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GENERAL INTRODUCTION

This thesis describes studies using microdialysis to investigate the release of neuroactive 

compounds from the rat brain. In part I the experiments were directed at examining the 

ability of kainic acid to release adenosine and its metabolites from the hippocampus of 

anaesthetised animals. Because of the opportunity to collaborate with Professor Tony 

Payne, this section of work was curtailed and emphasis was switched to a study of 

monoamine release in a new strain of mutant rat exhibiting motor dysfunction. This work is 

presented in part II. Some overlap of interest was retained by including an examination of 

adenosine release from the mutant rat.

I
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SUMMARY

The effects o f kainic acid and potassium on the release of endogenous adenosine and its 

metabolites, inosine, hypoxanthine and xanthine, from the rat hippocampus have been 

studied by in vivo microdialysis. In the hippocampus of rats anaesthetised with urethane 

the concentration of extracellular adenosine was estimated to be 0.8pM during the first 

two hrs after insertion of the dialysis probe.

Kainic acid (0.1-25mM) in the perfusate evoked a concentration-dependent release of 

adenosine with an EC50 of 0.94mM. A 5min pulse of ImM kainic acid in the perfusate, 

during a sampling period of one hour, increased the 20pl dialysate levels from 3,68 ± 0.21 

to 7.66 ± 0.82 pmol (mean ± sem). A second stimulation (S2) 3hrs (hours) after the first 

stimulation (SI) also induced adenosine release. The S2/S1 ratio was 0.46 ± 0.02. Kainate- 

evoked release of adenosine was shown to involve the production of action potentials since 

TTX (tetrodotoxin) significantly reduced the S2/S1 ratio by 53,85%. The release was 

reduced by incorporation into the perfusate of CNQX (6-cyano-7-nitroquinoxaline-2,3- 

dione), a non-NMDA (N-methyl-D-aspartate) receptor antagonist, but not by NMDA 

receptor blockers, (+)-MK-801 (dizocilpine) or (±)-AP-5 ((±)-2-amino-5-

phosphonopentanoic acid), indicating a non-NMDA receptor mediated process. The kappa 

agonist, U50 488H (trans-(±)-3,4-dichloro-N-methyl~N-[2-( 1 -pyrrolidinyl)-cyclohexyl]- 

benzeneactemide methanesulphonate hydrochloride), significantly reduced the S2/S1 ratio 

by 55.77%. Release was reduced significantly by 44.23% by ascorbic acid (an antioxidant), 

48.08% by glutathione (a scavenger of hydroperoxides) and 71.15% by oxypurinol (a 

xanthine oxidase inhibitor) indicating the involvement of free radicals in kainate-evoked 

adenosine release. Neither the adenosine A1 receptor antagonist CPT (8-cyclopentyl-1,3- 

dimethylxanthine) nor the A1 receptor agonist R-PIA (R(-) N^-(2-

phenylisopropyl)adenosine) affected kainate-evoked release of adenosine. This indicates



that activation of Al receptors, by endogenous adenosine or an agonist, does not inhibit 

kainate-evoked release of adenosine.

The present results indicate that kainate-evoked release of adenosine may be mediated by 

non-NMDA receptor activation, possibly requiring the propagation of action potentials and 

free radical production.



1.0 INTRODUCTION

1.1 Adenosine

Kainic acid has been shown to cause neuronal cell death in the CNS (central nervous 

system) (MacGregor et al, 1993) in similar areas to those affected by temporal lobe 

epilepsy (for review see Sperk et aï, 1994). Purines have been shown to protect neurones 

from cell death (MacGregor et al, 1993). This project is mainly focused on the release of 

adenosine into the extracellular space in the presence of the neurotoxin, kainic acid.

1.1.1 Adenosine receptors

Adenosine acts on G-protein coupled receptors, collectively called PI purinoceptors. 

Previously, PI purinoceptors were biochemically distinguished by their effects on adenylate 

cyclase. Adenosine A1 receptor activation decreased cAMP levels and adenosine A2 

receptor activation increased cAMP levels (Stone & Simmonds, 1991). Adenosine 

responses have been observed without the modulation of cAMP (Stone 1984; Fredholm & 

Dunwiddie, 1988). For instance, A1 mediated inhibition of neurotransmitter release has 

been shown to be independent of altered cAMP levels (Dunwiddie 1985; Ribeiro & 

Sebastiao 1986). More recently, PI purinoceptors have been studied by molecular cloning 

and their pharmacological characteristics have been determined. Four members of this 

family have been cloned and pharmacologically distinguished; A l, A2a, A2b and A3.

1.1.2 Pharmacological classification of adenosine receptors

Pharmacological characterisation of Al receptors has been aided by the large number of 

A l ligands. A frequently used ligand is [3H]DPCPX (l,3-dipropyl-8-cyclopentylxanthine)

which is a selective antagonist of the adenosine Al receptor. Adenosine receptor agonists
'

have potencies at Al receptors in the order R-PIA (R(-) N^-(2-phenylisopropyl)adenosine)

> NECA (5 ’ -N-ethylcarboxamide adenosine) > 2-chloroadenosine and at A2 receptors in 

the order of NECA > 2-chloroadenosine > R-PIA (Stone & Simmonds, 1991). A2a 

receptors are thought to be high affinity and A2b receptors are thought to be low affinity 

adenosine receptors. A2 receptor characterisation has been held back by the lack of 

selective ligands. Jarvis et al (1989) have shown high affinity binding of CGS 21680 to a 

single class of recognition sites, which they equated with the A2 receptors. However



Johansson & Fredholm (1995) show binding of CGS 21680 not only to classical A2a

receptors but also to a receptor site that is different from all known adenosine receptors.

The adenosine agonist IB-MECA (N^-(3-iodobenzyl) adenosine-5’-N-methylcarboxamide)

is reported to be a selective ligand at the A3 receptor (Jacobson et al, 1993) and, unlike
.the A l and A2a receptors, most alkylxanthines are ineffective as competitors in binding 

experiments at the A3 receptors (Zhou et al, 1992). This newly cloned A3 receptor is 

different from the A3 receptor previously postulated by Ribeiro & Sebastiao (1986), who 

reported that R-PIA and NECA were approximately equipotent in reducing transmitter 

release at the neuromuscular junction (Ribeiro & Sebastiao, 1986) and postulated that this 

effect was mediated by an A3 receptor.

Recently, Cornfield et al (1992) have reported the pharmacological characterisation of a 

so-called A4 binding site, by the binding of CV 1808. This putative receptor has not yet 

been cloned but its pharmacological profile on rat striatal membranes appears to be as 

follows; CV 1808> CGS 22988»NECA>CGS 21680 (Luthin & Linden, 1995).

1.1.3 Location of adenosine receptors

Al receptors are highly concentrated in the dendritic zones of hippocampal pyramidal 

neurones (Reddington & Lee, 1991), in the cortex and in the cerebellum.

A2a receptors are located in the caudate nucleus, putamen, nucleus accumbens and 

tuberculum olfactorium. In the striatum, expression of the A2a receptor appears to occur 

in the same cells as those that express dopamine D2 receptors, on the so-called medium 

sized spiny neurones (Fink et al, 1992).

Location of A2b receptors and the novel A3 receptor are less well documented. The A2b 

receptor appears to be the most abundant receptor on astrocytes (Altiok et al, 1992) and 

evidence shows they exist in cerebral cortical slices Daly et al (1983).

The adenosine A3 receptor is reported to be present in highest levels in the testes, 

moderate levels in the heart and kidney and only low levels in the brain (Zhou et al, 1992).

This is unlike the Al and A2 receptors which are highly expressed in the brain. Adenosine
■

A3 receptors are present in the mouse (Jacobson et al, 1993), rat (Zhou et al, 1992), gerbil 

(Ji et al, 1994), sheep (Linden, 1994) and human (Salvatore et al, 1993). The highest



densities of the A3 receptors were found to be present in the striatum and cerebellum in the 

mouse brain (Jacobson et al, 1993).

1.1.4 Responses to adenosine receptor activation: biochemical effects

The A 1 receptor couples to the pertussis-toxin sensitive G-protein (Gi, Go) (Freissmuth et 

al 1991; Munshi et al 1991). Al receptor activation is thought to cause 1) the inhibition of 

adenylate cyclase (via both the a -  and the p,y-subunits of Gi-protein); 2) the activation of 

several types of K+-channels (Trussell & Jackson, 1985) 3) the inactivation o f at least 

some types of the voltage-dependent Ca2+-channels (Scholz & Miller, 1991) 4) the 

activation of phospholipase C (via the P,y-subunits o f the G-protein), with subsequent 

activation of protein kinase C and increase in intracellular Ca2+ (Gerwins & Fredholm, 

1992; Fredholm et al 1994).

A2a receptors associate with Gs-proteins. Stimulation of these receptors causes activation 

of adenylate cyclase.

In vitro stimulation of A3 receptors results in inhibition of adenylate cyclase (Zhou et al 

1992). In mast cells, Ali et al (1990) postulated a new adenosine receptor which coupled, 

via a G-protein, to phospholipase C, rather than by Gs or Gi to adenylate cyclase and was 

not blocked by the conventional antagonists of Al/A2-adenosine receptors (e.g. 

theophylline and 8-phenyltheophylline). The subsequent cloning of the A3 receptor (Zhou 

et al, 1992), allowed the identification of this receptor in mast cells as the A3 receptor 

(Ramkumar et al, 1993).

1.1.4 Responses to adenosine receptor activation: neuronal effects

The inhibitory actions of adenosine on CNS neurones were first shown by Phillis et al in 

1975. Adenosine is now thought of as an inhibitory neuromodulator in the CNS 

(Dunwiddie & Hoffer, 1980; Stone, 1989; Stone & Simmonds, 1991). It is known that 

adenosine causes suppression of neuronal firing and inhibition of synaptic transmission. 

Adenosine exists in the extracellular space in sufficient concentrations to exert tonic 

inhibitory actions. Endogenous extracellular adenosine has been shown to inhibit transient 

calcium currents in the hippocampal slice (Wu & Saggau, 1994) and normoxic synaptic
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1transmission is tonically depressed by ongoing release of adenosine (Zhu & Kmjevic,
'"I

1994).

These various inhibitory actions of Al receptor stimulation presumably form the basis of
I

the reported neuroprotective properties of purines. Adenosine analogues, adenosine uptake 

inhibitors and adenosine deaminase inhibitors can protect against neurotoxic effects of 

NMD A and non-NMDA receptor agonists (Arvin et al, 1989; Connick & Stone, 1989;

Finn et al, 1991; MacGregor et al, 1993) as well as against ischaemia (Evans et al, 1987;

Phillis & O'Regan, 1989; Von Lubitz et al, 1989; Andiné et al, 1990). A variety of pre- 

and postsynaptic effects of adenosine have been shown which may account for these 

various inhibitory actions.

1.1.5 Presvnaptic Properties o f Adenosine 

Al receptors located presynaptically appear to inhibit presynaptic transmitter release. |  

Adenosine has been shown to inhibit the presynaptic release of excitatory 

neurotransmitters such as acetylcholine (Spignoli et al, 1984; Cunha et al, 1994) and 

glutamate (Corradetti et al, 1984; Fastbom & Fredholm, 1985; Dunwiddie & Fredholm,

1989; Cantor et al, 1992) via action at the Al receptor (Burke & Nadler, 1988). Duner- 

Engstrom & Fredholm (1988) and Fredholm & Dunwiddie (1988) suggest that the release 

o f excitatory transmitters is more strongly inhibited than the release of inhibitory 

transmitters. This would be in keeping with the finding that presynaptic Al receptors are 

located on the terminals of some excitatory and not on inhibitory neurones as revealed by 

autoradiography studies in the cerebellum (Goodman & Snyder, 1982; Goodman et al,

1983). More recently, electrophysiological studies provide evidence of adenosine’s ability 

to inhibit excitatory postsynaptic potentials but not inhibitory postsynaptic potentials 

(Fredholm et al, 1989; Yoon et al, 1991; Thompson et al, 1992).

While a large volume of work shows that glutamate release can be inhibited by adenosine, 

the evidence for the suppression of GABA release is indeed conflicting. Hollins & Stone 

(1980b) have shown that ImM adenosine is required to inhibit [3H]GABA release by 35% 

from cerebral cortex slices and Burke & Nadler (1988) failed to detect any inhibition from 

hippocampal slices. Though adenosine may decrease GABA release to some extent.
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adenosine does appear to be more selective at reducing excitatory transmission. It may be

concluded that inhibitory neurones are much less sensitive to the effects of adenosine.

Adenosine Al receptor stimulation leads to a number of mechanisms that could all reduce 
.evoked transmitter release, including inhibition of adenylate cyclase, opening of potassium 

channels or suppressing calcium currents. It is possible that all these mechanisms are 

operative when reducing transmitter release. The importance of one particular mechanism 

may depend on which transmitter is being released and how its release is triggered. 

Conclusions drawn by Dunwiddie (1985) do not support the notion that adenosine 

derivatives inhibit transmitter release by inhibiting adenylate cyclase.

The regulation of calcium in the nerve terminal by adenosine seems to be a populai 

explanation. If the intracellular concentration of calcium is lowered then it would be less 

effective in reducing the energy barrier to secretion of neurotransmitters. Such a lowering 

of intracellular calcium may be due to the reduction in influx of calcium from the 

extracellular fluid, decreased mobilisation o f calcium from intracellular calcium stores or 

enhanced removal of calcium from the presynaptic terminal.

In cultured mouse sensory neurones, an adenosine analogue reduced the calcium current 

through the N-type calcium channel (Gross et al, 1989). In rat synaptosomes, adenosine 

modulated Ca2+ uptake by potassium-depolarised nerve terminals (Ribeiro et al 1979; 

Wu et al, 1982). In both synaptosomes and hippocampal slices adenosine decreased 

calcium uptake across voltage sensitive calcium channels (Bartrup, 1989). In cortical 

synaptosomes, 2-chloroadenosine attenuated the calcium influx induced by potassium 

(Arvin et al, 1989).

After it was shown that some of adenosine’s actions, such as suppression of synaptic 
. . .transmission, were independent of calcium influx (Dunwiddie, 1984; Halliwell & 

Scholfields, 1984), several authors failed to inhibit potassium- or veratridine-stimulated 

synaptosomal ^C a2 +  uptake by adenosine or adenosine analogues (Barr et al, 1985; 

Michaelis et al, 1988; Garritsen et al, 1989).

The discrepancies between these groups of results are unexplained and the issue arises of 

whether the concentrations of purines used to inhibit calcium influx were comparable with



the concentrations used to inhibit neurotransmission. In the study by Ribeiro et al (1979), 

millimolar concentrations of adenosine were used to alter calcium influx, a concentration 

range around 100 fold higher than that required to inhibit transmitter release. Arvin et al 

(1989), showed inhibition of potassium-evoked glutamate release by 2-chloroadenosine at 

a concentration as low as 0.01 pM, a concentration at which inhibition of potassium- 

evoked calcium influx was no longer apparent.

Another possibility is that the effects of adenosine on calcium fluxes and transmitter release 

depends on the preparation used. Interpretation o f Ca2+ fluxes in synaptosomes may be 

misleading since adenosine may affect calcium currents which are only found on neuronal 

cell bodies and are absent from synaptosomes. Secondly, the interpretation of results may 

be complicated by the use of potassium to induce calcium influx, since increases in 

potassium conductances by adenosine have been observed. For these two reasons, 

Michaelis et al (1988) examined the effects of adenosine analogues on veratridine-induced 

calcium influx and used an in vivo model to follow the movement of potassium. They 

found no effect on veratridine-induced calcium influx by adenosine and an enhancement of 

potassium current has lead them to postulate that there is a presynaptic receptor-mediated 

increase in potassium permeability. Other investigators have also revealed an increase in 

potassium conductance from neurones in the presence of adenosine (Michaelis & 

Michaelis, 1981; Trussell & Jackson, 1987; Gerber & Gahwiler, 1994).

The mechanism by which adenosine may inhibit calcium influx has been investigated. 

Calcium current may be inhibited by a secondary effect of adenosine on potassium efflux 

according to Gerber et al (1989) and Greene & Haas (1989) but Schubert & Kreutzberg 

(1981) and Scott & Dolphin (1981) reported that adenosine inhibits calcium influx which is 

not mediated by potassium channel activation.

Scott & Dolphin (1981) investigated the involvement of guanine nucleotide binding protein 

(G-protein) in coupling the adenosine receptor to calcium channels. They found that the 

non-hydrolysable analogue of GTP enhanced the inhibition of voltage-activated calcium 

current by 2-chloroadenosine, indicating that the inhibition of calcium currents by



adenosine A l receptor activation involves the mediation of G-protein (Scott & Dolphin, 

1981).

Other mechanisms of presynaptic inhibition of transmitter release have been proposed. 

These include an enhanced removal of calcium from the presynaptic terminal, a decrease in 

calcium mobilisation from intracellular stores and a decrease in affinity of calcium for the 

secretary elements involved in transmission. The latter has been postulated by Silinsky et al 

(1981) who studied adenosine actions on the neuromuscular junction. They suggested that 

adenosine receptors are linked to calcium binding proteins and stimulation o f the receptor 

results in decreased affinity o f the calcium binding protein for calcium.

Presynaptic A2 receptor activation is thought to cause an increase in transmitter release 

including glutamate (Simpson et al, 1992). In general, the Al receptors are sensitive to 

low concentrations of adenosine derivatives in the nanomolar range, whereas micromolar 

concentrations are required for A2 receptor activation (Stone & Simmonds, 1991). 

Therefore, if extracellular adenosine levels increase to the micromolar range, the effects of 

A2 receptor stimulation may override the effects of Al receptor stimulation, resulting in a 

potentially detrimental response.

1.1.6 Postsvnaptic Properties of Adenosine

Adenosine causes suppression of neuronal firing (Gerber & Gahwiler, 1994). A l receptor 

activation also causes postsynaptic hyperpolarisation (Trussell and Jackson, 1985; 

Dunwiddie & Fredholm, 1989; Thomson et al, 1992). The mechanism(s) of this 

hyperpolarisation could involve: 1) an increase in potassium conductance (Segal, 1982; 

Gerber et al, 1989) 2) an increase in chloride influx. Hyperpolarisation of neurones leads to 

enhanced magnesium block of the ion channel associated with NMDA receptors (Phillis & 

Wu, 1981), thus preventing the calcium influx which is subsequent to NMDA receptor 

activation.

Neuroprotective actions mediated via the A2 receptor include: 1) increased cerebral blood 

flow by vasodilatation (Phillis et al, 1984) (direct application of adenosine-induced 

dilatation of the pial artery in a dose-dependent manner in concentrations as low as I pM 

(Berne et al, 1974)) 2) inhibition of platelet and neutrophil aggregation (Phillis, 1989) 3)

1 0



block of sodium uptake and compound action potentials (Ribeiro & Sebastiao, 1987) 4) 

increased astrocytic glycogenolysis (Magistretti et al, 1986).

1.1.7 The formation and release of adenosine

Cerebral adenosine has been estimated by the microdialysis technique to be present in the 

extracellular fluid at a concentration of around 1 pM (Zetterstrom et al, 1982, Chen et al, 

1992). In the CNS the level of extracellular adenosine is influenced by neuronal activity 

(Richardson & Brown, 1987; Pedata et al, 1989; Pazzagli et al, 1993). The rate of 

adenosine formation increases during increased neuronal activity (Hollins & Stone, 1980a; 

Winn et al, 1980; Jonzon & Fredholm, 1985) and neuronal energy metabolism (Hagberg et 

al, 1986).

The only de novo pathway which leads to the production of adenosine is via the formation 

of IMP (inosine monophosphate) (Stone & Simmonds, 1991) (fig (figure) 1.1). The 

pathway starts with 5-phosphoribosyl-1 -pyrophosphate (PP-ribose-P) and uses 5 molecules 

o f ATP (adenosine triphosphate), leading to the formation of IMP. IMP can then be 

converted to its adenine nucleotide derivative, AMP (adenosine monophosphate), which 

can be dephosphorylated by 5’-nucleotidase leading to the formation of adenosine. 

Alternatively AMP can be converted by a reversible reaction to its polyphosphate 

derivatives, ADP (adenosine diphosphate) and then ATP.

A metabolic source of adenosine is the conversion of hypoxanthine to IMP by the enzyme, 

hypoxanthine-guanine phosphoribosyltransferase (fig 1.1). This is the so called ‘salvage’ 

reaction (Stone & Simmonds, 1991). If hypoxanthine is not converted to IMP, it is 

metabolised by uric acid via xanthine by xanthine oxidase. Uric acid is the end product and 

is readily excreted from the body. A second metabolic source of adenosine is the hydrolysis 

of S-adenosylhomocysteine (SAH) to adenosine and homocysteine (fig 1.1), though the 

favoured reaction is normally in the reverse direction.
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Fig 1.1. Pathways of adenosine production (taken from Stone & Simmonds, 1991).
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Déphosphorylation of AMP by 5’nucleotidase (fig 1.1) is generally regarded as being 

quantitatively the most important reaction for the production of adenosine. Nucleotidases 

exist intraceilularly and extracellularly and respond readily to increases in AMP, 

Extracellular adenosine may arise from the production of adenosine intraceilularly and its 

subsequent efflux outside the cell by a high affinity nucleoside transport process. An 

increase in extracellular adenosine may alternatively arise fi*om the prior release of ATP 

and subsequent extracellular degradation via AMP. ATP can be released on its own from 

peripheral or central neurones as a transmitter or co-transmitter (  Burnstock, 1972,

1986). Using synaptosomes, depolarisation-evoked release of ATP was revealed by White 

(1978) using potassium or veratridine. Potassium-evoked release of ATP was consistent 

with the release seen within the CNS of more classically recognised neurct’-ansmitters in 

that it was calcium-dependent (White, 1978).

In many areas, especially synaptic regions, liigh ecto-5’-nucleotidase activities have been 

demonstrated where there is a high adenosine Al receptor distribution (Goodman & 

Snyder, 1982; Schubert et al, 1983). These similarities in location suggest that ecto-5’- 

nucleotidase generate synaptically active adenosine to interact with Al receptors. In 

agreement with Goodman & Snyder (1982), Fastbom et al (1987) showed that there was 

high receptor binding and enzyme location in the molecular layer of the hippocampus. 

However, Fastbom et al (1987) showed the highest enzyme activity also to be in the 

globus pallidus (GP), olfactory tubercle and caudate putamen, areas where they found only
'

intermediate or low binding. Enzyme activities and receptor binding were measured and

compared using the same species (rats) by Fastbom et al (1987) but Goodman & Snyder
. . .(1982) compared enzyme activities measured using mice with receptor binding measured 

using rats. The comparison made by the latter authors may be less accurate than the 

comparisons made by Fastbom et al (1987) since there is large regional variation of 

adenosine receptor location between the rat and mouse brain (Fastbom et al, 1987). 

Schubert et al (1983) found that high adenosine binding can occur without the presence of 

enzyme activity indicating that there may indeed be a poor correlation between the 

distribution of binding sites and enzyme activity.
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Despite a possible poor correlation between enzyme and receptor sites, evidence that ecto- 

5’-nucleotidase does play a role in extracellular adenosine production is strong. Using 

whole rat brain synaptosomes (MacDonald & White, 1985) or rat cortical slices (Hoehn &

White, 1990a) basal extracellular adenosine levels were found to be mostly derived from 

extracellular ATP, since inhibition of ecto-5 ’ -nucleotidase profoundly reduced adenosine 

release. Also inhibition of ecto-5’-nucleotidase inhibited the release of adenosine in the 

guinea-pig heart (Imai et al, 1989) and prevented the production of extracellular adenosine 

from ATP which was released by depolarisation of purified rat striatal cholinergic 

synaptosomes (Richardson et al, 1987). The latter group report that the synaptic 

functioning of adenosine is controlled by the presence and activity of ecto-5 ’ -nucleotidase 

since the inhibitory effects of adenosine on acetylcholine release were no longer apparent 

after inhibition of ecto-5 ’ -nucleotidase (Richardson et al, 1987),

However, inconsistent results from using ecto-5 ’ -nucleotidase inhibitors on the release of 

adenosine evoked by potassium or glutamate have been obtained. Potassium-evoked 

adenosine release from rat brain synaptosomes was decreased slightly by ecto-5’-

nucleotidase inhibitors (MacDonald & White, 1985) but was not affected by ecto-5’-
'

nucleotidase inhibitors when adenosine release was evoked from rat cortical slices (Hoehn
,

& White, 1990a). This may indicate that adenosine can be released in the form of ATP only 

from the nerve terminals (consistent with the release seen within the CNS of more 

classically recognised neurotransmitters) and this release only contributes slightly to the 

amount of adenosine released per se from the intact neurones and glia found in slices. 

However, the contribution of nucleotides to potassium-evoked adenosine release in guinea 

pig synaptosomes (Daval & Barbaris, 1981) was less than that in the rat synaptosomes 

(MacDonald & White, 1985). Adenosine was released from hippocampal slices without 

detection of ATP release (Jonzon & Fredholm, 1985) and, despite the rapid 

dephosphorylation of ATP, the authors state that any released ATP would be measured in 

their system. The inhibition of ecto-5 ’ -nucleotidase did not reduce adenosine production or 

release from either amphibian ganglia (Rubio et al, 1988) or embryonic chick neuronal and 

glial culture (Meghji et al, 1989). Pons et al (1980) have shown that ecto-nucleotidase



activity was not required for glutamate-evoked accumulations of cAMP, indicating that a 

breakdown of extracellular nucleotides was not required for this effect by adenosine.

I

Considering this variation of opinion and experimental evidence, it is possible that both the 

release of adenosine per se and the release of adenosine via the prior release of ATP may 

occur. The importance of one over the other may depend on the species used, the 

preparation used (e.g. release from isolated nerve terminals (synaptosomes) or from intact 

neurones and/or glia (slices or in vivo)) or the stimuli used (e.g. electrical stimulation or 

pharmacological agents).

In summary, a poor correlation between location of adenosine receptors and ecto-5 

nucleotidase activities may exist (Fastbom et al, 1987) yet a role of ecto-5’-nucleotidase in 

extracellular adenosine production and functioning has been shown in some circumstances. 

It may therefore be hypothesised that several pools of nucleotidase exist, only one of which 

synthesises the “neuromodulator pool” of adenosine. This may lead to a liigh enzyme 

activity in areas where there is only intermediate or low adenosine binding sites as reported 

by Fastbom et al (1987).

For adenosine to be released per se then it must often be formed intraceilularly. It has been 

suggested that an increase in neuronal activity increases metabolic activity and intracellular 

ATP breakdown to AMP and thus adenosine. Electrical excitation has been shown to 

increase dephosphorylation of ATP mainly because it increases intracellular Na+ 

concentration, thus activating the Na+-requiring ATPase (Pull & Mclwain, 1973). The 

increase in neuronal activity, which occurs during neuronal excitation, may also result in 

activation of the Na+K+ pump which is driven by ATPase. As three sodium ions and two 

potassium ions are transported across the membrane, ATP is broken down to ADP inside 

the cell by endo-nucleotidases. Subsequent dephosphorylation may lead to the 

accumulation of adenosine which may then be transported out of the cell. However, the 

breakdown of ATP associated with the activity of the Na+K+-dependent ATPase as a 

source of extracellular adenosine has been eliminated by a study performed by Hollins & 

Stone (1980a). In that study, the release o f tritium after preloading with [3H]adenosine 

occurs in the presence of ouabain, an ATPase inhibitor, from slices of rat cerebral cortex.
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If  the activity of the enzyme Na+-K+-ATPase was responsible for adenosine production, 

then the ouabain would inhibit, not evoke, adenosine release (Hollins & Stone, 1980a).

The formation and release of adenosine is increased during acute pathological conditions 

such as hypoxia/ischaemia (Berne et al, 1974; Winn et al, 1981; Hagberg et al, 1987), 

hypoglycaemia (Butcher et al, 1987; White & Hoelin, 1991) and stroke and seizures. 

Ischaemic insults result in decreased oxidative phosphorylation and anaerobic glycolysis 

causing intracellular accumulation of adenosine (White & Hoehn, 1991). Depolarisation of 

cells and the resulting influx of sodium may result in the intracellular accumulation of 

adenosine and its subsequent efflux by the reversal of the sodium-dependent bidirectional 

nucleoside transporter which is reported to be present on neurones and glia (Bender & 

Hertz, 1986; Meghji et al, 1989). In support of non-neuronal adenosine release, pools of 

purines exist in glia, endothelial cells and platelets and adenosine has been shown to be 

derived from glia by electrical stimulation (Caciagli et al, 1988).

1.1.8 Receptor Mediated Release Of Adenosine

Adenosine is released from neurones other than purinergic neurones. Adenosine has been 

reported to be released from noradrenergic and cholinergic neurones (Pedata et al, 1989). 

Whether release is presynaptic or postsynaptic is another issue waiting to be answered. 

Work done by Rubio et al (1988) on the flog sympathetic ganglion has shown that release 

o f adenosine during synaptic transmission is the result of activation of postsynaptic 

structures. This conclusion was based on the observation that muscarinic agonists could 

induce adenosine release, while the release produced by preganglionic stimulation was 

prevented by muscarinic antagonists.

These experiments indicate that adenosine release can occur in response to activation of 

neurotransmitter receptors, as well as to direct depolarisation. Release can also be induced

by activation of glutamate receptors in the CNS. Both NMDA and non-NMDA receptors 

have been shown to be involved in glutamate-evoked release of adenosine from rat cortical

antagonists. Indeed, the local application of NMDA to the hippocampus in vivo also
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slices (Hoehn & White, 1990a) since the evoked release was diminished by 50% in the 

presence of NMDA antagonists and by 66% in the presence of non-NMDA receptor

I
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increases the release of adenosine (Chen et al, 1992). It has been shown that the NMDA 

receptor is involved in basal outflow of adenosine in ageing (22 months old) rats but not in 

adult (3 month old) rats (Pazzagli et al, 1995), indicating that the role of excitatory amino 

acids in regulating adenosine levels is more important in ageing than in adult rats. Work on 

cortical slices has shown that, with the application of NMDA, only a small fraction o f the 

available NMDA receptors must be activated for adenosine release to be maximal (Hoehn 

et al, 1990). The finding that adenosine release is maximal when the majority of NMDA 

receptors are still available for activation, indicates that adenosine’s neuroprotective 

properties may not be enough to overcome the consequences of maximal NMDA receptor 

activation during an excitotoxic insult.

1.1.9 Adenosine removal and degradation

Adenosine can be removed from the extracellular space (the site where adenosine has its 

receptor-mediated actions) by uptake through nucleoside transporters. The importance of 

adenosine uptake as an inactivation mechanism is shown by the ability of adenosine uptake 

blockers to depress neuronal activity (Motley and Collins, 1983), potentiate the ability of 

adenosine to decrease locomotor activity (Crawley et al, 1983, Sanderson & Scholfield,

1986), increase nociceptive thieshold (Yarbrough and McGuffin-Clineschmidt, 1981) and 

exert anti-convulsive effect (Dragunow and Goddard, 1984).

Nucleoside transporters are sub-classified (Geiger & Fyda, 1991) in terms of;

1) high and low affinity for adenosine

2) selectivity for a range of purines and pyrimidines

3) sensitivity and resistance to uptake blockers e.g. NBTI (nitrobenzylthioinosine), I 

dipyridamole

4) ability to translocate nucleosides across cell membrane by passive or facilitated difiusion 

or by Na^-dependent active transport systems
■■■■i

Once inside the cell, adenosine is converted to AMP by phosphorylation by cytosolic 

adenosine kinase or, alternatively, to inosine by cytosolic adenosine deaminase and 

subsequently hypoxanthine and xanthine. The condensation reaction between adenosine

'I
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1.2 Excitatory amino acids

and 1-homocysteine produces SAH (Sciotti & Van Wylen, 1993a) and there is also 

conversion to adenine by adenosine nucleosidase.

Adenosine kinase has a higher affinity for adenosine than does adenosine deaminase 

(Sciotti & Van Wylen, 1993b). Adenosine is phosphorylated at low micromolar 

concentrations (Kuroda & Mcllwain, 1974; Barbaris ei al, 1981; Reddington & Pusch, 

1983; Wolinsky & Paterson, 1985), the Km value for adenosine of adenosine kinase being 

2pM (Phillips & Newsholme, 1979). The Km value for adenosine of adenosine deaminase 

is 17pM (Phillips & Newsholme, 1979). Thus adenosine is converted to AMP by 

adenosine kinase under normal physiological conditions.

The rate of phosphorylation of adenosine is maximal at low concentrations of adenosine 

and decreases with increasing adenosine concentration (Fisher & Newsholme, 1984). 

During hypoxia or ischaemia, the elevated adenosine levels result in substrate inhibition of 

adenosine kinase, allowing promotion of deamination of the accumulated adenosine (Nagy 

et al, 1990).

Adenosine deaminase is reported to be intracellular, restricted to oligodendrocytes and 

endothelial cells (Schrader et al, 1987). Cell surface localisation of adenosine deaminase 

has been reported in human skin fibroblasts (Andy & Komfeld, 1982), in piglet isolated 

perfused lung (Hellewell & Pearson, 1983) and in the rat heart (Meghji et al, 1988). These 

reports indicate that adenosine deaminase may contribute to the extracellular metabolism 

of adenosine. Such existence of exo-adenosine deaminase in cerebral tissue has yet to be 

been shown.

Adenosine deaminase inhibitors elevate adenosine levels in the brain and have some 

adenosine-like depressant effects on CNS function (Radulovacki et al, 1983). Curiously, 

they have no effect on hippocampal population spikes (Zhu & Krnjevic, 1994) or on 

ischaemic-induced increases in cortical glutamate release (Phillis et al, 1991). This may 

imply that adenosine deaminase does not play a critical role in aborting endogenous 

adenosine’s modulatory effects on synaptic transmission.
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1.2.1 Excitatory amino acid receptors

The synaptic responses elicited by excitatory amino acids are mediated by metabotropic 

and ionotropic receptors. Metabotropic receptors activate phospholipase C via G-proteins 

leading to increased levels of inositol polyphosphates and the subsequent mobilisation of 

intracellular stores of calcium and increased production of diacylglycerol with protein 

kinase C activation and cell protein phosphorylation. There are three subtypes of glutamate 

ligand-gated ion channels (LGIC): NMDA, AMP A ((R, S)-a-amino-3 -hydroxy-5 -
%

methylisoxazole-4-propionic acid) and kainate receptors, classified by their sensitivity to 

glutamate agonists (Stone & Burton, 1988; Collingridge & Lester, 1989). The use of 

antagonists can distinguish between NMDA and non-NMDA receptors but, until recently,
;

such tools were not available to distinguish absolutely between AMPA and kainate 

receptors. It has been postulated that the kainate receptor exists in high and low affinity 

states, with Ki values of 1.5 and 19nM for kainic acid, respectively (London & Coyle,

1979). It was revealed that quisqualic acid binds to the high affinity site with 10 fold higher
■

potency than at the low affinity site and that quisqualic acid is 3 fold more potent in 

binding to either state of kainate receptor than L-glutamate (London & Coyle, 1979). 

Johansen et al (1993) reported that the competitive glutamate antagonist, 5-nitro-6,7,8,9- fi 

tetrahydrobenzo[G]indole-2,3 -dione-3 -oxime (NS-102), was more selective at the low- 

affinity than the high-affinity [^Hjkainate binding site and was a weak inliibitor of AMPA 

binding. Patemain et al (1995) reported that the non-competitive non-NMDA antagonist,

GYKI 52466, was more specific for AMPA/ kainate receptors and has little effect at the 

high affinity kainate.

There are specific genes which code for AMPA and kainate receptors and the fijnctional 

expression of these genes in the Xenopus Oocyte model indicates that these genes will 

produce receptors that possess the characteristics of the in vivo receptors (Egeberg et al,

1991; Petralia & Wenthold, 1992; Henley, 1994). Based on the rat glutamate receptor 

complementary DNA sequences, antipeptide antibodies detected the GluRl, GluR2, GluR3 

AMPA receptor subunits in human CNS tissue (Blackstone et al, 1992). In addition, the 

expression of the KA-1 gene which codes for a high-affinity kainate binding site reveals
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that this site has similar binding properties to that seen for [^H] kainate using in vivo 

autoradiography in rats (Werner et al, 1991). GluRl-4 can be activated by AMPA and 

kainate but have higher affinity for AMPA than kainate (Bettler & Mulle, 1995). GluR5-7 

are selectively activated by kainate and apparent affinity for kainate is higher than GluRl-4 

(Egebjerg et al, 1991). The cation channel expressed by this receptor has a conductance of 

about 20pS (Ascher et al, 1986; Cull-Candy & Usowiz, 1987; Jahr & Stevens, 1987; Cull- 

Candy et al, 1988).

The NMDA receptor channel has a larger conductance (around SOpS) (Ascher et al, 1988) 

and is less ion selective than most sodium LGIC. About 5-10% of its current is earned by 

Ca2+, whereas AMPA and kainate receptors are relatively impermeable to calcium (Mayer 

et al, 1987; Pumain et al, 1987). However, more recently, evidence indicates that some 

sub-types of AMPA/ kainate receptors are directly calcium permeable (Brorson et al,

1992; Rorig & Grabtyn, 1993; Brorson et al, 1994). Homomeric and heteromeric 

receptors assembled from GluRl/-3/-4 subunits are significantly permeable to calcium 

(Bettler & Mulle, 1995). All recombinant AMPA receptor subunit combinations containing 

the edited GluR2(R) subunit are rather impermeable to calcium. Recombinant receptors 

lacking the edited GluR2(R) are permeable to calcium (this permeability is 5-10 times less 

than that of NMDA receptors). For kainate receptors, GluR6(R) and GluR6(Q) subunits 

are permeable to calcium with GluR6(R) having the higher calcium permeability.

1.2.2 Location of excitatory amino acid receptors

NMDA receptors have been shown to have a localisation consistent with a synaptic 

fianction, and are present in high density in the cerebral cortex, hippocampus, striatum, 

septum and amygdala (Greenamyre et al, 1985; Choi, 1988(a)). AMPA receptors are 

located primarily in telencephalic regions, with high levels in hippocampus, cortex, lateral 

septum, striatum and molecular layer of cerebellum (Nielson et al, 1988; Monaghan et al,

1989); Kainate receptors are located predominantly on the presynaptic terminals in the 

CA3 region of the hippocampus (Ferkany et al, 1982; Bettler & Mulle, 1995, Malva et al,

1995).

îï;



Excitatory amino acid receptors are located on the presynaptic terminals or on the cell 

bodies and activation can produce a depolarisation which initiates an action potential, 

evoking release from the nerve terminal by exocytosis. NMDA receptor activation evokes 

release of dopamine and acetylcholine by acting directly on nerve terminals (Krebs et al, 

1991). Non-NMDA receptor activation has been shown to increase noradrenaline release 

by a presynaptic action on the terminals of locus coeruleus noradrenergic neurones (Wang 

et al, 1992) and to increase glutamate and aspartate release from rat synaptosomes 

(Ferkany et al, 1982; Connick & Stone, 1986; Poli et al, 1991). Non-NMDA receptors 

have been shown to exist presynaptically on dopaminergic neurones in the striatum (Desce 

et al, 1991).

1.2.3 Excitatory amino acids and excitotoxicitv

L-glutamate and L-aspartate are the main endogenous excitatory amino acids in CNS.
.Paradoxically, the brain is very vulnerable to its own excitatory amino acids. Glutamate is 

present intravesiclarly, at a concentration of around lOmM (Nicholls & Atwell, 1990). For 

glutamate to exert its neurotoxic action it must first be released from cells into the 

extracellular fluid. It is well documented that the release of glutamate and aspartate from 

neuronal cells into the extracellular space occurs during hypoxia (Benveniste et al, 1984; 

Globus et al, 1988; Phillis et al, 1991), ischaemia, hypoglycaemia and seizures. Under 

normal conditions, the extracellular concentration of glutamate is estimated to be about 

2pM but during ischaemia this can rise to ImM (Hagberg et al, 1985). Mitani & Kataoke 

(1991) report that approximately a ten-fold increase in extracellular glutamate for beyond 

ten minutes may provoke ischaemic-induced neuronal death.

There are thought to be two types of release of excitatory amino acids which result in 

accumulation of excitotoxic concentrations in the extracellular fluid; Ca2^-dependent 

vesicular release (Nicholls, 1989) or Ca2+-independent depolarisation-induced reversal of 

the glutamate transporter. Both of these probably occur mainly from synaptic terminals but 

release from glial cells may also occur by Ca2"^-independent reversal of the Na^-coupled 

plasma membrane amino acid transporter (Nicholls, 1989)
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Once in the extracellular space, neuronal responses to glutamate are terminated by 

desensitisation of receptors or the uptake of glutamate into nerve terminals or glia. As the 

concentration of transmitters in nerve terminals is higher than in the synaptic cleft, energy 

input is required for uptake. It appears that for L-glutamate to interact with the 

transporter, sodium ions must be on the same side of the cell membrane as L-glutamate 

and potassium must be present simultaneously on the opposite side (Kanner & Marva, 

1982). At the same time as sodium influx is driving the glutamate “uphill”, there is I

potassium efflux (Kanner, 1993). An increase in potassium in the extracellular fluid causes

an efflux of L-glutamate (Kanner & Marva, 1982). During loss of ionic homeostasis, for

'I

example anoxia and ischaemia, an increase in extracellular potassium may lead to efflux of 

glutamate. This may significantly add to the vesicular release of glutamate reported to 

occur under these conditions, thus having further detrimental effects.

In addition to the requirement for sodium and potassium ions, the efflux of L-glutamate via 

the transporter is faster in the presence of internal or external chloride ions (Kanner & 

Marva, 1982).

After its uptake into glial cells, glutamate is converted into glutamine by glutamine 

synthetase, an enzyme located solely non-neuronally (Norenberg & Martinez-Hemandez, 

1979). Glutamate taken up into neurones is transported into vesicles. Inhibition of 

glutamate uptake has been seen in astrocytic cultures during swelling of astrocytes induced 

by exposure of cultures to a hypotonic or high potassium medium (Kimelberg et al, 1995) 

or during acidosis (Swanson et al, 1995). It is postulated that the lack of uptake during 

conditions of neuronal and astrocytic swelling or acidosis (e.g. during ischaemia) may lead 

to the neurotoxic accumulation of glutamate in the extracellular space. The high affinity L- 

glutamate transporter is stereospecific with regard to glutamate, D-glutamate is a poor 

substrate. D- & L-aspartate have affinities for the transporter in the low micromolar range 

(Kanner, 1993).

Excitotoxicity is the term used to describe the neuronal degeneration produced by 

compounds that cause excitation and toxicity in neurones (excitotoxins) (Whetsell & 

Shapira, 1993). Activation of kainate and AMPA receptors by glutamate opens the

I
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intrinsic sodium channel, that is closed at resting potential, and causes depolarisation of the 

cell membrane. Depolarisation results in removal of magnesium block from the 

postsynaptic NMDA receptor, leading to its activation (the NMDA receptor has a voltage- 

dependent conductance mechanism whereas the kainate and AMPA receptors have 

voltage-independent conductances). Activation of NMDA receptors and non-NMDA 

receptors therefore leads to an influx of calcium through receptor-operated calcium 

channels and voltage-operated calcium channels (Lin et al, 1990; Ohta et al, 1991; 

Uematsu et al, 1991; McBumey et al, 1992). The increase in intracellular calcium causes 

activation of calcium-sensitive systems. Activation of phospholipase A2 by calcium leads 

to the production of arachidonic acid. Arachidonic acid causes potentiation of NMDA- 

evoked currents and inhibition of reuptake of glutamate into astrocytes and neurones. 

Cytotoxic free radicals are produced during the breakdown of arachidonic acid by cyclo- 

oxygenase to eicosanoids and by lipoxygenase to leukotrienes. The activation of nitric 

oxide synthase by calcium produces nitric oxide which interacts with superoxide ions to 

produce peryoxynitrite ions which lead to production of the toxic hydroxyl ions. Calcium 

has been reported to cause the conversion of xanthine dehydrogenase to xanthine oxidase, 

though the existence of the latter in the rat brain is still controversial. The conversion of 

hypoxanthine to xanthine by xanthine oxidase produces free radicals. Other calcium- 

sensitive systems include protein kinase C, proteases and endonucleases. Overstimulation 

of these may be detrimental to cells.

If the supply of oxygen is decreased, then the cells’ metabolism would decrease, as would 

oxidative phosphoiylation. Oxidative phosphorylation uses oxygen and produces 36moles 

of ATP/ mole of glucose. Anaerobic glycolysis would occur instead which produces 

2moles of ATP and 2moles o f lactate/ mole o f glucose as well as hydrogen ions. Therefore 

there would be a reduction in ATP production and a reduction in pH. A decrease in ATP 

would cause failure of the Na+/K+-ATPase transport process which would lead to cell 

depolarisation, a reversal of glutamate uptake and activation of voltage-operated calcium 

channels. The overall result would be calcium influx, leading to an increase in intracellular
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calcium and glutamate release, thus perpetuating a vicious cycle causing fijrther neuronal

death.

Glycine may have an importance in neurotoxicity since the ischaemic-induced level of 

glycine is reported to remain high for longer than that of glutamate (Baker et al, 1991;

Globus et al, 1991) and Wood et al (1992) reported that antagonists at the strychnine- 

resistant glycine site attenuate ischaemic-induced neuronal loss. This would be consistent 

with the finding that glycine binding to an allosteric extracellular site on the NMDA 

receptor potentiates glutamatergic signal and also delays desensitisation (Collingridge &

Lester, 1989).

1.3. Free Radicals and Excitotoxicitv

The acceptance of a single electron by molecular oxygen (0^ ) forms the superoxide anion 

radical (0^'.). Superoxide is subsequently dismutated by superoxide dismutase producing 

hydrogen peroxide (H^O^J (fig 1.2). Hydrogen peroxide has the ability to cross 

membranes, unlike the superoxide ion. The reaction of superoxide and hydrogen peroxide 

produces the highly reactive and toxic hydroxyl radical. This oxidation is brought about by 

the readily available Fe^+ or Cu+ in the CNS, a process called the Fenton Reaction (fig 

1.2). In addition, the reaction of superoxide ions and nitric oxide produces the 

peryoxynitrite ion. The peryoxynitrite ion is cytotoxic through its ability to oxidise thiol 

groups or through its decomposition to the toxic hydroxyl ion.

Overproduction of these free radicals leads to lipid peroxidation, cell damage and the 

fijrther leakage of free radicals and cellular components through the cell membrane into the
'■'I

extracellular space. Combination of molecular oxygen with methylene groups of saturated 

fatty acids in biomembranes makes this part of the membrane become hydrophilic and 

chemically reactive so that the membrane functions abnormally or is destroyed. Lipid 

peroxidation involves the removal by free radicals of a hydrogen atom from a fatty acid.

This will result in the production of a peroxyl radical which can itself initiate damage to 

another polyunsaturated fatty acid by removing a hydrogen atom, thus propagating the 

process of molecular damage across hundreds or thousands of molecules. In addition to
I  

I
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lipids, hydroxyl ions react with virtually any molecule in their path including enzymes 

which are vital to the cells’ function.

The importance of free radicals in neurotoxicity is being realised. A mutant gene that 

encodes a cytosolic superoxide dismutase has been identified in patients with FALS 

(familial amyotrophic lateral sclerosis), a degenerative disorder of motor neurones (Rosen 

et al, 1993). An abnormal function of superoxide dismutase may lead to the accumulation 

of toxic superoxide ions. Free radicals have been proposed to be produced in other 

diseases involving neurodegeneration or neurotoxicity such as Parkinson's Disease 

(Olanow, 1993) and ischaemia (Siesjo, 1992). In Parkinson's Disease, dopamine, which has 

increased turnover in surviving neurones, may be oxidised and produce free radicals. Iron 

is thought to be present in regions which are known to be involved in Parkinson's Disease 

(Olanow, 1993) and catalyses free radical generation by the Fenton reaction (Figure 1.2). 

During ischaemia, the elevated intracellular calcium may activate calcium-sensitive systems 

which result in free radical production. Phospholipase A2 is activated by calcium and 

during its breakdown, free radicals are produced. Calcium-activated nitric oxide synthase 

may lead to the production of the peryoxynitrite ion and thus hydroxyl ions through the 

synthesis of nitric oxide. Calcium has been reported to cause the conversion of xanthine 

dehydrogenase to xanthine oxidase, a reaction which produces free radicals.

Given the evidence for production of free radicals under such conditions and the potential 

role of free radicals in cytotoxicity, free radicals may be involved in neurodegenerative 

diseases in which there is substantial oxidative stress.
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Fe2+; Cu+
SOD (Fenton reaction)

O2 ^  O2 — H2O2 —̂ ^  OH'
molecular oxygen hydrogen peroxide

superoxide anion hydroxyl radical

Fig 1.2
The conversion of molecular oxygen to the hydroxyl radical. Molecular oxygen can be 
reduced to the superoxide anion radical (Q^~). Superoxide dismutase (SOD) catalytically 
reduces the superoxide anion to hydrogen peroxide (H^O^). can be reduced in the
presence of iron (Fe'^+) or copper (Cu+) to the highly toxic reactive hydroxyl radical (OH ) 
by the Fenton reaction.
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It has been suggested that activation of kainate receptors leads to the production o f free 

radicals which may contribute to neuronal damage (McNamara & Fridovich, 1993). 

Stimulation of the non-NMDA receptor has been proposed to activate a calcium- 

dependent protease that enzymically converts xanthine dehydrogenase to xanthine oxidase 

which subsequently produces superoxide radicals (McNamara & Fridovich, 1993).

The present project used microdialysis in the hippocampus of anaesthetised rats to:

1) investigate the ability of the non-NMDA receptor agonist and excitotoxin, kainate 

(Coyle & Schwarcz, 1976), a pyrrolidine isolated from the seaweed Digenia simplex, to 

induce the release of endogenous adenosine and its metabolites, inosine, hypoxanthine and 

xanthine

2) compare the profile of release induced by kainate with that induced by potassium

3) elucidate the mechanisms involved in the evoked release o f adenosine

.-'ij

2 7



-II.
2.0 METHODS

2.1 Microdialysis

2.1.1. Summary of technique and development

The analysis o f chemical events which occur between cells has been difficult. The 

dissection of tissue represents a static reflection of synaptic events, mixing cells, organelles 

and extracellular fluid. To obtain a more dynamic picture of the chemical interplay between 

cells in living tissue, microdialysis has been introduced. Microdialysis involves perfusing a 

thin dialysis tube inserted in the tissue. The concentration of compounds in the perffisate 

reflects the composition of the compounds in the extracellular fluid as a result o f the 

diffusion of substances across the dialysis membrane.

Microdialysis has advantages over older techniques such as the push-pull cannula and 

cortical cup techniques. The dialysis membrane over the tip of the probe is the main feature 

of difference between microdialysis and push-pull cannula. This difference means that in 

microdialysis there is no need to balance the push of the flow of liquid with the pull of the 

flow. In push-pull cannulae, liquid has to be infused through the tissue and be pulled out 

through the cannula. As a result, there may be damage to tissue which is minimised in 

microdialysis. The dialysis membrane also acts as a barrier which improves the sterility of 

the fluid diffusing into the brain and excludes proteins and other macromolecules from 

coming out of the brain which would have to be removed before HPLC (high performance 

liquid chromatography) analysis. These are major advantages over the cortical-cup 

technique in addition to the ability to perform microdialysis on most organs and tissue of 

the body.

A powerful feature of microdialysis is the ability to stimulate the tissue locally by including 

substances in the perfusate. Neurotransmission and release processes may be examined at 

the same time as the stimulation of receptors by the local administration of a drug via a 

microdialysis probe (Westerink et al, 1987).

However, microdialysis is far from being a simple technique. The complexity of the 

technique comes from the interactions of the dialysis membrane with the living tissue. The
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%chemical events taking place in this interaction must be understood, in order to interpret 

the results.

2 .1.2. Complications of interpretation

Insertion of a foreign body, such as a microdialysis probe causes damage to the 

surrounding tissue. Much work has been carried out to assess the limitations of 

microdialysis with respect to damage. To review these limitations, the reported effects of 

insertion of a foreign body into tissue must first be examined. The possible effects are glial 

reaction, haemorrhage, limited neuronal death (Benveniste & Diemer, 1987), localised 

haematoma (Yaksh & Yamamura, 1974), alterations in glucose metabolism and blood 

brain barrier (BBB) function (Benveniste, 1989), reduction in regional blood flow (Tomida 

et al, 1989) and local biochemical disturbances. These changes may be delayed after 

implantation. For instance, glucose metabolism decreased 24 hrs after probe implantation 

(Benveniste, 1989), and glial reactions began 2-3 days after implantation (Benveniste & 

Diemer, 1987). Interruptions of fibres of passage were seen using silver degeneration 

staining methods both adjacent to the site of implantation and in remote sites e.g. in corpus 

callosum and contralateral hippocampus when implantation was in the dorsal hippocampus 

(Shuaib et al, 1990). This axonal damage was seen 24 hrs after probe implantation and 

became increasingly more prominent with longer survival times (Shuaib et al, 1990). The 

following questions must therefore be asked. Are the compounds detected by microdialysis 

the result of chemical events within the extracellular fluid which occur secondary to the 

insertion of the probe? Do glial cells, monocytes and endothelial cells which may 

accumulate around the dialysis probe affect the distribution or metabolism of the detected 

compounds? Is the BBB disrupted? Plasma constituents and drugs which do not normally pass

through the BBB may have increased access to the brain from the surroundings of the 

dialysis probe.

Work carried out by Westergren et al (1995) attempted to answer the final question. They 

found that the BBB was disturbed 3 hrs and 24 hrs after probe insertion. There was also 

enhanced passage of CSF and albumin around the probe and increased BBB permeability
■:

24 hrs compared to 3 hrs after insertion. They explain this delay in enhancement by 1)
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decreased blood flow due to vasospasm and damaged blood vessels (as blood flow 

increases after repair of vessels more tracer can enter the brain and dialysate) 2) cell

damage around the probe leading to a delayed accumulation of leukocytes and 

macrophages with the production of free radicals known to increase BBB permeability. 

However, work carried out earlier by Benveniste et al (1984) and Tossman & Ungerstedt 

(1986) indicate that damage to the BBB is negligible 30min to 2hr afl;er probe insertion. 

The trauma of implantation may therefore vaiy with the type of probe used and it is 

possible that the extent of damage to the BBB is related to the length o f time the probe is 

inserted in the tissue.

2.2 The surgical procedure

All animal procedures were in accordance with the Home Office Guidelines and were 

specifically licensed under the Animal (Scientific Procedures) Act 1986.

Male Wistar rats (body weight 270-3 lOg) were anaesthetised using urethane 1.25g/kg i.p. 

(intraperitoneal) and microdialysis probes were stereotaxically inserted bilaterally into the 

hippocampus. The microdialysis system used for anaesthetised animals is shown in fig 2.1. 

The coordinates were 5.6mm posterior, 5.0mm lateral and 8.0mm ventral relative to the 

bregma (fig 2.2) (Paxinos & Watson, 1986). A homeothermic blanket maintained rectal 

temperature at 36-37^C. At the end of each experiment the location of the probes was 

confirmed by staining with 10% pontrmine sky blue. The dye solution was perfiised 

through the probes for 2 minutes after which the brains were removed and placed into 10% 

formalin pH 7 to fix overnight. The brains were subsequently sectioned manually using a 

razor blade in order to locate the dye.

The microdialysis probes were continuously perfused with artificial cerebrospinal fluid 

(acsf), composed of 125mM NaCl, 2.5mM KCl, 0.5mM KH2PO4, 27mM NaHCOg, 

1.2mM MgS0 4 , 1.2mM CaCl^ and lOmM glucose (pH 7.2) at a flow rate of 2pl/min. 

Dialysate samples were collected every 20min in tips of eppendorf tubes and either 

analysed immediately or snap frozen in liquid nitrogen and stored at -20°C for later 

analysis. Two methods of drug administration were used in the present study. Either 

compounds were dissolved in acsf, pH7.2 and administered through the probe by reverse

3 0



dialysis, by means of a liquid switch which caused little disturbance to the flow. 

Alternatively, drugs were dissolved in saline or vehicle as stated otherwise and injected 

subcutaneously or intraperitoneally in a volume of Iml/kg. In the present study, to 

differentiate between the two methods o f administration, administration through the probe 

will be referred to as intrahippocampal and administration by s.c. (subcutaneous) or i.p. 

injection will be referred to as systemic.

S.

:
Î
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Fig 2.1
Microdialysis system for anaesthetised animals
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Fig 2.2
Position of probe in the hippocampus
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2.3 Materials

The following materials were used:

From Sigma Chemicals: adenosine; L-ascorbic acid; L-aspartic acid; (±)-AP-5; 2- 

chloroadenosine; dimethylsulphoxide (DMSO); L-glutamic acid; glutathione; 

hypoxanthine; inosine; kainic acid; a-p-methylene ADP; NBTG (S-(2-liydroxy-5- 

nitroben2yl)-6-thioguanosine); NMD A; oxypurinol; R-PIA; TTX (tetrodotoxin); urethane 

and xanthine.

From Amersham: (^Hjkainate 

From Anachem: 2-mercaptoethanol (MCE)

From Hoechst: propentofylline 

From Ferrosan: CNQX

From Research Biochemicals International: CNQX HBC complex; CPT (8-cyclopentyl-

1.3 -dimethylxanthine) ; (+)-MK-801 hydrogen maleate and 8-PST (8-(p- 

sulphophenyl)theophylline).

From Burroughs Wellcome Co: EHNA (erythro-9-(2-hydroxy-2-nonyl)adenine HCl.

From BDH Biochemicals: formaldehyde; L-glutamic acid; 2-mercaptoethanol; pontamine

i
s

i
y

sky blue.

From Fluka Biochemicals: OPA (o-phthaldialdehyde).

From The Upjohn Company: U50, 488H (tranS"(±)“3,4-dichloro-N-methyl-N-[2“(l» 

pyrrolidinyl)-cyclohexyl]“benzeneactemide methanesulphonate.
■1

From Astra Neuroscience Research Unit: Chlormethiazole edisylate.

Dr. I. Tamawa (Budapest, Hungary): GYKI 52466 (l-(4“aminophenyl)-4-methyl-7,8" 

methylenedioxy-5//-2,3-benzodiazepine hydrochloride.

2.4 Microdialvsis Probe Construction (concentric probe design)

1) A 23g Microlance needle is filed to a length of 26mm.

2) At least 10mm Hospal polyacrylonitrile membrane (0.3mm, o.d., molecular cut-off f  

24kDaltons) is fed through the lumen of the filed needle. Forceps are used at all times to
>;•

avoid plugging pores with grease or dirt
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3) 4.5mm of the membrane is allowed to be exposed from inside of the needle and the join 

between the membrane and the needle is glued, using resin and hardener in a 50: 50 

mixture (RS Components), so as not to get any glue on the membrane below the needle 

join.

4) Portex tubing (0.58mm i.d.) is attached to the opposite end of the needle and the join 

with the needle is glued.

5) A hole in the Portex tubing is made with a needle and silica tubing (i.d. 40pm) is fed 

through the lumen of the dialysis membrane towards this hole. The silica tubing is cut and 

adjusted so that the end is positioned at least 2mm from the tip o f the dialysis membrane
jand with at least 10mm left outside the Portex tubing. The tip o f the dialysis membrane is 

plugged with epoxy and left to dry before the silica tubing is pushed further down so that it 

is 1.0mm from the tip (0.5mm of which is taken up by the epoxy glue).

6) The hole in the Portex tubing is glued (i.e. the join between the silica tubing and the 

Portex tubing).

2.5 Microdialysis procedure

Solutions were perfused into the probe from a syringe pump (Harvard Apparatus Syringe 

Infusion Pump 22 and Sage Instruments Syringe Pump Model 34) at a flow rate of 2pl/min 

through Portex tubing and samples were collected from the silica tubing.

The relative recovery of each probe was calculated before each experiment by an in vitro
3

procedure. In a standard purine solution of 1 pM, the microdialysis probes were pumped
'3;

with acsf at 2pl/min and the dialysates were collected every 20 min and were analysed for 

purine content. The concentration of adenosine, inosine, hypoxanthine and xanthine in a 

20min sample was then measured and divided by the concentration of each purine in the 

solution to yield the relative recovery of the probe. Three 20 min samples were taken for 

each probe and the mean value was used to represent that probe.

160 min after probe insertion into the hippocampus, two or three 20 min samples were 

analysed to assess basal levels. These were followed by a 5min pulse of kainate or kT To 

investigate the mechanism of release, two 5 min pulses (S1 and S2) of kainate or were 

used three hours apart. Drugs which were used to test the mechanisms of kainate-evoked
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adenosine release were introduced two hrs before, during and after the second stimulation.

The net increase above basal in the first four samples after each stimulation was calculated 

as a ratio S2/S1. The S2/S1 values obtained for the test experiments were compared to 

that of control experiments in which no drugs were perfused before and during the second 

stimulation of kainate or K^. Statistical analysis was performed using an unpaired t-test and, 

where appropriate, a paired t-test.

2.6 Statistical Analvsis |

Drug-induced release of either purines or excitatory amino acids were analysed by paired t- 

test against the basal levels which were calculated by averaging two or three levels before 

the application of the drug.

The S2/S1 ratios were compared in test and control conditions by using ANOVA, 

followed by Dunnett’s t-test. Dunnett’s t-test was the recommended t-test using GraphPad 

Instat version 2.03 package.

Time point release profiles of purines in control and test experiments were compared by 

ANOVA, followed by Bonferrroni Multiple Comparison’s t-test. This t-test was more 

conservative than the Dunnett’s t-test, according to GraphPad Instat version 2.03, and it 

was used to allow the selection of pairs of columns to be analysed. In the present study, 

dialysate levels were compared between test and control experiments at the same time

point only.

2.7 Purine Analvsis

Purines were analysed using an isocratic HPLC (Severn Analytical Solvent Delivery 

System SA6410B) with ultraviolet detection at 254nm (Severn Analytical uv/vis 

Absorbance Detector SA6500) and a Rheodyne model 7125 injector (20pl loop). The 

mobile phase was O.OIM sodium phosphate (NaH2 PO4) with 6% methanol (HPLC 

Grade) pH 6.1 at a flow rate of 0.8ml/min. A techsphere C l8 3pm microsphere column, 

10cm by 4.6mm, was used to separate the purines which had the following approximate 

retention times: hypoxanthine (l.Omin), xanthine (1.4min), inosine (2.4min) and adenosine 

(8.0min) (fig 2.3). The limit of sensitivity for adenosine was approximately l.Spmol



The identification of compounds was achieved by comparison of retention time with 

standards. Quantification of the compounds was achieved by parallel chromatography of 

standards (fig 2.4). At the beginning of the present project, a small study was carried out to 

compare the quantity o f purines obtained by measuring the areas of the peaks in the 

chromatograms (by multiplying the height of the peaks by the width at half of the height) 

with that obtained by measuring solely the height of the peaks. The results obtained were 

very similar and since the latter was a less time consuming process, all compounds (in 

standards and samples) were subsequently quantified by measuring the purine 

chromatogram peak height. Table 2.1 shows the correlation coefficient and ‘r^’ values for 

the calibration graphs seen in fig 2.4.

The following compounds were detected by this HPLC system and for this reason had to 

be eliminated from the experimental protocol: 2-chloroadenosine and a-P-methylene-ADP. 

These chromatograms are shown in fig 2.5.

Table 2.1 The correlation coefficients for the purines analysed by HPLC.

Purine r r '

Adenosine 0.9997 0.9995

Inosine 0.9998 0.9996

Hypoxanthine 0.9969 0.9937

Xanthine 0.9980 0.9960
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Calibration graphs for the determination of purine concentration (pM) by HPLC. 
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Fig 2.5

Chromatograms of substances in dialysate samples which interfered with the separation of 

adenosine

a) 2-chloroadenosine lOpM in perfusate (retention time of 8min, same that of adenosine)

b) a-p-methylene-ADP 0.5mM in perfiisate
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2.8 Excitatory Amino Acid Analvsis

Amino acids were analysed by a Gilson gradient HPLC consisting o f two model 302 

pumps, model 712 Gilson Gradient Programmer and a Spectra Glo fluorimeter (Gilson). 

Aliquots of microdialysate (20pi) were made up to 40pl with acsf, and rapidly mixed with 

40pl of OPA/ MCE reagent (0.5% OPA, 0.5% MCE, 10% methanol in borate buffer) and 

40pl borate buffer lOOmM, pH 9.5. The mixture was allowed to stand for 2 min before 

injection onto the chromatographic column by a model 231 autosampler and a Riieodyne 

model 7010 injector (20pl loop). Glutamate and aspartate were separated by a Dynamax 

microsorb CIS 3pm column (5cm by 4.6mm) with retention times of 2min and 4min, 

respectively (fig 2.6). Solvent A was O.IM sodium acetate with 9.5% methanol (HPLC 

Grade) and 0.5% tetrahydrofuran (HPLC Grade), pH 7.2. Solvent B was methanol 100%. 

Solvent A was mixed in a stepwise gradient with methanol. Flow rate was 1.7pl/min, 

length of run was 2 5 min and the gradient programme, expressed as time in minutes from 

injection (% solvent B), was; 0(0), 2(20), 3(30), 9(45), 12(45), 14(85), 16(85), 18(0).

The limits of sensitivity for glutamate and aspartate were both approximately 2pmol. The 

identification of compounds was achieved by comparison of retention time with standards. 

Quantification of the compounds was achieved by parallel chromatography of standards 

(fig 2.7). Peak areas were computer analysed by a model 712 Gilson Gradient 

Programmer. Table 2.2 shows the correlation coefficients and ‘r^’ values for the calibration 

graphs seen in fig 2.7.

Table 2.2

The correlation coefficients for the excitatory amino acids analysed by HPLC.

Amino acid r r̂

■I

Aspartate 0.9896 0.9794

Glutamate 0.9934 0.9868
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1.1. Assessment of kainate efflux

To investigate the difihision of kainate through the rat brain from the microdialysis probe 

inserted into the hippocampus of urethane-anaesthetised rats, ImM kainate, spiked with 

[^H] kainate, was perfused through the probes for 5 min at a flow rate of 2pl/min. lOOmin 

after perfiision of the kainate, the rat was killed by an overdose o f urethane and the brain 

removed into dry ice. The brain was kept at -2CfC until sectioned into 20pm slices using a 

cryostat. Every 4th section was placed onto poly-l-lysine-treated slides (slides were treated 

by dipping into 50ml of poly-l-lysine 5mg/ml (Sigma Chemicals) and then placing in oven 

for about 2 hrs to dry). The slides were then taken through the following sequence: 1) fix 

in 4% paraformaldehyde (lOg PFA dissolved at 4°C in 25ml lOxPBS (phosphate buffer 

saline) and 225ml deionised water) for 5 mins 2) rinse for 1 min in IxPBS 3) rinse for 1 

min in each of 70%, 90% and then 100% ethanol) 4) leave the slides to dry and then 

expose to film (Hyperfilm ([3H]), Amersham) for 3 weeks. The film was developed then 

soaked in fixer (Kodac Unifix) for twice as long as it took for the water to go cloudy and 

then clear. Finally, the film was soaked in water for a further 2 min. After drying, the film 

was placed on a light box and the mean darkness of pixels was measured for each region of
-

the slice by an image analyser and quantified in nCi/mg by comparing with the darkness of 

known standards. The calibration curve is shown in fig 2.8.

Materials

[3H] Kainate: stock solution 17pM, specific radioactivity 58Ci/mmol. Stock solution was 

diluted 1 in 10 for the above experiments.

;
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Calibration curve for the determination of amount of radioactivity in slices
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2.10 Histology of the hippocampus after a 5min exposure to ImM kainate through the 

dialysis probe.

Two male Wistar rats (body weight 310g) were anaesthetised using Hypnorm (Janssen 

Animal Health; fentanyl citrate 0.315mg/ml and fluanisone lOmg/ml) : Hypnovel (Roche; 

midazolam 10mg/5ml) : water (1:1:2) at a dose of 3.3ml/kg i.p. and microdialysis probes 

were stereotaxically inserted bilaterally into the hippocampus as before. A homeothermic 

blanket maintained rectal temperature at 36-37^C. The microdialysis probes were 

continuously perfiised with acsf at a flow rate of 2pl/min. A settling period of 1 hour in 

one of the animals and of 1 hour 40 min in the other was allowed after probe insertion 

before kainate ImM was perfused through the right hand probe for 5 minutes by means of 

a liquid switch. The left hand probe was continuously perfused with acsf to examine the 

extent of damage by probe insertion.

The interdigital reflex of the rats was continuously tested and anaesthesia was maintained 

using halothane 0.5-2% in O2 at 1.0 1/min for Ihr 20 min after the kainate pulse. Hypnorm 

and Hypnovel were chosen to induce anaesthesia rather than halothane since the halothane 

nozzle did not fit onto the nose bar of the stereotaxic frame. However, the nozzle was 

close enough to allow maintenance of anaesthesia after the administration of Hypnorm and 

Hypnovel. Halothane was chosen for maintenance rather than Hypnorm and Hypnovel 

since anaesthesia by the latter was not so easily reversed.

At the end of the perfusion period the probes were removed, the scalp was sutured and the 

halothane administration was stopped. The rats were allowed to recover. Seven days later 

the rats were killed by a lethal dose of urethane and the brain immediately dissected out 

and immersed into histological fixative (Buffered Formalin Solution, Genta Medical). The 

brains were allowed to fix for at least 48 hrs and then sliced into 5 pm coronal sections. 

Sectioning and staining were performed by Dr, W. Behan at the Western Infirmary, Dept, 

of Pathology. Sections from each brain, taken at the level o f the hippocampus (levels -4.4 

to -6.2mm AP according to the atlas of Paxinos & Watson, 1986), were stained by 

haematoxylin and eosin mixture and examined by light microscopy for assessment of the 

extent of cell damage.
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3.0 RESULTS

3.1 The microdialvsis probes and their relative recovery

The relative recoveries for adenosine, inosine, hypoxanthine and xanthine were 

17.00±0.61%,13.60±0.527«,19.91±0.7^and 18.83±0.58'^respectively (n=71) (table 3.1). The 

relative recovery was measured to screen the probes for variations in their properties. The 

concentration of purines within the ECF (extracellular fluid) may be estimated from the 

collected dialysate concentration using the relative recovery of the probe. However, these 

calculated values are not an accurate estimation and are used here primarily to allow 

comparisons with other studies with different probe construction (see discussion). The 

basal interstitial concentrations of purines estimated here in the anaesthetised rat 

hippocampus are summarised in table 3.1.

3.2. Adenosine efflux after probe insertion

Immediately upon insertion of the probe into the hippocampus, the efflux of endogenous 
.adenosine, collected in the dialysate, was high but declined to a steady baseline within one 

hour (fig 3.1). A further 40 minutes was allowed before three successive twenty minute 

samples were collected to assess basal levels of purines after the attainment of equilibrium.

The basal amounts of purines detected in the dialysates are summarised in table 3.1.
I
A

I
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Table 3.1

The relative recoveries, expressed as percentages, were calibrated in purine solutions 

(IpM ) in vitro (n=71). The estimated concentration (pM) in the ECF of adenosine, 

inosine, hypoxanthine and xanthine (n=10) were calculated from the amount collected in 

dialysates (pmol/20pl) using the relative recoveries.

Relative Recovery in 

vitro (%) (n™71)

Dialysate amounts (n™iO, 

pmol/20pl)

Estimated cone. in

hippocampus (n=10, pM)

ADENOSINE 17.00 ±0.61 3.68 ±021 0.80 ±0.07

INOSINE 13.60 ±0.52 3.12±0.12 0.66 ± 0.04

HYPOXANTHINE 19.91 ±0.7 4.96 ±0.32 1.16 ±0.08

XANTHINE 18.83 ±0.58 13.6 ±  1.14 3.60 ±0.30
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3.3.1 Potassium-evoked release of adenosine and its metabolites

Adenosine release induced by lOOmM potassium reached significance within the first 

sample of the potassium reaching the tissue (fig 3.2a), Adenosine release peaked within the 

next sample, the increase being from 3.6 ± 0.2 to 6.26 ± 0.58 pmol/20pl. The delayed peak 

response was largely due to the lag-time from the liquid switch to the collection vial which 

was 16 minutes. Potassium was exposed to the tissue during the last 4 minutes of the first 

sample and the first minute of the next sample. The contact of potassium with the tissue for 

only 4 min immediately enhanced the release of adenosine significantly, as seen in the first 

sample, but the bulk of the release occurred in the next sample. Both inosine and 

hypoxanthine release during the first sample of the potassium reaching the tissue did not 

reach significance compared to basal (fig 3.2b & c). Significance for these Cv^mpounds was 

reached during the second sample of exposure of potassium to the tissue (that in which 

adenosine release was seen to peak) (fig 3.2b & c). Inosine was increased from 2.71 ± 0.33 

to 4.66 ± 0.76 pmol/20pl and hypoxanthine fiom 6.221 ± 0.93 to 14.21 ± 2.57 pmol/20pl. 

Xanthine release did not increase after exposure to potassium (fig 3,2d).
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Fig 3.2

The release profiles for adenosine (a), inosine (b), hypoxanthine (c) and xanthine (d) 

evoked by a 5 min puise of potassium lOOmM, shown by the horizontal bar, (n=7). Levels 

of adenosine reached significance during the two samples following stimulation, while 

inosine and hypoxanthine levels were elevated significantly in the second sample following 

stimulation. The levels of xanthine did not reach significance. Paired t-test was used to 

show significance against basal (*p<0.05).
3
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3.3.2 Release of adenosine evoked bv twin pulses of potassium

Three hours after the first 5 minute pulse (SI), a second 5 min pulse (S2) o f potassium was 

perfiised through the probe. The first 5 min pulse produced adenosine release which 

peaked within the second sample of exposure of the tissue (*p<0.05, fig 3.3a) and returned 

to basal levels two hours before the second pulse. The second 5 min pulse produced an 

adenosine release profile similar to that of the first 5 min pulse in that the release peaked 

within the second sample o f exposure of the tissue (fig 3.3a), however this was not 

significantly higher than basal release. The amount of release of adenosine above the mean 

of the two or three basal levels before each stimulation was calculated and termed SI, for 

the first pulse, and 82, for the second pulse and the 82/S 1 ratios were calculated.

To investigate the mechanism(s) of potassium-evoked release o f adenosine, a drug was 

perfused two hours before, during and after the second pulse of potassium and its effect on 

the 82/81 ratio was examined. The 82/81 ratio for the test experiment was compared to 

that of the control experiment and statistical analysis was carried out using ANOVA, one

way analysis of variance and Dunnett’s unpaired t-test.

3.3.3 Release of adenosine and its metabolites evoked bv potassium in the presence of 

CNQX

Potassium-evoked release was not affected by CNQX at a concentration of 4.5pM (fig 

3.3b). This is reflected in the unchanged 82/81 values summarised in fig 3.3d. The 82/81 

value for control was 0.69 ± 0.04 and that of CNQX (4.5pM) was 0.64 ± 0.14. At a ten

fold higher concentration o f 45 pM, CNQX did produce a reduction of potassium-evoked 

release of adenosine (fig 3.3c). The 82/81 ratio was reduced to 0.2 ± 0.08 by 45pM 

CNQX (*p<0.05,11=4, unpaired t-test after ANOVA, fig 3.3d).

The profiles of inosine and hypoxanthine release evoked by potassium in the absence and 

presence of CNQX are shown in figures 3.4 and 3.5. The release of xanthine was not

examined in this instance as potassium was not shown to evoke its release (fig 3.2d). The 

82/81 ratios were not calculated for inosine or hypoxanthine as basal levels were not re

established before the termination of some of the experiments.

5 2



=1or\i
O
E
Q.

(D
C

Oc
CDX5<

Dy)
o
Q

=1O
CN

O
E
û_

D
C

'(/)r,CD
"D<

D
en

o
Q

SI 82

4.5ixM CNQX

4 5 mM CNQX
1.0

0.8

0.600
CN

0.4

0.2

0.0
I

Fig 3 .3

Adenosine release evoked by twin pulses of lOOmM KCI without the incorporation of any 

drugs during the second pulse of KCI (n=3) (a) and with the incorporation of CNQX 

(4.5pM) (n=3) (b) and CNQX (45pM) (n=4) (c), two hours before, during and after the 

second pulse of KCi, as indicated by the horizontal line (*p<0.05 versus basal release, 

paired t-test). The 82/81 ratios for (a), (b) and (c) are shown in (d). There was a 

significant reduction in the 82/81 ratio in the presence of CNQX 45pM (*p<0.05, n=4, 

using ANOVA followed by t-test). 
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Inosine release evoked by twin pulses of lOOmM KCI without the incorporation of any 
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(4.5pM) (n=3) (b) and CNQX (45pM) (n=4) (c), two hours before, during and after the 
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3.4 Intrahippocampal kainate-evoked release of adenosine and its metabolites

3.4.1 Concentration-dependent release of adenosine bv kainate

The perfusion of intrahippocampal kainate for 5 min in a concentration range of 0.1-25mM 

produced a concentration-dependent release of adenosine (fig 3.6). The EC50 

concentration was taken as the concentration required to evoke 50% of the maximum 

response measured. This was estimated to be 0.94mM (Graph Pad version 2.0). The 

maximum detected concentration of adenosine was 7-8 fold higher than the resting level.

3.4.2 Release of adenosine and its metabolites evoked bv intrahippocampal kainate at the 

EC50 of kainate

A 5 min pulse of ImM kainate produced a release of adenosine, inosine, hypoxanthine and

xanthine (fig 3.7). Adenosine release peaked during the sample following that containing
.kainate. This was largely due to the lag-time from the liquid switch to the collection vial 

which was 16 minutes. This meant that the tissue was exposed to kainate for the last 4 

minutes of one 20 minute period and the first minute of the subsequent 20 min period. 

Using ImM kainate, the adenosine content of the dialysate increased from 3.68 ± 0.21 to 

7.66 ± 0.83 pmol/20pl (3.7a). The release of both inosine and hypoxanthine reached a peak 

during the sample after the peak release of adenosine (fig 3.7b & c). Inosine release was 

increased from 3.12 ± 0.12 to 6.17 ± 0.41 pmol/20pl and hypoxanthine from 4.96 ± 0.32 

to 29.48 ± 3.6 (fig 3.7b & c). The release of xanthine rose in the sample after the peak 

release of inosine and hypoxanthine from 13.48 ± 1.14 to 24.78 ± 1.3 pmol/20pl (fig 3.7d).

56

„  . .  ̂  ̂  ̂     _



20  -1

o
E
o _

(Uc
'ino
c(U■D<
cu

0

C o n e  O f K a in a t e  ( m M )

Fig 3.6

Concentration-dependent release of adenosine, expressed as the total amount above basal 

(pmol), evoked by a 5 min pulse of kainate (0. l-25mM) in the perfusate (mean ± sem, n=3- 

10). The EC50 was 0.94mM. Maximal release was evoked at 2.5mM kainate, total amount 

released being about ISpmol.
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3.4.3 Release of adenosine evoked by twin pulses of intrahippocampal kainate 

Three hours after the first 5 minute pulse of kainate, a second 5 min pulse o f kainate was 

perfused through the probe. Adenosine release returned to basal levels two hours before 

the second pulse. Adenosine release within the second sample after exposure of the tissue 

to the second pulse of kainate was not as high as that seen after the first pulse, but was still 

significantly higher than basal (fig 3.8 a). The S2/S1 ratio for kainate-evoked release of 

adenosine, 0.465 ± 0.02, was significantly different to that of potassium (0.69±0.04, 

unpaired t-test, p<0.05).

In investigating the mechanism of kainate-evoked release of adenosine, perfusion of a drug 

two hours before and during the second pulse allowed us to examine the effect it had on 

the S2/S1 ratio. The S2/S1 ratio for the test experiments was compared to that of the 

control experiments and statistical analysis was carried out using ANOVA, one-way 

analysis of variance and Dunnett’s unpaired t-test. All S2/S1 ratios are shown graphically 

after the graphs displaying the effect of all drugs on the profile of release of adenosine. The 

S2/S1 ratios were not calculated for inosine, hypoxanthine or xanthine as basal levels were 

not re-established before the termination of some of the experiments.

3.5 Characterisation of receptor mechanisms of kainate-evoked release o f adenosine 

In the present section CNQX, MK-801, AP-5 and TTX were examined on the profiles of 

release o f adenosine and the S2/S1 ratios are summarised in fig 3.11.

3.5.1 Release of adenosine by intrahippocampal kainate in the presence of CNQX 

CNQX, a non-NMDA receptor antagonist was incorporated at a concentration of 4.5pM 

into the perfusion medium two hours before, during and after the second stimulation. The 

presence of CNQX at this concentration reduced release evoked by kainate during the 

second pulse to the extent that release was no longer significantly above basal (fig 3.8b). 

The resulting S2/S1 ratio of 0.04±0.03 was significantly lower than the control value of 

0.465 ± 0.02 (n=4, **p<0.01 unpaired t-test) (fig 3.11).

i
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3.5.2 Release of adenosine bv intrahippocampal kainate in the presence of MK-801 

Perfusion with lOOpM MK-801 (dizocilpine), a non-competitive NMD A receptor 

antagonist, resulted in an S2/S1 ratio of 0.36±0.07, not significantly different from control 

using the unpaired t-test (n-4, fig 3.9a & 3.11).

3.5.3 Release of adenosine bv intrahippocampal kainate in the presence of AP-5 

The incorporation of ImM AP-5, a competitive NMDA antagonist, which acts at a 

different site on the NMDA receptor than MK-801, did not affect the S2/S1 ratio 

(S2/S1-0.45±0.11, n=5, fig 3.9b & 3.11).

3.5.4 The effect of TTX on intrahippocampal kainate-evoked release of adenosine

TTX at a concentration of lOpM in the perfusate reduced the S2/S1 ratio to 0.184±0.046 

(n==4). This was significantly less than the control value of 0.465 ± 0.02 (fig 3.10 & 3.11)

The effects of CNQX, MK-801, AP-5 and TTX on the release profiles for inosine, 

hypoxanthine and xanthine are shown in figs 3.12-3.14.
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Adenosine release evoked by twin pulses of ImM kainate (a) in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=4) and (b) with the 

incorporation of CNQX (4.5pM), two hours before, during and after the second pulse of 
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Adenosine release evoked by twin pulses of ImM kainate with the incorporation of (a) 

MK-801 (100pM) (n=4) and (b) AP-5 (ImM) (n=5), two hours before, during and after 

the second pulse of kainate, as indicated by the horizontal line (*p<0.05, p<0.01 versus 
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Adenosine release evoked by twin pulses of ImM kainate with the incorporation of TTX 

(lOpM), two hours before, during and after the second pulse of kainate, as indicated by the 

horizontal line (n=4) (*p<0.05 versus basal, paired t-test).
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The S2/S1 ratios for adenosine release evoked by twin pulses of ImM kainate for;

□  control (n=4)

CS3 CNQX(4.5pM)(n=4)

H  MK-801 (lOOpM) (n=4)

H  AP-5 (ImM) (n=5)

□Q TTX (lOpM) (n=4)

There was a significant reduction in the S2/S1 ratio in the presence of CNQX 4.5pM and 

TTX (lOpM) two hours before, during and after the second pulse of kainate (*p<0.05, 

**p<0.01, using ANOVA followed by Dunnett's t-test).
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Inosine release evoked by twin pulses of hnM kainate in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=4) (a) and with the 

incorporation of CNQX (4.5pM) (n=4) (b), MK"801(100pM) (n==4) (c), AP-5 (ImM) 

(n=5) (d) and TTX (lOpM) (n=4) (e), as indicated by the horizontal line (*p<0.05, 

**p<0.01, ***p<0.005 versus basal, paired t-test).
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achieved before the second pulse of kainate.

6 9

3.5.5 Release of adenosine bv intrahippocampal kainate in the presence of: a> i 

intrahippocampal GYKl 52466

GYKI 52466 ImM, dissolved in acsf, had a resultant pH of 3.5-4.0. When the pH was 

brought to 7.2-7.4, GYKI 52466 came out of solution. Intrahippocampal GYKI 52466 

(ImM, pH 3.5-4.0) caused a release of adenosine during the two hour perfusion period 

before the second pulse of kainate (fig 3.15). In the one experiment performed, acsf pH 3.5 

caused a release o f adenosine during the two hour perfusion period before the second pulse t 

of kainate (fig 3.15).

The effect of intrahippocampal GYKI 52466 ImM dissolved in DMSO 20% in acsf (pH
,

7.0-7.2) on kainate-evoked release of adenosine was examined and compared to that in the

presence of DMSO 20% alone in acsf (fig 3.16a). DMSO alone increased the basal release

of adenosine to 8.344 ± 1.182 pmol/20pl (fig 3.16b, ~~P<0.01, P<0.001, ANOVA,
.

Student's t-test, Bonferroni Multiple Comparison Test). DMSO in the presence o f GYKI 

52466 caused a rise in the basal level of adenosine release (~p<0,05, fig 3.16 b). The value 

before the application of the second pulse of kainate was significantly lower than that in the 

DMSO alone group (^p<0.01, fig 3.16b). Application of the second pulse of kainate caused 

a further increase to a peak value of 19.17 ± 4.22 pmol/20pl in the presence of GYKI 

52466 with DMSO and to 14.829 ± 5.162 pmol/20pl in the presence of DMSO (fig 3.16a).

The S2/S1 ratios were not calculated for these experiments since basal levels were not
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Adenosine release evoked by twin pulses of kainate ImM with the incorporation of 

O acsf (pH 3.4-4)

V GYKI 52466 ImM (pH 3.5-4) 

two hours before, during and after the second pulse of kainate.
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(a) Adenosine release evoked by twin pulses of kainate ImM with the incorporation of 

O DMSO 20% (n=5)(*p<0.05, ’̂ **'p<0.01 vs basal, paired t-test)

A GYKI 52466 in DMSO 20% (n=5) (*p<0.05, **'*‘p<0.005 vs basal, paired t-test)
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3.5.5 Release of adenosine bv intrahippocampal kainate in the presence of: b) systemic 

GYKI 52466

The selective non-NMDA receptor antagonist, GYKI 52466 was dissolved in Tween 80 

2%, adjusted to pH 6-7 and injected subcutaneously at a dose of 30mg/kg. Three injections 

were given at times t=-I5, t==0 and t-+ l5  minutes relative to the second pulse of kainate. 

Systemic GYKI 52466 did not significantly reduce the S2/S1 ratio for kainate-evoked 

release of adenosine (0.462 ± 0.104) relative to control (s.c. injection o f the vehicle, 

Tween 80 2%) (0.518 ± 0.086) (fig 3.17). Table 3.2 shows the individual values of S2/S1 

for each experiment, which reveals that, despite the lack of a significant overall change, 

there was a substantially smaller S2/S1 ratio in three of the GYKI 52466 experiments.

The effect of systemic injection of GYKI 52466 in Tween 80 on the profiles of 

intrahippocampal kainate-evoked release of inosine, hypoxanthine and xanthine are shown 

in figs 3.18-3.20.

Table 3.2

The effect of GYKI 52466 on kainate-evoked release of adenosine

Drug inj. 82 : SI ratio for each experiment Mean

±sem

Tween 80 0.639 0.576 0.56 0.333 0.214 0.789 0.518

±0.09

Tween 80 H- 

GYKI52466

0.259 0.2 0.69 0.66 0.231 0.73 0.462

±0.1

7 3

I

I

?

1

.1



oCN
O
£
Cl

cCD-O<
O
o

Q

8

6 » 0.0

4

2 -

KA
KA

60 200 240 280 320 360 400 440
Time After Probe Insertion (nnin)

Fig 3.17

Adenosine release evoked by twin pulses of ImM kainate (arrow) with:

O  Tween 80 2% s.c. (control) (n=6) (*p<0.05, ’̂ ''̂ *’̂ p<0,001 versus basal, paired t~

test)

^  GYKI 52466 30mg/kg in Tween 80 2% s.c. (n=6) (*p<0.05, ****p<0.001 versus

basal, paired t-test)

The injections were t=-15min, t=Omin and t=+15min relative to the second pulse of 

kainate.

Inset: The S2/S1 ratios for adenosine release evoked by twin pulses of ImM kainate for: 

Tween 80 2% (control) (n=6)

GYKI 52466 in Tween 80 2% (n=6) (n.s. to control)
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Fig 3.18

Inosine release evoked by twin pulses of ImM kainate (arrow) with;

O Tween 80 2% s.c. (control) (n=6) (^p<0.05, ’̂ '’®'p<0.01, ***p<0.005, ****p<0.001 

versus basal, paired t-test)

A GYKI 52466 30mg/kg in Tween 80 2% s.c. (n=6) (*p<0.05, ***p<0.005, 

****p<0.001 versus basal, paired t-test)

The injections were t=-15min, t=Omin and t=+15min relative to the second pulse of 

kainate.
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Fig 3.19

Hypoxanthine release evoked by twin pulses of ImM kainate (arrow) with:

O Tween 80 2% s.c. (control) (n=6) ( ’̂ p<0.05, ’̂ '®'*p<0.05, ***"^p<0.001 versus 

basal, paired t-test)

A GYKI 52466 30mg/kg in Tween 80 2% s.c. (n=6) (*p<0.05, **p<0.01, 

'*'***p<0.001 versus basal, paired t-test)

The injections were t=-15min, t=Omin and t-+15min relative to the second pulse of 

kainate.
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Fig 3.20

Xanthine release evoked by twin pulses of ImM kainate (a iTO w) with:

O Tween 80 2% s.c. (control) (n=6) (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001 

versus basal, paired t-test)

A GYKI 52466 30mg/kg in Tween 80 2% s.c. (n=6) (*p<0.05, ***p<0.005 versus 

basal, paired t-test)

The injections were t=-l5min, t=Omin and t=+15min relative to the second pulse of 

kainate.
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3.6 The effect of putative neuroprotective agents on kainate evoked release of adenosine

In the present section R-PIA, CPT, 8-PST, U50 488H and chlormethiazole were examined
.on the profiles of release of adenosine and their S2/S1 ratios are summarised in fig 3.26.

3.6.1 Release of adenosine intrahippocampal kainate in the presence of R-PIA

The adenosine A1 receptor agonist, R-PIA, at concentrations of lOpM or lOOpM did not 

appear to affect the release of adenosine reflected by the S2/S1 ratios 0.49±0.08 (n=4) and 

0.72 ± 0.08 (n-4) (fig 3.21b, fig 3.22a & fig 3.26).

3.6.2 Release of adenosine bv intrahippocampal kainate in the presence of CPT

The effect of endogenous adenosine on kainate-evoked release of adenosine was examined 

by incorporating CPT, an A1 adenosine receptor antagonist, into the perfusate two hours 

before, during and after the second pulse of kainate. CPT at concentrations of lOpM or

lOOpM, did not modulate kainate-evoked release of adenosine. The S2/S1 ratios were 

0.485 ± 0.143 (n=5) and 0.54 ± 0.09 (n=4) respectively (fig 3.22b, fig 3.23a & 3.26).

3.6.3 Release of adenosine bv intrahippocampal kainate in the presence o f 8-PST 

The non-selective adenosine receptor antagonist, 8-PST, at a concentration of ImM did 

not modulate kainate-evoked release of adenosine (fig 3.23 b), although the mean S2/S1 for 

the four experiments (0.84 ± 0.14) was higher than the control (S2/S1 -  0.562 ± 0.05, n.s. 

fig 3.26).

3.6.4 Release of adenosine by intrahippocampal kainate in the presence of U50 488H 

At a concentration of lOpM, the kappa agonist, U50 488H, produced an S2/S1 ratio of 

0.308^0.073 (n=5) which was not significantly different from control (fig 3.24a & 3.26). 

At a concentration 10 fold higher, U50 488H (lOOpM) significantly reduced the S2/S1 

ratio for kainate-evoked release of adenosine by 59% (S2/S 1=0.23±0.02, n=5, p<0.05, 

ANOVA, followed by Dunnett’s Multiple Comparison’s Test, fig 3.26), however the 

release induced by second pulse of kainate was still significantly above basal (fig 3.24b).

3.6.5 Release of adenosine bv intrahippocampal kainate in the presence of chlormethiazole 

The incorporation of chlormethiazole (0.5mM) into the perfusate did not modulate 

kainate-evoked release of adenosine (fig 3.25). The S2/S1 ratio was 0.425±0.073 (n=5)

78



which is not significantly different from control (S2/S1=0.562±0.05, n=7, ANOVA, 

followed by Dunnett’s Multiple Comparisons Test, fig 3.26).

The effects of R-PIA (lOpM), R-PIA (lOOpM), CPT (lOpM), CPT (lOOpM), 8-PST 

(ImM), U50 488H (lOpM), U50 488H (lOOpM) and chlormethiazole (SOOpM) on the 

release profiles for inosine, hypoxanthine and xanthine are shown in figs 3.27-3.32.
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Fig 3.21

Adenosine release evoked by twin pulses of ImM kainate (a) in the control {without the 

incorporation of any drugs during the second pulse of kainate) (n=7) (*p<0.05, **p<0.01 

versus basal, paired t-test) and (b) with the incorporation of R-PIA (lOpM), two hours 

before, during and after the second pulse of kainate, as indicated by the horizontal line 

(n=4) (**p<0.01 versus basal, paired t-test).
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Fig 3.22

Adenosine release evoked by twin pulses of ImM kainate with the incorporation of (a) R~ 

PI A (lOOpM) (n=4) and (b) CPT (lOpM) (n~5) two hours before, during and after the 

second pulse of kainate, as indicated by the horizontal line (*p<0.05, **p<O.Ol versus 

basal, paired t-test)
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Adenosine release evoked by twin pulses of ImM kainate with the incorporation of (a) 

CPT (lOOpM) (n=4) and (b) 8-PST (ImM) (n=4) two hours before, during and after the 

second pulse of kainate, as indicated by the horizontal line (*p<0.05, ***p<0.005 versus 

basal, paired t-test)
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Adenosine release evoked b)' twin pulses of ImM kainate with the incorporation of (a) 

U50 488H (lOpM) (n=5) and (b) U50 488H (lOOpM) (n==5) two hours before, during and 

after the second pulse of kainate, as indicated by the horizontal line (*p<0.05, '®‘*p<0.01 

versus basal, paired t-test).
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Fig3.25

Adenosine release evoked by twin pulses of ImM kainate with the incorporation of 

chlormethiazole (SOOpM), two hours before, during and after the second pulse of kainate, 

as indicated by the horizontal line (n=5) (*p<0.05, ***’*‘p<0.001 versus basal, paired t- 

test).
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Fig 3.26

The S2/S1 ratios for adenosine release evoked by twin pulses of imM kainate for: 

dZl control (n=7) iX A l R-PIA (10) (n-4) ^ 3  R-PIA (lGO|iM) (n=4)

C S S  CPT (lOpM) (n=5) □  111 CPT (lOOpM) (n=4) B 3 |  8-PST (ImM) (n=4)

m i l  U50 488H (lOfiM) USD 488H (IGOpM) chlormethiazole

(n=5) (n=5) (SGOpM) (n=S)

There was a significant reduction in the S2/S1 ratios in the presence of U50 488H 

(IGGpM) two hours before, during and after the second pulse of kainate (*p<G.GS, using 

ANOVA followed by Dunnett's t-test)
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Fig 3.27

Inosine release evoked by twin pulses of ImM kainate in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=7) (a) and with the 

incorporation of R-PIA (lOpM) (n-4) (b), R-PIA (lOOpM) (n=4) (c), CPT (lOpM) (n-5) 

(d), CPT (lOOpM) (n=4) (e) and 8-PST (ImM) (n=4) (f), as indicated by the horizontal 

line (*p<0.05, **p<0.01, ***p<0.005, ’̂ ***p<0.001 versus basal, paired t-test).
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Fig3.28

Inosine release evoked by twin pulses of ImM kainate with the incorporation of (a) U50 

488H (lOpM) (n=5), (b) U50 488H (lOOpM) (n~5) and (c) chlormethiazole (SOOpM) 

(n=5), as indicated by the horizontal line (*p<0.05, *’̂ p<0,01, *^’*‘p<0.005, ****p<0.001 

versus basal, paired t-test).
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Fig 3.29

Hypoxanthine release evoked by twin pulses of ImM kainate in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=7) (a) and with the 

incorporation of R-PIA (lOpM) (n=4) (b), R-PIA (lOOpM) (n=4) (c), CPT (lOpM) (n=5) 

(d), CPT (lOOpM) (n-4) (e) and 8-PST (ImM) (n-4) (f), as indicated by the horizontal 

line (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001 versus basal, paired t-test).
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Fig 3.30

Hypoxanthine release evoked by twin pulses of ImM kainate with the incorporation of 

U50 488H (lOpM) (n=5) (a), U50 488H (lOOpM) (n=5) (b) and chlormethiazole (500pM) 

(n=5), as indicated by the horizontal line (*p<0.05, *'^p<0.01, ***p<0.005 versus basal, 

paired t-test).
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Fig 3.31

Xanthine release evoked by twin pulses of ImM kainate in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=7) (a) and with the 

incorporation of R-PIA (lOpM) (n=4) (b), R-PIA (100pM) (n=4) (c), CPT (lOpM) (n=5) 

(d), CPT (lOOpM) (n=4) (e) and 8-PST (ImM) (n=4) (f), as indicated by the horizontal 

line (*p<0.05, **p<0.01, ***p<0.005, ****p<0.001 versus basal, paired t-test).
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Fig 3.32

Xanthine release evoked by twin pulses of ImM kainate with the incorporation of U50 

488H (lOpM) (n=5) (a), U50 488H (lOOpM) (n=5) (b) and chlormethiazole (SOOpM) 

(n-5), as indicated by the horizontal line (*p<0.05, ^**'p<0.01, ***p<0.005, ’̂ *‘̂ ^p<0.001).
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3.6.6 Intrahippocampal kainate-evoked release of adenosine and its metabolites after 

systemic injection of R-PIA

The s.c. injection of R-PIA (0.25mg/kg) in 43% methanol one hour before the second 

pulse o f kainate did not affect the release of adenosine evoked by ImM of 

intrahippocampal kainate (fig. 3.33a & b). The S2/S1 value was 0.41 ± 0.08 (n=4) which 

was not significantly different when compared to the control: s.c. injection of methanol 

43% at t-60 minutes relative to the second pulse which gave an S2/S1 value of 0.412 ± 

0.146 (n.s., n=4, fig 3.33c).

The release profiles for inosine, hypoxanthine and xanthine evoked by intrahippocampal 

kainate after s.c. injection of R-PIA are shown in fig 3.34-3.36.
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Fig 3.33

Adenosine release evoked by twin pulses of intrahippocampal kainate (ImM) with s.c. inj. 

of (a) methanol 43% and (b) R-PÎA 250pg/kg in methanol 43% one hour before the 

second pulse of kainate (*p<0.05, ^*p<0.01 versus basal, paired t-test)
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Fig 3.33 (c)
The S2/S1 ratios for adenosine release evoked by twin pulses of ImM kainate for:

methanol 43%

IS2S9 R-PIA 250pg/kg in methanol 43%
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Fig 3.34

Inosine release evoked by twin pulses of intrahippocampal kainate (ImM) with 

subcutaneous injection of (a) methanol 43% and (b) R-PIA 250pg/kg in methanol 43% one 

hour before the second pulse of kainate (*p<0.05, ***p<0.005 versus basal, paired t-test).
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Fig 3.35

Hypoxanthine release evoked by twin pulses of intrahippocampal kainate (ImM) with 

subcutaneous injection of (a) methanol 43% and (b) R-PIA 250pg/kg in methanol 43% one 

hour before the second pulse of kainate ( ’̂ p<0.05, **p<0.01 versus basal, paired t-test).
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Fig 3.36

Xanthine release evoked by twin pulses of intrahippocampal kainate (ImM) with 

subcutaneous injection of (a) methanol 43% and (b) R-PIA 250pg/kg in methanol 43% one 

hour before the second pulse of kainate (*p<0.05 versus basal, paired t-test).
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3.7 Systemic kainate-evoked release of adenosine in the presence of systemic injection of 

R-PIA

The release induced by kainate lOmg/kg with methanol 43% injected sub-cutaneously (the 

control for examining systemic R-PIA with systemic kainate) produced a bell-shaped 

release of adenosine. The basal level was 2.703±0.226 and the dialysate level reached 

3.5073:0.421 (*p<0.05, paired t-test, n=6, fig 3.37). Adenosine release returned to basal 

level within 100 min after the injections.

The s.c. injection of kainate lOmg/kg together with R-PIA (0.25mg/kg) in 43% methanol 

produced a bell-shaped release of adenosine. The release was increased from a basal level 

of 2.33 ± 0.26 to 4.40 ± 0.55 pmol/20pl (*p<0.05, paired t-test, n=4, fig 3.37), and 

returned to basal level within 140 min after the injections (fig 3.37).

The release of adenosine elicited by systemic kainate and R-PIA is significantly higher 60 

min after injections than the release at that time point in the control experiments (kainate 

and methanol 43% s.c.) (^p<0.05, ANOVA, followed by unpaired t-test, Bonferroni 

Multiple Comparisons Test, fig 3.37). Initially, this may be interpreted as an increase in 

adenosine release induced by systemic R-PIA. However, the release 60 min after injection 

of kainate alone is significantly higher than the release at that time point in the control 

experiments (kainate and methanol 43% s.c.) (^p<0.001, ANOVA, followed by unpaired 

t-test, Bonferroni Multiple Comparisons Test) but is not significantly different from the
%

release at that time point in the systemic R-PIA and kainate experiments (fig 3.37). The 

total adenosine release evoked above basal by s.c. kainate lOmg/kg alone was 10.406 ±

1.907 (n=6), by kainate and methanol 43% was 1.494 ± 0.395 (n=6) (****p-0.001,

9 8

;

unpaired t-test versus kainate alone) and by kainate and R-PIA in methanol 43% was 7.84
■

± 2.96 (n=4) (*p<0.05, unpaired t-test versus kainate and methanol, fig 3.37 inset). It 

therefore appears that methanol reduced kainate-evoked release of adenosine and this 

effect is reversed by R-PIA.

Dialysate inosine levels were elevated significantly above basal after s.c. injection of 

kainate and R-PIA in methanol (fig 3.38) but not after s.c. injection of kainate and 

methanol. Dialysate hypoxanthine levels were elevated above basal during both conditions

.



(*p<0.05, **p<0.01,***p<0.005, ***"^p<0.001, paired t-test versus basal, fig 3.39), 

however the elevation after s.c. injection of kainate and R-PIA in methanol was 

significantly higher than that seen after s.c. injection of kainate and methanol (^p<0.05, 

ANOVA, followed by unpaired t-test, BonfeiToni Multiple Comparisons Test, fig 3.39). 

Dialysate xanthine levels were not significantly higher than basal in either conditions (fig 

3.40).
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The release profiles for adenosine'evoked by s.c. injection of: 

o kainic acid lOmg/kg (n=6)

O kainic acid lOmg/kg & methanol (43%) (n=6). The level of adenosine reached 

significance 40 min after injection (*p<0.05, paired t-test) and returned to basal level 

H i t  after the injection.

A kainic acid lOmg/kg & R-PIA 250|iig/kg in methanol (43%) (n-4). The level o f 

adenosine reached significance Ihr after the injection (*p<0.05, paired t-test) and 

returned to basal 2hrs 20min after the injections.

The adenosine release evoked by kainate & methanol s.c. was significantly lower Ihr after 

the injection than kainate & R-PIA in methanol s.c. (^p<0.05) and than kainate alone 

(^p<0.001) (ANOVA, followed by Bonferroni Multiple Comparisons Test).

Inset: The total adenosine release evoked above basal by kainate & methanol s.c. was 

significantly lower than that of kainate and R-PIA in methanol (~p<0.05, unpaired t- 

test).
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The release profiles for inosine evoked by s.c. injection of:

O  kainic acid lOmg/kg & methanol (43%) (n=6). The level of inosine did not 

significantly increase above basal 

& kainic acid lOmg/kg & R-PIA 250pg/kg in methanol (43%) (n=4). The level of 

inosine reached significance Ihr 20min after injection (*p<0.05, **p<0.01, paired t-test). 

Inosine release evoked by kainate & methanol s.c. was not significantly lower than that of 

kainate & R-PIA in methanol s.c. at any time point (ANOVA, followed by Bonferroni 

Multiple Comparisons Test),
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Fig 3.39

The release profiles for hypoxanthine evoked by s.c. injection of;

O kainic acid lOmg/kg & methanol (43%) (n=6). The level of hypoxanthine reached 

significance 20 min after injection (*p<0.05, paired t-test versus basai).

A  kainic acid lOmg/kg & R-PIA 250pg/kg in methanol (43%) (n=4). The level of 

hypoxanthine reached significance 40min after injection (**p<O.Ol, ***p<0.005, 

****p<0.001, paired t-test versus basal).

Hypoxanthine release evoked by kainate & methanol s.c. was significantly lower Ihr after 

the injection than kainate & R-PIA in methanol s.c. (^p<0.05, ANOVA, followed by 

Bonferroni Multiple Comparisons Test).
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The release profiles for xantliine evoked by s.c. injection of:

O  kainic acid lOmg/kg & methanol (43%) (n=6).

A kainic acid lOmg/kg & R-PIA 250pg/kg in methanol (43%) (n=4). 

The level of xanthine did not reach significance in either conditions .
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3.8 The effect of free radical scavengers/antioxidants on intrahippocampal kainate-evoked 

release of adenosine

In the present section the effects o f ascorbic acid, reduced glutathione and oxypurinol were 

examined on intrahippocampal kainate-evoked release of adenosine and the S2/SÎ ratios 

are summarised in fig 3.44.

3.8.1 Release of adenosine in the presence of ascorbic acid

At a concentration of lOmM in the dialysis probe (fig 3.41b), ascorbic acid, an endogenous 

reducing agent, reduced the S2/S1 ratio for kainate-evoked release of adenosine to 

0.31±0.05 (fig. 3.44, n=4, significantly lower than control, ANOVA followed by Dunnett’s 

Multiple Comparisons Test, *p<0.05), although the release evoked by the second pulse of 

kainate was still significantly above basal (fig 3.41b).

3.8.2 Release of adenosine in the presence of glutathione

The reducing agent, glutathione (ImM, fig 3.42a) did not reduce kainate-evoked release of 

adenosine, the S2/S1 value being 0.395±0.05 (n=5, fig 3.44). At a concentration of lOmM, 

glutathione (fig 3.42b), reduced the S2/S1 value from 0.466±0.035 (control, n=5, fig 3.44) 

to 0.273=0.06 (n=4, **p<0.01, fig 3.44).

3.8.3 Release of adenosine in the presence of oxypurinol

The xanthine oxidase inhibitor, oxypurinol, reduced the S2/S1 ratio to 0.153=0.04 at a 

concentration of ImM (fig 3.43b) (n-4, **p<0.01, ANOVA followed by Dunnett’s 

Multiple Comparisons Test, fig 3.44) but not at a concentration of O.lmM (fig 3.43a)

(S2/S 1=0.4853:0.045, n.s. to control, fig 3.44).

The effect of glutathione (ImM) and glutathione (lOmM) on the release profiles for 

inosine, hypoxanthine and xanthine are shown in figs 3.45-3.47.

The effects of ascorbic acid and oxypurinol on inosine, hypoxantliine and xanthine were 

not examined. During HPLC analysis in the presence of these drugs there was a large 

solvent front which may have interfered with the peak size and therefore quantification of 

these metabolites.
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Fig 3.41

Adenosine release evoked by twin pulses of ImM kainate (a) in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=5) and (b) with the 

incorporation of ascorbic acid (lOmM), two hours before, during and after the second 

pulse of kainate, as indicated by the horizontal line (n=4) (*p<0.05, **p<0,01, 

***p<0.005, ****p<0.001 versus basal, paired t-test).
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Adenosine release evoked by twin pulses of ImM kainate with the incorporation of (a) 

glutathione (ImM) (n=5) and (b) glutathione lOmM (n=4) two hours before, during and 

after the second pulse of kainate, as indicated by the horizontal line (*p<0.05, ’̂ *p<0.01 

versus basal, paired t-test).
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Fig3.43

Adenosine release evoked by twin pulses of ImM kainate with the incorporation of (a) 

oxypurinol (O.lmM) (n=4) and (b) oxypurinol (ImM) (n=4) two hours before, during and 

after the second pulse of kainate, as indicated by the horizontal line (*p<0.05 versus basal, 

paired t-test).
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The S2/S1 ratios for adenosine release evoked by twin pulses of ImM kainate for;

c m  control (n=5)

tX X I ascorbic acid (lOmM) (n=4)

I—"'..I glutathione (ImM) (n=5)

L W I glutathione (lOmM) (n=4)

O  n oxypurinol (O.lmM) (n=4)

B BQ  oxypurinol (ImM) (n=4)

There was a significant reduction in the S2/S1 ratios in the presence of ascorbic acid 

(lOmM), glutathione (lOmM) and oxypurinol (ImM) two hours before, during and after 

the second pulse of kainate (*p<0.05, **p<0.01, using ANOVA followed by Dunnett's t- 

test).
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Fig 3.45

Inosine release evoked by twin pulses of ImM kainate (a) in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n=5) and with the 

incorporation of (b) glutathione (ImM) (n=5) and (c) glutathione (lOmM) (n=4), as 

indicated by the horizontal line (*p<0.05, **p<0.01, ”'**p<0.005 versus basal, paired t-

test).
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Fig 3.46

Hypoxanthine release evoked by twin pulses of ImM kainate (a) in the control (without the 

incorporation of any drugs during the second pulse of kainate) (n-5) and with the 

incorporation of (b) glutathione (ImM) (n=5) and (c) glutathione (lOmM) (n=4), as 

indicated by the horizontal line (*p<0.05, **p<0.01, *^*p<0.005, ****p<0.001 versus 

basal, paired t-test).
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Fig 3.47

Xanthine release evoked by twin pulses of ImM kainate (a) in the control (without the 

incorporation of any drugs during the second pulse o f kainate) (n==5) and with the 

incorporation of (b) glutathione (ImM) (n=5)and (c) glutatliione (lOmM) (n=4), as 

indicated by the horizontal line (*p<0.05, ’̂ ^p<0.01, '̂ ’̂ *p<0.005 versus basal, paired t- 

test).
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3.8.4 Intrahippocampal kainate-evoked release of adenosine and its metabolites after 

systemic injection of ascorbic acid

If injected sub-cutaneously, one hour before the second pulse of intrahippocampal kainic 

acid (ImM), ascorbate (50mg/kg) did not reduce adenosine release when compared to the 

experiments with injection of saline (control, fig 3.48). The S2/SI values were 0.48 ± 0.14 

and 0.83 ± 0.12, respectively (n.s., unpaired t-test, fig 3.48 inset).

The profiles of release of inosine, hypoxanthine and xanthine are shown in figs 3.49-3.41.
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Fig 3.48 Adenosine release evoked by twin pulses of kainate ImM with subcutaneous 

injection one hour before the second pulse of kainate of 

O saline (*p<0.05, **p<0.01 versus basal, paired t-test)

V ascorbic acid 50mg/kg in saline (*p<0.05, ’*'*p<0.01 versus basal, paired t-test) 

Inset: The S2/S1 ratios of adenosine release evoked by twin pulses of kainate ImM with 

L  I saline (control) s.c.

R \ l  ascorbic acid 50mg/kg in saline s.c. (n.s. to control)
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Fig 3.49

Inosine release evoked by twin pulses of kainate ImM with subcutaneous injection one 

hour before the second pulse of kainate of 

O saline

V ascorbic acid SOmg/kg in saline (’*'p<0.05, ***p<0.005 versus basal, paired t-test)
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Fig 3.50

Hypoxanthine release evoked by twin pulses of kainate ImM with subcutaneous injection 

one hour before the second pulse of kainate of

O saline (*p<0.05, ***p<0.005 versus basal, paired t-test)

W ascorbic acid 50mg/kg in saline (*p<0.05, **p<O.Ol versus basal, paired t-test)

1 1 5



40

o
E
CL

CD

20  -_c
cC?

X

Q)

O
O
(5

160 200 240 280 320 360 400 440

SI S2
Time After Probe Insertion (m in)

Fig 3.51

Xanthine release evoked by twin pulses of kainate ImM with subcutaneous injection one 

hour before the second pulse of kainate of

O saline (*p<0.05 versus basal, paired t-test)

V ascorbic acid 50mg/kg in saline ( ’̂ *p<0.01, '^*'^p<0.005 versus basal, paired t-test)
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3.9 Release of adenosine and its metabolites evoked bv systemic kainate with and without 

systemic ascorbic acid

Kainate lOmg/kg i.p., injected at 160 min (following the collection o f that sample) after 

probe insertion, induced adenosine release which reached significance within 40 minutes of 

injection (fig 3.52). The average of the three basal adenosine levels before kainate injection 

was 2.157 ± 0.431 pmol/20pl and kainate-evoked release reached 3.364 ± 0.604 

pmol/20pl during the second sample after the injection (*p<0.05 versus basal before 

injection, paired t-test). During the next time point, the mean value of adenosine release 

further increased, although this was not significantly above basal level, using paired t-test. 

The profile o f release was bell-shaped, having reached basal level again 2 hrs after the 

injection (fig 3.52).

Injection of kainate lOmg/kg i.p. and ascorbic acid 50mg/kg i.p. showed a bell-shaped 

increase in the release of adenosine, which reached significance above basal within Ihr 

after injections (increase fi-om 2.56 ± 0.09 pmol/20pl to 4,484 ± 0.796 pmol/20pl, 

*p<0.05, two-tailed paired t-test, fig 3.52). The adenosine release evoked by kainate 

lOmg/kg i.p. was not reduced when co-administered with ascorbic acid 50mg/kg i.p. 

(ANOVA, followed by Bonferroni Multiple Comparisons Test fig 3.52).

The total amount of adenosine release above basal is shown in the inset in fig 3.52. 

Ascorbic acid i.p. did not significantly affect the total amount of adenosine release after 

kainate i.p.

The release profiles for inosine, hypoxanthine and xanthine after kainate i.p. with and 

without ascorbic acid i.p. are shown in figs 3.53-3.55. The total amount released above 

basal was not calculated for these metabolites since their release had not returned to basal 

level before the termination of some of the experiments.
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Fig 3.52

The release profiles for adenosine evoked by i.p. injection of:

A kainic acid lOmg/kg (n=4). The level of adenosine reached significance 40 min after 

injection (*p<0.05, paired t-test) and returned to basal level 3 hrs after the injection.

o  kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of adenosine 

reached significance Ihr after injections (^p<0.05, paired t-test) and returned to basal level 

2hrs after the injections.

The adenosine release evoked by kainate lOmg/kg i.p. was not reduced by ascorbic acid 

50mg/kg i.p. (ANOVA, followed by Bonferroni Multiple Comparisons Test).

Inset: The total amount of adenosine release above basal evoked by:

 I kainic acid lOmg/kg (n=4)

kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6)
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Fig 3.53

The release profiles for inosine evoked by i.p. injection of;

A kainic acid lOmg/kg (n=4), The level of inosine reached significance Ihr after 

injection (*p<0.05, paired t-test) and did not return to basal level within the time-scale of 

the experiment.

O kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of inosine reached 

significance 40min after the injection C^p<0.05, paired t-test) and approached basal level 

2hrs 40min after the injections. i
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Fig 3.54

The release profiles for hypoxanthine evoked by i.p. injection of:

A kainic acid lOmg/kg (n=4). The level of hypoxanthine did not reach significance 

above basal (paired t-test) and the mean values did not return to basal level within the 

time-scale of the experiment.

O kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of hypoxanthine 

reached significance 40min after the injection (*p<0.05, paired t-test) and approached basal 

level 2hrs 40min after the injections.
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Fig 3.55

The release profiles for xanthine evoked by i.p. injection of;

A kainic acid lOmg/kg (n=4). The level of xanthine reached significance 2hrs after 

injection (*p<0.05, paired t-test) and did not return to basal level within the time-scale of 

the experiment.

O kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of xanthine reached 

significance Ihr 40min after the injection (*p<0.05, paired t-test) and returned to basal 

level 2hrs 40min after the injection.
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Subcutaneous injection of kainate lOmg/kg had a similar temporal profile to that o f the i.p. 

injection but the peak mean value was higher (fig 3.56). Adenosine release was increased 

from 2.973±0.149 to 6.323±1.187 (*p<0.05, paired t-test, fig 3,56). Although the mean 

value of the adenosine release increased further, it was not found to be significantly above 

the basal level according to the paired t-test.

Injection o f kainate lOmg/kg s.c. and ascorbic acid 50mg/kg s.c. also showed a bell-shaped 

release of adenosine which did not quite reach significance above basal (fig 3.56, paired t- 

test). The adenosine release evoked by kainate lOmg/kg s.c. was not reduced when co

administered with ascorbic acid 50mg/kg i.p. (ANOVA, followed by Bonferroni Multiple 

Comparisons Test fig 3.56). The total amount of adenosine release above basal is shown in 

the inset in fig 3.56. Ascorbic acid s.c. did not significantly affect the total amount o f 

adenosine release after kainate s.c.

The release profiles for inosine, hypoxanthine and xanthine after kainate s.c. with and 

without ascorbic acid s.c. are shown in figs 3.57-3.59. The total amount released above 

basal was not calculated for these metabolites since their release had not returned to basal 

level before the termination of some of the experiments.
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Fig 3.56

The release profiles for adenosine evoked by s.c. injection of:

A kainic acid lOmg/kg (n=6). The level of adenosine reached significance 40 min after 

injection (’*’p<0.05, paired t-test) and returned to basal level Ihr 40min after the injection.

kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of adenosine did not 

quite reach significance (paired t-test) and the mean values returned to basal level 2hrs 

after the injections.

The adenosine release evoked by kainate lOmg/kg i.p. was not reduced by ascorbic acid 

50mg/kg i.p. (ANOVA, followed by Bonferroni Multiple Comparisons Test).

Inset: The total amount of adenosine release above basal evoked by: 

kainic acid lOmg/kg (n=6)

kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6) (n.s., unpaired t-test).
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Fig 3.57

The release profiles for inosine evoked by s.c. injection of:

A  kainic acid lOmg/kg (n=6). The level of inosine reached significance Ihr 40 min 

after injection (*p<0.05, paired t-test) and did not return to basal level within the time- 

scale of the experiment.

O  kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of inosine reached 

significance Ihr after the injection (*p<0.05, paired t-test) and approached basal level 2hrs 

40min after the injections.
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Fig 3.58

The release profiles for hypoxanthine evoked by s.c. injection of:

A kainic acid lOmg/kg (n=6). The level of hypoxanthine reached significance 40min 

after injection (*p<0.05, paired t-test) and did not return to basal level within the time- 

scale of the experiment.

© kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level o f hypoxanthine 

reached significance Ihr after the injection (*p<0.05, paired t-test) and did not return to 

basal level within the time-scale of the experiment.
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Fig 3.59

The release profiles for xanthine evoked by s.c. injection of:

^  kainic acid lOmg/kg (n=6). The level of xanthine reached significance Ihr 20 min 

afl:er injection (*p<0.05, **p<0.01, paired t-test) and did not return to basal level within 

the time-scale of the experiment.

Q kainic acid lOmg/kg & ascorbic acid 50mg/kg (n=6). The level of xanthine reached 

significance Ihr after the injection (*p<0.05, paired t-test) and approached basal level 2hrs 

after the injections.
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3.10 Intrahippocampal kainate-evoked release of glutamate and aspartate 

Dialysate glutamate and aspartate levels after a 5 min pulse o f ImM kainate were 

significantly increased above basal and are expressed as a percentage of basal (fig 3,60). 

The basal levels o f glutamate and aspartate were 11.327 ±2 . 16  (pmol/20pl) and 4.00 ± 

0.89 (pmol/20pl) respectively. Kainic acid caused a bell-shaped release profile of both 

excitatory amino acids, peaking within one hour of incorporation of kainate into the 

perfiisate. Glutamate and aspartate reached significance within the first collection during 

which the kainate would have been exposed to the tissue for 4 min (taking into account the 

16 min lag-time). The significant elevation was retained for glutamate throughout the 

profile, even as the level approached basal, lOOmin after the kainate pulse. The peak 

glutamate value were 165.61 ± 26.73% of basal (*p<0.05) and 161.21 ± 17.55% of basal 

(***p<0.005) during samples collected at 220min and 240min respectively (fig 3.60). The 

peak aspartate values were 172.75 ± 25.02% of basal (*p<0.05) and 185.69 ± 57.25% of 

basal (n.s.) during samples collected at 200min and 220min respectively (fig 3.60).

1 2 7



":f;î

I

240 -

2 2 0  -

200  -

aJÛ
80 -

160 -'o<
oc
£
<

120

KA

80

2602402201801 60 200

T im e  A fte r  P r o b e  I n s e r t i o n  ( m i n )

Fig 3.60

The release profiles for glutamate (open circles ) and aspartate (filled circles) evoked by a 

5 min pulse of kainate ImM at the beginning of the sample collected at 180min after probe 

insertion (shown by the arrow) (n=18). Glutamate and aspartate levels, expressed as % of 

basal, peaked during the third sample following stimulation. Paired t-test was used 

(*p<0.05, **p<0.005). The basal level is indicated by the horizontal line.
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3.11 Histology of the hippocampus after microdialvsis with and without intrahippocampal 

kainate exposure

The hippocampi of two rats was examined histologically seven days after exposure to 

intrahippocampal kainate (ImM). There was gliosis and distinct disruption of the 

hippocampal cells in the CA3 region of the hippocampus in both rats at the location of the 

probe through which the kainate was perfused (the result o f one of the two rats is shown in 

fig 3.61, right hand side). Less gliosis and less distinct cell loss was observed as the 

distance from the location o f the probe increased up t® 1.25mm anterior. The CAl layer in 

the kainate-exposed side showed a slightly thinner cell layer than the contralateral control 

even in the vicinity of the probe (fig 3.61).

Insertion of the dialysis probe (fig 3.61, left hand-side) alone without drug perfusion 

caused a small break in the CAl cell layer and slight gliosis which appeared to be restricted 

to within 0.35mm of the probe tract.
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Fig 3.61

Histological examination of the hippocampus seven days after probe insertion and 

application of a 5 min pulse of kainate ImM (to right hand side only).
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probe.

■ë
3.12 Assessment of [^H] kainate efflux from the microdialvsis probe 

The percentage efflux of kainate from the probe to the tissue was examined as well as the 

extent of its diffusion through the hippocampus. At the plane o f the probe position (AP 

5.6mm) approximately 65-70% of the kainate was located in the hippocampus (fig 3.62).

The rest of the tritium appeared at this plane to diffuse to the cortex. Slices that were more 

anterior or posterior relative to the probe position, showed approximately 55% of the [^H] 

kainate in the hippocampus and approximately 45% in the cortical areas.

Using the standard concentration curve (fig 2.8) the amount of radioactivity was calculated 

in each slice (fig 3.63). From the amount of radioactivity perfiised through the probe, the 

percentage of radioactivity which crossed the probe membrane can be calculated. The 

amount o f radioactivity perfused through the probe was approximately IpCi. 

Approximately 598nCi reached the tissue therefore about 60% is crossing the probe 

membrane.

Estimation of administered amounts of kainate

In order to obtain an estimation of the amount of kainate that had entered the hippocampus

during the perfusion of kainic acid, the following calculation was performed. The total

amount of kainic acid reaching the via the dialysis membrane at a flow rate of 2pl/min over

5 min, at a concentration of lOOOpM, is 6.0nmol (2 x 5 x 1000 x 0.60). The last figure
■0.60 refers to the assumption that 60% of the kainate present in the probe enters the tissue.

The figure is the estimated value of the percentage o f radioactive kainate which crossed the
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Fig 3.62

The percentage radioactivity ([^HJkainate) found within the hippocampus of each coronal 

brain section (20pm). The anteriorposterior (AP) coordinates were estimated using 

Paxinos & Watson (1986).
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Fig 3 .63

The amount of radioactivity ([^Hjkainate) found within (solid bar) and outwith (open bar) 

the hippocampus of each coronal brain section (20pm). The anteriorposterior (AP) 

coordinates were estimated using Paxinos & Watson (1986).
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4.0 DISCUSSION

4.1 Microdialvsis

Microdialysis is a convenient method for monitoring chemical events in the extracellular 

space within the CNS. The advantages of microdialysis over other in vivo techniques such 

as push-pull cannulae and cortical cups are that all brain regions can be examined and there 

is minimal tissue trauma (Benveniste, 1989). A semi-permeable membrane allows the 

diffusion of substances into and out of the microdialysis probe. The molecular cut off of 

the semi-permeable membrane permits the passage of small molecules including most 

peptides and drugs but excludes proteins and enzymes. This poses a limitation to the 

method to the collection of small molecules only, but the advantage is that there is no need 

for deproteinisation of the dialysate before HPLC analysis and potentially no enzymatic 

degradation of the compounds in the dialysate (for example, by adenosine deaminase). 

Microdialysis allows the local application of compounds by incorporating them into the 

perfusate, a process referred to as reverse dialysis. The main disadvantage is that the 

percentage o f compound which has diffused through the membrane of the probe into the 

brain, and therefore the amount of compound that reaches the ECF, may not be known 

with certainty in each case.

Using the relative recovery of each probe, calculated in vitro, the interstitial concentration 

may be estimated from the concentration of a substance in the dialysate. However, the in

vitro relative recovery does not take into account the mass transport characteristics o f a

complex medium like the brain. Work carried out by Alexander et al (1988) shows that the 

in vitro relative recovery of the probe does not agree with the relative recovery seen in the 

in vivo experiments. They examined the relative recovery in vivo by using tritiated water. 

Tritiated water apparently, at equlibrium, has the same brain extracellular concentration as 

the plasma concentration (Alexander et al, 1988). The in vivo relative recovery for tritiated 

water was calculated by the ratio of the concentration in the brain dialysate to the 

concentration in the plasma. The authors explain the lack of agreement between the in 

vitro and in vivo relative recoveries by portions of the dialysis membrane being blocked by 

tissue which hinders the diffusion of molecules from the ECF into the probe. In contrast to
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. .the in vitro experiments, it is unlikely that the entire surface of the dialysis membrane is in 

contact with freely diffusible fluid in in vivo experiments. As a result, the in vitro 

calibration of the dialysis probe is not a sufficient correction factor for compounds 

collected in vivo. It is for this reason that, in the present study, the compounds are 

recorded in amounts in pmol in each dialysate. However, the estimated basal interstitial 

concentration quoted in table 3.1 in the present study is calculated using the in vitro 

relative recovery to allow a comparison with other studies which have done likewise. The 

basal interstitial concentration of adenosine estimated in the present study in the 

anaesthetised rat hippocampus is O.SpM and is consistent with previous findings of around 

IpM  (Zetterstrom et al, 1982, Chen et al, 1992).

Techniques for validating a suitable dialysis probe calibration for in vivo use are currently 

being introduced. The theory that the net increase of a substance in the microdialysate 

correlates linearly to the concentration of that substance added to the perfusate is called 

the equilibration calibration (Lonroth et al, 1987). The point of no net flux is equal to the 

interstitial concentration and can be calculated by linear regression.

Immediately after probe insertion into the tissue the efflux of endogenous substances 

collected in the dialysate was high and declined to a steady level within one hour. This 

probably represented tissue trauma and is in agreement with Zetterstrom et al (1982),

Ballerin et al (1991), Chen et al (1992) and Pazzagli et al (1993).

An investigation into the extent of tissue damage caused by probe insertion was carried out 

in the present study. Two rats were allowed to recover after probes were inserted 

bilaterally for 3-4hrs under Hypnovel and Hypnorm and halothane, if necessary. Seven 

days later, the brains were dissected out and examined histologically. The left hand probes 

were perfused with acsf throughout the experiments and, in the two experiments 

performed, slight gliosis was seen along the probe tracts. Gliosis around the probe may 

introduce an extra source o f adenosine since pools of adenosine exist in glia. Adenosine 

released into the ECF from this extra source would cause an overestimation of 

extracellular adenosine levels which would occur depending on the extent of gliosis. Since

I
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gliosis is evident approximately 24-48hrs after trauma (Jorgensen et al, 1993), only 

experiments over this time-scale would be of concern.

There was a slight break observed in the CAl cell layer which was presumably where the 

probe entered the hippocampus.

4.2 Potassium-evoked release of adenosine and its metabolites

The literature strongly suggests that depolarising agents release adenosine. Indeed, 

potassium, incorporated into the perfusion medium, increased the extracellular 

concentrations o f adenosine, inosine and hypoxanthine in the rat hippocampus in vivo, 

detected by HPLC. The sequential release of purines (adenosine followed by inosine and 

hypoxanthine) maps the metabolic pathway of adenosine and suggests an important role of 

adenosine deaminase in the metabolism of adenosine in the CNS. The importance of 

deamination in regulating extracellular adenosine concentrations has been demonstrated by 

Pazzagli et al (1993) who showed a large increase in adenosine efflux after inhibition of 

adenosine deaminase in the rat striatum in vivo.

The effectiveness of potassium to release adenosine was not altered by CNQX at the same 

concentration (4.5pM) that abolished 92% of the kainate-evoked adenosine release. 

However at a 10-fold higher concentration (45 pM), CNQX abolished the potassium- 

evoked release. CNQX was found to inhibit [^H] glycine binding to the glycine binding site 

of the NMD A receptor (Kessler et al, 1989). The concentration required for this response 

was approximately 7 fold higher (IC50 4.8pM) than that required to inhibit [3H] kainate 

binding to kainate receptors (IC50 0.71 pM). Given that a small percentage of CNQX in 

the perfusate will reach the tissue from the probe (maybe approximately &0%), in the 

present study at a concentration of 4.5pM in the perfusate, CNQX is likely to act on 

kainate/AMPA receptors and, at 45 pM, CNQX is likely to act on NMDA receptors. 

NMDA receptor antagonists have been shown to reduce potassium-evoked release of 

adenosine by in vivo microdialysis by 80% from the rat hippocampus (Chen et al (1992), 

by 52% from the striatum of young rats (Pazzagli et al, 1995), by 85% from the striatum 

of the adult rat (Pazzagli et al, 1993) and to a lesser extent (by 30%) in vitro from rat 

cortical slices (Hoehn & White, 1990a). Similar competitive NMDA receptor antagonists
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(AP-5 or D-AP7) were used in these studies at similar concentrations to the present study 

(ImM). The slight variation in the percentage decreased amongst the studies may be due to 

the variation in preparation. The in vivo studies appear to be more affected by the NMDA 

antagonists than the in vitro study by Hoehn & White (1990a) and this may be explained 

by a higher level of release o f excitatory amino acids by potassium in vivo than in vitro, 

possibly a result of different extents o f calcium-dependent and -independent release of 

excitatory amino acids.

The surprising, yet substantial, evidence for NMDA receptor-mediated potassium-evoked 

release of adenosine may be explained by the prior release of excitatory amino acids. This 

hypothesis is feasible since Burke & Nadler (1988) have shown that potassium 

depolarisation can induce excitatory amino acid release from hippocampal slices and in turn 

it has been shown that excitatory amino acids increase adenosine release from the cortex 

(Hoehn & White, 1990a) and from the hippocampus (Pedata et al, 1991; Chen et al, 

1992).

The lack o f the ability o f non-NMDA antagonists to affect potassium-evoked adenosine

release (shown by 4.5pM CNQX in the present study) is supported by the unaffected

potassium-evoked release of adenosine by DNQX in rat cortical slices (Hoehn & White,

1990a). Explanations for this result include the release o f excitatory amino acids in closer

vicinity of NMDA receptors than non-NMDA receptors. Alternatively, excitatory amino

acids released by potassium may be ones which have higher affinity at the NMDA receptor

than at the non-NMDA receptors, such as homocysteate (Do et al, 1986), N-

acetylaspartylglutamate (Zollinger et al, 1988) or quinolinate (Stone & Connick, 1985).

The final explanation is that activation of non-NMDA receptors does not mediate

potassium-evoked adenosine release although the present study has clearly indicated the

ability of non-NMDA receptor stimulation to release adenosine.

Twenty-eight percent of the potassium-evoked release of adenosine was not reduced by 
.CNQX 45 pM, implying other mechanism(s) may be involved. An increase in intracellular 

metabolic activity as a result of cell depolarisation may lead to intracellular adenosine 

accumulation and its subsequent efflux. Alternatively, depolarisation-induced calcium-
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dependent vesicular release of ATP may occur and be followed by its extracellular 

degradation to adenosine.

4.3 Systemic kainate-evoked adenosine release

MacGregor et al (1993) showed that systemically administered kainate induced 

neurotoxicity which was prevented by purines. The present study was therefore undertaken 

to determine whether systemic kainate, at a dose that causes neuronal damage, induces 

purine release and whether this purine release is to the extent required to exert 

neuroprotection.

At the same dose that produced neurotoxicity, systemic kainate (lOmg/kg, injected both

i.p. and s.c.) produced a significant increase in release of adenosine. The release of 

adenosine occurred within the first two hours after administration of systemic kainate and 

reached a maximum of 1.4pM (i.p.) and 2pM (s.c.) (concentration in ECF, estimated by

using the relative recovery of the probe for adenosine). The next question to be answered
.is whether adenosine release evoked by kainate is sufficient to exert neuroprotection 

against kainate-induced damage. This answer will be approached in section 4.8.

Within the first two hours after systemic administration, kainate has been shown to cause 

behavioural effects characterised by wet dog shakes and salivation (Worms et at, 1981; 

MacGregor, 1995). The systemically-administered serotonin precursor, 5-HTP (5- 

hydroxytryptophan), has been shown to cause wet dog shakes and kainate-induced wet 

dog shakes have been antagonised by serotonin blockers (Worms et al, 1981). Worms et al 

(1981) suggested that kainate induces wet dog shakes via an increased serotonergic 

function. The relevance of this point to the present work is that an increased extracellular 

adenosine and an increased serotonergic function may occur simultaneously within the first

two hours after kainate administration. Whether kainate increases synaptic serotonin
■

release or increases serotonin receptor sensitivity has still to be established. The ability of 
.photochemical-induced ischaemia in the rat to increase cortical serotonin release has been 

shown by Baldwin et al (1993). However these authors have not reported any behavioural 

effects. The role of the increased serotonergic activity in brain damage is eliminated by
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Baldwin et al (1993) who showed a lack of alteration of lesion severity after application of 

serotonergic agonists and antagonists.

Endogenous excitatory amino acids have been implicated in early onset neurotoxicity 

mediated by kainate. Kainate causes an increase in extracellular glutamate after local 

administration in the hippocampus. Excitatory amino acids are therefore probably released 

within the first two hours after administration of systemic kainate. Given the evidence of 

the ability of glutamate to evoke adenosine release in rat cortical slices (Hoehn & White, 

1990a), a prior release of glutamate induced by kainate may cause adenosine release seen 

within the first two hours of administration of systemic kainate. The role o f glutamate 

release in adenosine release is further investigated in sections 4.8-4.10.

4.4 Release of adenosine bv intrahippocampal kainate

The local application of kainate to the hippocampus was used to examine the mechanisms 

involved in kainate-evoked release of adenosine.

The release of adenosine and its metabolites was evoked by intrahippocampal kainate. 

There was approximately a 2-fold increase in release of adenosine, inosine and xanthine 

evoked by kainate. The increase in hypoxanthine release evoked by kainate was 

approximately 6-fold. A higher increase in hypoxanthine relative to the increase in 

adenosine caused by hypoglycaemia in the rat striatum has been reported by Butcher et al 

(1987). The reason for this is unclear but may be explained by the conversion of 

hypoxanthine to xanthine being limited by the availability of xanthine oxidase in the CNS, 

since the enzyme is mostly in the form of xanthine dehydrogenase in vivo (Nishino, 1994), 

allowing the accumulation of hypoxanthine in the ECF. Elevated levels of hypoxanthine in 

the presence o f xanthine oxidase may be detrimental to surrounding cells since its 

conversion to xanthine involves the production of superoxide ions (toxic free radicals).

The existence of xanthine oxidase in the rat brain is somewhat controversial. The present 

study may be considered to provide evidence for the existence (at least to some extent) of 

cerebral xanthine oxidase or, alternatively, raises the possibility of hypoxanthine and 

xanthine being released independently of adenosine.

1 3 9



§

4.5 Twin pulses of intrahippocampal kainate-evoked release of adenosine and comparison 

with that of potassium

A second period of stimulation by kainate or potassium was able to evoke a significant 

increase in the release of adenosine although this was substantially smaller than the first. 

Similar results were obtained for two pulses of endogenous adenosine release evoked by 

potassium and glutamate in rat cortical slices (Hoehn & White, 1990a) and evoked by 

potassium and NMDA in the hippocampus o f the anaesthetised rat (Chen et al, 1992). The 

diminished response to the second stimulus may be explained by the depletion of releasable 

adenosine by the first stimulation.

Depletion of adenosine pools may occur by two means. Adenosine, released into the ECF,

is taken back up into the cell where it is exposed to enzymatic degradation to

hypoxanthine. The conversion of hypoxanthine to IMP by the enzyme, hypoxanthine-

guanine phosphoribosyltransferase is the so called ‘salvage’ reaction (Stone & Simmonds,

1991). The enzyme competing with hypoxanthine-guanine phosphoribosyltransferase for

hypoxanthine is xanthine oxidase. Under conditions of elevated intracellular calcium levels,

xanthine dehydrogenase is converted to xanthine oxidase. Xanthine oxidase may therefore

increase as a result of elevated calcium levels which may occur during a pulse of kainic

acid or potassium. If so, hypoxanthine may be converted to xanthine during the first pulse

instead of being salvaged to adenosine and therefore pools of adenosine may be depleted

for the second pulse. Secondly, depletion o f adenosine pools may also come about due to

cell death after the first pulse. Cells which are a source of adenosine release may die during 
.the first pulse of kainate or potassium and therefore may not be a source of adenosine

.release during the second pulse. Evidence of this, in the case o f potassium-induced release

of adenosine from rat cortical slices, was illustrated by Hoehn & White (1990a) who

diminished the effects o f the first pulse by using calcium-free medium. They found that a

second pulse of potassium in calcium-containing medium was comparable to that elicited

by a first pulse in the presence of calcium. The lack of calcium may prevent damage
.induced by potassium and thus retain releasable pools o f adenosine. Another interpretation 

of this result is that prior calcium-dependent release of ATP or glutamate, which lead to
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adenosine release, is prevented by lack of calcium. In either case, the depletion of 

adenosine is prevented, allowing a larger release during the second pulse (Hoehn & White,

1990a).

In the present study, the S2/S1 ratio for adenosine release produced by potassium is 

significantly higher than that produced in the presence of kainate. Again a similar pattern 

was seen in rat cortical slices by Hoehn & White (1990a) when comparing the ratio of 

adenosine release induced by two pulses o f potassium with that o f glutamate. This may be 

explained by several means.

Firstly, there may be a higher intracellular calcium level caused by the first pulse o f kainic 

acid or glutamate compared with the first pulse o f potassium. If the levels of xanthine 

oxidase are higher after kainic acid or glutamate than potassium, less adenosine may be 

salvaged, as more hypoxanthine is converted to xanthine, and therefore pools of adenosine 

are more depleted after the first pulse of kainic acid or glutamate than after the first pulse 

of potassium. Secondly, after the first pulse of kainic acid or glutamate there may be more 

cell death than after the first pulse of potassium, leading to a more diminished source of 

adenosine release for the second pulse of kainic acid or glutamate than the second pulse of 

potassium. Thirdly, there may be desensitisation of kainate or glutamate receptors during 

the second pulse as a result of stimulation of receptors during the first pulse of kainate or 

glutamate. Kiskin et al (1986), Hori & Carpenter (1988) and Mayer (1989) have shown 

that kainate receptors do not desensitise although NMDA receptors desensitise rapidly 

(Krishtal et al, 1988). Desensitisation o f receptors may therefore be a feasible explanation 

for the lower efficacy of the second pulse in the case of the application of glutamate 

(Hoehn & White, 1990a) but only in the case of the application of kainate (the present 

study) if NMDA receptor activation is involved in kainate-evoked release of adenosine.

The S2/S1 ratios o f the metabolites were not calculated since, in most cases, the 

experiments were terminated before the metabolite levels returned to basal after the second 

pulse. On examining the graphs displaying the twin pulses of potassium or kainate without 

the incorporation of any drugs before, during and after the second pulse, it can be seen that 

the response of inosine, hypoxanthine and xanthine to the second pulse is not diminished to
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the same extent as that o f adenosine. A similar trend was observed by Chen et al (1992) 

and this may be a reflection o f an increase in the deamination of adenosine during the 

second pulse of kainate or potassium. Adenosine kinase has a higher affinity for adenosine

than adenosine deaminase (Sciotti & Van Wylen, 1993b). However, elevated adenosine
'

levels result in substrate inhibition of adenosine kinase, allowing promotion of deamination 

o f the accumulated adenosine (Nagy et al, 1990). Thus, the elevated adenosine levels in the 

first pulse may result in substrate inhibition of adenosine kinase and therefore promote 

deamination during the second pulse. The proportion of the amount o f adenosine being 

deaminated to the amount of adenosine being phosphorylated may therefore increase in the

second pulse compared to the first pulse. Such a scenario would lead to a higher than

I

expected response of the deaminated metabolites of adenosine during the second pulse.

4.6 The effect of TTX on intrahippocampal kainate-evoked release of adenosine 

Intrahippocampal kainate-evoked release of adenosine was reduced by 60% by the ë 

application of TTX via the dialysis probe. This indicates that part of the release of 

adenosine depends on neuronal depolarisation and firing brought about by ionic fluxes 

through voltage-sensitive sodium channels blocked by TTX.

In vitt'o studies show that propagated action potentials contribute only slightly to #

adenosine release. Endogenous adenosine release from rat cortical slices, where glutamate- 

evoked release was shown to involve non-NMDA receptors, was reduced by 21% by TTX s

(Hoehn & White, 1990a) and where NMDA was used to evoke release, was reduced by 

35% by TTX (Hoehn et al, 1990). TTX-insensitive release of endogenous adenosine has 

been shown in cortical synaptosomes when induced by glutamate (Hoehn & White, 1990c) 

and high doses o f TTX were required to reduce tritiated adenosine release from cerebral 

cortex or cerebellum induced by glutamate in vivo (Jhamandas & Dumbrille, 1980)

These studies indicate that propagated action potentials are not primarily involved in 

adenosine release, though in the present study over half o f the release showed the

involvement of propagated action potentials. The extent of the involvement of propagated 

action potentials on electrically-evoked and potassium-evoked release of adenosine is also 

controversial. Electrically-evoked release of tritiated adenosine was blocked by 30-50% by
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TTX in vitro from guinea-pig taenia coli (Rutherford & Burnstock, 1978) and guinea-pig 

neocortical tissues (Pull & Mcllwain, 1973) and was completely blocked from rat cortical f
'I

slices (Pedata et al, 1988). One reason for the variation in results is the variation in 

intensity of the electrical stimulation. Pedata et al (1988) showed that when the intensity of 

stimulation was increased, the TTX-sensitive component of adenosine release was reduced.

A possible consequence of high intensity stimulation may be the release of adenosine from 

glial cells as well as from neurones.

Differences between these results may be explained by the differences in the depolarising 

stimuli used. For example, the application of glutamate seems to cause the most amount of 

TTX-insensitive release. This may be because of the reported TTX-insensitive release of %
Ï

adenosine which occurs as glutamate is taken back up into the neurone (Hoehn & White,
I1990c). This would only occur in the presence of glutamate as NMDA, kainate and 

potassium do not use the high affinity glutamate uptake transport.

The preparations used may also contribute to the variation in the results. For example, the 

use of synaptosomes will produce different results from that of intact neurones if the TTX- 

sensitive site of neuronal release is postsynaptic, or a large proportion o f release occurs 

from glial cells.

In the present study, the application o f TTX has allowed us to define a contribution of 

adenosine release induced by kainate as partly neuronal. However, this data provides no 

information about the neuronal source (i.e. postsynaptic or presynaptic) o f this 

contribution. The TTX-insensitive adenosine release may indicate stimulation of glial cells 

or the release of adenosine from neurones without the requirement o f action potentials.

4.7 Characterisation of receptors involved in intrahippocampal kainate-evoked release o f i- 

adenosine

Excitatory amino acids are released during hypoxia/ischaemia (Benveniste et at, 1984;

Globus et al, 1988; Phillis et al, 1991) and epilepsy (Choi, 1988(b)) and hypoglycaemia 

(Sandberg et al, 1986; Choi, 1988(b)). Activation of the three major sub-types o f 

excitatory amino acid receptors is implicated in neuronal death. Activation of NMDA
1:

receptors and non-NMDA receptors leads to an influx of calcium through receptor-
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operated calcium channels and voltage-operated calcium channels (Lin et al 1990; Ohta et 

al 1991; Uematsu et al 1991; McBumey et al 1992). Intracellular calcium leads to 

activation of protein kinases, phospholipases, proteases, nitric oxide synthase, impaired 

mitochrondrial function and the generation of free radicals (Beal, 1992). Uncontrolled 

activation of one or more of these processes may be potentially lethal to the cell. Calcium- 

dependent and/ or calcium-independent release of glutamate leads to further activation of 

NMDA and non-NMDA receptors and the resulting excessive depolarisation of the cell 

membrane may lead to loss of ionic homeostasis, cell swelling and cell lysis. Indeed, 

protection against ischaemic-induced cell death has been shown by NMDA receptor 

antagonists (Bullock et al, 1990; Uematsu et al, 1991) and non-NMDA receptor 

antagonists (Le Peillet et al, 1992; May & Robison, 1993).

The release of the inhibitory neuromodulator, adenosine, by activation of the three major 

sub-types of excitatory amino acid receptors is of interest due to its potential to diminish 

frirther damage. Adenosine’s potential as a neuroprotective agent is revealed by its ability 

to inhibit presynaptic release o f glutamate, cause hyperpolarisation o f postsynaptic 

membranes and prevent loss of ionic homeostasis.

Previous in vivo experiments on the hippocampus o f the anaesthetised rat have shown that 

NMDA receptor activation induces adenosine release (Chen et al, 1992). In in vitro studies 

on cortical slices, Hoehn & White (1990b) have demonstrated that activation of NMDA 

and non-NMDA receptors releases endogenous adenosine.

The concentration of CNQX used in the present study (4.5pM) correlates well with the 

IC50 (0.71 pM) used to inhibit [3H]kainate binding to the kainate receptor (Kessler et al,

1989), given the small percentage which is likely to pass through the semi-permeable 

membrane of the probe.

In the present study CNQX (a competitive non-NMDA receptor antagonist) abolished 

kainate-induced adenosine release. This correlates with the inhibition of kainate-evoked 

release of adenosine from cortical slices by DNQX (Hoehn & White, 1990b) and indicates 

that kainate-evoked release is mediated by activation of non-NMDA receptors.
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Neither MK-801 (dizocilpine), a non-competitive NMDA receptor antagonist, nor ±AP-5, 

a competitive NMDA receptor antagonist, significantly altered kainate-evoked adenosine 

release. This is consistent with the lack of inhibition o f kainate-evoked release of adenosine 

from cortical slices by MK-801 (Hoehn & White, 1990b) and indicates that kainate-evoked 

release is not mediated by activation of NMDA receptors. In contrast, Perkins & Stone 

(1983) found that the NMDA receptor antagonist, AP-7, blocked 23% of the kainate- 

evoked release of tritiated purines from rat cortex in vivo. The discrepancy between the 

latter study and the present study or the study performed by Hoehn & White (1990b) may 

represent differences between the release o f endogenous adenosine versus radiolabelled 

purines. A difference between the release of endogenous amino acids versus radiolabelled 

amino acids has been shown by Ferkany & Coyle (1983). In hippocampal slices using 

kainic acid, Ferkany & Coyle (1983) showed calcium-dependent endogenous glutamate 

and aspartate release, but no [^H]-aspartate or [•^'^C]-glutamate release. In the 

radiolabelling technique, the tissue preparation is exposed to the radiolabelled substance 

and, following a stimulus, the release of the accumulated radioactivity is monitored. The 

assumption is that the radiolabelled substance is selectively accumulated within the pools of 

interest and that it mixes with the relevant pool of endogenous substance. An example of a 

possible flaw in the method of radiolabelled release is that the exogenous pool is different 

from the endogenous pool.

GYKI 52466 is a 2,3-benzodiazepine which appears to act at an allosteric site on non- 

NMDA receptors. GYKI 52466 has been shown to act non-competitively to block ion 

currents mediated through non-NMDA receptors (Zorumski et al, 1993). The same 

authors show that GYKI 52466 has a lower potency for non-NMDA receptors than 

CNQX. GYKI 52466 and CNQX inhibited neuronal currents in hippocampal cultures 

gated by ImM kainic acid with respective EC50 values of 14pM and 1.7pM (Zorumski et 

al, 1993). Electrophysiological evidence indicates that GYKI 52466 is more specific for 

AMP A/ kainate receptors and has little effect at the high affinity kainate or NMDA 

receptors (Paternain et al, 1995).
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GYKI 52466 in solution has a pH o f 3.5 and caused a high efflux of adenosine (fig 3.15).

second pulse (fig 3.15). As in the experiments where GYKI 52466 was present there was a 

high efflux with a similar profile. It is therefore possible that a low pH is causing acidosis. 

An increased hydrogen ion concentration may activate the Na+/H+ transport process.

1 4 6

To investigate whether this was due to the presence of a low pH, one experiment was 

performed perfiising acsf, pH 3.5, through the probe two hours before, during and after the

j
thereby shuttling Na+ ions into the cells causing cell membrane depolarisation and

depolarisation-induced adenosine release. Acidosis is also known to retard phosphorylation 

of ADP to ATP, allowing more ADP available for dephosphorylation to adenosine.

GYKI 52466 came out of aqueous solution when the pH was adjusted to 7.2. GYKI 

52466 was therefore dissolved in DMSO 20% and the pH was adjusted to 7.2 for 

administration intrahippocampally. For systemic injection, GYKI 52466 was suspended in 

Tween 80 2% and the pH adjusted to 6-7. GYKI 52466 did not reduce the kainate-evoked 

release of adenosine by either of the two methods of administration when compared to the 

respective controls.

DMSO was seen to cause adenosine release in its own right (see below) and it is 

conceivable that under such a compromised condition, the pharmacological effects of 

GYKI 52466 do not become apparent. Donevan & Rogawski (1993) showed that lOOpM 

GYKI 52466 blocked kainate-activated currents (150pM) in cultured rat hippocampal 

neurones. In the present study, only a proportion of the GYKI 52466 in the probe will 

reach the tissue. A concentration o f ImM GYKI 52466 used in the present study, should 

be sufficient to block non-NMDA receptors and the lack of effect of GYKI 52466 was 

probably not due to an inadequate concentration.

DMSO has been reported to cause ATP release which is partly calcium-dependent from 

dorsal spinal cord synaptosomes (Sawynok et al, 1993). In an ovarian cancer cell line 

DMSO acted as a differentiation-inducing agent and caused an increase in the activity of 

IMP-5 ’-nucleotidase, although this was 72 hours following exposure (Zoref-Shani et al, 

1994). Another reported property o f DMSO is as a free radical scavenger (Mannion et al, 

1994). The most likely mechanism of adenosine release by DMSO is the reported increase
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in ATP release. By examining the release o f adenosine during the two hours perfiision of 

DMSO and GYKI 52466 in DMSO, it can be seen that there is a significant reduction in 

release at the last time point before the second pulse of kainate. The rise in extracellular 

adenosine by DMSO may therefore be partly mediated by the activation of non-NMDA 

receptors, since GYKI 52466 reduced the release at that time point.

The action of GYKI 52466 on the CNS is very transient, with a maximum effect in the 

brain reached within 10 min after intravenous administration (Smith et al, 1991). The 

injections of GYKI 52466 in the present study were 15 min before, at the same time and 15 4

min after the perfusion medium was changed to kainate for the second pulse. Taking the 

lag-time (16 min) for kainate from the switch to the probe into account, and assuming that 

the pharmacokinetic profile of GYKI 52466 is the same for s.c. administration as for i.v. 

(intravenous) injection, the maximum effect of GYKI 52466 should be exerted 21 min and 

6 min before and 9 min after the exposure of the tissue to kainate. Thus GYKI 52466 |

should be exerting its maximum antagonistic effect before and during the peak amount of 

adenosine is being released. Since the action of GYKI 52466 is so transient, the timing of 

GYKI 52466 reaching the tissue relative to kainate would therefore be important to its 

pharmacological effects and slight variations in absorption through the BBB of GYKI 

52466 may account for the scatter of data seen in table 3.3. A continuous systemic infusion 

of GYKI 52466 before, during and after the second kainate pulse would be an appropriate 

experiment to perform.

Arvin et al (1994) have shown that with i.v. infusion o f GYKI 52466, the ischaemic- 

induced release of glutamate is not prevented in the hippocampus but is in the striatum.

They postulate that the property of GYKI 52466 to inhibit non-NMDA receptors is likely 

to be similar in both the hippocampus and striatum and explain the results as a 

consequence of structural vulnerability to ischaemia. They postulate that the lack of effect 

of GYKI 52466 is because the release of glutamate in the hippocampus may be related to
I

increased neuronal or metabolic activity and not specifically from presynaptic terminals. 

Indeed, this may be the case for adenosine in the present study.

4.8 The effect of purines on kainate-evoked adenosine release
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.Adenosine has been shown to inhibit the presynaptic release of excitatory 

neurotransmitters such as acetylcholine (Spignoli et al, 1984; Cunha et al, 1994), 

glutamate (Corradetti et al, 1984; Fastbom & Fredholm, 1985; Cantor et al, 1992; 

Dunwiddie & Fredholm, 1989) and dopamine (Zetterstrom & Fillenz, 1990).

The adenosine analogue 2-chloroadenosine prevented striatal damage induced by NMDA, 

kainate and quisqualate (Finn et al, 1991) and hippocampal damage induced by ischaemia 

(Evans et al, 1987). The adenosine analogue, R-PIA, prevented the hippocampal damage 

induced by kainate (MacGregor et al, 1993) and quinolinic acid (Connick & Stone, 1989).

The adenosine deaminase inhibitor deoxycoformycin, which has been shown to increase 

extracellular adenosine levels (Phillis et al, 1991), prevented in vivo hippocampal ischaemic 

damage (Phillis & O'Regan, 1989),

Kainate has been reported to evoke the release of glutamate in vivo from the hippocampus 

(Lehmann et al, 1983) and striatum (Butcher et al, 1987) and in vitro from the 

hippocampus and cerebellum (Ferkany et al, 1982; Ferkany & Coyle, 1983). Kainate has 

been reported to evoke the release of aspartate from the striatum in vivo (Butcher et al,

1987) and in vitro (Notman et al, 1984) and from the hippocampus and cerebellum in vitro 

(Ferkany et al, 1982; Ferkany & Coyle, 1983). The elevated levels o f extracellular 

excitatory amino acids have been implicated in neurotoxicity. Inhibition of synaptic 

transmission by adenosine, which is reported to be via action at the A l receptor (Burke &

Nadler, 1988), presumably contributes to the reported neuroprotective properties of 

purines.

In the present study kainate induced elevations in extracellular glutamate and aspartate 

over Ihr 20min after application of kainate. This is the time span of kainate-evoked 

adenosine release, thus highlighting the possibility of secondary transmitters such as

glutamate and aspartate being involved in kainate-evoked adenosine release. In the present 

study, an investigation of the contribution of glutamate release to the mechanisms of 

kainate-evoked release of adenosine was carried out.

R-PIA incorporated into the perfusion medium (intrahippocampal) did not modulate 

adenosine release evoked by intrahippocampal kainate. The concentration of :
i■£/■
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intrahippocampal R-PIA correlates well with that used in other studies. Fastbom & 

Fredholm (1985) showed that 1-lOpM PIA blocked glutamate release and Duner- 

Engstrom & Fredholm (1988) used IpM  to block acetylcholine release. In the present 

study, only a proportion o f the R-PIA in the probe will reach the tissue. A concentration of 

lOpM or lOOpM R-PIA used in the present study, should be sufficient to allow enough R- 

PIA to reach the tissue and exert its pharmacological action. The lack o f effect o f R-PIA 

was probably not due to an inadequate concentration.

Heron et al (1992) have shown that R-PIA applied systemically, but not locally, reduced

glutamate release during ischaemia. For this reason, R-PIA was administered systemically

in the present study, and its effect on adenosine release evoked by intrahippocampal

kainate was examined. The systemic dose o f R-PIA (250pg/kg) in vehicle (methanol) was

the same dose that caused neuroprotection against kainate-induced damage (MacGregor et
.al, 1993). R-PIA administered systemically did not affect intrahippocampal kainate-evoked 

adenosine release.
.MacGregor et al (1993) have shown that systemic R-PIA in vehicle (methanol) prevented 

neurotoxicity caused by systemic kainate in methanol. In the present study, the effect of 

systemic R-PIA in vehicle (methanol) was examined on adenosine release evoked by 

systemic kainate in methanol. Methanol reduced kainate-evoked release of adenosine 

although MacGregor et al (1993) showed that neurotoxicity still occurred when kainate 

was administered with methanol. This may indicate that the mechanisms involved in 

kainate-induced damage do not bring about kainate-evoked release of adenosine.

Since adenosine is known to be released by increased neuronal activity and since adenosine 

is known to inhibit neuronal activity, it may be expected that adenosine would inhibit its 

own evoked release. However, the present study shows that adenosine does not inhibit its 

own release in the presence of an agent that causes neurotoxicity. Since adenosine prevents 

neurotoxicity, the finding that adenosine does not inhibit its own release may be 

advantageous to its neuroprotective properties.

A lack o f effect of adenosine has been reported on the Ca2+-independent release o f GABA 

from rat cerebral cortex slices (Hollins & Stone, 1980b), In addition, 2-chloroadenosine



release of glutamate and if the endogenous adenosine released by kainate is high enough to 

inhibit glutamate release then the incorporation of adenosine antagonists, CPT or 8-PST,
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has been shown to block depolarisation-evoked glutamate release from rat hippocampal 

mossy fibre synaptosomes only after the Ca2+-independent, non-vesicular, cytosolic pools 

o f glutamic acid had been depleted by D-aspartate (Ten ian et al, 1989). Similarly, in the 

present study, the Ca2+-independent component of glutamic acid release may be 

insensitive to R-PIA and may have masked any inhibitory actions of R-PIA on the Ca2+~ 

dependent component. Therefore the possibility that prior release of glutamate by a 

calcium-independent mechanism contributes to the release of adenosine induced by kainate 

can not be eliminated.

At postsynaptic sites, Al receptor activation hyperpolarises the cell membrane leading to

magnesium block of the NMDA receptor. The lack of efficacy of R-PIA in reducing
.kainate-evoked release of adenosine is consistent with the previous conclusion that 

kainate-evoked release is not mediated by NMDA receptor activation.

R-PIA is a lipophilic compound and the possibility of it either binding to the probe 

membrane or to cell membranes close to the probe instead of diffusing to the site(s) of 

adenosine release cannot be excluded. The use of another adenosine agonist, 2- 

chloroadenosine, which attenuates kainate-induced neurotoxicity in the rat striatum (Arvin 

et al, 1989; Finn et al, 1991), was complicated in the present study by its absorbance in

u.v. light and no results were therefore obtained (see methods).

Another possibility for the lack of efficacy of R-PIA may be that adenosine was already 

activating all available Al receptors, so that the addition of an adenosine agonist had no 

additional effect. To investigate this, adenosine antagonists were incorporated into the 

perfusing medium two hours before, during and after the second pulse of kainate.

Kainic acid has been shown to cause glutamate release and glutamate has been shown to 

cause adenosine release. If kainate-evoked release of adenosine was mediated by the prior

I
should increase kainate-evoked release of adenosine. Neither CPT nor 8-PST increased 

kainate-evoked release o f adenosine. The concentrations o f CPT used in the present study 

were lOpM and lOOpM. The apparent Ki of CPT for the antagonism of adenosine from
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human fibroblasts was found to be 0,71 pM (Bruns, 1981). Allowing for the diffusion of

CPT through the dialysis membrane, the concentration used in the present study should be

sufficient to antagonise adenosine. Likewise, the concentration o f 8-PST (ImM) used in
.the present study should be sufficient to antagonise adenosine since 8-PST was shown to 

displace [^HJcyclohexyladenosine binding from guinea pig brains with an IC50 o f 0.02mM 

(Bruns et al, 1980).

The present results indicate that adenosine does not modulate its own release and does not

limit the depolarising activity o f kainate. This implies that either that endogenous adenosine

is not elevated by kainate high enough to inhibit glutamate release or that kainate-evoked

release of adenosine is not mediated by the prior release of glutamate.

Whether 1.4-2 pM endogenous adenosine released by administration of systemic kainate is

sufficient to limit kainate-induced neurotoxicity is another question to be answered.

Adenosine has been shown to exert inhibitory effects at a concentration of 1 pM-20pM on

hippocampal slices (Hosseinzadeh, 1994). During hypoxia and ischaemia, the release of

adenosine by an in vivo microdialysis study of the striatum was shown to be 40pM

(Hagberg et al, 1987). This is 20-fold higher than the estimated concentration in the
.present study of kainate exposure in the hippocampus. Evidently the release o f adenosine 

induced by kainate is low relative to the release of adenosine induced by ischaemia.

Blockage of Al receptors does not potentiate kainate neurotoxicity (MacGregor & Stone,

1994). Thus the adenosine released by kainate at a dose which caused neurotoxicity 

probably does not exert significant protection against neuronal damage. This may be 

because adenosine release by kainate is probably not high enough. However, in ischaemia 

in vivo, adenosine A l agonists failed to suppress the induced release of glutamate (Phillis 

et al, 1993, Héron et al, 1993). The explanation for this difference from in vitro studies 

which have clearly shown Al receptors to inhibit glutamate release (Corradetti et al, 1984, 

Fastbom & Fredholm, 1985, Poli et al, 1991) including that induced by kainate (Arvin et 

al, 1989; Finn et al, 1991, Poli et al, 1991) may lie at least partly in the contribution of 

calcium-independent glutamate release during ischaemia (Szatkowski et al, 1990).

4.9 The effects of kappa agonists on intrahippocampal kainate-evoked release of adenosine
f '
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The hippocampus is known to possess the endogenous peptides, dynorphins which are 

kappa opioid receptor agonists. Moreover, synaptic release o f dynorphin has been shown 

to inhibit presynaptic glutamate release from mossy fibres (Weisskopf et al, 1993). Other 

kappa opiate receptor agonists are able to depress the evoked release of neurotransmitters 

such as dopamine (Mulder et al, 1991; Ronken et al, 1993) and glutamate from 

hippocampal synaptosomes (Gannon & Terrian, 1991), from substantia nigra slices 

(Maneuf et al, 1995) and from rat and marmoset striatal synaptosomes (Hill & Brotchie,

1995).

Inhibition o f potassium-evoked release of glutamate by kappa agonists probably results 

from an inhibition in the potassium-evoked rise in cytosolic Ca2+ levels in presynaptic 

terminals (Gannon & Terrian, 1991). This effect was elicited by U50, 488H at 

concentrations greater than lOpM with the EC50 value being estimated at 114pM 

(Gannon & Terrian, 1991). Kappa opioid receptors have been reported to couple to Ca2+ 

and K+ channels and modulate ionic conductances through these channels via pertussis 

toxin sensitive G proteins (North, 1993). Xiang et al (1990) and Tallent et al (1994) report 

a decrease in calcium entry through N-type channels. Kappa agonists have also been shown 

to increase the influx of calcium into astrocytes through L-type calcium channels (Eriksson 

et al, 1993), an effect which would lead to a decrease in available extracellular calcium 

necessary for presynaptic transmitter release. As a result, kappa agonists are able to protect 

against neuronal death induced by ischaemia (Tang, 1985; Hall & Pazara, 1988; Contreras 

et al, 1991; Genovese et al, 1994). Indeed, U50, 488H reduced the cell damage produced 

in the hippocampus by kainic acid (Ochoa et al, 1992). When incorporated into the 

perfusion medium in the present study, lOOpM (but not lOpM) U50, 488H significantly 

reduced the release of adenosine induced by kainate. This would suggest that adenosine 

release is mediated by a calcium-dependent transmitter-like process, or involves the 

intermediate release of an agent such as glutamate. The present data do not allow a 

definitive differentiation between these two possibilities. However, although K'^-evoked 

adenosine release from isolated synaptosomes seems to involve N-type calcium channels 

(Cahill et al, 1993), the release induced by non-NMDA receptor stimulation in brain slices
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is not calcium-dependent (Craig & White, 1993). Together with the present results, this 

strongly suggests that kainate triggers the release, of a secondary agent, probably 

glutamate, by calcium-dependent and calcium-independent mechanisms, which then
£

induces adenosine release. It might be expected that such a release o f glutamate would

activate NMDA and non-NMDA receptors, inducing a further calcium-dependent and 

calcium-independent release, respectively, of adenosine (Craig & White, 1993). Such a 

sequence would compromise the reliability o f the earlier conclusion that adenosine release
"'I,

is not mediated by NMDA receptors. However, Pedata et al (1991) have shown that

glutamate-induced adenosine release is not prevented by NMDA or non-NMDA receptor 

blockade, and is therefore probably the result o f metabolic activation by glutamate (see 

also Poli et al, 1991). To conclude, the results obtained from using U50, 488H indicate 

that an endogenous secondary agent, released by kainate, may mediate kainate-evoked 

release of adenosine.

Similar spinal antinociceptive responses to ketamine and kappa agonists, have lead to 

investigations for a common receptor mechanism. Since ketamine is known to block 

NMDA receptors, it became relevant to test the hypothesis that kappa agonists are 

selective antagonists of amino acid responses. Parsons et al (1986) reported that U50 

488H at concentrations o f 1, 10 & lOOpM had no consistent effect on ventral root
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depolarisations produced by quisqualate, kainate or NMDA when superfused over 

concentration ranges 2.5-169pM in vitro in isolated frog hemisected spinal cords (Parsons

et al, 1986). In addition, these authors have shown, in vivo, that intravenous U50 488H

does not produce any effect on the neuronal firing in response to any o f the three

excitatory amino acid agonists on rat spinal neurones in rats anaesthetised by a- chloralose

(Parsons et al, 1986). This may indicate that U50 488H does not affect the action of

glutamate agonists on non-NMDA or NMDA receptors and excludes the possibility that

the reduction of adenosine release by U50 488H in our experiments is due to the

displacement of kainate from its receptor, a result which would be misinterpreted as an 
. .effect of kappa opioid receptor stimulation. It is noteworthy in this context that the 

concentrations of U50 488H used in the in vitro study by Parsons et al (1986), cover the



range of concentrations used in the present study. In addition, inhibition of calcium influx, 

an effect proven to be mediated by kappa opioid receptor activation and not by p- or 5- 

opioid receptor activation, has been shown by U50, 488H with an EC50 of 114pM 

(Gannon & Terrian, 1991). This concentration is higher than that in the present study 

(lOOpM) which reduced kainate-evoked release of adenosine, given that only a percentage 

of this concentration will pass through the membrane.

The above evidence may suggest that U50 488H retains its pharmacological specificity in 

the present experiments. To confirm a lack of effect of U50 488H on kainate receptors, the 

displacement of binding of pHTJkainate to kainate receptors by U50 488H was examined. 

The results can not be clearly interpreted due to experimental problems which are 

summarised in the Appendix and no conclusion can be drawn from this work.

4.10 The effect of chlormethiazole on intrahippocampal kainate-evoked release of

adenosine--------------
.

Chlormethiazole has anti-convulsant (Greene & Murray, 1989), sedative and hypnotic 

properties (Ogren, 1986).

Chlormethiazole reduced the antagonism of picrotoxin on muscimol-induced responses in 

rat caudate nucleus slices at a concentration o f 60pM (Harrison & Simmonds, 1983) and 

increased chloride uptake by a picrotoxin sensitive mechanism into rat cortical 

synaptosomes with an EC50 of 50pM (Moody & Skolnick, 1989). A direct modulation of
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chlormethiazole on GABAa receptor currents has been shown at relatively high 

concentrations (l-3mM) (Hales & Lambert, 1992). Whilst chlormethiazole (lOOpM) 

potentiated strychnine-sensitive glycine inhibition, as measured in voltage-clamped murine

spinal neurones, its potentiation of GABA inhibition was greater (Hales & Lambert, 1992).
.Whether these mechanism(s) of action of chlormethiazole are responsible for the above- 

mentioned properties of chlormethiazole still remains unclear.

Interestingly, interactions between GABA and adenosine have been reported 

(Akhondzadeh & Stone, 1994; Fern et al, 1994) whereas a lack of interaction between 

chlormethiazole and adenosine has been shown (Stone, 1988). In CNS white matter 

baclofen and adenosine synergistically potentiate neuroprotection against anoxia (Fern et

a
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al, 1994) and in hippocampal neurones muscimol potentiated the ability of adenosine to 

reduce the amplitude of orthodromically induced population potentials (Akhondzadeh &
■h

Stone, 1994). With relevance to this latter report, chlormethiazole neither had the ability 

itself nor potentiated the ability o f adenosine to reduce the amplitude of orthodromically 

induced population potentials in hippocampal neurones (Stone, 1988). This may indicate 

that the anticonvulsant action of chloimethiazole is not due to its proposed action at the 

level o f GABA.

Chlormethiazole did not block the electrophysiological effects of NMDLA, kainic acid nor 

quisqualic acid in the rat cerebral cortex, eliminating the involvement o f excitatory amino 

acid receptors in the anticonvulsant action of chlormethiazole (Addae & Stone, 1988), In 

addition, chlormethiazole inhibited NMDA-induced convulsions by a mechanism other than 

binding to the MK-801 site (Cross et al, 1993). t

Chlormethiazole prevents degeneration of hippocampal neurones induced by transient 

forebrain ischaemia (Cross et al, 1991). Neuroprotection by chlormethiazole against 

hippocampal damage induced by systemic kainate has also been shown (MacGregor et al,

1994). Chlormethiazole has been reported to inhibit glutamate release (Baldwin et al,

1994), a possible prerequisite for its neuroprotective properties. .

Chlormethiazole, at a concentration of 500pM (a concentration recommended by A.J. t

Cross, Astra Neuroscience Research Unit) did not modulate kainate-evoked release of 

adenosine in the present work. It appears in the present study that increasing the major 

GAB A-mediated inhibitory influence within the hippocampus does not modulate kainate- 

evoked release of adenosine.

After ischaemia, hippocampal GABAergic neurones have been shown to be preserved 

(Francis & Pulsinelli, 1982), whereas cortical GABA^ receptors have been reported to be 

decreased (Baldwin et al, 1993b). For chlormethiazole to have GABA-enhancing effects,

GABA receptors must be present. By reducing the number of receptors available to 

chlormethiazole, the proposed GABA-enhancing action of chlormethiazole may be 

reduced. In keeping with this, MacGregor et al (1993) showed that the benzodiazepine, 

clonazepam, did not reduce kainate-induced hippocampal damage. i
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In the present study, agents which have the ability to inhibit the release of glutamate have 

been employed (i.e. R-PIA, U50, 488H and chlormethiazole). To recap, R-PIA and 

chlormethiazole did not, but U50, 488H did, inhibit kainate-evoked release of adenosine. 

This indicates that U50 488H reduces kainate-evoked release o f adenosine by a mechanism 

distinct from the mechanisms o f action of R-PIA and chlormethiazole. Therefore kainate- 

evoked release of adenosine is probably not mediated by the prior calcium-dependent 

release of glutamate.

4.11 The effect of free radical scavengers/ antioxidants on kainate-evoked release of 

adenosine

Loss of calcium homeostasis, which occurs during brain damage, can lead to elevated 

levels of intracellular calcium. Elevated intracellular calcium activates phospholipase A2 

which releases arachidonic acid for break down to prostaglandins and leukotrienes by 

cyclo-oxygenase and lipoxygenase, respectively. During these conversions free radicals are 

produced. The activation of nitric oxide synthase by calcium produces nitric oxide which 

interacts with superoxide ions to produce peroxynitrite ion which leads to production of 

the toxic hydroxyl ion. Calcium has been reported to cause the conversion of xanthine 

dehydrogenase to xanthine oxidase, though the existence of the latter in the rat brain is still 

controversial. The conversion of hypoxanthine to xanthine by xanthine oxidase produces 

free radicals.

The toxic hydroxyl radical is not produced directly by any of these mechamsms. The 

superoxide radical is converted by the enzyme superoxide dismutase to hydrogen peroxide, 

which together with superoxide ion can form hydroxyl radicals. Oxygen radicals are 

capable of causing lipid peroxidation, with the destruction of cell membranes.

The production and implications o f free radicals in brain damage have become a major 

focus in excitotoxic brain research. Detection and quantification of free radicals is difficult 

due to their extreme reactivity. The levels of enzymes which are related to the production 

and elimination o f free radicals and the extent of lipid peroxidation have been used as 

indices of free radical production and of free radical-induced damage. Bruce & Baudry 

(1995) reported a hippocampal increase in protein and lipid oxidation within 8 hrs and in
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radicals. Pairs of ascorbate free radicals are likely to spontaneously form one ascorbate 

molecule and one dehydro-L-ascorbic acid molecule by disproportionation (one molecule 

acquires both unpaired electrons to become fully reduced while the other molecule is 

oxidised).

glutathione peroxidase, superoxide dismutase and catalase between two and five days after 

systemic kainate administration to rats.

The conversion o f salicylate to DHBA (3,4-dihydroxybenzylamine) is often used to show 

the production of hydroxyl free radicals. Schulz et al (1995) showed the production of 

DHBA from salicylate Ihr after the intrastriatal injection o f malonate or 3-acetyl-pyridine. 

The DHBA production was attenuated by pretreatment with S-PBN, showing a free 

radical scavenging effect (Schulz et al, 1995).

The use of electron spin resonance (ESR) has been used to detect more stable free radical 

adducts o f spin-trapping agents such as a(4-pyridyl-1 -oxide)-N-tert-butylnitrone (POBN) 

(Phillis & Sen, 1993).

The neuroprotective action of free radical scavengers is another technique for assessing 

free radical-induced damage. Schulz et al (1995) demonstrated that lesions in rats induced 

by intrastriatal injections of NMD A, AMP A and kainic acid were attenuated by the free 

radical scavenger, N-tert-butyl-a-(2-sulfophenyl)-nitrone (S-PBN).

These results suggest the foitnation of free radicals after kainate administration and it was 

of interest in the present study to examine the possible role of free radicals in the release of 

adenosine by kainic acid. Ascorbic acid, reduced glutathione and oxypurinol are the 

antioxidants and free radical scavengers used in the present study and were chosen due to 

their spectrum of activity . Ascorbic acid is reported to reduce free radicals, glutathione is 

reported to scavenge hydrogen peroxide and oxypurinol is a xanthine oxidase inhibitor, 

preventing the production o f superoxide ions.

Ascorbic acid is an endogenous antioxidant, present in the extracellular medium at a 
.concentration of lOO-SOOpM, while estimated whole brain levels are millimolar (Schenk et 

al, 1982). Ascorbic acid reduces free radicals to their neutral state to form ascorbate free
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The free radical scavenging action of ascorbic acid was tested by Maeno et al (1989) who

reacted hypoxanthine with xanthine oxidase in vitro and showed an inhibition of

superoxide dependent oxidation of adrenaline (Maeno et al, 1989). Majewska & Bell

(1990) have demonstrated neuroprotective properties of ascorbic acid in rat cortical

neuronal cultures. Preincubation of l-3mM ascorbic acid for 10 min before adding

glutamate 50pM or NMD A 100-500pM protected the cells from dying (Majewska & Bell,
.1990). Ascorbic acid (50mg/kg) injected i.p. attenuated kainate-induced hippocampal 

damage (MacGregor et al, 1996).
I

In the present study, intrahippocampal ascorbic acid reduced intrahippocampal kainate-
.evoked release o f adenosine. However, systemic ascorbic acid had no significant reduction 

on release of adenosine evoked by either intrahippocampal or systemic kainate. There are 

several explanations for this discrepancy. Firstly, there may be the lack of absorption of this 

water soluble vitamin into the brain from the systemic circulation. However MacGregor et 

al (1996) showed a central effect of i.p. ascorbic acid at the same dose and an active 

ascorbate carrier system that crosses the choroid plexus (the blood-CSF barrier) has been 

reported (Spector, 1981).

Secondly, the residual urethane present in the peritoneal cavity in the present experiments

may interfere with the absorption of ascorbic acid. For the investigation of the effect of

systemic ascorbic acid on systemic kainate-induced release of adenosine, urethane 5ml/kg

was injected i.p. 2hrs 40min before the i.p. injection of ascorbic acid 1 ml/kg. Residual

urethane may either chemically interact with ascorbic acid or change the permeability

properties of the peritoneal lining. The experiments were therefore repeated by s.c.
.injection and still no significant effect on kainate-evoked release of adenosine was 

observed.

Thirdly, another possible explanation for the discrepancy is the chemical interaction of 

kainate and ascorbic acid in the syringe. Considering a possible interaction between 

ascorbate and kainate is important since dihydrokainate, the potential product of the 

reduction of kainate by ascorbic acid, is a compound which may displace kainate from the 

kainate receptor. However, dihydrokainate binds to the low affinity kainate binding site



with a Ki value o f 3150nM compared to kainate which has a Ki value of 19nM (London & 

Coyle, 1979). Another point of interest is that dihydrokainate is a more effective high 

affinity glutamate uptake blocker (IC50 ~175pM) than kainate (IC50 ~302pM) (Johnston 

et al, 1979). An elevation in extracellular glutamate by blockage of glutamate uptake by 

dihydrokainate would possibly enhance adenosine release. However, MacGregor (1995) 

reported that kainate in the presence o f ascorbic acid was stable for up ta 5 days in 

solution. In addition, in the present experiments all drugs were freshly made.

Previous work has shown that chemical reduction of the redox modulatory site potentiated 

the response to NMDA receptor activation whereas oxidation led to inhibition of the 

response (Levy et al, 1990; Aizenman et al, 1992). It therefore becomes relevant to 

investigate the ability of the reductant, ascorbic acid, to break the disulphide bond on the 

redox modulatory site of the NMDA receptor which would potentiate the activity of the 

NMDA receptor. Majewska et al (1990) found that ascorbic acid ImM and 3mM (around 

the range expected in the ECF in our experiments using ascorbic acid) did not potentiate 

but actually inhibited NMDA receptor activity. The authors explain that ascorbic acid may 

alter the electric charge of the NMDA receptor, producing a conformational change in the 

receptor.

In addition to its antioxidant properties, ascorbic acid has been shown to block calcium 

channels (Ebersole & Molinoff, 1992). Such a mechanism seems to involve the presence of 

iron and may be due to the oxidised state of ascorbic acid. The involvement of this effect 

of ascorbic acid on the reduction o f kainate-evoked release of adenosine would be feasible 

if adenosine release was mediated by the prior release of calcium dependent glutamate or 

ATP release.

Glutamate uptake is coupled to the efflux of ascorbic acid (O’Neill et al, 1984; Cammack 

et al, 1990). This property becomes relevant to the present study since the presence of 

glutamate in the ECF will be removed from the synaptic cleft by neuronal or glial uptake in 

exchange for ascorbic acid. Removal of glutamate will reduce release of adenosine 

mediated by glutamate. A reduction of kainate-evoked release of adenosine may be
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occuiTing by glutamate uptake driven by ascorbic acid efflux in any o f the present 

experiments concerning kainate-evoked release of adenosine.

In order to establish if the reduction o f kainate-evoked release o f adenosine is mediated by 

displacement of kainate from the kainate receptor by ascorbic acid, an attempt to examine 

binding of ascorbic acid in the presence in [^Hjkainate was made. However, as explained 

in the Appendix no conclusion was drawn from these results and it thus remains a 

possibility. However, Dr M. J. Higgins performed electrophysiological studies using 

ascorbic acid on the hippocampal slice. The lack o f effect on population spikes of ascorbic 

acid alone (M.J. Higgins, personal communication) confirms a lack of interaction of 

ascorbic acid with the kainate receptor.

Reduced glutathione contributes to our natural defence against free radical production by 

scavenging hydrogen peroxide. Oxidised glutathione is present in the brain at higher 

concentrations (l-2mM) than oxidised glutathione (Slivka ei at, 1987) and exhibits rapid 

turnover in the glial compartments (Yudkoff* et al, 1990). Reduced glutathione (GSH) is 

oxidised by H^O^ to produce oxidised glutathione (GSSG). Oxidised glutathione has been 

reported to be actively transported out of cells (Boobis et al, 1989). Oxidised glutathione 

is recycled to the reduced form by the enzyme glutathione reductase.

The free radical scavenging action of reduced glutathione was tested by Maeno et al 

(1989) who reacted hypoxanthine with xanthine oxidase in vitro and showed an inhibition 

o f superoxide dependent oxidation o f adrenaline (Maeno et al, 1989).

The ability of reduced glutathione to neuroprotect has been shown by Yamamoto et al 

(1993) by a decrease in brain water content after cerebral ischaemia. Kainate-induced brain 

damage in the rat hippocampus was attenuated by glutathione (Saija et al, 1994).

Reduced glutathione was not found to affect the activity o f NMDA receptors although 

oxidised glutathione inhibited NMDA-evoked currents and increases in [Ca 2+]i in retinal 

and cortical ganglion cell neurones (Sucher & Lipton, 1991). The authors concluded that 

oxidised glutathione was acting predominantly as an oxidising agent of the redox 

modulatory site of the NMDA receptor channel complex, while reduced glutathione was 

not effective at reducing the redox site. Reduced glutathione can be converted to oxidised
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glutathione following periods of oxidative stress which may occur after exposure to 

kainate. It is possible that oxidised glutathione may be responsible for the reduction in 

kainate-evoked release of adenosine observed after application of reduced glutathione. To 

clarify this, the experiments could be repeated In the presence of a selective sulphhydryl 

reducing agent such as dithiothreitol which would break the disulphide bond and reverse 

any effects that oxidised glutathione may have. However, the present study illustrates that 

kainate-evoked release of adenosine is not mediated by activation of the NMDA receptor 

and therefore any influence that oxidised glutathione has on the activity of the NMDA 

receptor should not affect the release of adenosine evoked by kainate.

Two lines of evidence show that glutathione is not acting at the kainate receptor. Firstly, 

Sucher & Lipton (1991) found that lOmM reduced glutathione had no effect on calcium 

responses to kainate 50pM in cultures of rat cortical neurones. Similarly, O.SmM 

glutathione did not have any effect on the calcium influx in cultured cerebellar granule cells 

(Janaky et al, 1993). Secondly, Beilis et al (1991) examined the chemoreceptor mechanism 

of glutathione in invertebrates. It was demonstrated that glutamate binding sites exist in 

two forms in hydras: the glutathione-sensitive and glutathione-insensitive binding sites. The 

authors discovered a selective association of the kainate binding site with the reduced 

glutathione-insensitive site.

One report states that glutathione in the reduced form displaced binding of tritiated kainate 

to kainate receptors in rat brain synaptic plasma membranes with an IC50 of ISOpM 

(Varga et al, 1989). Reduced glutathione was more active in the binding to AMPA 

receptors (IC50 of 8.4 pM). In the present study, glutathione, administered at a dose of 

lOmM by reverse dialysis, reduced kainate evoked adenosine release. That the observed 

efficacy of glutatWone was due to displacement of kainate from the non-NMDA receptor 

cannot be excluded in the present study.

Intracellular mechanisms o f action by reduced glutathione which would lead to a reduction 

in adenosine release cannot be eliminated in the present study, however the exogenous 

reduced glutathione must first be transported into the cells. Since there is normally (under 

physiological conditions) no, or little, transport of reduced glutathione into intact cells
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(Boobis et al, 1989; Martensson et al, 1989), an intracellular mechanism of action seems 

unlikely. However, transport of the extracellular degradative products o f reduced 

glutathione may occur into the cell where resynthesis to reduced glutathione may occur. 

Xanthine oxidase catalyses the metabolism of hypoxanthine to xanthine and then to uric 

acid, with a release of superoxide radicals which lead to the production of hydroxyl ions. 

Oxypurinol is an inhibitor of xanthine oxidase and has been shown to have an inhibitory 

effect on hydroxyl radical production in the cerebral cortex during ischaemia as measured 

by ESR and the spin trapping agent POBN (Phillis & Sen, 1993). Dykens et al (1987) 

reported prevention of kainate-induced neuronal death by allopurinol, the precursor of 

oxypurinol.

The efficacy of oxypurinol in reducing kainate-evoked release of adenosine in the present 

study may be explained by the high levels of xanthine oxidase reported to be present during 

ischaemia (Olanow, 1993) and other conditions where there are elevated calcium levels 

(where xanthine dehydrogenase is converted to xanthine oxidase). Another property of 

oxypurinol is the attenuation o f the metabolism of inosine thus precluding the production 

of the free radical-generating substances, hypoxanthine and xanthine. It has been shown 

that oxypurinol pretreatment in cerebral ischaemic rats results in preservation of the high 

energy phosphates, ATP and ADP, which may lead to one of the mechanisms of cerebral 

protection caused by oxypurinol (Phillis et al, 1995).

Kainate-evoked release of adenosine was reduced significantly by ascorbic acid, oxypurinol 

and glutathione which may lead to the interpretation that free radicals are involved in the 

process by which kainate induces adenosine release.

It has been demonstrated that the formation of free radicals, which in turn causes lipid 

peroxidation, can lead to release of glutamate from neurones (Pellegrini-Giampietro et al,

1988). In the present system, the rise in extracellular adenosine after applications of kainate 

may therefore be the result of free radical action directly on the cells, or could be 

secondary to a rise in extracellular glutamate which has leaked through cell membranes 

damaged by free radical induced lipid peroxidation.
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Free radicals are reported to cause enzyme inactivation. Through the inhibition o f ecto-5’- 

nucleotidase, free radicals reduced adenosine release during myocardial ischaemia 

(Takashima et al, 1993). The present results indicate that free radicals may mediate the 

kainate-evoked release of adenosine, implying that a substantial amount o f this release is 

not enzyme-derived.

4.12 Effects of kainate on hippocampal histology

In the present histology experiments, kainate was applied to the microdialysis probe on the 

right hand side while the microdialysis probe on the left hand side was perfused with acsf 

only. This was carried out in two animals from which similar results were obtained. There 

was no cell layer thinning in the CA3 or CAl regions in the left hand hippocampus 

(contralateral to the exposure to kainate). Two conclusions can be drawn from this 

observation. Firstly, there may be limited cell damage due to probe insertion. Secondly, the 

exposure of the tissue to kainate on one side of the hippocampus does not appear to affect 

the hippocampal cells on the contralateral side.

The neurotoxic effects of kainic acid have been investigated by Koh et al (1990) in murine 

cortical cultures. A 5 min exposure of 500pM kainic acid produced widespread acute 

neuronal swelling within one hour but not much late neuronal loss (Koh et al, 1990). The 

acute neuronal swelling was suggested to be caused by influx o f Na+ ions through kainate- 

activated channels, followed by influx of Cl' ions and water (Koh et al, 1990). 

Intrahippocampal injection of 0.47nmol kainic acid in rats produced an incomplete 

neuronal loss in most areas of the hippocampus within four days (Lees, 1992). Intrastriatal 

injection of 2.2nmoI kainic acid in rats caused widespread neuronal damage within 2 weeks 

(Arvin et al, 1989).

In the present study, approximately 60% of the kainate delivered in the perfusate is 

estimated to leave the probe and enter the brain. A 5 min pulse o f ImM kainate at 2pl/min 

should therefore allow approximately 6.0nmol of kainate to enter the brain. The 

histological examination of the hippocampus, seven days after the application o f kainate 

through a microdialysis probe in the two rats examined in the present study, revealed 

hippocampal cell disruption predominantly within the CA3 and to a small extent in the CAl
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ceil layers. This gives evidence that enough kainate reached the hippocampal tissue to 

allow depolarisation and damage of neurones. The damage extended 1.25mm anterior to 

the probe tract. This correlates well with the spread of the radiolabelled kainate, reported 

in the present study, which was approximately 1.2mm anterior to the probe tract. 

Approximately 65-70% of the radiolabelled spread throughout the hippocampus in the 

vicinity o f the probe. Approximately 30-35% of the radiolabelled spread into the cortex in 

the vicinity of the probe, however, there were no signs o f cell disruption or gliosis 

observed in the cortex. This may imply that not enough kainate reached the cortical tissue 

to allow depolarisation and damage to neurones.

In the present study, gliosis was evident predominantly in the CA3 region of the 

hippocampus. Jorgensen el al (1993) observed signs of gliosis in the CA3 of the 

hippocampus in kainate-treated rats which occurred with an increased prominence from 2 

days to 21 days. In view of this reported delay, gliosis may not occur within the run-time 

o f the test experiments (kainate-evoked release of adenosine was investigated over a time 

period of 4hrs 20 min after the first pulse of kainate). Activation of kainate receptors, 

which are reported to be present on glial cells, may contribute to an increase in 

extracellular potassium ions (Teichberg, 1991). Consequently, there may be a potassium- 

induced depolarisation of neighbouring neurones leading to initiation of action potentials 

and transmitter release. A loss of ionic homeostasis may lead to cell swelling which is 

reported to occur with the early onset of cell death (Koh et al, 1990). It is not unlikely that 

the gliosis observed in the present study indicates the occurrence o f early onset neuronal 

damage after kainate exposure.

Kainic acid has been shown to increase glutamate release in vivo from the hippocampus 

(Lehmann et al, 1983) and striatum (Butcher et al, 1987) and in vitro from the cerebellum 

(Ferkany et al, 1982; Ferkany & Coyle, 1983). It has been shown that both glutamate 

(Mayer et al, 1987) and kainate (Butcher et al, 1987) cause the influx of calcium ions. 

Intracellular calcium has been proposed to accelerate the formation of glial filaments, 

shown by an increase in glial fibrillary acidic protein, a marker for astrocytes (Aono et al, 

1990).
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Mossy fibres terminals and CA3 pyramidal cells are known to exhibit kainate receptors 

(Ferkany et al, 1982; Battler & Mulle, 1995, Malva et al, 1995) which may explain why 

the glial cells in the CA3 part of the hippocampus were more susceptible to kainate than 

glial cells in other parts o f the hippocampus (e.g. CA2 and CAl).

The differences in methodology between the present histology experiment and the 

experiments investigating kainate-evoked release of adenosine (test experiments) must be 

recognised, especially the anaesthetics used. In the histology experiments the anaesthetics 

used were halothane and Hypnorm and Hypnovel where as in the test experiments the 

anaesthetic used was urethane. It has previously been shown that the severity of 

hippocampal damage following ischaemia varies with the anaesthetic agent (Lees, 1992). 

Following the intrahippocampal injection of kainate, Lees (1992) has shown that the 

amount of hippocampal neuronal loss was greater when given under short acting 

anaesthetics halothane and ketamine, than when given under pentobarbital. This is 

important in context of the neuronal damage observed in the present histology experiments 

(under halothane) which may not occur to the same extent in the test experiments (under 

urethane).
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PART H
-y

Summary

Recently, in the Laboratory of Human Anatomy, University of Glasgow, a mutant strain of 

rats has spontaneously arisen with locomotor deficits including general ungainliness, a wide 

staggering gait and, when fiilly developed, an inability to initiate movement. The rat is 

known as the Albino Swiss/ Anatomy Glasgow University (AS/AGU) rat.

So far, previous work has shown that, at 12 months o f age, the AS/AGU rats have fewer 

dopaminergic cell bodies in the substantia nigra pars compacta than control animals 

(Clarke & Payne, 1994). Based on these preliminary results, their progressive loss of 

locomotor function and the finding that their post-mortem striatal tissue dopamine levels 

are lower than in control animals (J.M. Campbell, personal communication), the AS/AGU

11

' I
rat may have the potential to serve as a natural animal model of basal ganglia disorders.

The extracellular levels of monoamines, and the effect of L-dopa on these levels, in 5 

month old AS/AGU and AS rats have been studied in the present work by in vivo 

microdialysis of the conscious freely-moving rat. The striatal monoamine post-mortem 

tissue levels have also been studied in 5 month old rats.

There was no significant difference in the basal extracellular striatal DOPAC (3,4- ;:: 1 
•1

dihydroxyphenylacetic acid) levels between the AS/AGU and AS rats at 5 months of age.
IL-dopa increased the levels of dopamine and DOPAC in the AS rats to a higher extent than 

in the AS/AGU rats, indicating that the AS/AGU rats have less ability to convert L-dopa to 

dopamine and DOPAC than the AS/AGU rat. There was no difference in the striatal tissue 

dopamine and DOPAC levels between the AS/AGU and AS rats apart from the VCPu 

which has a drop in DOPAC levels but no difference in dopamine levels. This latter result 

taken together with the previous finding of a drop in dopamine in the 12 month old 

AS/AGU rats indicates that the drop in dopamine is probably age related and occurs 

between the ages of 5 and 12 months.
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5.0 INTRODUCTION

The search for animal models which accurately mimic the clinical conditions o f human

movement disorders is ongoing as current paradigms have their drawbacks.

Pharmacological manipulations of dopaminergic systems in the CNS (for example, using 6-

hydroxydopamine (Ungerstedt, 1968; Voom et al, 1987) or MPTP ( 1 -methyl-4-phenyl-

1,2,3,6-tetrahydropyridine) (Bums et al, 1983; Bankiewicz et al, 1986) are currently in use

for modelling Parkinson’s Disease. Mutant strains o f mice which have movement disorders

exist, some of which have deficits in dopaminergic systems, for example, the weaver mouse

(Roffler-Taylov & Graybiel, 1984).

In the Laboratory o f Human Anatomy, University of Glasgow, a mutant strain of rats has
.spontaneously arisen with locomotor deficits including general ungainliness, a wide 

staggering gait and, when fully developed, an inability to initiate movement. The rat is 

known as the Albino Swiss/ Anatomy Glasgow University (AS/AGU) rat and has, at 12 

months of age, fewer dopaminergic cell bodies in the substantia nigra pars compacta than 

control animals (Clarke & Payne, 1994). The AS/AGU rats breed well and their life 

expectancy is around 18 months. The behavioural deficits become apparent approximately 

ten days post-natal and progressively get worse. So far no detailed work has been carried 

out on the cerebellum but the animals have been shown to possess both purkinje cells and a 

granule cell layer.

The advantages of the AS/AGU rat as a natural model of locomotor disorders over other 

models would be the potential ability to examine an age-related progressive disease and the 

possibility of being able to isolate the gene.

The aim of the present project was to examine the striatal monoamine content in freely- 

moving AS/AGU and control rats by microdialysis. In the present study the AS (Albino 

Swiss) rats were used as controls for the mutant AS/AGU rats.

5.1. Basal ganglia

The basal ganglia, as the name suggests, include deep-lying structures of the cerebral 

hemispheres, notably the corpus striatum (the caudate nucleus, putamen and GP). 

Compartmentalisation of the caudate-putamen has been detected biochemically by staining
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for acetylcholinesterase (AchE) activity. Small AchE-deficient zones have been named the 

striosomes and make up about 10-20% of the volume of the striatum. These patches of the 

striatum are also deficient in G ABA and neuropeptides. The other 80% of the striatum is 

the matrix. The neurochemical differences between the striosomes and the matrix are not 

all-or nothing. One point noteworthy is that the striosomes seem to have the excitatory D1 

binding sites whereas the matrix appears to contain the inhibitory D2 binding sites 

(Graybiel, 1990). The matrix compartment receives the striatal inputs most directly related 

to sensorimotor processing and projects in turn mainly to the pallidum and the lateral 

(probably reticular) part of the substantia nigra whose outputs complete the motor circuit 

via the thalamus (Jimenez-Castellanos & Graybiel, 1989). By contrast, striosomes appear to receive 

inputs from neural structures affiliated with the limbic system (Donoghue & Herkenham, 

1986) and the outputs of the striosomes mainly project to the medial part of the substantia

nigra (including apparently the pars compacta) and also to the pars lateralis of the
■

substantia nigra (Jimenez-Castellanos & Graybiel, 1989). It is suggested that dopaminergic 

drug therapies and cell-replacing grafting therapies could have different functional effects 

depending on whether they are targeted at the striosomes or the matrix. Modulation of the 

dopaminergic input to the striatum by striosomes may be related to motivational 

information from the limbic system whereas the matrix may be tightly linked to specific 

sensoiy and motor parameters.

A major breakthrough in the understanding of how basal ganglia dysfunction may lead 

either to the hyperkinetic state of Huntington’s disease or the akinetic state of Parkinson’s 

disease has come from the knowledge that there are two pathways that mediate striatal 

influences over the activity of thalamocortical neurones. Both pathways go through the 

GPi/SNr (internal segment of the globus pallidus/substantia nigra reticulata). When animals 

are at rest, there is little striatal output, while GPi/SNr neurones emit a regular and 

sustained flow of impulses, producing a tonic suppression o f the thalamo-cortical neurones 

(Chevalier & Deniau, 1990).

The Motor Circuit:
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The more direct of the two pathways has striatal output mediated by the transmitters

GABA and substance P with synapses in the GPi/SNr which inhibit the tonic GPi/SNr
'I

suppression of the thalamus.

The more indirect route o f the two pathways has striatal output mediated by transmitters 

GABA and enkephalin. The indirect pathway involve sequential inhibitory synapses in the 

external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). An 

excitatory projection from the STN to the GPi/SNr facilitates tonic GPi/SNr suppression of 

the thalamus.

The direct and indirect pathways have opposing effects on thalamic activity. The direct 

pathway tends to facilitate ongoing motor activity and the indirect pathway to dampen 

motor activity (fig 5.1). One of the main points to note is that activation o f the direct 

pathway leads to disinhibition o f the GPi/SNr neurones which leads to a hyperkinetic state.
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Fig 5.1.

The motor circuit. A simplified diagram of the “direct” and “indirect” pathways of the 

motor circuit in the Basal Ganglia.
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D1 receptors are localised on the cell bodies of striatal neurones that send 

GAB A/substance P projections to the GPi (direct pathway) (Tenner, 1995). Thus

dopaminergic inputs to the striatum appear to have a net excitatory effect on this efferent
'I

neurone (Alexander & Crutcher, 1990). D2 receptors are localised on the cell bodies of the y

GABA/enkephalinergic neurones projecting to the GPe (indirect pathway) (Tenner, 1995).

Thus dopaminergic inputs to the striatum appear to have a net inhibitory effect on the |
I '

GABA/enkephalinergic neurone (Alexander & Crutcher, 1990).

Immunocytochemical data from post-mortem human tissue indicate that the loss of the 

GABA/enkephalinergic striatal projection to the GPe in Huntington’s disease is more 

severe than the loss of the substance P containing projection to the GPi (Reiner et ai,

1988). A more dominant activation o f the GABA substance P neurone may result in the 

hyperkinetic state observed in Huntington’s disease since the direct pathway tends to 

facilitate motor activity.

6-Hydroxydopamine injections into the substantia nigra, which denervated dopaminergic 

inputs to the striatum, have been shown to decrease substance P-immunoreactivity and 

increase enkephalinergic-immunoreactivity (Voom et al, 1987). Thus the innervation of the 

indirect pathway may be increased when nigrostriatal neurones are denervated. Since the 

indirect pathway tends to dampen motor activity, this is consistent with the notion of an f

akinetic state in Parkinson’s disease.

Studies on the neuronal activity of MPTP-treated animals have shown a decrease in the 

mean tonic discharge in the GPe (DeLong, 1990). There was a significant increase in tonic
/ft

neuronal discharge in GPi/SNr neurones (DeLong, 1990). These observations are 

consistent with the evidence indicating that the loss of striatal dopamine results in an
1

increase in transmission through the indirect pathway (i.e. from striatum to the GPe,

GAB A/enkephalin) and a decrease in transmission through the direct pathway (i.e. from 

striatum to the GPi/SNr, GAB A/substance P) (DeLong, 1990). The overall effect would be 

a tonic GPi/SNr suppression of the thalamus (DeLong, 1990). Thus there is an increased 

negative feedback to the cortex resulting in decreased instructions to the spinal cord and
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suppression o f motor activity. This may explain why Parkinsonian patients find it difficult 

to start moving and why their movements are so slow (Altman, 1990).

5.2 Basal ganglia disorders

1817 was the year that James Parkinson provided the first description of the behavioural 

symptoms o f the disease that is now known as Parkinson’s disease. Parkinsonian patients 

typically show a mild resting tremor, muscular rigidity, postural abnormalities and 

bradykinesia.

In 1954, a similarity in the behaviour of reserpinised rats (akinesia) and parkinsonian 

patients, (Plummer et al, 1954; Tripod et al, 1954) led to the discovery of the striking loss 

of dopamine in the caudate and putamen of the corpus striatum of post-mortem 

parkinsonian patients. Mildly affected patients were found to have a deficit o f 80% of 

striatal dopamine and it was discovered that the severity of akinesia and rigidity was 

correlated with the extent o f further dopamine loss (Bemheimer et al, 1973; Lloyd et al, 

1975).

The search for an animal model of Parkinson’s disease is ongoing. Pharmacological 

manipulation of dopaminergic systems in the CNS has been used to model Parkinson's 

disease, with varying degrees of limitation. Reserpine depletes serotonin as well as 

dopamine (Shore et al 1955) and chlorpromazine, haloperidol and alpha-methyltyrosine
I

induce acute rather than chronic behavioural impairments (Janssen et al, 1960; Moore & 

Rech, 1967).

Permanent depletion of brain catecholamines was found after direct application o f 6- 

hydroxydopamine into the brain (Ungerstedt, 1968). When administered with 

desmethylimipramine, an inhibitor of high affinity uptake into noradrenergic neurones, 6- 

hydroxydopamine depletes tissue dopamine but not tissue noradrenaline (Breese and 

Taylor, 1971). 6-Hydroxydopamine is taken up into the dopamine terminal by the high 

affinity dopamine uptake system and oxidises to form hydrogen peroxide (Heikkila & 

Cohen, 1972). The subsequent production of cytotoxic hydroxyl radicals may lead to the 

destruction o f the dopaminergic neurones.
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Parkinsonism induced by MPTP was the first model which reproduces the clinical, 

pathological and biochemical characteristics of the human disorder (Bums et al, 1983; 

Bankiewicz et al, 1986). MPTP is converted in the brain to MPPT ( 1-methyl-4-
■il,;

phenylpyridinium) by monoamine oxidase (MAO). MPP+ is then selectively taken up into

nigrostriatal neurones. MPP+ destroys nigrostriatal neurones by a mechanism which is still 

unclear but is thought to involve the production o f H^O^. and free radicals. MPTP-treated 

animals exhibit one of the pathological hallmarks of Parkinson’s disease: the loss of 

melanin-containing neurones of the pars compacta of the substantia nigra, resulting in loss Ç
ft

of dopamine in the striatum and the substantia nigra itself. However, drug-induced 

parkinsonism has the disadvantage that it is not a progressive disease as found in the

human disorder.

5.3 The formation and degradation of monoamines

When the neurones are at rest, dopamine metabolism follows leakage of the amine into the
ft'

cytoplasm. Dopamine is then degraded to DOPAC (3,4-dihydroxyphenylacetic acid) within 

the dopaminergic neurone (Carlsson & Hillarp, 1962; Roffler-Tarlov et al, 1971; 

Westerink, 1979) although the precise site of metabolism within the neurone is not certain. .1

Efflux o f DOPAC from its neuronal site may occur, dependent on its lipophilicity 8

(Trendelenburg et al, 1980) or by active transport (Miyamoto et al, 1991). Exposure of 

DOPAC to catechol-O-methyl transferase (COMT), an enzyme thought to be present 

intraneuronally or extraneuronally (Roffler-Tarlov et al, 1971; Westerink, 1979), results in 

the formation of HVA (4-hydroxy-3-methoxy-phenylacetic acid or homovanillinic acid).

The 0-methylation of dopamine to MTA (3-methoxytyramine) is probably not an important 

alternative route of metabolism of dopamine. The quantity o f HVA formed via MTA has 

been considered unimportant relative to the quantity o f HVA formed via DOPAC 

Westerink (1979).

’When neurones are excited, action potentials invade dopaminergic terminals, and dopamine
-ft'

is released by exocytosis. The bulk of extracellular dopamine is taken back up into the 

cytoplasm of the neurones. Most of the cytoplasmic dopamine is subsequently transformed
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to DOPAC but little seems to be restored into intracellular elements (Zumstein et al, 

1981).

Thus it appears that DOPAC is formed intraneuronally when neurones are both at rest and 

excited (Zumstein et al, 1981).

It has been proposed that DOPAC is a useful index of dopamine release (Roth et al, 1976) 

since striatal tissue levels of DOPAC have been shown to increase following electrical 

stimulation of the nigrostriatal pathway but decrease after cessation of impulse flow. Early 

experiments performed on the superior cervical ganglion of the rat (Karoum et al, 1977; 

Lutold et al, 1979) and pig (Pearson & Sharman, 1974) led the authors suggest that the 

concentration of DOPAC may be a good reflection of the rate o f dopamine release due the 

rapid rate of dopamine metabolism.

Later experiments suggest a lack of relationsliip between dopamine and metabolite output 

(Imperato & Di Chiara, 1984). Extracellular dopamine is increased during ischaemia but 

DOPAC is decreased. This has been explained by the decrease in blood flow during 

ischaemia causing hypoxia in the tissue which decreases the activity of the enzyme MAO. 

Imperato & Di Chiara (1984) therefore hypothesise that DOPAC levels are coupled to 

dopamine metabolism not dopamine release. Another explanation is that depolarisation of 

neurones causes a failure of monoamine transport. Failure of uptake of dopamine would 

result in increased extracellular dopamine but decreased DOPAC since less dopamine is 

being converted to DOPAC intraneuronally.

For the amount of DOPAC in the ECF to reflect the amount of dopamine released, 

transmitter metabolism must be coupled to transmitter release and the following criteria 

must be met: Firstly, DOPAC must not be formed fi*om any precursor other than 

dopamine. To date, no other pathway of DOPAC formation has been realised. Secondly, 

dopamine must not be metabolised to any product other than DOPAC. There is evidence 

that dopamine can be 0-methylated to MTA. This metabolic pathway o f dopamine appears 

to be quantitatively unimportant according to Westerink (1979). However, if it does occur 

then the measurement of DOPAC levels will give an underestimated reflection of dopamine 

levels.
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Thirdly, after reuptake of released dopamine, dopamine must always be metabolised into

DOPAC and not be restored into intracellular elements as proposed by Zumstein et al
.(1981). Wachtel & Abercrombie (1994) reported that dopamine is indeed metabolised to 

DOPAC since a MAO inhibitor increased extracellular dopamine levels but decreased 

extracelullar DOPAC levels.

Fourthly, DOPAC must not be formed fi*om dopamine unless the dopamine has first been 

released into the ECF. Santiago et al (1993) report that when impulse flow of the 

nigrostriatal neurone is suppressed by the application of TTX or baclofen, dopamine is no 

longer released, though there is an increase in extracellular DOPAC levels. This implies 

that when dopaminergic neuronal activity is suppressed, dopamine is intraneuronally 

metabolised instead of being released. Therefore changes in DOPAC levels may reflect 

changes in intraneuronal dopamine metabolism instead of changes in dopamine release. 

Therefore an increase in neuronal activity is not a prerequisite for an increase in dopamine 

metabolism (Santiago et al, 1993).

The size of the cytoplasmic pool of dopamine is probably largely dependent on the rate of

dopamine synthesis (Zetterstrom et al, 1986). AADC (aromatic amino acid decarboxylase)

has been shown to exist in non-dopaminergic neurones allowing dopamine synthesis

outwith dopaminergic neurones (Lloyd & Hornykiewicz, 1970; Hefti et al 1981; Melamed

et al, 1981). The possibility of dopamine metabolism in such elements where dopamine

synthesis occurs cannot be ruled out and indeed an L-dopa-induced increase in DOPAC

has been shown after destruction of dopaminergic terminals (Sarre et al, 1994).

In any case, for the changes in concentration of dopamine or DOPAC to reflect the

changes in dopaminergic neuronal activity, dopamine or DOPAC must not be released 
.from any sites other than from dopaminergic neurones.

For the changes in DOPAC concentration to reflect the changes in dopamine release after 

pharmacological manipulation, dopamine metabolism must not be stimulated by the drug(s) 

employed without the release of dopamine. In addition, drug(s) must not impede nor 

accelerate the removal of DOPAC from its site of production. It has been shown that 

haloperidol inhibits the transport of DOPAC and HVA away from their sites of production
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(Westerink et al, 1984) and amphetamine inhibits MAO (Greene & El Hait, 1978). Thus 

the interpretation o f drug-induced DOPAC concentration changes as being changes in 

either dopamine release or dopaminergic neuronal activity needs caution as the application 

of haloperidol would give a false positive and that of amphetamine would give a false 

negative.

The aim of the present experiments was to:

1) compare the basal dialysate and tissue levels of the monoamines in AS/AGU rats with 

that of the AS control rats

2) compare the effects of L-DOPA on the dialysate monoamine levels of the AS and 

AS/AGU rats

5.4 Adenosine and dopamine interactions

Recent evidence shows that dopaminergic neurotransmission in striatum can be modulated 

by adenosine analogues (Zetterstrom & Filenz, 1990). Al receptor agonists have been 

shown to decrease dopamine release in vivo from the rat striatum (Zetterstrom & Filenz, 

1990). A non-selective A1/A2 receptor antagonist has been shown to increase dopamine 

release in the rat striatum, implying that endogenous extracellular adenosine may tonically 

suppress dopamine release (Ferre et al, 1993). This presynaptic adenosine-dopamine 

interaction seems to involve Al receptors since the inhibition of dopamine release by 

adenosine agonists was blocked by selective Al receptor antagonists (Zetterstrom & 

Filenz, 1990). In contrast, most of the evidence regarding adenosine-induced behavioural 

effects suggests that A2 receptors are involved in the interaction of dopaminergic 

neurotransmission (Ferre et al, 1992). A2 receptor-induced catalepsy has been 

counteracted by specific D2 receptor agonists (Feae et al, 1991).

An important finding is that A2 receptors have been shown to be co-localised with D2 

receptors on the GABA/enkephalinergic neurones which project to the GPe (Fink et al, 

1992, Ferré et al, 1992). Dopamine neurones arising in the substantia nigra, by acting on 

the D2 receptors inhibit the indirect pathway, causing an inhibition of the GPi neurones and 

hence a facilitatoiy effect on motor activity. Activation of A2 receptors has been shown to 

decrease the affinity of D2 receptors for dopamine (Ferre et al, 1994) and A2 receptor
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blockade has been shown to enhance postsynaptic D2 receptor transduction (Ferre et al, 

1993).

Since activation of Al receptors decreases dopamine release and activation o f A2 

receptors decreases the affinity of D2 receptors for dopamine, the present experiments were 

designed to establish the extracellular concentration of adenosine in the striatum in the 

AS/AGU rats in comparison with that in the AS rats.
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6.0 METHODS

6.1 The surgical procedure

All animal procedures were in accordance with the Home Office Guidelines and were

specifically licensed under the Animal (Scientific Procedures) Act 1986.

All animal were bred ‘in house’, unless stated otherwise, and had free access to food and
■

water at will.

Male Albino Swiss (AS) or Albino Swiss/ Anatomy Glasgow University (AS/AGU) rats 

(aged 5 months, approximately 330g) were anaesthetised using ketamine (Vetalar 

lOmg/ml, Parke-Davis Veterinary) and xylazine (Rompun 20mg/ml, Bayer) in a ratio of 

2:1, 1. l-1.2ml/kg. A homeothermic blanket maintained rectal temperature at 36-37®C 

during surgery. The rats were mounted in a David Kopf stereotaxic frame with the incisor 

bar at -3.5mm. The skull was exposed and one drop of lignocaine and adrenaline solution 

(Norbrook Laboratories (GB) Ltd.) was used to keep the skull free from excess blood.

Two skull screws were placed in holes which were drilled on the left hand side of the skull.
.A 20G guide cannula, 1,6cm long, was stereotaxically inserted into the anterior caudate 

putamen (ACPu) (+1.0mm AP, 2.5mm L; 3.5mm V) or into the posterior caudate putamen 

(PCPu) (-1.0mm AP, 4.25mm L, 5mm V) after a hole at the relevant position was drilled 

and after the dura mater was pierced. All co-ordinates were relative to the bregma suture 

(Paxinos & Watson, 1985). Before insertion of the guide cannula, dental cement (Redifast 

pink powder and liquid, Wright Health Group Ltd.) was spread around the screws and the 

cannula to anchor the cannula in place. The cannula was blocked by a stylet 1.6cm long.

The wound was sutured if necessary and the animal removed from the stereotaxic frame 

and placed in a cage. All animals were watched while recovering from the operation and 

anaesthetic and occasionally 0.1ml of ^tipamezole (Antisedan 5mg/ml, Smith Kline 

Beecham) was administered subcutaneously to allow speedy recovery. A 5ml s.c. injection 

of sodium chloride (0.18%) and glucose (4.0%) (Baxter) was administered after surgeiy as 

a nutrient and for rehydration.

6.2 Micro dialvsis
8
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Two to three days after surgery the animal was placed in a perspex cage and allowed to 

move freely throughout the experiment. The microdialysis system used for freely moving 

animals is shown in fig 6.1. Perfusion fluid was perftised through a dual channel liquid 

swivel and a microdialysis probe. The animal was restrained and the microdialysis probe 

was then inserted into the striatum through the guide cannula, after removal o f the stylet. 

The resultant depth of the probe tip was 2.5mm lower than the cannula depth i.e. 6mm for 

the ACPu and 7.5mm for PCPu from the bregma. The position o f the probe in the ACPu 

and PCPu are shown in fig 6.2a & b. Epoxy glue took up 0.5mm of the tip, leaving 2mm of 

membrane for active diffusion. The probes were continuously peiftised with acsf, 

composed of 125mM NaCl, 3,3mM KCl, 1.25mM KH2PO4, 2.4mM MgSO^, 1.2mM 

CaCl2 (pH 7.2) at a flow rate o f 2pl/min using a CMA 100 microinjection pump (CMA 

Medicin, Stockholm, Sweden). Dialysate samples were collected every 20min into vials 

manually or by CMA 170 Refrigerated Automated Fraction Collector. Sample collection 

began 120 minutes after the probe was inserted through the cannula, unless otherwise 

stated. In the case of monoamine analysis, the 40pi dialysates were collected into vials 

already containing 5pi of DHBA (4.05pM) in HCl (0.9M). DHBA and HCl act as an 

internal standard for HPLC analysis and a monoamine stabiliser, respectively. The final 

concentration of DHBA was 0.45pM, and that of HCl was O.IM. In the case of purine 

analysis, the 40pl dialysates were collected into empty vials. All samples were either 

analysed immediately or snap frozen in liquid nitrogen and stored at -80^C for later HPLC 

analysis.

Drugs administered intrastriatally by reverse dialysis were dissolved in acsf, pH7.2. The 

lag-time between the syringe selector and the collection chamber was 30 min and this was 

accounted for in all experiments i.e. the sample was collected 30 min after the syringe with 

the drug in it was selected. Test and control solutions were changed by means of a CMA 

111 Syringe Selector which caused little disturbance to the flow. Three basal levels were 

achieved before administering drugs, the mean of these basal levels was calculated and 

compared with evoked release by paired t-test.
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At the end of each experiment, one of two procedures were carried out. Either the rats 

were killed by overdose o f urethane. 10% pontamine sky blue dye solution was then 

perfused through the probes for 2 minutes, after which the brains were removed and placed 

into 10% formalin pH 7 to fix overnight. The brains were subsequently sectioned manually 

using a razor blade in order to locate the dye. Alternatively, the rats were anaesthetised by 

CO^ gas and killed by cervical dislocation. The brains were immediately removed and 

placed on dry ice for post-mortem analysis to be carried out by micropunch. The probe 

location and tissue sampling is explained in detail in section 6.4.
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Fig 6.2
Position of the probe within the a) ACPu and b) PCPu
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6.3 Protocol for chrome L-dopa injection

L-dopa methyl ester and benserazide were dissolved in sodium metabisulphite 0.1% 

solution which was filtered and degassed and injected daily into two AS and two AS/AGU 

rats over 5 days. Microdialysis experiments were carried out on day 5 from the PCPu. L- 

dopa methyl ester 500mg/kg was injected 30 min after 50mg/kg benserazide once a day for 

two days. On days three and four of the protocol the doses were halved due to 

hyperactivity o f one of the groups of animals. On day three a guide cannula was surgically 

implanted into the left hand striatum using the coordinates for the posterior CPu. On day 

five the animals were injected with the original doses and Ihr 15min after the L-dopa 

injection, the animals were gently restrained and a microdialysis probe was inserted into the 

posterior CPu through the guide cannula after removing the stylet. Samples were collected 

for 3hrs 40min after probe insertion.

6.4 Materials

The following materials were used:

From Sigma Chemicals: benserazide, DHBA, L-DOPA, DOPAC, dopamine and HVA.

6.5 Microdialvsis Probe Construction (concentric probe design!

The microdialysis probes have very similar design to those previously described (section

2.6.) with slight modifications for the use in the striatum in conscious animals.

1) A 23G Microlance needle is filed to a length of 20mm. The needle is inserted into the 

guide cannula to check that it has a smooth fit. The needle is removed from cannula.

2) At least 10mm Hospal polyacrylonitrile membrane (0.3mm, o.d.) is fed through the 

lumen of the filed needle. Forceps are used at all times to avoid plugging pores with grease 

or dirt

3) 2.5mm of the membrane is allowed to be exposed from inside of the needle and the join 

between the membrane and the needle is glued, using resin and hardener in a 50: 50 

mixture (RS Components), so as not to get any glue on the membrane below the needle 

join. It is essential that the minimum amount of glue is on the outside of the needle as glue 

here would compromise an easy fit into the guide cannula.
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4) Portex tubing (0.58mm i.d.) is attached to the opposite end of the needle and the join 

with the needle is glued.

5) A hole in the Portex tubing is made with a needle and silica tubing (i.d. 40pm) is fed 

through the lumen of the dialysis membrane towards the hole. The silica tubing is cut and 

adjusted so that the end is positioned at least 1mm from the tip o f the dialysis membrane, 

with at least 5mm left outside the Portex tubing. The tip o f the dialysis membrane is 

plugged with epoxy and left to dry before the silica tubing is pushed further down so that it 

is 1.0mm from the tip (0.5mm of which is taken up by the epoxy glue).

6) The hole in the Portex tubing is glued (i.e. the join between the silica tubing and the 

Portex tubing). The Portex tubing is cut so that it is 2cm long. 2x30cm thinner Portex 

tubing (0.28mm i.d.) are cut and angled at the ends. One piece o f this thinner Portex tubing 

is slipped into the thicker (0.58mm i.d.) Portex tubing and the join is glued. The second 

piece of thinner tubing is slipped over the 5mm remaining silica tubing and the join is 

sealed with epoxy.

6.6 Micropunch

A maximum of seven days after the surgical operation for cannula implantation (3 to 5

days after the microdialysis experiment) the AS and AS/AGU rats were anaesthetised with

CO2 gas and killed by cervical dislocation. Only the rats which did not receive any drug

treatment were used for micropunch tissue analysis. The brains were immediately dissected

out and placed onto dry ice. The brains were sectioned coronally from rostral to caudal

into 20pm slices using a cryostat until the corpus callosum was reached. At this point, in 
.

the ACPu, a micropunch core (1.0mm id and 1.0mm length) was taken from the right hand 
.side o f the brain (the opposite side to that o f the microdialysis guide cannula and probe 

position) (fig 6.3a). If  the dialysis experiment was performed in ACPu in that animal, after 

extracting the tissue core, the brain was further sectioned to the plane of the dialysis probe 

position in the left hand side and the location was verified by light microscopy. The core 

was approximately 0.5mm rostral and 0.5mm caudal to the microdialysis probe tract. 

Sectioning continued until the anterior commissure and fornix joined to make a triangle. At 

this point micropunch cores were taken from the PCPu in three regions, namely the dorsal
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and HPLC analysis.

(DCPu), middle (MCPu) and ventral (VCPu) caudate putamen (fig 6.3b). If the dialysis 

experiment was performed in the PCPu in that animal, after extracting the tissue cores, the 

brain was further sectioned to the plane of the dialysis probe position in the left hand side 

and the location was verified by light microscopy. The core was approximately 0.5mm

rostral and 0.5mm caudal to the microdialysis probe tract.
.All micropunch samples were immediately fi*ozen in liquid nitrogen for deproteinisation

To each micropunch core of tissue lOOpl O.IM HCl and 50pl o f 0.45pM DHBA were

added. HCl was added to stabilise the amines and break down the protein and DHBA was 
.added as an internal standard. The samples were then centrifuged at 3000g at 4 C for 10 

min, vortexed for 30 seconds and then centrifuged again at 3000g, 4^C for 10 min. 

Supernatants of the samples were transferred to a fresh eppendorf tube and frozen at -80°C 

until HPLC analysis. The protein pellets, left-over after removal of the supernatant, were 

used for protein estimations using the Lowry assay (Lowry et al, 1951), the calibration 

curve of which is shown is fig 6.4.

Statistical analysis was carried out between the AS and AS/AGU groups for the ACPu,

DCPu, MCPu and VCPu using an unpaired t-test. DOPAC to dopamine concentration 

ratios give an indication of dopamine utilisation at the nerve terminal. Ratios were 

calculated for each tissue extract and comparison between AS and AS/AGU groups were 

made using unpaired t-test. Statistical analysis was also carried out between each region 

for both the AS and the AS/AGU groups by unpaired t-test.
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6.7 Monoamine analysis

Monoamines were analysed by an isocratic ion pair HPLC system using electrochemical 

detection (Gilson manometric module #802, Gilson electrochemical detection model #141, 

Gilson pump model #302). Each sample was injected onto a lOpl loop by means o f a 

Rheodyne Switch, model 3175.

For micropunch analysis, an automated system was used (Gilson electrochemical detection 

model #141, Gilson pump model #307, Gilson sampling injector #231XL, Gilson dilutor
I

#401C and Rheodyne switch 7010).

DOPAC, DHBA, dopamine and HVA in both systems were separated out by a 25 cm x

4.5mm C18 5pm Hypersil column and a mobile phase consisting of 83mM citric acid,

l.OmM ethylenediamine tetra acetic acid (EDTA), 43mM disodium hydrogen phosphate,

0.2mM octane sulphonic acid and 10% methanol at a flow rate o f Iml/min. Each run time

was 40 minutes, with retention times of DHBA at 4.2 min, dopamine at 5.4 min, DOPAC

at 9.8 min and HVA at 35 min. The detection limit of each sample was 0.053ng/10pl

(0.28pmol/10pl) for dopamine, 0.042ng/10pl (0.25pmol/10pl) for DOPAC and

0.063ng/10pl (0.35pmol/10pl) for HVA.

A standard solution was injected onto the HPLC system every seven samples and an

example o f a typical chromatogram is shown in fig 6.5 a. The identification of compounds
’was achieved by comparison of retention time with standards. Peak areas were computer 

analysed by Gilson 712 HPLC software. Quantification of the compounds was achieved by 

proportion using the internal standard (DHBA). Table 6.1 shows the correlation 

coefficients and ‘r^’ values for the graphs seen in fig 6.6.

The amount of monoamine in the dialysate samples, as measured by HPLC by manual 

injection (lOpl loop), was corrected for the dilution which occurred from addition of the 

internal standard and HCl.

A chromatogram from a typical dialysate sample is shown in fig 6.5b. The HPLC did not 

detect dialysate HVA, presumably because of the sensitivity required for the detection of 

this compound.
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The HPLC system used in the present study was used mainly for teaching and research 

within the laboratory run by Dr. Des Gilmore. Therefore attempts to increase the 

sensitivity of the HPLC were restricted.

The injection loop of the HPLC of the automated system used for the micropunch samples 

was 20|il and the volume o f each micropunch sample was 150pi. The amount of 

monoamine in the micropunch samples, as measured by the automated HPLC, was 

multiplied by 7.5 to give the total amount o f monoamine in each tissue extract. By dividing 

this by the amount of protein, as estimated by the Lowry Assay, the amount of monoamine 

per weight of protein was calculated.

Table 6.1

The correlation coefficients for the monoamines analysed by HPLC.

Monoamine r r?

DHBA 0.992 0.984

Dopamine 0.994 0.987

DOPAC 0.994 0.989

HVA 0.994 0.988

1 8 9



D H B A
100-1

DA

DOPAC

80-

60-
m V

20-

00 4 0 003 0 0 02 0 . 0 0  25 0 010  000 , 00

b
IO O h

80-

mV
60

4 0

20-

0 -

D H B A

DOPAC

A

' ' ' 1
0 . 0 0  5 00 10 00 15 :iO 20 00 25 00 30 00 35 00 40 00

Tune MTin-.i.'.teL-'

Fig 6.5

Chromatogram of (a) monoamine standard and (b) an example o f a dialysate sample taken 

from the ACPu Ing/lOpl

1 9 0



2
c

o(U
<
o<D

CL

140000 n

120000  -

100000  -

80000 -

60000 -

40000 -

20000  -

0 100 200 300 400 500 600 700

M o n o a m i n e  C o n c e n t r a t i o n  (nM )

Fig 6 . 6

Calibration Graph for the determination of DHBA, dopamine, DOPAC and HVA by 

HPLC.

* DHBA 

A DOPAC 

^ dopamine

# HVA

1 9 1



6 . 8  Purine Analysis

Purines were analysed using an isocratic HPLC (Severn Analytical Solvent Delivery 

System SA6410B) and ultraviolet detection at 254nm (Severn Analytical uv/vis 

Absorbance Detector SA6500) and a Rheodyne model 7125 injector (lOOpl loop).

Two types of columns and two mobile phases were used. Firstly, the mobile phase used 

was 0.0 IM sodium phosphate (NaH2  PO4 ) with 15% methanol (HPLC Grade) pH 6.1 at a 

flow rate of 0.8ml/min. The column used with this mobile phase was a techsphere CIS 

3 pm microsphere column, 10cm by 4.6mm, was used to separate out adenosine at 2.4 min 

retention (fig 6.7). Hypoxanthine, xanthine and inosine were washed off the column with 

the solvent front using 15% methanol in the mobile phase (instead of 6 % methanol which 

was used with a similar column in Part I of the present thesis) and adenosine was separated 

out at a retention time of 5.2min. By increasing the methanol component from 6 % to 15%, 

the limit of sensitivity for adenosine was improved from 1.5pmol to O.Hpmol.

Secondly, the mobile phase used was 0.0IM sodium phosphate (NaH2  PO4 ) with 6 % 

methanol (HPLC Grade) pH 6.1 at a flow rate of O.Sml/min. The column used with this 

mobile phase was a techsphere C l 8  3pm microsphere column, 10cm by 2.1mm (a 

microbore column), and was used to separate out purines at the following retention times: 

hypoxanthine 2min, xanthine at 2.2min, inosine at 3.6min and adenosine at lOmin (fig 6.7). 

By using the microbore column instead of the normal column, the limit of sensitivity for 

adenosine was improved from 1.5pmol to 0.03pmol.

Identification of adenosine in the dialysate samples was achieved by comparison of

retention time with standards. Chromatogram peak heights were measured manually and 
.quantification of adenosine was achieved by parallel chromatography of standards (fig 6 .8 ).

.Table 6.2a & b shows the correlation coefficient and ‘r’ values for the calibration graphs 

seen in fig 6 .8 .
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Table 6,2a

The correlation coefficient for adenosine analysed by HPLC using the mobile phase with 

15% methanol and the normal column.

r r2

Adenosine 0.9958 0.9916

Table 6.2b

The correlation coefficient for adenosine analysed by HPLC using the mobile phase with 

6% methanol and the microbore column.

r r2

Adenosine 0.9992 0.9983
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7.0 RESULTS

7.1. Monoamines

7.1.1 Release of monoamines from the ACPu by microdialvsis

The basal levels of dopamine, DOPAC and HVA in the AS/AGU rats were compared to 

that of AS rats. Two hours settling period after probe insertion was allowed before the 

collection of five basal levels. The lowest mean DOPAC level was 0.223 ± 0.168ng/10p! in 

the AS/AGU rats and 0.166 i  0.039ng/10pl in the AS rats and the highest mean DOPAC 

level was 0.412 ± 0.308 ng/lOpl in the AS/AGU rats and 0.248 ± 0.066 ng/lOpl in the AS 

rats (fig 7.1). Statistical analysis using ANOVA followed by an unpaired t-test showed that 

these differences were not significant.

Dialysate dopamine levels were found to be near the limits of detection of the HPLC 

system (table 7.1). Dopamine dialysate levels in control AS rats which were detectable 

were approximately 4 fold lower than those of dialysate DOPAC levels in these rats. Such 

an assessment could not be made for the AS/AGU rats due to the non-detectable levels o f 

dopamine.

The levels o f HVA in the ACPu dialysates were also close to the limits of detection. Table

7.2 illustrates the levels of detectable samples.
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Table 7.1 Dialysate Dopamine Levels (ng/lOpl) in the ACPu in 5 Month Old Rats (N.D.; 

non-detectable).

Time

(min)

AS AS AS AS/

AGU

AS/

AGU

AS/

AGU

120 0.103 N.D. N.D. 0.07 N.D. N.D.

140 0.1 N.D, 0.176 N.D. N.D. N.D.

160 0.09 N.D. 0.157 N.D. N.D. N.D.

180 N.D. N.D. N.D. 0.083 N.D. N.D.

200 N.D. N.D. 0.109 0.093 N.D. N.D.

Table 7.2 Dialysate HVA levels (ng/lOpl) in the ACPu in individual 5 Month Old Rats 

(N.D.; non-detectable). Time refers to time after probe insertion.

Time AS AS AS AS/

AGU

AS/

AGU

AS/

AGU

120 N.D. N.D. 0.087 0.343 N.D. 0.29

140 0.25 N.D. 0.126 0.225 N.D. (148

160 N.D. N.D. N.D. (1233 0.464 N.D.

180 N.D. N.D. N.D. a 2 i i N.D. 0.21

200 N.D. N.D. N.D. 0.573 0.211 N.D.

.:z
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7.1.2 Monoamine tissue levels from the ACPu bv micropunch

The tissue levels determined from ACPu in 5 month old rats for dopamine was 59.0 ± 11.0 

pg/pg protein (mean ± sem) for the AS rats and 71.0 ± 33.0 pg/pg protein (mean ± sem) 

for AS/AGU rats (fig 7.2a, n.s., unpaired t-test). For DOPAC, the tissue levels detected 

were 4.8 ± 4.0 pg/pg protein (mean ± sd) for AS rats and 17.0 ± 15.0 pg/pg protein (mean 

± sd) for AS/AGU rats (fig 7.2b, n.s., unpaired t-test). The DOPAC to dopamine ratio for 

the tissue levels in AS and AS/AGU rats was 0.156±0.043 and 0.135±0.009, respectively 

(table 7.3, n.s. unpaired t-test).

Table 7.3

The DOPAC/ dopamine ratios calculated using the tissue of DOPAC and dopamine in the 

ACPu, DCPu, MCPu and VCPu for AS/AGU and AS rats.

Region in CPu AS AS/AGU Statistics

ACPu 0.156^=0.043 0.1354=0.009 n.s., unpaired t-test

DCPu 0.2264=0.041 0.23=t0.076 n.s., unpaired t-test

MCPu 0.143=1=0.031 0.1974=0.05 n.s., unpaired t-test

VCPu 0.3554:0.091 0.4134=0.185. n.s., unpaired t-test
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7.1.3 Release of monoamines from the PCPu bv microdialvsis

Dialysate levels of dopamine and DOPAC in the PCPu were collected immediately after 

probe insertion for 3 hrs 40 min. Dialysate dopamine was detected in under half o f the 

experiments carried out on the control AS group of rats and was not detected in any of the 

AS/AGU group of rats. These values are shown in table 7.4. The DOPAC dialysate levels 

in the PCPu of 5 month old rats of the AS/AGU rats were not significantly different from 

the AS values, with levels of approximately O.lng/lOpl in both groups of rats (fig 7.3).

7.1.4 Monoamine tissue levels fi'om the PCPu bv micropunch

The dopamine and DOPAC tissue levels in each of the three PCPu cores were shown not 

to be significantly different between the AS and AS/AGU rats in any of the regions except 

for the ventral CPu (fig 7.4-7.6). In the VCPu the DOPAC level for the AS rat was 4.27 ± 

0,74 pg/pg protein (mean ± sem) and for the AS/AGU rat was 2.21 ± 0.6 pg/pg protein 

(mean ± sem) (*p<0.05, unpaired t-test, fig 7.6b). Tissue DOPAC/ dopamine ratios for AS 

and AS/AGU rats are illustrated in table 7.3. There was no significant difference between 

the AS and AS/AGU rats in any of these regions using unpaired t-test. Comparison o f the 

ratios for each region, DCPu, MCPu, VCPu and ACPu, did not reveal any significant 

difference within either the AS group of rats or the AS/AGU rats. However the mean of 

the ratios in VCPu is higher than the ratios in the other three regions for both AS and 

AS/AGU rats, showing a trend for an increased dopamine utilisation in this area for both 

AS and AS/AGU rats.
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Table 7.4

Dialysate Dopamine (ng/lOp) Levels in the Posterior Caudate Putamen in 5 Month Old 

Rats.

Sample # AS AS AS AS/

AGU

AS/

AGU

AS/

AGU

1 0.54 0.133 N.D. N.D. N.D. N.D.

2 0.15 0.064 N.D. N.D. N.D. N.D.

3 0.104 N.D. N.D. N.D. N.D. N.D.

4 0.11 N.D. N.D. N.D. N.D. N.D.

5 0.16 N.D. N.D. N.D. N.D. N.D.

6 0.11 N.D. N.D. N.D. N.D. N.D.

7 0.11 N.D. N.D. N.D. N.D. N.D.

8 0.08 N.D. N.D. N.D. N.D. N.D.

9 0.06 N.D. N.D. N.D. N.D. N.D.

10 N.D. 0.176 N.D. N.D. N.D. N.D.

11 N.D. N.D. 0.062 N.D. N.D. N.D.
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7.1.5 The effect of intrastriatal L-dopa on monoamine release from the PCPu bv 

microdialysis

A 30 min pulse of lOOpM L-dopa through the probe evoked a release of dopamine and 

DOPAC in the AS group of rats (fig 7.7 & 7.8). In the AS rats the levels o f dopamine 

increased from non-detectable levels to 1.42 ng/lOpi when L-dopa was perfused fiom the 

start of the sample collected at time 220 min until 10 min into the following sample (fig 

7.7). In the AS rats the DOPAC levels increased from 0.18 ± 0.12 ng/lOpl to 2.39 ± 0.49 

ng/lOpi (*p<0.05, paired t-test, n=3, fig 7.8) within the second sample after the start o f L- 

dopa perfusion. The level returned to basal 100 min after the exposure of the tissue to L- 

dopa.

Dopamine did not increase above non-detectable levels in two of the three AS/AGU rats 

tested. A slight rise in the third animal occurred during the exposure of the tissue to L- 

dopa (fig 7.7). In the AS/AGU rats the release of DOPAC, induced by lOOpM L-dopa is 

also bell-shaped (fig 7.8). The dialysate DOPAC levels increased above basal in each of the 

three animals tested, though the aggregated data does not show a significant increase 

above basal using the paired t-test. The mean basal level was 0.163 ± 0.094 ng/lOpl 

(average of the four basal levels before L-dopa application) and the peak mean level was 

0.605 ± 0.33 ng/pl (fig 7.8).

The total amount of DOPAC above basal released by L-dopa in the AS rats was 4.18 ± 

1.12ng/10pl and that for the AS/AGU rats was 1.29 ± 0.55ng/10pl (n.s., unpaired t-test, 

fig 7.8). The total amount of dopamine above basal was not calculated since basal level 

was non-detectable and was recorded as zero.

No behavioural effects of L-dopa (when L-dopa was perfused through the probe) were 

observed in either group of animals.
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The release profiles for dopamine in 10pi dialysates in the PCPu of 5 month old rats 

evoked by a 30 min pulse of intrastriatal L-dopa lOOpM, shown by the horizontal bar.
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Fig 7.8

The release profiles for DOPAC in 10 pi dialysates in the PCPu of 5 month old rats evoked 

by a 30 min pulse of intrastriatal L-dopa lOOpM, shown by the horizontal bar.

•  AS (n-3) (*p<0.05, unpaired t-test)

T AS/AGU (n-3)

Inset: The total amount of DOPAC released above basal by L-dopa 
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7.1.6 The effect of chronic systemic injections of L-dopa on monoamine release from the 

PCPu bv microdialvsis

Experiments using a chronic injection regimen of L-dopa has been carried out on two AS 

and two AS/AGU rats. L-dopa injected i.p. over 5 days resulted in a release o f clearly 

detectable levels of DOPAC in all four animals tested (fig 7.9). However, the profiles of 

release obtained in the two AS rats were very different fi’om the release profiles obtained in 

the two AS/AGU (fig 7.9). On the fifth day of L-dopa treatment, dialysate DOPAC in the 

two AS rats increased to a level approximately forty fold and approximately seventy fold 

higher than the mean basal level of the non-treated AS rats within 3hrs after probe 

insertion (fig 7.9). The experiment was terminated 3hrs after probe insertion. The dialysate 

levels within either of the two AS rats may have risen further had samples been taken off 

beyond the last time point.

The release induced by chronic L-dopa in either of the AS/AGU rats was not to the same 

extent. Dialysate DOPAC in the two AS/AGU rats increased to a level approximately nine 

fold and approximately twenty-five fold higher than the mean basal level o f the non-treated 

AS/AGU rats within Ihr after probe insertion (fig 7.9). After the Ihr time point, in one of 

the AS/AGU rats, the dialysate levels of DOPAC immediately dropped to below the HPLC 

detection whereas, in the other AS/AGU rat, the dialysate levels of DOPAC slowly f

dropped over another Ihr to below the detection level of the HPLC (fig 7.9).
L

On the fifth day of L-dopa treatment, the dialysate dopamine levels of the two AS rats 

swung in and out of the detection range of the HPLC throughout the experiment (table 

7.5). The levels are comparable with the basal levels of non-treated AS rats in the PCPu 

seen in table 7.4,

Dialysate dopamine release profile in the two AS/AGU rats resembles the profile of 

DOPAC release in these rats in that release peaked within Ihr in both animals after L-dopa 

treatment. This is compared with the undetectable levels demonstrated in table 7.4 for the 

untreated animals. In the L-dopa treated animals, after the Ihr time point, in one of the 

AS/AGU rats, the dialysate levels of dopamine immediately dropped to below the 

detection level by the HPLC whereas, in the other AS/AGU rat, the dialysate levels of

2 1 1



dopamine slowly dropped over another Ihr to below the detection level of the HPLC (table 

7.5).

Injection of L-DOPA i.p. in the AS/AGU rats resulted in a striking increase in motor 

activity being observed. For example, injection of L-dopa resulted in AS/AGU rats 

(normally barely capable of initiating movement) jumping out o f cages and fighting which 

led to their having to be separated. This did not occur in the AS rats. The only time that 

the behaviour o f the AS rats was seen to increase in activity was on the fifth day at the 

beginning of the microdialysis experiment. In this instance, both animals in this group 

jumped very high several times consecutively with small periods of rest between each bout, 

very much like that seen of AS/AGU rats after each injection.
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Fig 7.9

The release profiles for DOPAC fi*om the PCPu after no treatment and on the fifth day of a 

chronic dosage regimen of L-dopa (ng/lOpl). The final dose of L-dopa (500mg/kg) was 

injected Ihr 15min before probe insertion.

O  AS no treatment (n-3) O  AS/AGU no treatment (n=3)

A  AS chronic L-dopa (n=l) ♦  AS/AGU chronic L-dopa (n=l)

V  AS chronic L-dopa (n=l) AS/AGU chronic L-dopa (n=l)
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Table 7.5 Dialysate dopamine levels in the PCPu on the fifth day of chronic L-dopa 

treatment in the AS and AS/AGU groups of rats.

Time AS AS AS/AGU AS/AGU

20 N.D. 0.079 0.506 0.052

40 N.D. 0.076 0.81 0.026

60 N.D. 0.067 0.93 0.96

80 N.D. N.D. N.D. 0.143

100 N.D. 0.041 N.D. 0.126

120 0.043 0.05 N.D. 0.115

140 N.D. N.D. N.D. N.D.

160 N.D. N.D. N.D. N D .

180 0.056 0.078 N.D. N.D.

200 0.065 0.089 N.D. N.D.

I
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7.2. Adenosine

7.2.1 Release of adenosine from the ACPu bv microdialvsis

Immediately after probe insertion into the ACPu there was a high efflux o f adenosine 

within the first twenty minute sample (fig 7.10). The efflux of adenosine was significantly
'

2 1 5

I
higher in the AS rats than the AS/AGU (fig 7.10, *p<0.05). There was a decline in the 

release o f adenosine in subsequent dialysate samples and basal levels were achieved within 

l-2hrs after probe insertion in both AS and AS/AGU rats. Statistical analysis using 

ANOVA followed by Bonferroni t-test showed that there was no significant difference in 

the basal levels of AS and AS/AGU rats. However, in most of the experiments in both AS 

and AS/AGU rats, the basal levels were non-detectable and were depicted as zero in fig 

7.10. This introduced an inaccuracy to the analysis and comparison o f these levels and 

clearly a more sensitive system for measuring adenosine was required.

7.2.2 Release o f adenosine from the PCPu bv microdialvsis

Experiments measuring potassium-evoked release of adenosine were carried out on two 

animals in each group. To assist the measurement of dialysate adenosine, an attempt was 

made to increase the extracellular levels of adenosine. A combination o f adenosine 

deaminase inhibitor (EHNA lOOpM) and adenosine uptake blockers (NBTG lOOpM and 

propentofylline 20mM) were incorporated into the perfusion medium thioughout the 

experiment. In addition, to assist the measurement of dialysate adenosine, a microbore 

column was used in the HPLC system. %
'■I

The levels o f adenosine in the PCPu in the two AS/AGU were compared to that o f the two

AS rats. Immediately after probe insertion there was a high efflux of adenosine in all four 

experiments (fig 7.11). The basal level o f adenosine, calculated as a mean of the adenosine 

content in the three or four samples collected 2hrs 20 min after probe insertion, from each 

of the four rats are illustrated in table 7.6.
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Adenosine dialysate levels in the ACPu in the first 2hrs 40min after probe insertion 

(pmol/20pl, mean ± sem). There was a high efflux within the first 20min which was 

significantly higher in the AS rats than the AS/AGU 0^p<0.05, ANOVA, unpaired t-test). 

There was an immediate decline in release and basal levels were acliieved within l-2hrs

after probe insertion in both AS and AS/AGU rats. Rate of perfusion was 2pl min“b 

O AS rats (n=4)

A AS/AGU (n=5)

2 1 6



oc\l
O
E
CL

0)cz
'oooc
(U“O<
0)
o(/)
o
Q

8

6

4

2

0
0 40 80 20 160 200

Time after probe insertion (min)

5

4
,4

i
4
I

:

ip

Fig 7.11

Adenosine dialysate levels in the PCPu in the presence of EHNA, NBTG and 

propentofylline in the first 2hrs 40min after probe insertion (pmol/20pl) in the two AS and 

the two AS/AGU rats tested. There was a high efflux within the first 20min which 

immediately declined and basal levels were achieved within l-2hrs after probe insertion. 

Rate of perfusion was 2pl/min.

O AS rats (n=l) O  AS rats (n=l)

^  AS/AGU rats (n-1) w AS/AGU rats (n=l)
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Table 7.6

Basal levels of AS and AS/AGU rats with the incorporation of EHNA lOOpM, NBTG 

lOOjiM and propentofylline 20mM in the posterior CPu

Mean

AS AS AS/AGU AS/AGU

pmol/20pl 1.79 0.99 0.27 0.34

2 1 8
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7.2.3 The effect of intrastriatal potassium on adenosine release from the PCPu bv 

microdialvsis

A 30 min pulse o f potassium, incorporated into the perfusion medium for 3hrs 40 min after 

probe insertion, elevated adenosine levels in all four rats by approximately 250% of basal 

(fig 7.12). EHNA, NBTG and propentofylline were perfused through the probes 

throughout the whole experiment including during the potassium pulse. Due to the scatter 

o f basal levels illustrated in fig 7.11 the release profile was expressed as percentages of 

basal release was used to compare the effect of potassium on adenosine release in these 

animals.

I
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The release profiles for adenosine evoked by a 30 min puise of KCÎ lOOmM, shown by the 

arrow in the two AS and two AS/AGU rats tested (% of basal). Levels of adenosine 

peaked at about 250% of basal in all four animals tested.
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8.0 DISCUSSION

8.1. Microdialvsis

In order to validate the technique of microdialysis the following criteria should be met to 

establish that the compounds detected are a result of neurotransmission. There should be 

high tissue / ECF ratios because neurotransmitters are stored in vesicles and usually have 

an efficient system of removal from the synaptic cleft (e.g. high affinity uptake (dopamine,
‘f;

glutamate) or rapid degradation (acetylcholine). There should be a release in response to P

electrical stimulation of neuronal pathways, depolarising agents and appropriate

pharmacological treatment. Release should be blocked by sodium channel blockers and

calcium depleting/ calcium-free conditions.

Westerink et al (1987) showed that, by using microdialysis in the rat striatum, dopamine,
.aspartate, glutamate, acetylcholine, and taurine had a tissue / ECF ratio > 1000, whereas 

their metabolites (e.g. DOPAC, HVA) had tissue / ECF ratios of around 1. The ECF 

values were calculated by Westerink et al (1987) by correcting the dialysate concentrations 

for the appropriate dialysis efficiency (determined in vitro), to the ECF concentration. In 

the work done by Westerink et al (1987) there were reductions in the dialysate levels of 

dopamine and acetylcholine but not o f aspartate, glutamate or taurine after infusion of

TTX, indicating a neuronal origin of dopamine and acetylcholine. Further evaluation of 

neuronal origin of a putative neurotransmitter involves its disappearance from the dialysate 

when calcium is omitted from the perfusion medium. In the case o f dopamine, this was 

observed by Imperata & Di Chiara (1984). Potassium has been shown to increase dialysate 

dopamine levels (Westerink et al, 1987). These results have lead Westerink et al (1987) to 

conclude that dialysate dopamine levels reflect the changes which occur at the site of 

release.

Interpretation of measured extracellular dopamine levels by microdialysis requires a review 

o f synaptic homeostasis. To simplify the explanation of this hypothesis the modulation of 

dopamine release from the nigrostriatal terminal will be examined although these 

mechanisms of modulation may occur in many efferent neurones. Modulation of dopamine 

release can occur from the nigrostriatal terminal by several mechanisms. Firstly, recurrent



r,::

II

?
collaterals may release neurotransmitters onto the nigrostriatal cell body directly. 

Alternatively, recurrent collaterals may release neurotransmitters onto presynaptic afFerents 

which in turn influence the nigrostriatal cell body. An inhibitory or excitatory 

neurotransmitter may modulate the activity o f the nigrostriatal neurone and may inhibit or 

enhance synthesis and/or release from the nigrostriatal terminal, respectively. Secondly, 

dopamine released from the nigrostriatal terminal may act on inhibitory D2 receptors 

known to exist on presynaptic terminals and inhibit fiirther release o f dopamine. Thirdly, 

levels o f dopamine within the ECF may be modulated by the inhibition or enhancement of 

dopamine reuptake into the presynaptic terminal. Fourthly, release may be modulated by 

the action of neurotransmitters which are released either via short loop negative feedback 

onto the presynaptic terminal or via long loop negative feedback onto the cell body. 

Recognising the processes of synaptic homeostasis o f dopamine may help in the 

understanding of the compensatory mechanisms which apparently accompany damage to 

dopaminergic pathways. Nigrostriatal lesioning is accompanied by increased synthesis and 

apparent increase in release of dopamine from spared terminals and decreased dopamine 

uptake, which is presumably due to loss of dopaminergic terminals (Zigmond & Strieker 

1977; Caine & Zigmond, 1991). Near-normal levels of extracellular dopamine in 6-OHDA- 

lesioned rats have been reported by in vivo microdialysis studies (Robinson & Wishaw, 

1988; Abercrombie et al, 1990; Castaneda et al, 1990; Zigmond et al, 1990; Saixe et al, 

1992). It has been shown that the decrease in dopamine concentration in striatal tissue by 

6-OHDA is more than the decrease in dopamine concentration in the overflow from striatal 

slices ( Snyder & Zigmond, 1990). This may be explained by hyperactivity of the 

residual neurones, spared by 6-hydroxydopamine lesions. There is an increased synthesis in 

remaining dopaminergic neurones which may be due at first to activation of existing 

tyrosine hydroxylase (TH) and later to an increase in the number of enzyme molecules 

(Zigmond et al, 1984). Such an increase in activity of TH may be a result o f increased 

firing rate of the residual neurones. There is an apparent increase in dopamine release from 

residual terminals in vivo (Heffi et al, 1980; Zigmond et al 1984). The increase in the 

amount of dopamine release per residual terminal may be a result of an increase in response

!
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of the dopaminergic terminals to depolarisations or reduced D2-mediated presynaptic 

negative feedback on dopamine release. A decrease in catecholamine uptake has been 

shown in 6-OHDA-treated rats (Iversen & Uretsky, 1970), probably a result o f the smaller 

number o f neurones available to take up dopamine. Due to a reduced number of dopamine 

uptake sites, the dopamine that is released may diffiise out of the synapses to distant target 

sites. An increase in dopamine turnover within the residual neurones may also occur. Such 

compensatory mechanisms have been reported to become apparent 3-4 weeks after the 

lesion (Snyder et al, 1990).

Also, areas deprived of dopaminergic afferents appear to become supersensitive to 

dopamine agonists, possibly a consequence of an increase in the number of postsynaptic 

receptors (Creese et al 1977; MacKenzie & Zigmond, 1984).

8.2.1 Monoamine levels in the Caudate Putamen 

The analysis of monoamine neurotransmitter release was very much hindered in the present
0-

Study due to the lack of the required sensitivity for dopamine analysis. Basal levels ranged 

between non-detectable to 0.54pmol/10pl, which is near the limits (0.28pmol/10pî) o f our 

HPLC system. The conditions under which the HPLC was used, were adapted to meet the 

requirements of all the users o f the HPLC within the laboratory and could not be 

substantially modified for this particular project.

Dopamine levels are lower in the dialysates than DOPAC levels, whereas dopamine is 

present in larger amounts than DOPAC in tissue extracts. This is consistent with the 

presence of high affinity uptake within dopaminergic regions and is consistent with results 

of Sharp et al (1986).

The present results indicate that there is no difference between AS and AS/AGU rats in the 

concentrations of extracellular DOPAC in the ACPu. Basal samples were collected two 

hours after probe insertion and are consistent with the basal extracellular levels of DOPAC 

achieved within two hours by Robinson & Camp (1991). There is a slight trend towards an 

increase in DOPAC in the AS/AGU rats although this was not significant.
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The lack of difference in extracellular DOPAC levels can be explained in a number of 

ways. Firstly, it is possible that there is no difference in striatal dopamine and therefore 

metabolite content in the ACPu between the AS and AS/AGU rats at 5 months o f age.

'1
:
::

Secondly, near-normal extracellular levels of DOPAC in the AS/AGU rats may be present 

owing to compensatory effects which lead to near-normal extracellular levels of dopamine. 

However, the authors reported a drop in extracellular DOPAC levels after 6-OHDA 

treatment, despite the lack of a drop in extracellular dopamine levels. Thus, the similar 

levels o f DOPAC in AS and AS/AGU rats is probably not due to compensatory effects
,

which lead to the near-normal extracellular levels of dopamine seen in 6-OHDA-treated 

rats.

A third reason for the lack of difference in extracellular DOPAC levels can be explained by 

the microdialysis probe not being located within the appropriate region of the striatum to 

detect differences of dopaminergic function (i.e. the ACPu may be a location within the 

striatum which is not associated with motor control and is therefore not where the loss of 

dopaminergic terminals would result in dysfunction in motor activity) (see below).

The levels of dopamine and DOPAC in tissue extracts were measured. It was found that 

there was no difference in either the dopamine or DOPAC tissue concentrations between 

AS and AS/AGU rats in the ACPu.

The lack of difference in the tissue levels of dopamine and DOPAC between the AS and 

the AS/AGU rats can be explained in a number of ways. Firstly, it is possible that there is 

no difference in striatal dopamine and DOPAC content in the ACPu between the AS and 

AS/AGU rats at 5 months of age. Secondly, the micropunch cores and the microdialysis 

probe may not be located within the appropriate region o f the striatum to detect 

differences of dopaminergic function (see below).

Compensatory mechanisms have been shown in tissue from patients with Parkinson’s 

disease, where the dopamine metabolite concentrations in the post-mortem tissue were 

less affected by the disease than dopamine (Bernheimer et al, 1973). The HVA to 

dopamine ratio in post-mortem tissue from Parkinson’s disease patients has been reported 

to be 10-fold higher than that from non-affected patients, indicating an increased dopamine
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metabolism in the residual dopaminergic terminals of patients with Parkinson’s Disease 

(Bernheimer et al, 1973). Higher DOPAC to dopamine ratios have been detected in 6- 

OHDA-lesioned striatum of rats compared with the unlesioned striatum (Robinson & 

Wishaw, 1988).

To investigate if DOPAC tissue levels are not reduced in the AS/AGU due to a 

compensatory increase in dopamine metabolism, the ratios of DOPAC to dopamine tissue 

concentrations were calculated. The concentration of DOPAC measured in the tissue 

relative to the concentration of dopamine measured in the tissue reflect the dopamine 

metabolism in dopaminergic terminals. An increase in the ratio (DOPAC/ dopamine) would 

reflect an increased metabolism of dopamine to DOPAC within the dopaminergic 

terminals.

The DOPAC to dopamine ratios, in the present study, for the tissue levels in AS and
0

AS/AGU rats were 0.156±0.043 and 0.135±0.009, respectively. This is in agreement with 

Sharp et al (1986) who found DOPAC to dopamine tissue ratios to be 0.15 in the striatum 

of normal rats and implies a nonnal dopamine turnover within the ACPu.

A lack of reduction of tissue DOPAC content in the AS/AGU rats, in the present study, 

therefore is not due to a compensatory increase in DOPAC in the AS/AGU rats, which 

may have been caused by the proposed occurrence of a compensatory increase of 

dopamine metabolism.

Thus, AS/AGU rats at 5 months of age possess similar dopamine and DOPAC levels to 

control AS rats within the ACPu region.

Work done subsequently on tissue levels in 12 month old AS and AS/AGU rats shows no 

drop in ACPu tissue dopamine levels but a significant drop in dopamine tissue levels within 

the DCPu and MCPu (J.M. Campbell, personal communication). The question of probe 

placement thus becomes of possible importance. For this reason, the regional location of 

the striatal projections involved in motor control has been investigated.

The caudate putamen is a group of nuclei with a heterogeneous structure and function. In 

order for the striatum to contribute to sensory and motor functions it must receive 

afferents from sensory and motor neuronal systems. All major regions of the cerebral
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cortex project into the striatum. McGeo.rge & Faulî in 1989 detailed the organisation of the
■i:-:

projections from the cerebral cortex to the striatum in the rat. The major subdivisions of 

the cerebral cortex project into defined but partially overlapping regions of the striatum: |

neocortex projects to the caudate/putamen, mesocortex mainly to the medial and ventral 

caudate/putamen but also to the nucleus accumbens and olfactoiy tubercle. Regions of s
■V;

allocortex project mainly to the nucleus accumbens and olfactory tubercle but also to the 

medial and ventral regions of the caudate/putamen. The sensory and motor areas of the 

neocortex project into the dorsolateral caudate/putamen (Cospito & Kultas-Ilinsky, 1981; 

Domesick, 1988) such that the rostral sensorimotor cortex (head areas) project to the |

central and medial areas and the more caudal sensorimotor cortex (limb areas) project to 

the dorsal region of the dorsolateral striatum. Corticostriatal fibres from the primary

2 2 6

somatosensory and motor cortices terminate in the dorsolateral region of the striatum 

(Cospito & Kultas-Ilinsky, 1981). Dopaminergic fibres from the SNr project to the medial- 

lateral striatum (Beckstead et al, 1979). The dorsolateral striatum is therefore well | |
'I

documented to be within the motor circuitry and is therefore a more appropriate location
IÏ

for the dialysis probe than the medial position in the ACPu. Indeed, the dorsolateral 

striatum is reported to be the area through which motor activity is mainly influenced by
I

dopamine from the SNr (Hirata et al, 1984) and behavioural deficits can be produced by T

injections of 6-hydroxydopamine into the lateral but not the medial portion of the striatum 

(Snyder et al, 1985).

In the present work, the probe was repositioned 4.25mm lateral rather than 2.5mm lateral 

relative to the bregma. This is in accordance with the co-ordinates used by West et al,

1990 (3.5 to 4.0mm lateral, +1.6 to -1.0mm relative to the bregma, Paxinos & Watson,

1986) who show this region of striatum to be within the motor circuit and to be 

responsible for hind-limb and forelimb movements. Webster (1961) and Richards & Taylor
I

(1982) report that hindlimb movements are located caudally in the lateral caudate/putamen 

but that responses to forelimb, head and neck stimulation were located rostrally. Since one §

of the behavioural abnormalities of the AS/AGU rat is slow movement of the hindlimbs,

i



the probe was moved further posterior relative to the bregma (from +1.0mm to -LOmm) 

which is still within the AP co-ordinates stated by West et al (1990).

The samples in the PCPu were collected until 3hrs 40 min after probe insertion. For the I 

initial two hours after probe insertion there was a marginal increase in extracellular 

DOPAC. The mean basal level in the AS for the first two hours was 0.088ng/10pl and for
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the following Ihr 40min was O.llng/lOpl. The mean basal level in the AS/AGU for the

first two hours after probe insertion was 0.095ng/10pl and for the following Ihr 40min 

was 0.113ng/10pl. This is consistent with results obtained by Robinson & Camp (1991) 

who showed that DOPAC levels increase gradually over the first two hours. These authors 

also show a high efflux followed by a gradual decline in the release of dopamine over the 

first two hours after probe insertion. The high efflux and decline in release of dopamine 

reported by these authors is consistent with the high efflux and decline in release of 

adenosine reported in part 1 o f the present thesis. The high initial efflux of dopamine may 

be due to cell damage by probe insertion and leakage of dopamine from high intracellular 

storage compartments. This dopamine may subsequently be metabolised to DOPAC

resulting in the gradual increase in DOPAC levels. Thus the gradual increase in DOPAC

levels may represent the complex series of events leading to the establishment of a new 

equilibrium.

Dialysis within the PCPu showed no significant differences for DOPAC in AS and 

AS/AGU rats. Thus, it is possible that there is no difference in striatal dopamine content in 

the PCPu between the AS and AS/AGU rats at 5 months of age. To strengthen this 

conclusion, the tissue contents of dopamine and DOPAC were examined.

The tissue concentrations of dopamine and DOPAC in the three regions within the PCPu 

were measured. There was no difference in the tissue dopamine levels in the three 

micropunch regions of the PCPu in the present study between 5 month old AS and 

AS/AGU rats. There was no difference in the tissue DOPAC levels in the DCPu and 

MCPu in the present study between 5 month old AS and AS/AGU rats, though there was a 

significant decrease in DOPAC in the VCPu.
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The significant drop in DOPAC tissue level in the AS/AGU rats compared with the AS rats

in the VCPu (an area where the dialysis probe has not been inserted in the present study) is
.noteworthy in the context of the observed tendency for an increase in dopamine utilisation

.in this region (as illustrated by the higher but non-significant DOPAC/ dopamine ratios in

the VCPu for both sets of animals than those ratios in ACPu, DCPu or MCPu). The

importance of the ventral striatum in the role of motor control must be highlighted. When

embryonic substantia nigra cells were transplanted into 6-OHDA-treated rats, there was a

reduction in their behavioural impairment only when there was new growth into the ventral

and lateral parts of the caudate putamen but not into the dorsal part of the striatum

(Dunnett et al, 1981). In addition, the VTA (ventral tegmental area) has been shown to
.project to the ventromedial region of the striatum (Beckstead et al, 1979). However, the

.present results only showed a drop in DOPAC tissue levels, not dopamine. It is therefore

concluded that the drop in DOPAC levels may actually be caused by a malfunction of the

enzyme MAO within the VCPu in the AS/AGU rats but not to the extent that it is

significantly decreases the DOPAC/ dopamine ratio relative to the AS rats.
.To investigate whether there is a compensatory increase of dopamine metabolism in the

AS/AGU, the DOPAC/ dopamine tissue ratios were calculated for all the regions. Like the

ACPu, there was no difference in the DOPAC/ dopamine tissue ratio between the AS and

AS/AGU rats for the DCPu, MCPu and VCPu. There was therefore no difference in

dopamine turnover between the AS and AS/AGU rats, thus eliminating the issue of

compensatory mechanisms resulting in the lack of drop in levels of tissue DOPAC.
.To assess whether there was an increased dopamine turnover in one particular region of 

the striatum, the DOPAC/ dopamine tissue ratios were compared between the ACPu, 

DCPu, MCPu and VCPu. Though not statistically significantly different, the mean 

DOPAC/ dopamine tissue ratio was higher, in the VCPu than the DCPu, MCPu and ACPu 

in both the AS and AS/AGU rats. Thus in the VCPu, there may be a tendency of an 

increased dopamine turnover.

In the present study, there was no difference in dopamine utilisation in the dopamine 

terminals between AS and AS/AGU rats shown by the similar tissue DOPAC/ dopamine
1



ratios in the regions cored within the PCPu. Recently, work carried out by Dr J.M. 

Campbell (personal communication), has revealed no drop in dopamine tissue levels of the 

mutant AS/AGU rats aged 10 days or 12 weeks when compared to control AS rats. There 

was, however, a drop in dopamine DCPu and MCPu tissue levels AS/AGU rats when 

compared to the control AS rats at 12 months of age and, as shown more recently, at 6 

months o f age (Dr J.M. Campbell, personal communication). It is finally concluded that 

dopamine levels in the PCPu drop some time between the ages o f 5 and 6 months in the 

AS/AGU rats.

8.2.2 The effect o f intrastriatal L-dopa on monoamine release from the PCPu bv 

microdialvsis

L-dopa is currently clinically used to reverse the behavioural effects of Parkinson's disease. 

L-dopa has been reported to exert little of its effects through D2 receptors but has a more 

dominant effect on the D l mediated GAB A/ sub stance P pathway (Termer, 1995).

L-dopa, administered locally into the striatum, induced an increase in release of dopamine 

and DOPAC in the PCPu of AS rats. This implies the conversion of L-dopa to dopamine 

and DOPAC is occurring within this region of the striatum in both the AS and AS/AGU 

rats. However the extent of release o f dopamine and DOPAC in the AS/AGU rats was 

quite different to that in the AS rats. The peak release of DOPAC in the AS/AGU was 

approximately four fold lower than the peak release in AS rats. This lower response to L- 

dopa in the AS/AGU rats is reflected by the total amount of DOPAC released above basal 

by L-dopa. The total amount released in the AS/AGU rats showed a three fold reduction in 

the mean values compared to AS controls. However, this did not quite reach significance. 

A similar lower response to L-dopa in AS/AGU rats was indicated by the extent of 

dopamine release compared with that in the AS rats. Dopamine release in the AS rats rose 

from non-detectable levels to well within the detection range of the HPLC. However, in 

the AS/AGU rats the dopamine levels rose from non-detectable levels to just within 

detection range of the HPLC. Thus it is possible that less dopamine is being converted 

from the L-dopa in the AS/AGU rats than in the AS rats.
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8.2.3 The effect of chronic systemic injections of L-dopa on monoamine release from the 

PCPu bv microdialvsis

Chronic injections of L-dopa for 5 days increased the levels of DOPAC in both AS/AGU 

and AS rats. The means of the first dialysate samples measured after clironic treatment for 

the two groups of rats are very similar (AS/AGU 0.774ng/10pl and AS 0.744ng/10pl).

These values are 7-fold higher than those at the same time point in untreated animals and 

may be explained by a loading o f the tissue due to chronic dosing. The subsequent bell-
,K„

shaped release may be induced by the dose of L-dopa injected Ihr 15 min prior to probe 

insertion.

The sudden drop of dopamine and DOPAC release within the two AS/AGU rats might 

indicate the activation of presynaptic dopamine autoreceptors by an elevatet^ extracellular 

dopamine release. Activation of dopamine D2 autoreceptors causes a shut-down of release T

of dopamine. There was no sudden drop in the elevated DOPAC levels in the two AS rats, 

but the levels actually elevated further. This may indicate an increased number of D2 

receptors in the AS/AGU rats, which, interestingly, is postulated to be a compensatory 

effect of a loss of dopamine. Another explanation for the sudden drop in dopamine and 

DOPAC in the AS/AGU rats which did not occur in the AS rats may be that AADC in the |

AS/AGU rats becomes saturated.

8.2.4 Conclusions drawn from the results of induced release o f dopamine and DOPAC bv 

perfiisions and chronic injections of L-dopa

L-dopa induced release of dopamine does indeed appear to be contradictory. While studies 

on striatal slices (Snyder & Zigmond, 1990) show L-dopa induced release of dopamine to 

be markedly reduced, but not abolished, by pre-treatment with 6-hydroxydopamine, studies 

using in vivo microdialysis suggest that the effect of L-dopa on dopamine release is 

markedly increased after 6-OHDA when compared with that in the intact striatum 

(Abercrombie et al, 1990; Sarre et al, 1994). Abercrombie et al (1990) and Sarre et al

(1994) explain this increase by the loss of high affinity uptake sites associated with the 

decreased number of dopaminergic nerve terminals. The reason for the discrepancy 

between the results of Abercrombie et al (1990) and Sarre et al (1994) and that o f Snyder



& Zigmond (1990) may be due to the different preparations used. The relatively high 

superfusate flow rate employed in the in vitro studies (i.e. lOOpl/min for Snyder & 

Zigmond (1990)) may have diminished the important contribution of high affinity 

dopamine uptake to increases in extracellular dopamine following L-dopa. The extent of 

the lesion induced by 6-OHDA (which may vary between the different studies) may have 

an important an important effect on the extent of the L-dopa induced dopamine release and 

this is indicated by Sarre et al (1994) who failed to establish a dose-dependent evoked 

release of dopamine by L-dopa in the lesioned animals.

In the present study, in the two AS rats after the chronic L-dopa it is noted that the 

dopamine dialysate levels are lower than that of the initial levels measured in AS/AGU rats.

Jackson et al (1993) report that dopamine terminals play a prominent role in removing 

extracellular dopamine released by exogenous L-dopa. Dopamine taken up into the 

terminal is catabolised instead of being used in chemical signalling (Waclitel & 

Abercrombie, 1994), which may explain our observed elevation of extracellular DOPAC 

but not dopamine in the two AS rats after chronic L-dopa. An absence of dopamine 

reuptake sites would therefore result in more dopamine being used in chemical signalling 

and may explain the increased locomotor activity seen in the AS/AGU rats compared to 

the AS rats. The postulated increase in dopamine receptors which occur as a compensatory 

effect may also lead to the increased locomotor activity in the AS/AGU rats.

Langelier et al (1973), Lloyd et al (1975) and Snyder & Zigmond (1990) have shown that 

the L-dopa-induced increase in dopamine is lower in striatal tissue after destmction of 

virtually all o f the dopamine terminals than in intact striatum. Sarre et al, 1994 showed that t 

the dose-dependent L-dopa-induced release of dopamine in intact rats could not be t 

established in the denervated striatum. These studies are consistent with the lower release 

of dopamine and DOPAC by L-dopa in the AS/AGU rats found in the present study. In 

light of the behavioural deficits observed in these rats it is therefore conceivable that the 

AS/AGU rat possesses less dopaminergic neurones in the striatum than the control strain. 

Interestingly, upto 20% of striatal AADC has a non-dopaminergic location (Lloyd & 

Homykiewicz, 1970; Hefti et al 1981; Melamed et al, 1981). The presence o f non-
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dopaminergic located enzyme may explain the ability of L-dopa to increase the dopamine
.levels in the denervated striatum, and the saturation of the non-dopaminergic located 

enzyme may explain why the increase is not to the same extent as in the intact striatum as 

reported by Langelier et al, 1973; Lloyd et al, 1975; Snyder & Zigmond, 1990. Non- 

dopaminergic AADC is possibly found in serotonergic neurones (Ng et al, 1972; Hokfelt et 

al, 1973), glial cells (Li et al, 1992) or cells in the region of BBB (Bertler et al 1966; 

Langelier et al, 1972). It is therefore possible that conversion of L-dopa to dopamine, in 

the AS/AGU rats, depends upon the AADC which is located in non-dopaminergic sites.

The extensive destruction of dopamine neurones leads to an increase, rather than a 

decrease, in the behavioural effects of L-dopa (Uretsky & Schoenfeld, 1971; Schoenfeld & 

Uretsky, 1973; Zigmond & Strieker, 1980). Increased locomotor activity after L-dopa, a 

dopamine-mediated phenomenon, is generally not readily apparent in intact animals, but it 

can be seen when high affinity dopamine reuptake has been compromised by drugs 

possessing dopamine uptake blocking properties or after destruction of dopaminergic 

terminals (Svensson & Stromberg 1970; Schoenfeld & Uretsky 1973; Zigmond & Strieker 

1980). In the present study, L-dopa administered to AS/AGU rats caused hyperactivity 

during the five day injection regimen, to the extent that the dose of L-dopa had to be 

halved on the third and fourth days of the five day course and the two AS/AGU rats had to 

be separated from each other. This hyperactivity was not noted in the AS rats to the same 

extent as the AS/AGU prior to the fifth day in AS rats. A possible explanation is a 

prolonged action o f dopamine in the ECF after the conversion from L-dopa, consistent 

with the loss of dopaminergic terminals which possess reuptake sites. These results are 

consistent with those results obtained from animals with a loss of dopamine 

function/terminals. The activity noted in both sets of rats was most hyper on the fifth day, 

the day the microdialysis experiment was carried out. Whether the accumulated L-dopa 

after the five day regimen or whether a new environment (i.e. the microdialysis cage) 

provoked the exaggerated hyperactivity, cannot be defined from the present study.

To conclude this section of work, the AS/AGU rats at 5 months of age do not lack striatal 

dopamine or DOPAC levels. A malfunction in the dopaminergic system may, however,
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become apparent when the demand of the function of dopaminergic neurones increases, for 

example when L-dopa is required to be degraded to dopamine.

8.3.1 Release of adenosine in the caudate putamen bv microdialvsis 

Basal adenosine levels in the ACPu were non-detectable in the majority of AS 

and AS/AGU, so that an accurate comparison could not be conducted. There was, 

however, a significant difference in adenosine levels in AS rats compared to AS/AGU rats 

immediately after probe insertion in the ACPu, a point at which adenosine levels in all 

experiments were within the range of detection. The lack of sensitivity o f the HPLC for 

adenosine in the striatum of freely-moving rats may obscure any comparison which could 

be made for the basal levels between AS and AS/AGU rats.

Preliminary studies carried out in the PCPu show a trend for a higher level of adenosine in

one of the AS than in either of the AS/AGU rats. These studies were carried out in the
....................................

presence of adenosine deaminase inhibitors and uptake blockers.

Potassium-evoked release of adenosine appeared to be to the same extent in the two AS as 

the two AS/AGU.

Activation of A2 receptors is thought to decrease the affinity of D2 receptors for dopamine 

(Ferre et al, 1994). Activation of A2 receptors may therefore lead to an increased activity 

of the indirect pathway, and thus may pose as a possible explanation for the hypokinesia 

seen in some basal ganglia disorders. One of the means by which activation of A2 receptors 

may come about is if there is an elevated concentration o f extracellular adenosine. 

However, the preliminary results in the present work indicate that the extracellular 

adenosine levels in the AS/AGU rats have a trend for being lower than that in the AS rats. 

It should be noted that in the PCPu, the uptake blockers or enzyme inhibitors in the 

perfusate may obscure any difference in basal levels. No definitive conclusion can be drawn 

from the present results, but the trend indicates that adenosine levels are not responsible 

for any locomotor deficits in the AS/AGU rats which may be caused by the reported 

adenosine-dopamine interaction since, if this was the case, a higher (not a lower) basal 

extracellular level of adenosine would be expected in the AS/AGU rats than in the AS rats.
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and the pellet was frozen at -80°C until the day o f the binding experiment.

On the day o f the binding assay, the pellet was thawed and washed three times as above.

Appendix

Investigation o f binding to kainate receptors

Drugs which were effective in modulating kainate-evoked release of adenosine were tested 

for their ability to displace kainic acid from the kainate receptor. The protocol used was 

that of Varga et al (1989). Four male Wistar rats (270-3 lOg) were killed by stunning and 

cervical dislocation and the hippocampi were dissected out by Dr. D.G. MacGregor and 

placed in 5ml ice-cold in 0.32M sucrose containing 0.05M Tris-citrate pH 7.2. The 

hippocampi were homogenised in a Braun Homogeniser (15x500rpm) in 10 vol o f ice cold 

0.32M sucrose containing 0.05M Tris-citrate buffer pH7,2 and centrifiiged in a Sorval RC 

5B Refrigerated Superspeed Centrifuge (SS 34 Rotor) at 3000rpm for 10 min at 4“C. The 

pellet was discarded and the supernatant was spun at 12000rpm for 20 min at 4”C. The 

supernatant from this spin was discarded and the pellet was frozen at -80°C for one hour.
ÏThis P2 pellet was thawed at room temperature and homogenised (10 x SOOrpm) in 10 vol 

of ice-cold distilled water and then centrifuged at 18SOOrpm for 20 min at 4"C. The 

supernatant was discarded and the pellet was resuspended in 10ml distilled water and 

centrifuged at 18500rpm for 20min at 4°C. This washing procedure was repeated twice
■A

using 0.05M Tris-citrate buffer instead of distilled water. The supernatant was discarded

s
The volume of the assay chamber was SOOpl. 445pi of membrane were incubated for 10 

min on ice in 50 pi of either cold kainate (ImM, final concentration) for the non-specific 

binding, or Tris-citrate for the total binding or test drugs. All membranes were then 

incubated in 5 pi pH ] kainic acid for one hour on ice. All assays were done in triplicate and
"1all vials were vortexed every 20min. Incubation was terminated by vacuum filtration, with

:'9

all the samples being filtered through pre-wetted Whatman GF/C glass filters using a |  

Millipore 12 well 1225 Sampling Manifold. Filters were washed three times with 5ml of 

ice-cold 0.05M Tris-citrate buffer and vacuum dried before being immersed into 5ml 

scintillant (Ecoscint). The amount of tritium was counted by a scintillation counter 

(Packard 2000CA) for 5 min for CPM (quenching and efficiency of counting was
ï;}
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calculated as being 40% using external standards). The binding assay was repeated (using 

the same tissue) since inconsistent results were obtained after the first assay.

Data was expressed as percentage of control. The percentage of control was calculated by 

subtracting the CPM for the non-specific binding from the CPM for the binding in the 

presence of the displacers and dividing by the CPM for the specific binding. Statistical 

analysis was performed by a one sample t-test against a hypothetical mean o f 100%.

Protein concentrations were estimated using the Lowry method (Lowry et al, 1951), 

following solubilisation with 0.25M NaOH and with Bovine Serum Albumin as the 

standard.

In an attempt to establish the best conditions under which to perform the procedure, filters 

were washed either once, twice or three times with 5ml o f 0.05M Tris-citrate buffer, which 

was either ice-cold (~4^C) or room temperature (~20^C), before vacuum drying as above. 

Materials

From Amersham: pH]kainate from, specific activity 58Ci/mmol, stock concentration 

17pM, ethanol: water (2:98).

From Sigma Chemicals: ascorbic acid, glutathione, oxypurinol

From The Upjohn Company: U50 488H

Results

Ascorbic acid (ImM, lOmM, lOOmM), glutathione (ImM, lOmM, lOOmM), oxypurinol 

(O.lmM, ImM, lOmM) and U50 488H (0.0ImM, O.lmM, ImM) did not significantly 

affect tritiated ligand binding (fig I). As illustrated in fig 1 these results have large standard 

error bars. The number of counts per minute for the vial containing the displacer was often 

less than that for the vial containing cold kainate (non-specific binding). This may indicate 

a flaw in the procedure used, possible resulting from inconsistent binding of tritiated 

kainate throughout the assay (see discussion).

The results obtained from the assay performed to establish the best conditions for the 

procedure indicate that specific binding was best after washing the filters three times with 

5ml of 0.05M Tris-citrate at ~4®C (fig 2). Interestingly, these were the conditions used in

■
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the actual procedure. Due to time constraints no further experiments were carried out to 

investigate the inconsistency of the presents results.
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Discussion

There was no consistency in the results obtained in the two assays performed indicating 

that there may be some flaw in the procedure, possibly a lack of consistent binding of the 

tritiated kainate. A lack of binding o f tritiated binding may be a result of several causes. 

Firstly, a chemical interaction between the displacer and the tritiated kainate may have 

occurred. For example, ascorbic acid may reduce kainate to dihydrokainate, which may 

displace kainate from its binding site. This possibility was investigated by MacGregor

(1995) who reported that kainate was stable for upto 5 days in solution. Secondly, kainate 

receptors may either be no longer available on the membranes or have decreased affinity 

for kainate, possibly a result of being denatured during the preparation of the membranes. 

The addition of protease inhibitors to the homogenising fluid may prevent such a 

denaturing. Thirdly, an unspecified contaminant may be present, competing against kainate 

for the receptors. For example, endogenous glutamate may be present. However this is 

unlikely since the membranes were washed many times. A fourth explanation is that the 

tritiated kainate has itself degraded in solution. This could be tested by nuclear magnetic 

resonance.

The present results do not allow a definitive conclusion as to whether ascorbic acid, 

glutathione, oxypurinol or U50 488H displace kainate from its binding site.
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