

MgCl2- Digestion of OGDC was initiated at 30°C by adding 0.1% (w/w) trypsin. 

Aliquots (20 //g)were withdrawn at the times indicated below, mixed with an equal 

volume of Laemmli sample buffer and resolved on a 10% (w/v) SDS-polyacrylamide 

gel. Lane M, low Mr standards (10 fig), lanes 1-8, OGDC digested with trypsin for 0, 1, 

3 ,5 ,7 , 10,20 and 40 min, and lane C control OGDC incubated for 40 min in the 

absence of trypsin.
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Figure 4.5 Comparing the deactivation and reactivation of bovine heart OGDC El 

and EX'

Intact or digested OGDC (1 mg/ml) was incubated at 4°C in 50mM potassium 

phosphate, pH 7.6 containing GdnHCl for 15 min before the extent of inhibition (with 

assay mixture containing the same GdnHCl concentration) or reactivation (GdnHCl 

concentration reduced to below 0.03M by dilution) was assayed for El activity as 

outlined in Materials and Methods. Intact El is represented by the symbols Band Qfor 

inhibition and reactivation respectively. El' is represented by the symbols #  and Ofor 

inhibition and reactivation respectively. In each case the changes are expressed relative 

to control sample from which GdnHCl was omitted. Results shown are averages of 3 

readings taken from different preparations differing by no more than plus or minus 5%.
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4.6 Comparing unfolding and reactivation of E2 from bovine heart and E. coli

Figure 4.7 compares the unfolding and reactivation of E2 from bovine heart PDC 

and E. coli PDC after incubation for 15 min with increasing concentrations of GdnHCl. 

The activity of the E. coli E2 was measured as described in Materials and Methods. The 

bovine heart PDC E2 data are taken from West etal. (1995) and activity was found to be 

the same when measured by two independent methods. The first is a. 

spectrophotometrical determination comprising a coupled assay employing 

phosphotransacetylase to generate acetyl-CoA from acetyl phosphate and Co A as a 

substrate for the E2-driven acétylation of free dihydrolipoamide to the S-acetyl 

derivative. This was detected in a colorimetric assay as the ferric acetohydroxamate 

complex. The second is the isotopic conversion of [1- acetyl-CoA to the radio 

labelled S-acetyl dihydrolipoamide intermediate which was then extracted into toluene 

as in the method used to measure E2 activity in E. coli PDC. While the data shown in 

Figure 4.7 compare isolated bovine PDC E2 to complex intact E coli PDC E2, it has 

been shown previously that in the bovine heart PDC the E2 has an identical response to 

GdnHCl-induced unfolding and reactivation whether it is within the complex or isolated 

(West, unpublished work). From Figure 4.7 it can be seen that E2 from these two 

sources has a similar response to GdnHCl incubation. In both cases inactivation of E2 is 

complete after incubation and assaying in l.OM GdnHCl. Reactivation of E2 is 1(X)% 

after incubation in I .OM GdnHCl but gradually decreases as the concentration of 

GdnHCl increases with 50% recovery occurring after 3.OM GdnHCl incubation in both 

cases. From the data it would appear that the bovine heart PDC E2 is marginally more 

sensitive to incubation with 3.0-5.0M GdnHCl.
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Figure 4.6A Comparing the effect of calcium ions on the activity of intact E l and 

E l

Calcium was first removed from the complex by dialysing against 3 x 100 

volumes of 20 mM TrisHCl, pH 7.0 containing 0.1 mM EGTA. Digestion was then 

carried out as described in Figure 4.4 while monitoring both whole complex and El 

activity as outlined in Materials and Methods. Whole or digested OGDC (both 1 mg/ml) 

were then assayed for E l activity without calcium present in solution A containing 1 

mM EGTA and with calcium present by adding a 5-fold molar excess of CaCl2 to the 

solution A. The concentration of 2-oxoglutarate was varied as shown in the figure. El 

results are represented by ■ (with calcium)and □ (without calcium). E l’ results are 

represented by #  (with calcium) and O (without calcium). The results shown are 

averages taken from 2 different preparations differing by no more than plus or minus 

7%.
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Figure 4.6B Lineweaver-Burk plot of E l and El' assayed in the presence and 

absence of calcium

These data are those represented in Figure 4.6A and the previous legend reports 

the procedures employed to obtain them. El results are represented by ■ (with calcium) 

and□ (without calcium). E l' results are represented by #  (with calcium)andO (without 

calcium).
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Figure 4.7 Comparing the deactivation and reactivation of bovine heart and E. coli 

PDC E2

E. coli PDC (1 mg/ml) was incubated at 4°C in 50mM potassium phosphate, pH

7.6 containing GdnHCl for 15 min before the extent of inhibition (with assay mixture 

containing the same GdnHCl concentration, A) or reactivation (GdnHCl concentration 

reduced to below 0.03M by dilution, A) of E2 was assayed isotopically via the 

conversion of [1-C acetyl-CoA to the radiolabelled S-acetyl dihydrolipoamide 

intermediate as outlined fully in Materials and Methods. In each case the changes are 

expressed relative to control sample from which GdnHCl was omitted. Results shown 

are averages of 2 readings taken from different preparations. The extent of inhibition (■) 

and reactivation (□) of isolated bovine heart PDC E2 results are taken from West etal. 

(1995).
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4.7 Deactivation and reactivation of the E3 component

Dihydrolipoamide dehydrogenase (E3) is the common component of the three 2- 

oxoacid dehydrogenase complexes oxidising pyruvate, 2-oxoglutarate and the branched- 

chain 2-oxoacids. Investigating the E3 component is particularly interesting because of 

the high degree of sequence homology observed between species for this component. 

Figure 4.8 shows the unfolding and reactivation of bovine heart and E. coli PDC E3. The 

assays have been performed in the presence of the whole complex. From this figure, it 

can be seen that both E3s behave similarly when incubated and assayed in GdnHCl. 

Inactivation proceeds gradually over the range of 0-1.2M GdnHCl with 97% of activity 

lost after incubation and assaying in 1 .OM GdnHCl. Figure 4.8 also shows, however, that 

there is a striking difference in the recovery of activity after GdnHCl incubation of the

E3 from these two sources. For the bovine heart E3, recovery of activity decreases 

progressively when the complex is incubated in 1.4-2.8M GdnHCl, with 50% of activity 

lost after incubation with I 8M GdnHCl. The recovery of E3 activity of E. coli PDC 

decreases progressively after incubation in 3.1-4.5M GdnHCl, with 50% of activity lost 

after incubation with 4.0M GdnHCl.

4.8 Isolation of the E3 component

To investigate the possible stabilising effect of the presence of the rest of the 

complex and to enable CD and fluorescence data to be collected, E3 was isolated from 

bovine heart and E. coli PDC. For the bovine heart complex, isolation was carried out as 

described in Materials and Methods. This method of heat treatment was adapted to 

isolate E3 from E. coli PDC. During purification of the complex it was found that a
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Figure 4.8 Deactivation and reactivation of bovine heart and E. coli PDC E3

Bovine heart OGDC or E. coli PDC (both 1 mg/ml) was incubated at 4°C in 

50mM potassium phosphate, pH 7.6 containing GdnHCl for 15 min before the extent of 

inhibition (with assay mixture containing the same GdnHCl concentration) or 

reactivation (GdnHCl concentration reduced to below 0.03M by dilution) was assayed 

for E3 activity as outlined in Materials and Methods. Inhibition results are represented 

by Band ▲ for bovine heart and E. coli E3 respectively. Reactivation results are 

represented by □ and A for bovine heart and E. coli E3 respectively. In each case, the 

changes are expressed relative to control sample from which GdnHCl was omitted. 

Results shown are averages of 3 readings taken from different preparations differing by 

no more than plus or minus 5%.
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4.9 Comparing the unfolding and reactivation of E3 within the complex to isolated 

E3

after GdnHCl incubation in the range 1.4-2.8M, a concentration at which the E3 assayed

96

I
considerable amount (ranging from 28-40%) of E3 activity remained in the supernatant

r-:.

of the final ultracentrifugation step. Figure 4.9 shows heat treatments carried out on this
"'I'

supernatant at 65-85"C and from this it can be seen that at 65"C the E3 still retains 1(X)% 

of its activity after a 30 min incubation. Increasing the temperature above this gradually 

increased the rate of activity loss of E3. Figure 4.10 shows the SDS PAGE analysis of
I

samples taken during the 65"C heat treatment. Using both the E3 activity assays and §

SDS-PAGE analysis, an incubation of 20-30 min at 65"C was chosen to isolate the E3
r

component from the supernatant although the treatment varied slightly between 

preparations and was monitored closely each time it was performed.

Figure 4.11 compares the unfolding and reactivation of isolated and complex 

bound bovine heart E3. In both cases it can be seen that when incubated and assayed 

with GdnHCl E3 activity is progressively lost between 0 and 1.2M GdnHCl with 97% of 

activity lost after incubation in 1.0 M GdnHCl. The recovery of activity after GdnHCl 

incubation is also very similar in both the isolated and complex intact data. Full activity 

is recovered on dilution after incubation in 1.4M GdnHCl. As the dénaturant 

concentration is increased to 2.8M GdnHCl recovery progressively decreases to 0% in

both cases. Figure 4.12 compares the unfolding and reactivation of E. coli E3 in the
î;i.

presence of the rest of the PDC complex to isolated E3. From this figure it is clear that 

there is a striking difference in the recovery of E3 activity on dilution after GdnHCl 

incubation between the two situations. When E3 recovery is assayed in the presence of 

the complex, recovery is 100% when incubation is at 3.0M GdnHCl and decreases to 0% 

after incubation in 4.5M GdnHCl. Isolated E. coli PDC E3 loses the ability to recover
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Figure 4.9 Monitoring the stability of the E. coli PDC E3 component during heat 

treatment

Bacterial PDC (2 mg/ml) was pre-incubated in 50mM potassium phosphate 

buffer, pH 7.6, containing 2.0M NaCl for 15 min on ice before heat treatment began. 

After the heat treatment at the stated temperature for the stated length of time, the 

sample was removed from the water bath and spun for 10 min at 15000g. The 

supernatant was then assayed for E3 activity as described in Materials and Methods. 

Heat treatments were carried out at 65°C (O), 70°C (A), 75°C (□), 80°C (#) and 

85°C(«).
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Figure 4.10 SDS-PAGE analysis of samples taken during the 65“C heat treatment 

o ïE .co li PDCE3

The supernatant from the final high speed centrifugation step of the E. coli PDC 

preparation was incubated in 50mM potassium phosphate buffer, pH 7.6, containing 

2.0M NaCl for 15 min on ice before the 65°C heat treatment began. At the times stated 

10/^g aliquots were withdrawn and mixed with an equal volume of Laemmli sample 

buffer and resolved on a 10% (w/v) SDS-polyacrylamide gel. Both lanes labelled M are 

low Mr standards (10/rg). Lanes 1-5 are supernatant containing E3 treated for 0, 5, 10, 

20 and 30 min.
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Figure 4.11 Comparing the deactivation and reactivation of isolated and complex 

bound bovine heart E3.

Bovine PDC (1 mg/ml) or purified bovine E3 (0.1 mg/ml) was incubated al 4°C 

in 50mM potassium phosphate, pH 7.6 containing GdnHCl for 15 min before the extent 

of inhibition (with assay mixture containing the same GdnHCl concentration, complex 

and purified E3 are represented by Hand #  respectively) or reactivation (GdnHCl 

concentration reduced to below 0.03M by dilution, complex and purified E3 are 

represented by □ and O respectively) was assayed for E3 activity as outlined in 

Materials and Methods. In each case the changes are expressed relative to control 

sample from which GdnHCl was omitted. Results shown are averages of two readings 

taken from different preparations differing by no more than plus or minus 5%.
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Figure 4.12 Comparing the deactivation and reactivation of isolated and complex 

bound E. coli E3.

E. coli PDC (1 mg/ml) or purified E. coli E3 (0.1 mg/ml) was incubated at 4“C 

in 50mM potassium phosphate, pH 7.6 containing GdnHCl for 15 min before the extent 

of inhibition (with assay mixture containing the same GdnHCl concentration) or 

reactivation (GdnHCl concentration reduced to below 0.03M by dilution) was assayed 

for E3 activity as outlined in Materials and Methods. Inhibition results are represented 

by #  and A for complex and purified E3 respectively. Reactivation results are 

represented by O and A for complex and purified E3 respectively. In each case the 

changes are expressed relative to control sample from which GdnHCl was omitted. 

Results shown are averages of 3 readings taken from different preparations differing by 

no more than plus or minus 5%.
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with the complex still recovers 100% of activity on dilution. The presence of the E2

component has also caused a minor decrease in susceptibility to GdnHCl unfolding of
.E3. From Figure 4.12, it can be seen that 50% of E3 activity is lost after incubation and

assaying in 0.2 and 0.3M GdnHCl for isolated and complex associated E3 respectively.

ïî

4.10 Comparing the unfolding and reactivation of E3 isolated from 3 different 

sources

Figure 4.13 shows the results of GdnHCl induced unfolding and subsequent 

reactivation of E3 isolated from bovine heart, yeast and E. coli. E3 from these 3 sources 

can be seen to behave in a similar way when incubated and assayed in GdnHCl, (A).

Activity is lost over the range 0-1.2M GdnHCl with 50% of activity lost at around 0.2M 

GdnHCl. The ability to regain activity after dilution from GdnHCl incubation is also lost 

over the same range for the different E3s, (B), this range being 1.0-2.2M GdnHCl, with 

50% of activity regained at 1.8, 1.7 and 1.5M GdnHCl for E. coli, bovine heart and 

yeast E3 respectively.
.'I

4.11 Monitoring changes in fluorescence and CD properties on GdnHCl induced 

unfolding of E3 from 3 different sources

1-

The unfolding of the isolated E3 components by GdnHCl was also monitored by 

changes in protein fluorescence and far-UV CD. The results are showing Figures 4.14 

and 4.15, in terms of the changes in these parameters relative to the total changes

occurring between 0 and 6M GdnHCl although in both cases very little change at all was
.detected between 4 and 6M GdnHCl. In each case the fluorescence emission maximum 

and the size of the ellipticity at 225nm indicated that E3 was completely unfolded in 6M 

GdnHCl. For the 3 E3s the changes in CD (reflecting the loss of secondary structure)
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Figure 4.13 Deactivation (A) and reactivation (B) of purified E3 from yeast, E. coli 

and bovine sources.

E. coli E3, ▲, (0.1 mg/ml), bovine E3, H, (0.1 mg/ml) or yeast E3, #,(0.2 

mg/ml) was incubated at 4°C in 50mM potassium phosphate, pH 7.6 containing GdnHCl 

for 15 min before the extent of inhibition (shown in A where assay mixture contained 

the same GdnHCl concentration as incubation) or reactivation (shown in B where 

GdnHCl concentration has been reduced to below 0.03M by dilution) was assayed for 

E3 activity as outlined in Materials and Methods. In each case the changes are expressed 

relative to control sample from which GdnHCl was omitted.
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Figure 4.14 Unfolding E3 from bovine heart, E. coli and yeast PDC as monitored 

by changes in circular dichroism

E. coli E3, A, (0.1 mg/ml), bovine E3, #  (0.1 mg/ml) or yeast E3, # , (0.17 

mg/ml) was incubated at 4°C in 50mM potassium phosphate, pH 7,6 containing GdnHCl 

for 15 min prior to the changes in ellipticity at 225nm being recorded as outlined in the 

Materials and Methods section.
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Figure 4.15 Unfolding E3 from bovine heart, E. coli and yeast PDC as monitored 

by fluorescence properties

E3 was incubated at 20°C in 50mM potassium phosphate, pH 7.6 containing 

GdnHCl for 15 min prior to measurement. In each case the changes are expressed 

relative to the total change observed between 0 and 6M GdnHCl. The excitation 

wavelength in each case was 290 nm and the emission wavelength was 350 nm. The 

concentrations of bovine heart (■), E. coli (A), and yeast ( • )  E3 were each 80/fg/ml.
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I
and fluorescence (reflecting the loss of tertiary structure as reported by the exposure of 

internally located tryptophan residues to the external solvent) occur over comparable 

ranges of GdnHCl incubation concentration (1-3 M). From Figure 4.15 it can be seen 

that the yeast E3 has increased stability to tertiary structural changes measured in this 

way with 50% of the total change occurring at 2.6M compared to L8M for both E. coli

106

and bovine heart E3.

4.12 Discussion

The results described in this chapter shed light on the properties of the 

component enzymes of PDC and OGDC from bovine heart, E. coli and S. cerevisiae.

Comparing the data for individual component assays to those for the whole complex 

shown in Chapter 3 (Figures 3.2 and 3.4), it is clear that loss of complex activity on 

GdnHCl incubation occurs at lower GdnHCl concentrations than the loss of activity of 

the most sensitive component enzyme. The El component catalyses the only irreversible 

reaction in the multistep activity of the 2-oxoacid dehydrogenases, the initial
'

decarboxylation of the 2-oxoacid, which is the rate limiting step of the overall reaction 

(Walsh et aL, 1976). While a common ThDP binding motif has been identified on all 

known El components (Hawkins etaL, 1989), sequences available for El of PDC and 

OGDC show little overall homology even when extracted from the same source 

(Darlison etaL, 1984). The quaternary structure of the El component is another 

difference between sources. The El components of bacterial and mammalian OGDC and 

Gram negative bacterial PDC are homodimers (Koike and Koike, 1976). In contrast, the 

E l component from eukaryotic and Gram positive bacterial PDC is composed of two 

non-identical subunits , a  and p, which form a  2^2 tetramers (Reed et ai, 1985).

Despite this the 3 El components investigated in this chapter show very similar 

unfolding and reactivation curves shown in Figures 4.1,4.2 and 4.3. To investigate the

I



.  .possible contribution of the complex core to the stability of the El component, the 

protease trypsin was used to cleave bovine heart OGDC El into 2 stable fragments. The

smaller Mf 10 000 fragment has been found to have significant similarities with 

equivalent lipoyl domain regions of protein X and E2 sequences of bovine heart PDC. 

The larger Mr 100 000 fragment, ET, is released from the core on cleavage, as is the E3 

component (Rice etaL, 1992). An observation worthy of further investigation is noted 

from Figure 4.4. The gradual appearance of two stable bands during the tryptic digestion 

of approx. 38 000 Da and 31 000 Da occurs concurrently with the disappearance of the 

ET fragment. This limited digestion of E l' apparently does not affect the El activity as 

this was routinely between 90 and 95% after a 10 min tryptic digestion, and at this time 

on Figure 4.4 it can be seen that the intensity of the E l' band has reduced to around half 

that of the 3 min sample. Figure 4.5 shows that E l' (or the E l' fragments) behaves 

identically to the undigested El component when unfolding and reactivation are assayed 

after GdnHCl incubation. The smaller product of the trypsin cleavage of bovine heart

OGDC has previously been found to be highly immunogenic and as yet the reason for 

this characteristic is uncertain. Figures 4.6A and 4.6B show data investigating whether 

this area of the protein may be involved in calcium control of the complex. Figure 4.6B 

shows that the Krn for El rises from 4.4 x 10“̂  to 1 x 10"^M when calcium is removed.
ÏFor E l' a similar rise of 8 x 10"  ̂to 1 x 10“̂ M is observed. These values indicate that 

calcium plays an important role in complex regulation as physiological levels of calcium 

are generally in the range 10-100/iM. However, it is unlikely, given these results, that 

the small fragment cleaved from El during trypsin digestion is involved in this 

regulation.

It has previously been shown that for bovine heart PDC, E2 loses the ability to

regain activity at substantially higher initial GdnHCl concentrations (2-4M) than the El
.and E3 components (West etaL, 1995). Figure 4.7 compares these data with similar 

measurements collected for E, coli E2 and here it can be seen that the core component is

'I
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found to recover activity after GdnHCl incubations over the range 2-5M with 50% of 

activity being recovered after a 3.CM GdnHCl incubation. As the E2 components form 

the structural core of the complexes, it is possible that this ability to regain activity from 

higher GdnHCl concentrations in vitro, may reflect a physiological role of the E2 

component, that of providing a framework which helps the other components to attain 

their native structure. To investigate whether there is a difference between reactivation 

results from isolated and complex associated components, purification of E3 from 

bovine heart and E. coli PDC were carried out. Figure 4.11 confirms that for bovine 

heart E3 there is no significant difference in reactivation between the isolated and 

complex associated sates. This is to be expected as it has previously been shown that the 

E3 component is completely dissociated from the bovine heart PDC complex after 

incubation in O.IM GdnHCl (West etaL, 1995). The method of purification of the E. 

coli PDC complex, in particular the Resource Q column step, indicates that the E3 

component in this complex is more tightly bound to the central core. Figure 4.12 shows 

the striking difference found between the isolated and complex associated forms of E3 in 

the E. coli PDC complex. Recently it has been shown that the binding to E2 occurs 

across the E3 dimer interface (Mande et al, 1996b). The structure of E3 from B. 

stearothermophilus present within the complex shows very little deviation from that of 

uncomplexed E3. Similarly, the E3 binding domain on E2 is almost structurally identical 

when either free or complexed with E3 (Mande et ai, 1996b). As both components 

appear to undergo little overall conformational change upon complex formation, 

recognition is thought to occur via a lock and key' rather than an 'induced fit' 

mechanism. From the data presented here it is clear that E3 is stabilised by association 

with the E2 core. This stabilisation is probably almost entirely due to electrostatic 

interactions between the binding domain and residues from the interface domain of both 

E3 monomers.
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From Figures 4.14 and 4.15 it can be seen that for E3, enzyme activity is lost at 

GdnHCl concentrations where no secondary or tertiary structural changes have occurred 

as monitored by far-UV CD and protein fluorescence respectively. This is consistent 

with the proposal that the precise architecture of the active site of an enzyme is much 

more easily perturbed than the overall structure (Tsou, 1986). The ability to regain 

activity on subsequent dilution of GdnHCl to below 0.03M has previously been shown, 

for bovine heart PDC, to correlate with the integrity of the secondary structure (West et 

al, 1995). Comparing Figures 4.13 and 4.14 it is evident that this is also the case for the 

three E3s investigated here. On incubation and assaying E3 in GdnHCl, 95% of activity 

is lost over the range Ü-0.8M. At these low concentrations of dénaturant no secondary 

structural changes are detected using circular dichroism. Recovery of activity on dilution 

decreases over the range 1-2M GdnHCl and Figure 4.14 shows that 47%, 52% and 60% 

of the secondary structure has been lost at 2.0M GdnHCl by yeast, E. coli and bovine E3 

respectively. Dilution after incubation above 2.2M GdnHCl does not result in any regain 

of activity suggesting that under these conditions E3 cannot refold after loosing around 

70% of its native secondary structure.

This correlation between regain of activity and loss of secondary structure has 

been reported previously for a number of other imported mitochondrial enzymes such as 

glutamate dehydrogenase (West and Price, 1988), fumarase (Kelly and Price, 1991) and 

citrate synthase (West et al, 1990). This is in contrast to the situation with some 

cytoplasmic enzymes, which appear to refold and reassemble with at least moderate 

efficiency after dénaturation (Jaenicke, 1987). Indeed in some cases comparing the 

mitochondrial and cytosolic isoforms of the same enzyme has revealed clear differences 

in recovery of activity after GdnHCl incubation. West and Price (1990) have shown that 

for aspartate aminotransferase while the cytosolic isoform can recover activity on 

dilution from incubation in 6M GdnHCl, the mitochondrial isoform looses the ability to 

regain activity on dilution over the incubation range 1.0-2.0M GdnHCl. Examples such
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as these led to the suggestion that the reason why many mitochondrial enzymes are 

significantly less stable than comparable cytosolic enzymes was associated with the 

unfolded state which is required for translocation of protein across the mitochondrial and 

other membranes. The requirement of chaperone proteins in the folding and assembly 

process of these imported mitochondrial proteins has also been suggested to help to 

explain their inability to refold from a completely unfolded state under the conditions 

used in vitro. More recently though, a number of mitochondrial proteins have been 

shown to reassemble after dénaturation, including bovine heart PDC E2 (De Marcucci et 

aL, 1995), suggesting that the ability to refold proteins in vitro may have less to do with 

the proteins cellular location than was once thought.
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CHAPTERS

INVESTIGATION OF THE E3 REFOLDING ENVIRONMENT

■1

I

I
3

f

‘.A



5.1 Introduction

The assembly of complexes as large as the 2-oxoacid dehydrogenases poses 

interesting questions as to how this process occurs in vivo. As all the integral 

polypeptides of the mammalian complexes are nuclear-encoded and are synthesised as 

larger-Mf precursors on cytoplasmic ribosomes (Hunter and Lindsay 1986; De Marcucci 

et aL, 1988; Jackman et al., 1990; Clarkson and Lindsay 1991), it is clear that import 

across both mitochondrial membranes and proteolytic cleavage of the extended 

presequences must occur before assembly into mature complexes. The precursor form of 

E2 from OGDC has been found not to be recognised by antibodies against native E2, 

suggesting that the precursor is present in the cytoplasm in an unfolded state with no 

conformational similarity to the mature E2 (Hunter and Lindsay, 1986). It has become 

clear that several additional factors are involved in maintaining this unfolded state in the 

cytoplasm, presentation and translocation of the mitochondrial membranes and attaining 

functional maturity. These factors include mitochondrial receptors, proteases and 

chaperone proteins. In the cytoplasm, chaperone proteins are responsible for newly 

synthesised subunits remaining in a translocation-competent state for delivery to the 

mitochondrial surface. The mitochondrial chaperone protein hsp70 appears to have a 

dual role in facilitating the movement of the translocation intermediate through 

mitochondrial contact sites into the matrix and then presenting this intermediate to the 

hsp60 system which is implicated in the functional maturation of the intact complex 

(Gething and Sambrook, 1992). Stuart et al . (1994) have recently shown that in 

Saccharomyces cerevisae folding of the mitochondrial precursors in vivo is mediated by 

sequential interactions with a series of chaperones which are homologues of the E. coli 

dnaK, dnaJ, grpE, groEL and groES proteins. Although chaperone proteins are believed 

to be involved in assisting the folding of the individual components of the 2-oxoacid 

dehydrogenase complexes, the association of the folded subunits is thought to be an
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entirely spontaneous process, as is demonstrated by the reversibility of the loss of 

complex activity after dilution from low concentration dénaturant incubations (Figures

3.2 and 3.4).

To investigate the potential interaction between chaperone proteins and the 2- 

oxoacid dehydrogenase complexes, this chapter is involved in examining the effect of 

groEL and groES on the refolding of the purified E3 component from 3 different 

sources. Also in this chapter, the requirement of the presence of non-covalently bound 

E3 cofactor, FAD, for optimal renaturation is investigated. The effect of its 

concentration and time of addition to the refolding protein are reported. In addition, the 

effects on the refolding yield of protein concentration and the inclusion of a reducing 

agent in the refolding buffer have been studied.

5.2 Investigating the effect of the FAD cofactor on the E. coU E3 refolding yield

Pilot studies revealed at an early stage that no significant recovery of bacterial E3 

activity was obtained without the addition of exogenous FAD. Figures 5.1 and 5.2 

illustrate the effects of FAD at various concentrations on the E. coli E3 refolding 

process. Figure 5.1 shows that there is an increase in the regain of activity on inclusion 

of a twofold molar excess of FAD to the refolding buffer, in addition to the endogenous 

FAD present. This regain appears to be maximal at a 5 molar excess of FAD as 

increasing the concentration further did not produce a significantly higher yield of E3 

activity. Figure 5.2 shows a time course of E. coli E3 recovery after GdnHCl-induced 

unfolding. It can be seen that the activity recovers steadily between 0 and 120 min and a 

maximum of 24% of activity is recovered compared to a non-denatured control 

incubated at the same temperature. No recovery of activity was detected with 

endogenous FAD alone under these conditions.
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Figure 5.1 Investigating the effect of FAD concentration on the refolding of E. coli 

E3

E. coli E3 was unfolded by incubating for 15 min at 4°C in 50mM potassium 

phosphate, pH 7.6 containing 4M GdnHCl. Refolding was initiated by 60-fold dilution 

into 50mM potassium phosphate pH 7.6, containing the stated added molar excess of 

FAD. E3, final concentration after dilution lO/tg/ml, was assayed as described in 

Materials and Methods after 180 min of incubation at 25°C after dilution.
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Figure 5.2 Comparing reactivation of E. coli E3 in the presence and absence of 

FAD

E, coli E3 was unfolded by incubating for 15 min at 4°C in 50mM potassium 

phosphate, pH 7.6 containing 4M GdnHCl. Refolding was initiated by 60-fold dilution 

into 50mM potassium phosphate pH 7.6 with (■), and without (gD, a 5 x molar excess of 

FAD. E3, final concentration after dilution lOjug/ml, was assayed as described in 

Materials and Methods.
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5.4 Chaperone involvement in the E3 refolding process

Table 5.1 displays the results of various refolding experiments investigating the 

effect of a number of agents on the yield of E3 activity after GdnHCl-induced unfolding. 

Attempts to refold yeast and bovine E3 under this selection of conditions have proved to

115

5.3 Investigating the effect of GdnHCl concentration on the ATPase activity of 

groEL

■

Before investigating the effect of GroEL on the refolding of E3, Figure 5.3 

shows the results of an experiment to determine what effect if any the residual GdnHCl 

concentration, after dilution, would have on the ATPase activity of GroEL. ATPase 

activity readings were taken for GroEL incubated in a range of GdnHCl concentrations 

between 0-0.7M. From Figure 5.3 it can be seen that there is a steady decrease in the 

ATPase activity of GroEL as the concentration of GdnHCl incubation increases in this 

range with no remaining activity detectable at 0.7M. The final concentration of GdnHCl 

after dilution in the E3 refolding experiments is 0.07M at which, it can be seen from 

Figure 5.3, 94% of GroEL ATPase activity remains. From this determination, it was 

concluded that the residual GdnHCl concentration would not significantly interfere with 

potential E3 refolding by the chaperone protein.

â.

be unsuccessful. E. coli E3 refolding, however, can be achieved routinely to varying

degrees from a completely unfolded state. Surprisingly, ESA was able to promote 

similar limited E3 refolding at the same protein concentration as GroEL, GroES and 

ATP. This effect is probably due to the external hydrophobic surface of BSA interacting 

with individual E3 molecules, effectively reducing the chances of aggregation occurring 

between folding E3 monomers. FAD, in conjunction with various combinations of the 

other agents, can be seen to be an important factor in E3 refolding, increasing the yield
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Figure 5.3 Changes in the ATPase activity of groEL in the presence of GdnHCl

GroEL (0.7 mg/m!) was incubated in 50 mM triethanolamine containing 10 mM 

magnesium acetate and the corresponding GdnHCl concentration (pH 8.0) for 15 min at 

20‘'C before the ATPase assays were carried out as described in Materials and Methods. 

The kcat values calculated are expressed here as a percentage of the value for groEL 

incubated under the same conditions with no GdnHCl. Results shown are the averages of 

two sets of data taken from different groEL preparations.
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Table 5.1 Investigation of the refolding of E, coli, yeast and bovine E3

E3 was unfolded by incubating for 15 min at 4°C in 50mM potassium phosphate, 

pH 7.6 containing 4M GdnHCl. Refolding was initiated by 60-fold dilution into 50mM 

potassium phosphate pH 7.6 containing the stated additions. The final concentration of 

E3 after dilution was 15/<g/ml in each case. A 4-fold molar excess of GroEL was present 

where stated so that four 14-mer GroEL molecules were present for each refolding E3 

subunit. Similarly a 4-fold molar excess of GroES 7-mers were present where stated. 

FAD and FMN were present at 5-fold molar excess compared to E3 monomers. ATP 

was present at 3//M, a 5 fold molar excess compared to GroEL 14-mers. BSA was 

present at 1.0 mg/ml, a concentration identical to that of the GroEL. DTT was present at 

1 mM. After 180 min refolding at room temperature E3 was assayed as described in 

Materials and Methods and the results displayed here are relative to a non-denatured 

control sample incubated in the same way. Figures shown are averages of 3 runs for 

each set of refolding conditions for E. coli using E3 from different preparations and 

results were all within +/- 10% of the stated values.
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Additions to refolding buffer Reactivation at 180 min (%)

E, coli Yeast Bovine

None 0,0 0.0 0.0

GroEL, GroES, ATP 15.2 0.0 0.0

BSA 14.1 0.0 0.0

FAD, GroEL, GroES, ATP 61.0 0.0 0.0

FAD, BSA 41.5 0.0 0.0

FAD, GroEL 44.2 - -

FAD, GroEL, ATP 51.2 0.0 0.0

DTT 15.5 - -

BSA, FAD, DTT 62.0 - -

FMN 0.0 0.0 0.0
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from 15.2 to 61% when included in the GroEL, GroES and ATP experiment. These 

results support the idea of FAD creating a folding nucléation site at the N-terminal FAD 

binding site on E3. FMN, however, was unable to replace FAD in promoting the E3 

refolding process.

5.6 Effect of varying the concentration of E3 on the refolding yield

119
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5.5 Effect of time of FAD addition to the refolding E3

■.■1

As inclusion of FAD in the refolding buffer has been shown to have a major

influence on the refolding yield of E. coli E3, the time of its addition after dilution has

been investigated. Figure 5.4 shows the results of this experiment where FAD (5-fold

molar excess) has been added at between 0 and 75 min after dilution from 4M GdnHCl.

From this figure, it is apparent that the recovery at 180 min, when FAD is added at 10 or 
. .20 min is at a similar level to the 0 min value, 24%. By 30 and 40 min the recovery has 

fallen to 16 and 7% respectively at 180 min. No recovery is detected when the FAD is

added to the refolded mixture at 75 min and the activity monitored for 240 min.

Figure 5.5 shows the results of E3 refolding experiments where the concentration 

of E3 has been varied between 0.5 and 30 /rg/ml. In each case FAD was included in the 

refolding buffer in a 5-fold molar excess with respect to E3 monomers. Figure 5.5 shows 

clearly that for E3 the concentration of the refolding protein influences the yield of 

activity regain after 180 min. At the E3 concentrations investigated the regain of activity 

varied between 24 and 36% of a non-denatured sample incubated in otherwise the same 

conditions. The optimum concentration from these data, with 36% reactivation, occurred 

with an E3 concentration of 20pg/ml.
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Figure 5.4 Investigating the effect of the time of FAD addition on the refolding of E.

coU E3

E, coli E3 was unfolded by incubating for 15 min at 4“C in 50mM potassium 

phosphate, pH 7.6 containing 4M GdnHCl. Refolding was initiated by 60-fold dilution 

into 50mM potassium phosphate pH 7.6 and E3 assayed as described in Materials and 

Methods at the times shown above after the addition of 5 times molar excess of FAD in 

each case. The final concentration of E3 after dilution was 5/<g/ml. FAD was added 0 

(#), 10 (#), 20 (A), 30 (□), 40 (A) and 75 (O) min after dilution out of GdnHCl.
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Figure 5.5 Investigating the effect of E3 concentration on reactivation yield

E. coli E3 (2 mg/ml) was unfolded by incubating for 15 min at 4°C in 50mM 

potassium phosphate, pH 7.6 containing 4M GdnHCl. Refolding was initiated by the 

appropriate dilution (minimum 60-fold) to give the stated E3 concentrations in buffer 

containing a 5 fold molar excess of FAD in each case. E3 activity was assayed at 180 

min as described in Materials and Methods. The results shown are an average of 2 sets 

of data taken from different E3 preparations.
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5.7 Investigating FAD release during E. coli PDC E3 unfolding

To investigate at what point during GdnHCl-induced unfolding FAD is released 

from E3, incubation was first carried out in a range of GdnHCl concentrations for 15 

min at 4“C. Centrifugation using Centricon tubes with a 10 000 Mr cut-off enabled the 

released FAD in each of these incubations to be separated from that still associated with 

E3. Fluorescence readings taken on the run through from the Centricon spins are shown 

in Figure 5.6. From the trace it can be seen that there is a rapid increase in fluorescence 

in the samples obtained from the 1.5-2.4M GdnHCl incubations, indicating that it is in 

this range in which FAD is released from E3 unfolded under these conditions. Figure 5.7 

shows the results of far-uv CD scans on E3 incubated with 0-3M GdnHCl to investigate 

FAD release in this way. From these results it is evident that there is little change 

between the OM and l.OM GdnHCl scans, indicating that no FAD has been released 

after incubation in l.OM GdnHCl. Between l.OM and 3.0M GdnHCl both the amplitude 

and the wavelength of the peak are observed to change with the largest change in 

amplitude occurring between 2.5M and 2.6M GdnHCl incubations. The peak 

wavelength shifts from 370 nm to 380 nm for OM and 3.0M GdnHCl incubations, 

respectively.

5.8 Structural changes on dilution from 4M GdnHCl incubation

Figure 5.8 shows the fluorescence scans of E. coli E3 after three different 

treatments. Trace A shows the native protein, trace B the denatured protein in 6.0 M 

GdnHCl and trace C 10 min after dilution out of 6.0 M GdnHCl. From this figure it is 

clear that the fluorescence scans of denatured and native E3 are distinct. The denatured
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Figure 5.6 Fluorescence studies to investigate the GdnHCl concentration at which 

FAD is released from E3

E3 (1 mg/ml) purified from E. coli was incubated for 15 min at 4°C at the 

appropriate GdnHCl concentration. These solutions were then spun for 30 min at lOK 

using Centricon tubes with a 10 000 Mr cut-off, allowing free FAD to be separated from 

FAD remaining bound to E3. Fluorescence readings were then taken of this run-through, 

exciting at 450 nm and measuring emission at 535 nm, with the excitation time being 

limited to 1 sec to reduce the occurrence of photobleaching. Results are expressed as a 

percentage of the changes that occurred between 0 and 4M GdnHCl.
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Figure 5.7 CD scans investigating the dissociation of the flavin group firom E. coU 

E3

E3 (0.75 mg/ml) purified from E. coli PDC was incubated for 15 min at 4°C at 

the appropriate GdnHCl concentration. Scans were then taken between 310 nm and 500 

nm with a 0.5 cm pathlength.
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protein shows a peak at 352 nm of 74 arbitrary units, while the native protein shows a 

peak at 337 nm of 87 arbitrary units. The denatured sample diluted out of GdnHCl 

shows an intermediate peak at 341 nm with an amplitude of 78 arbitrary units, 

suggesting that while the protein has not reached its native state, some folding, or 

possibly aggregation, has occurred. To follow the rate of this structural change, Figure

5.9 shows a time-drive experiment where the intensity of fluorescence at 337 nm is 

monitored in three E3 samples. Trace A shows native E3, trace B denatured E3 in 6.0 M 

GdnHCl and trace C denatured E3 diluted out of GdnHCl at time -5 sec. The figure 

shows that the majority of the change occurs while the dilution and mixing of the sample 

is taking place (between -5 and 0 sec), although during the first 60 sec a continued 

increase in fluorescence intensity occurs. After this time no further change is detected up 

to 90 min. Figure 5.9 illustrates the rapidity of the folding events which are occurring 

upon dilution of the denatured E3.

Light scattering is a useful tool in detecting changes in particle size. 

Oligomerisation or aggregation can be followed by monitoring increases in the light 

scattered by a given sample over time. Emission readings are detected at the same 

wavelength, here 350 nm, but perpendicular to the excitation beam. Table 5.2 shows 

light scattering results for E. coli E3 denatured at 4°C for 15 min in 4M GdnHCl. From 

these data, it can be seen that there is a distinct difference between the native and 

denatured readings. Over the 2 h of monitoring the denatured E3, no significant light 

scattering change was detected indicating that aggregation did not occur.
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Figure 5.8 Fluorescence scans of E. coli E3

Trace A shows native E. coli E3. Trace B shows denatured E. coli E3, unfolded 

by incubating for 15 min at 4°C in 50mM potassium phosphate, pH 7.6 containing 6M 

GdnHCl. Trace C shows E, coli E3, unfolded in GdnHCl in the same way as trace B, 

then refolding was initiated by a 60-fold dilution into the same buffer without GdnHCl. 

Trace C has been taken 10 min after dilution from GdnHCl. The final concentration of 

E3 in each case was 15 /^g/ml. The excitation wavelength was 290 nm and the samples 

were scanned between 310 and 400 nm. The slit widths during this experiment were set 

at 10 nm.
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Figure 5.9 Fluorescence time-drive following the structural changes on dilution of 

E. coli E3 from 6 M GdnHCl

Trace A shows native E. coli E3. Trace B shows denatured E. coli E3, unfolded 

by incubating for 15 min at 4“C in 50mM potassium phosphate, pH 7.6, containing 6M 

GdnHCl. Trace C shows E3 denatured in the same way, then diluted into the same 

buffer without GdnHCl at time -5 sec. The final concentration for each trace was 15 

//g/ml. The excitation wavelength was 290 nm and readings were taken of each sample 

at 337 nm at 1 sec intervals for 5 min. The slit widths during this experiment were set at 

10 nm.
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Time (min) 350 nm emission 

(arbitrary units)

0 202

1 195

2 193

5 191

10 184

45 186

90 191

105 190

120 190

Table 5.2 Light scattering data from E, coli E3 after GdnHCl incubation

E. coli E3 was unfolded by incubating for 15 min at 4°C in 50mM potassium 

phosphate, pH 7.6 containing 4M GdnHCl. Dilution by 60-fold was carried out at 0 min 

to give 80 /fg/ml E3. Light scattering readings were taken at the times stated with the 

excitation and emission wavelengths at 350 nm and both slit widths at 2.5 nm. Native E3 

under the same conditions gave a reading of 284 units.

131

■

'A

.s

s
H-

■-I



5.9 Discussion

132

The E3 component is a member of the pyridine nucleotide disulphide 

oxidoreductase family, a group of homodimeric FAD-dependent enzymes with 

considerable versatility. Crystal structures determined for E3 from Azotohacter 

vinelandii (Schierbeek a/., 1989; Mattevi etaL, 1991), Pseudomonas putida and 

Pseudomonas fluorescens (Mattevi etaL, 1992) reveal the peculiar arrangement of the 

E3 dimer, which has a characteristic butterfly-like shape. The structure of E3 comprises 

four distinct domains: an FAD binding domain, an NAD binding domain, a central 

domain and an interface domain. The FAD and NAD binding domains have similar
■ :

topologies, suggesting that they may have evolved from the duplication of a common 

ancestor. The catalytic centre has been found to be located at the interface between the 

two chains, with one molecule of FAD bound to each subunit in an extended 

conformation. Figures 5.1 and 5.2 show the effect of additional FAD in the refolding 

buffer on the regain of E3 activity.

The requirement of additional FAD for any detectable regain of activity for E. 

coli PDC K  refolding from a completely unfolded state under these conditions is very

i.

interesting. One explanation of this finding is that the binding of FAD is stabilising

segments of secondary and tertiary structure around the FAD binding site, thus enabling 

other areas away from this site to proceed along the folding pathway. The fluorescence 

scans shown in Figure 5.8, however, show that some folding is taking place in the 

absence of additional FAD. The light scattering data in Table 5.2 suggest that this 

fluorescence quenching is not caused by E3 aggregation although even after 90 min the 

native state has not been reached and from Figure 4.12 it can be seen that the ability to 

regain activity is lost after incubation and dilution from much lower GdnHCl 

concentrations. The effect of additional FAD on the refolding of yeast and bovine E3 has 

also been investigated. In Table 5.2, it is reported that both with and without additional

I
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FAD no activity is recovered after 180 min with either bovine or yeast E3, Figures 5.6 

and 5.7 show experiments designed to determine at what GdnHCl concentration the 

FAD is released from E3 using visible and near-uv adsorption spectra and fluorescence 

data. CD spectra of flavoproteins in the visible and near ultraviolet flavin light- 

absorbing region are very characteristic and have previously shown a good correlation 

between the type of CD spectrum observed and the particular function of that 

flavoprotein (Edmondson and Tollin, 1971 ; D'Anna and Tollin, 1972; Van Berkel and 

Millier, 1989). From Figure 5.7, it is observed that under the conditions used the FAD 

appears to be released when incubated in 2.0-2.6M GdnHCl. This correlates well with 

the steepest change in the fluorescence intensity measurements shown in Figure 5.6 

which occurs over the range 1.5-2.5M GdnHCl.

The E. coli chaperone protein GroEL and its mitochondrial and plastid 

homologues have been implicated in playing central roles in the folding and/or assemblv 

of a variety of different polypeptides (Martin et ui, 1991 ; Fisher, 1992; Zheng et al., 

1993; Wynn et ai, 1994). The exact mechanism of chaperon in mediated protein folding 

still remains to be fully elucidated. GroEL, however, possesses a weak ATPase activity 

(kcat ^ O.l sec”  ̂ per GroEL subunit) and it has been demonstrated that ATP hydrolysis 

is involved in the folding and/or release of polypeptide chains from the GroEl. protein, 

usually in conjunction with its co-chaperonin GroES. Figure 5.3 shows that the low level 

of GdnHCl which is present after dilution out of the 4.0M incubation (maximum 0.07MI 

has only a very minor effect on ATPase activity reducing the value to 94% of the native 

100% value. This effect has not been taken into consideration when calculating the 

chaperone-assisted refolding yields shown in Table 5.1. From Table 5.1 it is observed 

that the addition of groEL, groES and ATP to the refolding buffer gives a refolding yield 

of 15.2% for the E. coli E3. To investigate if this effect was specifically mediated by the 

added chaperone proteins, or due to the increased protein concentration in the refolding 

buffer, regain of activity was also measured with BSA in the refolding buffer to give the
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, 1

same protein concentration without the potential chaperone action. The inclusion of 

BSA gave a 14.1% regain of activity, suggesting that the increased protein 

concentration, rather than the chaperone activity of groEL and groES, was responsible 

for the activity regained under these refolding conditions. However, a difference is 

observed when comparing the chaperone and BSA refolding buffers when FAD is 

included. Table 5,1 shows that when FAD is included the refolding yields are 61.0% and 

41.5% for the chaperone and BSA refolding buffers respectively. It appears that under 

these refolding conditions GroEL and GroES are causing the regain of more activity 

than can be explained by the effect of increased protein concentration in the refolding 

buffer, suggesting chaperoning was taking place under these conditions. From these data 

the significance of groES in the E3 refolding process is difficult to identify. Table 5.1 

also shows that FMN does not induce refolding unlike FAD. This implies that the entire

I
J

I

FAD cofactor, not only the isoalloxazine and ribitol portions, have a role to play in 

stabilising structural elements of the E. coli E3, presumably around the FAD binding site 

on each monomer.

All attempts to refold the yeast and bovine E3 after GdnHCI-induced unfolding 

have been unsuccessful as shown in Table 5.2. It is not clear why this is so. although the 

refolding of yeast and bovine E3 may well be possible in vitro under different

conditions. The inclusion of 1 mM DTT wdth FAD in the refolding buffer gave a 62*7

recovery of activity after 180 min as shown in Table 5.1. This suggests that the 
.oxidation state of the refolding buffer is another important factor affecting the yield of 

regained activity and that the chaperone experiments described here may not have been I
carried out under ideal conditions.
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