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SUMMARY:

I

Muscular contraction is associated with low frequency transverse 

mechanical waves called acoustic myograph (AMG). It can be recorded 

by microphones and accelerometer. The orighi of AMG is thought to be 

due to the lateral movement of the muscle as a whole. The signal is 

implicated in many reports as having great potential as force indicator 

during muscular contraction and could be use clinically in distmguishing 

healthy and disease, and evaluate force in muscles normally with little 

clinical access.

The aim of this series of investigation was to assess the feasibility 

of using AMG as a force indicator, especially in situations where direct 

force measui'ement is not practical and in FES applications as fatigue 

indicator. Attempts were made to clarify AMG signal characteristics and 

assess the possible parameters wliich could be deployed to describe the 

AMG signal.

Two series of experiments were carried out: one on voluntary

contractions of human quadriceps and die otlier on stimulated contractions 
..................................

of rabbit anterior tibialis. Strain gauges were used to measure force and 

accelerometers were used to record AMG signal from the sldn surface of 

the thigh on human and from the muscle surface of rabbit anterior tibialis. 

The AMG signal was recorded between 0.5Hz and wideband frequency 

and sampled at 512Hz. AMG signal amplitude was calculated by both the 

rectify-integrated and room-mean-square methods. Frequency content of 

AMG signal was analyzed by Fast-Fourier-Transfbrm method.

The studies carried out on human quadriceps were to: 1) Locate the 

possible optimal recording site for AMG. 2) Investigate the relationship
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between AMG and force production during isometric constant force and

varying force contractions. 3) Study the AMG-force relationship during

sustained and intermittent contractions till fatigue. The study performed
.

on rabbit anterior tibialis were to: 1) Investigate the AMG signal 

characteristic with changmg muscle length both under twitch and tetanic 

contractions. 2) Examine the AMG signal change with stimulation 

frequencies both at fixed and varied muscle lengths. 3) Assess the 

possible association between force and AMG in stimulated contraction till

I

fatigue by both continuous and intermittent stimulation. 4) Study the 

influence of fatigue on AMG-force relationslnp under different stimulation 

frequencies.

Results shown that there is no single optimal position for AMG 

recording on human quadriceps. But high AMG signal intensity were 

recorded at the mid and proximal-lateral region. The data presented m this 

report collaborated a linear relationship between AMG and force level in 

isometric contractions of human quadriceps muscle. This close link 

between AMG signal intensity and force production is also present hi 

fatigue hiduced by sustained muscle contractions but not by inteimittent 

contractions.

The data obtained fi-om rabbit tibialis anterior muscle showed less 

systemic relationships between AMG and force production. AMG signal 

intensity did not display a close relationship with force under condition of 

changing muscle length, stimulation frequency and fatigue. There were no 

significant change in AMG signal median frequency during voluntary 

contractions and AMG signal recorded durhig stimulated contractions 

were dominated by stimulation fi equency.

The good congélation between AMG and force m voluntary

II



contractions, shows promise as an indicator of voluntary force from 

isometric contractions and fatigue by sustained contractions. The possible 

clinical use of AMG could be in the area of assessing force output from 

muscles with limited access, such as paraspinal muscle and facial muscles. 

It could also be used hi conjunction with EMG to assess the state of the 

muscle function in health and disease and muscle mechanic hi trahiing.

The use of AMG as force indicator in sthnulated contractions, such 

as FES applications, requhes further investigation. It did not appear to 

relate strongly to force output under conditions investigated. Alternative 

properties of AMG signal, such as power content in specific frequency 

range, should be investigated further for FES applications. The AMG 

median frequency certainly is not a good force indicator under all 

conditions tested in the experiment.

Ill
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CHAPTER 1

GENERAL INTRODUCTION
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One of the distinctions between plants and animal kingdom, is 

muscular movement. Muscular movement requires precise control of 

muscle to generate the right amount of tension with right muscle lengtli 

and/or velocity of change in muscle length, for the desired effect and 

the co-ordination between different muscles in the body. Movement 

and posture maintenance involving skeletal muscle control can 

effectively be carried out by the vast majority. Most of animals and 

human are, in fact, so good at this type of muscular control, that some 

of the action and strategies of movement does not enter into their 

conscious thinking.

However, there are people, with malfunction / damage to skeletal 

muscle or their innervation, who cannot attempt even the simplest tasks 

involving skeletal muscle without some external aids. The Functional 

Electrical Stimulation (FES), involving the application of electrical 

current to elicit contraction, can bring about movements. It can restore 

some features of normal motor activity to paralysed persons. This 

method is one of the external aids currently in use to help the 

paraplegics, ie people with injuries to portion of the spinal cord 

controlling some skeletal muscles, to perform shnple tasks such as 

feeding, standing up and sitting down and walking.

THE PROBLEM OF FATIGUE: FES has limited success in 

movement reconstruction in paraplegics (Pedotti & Ferrarin 1992). 

However, there are problems associated with this method. The bio

engineering systems currently available cannot detect the onset of 

fatigue, when the skeletal muscle is being repeatedly stimulated by 

electrical current. Prolonged stimulation can cause the skeletal muscle 

to fatigue and thus produce less force to perfomi tasks. This is

1



potentially dangerous in case of walking and standing, when the 

patient could not support his/her own weight. This raised the need for a 

detection system for the fatigue state of skeletal muscle, to prevent 

over-stimulation hiduced muscle damage and fatigue.

THE FEED BACK SIGNAL: A  detection system for fatigue 

should utilise a signal closely associated with the state of fatigue. There 

are few potential candidates, one of which is tlie force produced by 

electrical stimulation. In the fatigue state, force generation is known to 

fall with progressive fatigue. This decline in force is a good candidate 

for the detection system. Forces are often measured by means of a 

strain gauge, however there are cases where this type of force 

measui’ement is not appropriate, such as during walking or standing. An 

alternative must then be sought.

Electromyography (EMG) is one possible candidate. The 

amplitude of the signal can be employed to determine the state of 

muscle activation with respect to patterns and performance. The EMG 

signal can be analyzed on-line by computer systems, and in the state of 

fatigue the rectified and integrated EMG (iEMG) signal tends to 

mcrease in relation to the force of contraction. The ratio of iEMG- 

Force could be used for mdicating fatigue. However, EMG signal 

cannot be a reliable mdicator due to tlie interference of the electrical 

stimulation and the possible movement of electrodes during a 

contraction. The frequency content of EMG signal might be an 

alternative. The power spectrum, the relative proportion of energy 

content at each frequency, shifts towards low frequencies as fatigue 

develops. Unfortunately, the change in frequency spectrum of EMG, 

thought to be capable of indicating fatigue, was observed before force



reduction and remained unchanged with further fall in force. It is 

possible that the frequency change is a consequence of muscular 

activity and not associated directly with the development of fatigue 

(Edwards 1981). Thus, EMG as a fatigue indicator is of limited use.

There have been some recent interest in the usage of Acoustic 

Myography (AMG) as an mdictor of fatigue (Barry, Geirmger & Ball 

1985). Usmg this method a mechanical signal can be recorded with no 

potential interference from electrical stimulation. The AMG signal is 

thought of as the mechanical coimterpart of EMG, it can be used to 

reflect the muscle performance (ie. force and velocity of a contraction) 

more than with EMG. This is especially useful in the case of 

myopathies, where a large electric signal may be accompanied by only

I
a small mechanical response, hi order to assess the possibility of usmg 

AMG signal as mdicator of force, questions had to be asked in regards 

to characteristic of AMG signal and the possible factors influencmg its 

generation. The series of study presented in this report will further 

clarify AMG characteristic in normal human voluntary contractions of

the lower extremities, hi addition, investigation of AMG signal

characteristics during electrical sthnulation of skeletal muscles m 

rabbits, can provide a model to relate to the behaviour of muscle hi 

both fresh and fatigued state.

In order to improve the quality of life with FES, individuals with 

damaged skeletal muscle system, understanding the essential elements 

of normal skeletal muscle function is required. Most of musculai’ 

activities, once learned at childliood, are executed by most of us 

without conscious thinking. Just how does the brain function to bring 

about this precise control, in deciding how hard to giip a tooth brush



Figure 1. Diagrammatic representation of a motor unit, with motor 

neuron and the associated muscle fibres, (modified fi-om Basmajian & 

De Luca 1985)
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when cleaning teeth and how fast or slow should the muscle act when 

combing hair?

1.1 SKELETAL MUSCLE FUNCTION

To understand the function of skeletal muscle, one must first 

comprehend their structures. Skeletal muscle contains many fibres, ie. 

hundreds of thousands in a human biceps muscle or gastrocnemius 

muscle. Normally muscle fibres do not act individually but in groups, 

or motor units. A motor unit is defined as; a motoneuron and the set of 

muscle fibres innervated by it. This is shown diagrammatically in figure 

1. The number of fibres in a motor units may vary fi*om muscle to 

muscle, ie. 5 to 6 in a human extraoccular muscle and 2000 in the 

medial head of gastrocnemius muscle (reviewed by Basmajian and De 

Luca 1985). For each motor unit to perform work, there must be tlie 

central control fi’om the spinal cord in the form of nerve impulses, the 

chemical signalling across the neuromuscular junction, the propagation 

of electrical signal in the form of action potential across tlie muscle 

fibre membrane and the activation of the muscle myofibril to perform 

the contractions.

1.1.1 MOTOR UNIT TYPES :

Not all the muscle fibres have the same microscopic appearance 

and functional properties. They vary in diameters and oxidative 

capacity of the muscle fibres. The motor units can therefore be 

classified according to the type of muscle fibres with different enzymic 

/ metabolic properties or the functional characters of neurons. The 

difference between various type of muscle fibres in a motor units can



be seen in features such as enzymic activity, glycogen content, fat 

content, oxidative / glycolytic capacity of fibres, fibre diameter in a 

motor unit and excitability at neural muscular junction. There are also 

differences in neural characteristics such as nerve fibre diameter, 

conduction velocity. These differences ultimately lead to differences in 

muscle mechanics, such as: peak force achievable, rate of force 

development and fatiguability of a motor unit. There are essentially 

three general groups of motor units, classified based on their 

mechanical response to stimulation: etype S (sloiv unit) has high 

resistance to fatigue, high excitability, small fibre diameter and 

generates lower peak force; etype FF (fast fatiguable unit) has little 

resistance to fatigue, with low excitability, large fibre diameter and can 

generate high peak forces. #type FR (fatigue resistant unit) is the 

intermediate between S and FF type motor unit. Type FR motor unit 

can produce high peak force and has large fibre diameter (Burke, Levin 

& Zajac 1971). S type motor units are best suited for posture 

maintenance with continuous muscle contraction at low force. FF type 

of motor units are best suited for quick and powerful contractions, such 

as jumping. There were observations of motor unit fibre type 

conversions with artificial stimulation, as reviewed by Salmons (1985).

The following section of the report will focus on control to motor 

units and the effect on the motor imit function in terms of force 

generation.

1.1.2 MOTOR UNIT BEHAVIOUR:

The discovery of the existence of different types of motor units

.



did not shed light on the activation and coordination of these motor 

units in force production as a group or the control of force production. 

It is logical to assume that the central nervous system is partly 

responsible for the precise force generation with some feedback from 

muscle being activated. There are two essential questions being asked: 

1) Is there a strategy governing the activation of a motor unit? 2) Are 

there rules governing activated motor unit control and regulation? The 

answers are discussed in the following sections.

RECRUITMENT AND DECRUITMENT:

i

For a motor unit to function, there must be control of activation 

and de-activation. The activation of a motor unit at a certain force level 

is termed recruitment and the subsequent deactivation is decmitment.

There has been substantial investigation of individual motor unit 

properties and the coordinated characteristics of motor neurone pool.

There are a few general characteristics:

A) Order of recmitment: Motor units with small motor neurons 

were observed to be recmited before those with large motor neurons 

and the lower threshold motor units has slower conduction velocity.

This phenomena is called the "size principle". (Hemieman, Somjen &

Carpenter 1965, Milner-Brovm, Stein & Yemm 1973).

B) Contraction type dependence: During a fast force increasing 

contraction in ballistic movement, recmitment is dependent on rate and 

strength of force (De Luca, Lefever, McCue & Xenakis 1982). The 

force threshold of a motor unit shifts down with increasmg rate of force
I

output and the peak of twitch force occurs at approximately the same 

muscle tension irrespective of the force rate (Budingen and Freund 

1976). In a non-ballistic contraction, recmitment is force dependent.



but independent of muscle and the rate of force change. In a constant 

force isometric contraction, the recruitment can change with time 

during one contraction, implying the recruitment of new motor units 

throughout a contraction (reviewed by Basmajian and De Luca 1985).

C) Muscle dependence: In some muscles all motor units are 

recruited at relatively low force levels, while other continues to recruit 

motor units up to maximal force: In first dorsal interosseous, 

recruitment of all motor units was shown to be completed at force level 

of 50%MVC; wliile the deltoid muscle continues to recruit motor units 

up to 80%MVC, as shown by De Luca et al (1982) with data 

represented in figure 2. There were reports of recruitment of motor 

units up to 80%MVC in biceps brachii, 70%MVC in brachialis and 

50%MVC in adductor pollicis. It is apparent form these reports that 

recruitment of new motor units is only one strategy in muscle force 

generation.

D) Phase dependency: In a decreasing force contraction, the 

motor units are de-activated or decruited in the opposite order in which 

they were recruited. The recruitment and decmitment is well 

demonstrate in figure 2. The recruitment and decmitment sequences 

can change in the same muscle when performing tasks of different 

orientation (Person 1974). Tliis is probably due to changing mechanical 

factors and the recmitment sequence is constant in any one plane of 

movement.

FIRING RATES:

After recmitment of a motor unit, the mechanical output of that 

motor unit is controlled by the firing rate of the neuron innervating it. 

Firing rate is tlie reciprocal of the time between two adjacent

8



Figure 2. Recuitment and decmitment of 8 motor units from the human 

deltoid and first dorsal interosseous (FDI) muscles during force-varying 

contractions of 40 and 80%MVC. Subjects were divided into four groups: 

normal, long-distance swimmers, powerlifters and pianists. Recmitment 

was only observed up to 52%MVC in FDI, but 80%MVC in the deltoid, 

(modified from De Luca et al 1982a)
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discharges of motor miit. The firing rate of motor units can be affected 

by die following factors:

A) Muscle type: In smaller muscles, such as those in adductor 

pollicis, the firing rates of motor units reach relatively higher values 

than motor unit in biceps brachii muscle (Kukulka and Clamann 1981).

B) Force level of a contraction: Low threshold motor units 

began firmg earlier with low firing rate, then increase firhig rate slowly 

to reach a maximum at relatively low force level. The liigher the
:

recruitment threshold of the motor unit, the less the motor unit 

increased its firing rate with increashig force (Person and Kuddiua 

1972). The minimal firing rate of a motor unit increased linearly with 

the threshold of recruitment and the motor unit near tlie muscle surface 

had higher thresholds of recruitment than those deep in the muscle 

(Clamann 1970). It is also known that an active motor unit could 

increase firing rate slightly with increasing force. A high correlation
:j’i

between force and firing rate of a motor unit was demonstrated. As tlie 

force level decreased, the firing rate decreased to 30-40% of the 

preferred rate before becoming inactive (De Luca et al 1982).

Motor units can contract with isolated twitches and tetanus.

Motor units with liigher recruitment threshold and short contraction 

time can achieve full tetanus at a relative high firing rate, and the 

opposite is true of motor units with lower recruitment threshold (De 

Luca 1982).

C) Contraction type: In a strenuous isometric contraction, the 

firing rate of relatively high tlireshold motor unit abruptly doubled in 

first dorsal interosseous muscle (De Luca et al 1982), as illustrated m 

figure 3. This represents an extra mean of tapping into the resources for

10
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Figure 3. The firing activity of two liigh force-threshold motor units. The 

dash line is the motor unit behaviour and the solid line is the force output, 

during a triangular force-varying contraction of the first dorsal interosseous 

(FDI). ( modified fi’om De Luca et al 1982a)

11



force generation. In a sustained contraction of healthy muscles, the 

firing rate of motor units have tendency to decrease independently of 

force output of the muscle (Person and Kudina 1972, De Luca et al 

1982). This is shown in figure 4. Neuronal adaptation processes and or/ 

decrease in the excitation to the muscle were implicated. The same 

phenomenon was observed during force-varying isometric contractions 

and tlie firing rate at decmitment is less than that at recmitment during 

a force-varying contraction. Furthermore, the firing rates of the fast 

motor unit motoneuron decreased, and the slow-twitch motoneuron did 

not (Kemell and Monster 1982). Thus, firing rate is at least in part a 

property of the motoneuron. It is also observed that a decrease in fast 

motor unit firing rates but not slow motor units were observed in force 

varying contractions (Bigland-Ritchie, Furbush & Woods 1986 )

1.1.3 FATIGUE

The term "muscle fatigue" was generally used to describe many 

conditions, such as metabolic failure as result of marathon running or 

signal transmission failure resulting Jfrom strong contraction that 

occluded the muscle. The most appropriate definition comes from 

Edwards (1981), which states "muscular fatigue is a failure to maintain 

the required or expected force". Fatigue sometimes even begin before 

decrease in force is visible. Fatigue can be a failure of any, or the 

combinations, of links in the command chain. The links can be 

grouped: 1) The upper motor neurone pool in motor cortex, which is in 

the highest position of command chain for muscle contraction, possibly 

being influenced by feedback fi-om muscle, tendon and joint (Gandevia, 

Allan, Butler & Taylor 1996). 2) the action of the lower motor neinon

12
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Figure 4. The firing records of four concurrently active motor units (dash 

line) are shown superimposed on the force output (continuous line), during 

a constant-force isometric abduction of the deltoid, (modified fi'om De Luca 

etal 1982b)
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pool ill spinal cord, which directly governs motor units activity; 3) the 

excitation-contraction coupling processes that transmitting the signal to 

muscles and the metabolic and enzymic process providing energy to the 

contractile mechanism. Two types of fatigue are generally studied: the 

central fatigue, which is the failiue at the sites of upper and lower 

motor neurons; wliile the peripheral fatigue occurs after the impulses 

being transmitted to the pre-synaptic area of neuromuscular junctions.

CENTRAL FATIGUE:

Tins type of fatigue is the failure of neural drive, resulting in

either a reduction in the number of functioning motor units, or the

reduction in motor unit firing frequency.

It is commonly believed that central fatigue does not occur in

prolonged intermittent submaximal contractions. This can be tested by

comparing the force of a maximal voluntary contraction witli that

obtained by supermaximal tetanic stimulation of the motor nerve, which

is rather painful for the subjects and could result in muscle tendon

damage. A safer, more elegant and commonly used method is that of

'twitch interpolation’ , which involves the application of single maximal 
.

stimuli to the appropriate motor nerve during a voluntary sub-maximal 

contraction, as shown in figure 5 (Merton 1954)

Evidence of central fatigue was demonstrated during sustained
.

MVC contractions of quadriceps muscles. It was observed that there is 

a greater tendency for central fatigue to develop as time passes in a 

well motivated subject (Bigland-Ritchie, Jones, Hosking & Edwards 

1978). Grimby, Hannerz & Hedman (1981) provided evidence to 

support the existence of central fatigue, which affects motor imit with

14
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Figure 5. Diagrammatic representation of the twitch interpolation technique. 

( modified from Merton 1954)
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short contraction time and high axonal conduction velocity more 

significantly than those with long contraction time and low axonal 

conduction velocity. Furthermore, there seemed to be elevated 

recruitment thresholds for motor units with short contraction time and 

high axonal conduction velocity with fatigue.

PERIPHERAL FATIGUE:

This type of fatigue is the failure of force generation of the whole 

muscle, as a consequence of impaired neuromuscular transmission, or 

failure of muscle action potentials; or tlie impaired excitation- 

contraction coupling. Force generation was impaired in adductor 

pollicis muscle durhig sustained MVC till fatigue and blood flow 

occlusion advances this (Merton 1954). The action potential recorded 

from the surface of the muscle appeared to be unchanged (Merton 

1954, Bigland-Ritcliie 1981). Therefore, fatigue in this study was due 

to impaired transmission beyond the spinal cord and not at the 

neuromuscular junction.

Fatigue can also be a consequence of failure of action potential 

propagation from the post-synaptic endplate. Tliis may stem from the 

accumulation of potassium ions near the muscle fibre, leading to a loss 

of membrane potential and a change in waveform of action potential 

(Sojaard, Adam & Saltin 1985). This change in action potential due to 

high extracellular potassium concentration is similar to the change in 

human adductor pollicis muscle action potential after fatigue, shown in

figure 6 (Bigland-Ritchie, Jones & Woods 1979), where the action 

potential is slowed and the amplitude decreased and ultimately failed.

Other metabolic changes witliin the muscle fibre can contribute

16
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Figure 6. Changes in action potential waveform in human adductor pollicis. 

The diagram shown action potential after 1 and 20 seconds stimulation at 50 

Hz. ( modified from Bigland-Ritchie et al 1979)

I
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to development of fatigue. The accumulation of hydrogen ion and 

lactate is known to inhibit the action of enzymes and limit rate of 

energy supply in fatigue. Hydrogen ion accumulation is thought to 

inliibit calcium activation of actomyosin ATPase (Fitts 1994). 

Furthermore, induced alkalemia can prolong and acidemiaiihay reduce 

endurance in dynamic exercise.

In terms of force generation, the depletion of metabolic substrate 

and the accumulation of its end products, together with the increase in 

temperature and the limited enzymic activity, twitch tension is 

therefore reduced in individual fatigued motor units and, rise and

I

relaxation of twitch takes progressively longer (Edwards 1981). 

FATIGUE DUE TO ELECTRICAL STIMULATION:

It was shown that failure of propagation of electrical activity at 

and beyond the neuromuscular junction (ie. peripheral fatigue) develops 

at a rate dependent on the frequency of stimulation in human muscles. 

There are two categories of peripheral fatigue: die high frequency 

fatigue with stimulation frequency being about 80Hz and the low 

frequency fatigue of about 20Hz: ( Edwards 1977).

Low frequency fatigue is the selective loss of forces at low 

frequency of stimulation and is thought to be the result of impaired 

excitation-contraction coupling (Grimby & Hamierz 1977). A good 

example is the fatigue induced by submaximal contractions ie. 19 to 30 

Hz stimulation. The effect of this low frequency fatigue is more 

noticeable in a stretched muscle ie. during eccentric contractions 

(Newham, Mills, Quigley & Edwards 1983)

On the contrary, liigh frequency fatigue is the selective loss of

18



force at high stimulation frequencies (Bootterman, Graf & Tansey 

1992). This type of fatigue is believed to be a result of failure of 

neuromuscular junction transmission and / or membrane excitation and 

propagation of electrical signals (Edwards 1977). This type of fatigue 

can also be obtained by cooling muscle and inducing ischaemia. Tliis 

results in a reduction of maximal force output of a muscle be it 

voluntary or electrically elicited.

EMG AND FATIGUE:

As muscle fatigue develops, the attempt to maintain force output 

is acliieved by increasing rate of activation of the active motor units 

(Kemell, Ducati & Sjohohn 1975). This is reflected in the increase 

EMG signals. A useful indicator of fatigue was that of the ratio 

between EMG and force.

Signals can be examined for their energy content in different 

frequency range, which is called power frequency spectrum. The power 

spectrum of EMG are typically with multiple peaks, and spread over 

frequency range between 2 to 250Hz. Mean and median frequency, 

which is the theoretical point equally dividing the power content, can 

be calculated. This mean frequency could be taken as mean firing rate 

of motor units in muscle with homogeneous fibre type.

In fatigue states, a shift towards low frequency spectrum can be 

seen in the surface EMG (Bigland-Ritcliie, Johnson, Lippold & Woods 

1982). EMG is thought to have two components, the motor unit spike 

train and the motor unit action potential. The observed shift in the 

power spectrum could be attributed to both. The decrease hi motor unit 

firing rate in sustained contractions was demonstrated by Bigland-
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Ritchie, Dawson, Johansson & Lippold (1986). Bigland-Ritchie et al 

(1979) contributed evidence of failure of muscle membrane and thus

A recent signal tliouglit to be related to force generation in 

muscle had arouse interest. It is the subject of investigation here 

reported: acoustic myography (AMG).

20

slowing and decrease in peak amplitude of motor unit action potential, 
as shown in figure 6. The slowhig of motor unit activation potential rise 

time and the decrease hi amplitude may contribute to the shift towards 

the lower fi'equency range of EMG spectrum.

1.2 AMG HISTORY

Acoustic myography (AMG) is defined as the study and 

recording of waveforms fi'om contracting skeletal muscles, which 

sometimes is referred to as muscle sound or sound myogram. This 

sound or wave emitted durhig a contraction was first documented and 

demonstrated by Francesco Maria Grimaldi (1665) in his book 

Physicomatheis de lumine. He described in detail the sounds heard by 

presshig a thumb hi his ears, as that of a low rumble character. He 

attributed this to "the hurrying motion of anhnal spirits".

The subject of AMG stayed as an mere observation until more 

than 100 years passed, the investigation was taken one step further by 

Wollaston (1810), who had examined the sound characteristics in a 

more scientific manner. He experimented by placing his thumbs in his 

ears and clenched his fists. The sound quality, as he noted is one of low 

rumble and the loudness increases with increase exertion. These 

characteristic of acoustic myogram led him to suggest the possible use



of muscle sound as force indicator. To classify the sound he heard 

scientifically, he artificially simulated the sound by rubbing a pencil 

across a board with evenly distributed notches; and had a carriage 

driven across the uniform cobblestones on a London street. He then 

calculated the fi'equency of the sound to be about 23Hz.

In 1885, Herroun and Yeo (1885) examined the sound signal 

recorded during stimulated contractions and compared it with that of 

voluntary contractions. They demonstrated the characteristic of the 

sound are the same in voluntary and stimulated contractions, and tlie 

muscle soimd detectable on elbow flexors was very similar in character 

with the first heart sound.

After those studies, there were not many interest in investigation 

of AMG partly due to the lack of adequate experhnental tools and 

contamination firom ambient vibrations. It was in 1948, Gordon and 

Holboum (1948) studying muscles controlling eyelid and jaw 

movements, found an increase in AMG fi'equency with force level. 

They were the first to suggest AMG as a mechanical comiter part of 

EMG. In addition, they examhied the fi'equency content of AMG 

signal, which led to the conclusion implying sound due to the 

asynchrony of motor units and the position of the recording is not 

important.

In the previous sections on EMG and fatigue, it is evident that 

EMG is a recordable electrical signal, which could indicate electrical 

activity in the muscle. However, this electrical nature of EMG is 

susceptible to interference from electrical stimulation pulses, which 

make EMG a less favoured candidate as force indicator in an FES 

application. AMG signals, on the other hand, is a mechanical signal
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less likely to be contaminated by stimulus artifacts, and had a linear 

relationsliip with force during voluntary isometric contractions (Stokes 

& Cooper 1992).

Furtlier mterest in the subject of AMG can be divided into two 

broad categories: those concern with voluntary and stimulated 

contractions in human and work to elucidate the nature of AMG 

production and the construction of working animal models. The 

literature concerning both will be reviewed in Chapter 2 and 3 

separately.

I1.3 AIM OF THIS INVESTIGATION

The aim of tliis series of investigation was to assess the 

feasibility of using AMG as a force indicator, especially in situations 

where direct force measurement is not practical and in FES applications 

as fatigue indicator. Attempt were made to clarify AMG signal 

characteristics and examine the possible parameters could be deployed 

to describe the AMG signal. I

I



CHAPTER 2

EXPERIMENT ON HUMAN QUADRICEPS
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2.1 INTRODUCTION

Investigations of AMG signals accompanying human muscle 

contractions have been reported in the literature and can be divided into 

three main areas: a) experiments with sustained isometric contraction at 

constant force b) experiments which allow muscle length change c) 

experiments with contractions producing fatigue.

2.1.1 ISOMETRIC CONTRACTIONS:

THE INTENSITY OF AMG:

Many authors have reported AMG increase with intensity of 

isometric contraction in many muscles. The relationship between AMG 

and force is described differently by different authors (table 1). Bany et 

al (1985) reported of a linear AMG-force relationship in mid range of 

force level investigated, but a non-linear relationship does exist at
' ■

lower and higher forces range. However, this report did not indicate tlie 

range of percentage maximal voluntary force (MVC) tested. They may 

well have examined a small force range.

The force range was veiy well classified by Orizio and co-workers 

(1989b). They were working on the human biceps brachii muscle with 

isometric contraction in range of 10% to 100%MVC in steps of 10%. The 

result shown in figure 7, displays a parabolic relationship between 

intensity of AMG and force level up to 80%MVC and then a sharp 

decrease in AMG resulted as force level increases hxrther in short 

isometric contractions.

23
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Figure 7. Mean integrated AMG signal recorded by a contact sensor 

during isometric contractions from human biceps brachii. The force is 

increased in steps of 10% up to maximal voluntary force, (modified 

from Orizio et al 1989a)
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Author Muscle Device %MVC AMG-F Yr.

Lammert BB Accelerometer 20-100 S-shape 1976

Osier BB Microphone 0-50 Linear 1980

Barry BB Microphone 0-50 Linear 1985

Stokes ES Microphone 10-100 Quadratic 1988

Orizio BB Microphone 10-100 Parabolic 1989

Maton BB Microphone 10-100 Quadratic 1990

Zwarts BB Microphone 20-100 Linear 1991

Rouse TB Microphone 20-100 Linear 1991

Zhang QF Accelerometer 20-100 Linear 1991

Stile Jaw Microphone 0-30 nonlinear 1991

Stoke QF Microphone 20-100 Liner 1991

Zhang QF Accelerometer 20-80 Linear 1992

Stoke AP Microphone 0-100 Curve 1992

Smith QF Microphone 20-100 Nonlinear 1993

Smith QF Microphone 20-100 Linear 1993

TABLE 1. Literature reports on AMG and force relationship during isometric 

contractions o f human muscles. The abbreviation used were : biceps brachii (BB), 

E rector spinae (ES), triceps brachii (TB), Adductor pollicis (AP) and quadriceps 

femoris (QF)

Other non-linear relationship between AMG and force is reported 

in biceps brachii, erector spinae, adductor pollicis and quadiiceps 

muscles, (table 1).

The most widely reported AMG-force relationship is that of linear 

nature throughout the entire force range up to MVC. A number of studies
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were carried out on the human quadriceps which confirm tliis relationship

(Stokes & Dalton 1991a, Zwarts & Keidel 1991, Zhang, Frank,

Rangayyan & Bell 1991 & 1992). It was also observed tliat this same

linear relationship between AMG and force persisted even after fatiguing

activity (Stokes & Dalton 1991b; Zwarts & Keidel 1991), as illustrated 
.in figure 8. This same linear relationship between force and AMG was 

also shown in a single unfused and fused stimulated contractions, as 

shown by Barry (1990).

The relationship between the AMG and force level is less 

predictable in a smaller muscle. In the jaw elevator muscles (Stile & Pham 

1991), AMG amphtude tended either to increase monotonically with bite 

force, or to increase to a maximum value and remain nearly constant or 

decrease with additional increase in force in the range of 0-30%MVC.

THE FREQUENCY CONTENT OF AMG:

The analysis of AMG fi’equency started very early, with Wollaston 

(1810) being the first one to estimate AMG firequency to be about 23Hz.

A range of peak frequency, mean and median fi'equencies are reported.

The literature is summarised in table 2. The muscle examined were 

diverse and the force range and the device used in the reports were very 

different. But mostly, the AMG signal were concentrated in below 40Hz.

Working on the small abductor pollicis brevis and abductor digiti 

minimi muscle of the hand with electrical stimulation on the median or 

ulnar nerve, AMG was recorded fi’om evoked twitches (Barry 1991); the 

sound
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Figure 8. Relationships between force and integrated electromyogram 

(iEMG), force and acoustic myogram (iAMG) for human quadriceps before 

(open circle) and after fatigue (closed circles), (modified from Stokes & 

Dalton 1991)
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1st

Author

Muscle Device %MVC Freq.

(Hz)

Yr.

Oster BB Microphone 10-50 25±2.5 1980

Rhatigan BB Angiograph 0-100 15±4.2 1986

Maton BB Microphone 0-100 15.5-22.2 1989

Wee BB Microphone 0-20 11.3 1989

Orizio BB Microphone 10-100 10-22 1990

Mealing RF Microphone 80 7.5-10 1990

Rouse TB Microphone 20-100 12-15 1990

Mealing 00 Microphone MVC 22±5 1991

Mealing RF Microphone 80% 10.8±3 1990

Zhang RF Accelerometer 20-80 11-19 1992

Dalton BB Microphone 0-50 6-14.1* 1993

Dalton BB Microphone 0-50 6.9-10** 1993

Dalton QF Microphone 10-100 7.1-16.9 1993

Herzog VL Accelerometer 70 40±7 1994

Herzog RF Accelerometer 70 25±9 1994

TABLE 2. Summary of literature reports on the AMG frequency during contractions 

o f human muscles. The abbreviation used were; biceps brachii (BB), rectus femoris 

(RF), triceps brachii (TB), orbicularis oris (0 0 ), quadriceps femoris(QF) and vastus 

lateralis (VL).

was found to be of biphasic nature witli two frequency components: a low 

frequency (<10Hz) and a high frequency (>25Hz) component, as 

illustrated in figure 9. The two different components of sound are thought 

to be due to two types of movement of the muscle (See Chapter 3 

introduction section on work performed on animals): The large, low

28
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Figure 9. The evoked acoustic signal from the abductor pollicis brevis 

muscle after supramaximal stimulation of the median nerve at the wrist (top 

trace) and the same signal filtered with a 30Hz high-pass filter to eliminate 

die large, biphasic component of the signal (bottom trace). Arrow indicate 

the points taken from the latency and rise-time measurements; the bar 

indicates the amplitude measurement, (modified from Barry 1991)
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frequency component due to bulk movement of the muscle and the higli 

frequency component due to the resonant vibration of the muscle (Barry 

and Cole 1988b). The analogy of the sound produced by ringing a bell 

was used to explain AMG frequency. The amplitude of low frequency 

sound is thought to be determined by the contraction force (eg, the bell 

swings farther when hit harder), and the liigh frequency of the sound is 

related to muscle geometry, stiffriess and contractile properties, which 

determine tlie resonant frequency of the muscle.

Change in AMG signal frequency with force was reported. Orizio, 

Peiini & Veicsteinas (1989c) investigated AMG signal during isometric 

contractions in biceps brachii muscle. They reported that the peak 

frequency of AMG increased with increasing force level and the 

frequency spectrum became bhnodal above 30%MVC, furthermore the 

mean frequency and relative power content increased with increasing 

force. When compared with known motor unit behaviour in this muscle, 

they concluded that the AMG frequency can be a noii-invasive tool for 

reflecting the activation patterns of motor units.

2.1.2. DYNAMIC CONTRACTIONS;

The above studies investigated isometric contractions, but many 

daily activities involve muscle perfonning dynamic contractions in which 

muscle change lengtli. This more complex mechanical situation may affect 

the accompanying AMG signal.

One systematic study on AMG during dynamic contractions was 

carried out by Dalton and Stokes (1991). They worked with human biceps 

brachii muscles during submaximal dynamic contractions. It was observed 

that both the concentric and eccentric contractions produced linear
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relationship between AMG and force levels. Bnt the slope of the AMG- 

force regression line is different, with AMG showing greater activity 

during concentric contractions. The data are displayed in figure 10. Based 

on result from simultaneous recording of EMG signal from the biceps 

bracliii muscle, and the subsequent analysis on AMG frequency spectrum 

(Dalton & Stoke 1993), they concluded that AMG conld be used as force 

monitoring signal during dynamic contractions and the signal content is 

linked to motor unit behaviour.

I,
2.1.3. FATIGUING CONTRACTIONS:

INTENSITY OF AMG: Fatigue had been found to associate with 

changes in AMG signal amplitude. Among the few systematic 

experiments Orizio, Perini & Veicsteinas (1989b) recorded AMG from 

biceps bracliii muscle during sustained isometric contractions till 

exhaustion at four specific force levels: 20%, 40%, 60% and 80%MVC.

Results showed a 5 fold increase in AMG for force level of 20%MVC;

4.5 fold decrease at 60 and 80%MVC, while the 40%MVC contractions 

produced no significant change in AMG intensity, as shown in figure 11.

Dalton, Comerford & Stokes (1992) studied the rectus femoris 

during intermittent fatiguing contractions. The AMG decreases linearly 

between 75% to 60%MVC, tlien remains relatively unchanged. If muscle 

contraction continued, when force falls to 52%MVC the AMG begins to
■■

/s

increase once more. This is illustrated in figure 12. The different 

behaviour of AMG signal were attributed to the different muscle 

activation strategy,

THE FREQUENCY CONTENT OF AMG: Very few studies have
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Figure 10. Integrated acoustic myographic activity (iAMG) at 
different force levies during concentric (closed circles) and 
eccentric (open circles) contractions of the biceps brachii muscle 
in eight normal subjects (mean and standard deviation), 
(modified from Dalton and Stokes 1991)
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Figure 12. Acoustic myographic signal (iAMG) changes with 

progressive force decline during intermittent isometric contractions 

sustained till fatigue. The initial force was 75%MVC. (modified fi'om 

Dalton et al 1992)
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been carried out on the AMG frequency spectrum during fatiguing 

contractions. Orizio, Perini & Veicsteinas (1989a,b) reported that the 

power spectrum density range first enlarges and then reduces during 

sustained isometric contractions of 20% and 80%MVC in biceps brachii. 

The reduction was associated witli the approaching fatigue. In addition, 

at lower force levels (20% and 40%MVC) there was no change in mean 

frequency and relative power content during contraction till exhaustion. 

In the liigher force ranging between 60% and 80%MVC, both mean 

frequency and relative power content increase at first and then decrease 

with time, peaking at the first half of the whole contraction time. Mealing 

et al (1990), also performed fr equency analysis on AMG during fatigue 

of human quadriceps isometric contraction at 80%MVC. They found a 

wide frequency range witli 7.5 and lOHz peaks. In contrast, Zwarts & 

Keidel (1991) found that the spectrum of AMG did not change with 

fatiguing test, but the peak frequency of the spectrum was less 

pronounced. Again, the authors attributed the AMG frequency change to 

motor unit activation patterns.

2.1.4. AIM

The aim of this study is to investigate the suitability of AMG as a 

force monitoring signal in FES applications. This allows 3 immediate aim 

to be identified:

a) The identification of the optimal position for AMG signal 

recording from a muscle.

b) The characterisation of the AMG signal and its relationship with 

force generation.

c) The investigation of possible changes in AMG signal

35
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2.2 METHODS
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characteristics as fatigue develops.

2.2.1 SUBJECTS AND COMMON PROCEDURES

Subjects: The human subjects were healthy male and female 

subjects recruited within the Department of Physiology. They were age 

between 24 and 39 years. They had no known liistory of neurological 

disease or skeletal muscular abnormalities. The nature of the

experiments was explained to them and they understood that they could 

witlidraw from tlie experiment at any stage. Experiments were not 

performed within three days of the subjects' performing heavy exercise 

to avoid interference with muscle fatigue. The number of participants in 

each subset of experiments will be detailed in the following sections on 

experimental protocols.

Common procedures: The subjects sat on a stool with the upper

part of the body leaning slightly forward and arms folded, while

performing isometric contractions of tlie quadriceps. The liip knee and

ankle joints were at about 90 degree. Force generated by quadriceps

contractions was recorded with a strain gauge (detail see section 2.2.2 
.

on force recording) mounted on the stool. The muscle sound was 

recorded with an accelerometer (for detail see section 2.2.2 on AMG 

recording) held on the surface of the skin on the thigh. This is shown in 

figure 13. Three maximum voluntary contractions were performed at 

the beginning and the end of each set of experiments. AMG generated

i
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Figure 13. Photograph of the huirian experimental setup: The subject sits 

upright on a stool, with a strain gauge R250 (A) mounted to record force 

production by knee extension. The AMG signal was recorded by an 

Entran Accelerometer (B) fixed on skin of subject by double-sided 

adhesive tape.
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were displayed on an oscilloscope. A line of target force was marked

on the oscilloscope, and actual force produced was displayed

simultaneously, so the subjects could have some visual feedback on

their perfonnance. The level of the target forces were set in accordance 
.

with the maximum voluntary contraction on the day of the experiment. 

The subjects were repeatedly invited to verbalise their perception of the 

effort of muscle contraction and any sensations as to avoid the onset of 

muscle fatigue.

2.2.2 SIGNAL RECORDING

Two signals were recorded during each experiment, they are 

level of force produced in contractions and the accompanying AMG 

signal.

AMG recording: AMG signal was measured by means of 

accelerometer (Entran EGA-F-100 with flange). This accelerometer 

operates in temperature range of -40 to 120°C, with 2.02mv/g 

sensitivity. It operates unidirectionally, by means of the strain gauge 

method. It had a linear response between 10 to 600 Hz as shown in 

figure 14 top graph. Above 600Flz, the response is non-linear but this 

lies well beyond the range of AMG frequency. The small size (3mm x 

5mm), as shown in figure 14 bottom photo, together with its liigh 

sensitivity and good frequency response range, made it more superior 

than the commercially available Tandy and Hewlett-Packard (HP) 

piezoelectric microphones (Baxendale & Yao 1992). It's compactness 

enables secure attachment to be achieved with relative ease and ensure 

signal was free from mechanical artefact. For example: changes in 

contact pressure as the tension of cuff holding microphones in place
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Figure 14. The frequency response of Entran accelerometer in a range 

of 0-2750Hz (top graph). The insert is an enlarged section of frequency 

response between 0-300Hz. The photograph shown an Entran 

accelerometer fixed on the skin of a subject by double-sided adhesive 

tape.
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(Smith & Stokes 1993) and sounds generated by movement between 

skin and sensor.

40

iForce recording: Forces produced by isometric contractions 

were measured by strain gauge ( supplied by R.S.Components, UK): 

RS 250Kg load cell was used in the human experiments. This strain 

gauge operates within temperature range of -30 to 70°C, when 

calibrated in compression mode. It has capacity up to 250 Kilogram, 

with accuracy being 0.05%, as demonstrated in figure 15.

2.2.3 DATA RECORDING AND STORAGE:

The AMG and force signals coming fi'om tlie transducers was 

amplified, with AMG signal being filtered between 0.5Hz to 

>50,000Hz. These analogue signals were converted to digital signals 

via an intelligent processor (PCM-8) and than recorded on the video 

track on a videotape for storage, as demonstrated photographically in 

figure 16 and schematically in figure 17. The equipment specifications 

are as followed:

a) AC-DC amplifier and Filters;

The amplifiers (Neurolog NL 106 AC-DC amplifier) were 

manufactured by Digitimer Ltd. These amplifiers allow operation in 

both AC and DC with DC offset adjustment and gains of up to 100 

times. They operate witli a low fi'equency cut-off in AC mode of 2Hz. 

The lugli fi'equency response is beyond 30kHz

The filter employed in the experiments was NL 125-126 filter 

(Neurolog, Digitimer Ltd.) It has two active filter sections to control the 

high and low pass characteristics. The low frequency cut-off ranges are:

I
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Figure 15. Calibration curve of strain gauge (R250) used for force recording 

during all experiments on human subjects.
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Figure 16. Photograph of the equipment used in this series of experiment. 

The signal from accelerometer and the strain guage could be visualised on 

an oscilloscope (E), concurrent filtered by Neurolog systems (D) and passed 

on to the PCM-8 (C) for data channelling and eventual storage. The data 

could digitised by the 1401 system (B) and analysed by an PC computer 

(A),
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Figure 17. Schematic representation of method used in data acquisition and 

storage.
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DC, 0.5Hz - 5kHz continuously and the high frequency cut-off ranges

are wide band (>50kHz) and 5Hz - 50Hz, they are continuously

adjustable. The gain witliin the pass band is 1.

b) PCM-8 A/D VCR recorder adapter

The PCM-8 is an instrument which permits tlie use of widely

available and inexpensive video cassette recorders (VCR) to record up

to eight channels of analogue laboratory data. In the experiments

described in this thesis only 4 channels recording mode was used. In

the four channel mode , the sampling rate was 22 KHz. The converted

digital data modulates a video carrier in a format compatible to NTSC

video. The video encoded data is then recorded by any VCR through

the video input. Data recorded on video tapes in such a way can be

played back on a VCR connected to the PCM-8, by decoding the video 
.

signal. The original analogue signals are then available on the analogue 

outputs of the PCM-8 at the same amplitude as recorded, for display or 

further processing. The PCM-8 records data on the video track of a 

video tape, there are still two low grade channels available for 

recording audio signal during experiment, this made the logging of 

experiment conditions more secure.

2.2.4 SIGNAL PROCESSING AND ANALYSIS:

Data stored on a videotape can be retrieved by play back on a 

normal VCR via the PCM-8. Signals were digitised via a processor 

(CED 1401) and then analysed by Spike2 software on a PC computer, 

see details in figure 18.

a) CED 1401: An intelligent processor (CED 1401, by 

Cambridge Electronic Design, UK) was used to capture data played
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Figure 18. Schematic representation of method used in data retrieval and 

processing.
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back from the FM tapes via PCM-8 (described above) onto a computer 

for analysis.

b) Computer and its software: The computer used for data 

capturing v^as a Viglen 386PC with software (Spike! data capturing 

and processing program) supplied by Cambridge Electronic Design. 

Spike! is a software package designed to captuie and process both 

event and wave fonn data. The data capturing section of the program 

permits sampling up to 18 data channels, but for the purpose of these 

experiments only two wave form channels were used. The wave form 

channels can be sampled at different rates: ie. 512Hz for AMG and 

170Hz for force level. The data processing part of the program can 

analyse Spike! data files interactively or using user-written scripts. It 

permits the display of any section of the recorded data in different 

formats: raw data, frequency contents etc.. In some of the analysis 

performed on tlie data a signal average program (Sigavg by CED, 

Cambridge UK) was used, which can perform on line capturing of data 

and average the data with user controlled sampling rate, data point 

number of data repetition for averaging.

2.2.5 ETHICAL COMMITTEE APPROVAL:

Experiments performed on human subjects involved in this 

study, had approval from the Ethical Committee of the Western 

Infirmary, Glasgow.

2.2.6 EXPERIMENTAL PROCEDURES:
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a) AMG map o f  

isometric contractions: 

Following the aim of this 

investigation, the first 

priority was to identify the 

optimal recording site for 

AMG signal. Five healthy 

subjects participated in tliis

*<*)
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F igure  19. R ep resen ts tlo n  o f  the g rid  u se d  d u rin g  h u m an  e x p erim en ts  
D a ta  w ere  co llected  from  p o s itio n s  sh o w n  o n  q u ad ricep s  o f m e  th ig h .

experiment and all recording was collected for analysis. A grid (28 to 

34 points depending on the cir cumference and length of thigh of the 

subjects) fi'om which AMG recording was going to be made had to be 

constmcted. A line was drawn on each subject's thigh between the top 

of the patella and the tip of the false pelvis near the hip joint. Tliis Ime 

was then divided into four equal portions with perpendicular lines, on 

which points were marked with 3 cm intervals according to the 

circumference of the thigh. This grid is represented in figure 19, where 

the position denoted by negative numbers are on the lateral site of the 

thigh and the positive number denote the medial sties. Tlrree recordings 

of AMG signal accompanying isometric contractions at the same given 

force level were made at these mapping points by moving the 

accelerometer to each position. AMG mapping were performed as five 

subsets at force level of 10, 20, 40, 60 and 80% MVC respectively, 

with each subset of experiment performed as a whole on the same day 

and at least 5 day interval between subsets. Three contractions of 

maximal voluntary contraction were performed at the begimiing and the 

end of the experiment firom an identical position on the map and fatigue 

could be detected as a drop in maximal force production. Fatigue was
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avoided by 1 minute interval rest between changing positions.

b) Force AMG relationship in isometric contractions: In tliis 

experiment, the subjects were requested to perform two sets of 

contractions of 0 to 100% MVC in steps of 10%MVC: 1) isometric 

force holding contractions lasting 5 to 10 seconds; 2) isometric 

triangular force varying contractions with which there were 10 seconds 

increase in force generation to match the target force level and 10 

seconds gradual relaxation back to resting level. At each force level, 

three contractions were made with at least 10 seconds interval between 

them. Any contraction with force level sustained less than 5 seconds 

was rejected and repeated. The AMG signal was recorded at tlie mid 

point of the central line between the top of the patella and the hip bone, 

as there seemed to be no clearly defined optimal position for AMG 

recording in the AMG mapping test.

c) Fatiguing tests with isometric contractions: hi this series of 

experiment, two set of tests were performed. The first set of test was 

designed to investigate tlie AMG signal during a continuous maximal 

voluntary isometric contractions m the quadriceps muscle. The subjects 

performed tliree maximal voliuitary contractions to familiarise with the 

experiment. Then, they were instructed to sustain a maximal voluntary 

contraction till exhaustion or till they were asked to relax (the cut off 

point was 50% MVC force output for the analysis).

The second set of the test were performed a week after the first 

test, to avoid interference fatigue effecting the outcome the second test. 

Tliis test involved subjects performing bursts of MVC till exliaustion or

48



on reaching the same cut off point as in test one. Each burst of MVC 

was sustained for 15 seconds, with 15 seconds of relaxation time in 

between. Care was taken to ensure that during these fatiguing 

protocols, unlike in brief isometric contractions, the subjects had no 

visual feed back to their performance. This was introduced to eliminate 

subconscious recruitment of other muscle groups during a contraction.

49

I2.2.7 ANALYSIS OF SIGNALS

AMG signals: The AMG signal was sampled at rate of 512Hz.

This is performed based on the fact that minimum of two points per

sinusoid is required by the Fast Fourier Transform (FFT) calculation

method, to analyse data. Sampling at rate of 512Hz, will ensure

adequate analysis of AMG signal up to 256Hz. AMG has diminishing

signal content beyond 60Hz (Goldenberg, Yack, Cemy & Burton 1991,

Dalton and Stokes 1993). By using 512 Hz as sampling rate, over

95% of signal content could be obtained and analysed.

The signal was band pass filtered between 0.5Hz and 120Hz and

amplified when necessary with Neurolog NL106 and NL125 modules.

The signal is subsequently full wave rectified and integrated or

subjected to root-mean-square calculation by a computer program. The

time constant used was 0.5 seconds. The amplitude of AMG signal was

measured during a period of steady state of isometiic force, and the
_

values presented was of AMG peak to peak amplitude and that of true 

AMG signal without the background noise at resting state.

Frequency content of AMG signal was analysed with Spike2 

computer software. This program incorporated Fast Fourier Transform 

(FFT) method of analysis to establish the fi'equency content. A section



of AMG lasting about 0.5 seconds was selected during the steady state 

of muscle force for analysis. The FFT calculation was performed on 

256 points. The median frequency was measured by specifying a 

frequency range between two frequencies and the program shown the 

median frequency value to be the frequency beyond and below which 

the power content is equal in value.

For analysis of sustained isometric contractions, the rectified and 

integrated, and the root-mean-squared analysis of AMG amplitude 

were performed by continuous running method and the program selects 

slices of 0.5 second AMG signal for analysis at defined time intervals, 

of wliich median frequency analysis was not permitted by the program.

Force measurements:

The force signal was digitised by CED 1401 and stored in a PC. 

The minimum resolution of time and force was 8 micro-seconds and 

0.0005%MVC, respectively. Forces were measured by cursor and 

pointers.

2.2.8 STATISTICAL METHODS:

Force, AMG(RI) and AMG (RMS) were normalised to control 

values for individual subject and subsequently expressed in percentages 

of maximum. The group means were calculated and standard deviation 

of data from mean was evaluated. The students t-test was performed in 

all experimental data. Where lines were fitted to the data, a least square 

fit method was used within SigmaPlot for Windows. This determined 

the relation between AMG and force. In addition, rank and sign tests 

were deployed where appropriate.
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2.3 RESULTS

2.3.1 AMG MAP:

Following the aim of this investigation, the first priority was to

identify the optimal recording site for AMG signal. A map was

constructed, usmg 28 or 34 points, depending on the circumference and 
.length of thigh of subject. The recording points are presented in figure 19. 

AMG recordings were made sequentially from these points.

Five male subjects made repeated contractions at 10,20,40, 60 and 

80%MVC, with accelerometer attached to each position on the map. The 

results are presented in the following sections:

51

A>. AMG INTENSITY MAP:

The AMG recorded during a single contraction is shown in figure

20, In this figure, the contraction force was that of 80% MVC, and the

contraction lasted for about 10s. There was strong AMG signal

associated with movement of the muscle at the beginning and the end of

a contraction. AMG signal was only analysed during steady state force,

which is normally the middle 5 s of data during a contraction. The signals

were rectified and integrated to give an "easy" measure of AMG intensity.

This method was deployed for subsequent analysis of contractions

recorded from each point of the map. The AMG intensity are presented

with tire same format as in figure 19. A map of one subject at contraction

force level of 40%MVC is shown in figure 21, where colour codes for the 
.AMG signal intensities. There were 16 AMG intensity levels presented 

in figure 21, and each level was multiples of 6.25% of maximal AMG 

signal intensity recorded at that particular force level. The data was

normalised with maximal AMG intensity as 100% and minimal AMG
i:;:r

intensity as 0% before contraction period. With tliis mean of presentation.
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Figure 22. 3 dimensional representation of AMG signal intensity recorded 

from different position on left thigh. The data were mean values of AMG 

in 80%MVC isometric contractions from 5 subjects.
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the difference can be maximised. In figure 21, tlie position with highest 

AMG intensity recorded coded by tlie lightest colour. It is at position p4(- 

I) on the grid. A 3 dimensional graph is presented in figure 22, showing 

mean data of all subjects performing 80%MVC. There is a general high 

AMG intensity region at the mid and distal end towards the liip. There is 

very little AMG at both medial and lateral boundary of the leg.

When data fiom all six subjects and of all contraction levels were 

collected, analysed and presented with the same method as before in 

figure 21, a few characteristics emerges:

a) Concerning: individual subjects:

I) Data from individual recording points were processed by 

calculating root-mean- 

square (RMS) and 

rectify-integrating (RI) 

values of AMG. There 

were no significant 

differences in values 

obtained by the two 

calculating methods at 

the same force. 2) The 

sites of the maximal 

recorded AMG signal 

varied with different 

degree of exertion up to 

80%MVC, as shown in 

figure 23. hi this

particular subject, the highest AMG signal intensity was recorded at
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Figure 23. The positions from  which the h ighest A M O  intensity w ere recorded  

at 1 0 ,2 0 ,4 0 ,6 0  & 80% M V C. The value in the graph rep resen t the force level 

at tim e o f  recording.
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«
position p2(+2) at 10%MVC; p4(-l) at 20%MVC; p4(-2) at 40%MVC;

p2(+2) at 60%MVC and p3(-3) at force level of 80%MVC, The 

movement of tlie highest AMG intensity point from one position to 

another with changing force, does not seemed to follow a fixed pattern in 

individual subjects tested. Neither does tlie movement of the site of 

second highest AMG intensity position follow any deducible pattern in the 

subject. There were no fixed relationsliips between the position of the 

highest and second highest AMG intensity sites within individuals tested.

3) In general, the distinction between sites is less at a lower

percentage of the maximal volmitaiy contraction, and more prominent
.

with higher exertion. This is illustrated in figure 24, where tlie mapping 

colours tends to be darker at 10%, 20%MVC, in comparison to those at 

40%, 60% and 80%MVC.

4) The intensity of AMG recorded, at each position in the map in 

each individual tested, displays a general trend of increase in value with 

increasing force output. Figure 25 demonstrates this point with data from 

one individual subject, who performed three isometric contractions at 5 

force levels up to 80%MVC. The data were collected at positions pl(0), 

p2(0), p3(0), p4(0) and p5(0) on the constructed map. There are trends of 

increase in AMG signal intensity with increasing exertion at each position, 

wliich is highly representative of all subjects tested. Wlien a lineai' 

regression line is fitted to the data, the formula are given as followed: at 

positionpl(0) Y=0.508X+I5.026 (r^O.470); at p2(0) Y=0.378X+20.646 

(r^-0.5556); at p3(0) Y-0.536X+I9.485 (rM ,6094); at p4(0) 

Y=0.568X+23,768 (r3=0.3137); atp5(0) Y=0.501X+26.371 (r^=0.3749). 

Tlie gradients of the regression lines are all statistically differ significantly 

firom zero (p<0.02). And the gradients are differ significantly from each

I '
$

À



Figure 24. Graphical representation of lAMG signal intensity from 

various sites (up to 35 points) on surface of left thigh during isometric 

contraction. The left hand side of the data representing the direction of 

the hip, while the right hand side to the top of patella. Data are of 

contractions at force levels of 10, 20, 40, 60 and 80% maximal 

voluntary contractions in ascending order. The intensity of the AMG 

signal were presented by 16 colour codes, and light colours denote 

liigher intensity.
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Figure. 25. AMG signal recorded over five positions along the long axis 

of quadriceps in one subject. The subject performed isometric 

contractions at force level of 10%, 20%, 40%. 60% and 80%MVC. The 

formulae for regression lines are given as followed: at position pl(0) 

Y=0.508X+15.026 (rM .470); atp2(0) Y=0.378X+20.646 (r"=0.5556); 

at p3(0) Y-0.536X+19.485 (ri=0.6094); at p4(0) Y-0.568X+23.768 

(rM).3137); atp5(0) Y=0.501X+26.371 (r^=0.3749). The gradients were 

statistically tested and all are found to be significantly different fi'om zero 

(p<0.05) and significantly different fi'om each other (p<0.01).
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other. The gradient of the regression line is slightly liigher at position 

p4(0) than the rest for this subject.

b) Concerning collective data:

1) Wliilst differences can be clearly seen between adjacent 

recording positions in figure 24. When the data are pooled these 

differences could be cancelled out. There was no significant difference 

between tlie means of AMG signal intensities at neighbouring positions 

on tlie map, for a given force level. The data were analysed by both the 

ranking test and student t-test, as in the case of the individual data.

2) The positions from wliich the highest intensity were recorded, 

are shown in figure 26. These positions were not the same in all subjects 

at any given force level: for example, contractions of 10%MVC yield 

highest AMG intensity at position p2(2), p3(0), p4(-l), p4(l) and pl(0) 

in different subjects. This is also true for the second highest AMG 

recording position. It becomes difficult to assess the general trend in 

movement of the highest AMG intensity points with changing force: ie. 

subject 1 in figure 26 shown positions of liighest AMG intensity recorded 

changed from p2(2) at 10%MVC, to p4(-l) at 20%MVC, p4(-2) at 

40%MVC, p2(2) at 60%MVC and finally back to p3(-3) at 80%MVC.

3) Wlien all data were pooled together with mean and standard 

deviation calculated as well as ranks from ranking test, there is no 

predominant optimal AMG recording site across all subjects. In fact, the 

inter-subject variations were very large at each recording point for all 

level of force.

4) Similar to the individual data shown in figure 25, figiue 27 

displayed tlie collective data from the longitudinal positions pl(0), p2(0), 

p3(0), p4(0) and p5(0) of all 5 subjects examined. The first order lineai'
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Figure 26. Diagrammatic representations of positions from which the 

liigliest AMG intensities were recorded. Each diagram represents data 

from one individual subject. The position of the value, eg 10% indicates 

the highest AMG intensity during contractions at 10%MVC. Other 

maxima are plotted using the same convention.
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Figure 27. AMG signal recorded during isometric contractions, at pl(0), 

p2(0), p3(0), p4(0) and p5(0) of the map. The number of subjects involved 

is 5. They all performed isometric contractions at force level of 10%, 

20%, 40%, 60% and 80%MVC. The data was that of rectified and 

integrated AMG signal. The first order linear regression fit to the data are 

£is follows: Y=0.499X+11.584 (r"=0.5575) atpl(O); Y=0.392X+17.025 

(rW .3373) at p2(0); Y=0.676X+15.471 (r^-0.5475) at p3(0); 

Y-0.810X+17.377 (rM).6155) at p4(0) and Y-0.763X+15.32 (r^-0.6358) 

at p5(0). The gradients of these regression lines are all statistically 

significantly different fi'om zero (p<0.05). The gradients are all 

significantly different (p<0.01).
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regl'ession fît to the data are as follows: Y=0.499X+11.584 (r^=0,5575)

at pl(0); Y=0.392X+17.025 (rM .3373) at p2(0); Y=0.676X+15.471

(r'=0.5475) at p3(0); Y=0.810X+17.377 (r'=0.6155) at p4(0) and

Y=0.763X+15.32 (r^O.6358) at p5(0). The gradients of these regression

lines are all statistically significantly different from zero (p<0.05). They

differ significantly between each other. As in the figure 25, the gradient 
.of regression line at position p4(0) is higher than at pl(0), p2(0), p3(0) 

and p5(0).

5) The same increase of AMG with increasing exertion are 

observed at all positions on the map. Examples of data from positions at 

the lateral and medial sites are displayed in figure 28. Similai- to data 

obtained from positions on tlie central longitudinal Ime, AMG intensity 

recorded from all lateral and medial sites showed increases with 

increasiug force at all positions. Statistical analysis yield regression lines 

for force and AMG intensity relationships in figure 28: Y=0.568X+12.754 

(r'=0.523) at p4(-4); Y=0,529X+19.182 (r^=0.389) at p4(-3); 

Y=0.683X+15.674 (r^=0.59) atp4(-2); Y=0.775X+17.666 (r"=0.646) at 

p4(-l); Y=0.789X+16.304 (rW .657) at p4(0); Y=0.644X+17.296 

(r'=0.635) at p4(l); Y=0.704X+16.1 (r^=0,702) at p4(2);

Y=0.607X+12.187 (r^=0,658) atp4(3); Y=0.439X+12.651 (r^=0,436) at 

p4(4). All gradient of lines are significantly different form zero (p<0.05) 

and aie significantly different from each other. The steepest gradient 

remained at p4(0).

Formula for the regression lines of force-AMG relationship at all 

positions were tabulated in Table 3, All gradients were found to be 

significantly different from zero (p<0.05) and between each other. The 

gradient of AMG-force relationship is steepest at position p4(0) and

«
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Figure 28. AMG signal recorded, over seven positions on the transverse 

direction of position 4(0), on human quadriceps muscle from five 

subjects (n=5). The subjects were performing isometric contractions at 

10%, 20%, 40%, 60% and 80% maximal voluntary contractions. The 

AMG signal were rectified and integrated. The regression lines have 

formulae: Y=0.568X+12.754 (r^O.523) atp4(-4); Y=0.529X+19.182 

(1^=0.389) at p4(-3); Y=0.683X+15.674 (r^O.59) at p4(-2); 

Y=0.775X+17.666 (iM).646) atp4(-l); Y=0.789X+16.304 (r"=0.657) 

at p4(0); Y=0.644X+17.296 (r"=0.635) at p4(l); Y=0.704X+16.1 

(rW .702) at p4(2); Y=0.607X+12.187 (r"=0.658) at p4(3); 

Y=0.439X+12.651 (r^=0.436) at p4(4). All gradient of lines are 

significantly different form zero (p<0.05) and are significantly different 

from each other (p<0.05).
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seemed to adliere to a trend of increase along tlie longitudinal direction, 

witli the lowest value recorded from top of the patella, where the intercept 

of Ime on axis was minimum. At the transverse line from position 2(0), 

both gradient of regression lines and the intercept on axis increases 

laterally and medially away from the central longitudinal line. Unlike 

recordings made from 2(0) transverse line on the map, signals recorded 

from transverse line 3(0) displays a different trend: while the intercept of 

the regl'ession lines increases at positions laterally and medially away 

from position 3(0), the gradients of the lines decreases. The link between 

gradient, intercept of formula and that of position in the map changes 

again at transverse line from 4(0) on the map. At positions laterally and 

medially away from position 4(0), both gradient and intercept of the 

formula decreased.

B>, AMG FREQUENCY MAP:

Frequency content of AMG signal accompanying isometric 

contractions is analysed by Fast Fourier Transform (FFT) method. Figure 

29 illustrates the frequency content of AMG signal from one contraction 

of 20%MVC at p3(0). The AMG has been bandpass filtered between 0.5 

and 120Hz, to rnininiise artefact. The 50Hz peak could be an artifact from 

the power source. The greater part of the signal lies between 5 to 35 Hz, 

with very little content beyond 60Hz. This particular spectrum contains 

two peaks at about 8 and 28 Hz.

The frequency content of AMG signal recorded during repeated 

contractions at 80%MVC from each position on the map, are illustrated 

in figure 30. Each spectrum shows power frequency contents in range of 

2 to 60Hz. The power content in those frequency spectra are in agreement 

with the AMG intensity map from the same subject at similar force levels,

65
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Figure 30. Frequency spectrum of AMG signal recorded during mapping 

test of an individual subject (DM), while performing isometric contraction 

at level of 80% maximal voluntary contraction. The analysis was 

performed with FFT size being 256 and the maximum of the Y-axis is 

0.00041.
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as shown in figure 24. As illustrated in figure 29, no AMG signals 

contained significant power above 60Hz for any given position and at any 

force, AMG power frequency content, as seen in figure 30, is greater at 

the mid region of the thigh than other positions. In addition, the signal 

recorded from tiiese regions showed multiple peaks in the spectmm more 

than any other position and the peaks seemed to be in the range of 5- 

45Hz. These characteristics persist at all force level tested. There were 

dominant low frequency signals at the patella and near patella sites, 

ranging from 2 to 15Hz, peaking at about 8 to 12Hz. Again these 

characteristics did not vaiy much with changing force. The power spectra '

of AMG signals recorded from same positions were similar with repeated 

trials.

Some autliors calculated a single median frequency rather than 

examine the whole frequency spectrum (Herzog, Zhang, Vaz, Guimarares 

& Janssen 1994, Mealing & McCarthy 1991). The median frequencies of 

the signal power spectrum were analysed and calculations made with data 

from all subjects at all positions. An example of results is shown in figure 

31. The median frequencies of AMG have less variances at position p4(0) 

at five level of forces tested. The relationships between AMG median
-

frequency and force could be fitted well with first order regression lines 

at all recording positions. However, statistical analysis yields insignificant 

difference between regression line gradients and zero (p>0.1). Thus, the 

AMG median frequency did not change significantly with varying force 

at all force levels tested. :

2.3.2 FORCE-AMG RELATIONSHIP:

The results from section 2.3.1 showed that there is no single



Figure 31. The median frequency of AMG signal recorded, over five 

positions on the longitudinal direction at 1(0), 2(0), 3(0), 4(0) and 5(0) 

of map of the left thighs (n=5). The subjects performed isometric 

contractions at force level of 10%, 20%, 40%, 60% and 80%MVC. The 

intensity was that of rectified and integrated AMG signal. The change 

in AMG median frequencies with force are insignificant (p>0.1) at all 

five positions.
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optimum recording site of the quadriceps AMG, but the signal intensity 

recorded from the middle of the thigh were generally more intense. 

Consequently, position 3(0) of the map was chosen for all subsequent 

experiments.

The relationship between AMG and force production during 

isometric contractions was investigated during both steady isometiic 

contraction and during which the force was ramped up and down at a 

constant rate. The results are presented as follows:

A>. ISOMETRIC CONSTANT FORCE CONTRACTIONS:

Figure 32 illustrates AMG data recorded during isometric constant 

force contractions at different force levels taken from one subject. Figure 

32a was recorded over a relaxed muscle. It shows some low intensity 

vibration, which may represent some basic muscle tone or sounds from 

other sources. Figure 32b to 32h shows signals recorded from active 

muscle with increase force output. There were characteristic high 

amplitude bursts associated with knee extension movements at the 

beginning and the end of the contractions. The signals were more 

consistent after the first second of tire contraction and the analysis were 

only carried out on signals during mid-contraction. The intensities of the 

AMG signal accompanying contractions observably increase in amplitude 

as progressively higher forces are reached.

The relationship between RI and RMS AMG intensity and force is 

displayed m figure 33, which shows AMG collected from one subject 

during a series of isometric contractions held at progressively greater

I

forces up to MVC. The AMG were rectified and integrated with a time

constant of one seconds or the root mean square AMG calculated. RI 

AMG (as shown in Figure 33 A) and RMS AMG (as shown in figure 33B)
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Figure 33. The relationship between AMG recorded from mid point of 

quadriceps and force. The AMG was recorded from one subject (BM), 

who made a series of contractions each lasting 5-10 seconds at different 

force levels between 10 to 100%MVC. The data points plotted show frill 

wave rectified AMG integrated with a time constant of 1 second (graph 

A) and root mean square AMG (graph B). Data could be fitted by straight 

lines with similar coefficients; Y = 0.7186X + 27.0758 (r̂ = 0.859) for 

graph A; Y “  0.7328X + 29.7253 (r^=0.815) for graph B. Both gradients 

are significantly different from zero (p<0.01) and different from each other

(p<0.01).
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are plotted against force and it clearly demonstrates a linear positive 

relationship (p<0.001) exists between AMG intensity and force. The data 

could easily be fitted with the formulae

Y=0.7186X+27.0758 (for RI data) 

and Y=0.7328X+29.7253 (for RMS data) 

for a single straight line which had similar coefficients (r^= 0.859 for RI 

data and r^=0.8I5 for RMS data respectively). There was significant 

difference between the result obtained by RI method and those by RMS 

methods (p<0.01).

When the data collected from six subjects were pooled and plotted 

against force in figure 34, the data could be fitted by lines with formula of 

Y-0.6684X+14.8648, r^O.680 for RI data; 

and Y-0.7223X+14.1024, r^O.716 for RMS data 

and the slope and the coefficients of the two line fit formula were very 

similar, but the gradients of the lines are significantly different (p<0.01).

B>. ISOMETRIC TRIANGULAR FORCE VARYING 

CONTRACTIONS:

The subjects were also instructed to perform isometric triangular 

force varying contractions up to a peak target force. They reached peak 

force about 10 seconds after the beginning of the contraction and then 

reduced the force to zero in another 10 seconds. Samples of AMG signals, 

taken from one subject, accompanying the force varying contractions to 

different peak force levels are displayed in figure 35. As in figure 32a, 

there was some low intensity vibration existed when muscle was at rest. 

There were smaller and less prominent initial bursts of AMG activity 

associated with posture adjustment before and after contractions than in 

isometric hold contractions. The "envelope" of the raw AMG does not

73



Figure 34. The relationship between AMG recorded and force, in 

recordings made from six normal subjects, each of who made repeated 

isometric contractions at up to 10 force levels. A. shows rectified 

integrated AMG and B. shows root-mean-square AMG. Data could be 

fitted by straight lines with formulae: Y = 0.6684X + 14.8648 

(rW).680) for graph A and Y = 0.7223X + 14.1024 (rM).716) for graph 

B. Both gradients are significantly different from zero (p<0.01).
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seem closely related to the force profile at tire lower force range (figure 

35b-e) up to 70%MVC. However, at forces above 70%MVC there is a 

marked increase in AMG amplitude as the force reaches its peak. The 

intensity of the signal increases with increase force up to the target level 

and then gradually declined with relaxation.

The force level measured was that of the peak force developed and 

AMG signals during isometric triangular force varying contractions were 

analysed both by RI method and RMS method. The result is graphically 

displayed in figure 36, which is a plot of RI (graph A) and RMS AMG 

(graph B) against the peak force achieved for each force varying 

contraction in one subject. As shown in this figure, the AMG signal 

increase with peak force output as in isometric hold contractions, there 

were no significant difference between results obtained from both of the 

analysis methods. The data could be fitted with straight lines of formulae;

Y-0.90263X+10.9722, r"=0.927 for RI data 

and Y=0.8535X+12.8297, r^O.947 for RMS data 

with similar coefficients. In this case the analysis has revealed changes in 

the AMG in the lower force range, which was not obvious in the signal 

envelope, as in figure 35. Statistical analysis showed that the gradients are 

significantly different fi*om zero (p<0,01)

AMG data for all six subjects were collected and analysed by both 

RI and RMS methods. The results were then pooled and RMS and RI 

AMG were plotted against peak force in the triangular force varying 

contractions in figure 37. As in figure 34, the AMG increase in amplitude 

with increasing force output. The data were fitted with single straight line 

of the formula:

Ï

Y=0.62376X+15.2768, r^=0.682 for RI data;

iii



Figure 36. The relationship between AMG and peak quadriceps force. 

The AMG was recorded from one subject (BM), who made a series of 

isometric triangular force varying contractions, each lasting 5-10 

seconds, to different peak force levels. The data points plotted show full 

Avave rectified AMG integrated with a time constant of 1 second (Graph 

A) and root mean square AMG (graph B). The regression lines fitted to 

the data have formulae: Y=0.90263X+10.9722, r^=0.927 for graph A 

m d  Y=0.8535X+12.8297, r^=0.947 for graph B. The gradients of the 

lines are significantly different from zero (p<0.01). The data were 

jmalysed from traces presented in figure 35.
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Figure 37. The relationship between AMG and peak force. The AMG 

signal was recorded from six subjects during isometric triangular force 

contractions, each lasting 5-10 seconds, to different peak force levels. The 

data points plotted show full wave rectified AMG integrated with a time 

constant of 1 second (graph A) and root mean square AMG (graph B). 

The regression lines to the data have formulae: Y=0.62376X+15.2768, 

1^=0.682 for graph A and Y=0.6285X+13.4385, r^=0.683 for graph B. 

The gradients of the lines are significantly different from zero (p<0.001).
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and Y=0.6285X+13.4385, 1^=0.683 for the RMS data 

with similar coefi&cients. Again, there is not much difference in the results 

obtained by die two different method of analysis, though the pooled data 

fitted less well than that from single subjects.

The triangular-force-varying contractions were of two phases: the 

contracting phase and the relaxiug phase. Data from a single triangular- 

force-varying contractions were analysed and the relationship between RI 

AMG and force production calculated. AMG signal during one 

contraction up to 100%MVC peak force is graphically displayed in figure 

38. The figure showed data from both the contracting (closed circles) and 

relaxing (open circles) phases. There are trends of proportional change in 

AMG intensity with changing force output. The fitted regression lines to 

the data have formulae: Y=0.57578X+ 29.2888 (ri=0.6915) for the force 

rising phase; and Y=0.45629X+28.1202 (r^=0.63954). The gradients of 

the regression lines are significantly different from zero (p<0.01). And the 

one from contracting phase is steeper than that of relaxing phase (0.57578
îi

vs. 0.45629) with statistical test value p<0.01.

The data from all subjects and all contraction levels tested, were 

analysed, collected and displayed together in figure 39 (force range 

between 10%MVC to 50%MVC) and figure 40 (force range between 

60%MVC and 100%MVC). When linear regression lines were fitted to 

the data, they demonstrated consistently higher gradients of AMG-force 

relationship existed during contracting phase than that of the force 

relaxing phase (p<0.01). The difference persists in contractions of all 

peak-force level tested, as shown in figure 41. The rate of AMG change 

with force during contracting phase did not change with peak force in a

way that is significantly different from that during tlie relaxing phase

■
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Figure 39. Graphie display of data from all four subjects collected 

during isometric triangular force contractions, as shown in figure 36, up 

to target peak force levels of 10, 20, 30,40 and 50%MVC. The fitted 

lines were of first order regression.



100 100

10%MVC

100 100

50
20%MVC

100 100

30%MVC

1 0 0  -1 100

40%;

100 100

50%:

50 50 25

Force (%IVIVC)

______________



Figure 40. Graphic display of data from all four subjects collected during 

isometric triangular force contractions of quadriceps up to specific target 

peak forces, as shown in figure 36, of 60, 70, 80, 90 and 100%MVC. The 

fitted lines were of first order regression.
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(p>0.05).

C>. FREQUENCY

The frequency spectra of AMG signal in isometric holding 

contractions were compared with that of isometric force varying 

contractions performed by the same subject. In both conditions, the power 

spectrum of AMG signals shown multiple peak frequencies at all force 

level tested. Data from maximal contractions are shown in figure 42. The 

AMG spectrum is simpler during steady force contractions (figure 42A) 

than during triangular contractions (figure 42B) where multiple peaks 

appears. There was no significant difference between the rate of AMG 

median frequencies change with force during constant force and force 

varying contractions.

■ V
2.3.3 FATIGUING CONTRACTIONS:

.
Fatigue is defined as the inabihty to maintain forces. This is evident 

in figure 43 and 44 for sustained isometric contraction near maximal 

voluntary contraction, and both figure 45 and 46 for intermittent 

contractions till fatigue. In figure 43, the force was well maintained in the 

initial 35 seconds (125-160 in recording time) and there was steady AMG 

signal associated. After this initial phase, the force progressively declines, 

starting at about 175s. However, the AMG signal shown an earlier decline 

than force at about 160s. During the last phase of contraction between 190
:

to 220 seconds, there are additional efforts in the force record, which is 

clearly shown in figure 44c. With each additional effort, there is a burst 

of AMG activity. There is an overshoot of force over the recording range 

in figure 44a.

The muscles tested were able to continue force production for a

S3

,



Figure 4L Gradients of regression lines fitted AMG-force relationship 

in contracting (graph A) and relaxing phases (graph B), during isometric 

force varying contractions. The contractions reaches peak force between 

10% to 100%MVC. Regression lines of the data have formulae: 

Y=1.2*10’̂ X+2.22*10“̂ (r^=0.0134)) for the force rising phase and 

Y=9.6* 10"^X+1.22* 10'̂  (f^O.005). There is no significant change in the 

slopes of both phases with increasing peak force level (p>0.1)
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longer time by intermittent isometric contractions than sustained isometric 

contraction. This is shown in figure 45, where force production was 

continued up to 900 seconds. The decline in force was almost immediate 

in figure 45 and there is visible decrease in AMG amplitude in the middle 

of contraction fi*om this subject. Similar to the sustained contraction till 

fatigue, there are additional efforts, which reduces with progressive 

fatigue. There are also bursts of AMG activity with these additional 

efforts. Figure 46 displays traces of force and AMG records form 

contractions at the beginning, middle and end of the test period. This 

figure show greater declined in force and the accompanying decline hi 

AMG during the first half of the test and slower rate of declme in the 

second half. The force recorded during each contraction declines with 

time. In addition, there are ripples on the force record. These ripples have 

an initial high fi-equency and amphtude and tlien slow and diminishes with

each successive contraction.

A N A L Y S E D  D A T A  O F  F A T IG U IN G  T E S T  B Y  S U S T A IN E D  

C O N T R A C T IO N S :

Collective data of five subjects from sustained isometric MVC 

contractions till fatigue is displayed in figure 47. All force level were 

normalised with the initial force as 100%MVC. The force shown 

different degree of potentiation in different subject at the initial phase. The 

duration of the potentiation period is different between subjects. The force 

then declines witli time, with different rates in individual subject. The time 

course of fatigue were also different in different subject: the shortest time 

to reach fatigue stage was about 80 seconds, while the longest time was 

about 1200 seconds. It was noted that the rate of force decline was greater

::

90 !



Figure 47. Graphical representation of changes in force (circles), AMG 

intensity (squares) with time, during sustained isometric contraction of 

maximal effort tiU fatigue. These are data from 5 individual subjects. 

Data were normahsed to the initial values of AMG intensity (rectified 

and integrated) and force levels and were analysed by continuous 

running average with 1 second time constant.
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I
in subjects with the shortest fatiguing time course with an higher initial 

absolute force level (AMH); and the reverse is true for subject with the 

lowest initial force output (PR).

The AMG signal intensity recorded are normalised to tlie initial 

value of AMG as 100%. The AMG change with time follows different 

trend in different subject: some shown a clear trend of decline (graph 

AMH, DM and PR); while others had data with huge scatter.

Data were then analyzed, shown as ratio of AMG-force in 48. A 

single regression line could be fitted to the data. The data could be fitted 

by a line with formula Y==8.9*10’̂ X-i-0.904 (r^3 .7* 10"̂ ). The slope of this 

line is not significantly different fi'om zero. Figure 48 displays AMG- 

force ratio increasing at a fast rate after 170s. These data comes fi'om only 

one individual with very scattered data points.

ANALYSED DATA OF INTERMITTENT FATIGUING TEST:

The data of five subjects, were analysed for force level and AMG 

intensity during intermittent form of fatiguing test. The initial force was 

the maximal effort. Data fi*om individual are displayed in figure 49. The 

data were normalised witli the initial value as 100% and fitted with third '3
order of regression lines.

During intermittent fatiguing test, force decreased with progressive

fatigue in each subjects imder investigation, even though the time taken

to fatigue an subject is not the same: some reached the end points at about 
.800 seconds in the protocol witli fast rate of force decline, while other 

could carried on performing till 2500 seconds into the test and maintain 

relatively higher force level at the end point. In all cases, there were no 

force potentiation during intermittent isometric contractions, unlike during

I
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Figure 49. Five sets of individual data showing changes in force 

(circle) and AMG intensity (square) with time, during intermittent 

isometric contraction till fatigue. The initial force was the maximal 

effort each subject could produce. Data were normalised to the initial 

values of lAMG intensity and force levels.



100

75

50

100

75

50
X(Q
E 100

1400700 1050350

1500 2000500 10000

(D
s
0)
2o

LL

75 4

50 

100

75

50 

100

75 

50

-V ^  / \  ^V

W  I  ^  \  A
y

j ! I ! 1 [ I I I I I I I 1 I I I r

0 400 800 1200 1600\
400 600 8000 200

PR

0 500 1000 1500 2000 2500
Time (sec)

94

100

60

100

60

40 ?
120 I

(/)c
5260
c

30 0
S

100

60

40

100
75

25



Concurrent observation shown that there were ripples on force records at 

about lOHz jfrequency and this phenomena persisted throughout the whole 

test.

95

sustained isometric contractions. The forces recorded from all subjects 

declined progressively with time. However, the rate of force declines were 

varied, with subjects having the higliest absolute force had fastest rate of 

force decline.

The AMG intensity recorded shown inter-subjects variation: some 

shown clear trend of steady increase with time, some shown a decreasing 

trend and others had relatively little change with time.

The degree of AMG association with force is shown in figure 50, 

as the ratio of AMG to force. There was less scatter in the data at the 

initial stage of test, but the degree of data scatter increases with each 

successive contraction. This graph demonstrated tendency of increasing 

AMG-force ratio with progressive contractions. The data could be fitted 

by a line of formula Y=6.56*10^X+0.9665 (r^=0.4179). The slope of this 

line is significantly different from zero.

FREQUENCY CONTENT OF AMG SIGNAL:

The 128 points Fast Fourier Transform analysis of 5 seconds data, 

yield predominant peak frequencies of AMG signal between 6 to 12Hz, 

with most peaks landing on lOHz in sustained 100%MVC contraction till 

fatigue, as shown in figure 51. There was very little power in frequency 

spectrum beyond 25Hz. In this figure there is little evidence of change in 

the peak frequency of AMG spectra with progressive fatigue. However, 

there were changes in the total AMG signal power content with time. The 

total power diminishes in AMG recorded from this individual subject.
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Figure 51. Frequency spectra of AMG signal intensity during 5 second 

episodes at different stages of the fatiguing test from one subject. The subject 

was fatigued by sustaining maximal effort. Data were taken at 2, 22, 42, 62 

and 82 seconds into the test. It ended at time 85 seconds.



*?o
V "
X

ë
c
3

140 
105 

70 H  
35 

0
140 n 
105 

70 H  
35 

0
140 n

« 105 
cO)
'55
O
S
<
o
01a.

70
35

0
140
105

70
35

0
140
105

70
35

0

Time = 2s

irrFTn

Time = 42s

Æ

^ E ’7KtrJn?:Vrf7Kiaa-t7(2n3riiTTiii i.

Time = 62s

Time = 82s

j  I I  I i y — r n — 1— i — | — r -  - | -  r  - 1 -  I i " r ' r  - (  j  i i i  i j  i i i i [

0 10 20 30 40 50 60

Frequency (Hz)

97



The frequency spectra of AMG signal produced with intermittent 

form of fatiguing test, example from one subjects is displayed in figure 52. 

hi this figure there were veiy distinct narrow peaks between 8 and 12 Hz, 

which changed in amplitude with progressive fatigue. There were other 

less well defined and broad band frequency peaks between 18-35Hz, with 

less power content per bin, which were not so apparent in data from 

sustained contractions.

The median frequencies of AMG signals were analysed for both 

form of fatiguing test, and the results displayed in figure 53. During the 

sustained contraction till fatigue, there is no common trend in AMG 

median frequency change with time: some increased and others decreased. 

This is equally true for intermittent contractions till fatigue.
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Figure 52. Frequency spectra of AMG signals recorded from one 

subject. The subject was exerting intermittent maximal effort till fatigue. 

The analyzed bursts of AMG were taken from first, 10th, 20th, 30th and 

40th contractions. The end point of fatigue was reached when force 

declined to 50%MVC or when subjects no longer able to produce 

contractions.
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Figure 53. Graphical display of median frequencies of AMG signal 

changes with time during sustained contraction and intermittent 

contraction till fatigue. The initial force was from an maximal effort. 

Five subjects took part in both of tests.
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2.4 DISCUSSION

It was the originai aim of this study to identify the optimal positions 

or conditions for recording AMG; investigate AMG characteristics and its 

relation to force of contraction; assess tlie possibility of AMG as an 

indicator of muscle fatigue. The results obtained, from this series of 

human study, shown that there is a good correlation between AMG signal 

intensity and force generation in isometric force holding and force varying 

contractions. AMG signal intensity was found to be proportional to force 

within any force varying isometric contraction. AMG was found to be 

tightly associated with force production during sustained isometric 

contractions till fatigue of near maximal voluntary contraction force. 

However, the close association between AMG and force level was not 

observed in the inteimittent isometric contractions till fatigue. The AMG 

signal frequency was compHcated and the médian frequency of AMG was 

not associated with force production.

2.4.1 MATERIAL AND METHODOLOGY:

The Entrai! accelerometer was chosen due to tlie relatively small 

size and weight of the device and its good frequency response range. In 

addition its sensitivity is 400 times greater in one direction than others. 

Thus, it is not affected by the stretch on the skin at the recording site. This 

recording device can be easily attached on to the skin surface with double 

sided adliesive tape and is not sensitive to the method of attachment and 

the pressure exerted on it, in comparison with other microphones available 

(Baxendale and Yao 1991, Smith & Stokes 1993). It is not sensitive to 

air-bound sounds.

Quadriceps muscle were chosen for AMG investigation in these
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1:
experiments for the following reasons: 1) the relative large muscle mass 

and surface offered many recording sites. 2) the radius of curvature of the 

muscle changes relatively httle during contractions and so there are fewer 

problems with displacement of the accelerometer. 3) quadriceps is used 

during functional electrical stimulation to aid walking and standing in 

handicapped humans.
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Tlie voluntary force recorded from quadriceps is the summation of

forces generated in die whole of the quadriceps group: rectus femoris, 

vastus medialis, vastus lateralis and vastus intermedius muscle. This group 

of muscles contract and bring about the extension of knee. In addition, the 

rectus femoris flexes the hip. The force recorded is the sum of the whole 

muscle gr oup but the AMG signal may be that of the muscle immediately 

under the recording site. However, there is evidence that rectus femoris 

is the major force contributor in extension between 90° to 140° 

(Basmajian and De Luca 1985). The joint angle was fixed at 90° in this 

study. Thus, rectus femoris may be the major force contributor and the 

AMG recorded in association with contraction was dominated by the 

sound coming from rectus femoris. Furtiiermore, the fixed angle of knee 

joint and the standardised posture should eliminate changes in muscle 

activation strategy.

The experimental set-up used to record forces in this experiment 

does permit certain amount of movement at the start and end of the 

contractions. This is evident in tlie rather large AMG signal at the start 

and end of each contraction, as seen in figure 32 and 35. But the artifacts 

in the AMG signal were more prominent in isometric holding contractions, 

where AMG and force signal being analysed were those of steady state 

phase. Thus, the artifact interfered very little with result obtained. It
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seemed rather possible that the "jerking" signal at both end of contraction 

was the result of muscle tendon taking up tension from a slack state and 

vibrating like a piece of rubber band being stretched. The speed of that 

stretching determined the amplitude of the vibrating signal. This theory 

could also explain the smaller artifacts observed in contractions with slow 

rate of force change.

In this study, AMG signals were analysed for their frequency 

content by the Fast Fourier Transform method (FFT). This gives a detailed 

representation of signal in terms of the frequencies contained and the 

power associated with each frequency (Diemont, Figkn, Orizio, Perini & 

Veicsterinas 1991). However, there are drawbacks of FFT method. The 

most significant is the assumption of a constant signal frequency content 

during the transform interval (Wood, Buda & Barry 1992). This can be 

minimised by keeping tlie data samples short.

2.4.2 RECORDING SITES:

As stated in the introduction, the quality and possibly the quantity 

of the sound produced by muscle contraction can vary with acoustic 

sensor employed. Therefore the discrepancy in reported AMG-force 

relationships obtained by different groups of workers (see Table I), may 

be due to the variety of recording devices used. One possibility is that the 

location of the source of sound produced may be changing with time or 

degree of exertion. Consequently, the first priority, in this study was to 

find the optimal site for recording AMG.

Data from this study shown that 1) There are best sites for 

recording optimal AMG signals at any given force hi different subjects. 

2) The best recording site changes with varied exertion, and with no
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Ivisible trend in individual subjects. 3) The best recording site differ

between different subjects and different degree of exertion. This is

summarised in figure 26. The movement of the optimal AMG signal

intensity position did not follow a specific pattern. The inter-subject

variations were great. So it appears there is no single common optimal site

for AMG recording in any individual studied. It thus become impractical

to find on common position best for recording AMG signal, if AMG 
,intensity is tlie parameter of consideration in an investigation.

There was very little AMG signal at tlie boundary of the muscle, 

wliich is to be expected as the AMG signal recorded was the summation 

of those from all muscle fibres activated and there are fewer muscle fibres
,v '"

.near the muscle boundary. The signal from other muscle fibres hi the 

centre would be weakened on reachhig the boundary. The location of 

higher AMG intensity tends to lie within the upper and lateral region of 

the thigh. This trend of higher AMG hi lateral site of rectus femoris is 

consistent witli the anatomical arrangement of the quadriceps, with the 

sartorius muscle covering proximal medial portion of Rectus Femoris.

Although rectus femoris is the major force contributor of quadriceps group 

at knee joint angle of 90 degree (Basmajian & De Luca 1985), the more 

superficial location of sartorius muscle enable its AMG signal to transmit 

to the surface of skin through less boundaries, with less dampening and 

higher intensity.

The relatively low AMG intensity at the distal end of rectus femoris 

is also consistent with the anatomical arrangements, where the fibre ends 

and inserts into the muscle tendon with higher stiffiiess and lower 

vibration amplitude. This notion is supported by frequency content 

analysis on maps of the thigh at different force levels, as seen in figure 30,

Î
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demonstrating the low AMG power at distal end of the thigh with a 

dominant frequency at about 6 to 12Hz. It is noted that the AMG intensity 

and peak frequency were lower at the site of patella. This is consistent 

with the theory of AMG being vibration of the whole muscle in the 

transverse direction and the patella tendon will experience more force in 

longitudinal direction as muscle contracts than transverse direction.

The power spectra at the lateral sites agree well with AMG 

intensity recorded and the frequency power spectral range increased up 

to 60Hz with multiple peaks varying between sites and contraction levels. 

The increase in frequency range and the number of peaks are in good 

agreement witli the present knowledge of muscle motor unit behaviour; 

recruitment and decruitment of different types of motor unit. Each has 

different contractile strength and response to different frequencies of 

neuronal input. This motor behaviour together with motor unit territory 

could account at least in part, for tlie varied AMG frequencies content at 

different sites.

This finding reinforce result of preliminary study of Zhang et al 

(1991). They investigated the AMG signal from quadriceps, during 

isometric contractions and showed the dependence of AMG power, 

frequency content on different positions. However, they only worked with 

four positions of recording on the rectus femoris and the report was not 

detailed, which made further comparison difficult, even though they 

employed accelerometer as the case in this investigation. The other report 

on AMG signals intensity recorded over different positions on a muscle 

were Wee & Ashley (1991). They reported AMG signal at the point of 

stimulation was double that of a distant site in human biceps and triceps. 

Their results differ from the present finding. The difference may be in
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three area: 1) the recording device: uses of an accelerometer in this study, 

as opposed to piezoelectric transducer taped to the skin. The tape exerting 

forces on transducer could influence signal intensity, especially with large 

change in muscle radius. 2) the types of contractions: voluntary 

contractions verses electrical stimulation, which capable of synchronising 

muscle fibre activities. 3) different muscle studied: the biceps is smaller 

compared with quadriceps and the change in muscle radius would be 

different between the two muscles. Recruitment strategy and threshold 

force for motor unit activation will differ between these two muscles and 

contribute to discrepancy of results between studies.

Based on data presented in figure 26,27 and 28, general high AMG 

signal were recorded fi'om the mid-proximal region of the left thigh. In 

addition, the change in AMG amplitude with force was linear at these 

positions and have higher rate of changing AMG with force in this region 

(table 3). The presence of a high AMG intensity region at the mid and 

lateral sites is consistent with the theory that AMG represents the 

mechanical event of muscle contraction. With majority of the fibres 

bundled together in the muscle belly and the fact that highest vibration 

intensity signal would be theoretically midway between the two poles in 

an vibrating string model, AMG would be highest at the mid point of the 

muscle. Furthermore, if AMG signal is spreading out like a wave from the 

active fibres to the surface of the thigh, a good position for detecting and 

recording those signals with higher amphtude should be around the middle 

of the muscle. This is confirmed in figure 24, where AMG intensity 

recorded from position 3(0) is high in ail force level tested. Position p3(0) 

thus became the convenient site for subsequent AMG recording.
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2.4.3 AMG-FORCE RELATIONSHIP DURING ISOMETRIC 

CONTRACTIONS:

Data obtained during isometric force holding and varying 

contractions, show a statistical significant linear relationship between 

force production and the accompanying AMG signal processed by both 

RI and RMS methods. This linearity existed in whole range of force tested 

between 0 and 100%MVC, as shown in figure 33, 34, 36 and 37. 

Furthermore, the linearity was found to exist in data recorded fi*om 

different positions on the surface of the tliigh, as displayed in figure 27, 

28 and table 3. The same relationship was also found to exist witliin one 

force varying isometric contraction.

The linearity between force and AMG signal intensity, is in 

agreement with the previously reports on the human quadriceps (Stokes 

& Dalton 1991, Smith & Stokes 1993, Zhang et al. 1991), on adductor 

poUicis muscle (Stokes & Cooper 1992), biceps brachii muscle (Oster & 

Jaffe 1980; Barry 1985; Zwarts & Keidel 1991) and tricep brachii (Rouse 

& Baxendale 1991) (see table 1 for detail).

The force increment in a firesh muscle is known to be deteimined 

by two factors: the recruitment of more motor units and increasing firing 

rate of the early recruited motor units. The origin of AMG is thought to be 

vibration of the whole muscle (Barry & Cole 1988b). The shortening of 

sarcomeres in a contraction will pull at both end of the muscle and the 

change of muscle dimension will result in the vibration of the whole 

muscle. The amplitude of this vibration depends on the degree of 

contraction force. Large muscles generally have more motor units and 

require less fine control over force. They rely on recruitment more than 

change in firing rate for force production, as reviewed by Basmajian & De
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Luca (1985). A large muscle, such as biceps, is known to have 

recruitment up to high force levels such as 80%MVC (Kukulak and 

Clamann 1981). Thus, this linearity between AMG and force found in this 

study could be explained base on recruitment strategy. Increase in firing 

rate of active motor units would be expected to contribute to higher 

frequency components of the AMG signal, certainly at the higher force 

range. Increase power in this higher component will surely shift the 

median frequency of AMG to higher value. This sliifr was not observed 

during isometric contractions in this study. Therefore, increase in firing
I;-

rate of active motor units contributes little in the quadriceps force at 

higher force range.

The results obtained from this series of experiments are inconsistent 

with other reports of a linear relationship only up to 80%MVC and then 

a sharp decline, by Orizio, Perini & Veicsteinas (1989a) on the biceps 

brachii. The results also differ from a non-linear relationship as reported 

by Stokes, Moffroid, Rush & Haugli (1988), Barry (1990), Maton,

Petitjean & Cnockaert (1990), Stile & Pham (1991) and Smith & Stokes 

(1993). (see table 1).

The different AMG and force relationships reported may be due to 

tlie different muscle architecture and functional difference in terms of fibre 

composition, recruitment strategy and distribution of fibre type in a 

muscle. It may be possible that these differences can change the sound 

origin and sound amplitude at different force levels. This will be a 

particular problem if the recording site is fixed at one point. As mentioned 

above (in section 2.3.2), AMG recordings made on different sites over the 

surface of thigh did not indicate movements of underlining AMG source 

as the force changes. Therefore, change in muscle dimension during a

i
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during contracting and relaxing phases, as illustrated in figure 38, 39 and
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contraction and the subsequent displacement of microphone can not be

accounted for the discrepancy between the AMG force relationships

reported by Orizio et al (1989a), Barry (1985), Maton et al (1990) and

Stile & Pham (1991); and that obtained in this series of study.

The comparison is further complicated due to the different methods 
.

and material used in the above mentioned studies. The use of different
=■'1

devices can lead to quite different results. Bolton, Parkes, Thompson,

Clarke & Sterne (1989) and Smith & Stokes (1993) found that the

pressure exerted on a microphone can affect the AMG intensity being

recorded. Orizio and co-worker(l989a) used a contact microphone, which

is sensitive to pressure rather than acceleration or vibrations, which will

affect results. The accelerometer used in studies reported here, is a light 
. .and sensitive device, which only response to vibration and acceleration 

.with little other influence from the surrounding. In addition, the 

accelerometer is very insensitive to pressure and only responses to 

vibration on one plane. These characteristics enables more accurate 

recording of signal.

An other major factor is the different muscles studied. There are 

only three reports of AMG-force relationships jftom human muscles in 

experiments usiug accelerometer as recording device for isometric 

contractions (table 1). In these three reports, two linear AMG-force 

relationships were found on quadriceps. The other reported a S-shaped 

AMG-force relationship in bicep brachii. It thus implies that AMG may 

be a better indicator for force in a large muscle.

Within force varying isometric contractions, the relationsliip

between AMG signal intensity and force exertion is still linear in nature
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40. A significant difference existed between the rate of AMG intensity 

rise with force during contracting and relaxing phases in each individual 

subject. The summary data from figure 41 reveals that the rate of AMG 

intensity change with force increment is not significantly (p>0.05) altered 

at different peak force during relaxing phase and contracting phase. This 

indicates a close linkage between AMG signal amplitude and force 

production within isometric force varying contraction, and this strong link 

is not broken with change in peak force and hence rate of force increase.

This phenomena, to the author's knowledge, is not reported of 

isometric contractions in the hterature. Most of which concentrated on the 

relationship between AMG signal intensity and the associated force 

production rather than on the rate of that change. The only report on rate 

or gradient of linear AMG-force relationship was that by Dalton & Stokes 

(1991) on dynamic concentric and eccentric contraction in human biceps 

brachii. They reported a lower rate of AMG intensity change with 

increasing force in eccentric contractions, in comparison to concentric 

contractions. It seemed that the AMG signal amplitude is closely linked 

to force and unaffected by rate of that force change in voluntary 

contractions. But initial muscle length might affect the AMG-force ratio 

with increasing peak force. This requires further investigation.

2.4.4 VOLUNTARY FATIGUING CONTRACTIONS;

This set of experiments were carried out with maximal effort or 

near maximal voluntary contractions, which will activate all motor units 

in the whole muscle and thus eliminate variation in motor unit numbers 

during a single contraction. In addition, the relatively short time course 

taken to fatigue muscle is preferred for experimental convenience and
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easy analysis.

Force production decreased with time in botli test conditions, but 
.the force decline was more rapid in the sustained contractions than in the

intermittent contractions. It was noted that the subjects sustained 
.continuous isometric contraction longer in this study than reported values 

of one to two minutes. This may be due to the fact that the subjects 

chosen were of athletic inclination and they were well able to tolerate 

pain. This notion is supported by Prof. N. Spurway's work in Glasgow 

university UK (private communication). In addition, there might be some 

metabolic adaptation in these semi-professional athletes, which enable 

them to tolerate blood occlusion during contraction.

The difference in fatiguing time course of intermittent and sustained 

contractions, may stem from the different types of fatigue mechanism. In 

the sustained contraction till fatigue, the blood is occluded and there is a 

greater tendency to develop peripheral fatigue. But contribution from 

central fatigue could not be ruled out. In the intermittent fatiguing 

protocol, central fatigue may be the main cause of force decline.

During continuous fatiguing test, as seen in figure 47, the force 

decreases witli time and AMG amphtude change varied between subjects. 

Tlie AMG-force ratio, as in figure 48, appears to be constant at least until 

175s. Beyond this the ratio increased, but the data was only from one

subject, and the duration of the contraction suggest that they may not be 

the truly maximal in the early stages. Alternatively, some other form of 

fatigue may have developed in these long duration contractions. One 

possibihty is that fatigue induced tremor contributes to the AMG later in 

the contraction. This can be discounted, at least up 175s, since the 

constant AMG-force ratio would not allow for additional tremor. The
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force oscillations seen in figure 43-46 are too low frequency to be 

considered as tremor. In addition the collective AMG firequency spectrum 

does not show any significant change in median fi'equency during

contractions (figure 53). This would have been a sensitive test for the 

development of termor induced AMG components.

Data from the intermittent isometric fatiguing test show a different 

trend, as in figure 49. With force decline, the AMG intensity was 

observed to increase, decrease or remain constant in different subjects. 

The summary graph in figure 50 displayed increase in AMG-force ratio 

throughout the time course of the test. A line could be fitted to the data 

and the positive slope of it was found to be significantly different from 

zero. This indicates a dissociation between force and AMG fatigue by the 

intermittent contraction and tliis dissociation increases with progressive 

fatigue. It imply a different form of fatigue developed during continuous 

and intermittent contractions.

This tight link between AMG and force during continuous fatiguing 

contractions agrees well with data of continuous fatiguing test from biceps 

of 75%MVC (Barry et al 1985) and biceps brachii of MVC (Zwart & 

Keidel 1991). The short duration and the high initial force in this fatiguing 

experiment, ensure activation of most of the motor units in quadriceps. In 

muscle fatigue by sustained contraction, force loss was thought to be due 

to the impairment of maximal shortening velocity and slowing of 

relaxation in the active fibres (Bigland-Ritchie and Wood 1984) as well 

as decline in mechanical output of motor miits. The decline in motor unit 

twitch force will result in fall of AMG amplitude and the lengthening of 

relaxation. These will shift the AMG median frequency to lower values. 

This shift is only demonstrated in some of the subjects in figure 53.
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Furthermore, the increase in intramuscular pressure and in passive 

muscular stiJB5iess occurring during fatigue could reduce fibre dimensional 

change and thus AMG amplitude .

However, the results reported here does not agree witli AMG 

generated from biceps brachii muscle contractions of 20, 40, 60%MVC 

sustained till fatigue (Orizio et al 1989b). In the same report, they shown 

an decreasing trend of AMG signal intensity with time during sustained 

80%MVC, but did not calculate its correlation with force.

A dissociation between AMG signal amplitude and force was 

observed in fatigue by intermittent contraction study and shown in figure 

49 & 50. In these figures there is only one case of AMG signal decline 

with fall of force. Tins is not m agreement with reports of fatigue by

intermittent contractions in first dorsal interosseous (Barry, Hill & Dukjin 

1992) and quadriceps (Dalton, Comerford & Stokes 1992). There are 

lesser peripheral fatigue and more fatigue from central neiTous system in 

intermittent fatiguing test of a near maximal force. The change in muscle 

force production in central fatigue is likely to associate with change in the 
number of active motor units or the firing rate of active motor units or

both. The degree of contribution from each of these elements require 

frirther study. Physiological tremor as a major contributor to AMG signal 

change could not account for all observations. Because change in 

physiological tremor with low frequency content would be expected to 

shift the AMG median frequency to lower values. Again, the shift was 

only observed m 3 subjects.

2.4.5 AMG FREQUENCY CONTENT:

The results from this study shown the AMG frequency spectrum
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lies between 5 to 35Hz, with very little activity beyond 60Hz. This is 

illusttated in figure 29 & 30. It is consistent with other reported value of 

Barry (1988), Zhang et al (1992) & Stile and Pham (1991). The fi-equency 

spectra are similar as forces increase and the median firequency are 

unaltered as shown in figure 31. This is in agreement with Diemont, 

Figini, Orizio, Perini & Veicsteinas (1988), Wee & Ashly (1987), Rouse 

& Baxendale (1991). The firequency spectra during force-varying 

contractions are more complex than those recorded during constant force 

contraction. This probably reflects the more complex mechanical events 

during the force-varying contraction. The median firequency of AMG 

signal remain constant with changing force level and changing position of 

recording, as shown in figure 31.

and remains unchanged witli changing force. This is probably due to the 

high stiffiiess of the region, the AMG recorded is more of a transverse 

vibration than a longitudinal one and the tendon will have more vibration 

on the longitudinal direction with muscle contraction.

There were observed intra-subject differences in AMG median 

fi-equency change with progressive fatigue, as shown in figure 53. This is 

unlike reports of Zwarts & Keidel (1991) who found only unchanged 

median frequency, Diemont et al (1988) and Maton et al (1990)
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Figure 30 shows the range of AMG frequencies present at different
il

points over the surface of quadriceps. The most intense and complex

spectra are seen near the mid-line towards the proximal end of the muscle. 

Much simpler spectra are seen at the margins of the muscle suggesting 

either simpler AMG generation processes or a degree of mechanical 

filtering of the AMG. It is interesting to note that the spectra recorded at
.the patellar tendon shows considerable similarities to the tremor spectrum

I



discovered change in median frequency of AMG in fatigue
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CHAPTER 3

EXPERIMENT ON RABBIT ANTERIOR TIBIALIS
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3.1 INTRODUCTION

It is often easier to work with the experimental animals due to the 

relatively controlled conditions of the investigation and the possibility of 

isolating single factors in complex events. This is not easily done in 

human subjects. With experiments on animals, denervation techniques can 

avoid reflex responses elicited by stimulation. In addition, stimulation 

which may cause pain sensations in normal human subjects, can be 

employed in anaesthetized animal preparations.

3.1.1 THE NATURE OF AMG :

The nature of AMG is thought to represent the mechanical 

components of contraction. Oster (1984), who claimed that the action of 

single fibre during a contraction is the cause of AMG and the waveform

I'

of AMG varies with muscle length, peak twitch force and temperature. 

The second theory of the nature of the sound is that a change in the radial 

dimension of the fibre during a contraction (Gordon & Holboura 1984, 

Brozovich & Pollack 1983). Physiological tremor has also been 

considered as the source of AMG signal by Oster & Jafte (1980). 

Rhatigan, Myhea, Lonsdale & Stem (1986) believed the oscillation due 

to pulling of elastic elements at each steps of contraction is the cause of 

muscle sound. Perhaps the most well supported theory regaiding the 

origin of muscle sound is " lateral movement " of a whole muscle (Barry 

1987, Frangioni, Kwan-Gett, Dobrunz & McMalion 1987 & Barry and 

Cole 1988). They shown that the intensity of the sound is linearly related 

to lateral acceleration and inversely proportioned to distance from the

muscle and cosinusoidally dependent on the angle from the major plane 

of lateral movement.
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3.1.2 THE FREQUENCY COMPONENTS OF AMG:

It is rather convenient for investigators to use annual muscles in the 

study of AMG produced by electrical stimulation. Cole and Barry (1991) 

set out to test the possibility of using frequency content of AMG to track 

force level. They constructed a mechanical model of frog semitendinosus 

muscle, using a string with distributed mass. Tliis model simulates 

properties related to the muscle such as mass, length, elastic modulus, 

tension loading, fluid medium. This model combined with resonant 

frequency determined from AMG data to predict force. It showed a near 

perfect match between the actual recorded forces from frog muscle and 

those recorded from tlie mechanical model. In addition, it was 

demonstrated that the amplitude of AMG is larger at tlie optimal length for 

force production than that at a longer length. The time course of the 

resonant frequency rise is more rapid at the optimal lengtli than it 

counterpart at longer than optimal length. The authors suggested that the 

time course of tension change was the dominant factor in changing the 

resonant frequency of this muscle during isometric contraction, and the 

effect of elastic modulus may be important in a muscle with larger radius 

-length ratio.

i

'

'S;--

3.1.3 AIM OF EXPERIMENT:

Normal movements are associated with changes in muscle length, 

force and velocity. The following experimental protocols were an attempt 

to answer a few questions:

1) How does change of muscle length effect the production of 

AMG signal ?

2) How does the stimulation frequency affect the AMG
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3.2 METHODS

3.2.3 COMMON PROCEDURES:

Experimental set-up: Initial anaesthesia of the rabbits was achieved

118

characteristics ?

3) How does fatigue developed during electiical stimulation affect 

the AMG signal ?

4) How do stimulation frequency and fatigue affect AMG signal ?

I

.i,r

3.2.1 ANIMALS:

Male New Zealand White rabbits, purchased from the government 

approved commercial sources, were used in the animal experiments. The 

choice m using these animals are: 1) relative homogeneous muscle fibre 

types in Anterior Tibialis. It has about 87% fast twitch muscle fibres and 

13% slow fibres as stated by Lieber, Ferro & Hargens (1991); 2) its easy 

access and fixation of muscle on the experimental setup. The big body 

size of the rabbit allows operations to be carried out with relative ease, 

and also reduced the risk of hypothermia and heat loss.

I

3.2.2 ETHICAL CONSIDERATIONS

Ethical approval to the experiment design was given with Home 

office granted licences (project licence number 60/01063 and personal 

licence number 60/03992), and all experiments comply with requirements 

set out in Home Office Animal (scientific procedure ) Act 1986.

'
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by inhalation of up to 4% Halothane in 80% NgO and 20% gases. 

Gases were continuously supphed through a face mask before cannulation 

of the trachea. The state of anaesthesia of the rabbit were checked 

frequently by examine reflex response to painM stimulus such as toe 

pitching and touch of cornea. Attention was also drawn to the respiratory 

rate, depth and colour of mucus membrane to determine the effect of 

anaesthetic on depression of respiration. Muscle temperature was 

constantly examined during experimental procedure with a thermometer 

placed on and! paraffin pool. All operations were performed with the 

rabbit on a thermal controlled blanket and overhead heat lamps were used 

to regulate ambient temperature.

Surgical procedures:

a) Tracheostomy: With tlie rabbit in prone position and under deep 

anaesthesia, a classical tracheostomy was performed. A medial incision 

in the anterior region of the hyper-extended neck exposed the trachea. 

After cauterising any possible bleeding, the trachea was incised partially 

between two cartilage rings and a glass tracheal canula was inserted and 

carefully fixed on place with string. After checking for airway clearance 

and satisfactory ventilation ensured, tlie skin incision was then closed and 

the neck extension released.

b) Peroneal Nerve exposure and TA isolation: The whole leg of 

the animal was shaved and incision was made to expose the peroneal 

nerve near the knee joint. Nerves to other muscles in the anterior 

compartment were cut. Common peroneal nerve exposed at lateral 

malleolus of tibial was freed from connective tissue and placed over 

stimulating electrodes (see details in section 3.2.4). The nerve was 

crushed to eliminate reflex effects.

_____



The superficial muscle of Tibialis Anterior (TA) was then isolated 

and freed. The knee and ankle of the rabbit were rigidly clamped after 

injection of local anaesthetic (Oxycaine 1.5 - 2mg/kg body weight). 

Tendon of TA was sewn and tied with ligature, then freed from ankle 

joints and attached to a strain gauge positioned to preserve muscle line. 

The accelerometer was stitched on the surface of TA belly. Skin was sewn 

on to a metal frame to create a paraffin pool maintained at temperature 

range of 35°C-38°C, and light plastic film was used to minimise loose of 

moisture from the muscle. This set-up is shown in figure 54.

3.2.4 STIMULATIONS

Bipolar silver wire electrodes were employed in these experiments 

for electrical stimulation of die peroneal nerve supplying Tibialis Anterior. 

The stimulation pulse width was kept constant at 100 micro seconds and 

stimulation intensity was gradually increased till a twitch could be 

observed in Tibialis Anterior muscle. The intensity of the current used in 

the later experiments were 10 times above the current tlireshold for visible 

contractions. The stimulation frequency and the duration of stimulation 

varies witli individual experimental protocols, which will be detailed in tlie 

following sections. The signal capture, storage, processing and analysis 

were carried out with the same methods stated in chapter 2 ,

3.2.5. SIGNAL PROCESSING

Both the AMG signal and Force were recorded, store and retrieved 

by the same method as stated in Chapter 2, section 2.2.2 "Signal 

recording"; section 2.2.3 "Data recording and storage" and section 2.2.4 

"signal processing and analysis".

120
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Figure 54. The experimental setup used in animal tests. The rabbit hind 

limb were immobihsed with metal clamps at knee joint and ankle joint 

level (denoted by arrows A). Anterior Tibialis was isolated and the 

nerve innervating it was stimulated by bipolar electrode (arrow B). 

Reflexive action was prevented by crushing the nerve proximal. An 

accelerometer was stitched onto the muscle belly (arrow C) and force 

production were recorded from strain gauge attached to ligament (arrow 

D) sewn and tied on to tendon of Anterior Tibialis.



121



122

I
AMG: The AMG signal was captured from tape with 512

points. The AMG intensity value were measured both at the begin of a 

contractions and as 5 to 10 average of the peak to peak values of tlie very 

last few AMG signal waveforms. Only-rectifying-integrating (RI) method 

was used for AMG signal processing. The AMG sensor used in these tests 

were the same Entran Accelerometer employed in the Human experiments 

(see Chapter 2 section 2.2.2)

Force: The force transducer deployed in these tests was that

of RS 20Kg Load cell (Supplied by R.S. Components, UK), winch 

operates within the temperature range of -30 to 70 degree C and has 

maximum load of 20Kg with accuracy being 0.05%, as shown in figure 

55.

3.2.6 STATISTICAL METHODS.

In most cases, data are presented as characteristics of individual 

muscles. In the case of calculated collective data, comparison of standard 

deviation or standard errors of group data was achieved by student t-test 

or rank test. si

■-
3.2.7. SPECIFIC EXPERIMENTAL PROTOCOLS:

.

A) THE EFFECT OF MUSCLE LENGTH ON FORCE 

GENERATION AND AMG INTENSITY:

This series of experiments were performed under two sets of 

conditions,:

1) The electrical stimulation frequency being that of a single pulse 

producing twitches. The rabbits were stimulated at IHz and the intensity

I
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Figure 55. The calibration curve of strain gauge used during all animal 

experiments.
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of the stimulation was 10 times the threshold for a visible twitch. The 

stimulation train lasted 5 to 10 seconds.

2) The electrical stimulation were delivered in short trains of 1 to 

5 seconds. Tire frequency of stimulation was gradually increased till a full 

tetani was produced in Tibialis Anterior, wliich generally occurs at 15Hz. 

A supra-tetanic stimulation frequency (about lOOHz), was tlien chosen to 

stimulate the muscle to ensure full tetani.

The muscle length was controlled by the precise movement of the 

force strain gauge away or towards the rabbit. The optimal muscle length 

for force production was found by repeated stimulation across a range of 

lengths. The muscle length increased and decreased in steps of 2mm (from 

-12mm till +16mm) around the optimal length. Details for the set-up are 

illustrated in figure 54. Both force and the accompanying AMG signal 

were recorded at each length. The fatigue state was assessed by 

comparison of siugle twitches at the beginning and end of each subset of 

tests.

B) THE EFFECT OF STIMULATION FREQUENCY ON FORCE 

GENERATION AND AMG INTENSITY:

The effects of different stimulation frequencies on the force 

production in tlie muscle and tlie accompanying AMG signal were also 

investigated. Stimulation of Tibialis Anterior was carried out with 

increasing stimulation frequency in range of 1 to 200Hz. The stimulation 

intensity was still 10 times above the threshold value for a visible twitch.

ON FORCE GENERATION AND AMG INTENSITY:

124



3.3 RESULTS

3.3.1 THE EFFECT OF MUSCLE LENGTH ON AMG INTENSITY: 

These series of experiments were performed under two sets of

125

Fatigue, due to electrical stimulation, was studied under two sets of 

conditions:

1) During continuous stimulation with frequencies between 1 to

200Hz. The duration of these tests varied with the frequency. At IHz the

run lasted about 20 Minutes, but at 50Hz, eliciting partly fiised

contractions, they lasted 20 to 45 seconds.
.2) The intermittent form of fatiguing stimulation, in which a burst 

of electrical stimulation lasting for one second is followed by a period of 

one second. The frequencies used were those capable of eliciting partly 

fused tetanus in the muscle, such as 50Hz.

:-ï
ID) THE EFFECT OF FATIGUE ON THE FORCE - 

STIMULATION FREQUENCY RELATIONSHIP AND THE AMG - 

STIMULATION FREQUENCY RELATIONSHIP.

Electrical stimulation on fatigued muscle: The Tibialis Anterior 

muscle was fatigued with continuous or intermittent stimulation and then 

subjected to the same stimulation protocol with changing frequency as in 

protocol b). The stimulation intensity was 10 tunes above threshold value 

for visible contraction and the muscle was stimulated with increasing 

frequency between 1 to 200Hz.
I:i
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conditions: 1) with single twitches and 2) with brief periods of tetanic 

stimulation.

S IN G L E  S H O C K  E L E C T R IC A L  S T IM U L A T IO N  A T  D IF F E R E N T  

M U S C L E  L E N G T H :

Rabbit Tibialis Anterior muscle has a twitch rise time of about 25 

ms, consequently, it is a fast contracting muscle. One example of this is 

illustrated in figure 56. The AMG signal begins before any external force 

was be recorded. The interval between onset of the AMG and onset of the 

force increase was about 5ms. The force rise time, in this case, was 20 ms 

and the half relaxation time was 22,5ms.

Twitches were elicited over a range of about 12mm. There was a 

clear variation in the magnitude of the force development. This allowed 

easy identification of L̂ , the optimal length at wliich the muscle develops 

the maximal force. Figure 57 show data from 6 experiments. In each case 

the length is expressed relative to L̂ . Force generation exhibits a well 

known bell-shaped or near bell-shaped relationship with variations in 

muscle length. The twitch magnitude was reduced to about 50% with 

changes of 6mm in either direction. All the muscle tested demonstrated 

this relationship very clearly, though there are small characteristic 

differences between individual muscles.

The AMG amphtude did not display a simple relationship with the 

force at all muscle lengths. Figure 57a shows an AMG signal intensity 

closely associated with force production. Whilst figure 57b shown the 

opposite effect. In this case the AMG amplitude varied in an inverse bell

shaped fashion, and the minimal AMG signal intensity occurred at the 

optimal length for force production. The other four muscles tested, figure

_
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Figure 57. Force (circles) and AMG signal intensity (squares) generated 

from 6 (a to f) rabbit Anterior Tibialis muscle by single electrical pulses 

at intensity 10 times of the threshold at a series of muscle lengths. The 

muscle length, from which maximal force output was recorded, were set 

as length 0mm.
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Figure 58. Sxunmeiy data of force and the accompanying AMG signal 

generated from 6 (a to f) rabbit Anterior Tibialis muscles at a series of 

muscle lengths. The muscle length, from which maximal force output 

was recorded, were taken as length 0mm. The bottom graph shown 

AMG-force ratio and the values displayed in the top two graphs were 

all normahsed to the maximal value as 100%.
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56c to f, were found to have AMG amplitudes which changed with muscle 

length in a linear or near linear manner. There was great variation in the 

gradient. All these data were collected and the result displayed in figure 

58. Despite the dissimilarity in AMG intensity change with muscle length, 

5 out of 6 AMG-force ratios obtained had displayed a relationship with 

change in muscle length, well fitted with an inversed dome shape curve. 

The highest value situated at or close to the optimal muscle length for 

; force production,

ELECTRICAL STIMULATION WITH FREQUENCIES 

PRODUCING TETANUS AT DIFFERENT MUSCLE LENGTHS:

Broadly similar results were obtained with tetanic stimulation at 

about 50Hz. Figure 59 shows a typical period of stimulation. The force 

generated is measured fi-om the base line to the average voltage of the 

peak force ripples. The AMG signal intensity was that of the average of 

last 10 peak to peak values of AMG waveforms.

Figure 60 shows results fi*om 6 muscles under tetanic stimulation. 

A clear can be identified by tetanic simulation, though interestingly this 

does not always coincide with the identified during single twitch 

stimulation. Similar to contractions elicited by the single electrical pulse, 

the tetanic force production shows a characteristic bell-shaped 

relationship with changing muscle length. There are clear optimal lengths 

for force production, and the force decreases with variation in muscle 

length around the optimal length. The rate of force change with length 

change in muscle differ between muscles. Again the relationship between 

AMG and length does not seem simple.

Data fi'om these six muscle are collected together and illustrated in
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Figure 60. Force (circles) and the accompanying AMG signal intensity 

(squares) generated from 5 (a to e) rabbit Anterior Tibialis muscle by 

periods of 50Hz stimulation at a series of muscle lengths. The muscle 

lengtli, from which maximal force output was recorded, were set as 

length 0mm.
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Figure 61. Summary data of force and AMG intensity generated from 6 

rabbit Anterior Tibialis muscles by periods of 50Hz stimulation at a series 

of muscle lengths. The muscle length, from which maximal force output 

was recorded, were set as length 0mm. The bottom graph shown AMG- 

force ratio and the values displayed in the top two graphs were all 

normalised to the maximal value as 100%.
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figure 61. AMG-Force ratio of the data is represented by the bottom graph 

in the figure and it indicates that majority of muscles (5 out of 6) have the 

ratio change with muscle length fitted well to a shallow inverse dome 

shape curve.
'

3.3.2 STIMULATION FREQUENCY & FORCE-AMG

RELATIONSHIPS:

The force developed by the muscle and the accompanying AMG

during stimulation at a range of frequencies were investigated.

At a fixed muscle length: Typical force and AMG signals from one

muscle are displayed in figure 62. In each case the stimulation frequency

was too low to tetanise the muscle frilly. Thus each stimulus pulse causes

a modulation of force and an associated AMG wave. At the lower 
.

stimulation frequencies, figure 62a, the AMG event is triphasic. The 

waveform of the AMG event changes at higher frequencies. The peak to 

peak amplitude decreases as the force rises at higher frequencies. In 

addition, the individual event becomes more biphasic. At the higher 

stimulation frequencies the first AMG event in the train is substantially 

greater in amphtude than the subsequent events. Data of 7 experiments are 

summarised in figure 63. The results from these experiments are 

consistent. They showed the force-frequency relationship for the muscles
-

are similar and that there were steady force output below 25Hz and big 

force increment with increasing stimulation frequency up 75hz. There is 

relatively little increase in force as stimulation frequencies rise above 

lOOHz. The AMG has almost exactly the inverse relationship. Its 

amphtude fahs between 25 and 50Hz, so that as the tetani becomes more 

complete the AMG intensity is reduced greatly. Ultimately, with

iff'

3
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Figure 62. Traces of 10 seconds of force (top trace) and AMG (bottom 

trace) signais during electrically stimulated contractions at a)21Hz 

b)26Hz c)40Hz d)51Hz and e)100Hz. The records were made at L,,.
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Figure 63. Force and AMG recorded from 7 rabbit Anterior Tibialis 

muscles, when stimulated at a range of frequencies. Data were 

normalised to the maximal value obtained. The relationship between 

AMG-Force ratio and the stimulation frequency is displayed at the 

bottom graph. The curve fitted to data were of secondary regression 

curves. The regression coefficients are displayed in the graphs.
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stimulation at 200Hz, which fully fuses the contraction, the maximal force 

is developed but the AMG is absent.

When the ratio of AMG-force were calculated and expressed in 

graphical form in figure 63 bottom graph, it exhibited a similai* 

relationship to stimulation frequency to that of AMG signal intensity. It 

falls into a minimum at higher stimulation frequency and the maximal ratio 

were obtained below 25Hz. Further analysis of force and AMG signal, as 

well as AMG-force ratio, obtained from muscles stimulated by pulse 

frequency between 20 and 60Hz is shown in figure 64. This figure shows 

a linear relationship between force, AMG, AMG-force ratio and 

stimulation frequency, which could be fitted by first order regression lines: 

Y=1,278X-2.8186 (r^=0.713) for force-frequency; Y=-2.18X+144.04 

(r^=0.6552) for AMG-frequency and Y™0.079X+4.667 (r^=0.654) for 

AMG-force relationsliip with stimulation frequency.

Effects o f changes in muscle length: The same force-frequency 

curve were observed when muscle length change. With change in the 

muscle length away from L ,̂ the force-frequency curve obtained shifted 

downwards, indicating a decline in force production with changes in 

muscle length away from the optimal at all frequency of stimulation. The 

AMG signal intensity also changes with frequency of stimulation at 

different muscle length, in a less systematic way.

When the data are expressed in terms of ratio between AMG 

signals intensity and force production, as in figure 65, a clear trend 

emerges. At all muscle lengths tested, the AMG-force ratio has a peak 

with the lower frequency stimulation and declines as the frequency 

increases. This effect is strongest at the shortest muscle length tested and 

becomes weaker as muscle length was reduced.
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Figure 64. Extracted data from figure 63, showing the force and AMG 

recrded from 7 rabbit anterior Tibialis muscles, when stimulated 

betwenn 20-60Hz. Data were normaUsed to the maximal value obtained. 

The relationship between AMG-force ratio is displayed at the bottom 

graph. The data could be fitted by straight lines.
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3.3.3 FATIGUING TEST:

As mentioned in the introduction section, part of the aim of this study 
was to clarify the AMG signal characteristics and the effect of fatigue.

140

*

THE IDENTIFICATION OF FATIGUE: TWITCH RISE TIME AND 

RELAXATION RATE.

The measurement of twitch rise times and half relaxation times was 

performed to confirm the development of muscle fatigue. Twitches were 
studied during both continuous and intermittent stimulation till exhaustion. A 

graphical display was shown in figure 66, which is the average value of force 

generated and the associated AMG of 15 contractions, induced with single 

electrical stimulation pulses. There is a laige reduction in the twitch force 

developed. The mean twitch rise time during contiol conditions before 

fatiguing test was 22.5mS, and the mean half relaxation time was 47.5mS. 

After the fatiguing stimulation, the mean twitch rise time was prolonged to 

25mS, while the mean half relaxation time was prolonged to 50mS. Even 
though the force rise time were similar in value, the much prolonged relaxation 

time suggest fatigue. The AMG signal changes much less than the force. The 

AMG does fall in amplitude and each component occurs a little later.

FATIGUE TESTS USING CONTINUOUS AND INTERMITTENT 

STIMULATION:
The characteristics of AMG during fatiguing contractions were studied 

during stimulation at 50Hz at about Lo. Two stimulation patterns were used: 

I) continuous stimulation; 2) intermittent stimulation at 50Hz for one second 

followed by one second rest. The changes in the force fi-equency and AMG 

frequency curves were also compared in fresh muscle and after periods of 

fatigue had been induced by sustained muscle activity.

Figure 67 shown data from continuous 50Hz stimulation till fatigue of

 ̂ '  i -S-I r ______________________________________________ .. _________
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Figure 67. Force generation (open circles) and the accompanying AMG 

signal production (closed circles) recorded from five rabbit Anterior 

Tibialis muscles during continuous 50Hz stimulation till fatigue. Data 

were normalised to the initial values as 100%.



0>

5
5  180

Lo 120

è* 60w
I  0

0
1  120

60

0

1 8 0

120

60

180

120

180

120

60

0
T  I I r T  I I r T—r

1 1 0

100

90
100
75
50
25

0 ?
100 I

75 I  

50 J

25 Ï
115

105

95
105

100

95

0 10 20 30 40 50

Time (seconds)

142



five muscles, open circles denote force production and closed circles 

AMG production. All data were normalised to the initial value at the start 

of experiment. There was a degree of force potentiation during the course 

of stimulation in 4 out of 5 muscles and it reached its peak at various 

times after the start of stimulation. The AMG signal intensity, however, 

did not always follow the change m force production. There were initial 

increases in AMG production at the first few seconds and then declined 

the reached a minimum about 20 seconds into the contraction for all 

muscles tested. There were two cases of close association between force 

and AMG, but in tlie three other cases there was no obvious link between 

AMG and force.

However, the AMG-force ratios change with time in a similar 

fashion as AMG signal. This is displayed in figure 68. In this figure, the 

AMG-force ratios increased in the first seconds, reaching a peak between 

2-5 seconds. They then fell rapidly till a steady phase is reached after 20 

seconds into the contraction.

The data from intermittent fatiguing test are illustrated in figure 69, 

where all values were normalised to the value obtained at the start of 

experiment. It is evident that it would take longer to fatigue a muscle with 

intermittent fatiguing protocol (70-100s) than the sustained stimulation 

protocol (25-50s). Similar to data from sustained stimulation protocol, 

there were degree of force potentiation during the course of experiment. 

This is sometime accompanied by corresponding AMG potentiation.

The degree of association between AMG and force is illustrated in 

figure 70, in tlie form of AMG-force ratio. In this figure, the AMG-force 

ratio of all 4 muscles tested shown an initial decline during first 8 to 15 

contractions, then remain constant thereafter.
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Figure 68. AMG-force ratio recorded from five rabbit anterior tibialis 

muscles during continuous 50Hz stimulation till fatigue. Data were 

normalised to the initial values as 100%.
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Figure 69. Force generation (open circles) and the accompanying AMG 

signal production (closed circles) recorded from five rabbit Anterior 

Tibialis muscles during intermittent 50Hz stimulation till fatigue. Data 

were normalised to the initial values as 100%.
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THE EFFECT OF FATIGUE ON FORCE FREQUENCY 

RELATIONSHIP AND THE AMG FREQUENCY RELATIONSHIP:

The effects of fatigue on force production and the accompanying 

AMG signal were investigated in this experiment. Both continuous and 

intermittent stimulation protocols were used. Different conditions were 

deployed: 1) Electrical stimulation on fresh muscles and 2) Electrical 

stimulation on fatigued muscle. The result obtained from 5 individual 

muscle tested is graphically demonstrated in figure 71, 72 and 73. The 

maximal signal of force and AMG were taken from the highest value at 

fresh state for any given muscle.

The relationship between force production and frequency of 

stimulation in a fatigued muscle, as shown in figure 71, is very similar to 

those obtained from fresh muscles, as in figure 63 & 64. The force 

increase was small in low stimulation frequency range, but increased 

sharply with higher stimulation frequency eventually reaching a plateau. 

Fatigue caused a decline in force production at all stimulation frequencies.

AMG signal intensity, as shown m figure 72, related to stimulation 

frequency in a general exponential decline, both at fresh or fatigued state. 

This decline slows down greatly, when stimulation frequency increases 

beyond lOOHz. When the muscles are fatigued, AMG signal intensity was 

reduced at frequency range below lOOHz. Beyond lOOEk, the AMG 

signal intensity is very similar in value between fresh and fatigued state.

The AMG-force ratio and stimulation frequency relationship is 

shown in figure 73. This figure displayed visual similarity to AMG- 

frequency relationship in figure 72. However, the exponential decline of 

the ratio slows greatly at a lower stimulation frequency than shown in 

figure 72. The turning pomt for individual muscle tested was different in
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Figure 71. The force recorded from five rabbit Anterior Tibialis muscles 

before (solid symbols) and after (open symbols) fatigue. The force 

developed at a range of stimulation frequencies is shown.
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Figure 72. The AMG signal intensity recorded from five rabbit Anterior 

Tibialis muscles, before (solid symbols) and after (open symbols) 

fatigue. The AMG ehcited at a range of stimulation frequencies is 

shown.
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Figure 73. The Force-AMG ratio obtained from data plotted in figures 

67, 68. Solid symbols indicate data at fresh and open symbols denote 

data at fatigue state.
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value.

3.4 DISCUSSION

Experiments were carried out on anaesthetized rabbits, to further 

investigate the AMG characteristics. This allowed greater mechanical 

isolation of the muscle and fuller control of the stimulation. In addition, 

tremor and reflex changes in muscle force seen in voluntary contractions 

could be reduced. The flndings are presented in tlie following sections, 

following the same order of experimental protocol as in the method 

section of this chapter.

:::

3.4.1 AMG AND CHANGE IN MUSCLE LENGTH:

During single twitch stimulations: The AMG signal appears before 

force and the highest AMG intensity occurs during the rising phase of the 

twitch, as shown in figure 56. The force shown a well known bell-shaped 

relationship with changing lengths of muscle. The corresponding AMG 

intensity changes with muscle lengths in non-systematic way with a 

displaced maximal away fi’om Lq length. These are shown in figure 57 &

58. The AMG-force ratio change with muscle lengths with a relationship 

closely assembles the force-length curve, as seen in figure 58.

The origin of AMG is still under investigation. The early onset of 

AMG signal before force indicates that AMG signal must be related to 

events early in electro-contraction coupling.

During tetanic stimulation: Similar to twitch stimulation, the AMG 

signal has highest intensity during force rise phase with earlier onset. As
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the force approaching tetani, burst of high AMG activity associates with 

stimulus gradually diminishes. This is visible in figure 59. The same force- 

length relationship is observed as in twitch stimulations. Again, the AMG 

signal shown no systematic relationship with length change, as displayed 

in figure 60 & 61. However, the AMG-force ratio seems more regular but 

the inverted bell-shaped curve strongly resembles the inverse of the clear 

force-length relationship.

3.4.2 AMG AND STIMULATION FREQUENCY;

The twitch duration from figuie 56 is about 50ms. The fi-equency 

needed to produce unfused tetanic contraction must be above 20Hz. This 

is confirmed in figure 62, where AMG signal during steady force 

diminishes with increasing fi’equency of stimulation. The relationship 

between force and stimulation fi'equency is a well known one and fitted 

well with a S-shaped curve. The AMG signal change with stimulation 

frequency was that of the inverse of force-fi-equency curve. The AMG- 

force ratio change with stimulation fi-equency in a manner closely 

resembles AMG-fi'equency relationship. These are shown in figure 63. 

Based on the fact that it requires over 20Hz stimulation frequency to 

produce unfused contractions and the near zero AMG amplitude beyond 

55Hz. An extract of data fi’om figure 63 is shown in figure 64. In this 

figure, the force, AMG and AMG-force ratio change with stimulation 

frequencies in a linear fashion. The force increases significantly with 

increasing stimulation fi’equency, while and AMG and AMG-force ratio 

decrease significantly. This AMG-force ratio fall with increasing 

stimulation fi’equency is still evident when muscle lengths changes. 

However, the fall seemed to be steeper at short muscle lengths, as
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exhibited in figure 65.

%
3.4.3 AMG AND FATIGUE;

As muscle fatigues, both force and AMG decreased. This is evident

in twitch stimulation in figure 66, continuous and intermittent stimulation 

in figure 67 & 69, and fatiguing effect on force and AMG produced by 

changing stimulation frequencies in figure 71 & 72. The AMG-force ratio 

rises through the first 5 seconds of continuous stimulation then falls 

progressively to almost zero, as shown in figure 68. The AMG-force ratio 

during the intermittent stimulation fell immediately, and was almost 

complete by 20 stimulation, as seen in figure 70. These suggest different 

underlying mechanism of fatigue exists between continuous and 

intermittent stimulation. In addition, they indicate that the AMG falls 

significantly faster than muscle force as fatigue develops. However, the 

summary AMG-force ratio obtaiued fi-om changing stimulation 

frequencies did not show significant change with fatigue.

3.4.4 SUMMARY RESULTS:

The overall results shown that there is no clear relationship existed

between AMG signal and force production in a stimulated contraction. 

However, it is clear that forces produced by high frequency stimulation is 

associated with Httle or no AMG signal. This is also apparent in later part 

of fatigue when force falls. This dissociation between AMG and force 

could be attributed to the increase stiffiiess and intramuscular pressure and 

the diminished muscle movement on reaching tetani and fatigue.

3.4.5 COMPARISON WITH REPORTED DATA;
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A> Effects o f changing muscle length: The AMG intensity showed 

a less direct relationship with change in muscle length, as shown in figure 

57 and 60. This observation is similar to reported results in Barry (1987) 

and Frangioni et al (1987) recorded from twitches. Though they only 

examine AMG accompanying twitches, they did report a bell-shaped 

AMG intensity relationship with changing lengtli and the AMG-length 

curves were out of phase with the force-length curve peaking at shorter 

muscle length at about 90% Lq. Results from this series of experiment 

shown no systematic relationship and the peak AMG intensity were found 

for muscle length both longer and shorter than the optimal length.

It is possible that the discrepancy lies; 1) the different AMG

recording device used ie. hydrophone vs. accelerometer. The hydrophone

is sensitive to wave, includiug ambiant noise; wliile tlie accelerometer 
.used in this experiment is sensitive to movement in only one direction. 2) 

The controlled environment of the experiments; Barry (1987) performed 

experiment in temperature range of 7-20%, Frangioni et al (1987) studied 

at 20%. Experiments reported here was under temperature of 35-37%. 

Temperature change will affect twitch force. If AMG is in anyway linked 

to force, changes in temperature will certainly affect AMG signal in 

amphtude (Barry 1987) or waveform or both. 3) the difference between 

muscles; the AMG recorded is thought to be due to the lateral movement 

of muscle (Barry & Cole 1988), and the muscle vibrate at resonant 

frequency. The resonant frequency of muscle is dependent on the muscle 

geometiy such as size, stiffness, length, mass and viscosity, these factors 

are different in different muscles and would be different even in the same 

muscles from different animal species.

B> Effect o f change in frequency o f stimulation: In this study.



AMG amplitude was found to decrease with increasing force during 

contractions induced by a series of frequencies of tlie sub-tetanic range 

(figure 63), and there was a significant decline in AMG-force ratio, as 

shown in figure 63 & 64. This suggest a dissociation between AMG and 

force in stimulated contractions. This data is consistent with results from 

reports of cat soleus muscle by Zhang, Herzog and Vaz (1994) and Vaz, 

Herzog, Zhang & Zhao (1994). Though the fibre composition and 

geometiy are quite different between cat soleus and rabbit anterior tibialis, 

they both exhibited this dissociation of AMG amplitude and force.

The same dissociation between AMG and force with changing 

stimulation frequency was observed at a series of muscle lengtlis. The 

dissociation is more pronounced at short muscle lengths. This agrees well 

with part of data from Vaz et al (1994), though they only attempted 

stimulation at two lengtlis and cat soleus only works in the ascending limb 

of force-length relationship.

C> Effect o f fatigue and AMG signal:

There was a general trend of decrease in AMG intensity with 

progressive fatigue, corresponding to the fall in force production. This is 

readily observable in figure 67 and 69. The decline in AMG signal 

intensity might be due to decreased peak twitch of motor units with 

fatigued rather than decruitment of motor unit. This decline in peak twitch 

force excerts less driving force on muscle to vibrate as a whole. Tliis is 

consistent with the absence of median frequency shift in AMG signal 

spectrum and the diminished amplitude. Again, there are no simple 

formulae for describing AMG-force relationship. The clear dissociation 

between AMG and force imply that AMG depends less on the force 

producing mechanism in fatigue and AMG intensity alone will not be a
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good indicator of force production in fatigue by stimulation. There is no 

available literature on the AMG behaviour in fatigue during stimulated 

contraction in animals. It is important to carry this work fiirther in 

assessing the role of AMG signal in stimulated contractions.
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CHAPTER 4

GENERAL DISCUSSION

_____ _



It was the original aim of this study to identify tlie optimal positions 

or conditions for recording AMG; investigate AMG characteristics and its 

relation to force of contraction; assess the possibility of AMG as an 

indicator of muscle fatigue and construct an animal model for study of 

electrically elicited muscle contractions.

4.1 SUMMARY OF DATA FROM THIS INVESTIGATION

The overall data indicates that there is no optimal position for 

recording AMG in an active human muscle. The AMG signal amplitude 

remain closely linked to force during voluntary isometric contractions. A 

tight association between AMG amplitude and force output during 

fatiguing contractions was only observed in sustained contractions but not 

the intermittent form. On the contrary, AMG amplitude does not have a 

simple relationship witli force output in all form of stimulated contractions 

of rabbit anterior tibialis. In both data obtained from human and rabbit 

experiments, the AMG frequency spectra were complicated. The median 

frequency did not significantly change with force and fatigue in volimtary 

contractions. The AMG spectra were swamped with high energy signal 

at a frequency corresponding to the stimulation frequencies. These data 

lead to the conclusion that the AMG amplitude could be a force indicator 

in voluntary contractions and sustained contraction till fatigue, but not in 

the stimulated contractions. In addition, the median frequency of AMG 

signal could not be useful in predictmg force output in both voluntary and 

stimulated contractions.

The different AMG signal behaviour with changing force during 

voluntary and stimulated contractions could, at least in part be attributed 

to:
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1) The different muscle fibre type composition. The quadriceps 

were of mixed fibre types and rabbit anterior tibialis has predominant fast 

muscle fibres. The fast muscle fibres would have higher twitch force, and 

thus higher driving force for muscle movement (Marchetti, Felici, 

Bernard!, Minasi & Filippo 1991). Hence, the AMG signal amplitude 

would be higher. Furthermore, the motor unit fibre territory will not be the 

same in these two muscles.

2) The different recruitment strategy used: Voluntary force is 

controlled by motor unit recruitment / decruitment and firing rate. If AMG 

is linked to force, then its' amplitude would reflect the number of motor 

unit active and their change in firing rate. The unchanging AMG median 

fi'equency and changiug AMG amplitude observed in human experiments 

agree well witli the fact that force generation in quadriceps is largely 

governed by motor imit recmitment. The possible reflexive influence on 

force and AMG could not be over looked. The stimulated muscle, on the 

contrary, had all motor units activated and the activation fi'equency is 

controlled by the stimulation pulses. As shown in figure 62 & 63, there are 

non-linear changes in AMG signal amplitude with changing stimulation

fi'equency, which may reflect the degree of synchronization.
3) The degree o f filtering and signal distortion: The AMG signal

recording were made on the surface of the skin during voluntary 

contractions and directly on the muscle surface during stimulated 

contractions. The filtering effect will be liigher in the voluntary 

contractions. This will be further complicated by the relative depth in 

location of slow motor unit fibres and faster motor unit fibres.

4) Difference in muscle properties: The rabbit anterior tibialis and 

human quadriceps differ in size, mass, length, stiffiiess, muscle peimation
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and elastic elements. These differences will determine the resonant 

frequency stiffiiess of the muscle ( Barry & Cole 1988a, 1988b) and thus 

affect AMG amplitude.

1

J

4.2. AMG CHARACTERISTIC COMMON TO BOTH HUMAN

AND ANIMAL DATA

The AMG signal spectrum has power concentrated m a range 

between 0-45Hz, with very little frequency power above 60Hz. Tliis is 

clearly shown in figure 28, 29 and 51.

The median frequency of AMG signal was found to be dissociated 

from force production in all situations examined. This indicates the lack 

of shift in AMG power frequency. If physiological tremor had increased, 

one would expect a downward shift in the AMG median frequency. If 

force was increased by way of increasing firing rate of motor units leading 

to summation of fibre twitch, there would be an increase in AMG median 

frequency. Neitlier of tliis is observable in collective data. Furthermore, 

the AMG signal spectrum was greatly influenced by the stimulation 

frequency.

This observation only agrees with reports from stimulated 

contractions (Stokes & Cooper 1992) and voluntary eccentric contractions 

( Dalton & Stokes 1993). Data from this experiment did not agree with 

reports of changing AMG signal frequencies; in voluntary contraction by 

Zhang, Frank, Rangayyan & Bell (1992), Maton et al (1990), Orizio,permi 

& Diemont (1990); change m median AMG frequency with stimulation 

rate and fatigue (Zhang, Frank, Ragayyan & Bell 1993); The frequency of 

AMG signal was found dependent on the length of the muscle (Frangioni 

et al 1987).
::R
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The AMG signal is thought to be generated at the resonant 

frequency of muscles (Barry & Cole 1990). The resonant frequency is 

dependent on the properties of muscle and test conditions, such as the

: size, mass, length, elasticity, tension loading and the fluid medium. All 

these factors would be very different from muscle to muscle, and thus 

account for part of the difference in results. In addition, the task 

dependent nature of muscle activation and muscle contributing to more 

than one joint movements might affect the AMG signal amplitude in 

different conditions.

4.3 THE NEED OF FEEDBACK IN FES

The functional electrical stimulation of paralysed muscles for 

regaining normal movements has little success due to the problem of 

fatigue and variability of the stimulation, which results in poor 

reproducibility of movements. This calls for a good feedback control 

system, which will increase reproducibility and at the same time reduce 

fatigue caused by stimulation protocols. This feedback system relies on 

quantity and quality of feedback data, the sensor making accurate 

recording and the speed and effective analysis of those data.

4.4 SENSORS AVAILABLE AND THEIR SUITABILITY IN FES

APPLICATIONS

The sensors, for force monitoring in a FES application, are 

currently under investigation and m clinical application, such as gait 

analysis, lower level prothosis control. They are EMG signal (Graupe & 

Kohn 1988), AMG signal (Barry 1985, Frangioni et al 1987) and 

intramuscular pressure (Sejersted & Hargens 1995). The quality of a
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sensor should be tliat of: good accuracy, good interrelation with control 

strategy, wide range of measurement, adequate band widtli of response
'

and ease of mounting.

As mentioned in the beginning of chapter 1, the EMG has an 

advantage of easy mounting and online analysis. But it is not a good force 

indicator during fatiguing contractions. EMG can be contaminated by 

electrical stimulation and movement of electrodes. The frequency content 

of EMG signal changes with fatigue more as a consequences of muscular 

activity. These characteristic reduced the potential for EMG being a good 

and convenient force indicator.

The intramuscular pressure (IMP) had shown promise due to strong 

linkage with force irrespective of the mode and speed of conti action. It is 

tliought a better predictor of force than EMG. The signal is detennined by 

the tension of the muscle fibres, recording depth and the fibre geometry, 

such as fibre curvature or pennation angle (Sejersted & Hargens 1995). 

However, there is not much data available on the IMP changes during 

intermittent or dynamic contractions lasting more than a few minutes, even 

less witli fatigue.

The investigation into AMG signal has a longer history than IMP.

The suitability of AMG signal as a force indicator will be discussed in the 

following section, relating to data from this experiment and the literature.

4.5 THE POTENTIAL OF AMG SIGNAL AS A FORCE 

INDICATOR IN FES APPLICATIONS.

In FES application, such as restoration of movement, there are 

needs to control over the speed and range of movement by regulating 

force. This regulation is acliieved by changes in stimulation frequency to
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Ibring about changes in force and joint angle involving muscle length 

change. The state of muscle should be monitored to avoid fatigue and 

reduce muscle damage. If AMG could be an monitor for force, then it 

must show link with force under these conditions.

4.5.1 THE AMG SIGNAL AND STIMULATION FREQUENCY

The AMG signal amplitude change with increasing stimulation

frequencies in stimulated contractions and the changes mirroring the force-

frequency curve (figure 62 & 63). This is in agreement with Stokes &

Cooper (1992) observation in human adductor pollicis. Furthermore, the

AMG-force ratio changes with stimulation frequency in a fashion closely

resembling AMG-frequency curve (figure 62 & 63). This hnply that the

AMG signal amplitude depends very little on the force production in

stimulated rabbit tibialis anterior, and the AMG sigial amphtude could not

be used as a good iudication of force when the stimulation frequency

changes. The AMG signal might depend more on motor control rather

than the intrinsic contractile process.

However, both this study and the report of Stokes and Cooper

(1992) examined small muscles with relatively small numbers of motor

units. In addition, the frequency of stimulation used in FES applications

are typically between 20-40Hz, which might be producing twitches

instead of tetani in a muscle with mixed or slow fibres. Further 
.investigation is required to assess AMG response to stimulation in a larger 

muscle with mixed fibre types, such as quadriceps.

4.5.2 THE AMG SIGNAL IN CONTRACTIONS WITH CHANGING 

MUSCLE LENGTHS
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The AMG signal amplitude has diverse relationship with force 

when muscle length changes during stimulated contractions. This is 

evident in figure 56, 57, 59 & 60. A dissociation between summary data 

of AMG amphtude and force is shown in both figure 57 & 60. This is not 

in agreement with reports in the literature, which shown a bell-shaped 

curve of AMG-length relationship with a displaced maxima (Barry & Cole 

1987, Frangioni et al 1987 and Dobrunz, Pelletien & McMahon 1990).

The discrepancy between results fi*om frog gastrocnemius (Barry & Cole 

1987, Frangioni et al 1987) and those reported here on rabbit anterior 

tibialis, could not be totally accounted for by the fibre composition 

difference.
. ■

The data fi-om tliis experiment, shown in figure 56 & 59, 

demonstrated that AMG relationship with force remained as a property of 

individual muscle. This indicate that AMG amphtude might not be usefiil 

as a force iudicator when muscle length are changing in a population, but 

could be useful in some muscles. On the other hand, the length change in 

quadriceps muscle to bring about knee extension in FES could only 

change muscle length at the most about 5% of muscle length at fiill 

extension. The data presented AMG signal change with muscle length in 

the range of 12-16% resting length. The AMG-force ratio change with 5% 

of Lq will not affect the AMG signal to a great lextentl. Further work is 

required to examine closely the discrepancy between data reported before 

AMG signal could be discarded as an indicator of force.

4.5.3 THE SENSITIVITY OF AMG IN FATIGUE BY STIMULATION 

Prolonged force rise phase and relaxation phase in stimulated twitch 

was observed after fatigue, and the AMG shown a corresponding decrease
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in peak-peak amplitude and signal cycles (figure 67). The force changes 

are thought to be brought about by decreased contractile speed and 

relaxation rate, changes in recruitment strategy of the muscle, changing 

firing rate of active motor unit as well as lowering firing threshold of fast 

motor unit in voluntary contractions (as reviewed by Edwards 1985). 

There are possible contribution from decruitment of fast-twitch fibres, 

leading to a broadened twitch width (Fang and Montimer 1991), though 

it might only be relevant in a small muscle which rely on changes in both 

recruitment and firing rate as mechanism of force generation starting fi-om 

a low force level. Furthermore the slow contractile speed allows a 

decrease iu motor units firing rate for the same force output. All these 

changes could diminish the AMG amphtude as the driving force decreases 

for whole muscle lateral movement reduces. Tliis is in agreement with 

observation by Barry & Cole (1991). The decrease in AMG amplitude 

observed during fatigue induced by voluntary contractions (figure 46 & 

48), could be due largely to the decrease in amplitude and slowing of 

twitch, when tlie change in AMG median frequency is absent, though the 

precise relationsliip between AMG and force is more complicated and 

depends on other factors and vary between individuals.

The stimulated contractions, as stated previously, had activated all 

motor units with predetermined frequency. The decrease in AMG signal 

amphtude witli progressive loss in force, shown in figure 65 & 67, could 

only be accounted for by the decrease in twitch force of individual motor 

units. There might be contribution from increased asynchrony of the motor 

fibres as different type of motor units has different fatiguability.

The AMG signal amphtudes were so varied that there is no simple 

relationship between summary data of AMG and force in fatiguing
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contractions. The AMG signal remained a property of individual muscles. 

This imply that AMG signal amplitude is dependent less on force and 

more on other factors, such may be different strategy of force generation 

and the subsequent changes in muscle properties. This leads to the 

conclusion that if AMG signal is useful for force indication in fatigue, 

alternative parameter must be sought other than the amplitude of the 

signal. These might be in the power changes in certain frequency range, 

but certainly not the median frequency.

4.6 ENVIRONMENTAL INFLUENCE ON AMG SIGNAL

PRODUCTION

Not unlike other scientific studies, all observations associated with 

AMG are susceptible to contamination by artifacts and any feedback 

signal in FES must be relatively pure to be usefiil. The influence by 

subcutaneous blood flow is ruled out by Oster and Jaffe (1980). But then 

claim that the AMG signal is independent from muscle temperature is 

contested by Barry (1987).

Specifications of equipments, such as strapping microphone aromid 

the muscle under study (Orizio et al 1989a, 1989b), could potentially 

introduce artifacts in AMG signal. With muscle bulk movement during a 

contraction (Barry & Cole 1988b), the pressure exerted on the 

microphone by the strap may cause distortion of AMG signal and further 

induce fiction between skin and microphone. This problem may be 

overcome by the use of accelerometer, which is not sensitive to pressure 

but movement.

Some influence of cardio-respiratory system may be recorded in the 

raw AMG signal (Lakie, Walsh & Wright 1982). This may be

a
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compensated by employing filters. Again the use of accelerometer with 

sensitivity in one direction will eliminate the artifacts and ambient 

vibration.

One element of influence may not be easily eliminated by external 

manipulation, that is of physiological tremor as noted by Wollaston 

(1810): "In attempting to lessen the number of vibrations, there appears 

to be a degree of unsteadiness which prevents any accurate measiuement 

of the real number". The physiological tremor could be reduced by cooling 

the muscle under investigation and occlusion of blood flow (Oster & Jaffe 

1984). The physiological tremor is a particular problem in sustained 

contractions of liigli forces Barry et al (1985). The interference of 

physiological tremor can be eliminated at tlie expanse of loosing some 

AMG signal, by filtering the signal with a 12Hz high-pass filter.

Wee and Ashley (1989) pointed to another source of interference: 

the sound produced by the distant contractmg muscle. Especially when a 

group of muscle is contractmg, sound from synergic muscles and that from 

muscle under investigation is rather difhcult to sepaiate. This factor needs 

to be considered when study is carried out on a large muscle group such 

as quadriceps. Accelerometer with high sensitivity in one plane could 

ensure the recording signal has predominant energy coming from area 

directly under fixation poiut.

4.7 CONCLUSION:

Skeletal muscle contractions can generate transverse mechanical 

waves, which is measurable by a sensor, like accelerometer. This wave is 

biphasic in nature and has an early onset than external force.

The data presented in this report corroborate a linear relationship
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between AMG and force level in isometric contractions of human 

quadriceps muscle. This close link between AMG signal intensity and 

force production is also present in fatigue induced by sustained voluntary 

contractions but not by intermittent contractions.

The data obtained from rabbit tibialis anterior muscle showed less 

systematic relationships between AMG and force production. AMG signal 

intensity did not display a close relationship with force under condition of

changing muscle length, stimulation frequency and fatigue. There were no 
.

significant change in AMG signal median frequency during voluntary 

contractions. The AMG signal were dominated by stimulation frequency.

The good correlation between AMG and force in voluntary 

contractions, shown promise as an indicator of voluntary force from 

isometric contractions and fatigue by sustained contractions. The possible 

clinical use of AMG could be in the area of assessing force output from 

muscles with limited access, such as paraspinal muscle and facial muscles.

It could also be used in conjunction with EMG to assess the state of the 

muscle frinction in health and disease and muscle mechanic in training.

Tlie use of AMG as force indicator in stimulated contractions, such 

as FES applications, requires further investigation. The AMG signal did 

not appear to related strongly to force output imder the conditions 

investigated. Alternative properties of AMG signal, such as power content 

in specific frequency ranges, should be investigated furtlier for FES
.

applications. The AMG median frequency certainly is not a good force 
.indicator under all conditions tested in the experiment.

4.8 SOME SUGGESTION FOR FURTHER WORK;

This study had contributed further to the knowledge of AMG and
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its relationship in both voluntary isometric contractions and electrically 

stimulated contractions. However, isometric contractions were not tlie 

only type of contractions involved in everyday life activities and it thus 

become important to carry this work fiirther in the area of investigating 

AMG characteristics in dynamic movements, where muscles might be 

involved in two action: movement and rotation of the joints, and the 

subsequent fatigue state.

During fatiguing contractions, the AMG signal behaviour was not 

tightly linked to force output, but does depend on the initial force in 

fatigue. Further study required to clarify AMG signal characteristics hi 

fatiguing by different initial force with sustain, intermittent and dynamic 

contractions. This could be an important area to be investigated and both 

AMG and EMG signal might contribute to fiirther understanding of 

muscle activation strategy.

This study consistently demonstrated that AMG signal median 

frequency is not a good indicator of force, but the relative power content 

of AMG signal in specific ranges should be investigated before AMG 

signal could be discaided as force indicator.
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