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Abstract

A specialised example of vesicular traffic is the translocation of the glucose transporter 

Glut4 from intracellular storage compartments to the plasma membrane of fat and muscle 

cells in response to insulin, hr the basal state the majority of Glut4 is held intracellularly, 

sequestered away from the constitutively recycling endosomal pathway, in a proposed 

population of specialised Glut4 Storage Vesicles (GSVs). Insulin stimulates glucose 

transport into adipose cells by promoting the translocation of these GSVs to the plasma 

membrane where they fuse increasing the Glut4 levels at the cell surface and therefore 

significantly increasing facilitative glucose transport.

The ability of insulin to stimulate glucose transport into muscle and adipose tissue, the 

main sites of glucose uptake, is central to the ability of insulin to regulate whole body 

glucose homeostasis, hr individuals with type 2 diabetes this ability of insulin to stimulate 

glucose transport is impaired. The incidence of type 2 diabetes is increasing rapidly and 

therefore understanding the molecular basis of insulin-stimulated glucose uptake is of 

fundamental importance. It has been over 25 years since the first evidence that insulin 

stimulation led to a translocation of glucose transport horn an intracellular site to the 

plasma membrane of insulin responsive cells. Over this period of time significant advances 

have been made in the understanding of insulin-stimulated glucose uptake, both in the field 

of insulin signalling and Glut4 trafficking, however the intersection between these two 

processes is yet to be established. One major advance in the laiowledge of Glut4 

trafficking was the identification of the SNARE machinery involved in the fusion of GSVs 

to the cell surface. In eukaryotes all intracellular trafficking events are facilitated by a 

family of highly conserved proteins called SNAREs.

GLUT4 containing vesicles are enriched in VAMP2, while the plasma membrane of 

adipocytes is enriched in syntaxin 4 and SNAP23, which together serve as a t-SNARE 

complex. In vitro these three SNAREs fonn a highly stable core complex and several 

studies show that these three proteins mediate the fusion of Glut4-containing vesicles with 

the plasma membrane. Whether this fusion event is regulated by insulin is yet to be 

established.

The fusion process facilitated by SNARE proteins has been successfully reconstituted in 

vitro using recombinant proteins expressed in E. coli. Using the exocytic neuronal



SNAREs in this assay it was demonstrated that SNAREpins, that is the complex formed 

between cognate sets of v- and t-SNAREs, are necessary and sufficient to fuse artificial 

membranes. In Chapter 3 as the first step towards studying the regulation of fusion 

facilitated by syntaxin 4, SNAP23 and VAMP2, an in vitro fusion assay using these 

SNAREs was established. The tluee SNARE proteins were successfully expressed and 

purified from E. coli prior to reconstitution into synthetic liposomes that were subsequently 

analysed for fusion. The results of this assay show that these SNARE proteins in isolation 

are capable of fusing artificial membranes, a fact previously assumed but never definitively 

shown.

In vivo membrane fusion is believed to be controlled by a number of different proteins and 

lipids species. It has been demonstrated that the t-SNAREs involved in Glut4 exocytosis 

are localised to lipid raft domains, isolated as detergent resistant membranes (DRMs), in 

the mouse adipocyte line 3T3-L1. Whether targeting of these proteins to lipid raft domains 

plays a role in regulating the fusion SNAREs facilitate remains to be established. To 

investigate whether the main lipid species found in detergent resistant membranes play a 

role in SNARE facilitated membrane fusion cholesterol and sphingomyelin were 

introduced into the in vitro fusion assay established in Chapter 3. Unfortunately due to the 

vast difference in size of liposomes produced on introduction of these lipids the data could 

not be fully analysed, however it appears that inclusion of these lipids is inhibitory to 

fusion. In adipocytes SNAP23 is subjected to palmitoylation on conseiwed cysteine 

residues in the linker domain between its two SNARE domains. Recently it has been 

shown that SNAP25, a homologue of SNAP23, is palmitoylated when purified from 

baculovirally infected insect cells. In order to purify the t-SNARE complex of syntaxin 4 

and SNAP23 from insect cells and determine the palmitoylation state of SNAP23 a 

baculovirus was constmcted. The t-SNARE complex was successfully purified from insect 

cells and SNAP23 appeared to be palmitoylated within these cells. Due to time limitations 

it was unfortunately not possible to carry out fusion assays using this t-SNARE complex to 

investigate whether palmitoylation influences fusion facilitated by these SNAREs.

One family of proteins known to play an essential role in SNARE-mediated membrane 

fusion is the Secl/Munc 18 (SM) family. A member of the SM family of proteins Munc 

18c has been isolated from adipocytes and this isoform appears to specifically interact with 

syntaxin 2 and 4. The N terminus of plasma membrane syntaxins is highly conseiwed and 

has been shown to form a tln ee-helix bundle, which is capable of binding to the SNARE



domain holding such syntaxins in a “closed” confonnation, which is incapable of forming 

SNARE complexes. In syntaxin la, the neuronal homologue of syntaxin 4, the adoption of 

this confoimation has been shown to be essential for interaction with its cognate SM 

protein Munc 18a as the introduction of mutations which inhibit the adoption of this 

confonnation abolish the binding of this SM protein. In order to investigate whether 

syntaxin 4 adopts a similar confonnation through which it interacts with Munc 18c 

equivalent mutations were introduced into the recombinant cytoplasmic domain and 

changes in confonnation were investigated using circular dichroism and limited 

proteolysis. These experiments indicated that the introduction of these mutations led to a 

more “open” conformation and binding experiments with recombinant Munc 18c 

supported monomeric syntaxin 4 existing in a “closed” conformation, as the introduction 

of these mutations inlhbited the interaction between these two proteins. This study has 

highlighted novel insights into the interaction of Munc 18c with syntaxin 4.
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1 Introduction

1.1 Insulin-stimulated glucose uptake and diabetes

Although it has been over 25 years since the first evidence that insulin causes translocation 

of glucose transport activity fr om an intracellular storage site to the plasma membrane of 

insulin responsive cells (Cushman and Wardzala, 1980;Suzuki and Kono, 1980) the 

molecular mechanisms underlying this translocation are yet to be fully elucidated. Over 

this period of time several advances have been made in the understanding of insulin 

signalling and Glut4 trafficking. However the intersection between these two processes 

has so far remained out of reach.

Two tissues within the body, muscle and adipose, play key roles in the maintenance of 

whole body glucose homeostasis by acting as the main sites of glucose uptake in response 

to insulin. The insulin-stimulated glucose uptake into these cells is mainly mediated by the 

glucose transporter Glut4 (Mueckler, 1994). Exposure to insulin causes a rapid and 

substantial increase in this isofomi at the surface of these cells following translocation 

from an intracellular store that results in the increase in facilitative glucose uptake (Slot et 

a l, 1991a;Slot et a l, 1991b). Defects in this system lead to a condition known as diabetes. 

There are two main types of diabetes; type 1 which is principally caused by the 

autoimmune destruction of the pancreatic P-cells that secrete insulin and type 2 which is 

due to insulin resistance in the peripheral tissues (Saltiel, 2001).

Insulin resistance, which is the hallmark of type 2 diabetes, is defined as a decrease in the 

ability of insulin to stimulate this translocation of Glut4 and thus glucose uptake. Potential 

defects leading to the impairment of translocation include deficient signalling upstream of 

the translocation step, abnormalities within the trafficking machinery or indeed 

mistargetting of Glut4 within the cells. Due to this decreased ability to clear postprandial 

glucose hyperglycaemia results and this has been associated with many serious health 

complications (Zimmet et a l, 2001). Since insulin resistance is on the increase in the 

western world, with an estimated 220 million people suffering from diabetes by 2010, 

(Zimmet et a l, 2001) defining the events that lead to the translocation and insertion of 

Glut4 into the plasma membrane is of particular interest. The trafficking of this glucose 

transporter involves a number of fundamental processes that must occur in every cell to 

maintain the functional identity of membrane bound organelles.
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1.2 Glucose transporters

A family of highly conserved mid highly related transporters called Gluts, short for 

Glucose transporters, carries out facilitative glucose transport in the body. Thirteen 

mammalian glucose transporters, each derived from a separate gene, have been identified 

thus far and each family member is predicted to be composed of 12 membrane-spanning 

domains with the N- and C-termini of the protein orientated into the cytosol as depicted in 

Figure 1,1. Glut family members vary in their tissue distribution. Of these thirteen proteins 

only four (Glutl, Glut2, Glut3 and Glut4) have thus far been shown to be authentic glucose 

transporters (Gould et a l, 1991).

Sugar mofety

Plasma 
membrme

Cytoplasm

œoH

Figure 1.1 : The overall structure of the Glucose

transporters

The glucose transporters are proposed to have 12 membrane spanning domains with 

the N- and C-termini of the protein being orientated into the cytosol. Helices 1 and 2 

are connected by a large extracellular loop, while helices 6 and 7 are connected by a 

large intracellular loop. (Taken from Biyant et a l, 2002)
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In order to avoid damage due to hyper- or hypoglycaemia the body must tightly regulate 

whole body glucose homeostasis. Ghit4 is highly expressed in adipose and striated muscle 

however, these tissues also express low levels of Glutl (Mueckler, 1994). The subcellular 

distribution of each of these transporters suggests they play distinct roles in the 

maintenance of whole body glucose homeostasis. Glutl is considered to be the 

‘housekeeping' isoform since it is equally distributed between intracellular compartments 

and the plasma membrane under basal conditions and its presence at the cell surface is only 

slightly increased in response to insulin (Calderhead et al., 1990). In contrast to Glutl, 

Glut4 is extensively recruited to the plasma membrane in response to insulin and is almost 

completely excluded under basal conditions (Slot et a l, 1991a;Slot et a l, 1991b). Glut4 is 

therefore considered to be the insulin responsive glucose transporter.

1.2,1 Glut4

In 1980 two independent investigations into insulin action on adipose cells demonstrated 

that insulin caused the movement of glucose transport activity (later cloned (Garcia and 

Bimbaum, 1989;Charron et al., 1989;Kaestner et al., 1989;James et ah, 1989) and called 

Glut4) from an intracellular location to the plasma membrane (Cushman and Wardzala, 

1980;Suzuki and Kono, 1980). This was subsequently shown to also occur in the other 

insulin responsive tissues, namely heart (Watanabe et a l, 1984) and skeletal muscle 

(Hirshman et a l, 1990). Insulin was later shown to cause this movement of Glut4 by 

significantly increasing the rate of exocytosis of the transporter while only slightly 

decreasing the rate of internalisation of Glut4 by endocytosis (Satoh et a l, 1993), leading 

to an overall increase in surface Glut4 and therefore facilitative glucose transport. The 

majority of subsequent research on Glut4 and its trafficking has been undertaken in 

adipocytes.

1.3 Membrane Trafficking

The inside and the outside of a cell are clearly defined by a boundary consisting of 

biological membrane tenned the plasma membrane. As well as making up the boundary of 

the cell, biological membranes also define the intracellular boundaries between the 

different organelles of the cell. Biological membranes are extremely dynamic, and the 

transport of their constituent lipids and proteins must be highly organised and controlled in
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order to maintain cellular integrity. There are two main vesicular trafficking pathways in 

the cell, the secretory pathway and the endocytic pathway.

1.3.1 Secretory Pathway

The secretory pathway comprises several morphologically distinct compartments tlirough 

which proteins must successfully traffic on their way to the cell surface. During this 

trafficking process proteins are folded, quality controlled and post-translationally modified. 

Proteins to be secreted are initially synthesised in the endoplasmic reticulum (ER), they are 

then moved to, and through, the Golgi apparatus, where they are processed and sorted, 

before being packaged into secretory vesicles in which they are transported to the surface 

of the cell prior to exocytosis and secretion (reviewed in van Vliet et a i,  2003).

The secretory pathway terminates with the fusion of secretory vesicles to the plasma 

membrane, which is termed exocytosis (Jahn, 2004). Exocytosis serves two functions: the 

first to integrate the lipids and incorporated membrane proteins into the plasma membrane 

and secondly to release the contents of the secretory vesicle to the extracellular space. 

Exocytosis can occur in two distinct ways. It can occur constitutively, in all cells, where 

secretory vesicles are continuously fusing with the plasma membrane in a stimulus-fiee 

manner. In specialised secretory cells, such as neurons and pancreatic beta cells, regulated 

exocytosis can also occur where stored secretory vesicles only fuse to the plasma 

membrane following a specific stimuli. The insulin-stimulated exocytosis of vesicles 

enriched in Glut4 in insulin-responsive cells is an example of regulated exocytosis.

1.3.2 Endocytosis

Endocytosis is the mechanism the cell utilises to internalise membrane and molecules from 

its surface (reviewed in Max field and McGraw, 2004). Following endocytosis molecules 

are transported to the endosomes of the cell where they are sorted and packaged for further 

transport. The rate of endocytosis from the cell surface is thought to be regulated, hi 

insulin response cells insulin stimulation is thought to lead to a decrease in endocytosis of 

Glut4, that nomially occurs in the basal state to recycle cell surface Glut4, which along 

with the substantial increase in exocytosis causes an increase in cell surface Glut4 levels 

(Satoh et al, 1993).
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1.3.3 Trafficking of Giut4

Several studies have focused on the intracellular location of Glut4 and how insulin 

stimulates the movement of this transporter to the cell surface. It is estimated that in the 

absence of insulin the majority of Glut4, as much as 95 %, is held within the cell (Smith et 

al, 1991). Using immuno electron microscopy of cryosections of white and brown adipose 

tissue in the basal state, Glut4 was localised to several intracellular locations including the 

endosomes and the trans-Golgi network (TGN) (Slot et al,  1991b). However, the majority 

of Glut4 (approximately 80 %) was shown to be associated with a population of small 

vesicles and tubules which are distinct from the TGN but which cluster around the TGN, 

the early or late endosome and close to the plasma membrane (Slot et al, 1991b). Upon 

insulin stimulation there was a distinct movement of Glut4 from these intracellular 

compartments to the plasma membrane of the cell resulting in a surface increase of Glut4 

in the region of 40-fold (Slot et al,  1991b). The same shift from intracellular tubulo- 

vesicular elements to the plasma membrane was also observed in cardiac myocytes and 

muscle (Slot et al, 1991a;Ploug et al, 1998),

In 1996 work using 3T3-L1 adipocytes and endosomal ablation (Livingstone et a/.,1996) 

suggested the existence of two separate pools of intracellular Glut4: one associated with 

endosomes and the other distinct from the recycling system which was insulin sensitive 

(Livingstone et al,  1996). The idea of a separate insulin responsive pool of Glut4 has been 

supported by a study on skeletal muscle which suggested the presence of a highly insulin 

responsive population of Glut4-containing vesicles (Aledo et a l,  1997) and subcellular 

fractionation of 3T3-L1 adipocytes (Hashiranioto and James, 2000). These specialised 

vesicles aie now referred to as Glut4 storage vesicles (GSVs) and have been estimated to 

contain approximately 60% of the total cellular Glut4 (Livingstone et a l,  1996).

The simplest model of Glut4 trafficking would suggest that Glut4 is held in a static 

population of GSVs awaiting release in response to insulin. However, Glut4 is found in 

the endosomes and TGN in the absence of insulin (Slot et al,  1991a;Slot et al,  1991b). 

Specialised GSVs have been suggested to traffic in two cycles with GSVs trafficking 

between both the cell surface and the endosomes in one cycle (cycle 1) and between the 

TGN and endosomes in the other cycle (cycle 2) (Bryant et a l,  2002) as shown in Figure 

1.2. The trafficking of this isoform between the TGN and endosomes is proposed to 

account for the relatively low levels of Glut4 observed at the cell surface and the presence
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of this isoform in the TGN in the basal state. In response to insulin it is proposed that 

Glut4 containing vesicles trafficking in this second cycle are released and allowed to fuse 

to the plasma membrane (Bryant et al,  2002).
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Figure 1.2: The proposed cycles of Glut4
trafficking within the cell

GIut4 has been proposed to cycle in two separate intracellular cycles. In the first cycle 

Glut4 recycles between the plasma membrane, early endosome (EE) and recycling 

endosomes (RE). In the second cycle Glut4 is held in a specialised GSV 

compartment, which recycle between the TGN and RE in the basal state. Upon 

insulin stimulation GSVs, in cycle 2, are released from retention within the cell and 

are translocated to the plasma membrane where they fuse and allow for the rapid and 

substantial increase in facilitative glucose transport.
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1.4 The regulation of Glut4 trafficking by Insulin

The discovery of an insulin-responsive Glut isoform prompted research into how insulin 

stimulates the mobilisation of the intracellular store of Glut4 to the plasma membrane. 

Insulin signalling is initiated by the binding of insulin to the insulin receptor present on the 

surface of insulin responsive cells. The insulin receptor, a member of the family of 

tyrosine kinase receptors, exists as a preformed heterotetramer consisting of 2 a  and 2 p 

subunits linked by disulfide bonds. The binding of insulin to the extracellular a  subunits 

leads to conformational change of the receptor, which enables the transphosphorylation of 

tyrosine residues present on the p subunits (reviewed in Holman and Kasuga, 1997). This 

results in a number of docking sites for molecules, that contain SH2 (Src-homology-2) 

domain and phosphotyrosine-binding (PTB) domains, which are involved in downstream 

insulin signalling events. The activated insulin receptor recruits amongst other proteins 

members of the insulin receptor substrate (1RS) family. For a long time one downstream 

pathway involving the recmitment and activation of 1RS proteins, which in turn recruit and 

activate phosphatidylinositol 3-kinase (PI3K), was thought to be adequate to stimulate 

Glut4 translocation to the surface of insulin responsive cells. However, recently this idea 

has been challenged by the discovery of another signalling pathway, which seems to 

localise to specific domains in the plasma membrane.

1.4.1 PI3K dependent pathway

The ‘classical’ insulin-signalling cascade involves the activation of insulin receptor 

substrate (1RS) by phosphorylation following its recmitment to the activated insulin 

receptor (reviewed in Khan and Pessin, 2002). There are four isofonns of 1RS, -1, -2, -3 

and -4  (Sun et al, 1991;Sun et al,  1995;Sciacchitano and Taylor, 1997;Fantin et al,

1999). Only IRS-1, -2 and -3 are expressed in adipocytes from rat and mice (Giovannone 

et al,  2000). Several studies suggest that the 1RS proteins play complimentary roles 

however, in adipocytes IRS-1 is thought to be the main target of insulin (Quon et al, 

1994;Kaburagi et al,  1997). Following tyrosine phosphorylation by the aetivated insulin 

receptor 1RS can act as a docking protein for effectors containing SH2 domains.

The phosphorylation of 1RS proteins by the activated insulin receptor leads to the 

recmitment and activation of the p85/pl 10-type PI3K (reviewed in Khan and Pessin,

2002). This recruitment brings the PI3K into close proximity with its substrate,
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phosphatidylinositols, located in the plasma membrane. Studies have demonstrated that 

the activation of PI3K is necessary for insulin stimulated glucose uptake (Kotani et al,

1995). Once activated PI3K catalyses the phosphorylation of the D-3 position of inositol 

rings and therefore leads to, among other reactions, the conversion of phosphatidylinositol 

4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 recruits to 

the plasma membrane and activates phosphoinositide-dependent kinase 1 which then goes 

on to phosphorylate and activate Protein Kinase B (PKB) (Alessi et al, 1997) and the 

atypical Protein Kinase C (PKC) isofonns PKCl and PKCÇ (reviewed in Watson and 

Pessin, 2001).

Following the discovery of this ‘classicaF pathway evidence emerged for the requirement 

of another PI3K-independent insulin signalling pathway for Glut4 translocation. While (31- 

integrin stimulated the activation of PI3K and PKB it had no effect on Glut4 translocation 

in adipocytes (Guilheime and Czech, 1998). Platelet-derived gi'owth factor and interleukin 

4 were also shown to be able to activate PI3K but were unable to stimulate Glut4 

translocation or glucose transport in 3T3-L1 adipocytes and L6 muscle cells respectively 

(Isakoff et al,  1995). The existence of an alternative pathway was further supported when 

it was observed that the introduction of membrane permeant esters of PI3P, thought to be 

sufficient to activate the downstream events from PI3K, into adipocytes were unable to 

stimulate glucose uptake (Jiang et al, 1998). In addition manipulation of the interaction 

between the insulin receptor and the insulin receptor substrate also had no effect on 

glucose transport in adipocytes (Sharma et al,  1997). These observations led to a hunt for 

other pathways that could be responsible for the increase in glucose transport observed in 

response to insulin.

1A.2 PI3K independent pathway

A second, PI3K-independent, pathway was identified by Baumann and colleagues 

(Baumami et al,  2000). In this pathway the activated insulin receptor is proposed to 

recruit Cbl, a homologue of the transforming v-Cbl oncogene, through its interaction with 

two adaptor proteins APS (Adaptor protein with a pleckstrin homology and an Src 

homology 2 domain) (Liu et a l , 2002) and CAP (Cbl-associated protein) (Ribon et a l , 

1998;Kimura et a l , 2001). This association promotes the tyrosine phosphoiylation of Cbl, 

which facilitates the translocation of this complex to specialised membrane domains in the 

plasma membrane termed lipid rafts (which will be discussed later). The association of
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this complex with lipid rafts is thought to be due to the interaction between the lipid raft 

resident protein flotilin and the sorbin homology domain of CAP (Baumami et al, 

2000;Kimura et al,  2001). Following phosphorylation and recruitment to lipid raft 

domains Cbl recmits the small adaptor protein Crk II that in turn recmits C3G, a 

guanylnucleotide exchange factor (Chiang et al, 2001). Once recruited, C3G is brought 

into close proximity with TCIO, a member of the Rho family of GTPases (Chiang et al, 

2001). C3G activates TCIO, by promoting the exchange of GTP for GDP, which is then 

believed to signal through an as yet uncharacterised mechanism for Glut4 translocation to 

the plasma membrane (Chiang et al, 2001). There is strong evidence that the lipid raft 

localisation of this pathway is vital for signalling via this PBK-independent route (Watson 

et al, 2001;Kimura et al,  2001).

However, the physiological significance of this second pathway has recently been called 

into question. SiRNA of many of the key components in the pathway was found to have 

no effect on insulin stimulated glucose uptake (Mitra et al,  2004), while adipocytes from 

Cbl knockout mice were not found to be defective in insulin stimulated glucose uptake and 

muscle from these animals was actually found to have a significant increase in insulin 

stimulated glucose uptake (Molero et al, 2004).

The intersection between these insulin signalling pathways and the regulatory step of Glut4 

trafficking is yet to be established. One possible intersection is at the level of regulation of 

membrane fusion of vesicles containing Glut4 to the plasma membrane. Membrane fiision 

takes place through a highly conserved and tightly regulated mechanism.

1.5 Fusion

1.5.1 Tethering, docking and priming

The transport of vesicles, and the delivery of these vesicles to the correct organelle within 

the cell is of great importance in the maintenance of the integrity of the cell. A large 

number of proteins, and protein complexes, work together in order to tightly regulate this 

process. The transport of vesicles within the cell occurs tlumigh 4 defined stages, firstly 

budding of the transport vesicle from the donor membrane, then transport through the cell, 

which is followed by tethering/docking of the vesicle to the appropriate target membrane 

and finally membrane fusion. During tethering the transport vesicle is held at a distance
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(thought to be greater than 25 nm) from the target membrane through interactions i;

involving tethering proteins or protein complexes, which interact with both the vesicle and 

target compartment (Pfeffer, 1999). During docking the vesicle is more tightly attached 

and may be only 5-10 mn from the target membrane (Pfeffer, 1999). During the final 

membrane fusion event the two membranes integrate into one another through an as yet 

undefined mechanism.

1.5.2 Membrane Fusion intermediates

Membranes do not fuse spontaneously since the repulsive energy between two opposing 

membranes is thought to be extremely high. The actual process of how two membranes 

fuse into one another is still incompletely understood. Two models have emerged as 

possible paths of membrane fusion. The first involves the formation of a fusion pore, 

which allows for direct fusion of the two opposing membranes (Chemomordik and 

Kozlov, 2005). The second involves the formation of a hemifusion intermediate where the 

proximal leaflets of the two membranes merge, followed by the fonnation of a fusion stalk 

which then forms a fusion pore, with the expansion of this pore completing the process of 

membrane fusion (Chemomordik and Kozlov, 2005). Although there is some debate as to 

which path membranes fuse through, a family of proteins called SNAREs is lorown to be 

essential for this process.

1.5.3 SNAREs

Every eukaryotic membrane fusion event is now known to involve a family of proteins 

called soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). 

SNAREs act as receptors for the cytoplasmic proteins NSF (N- ethylrnaleirnide sensitive 

factor) and SNAP (soluble NSF attachment protein), which were known to play a role in 

membrane trafficking prior to the discovery of SNARE proteins.

SNAREs were biochemically isolated through the purification of bovine brain detergent 

extract using an affinity column consisting of recombinant NSF and SNAP by Rothman 

and colleagues in 1993 (Sollner et a l,  1993). One of these SNARE proteins had 

previously been localised to the plasma membrane of presynaptic neurons (Bennett et a l , 

1992) while another had been localised to small synaptic vesicles (Trimble et al, 1988). 

The localisations of these SNARE proteins provided the possibility that proteins on
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different membranes could interact to facilitate fusion. This discovery led to the 

formulation of the SNARE hypothesis. The SNARE hypothesis suggests that for every 

vesicle trafficking event there is a specific v-SNARE on the vesicle and a specific t- 

SNARE on the target membrane, which interact to achieve the specificity of targeting 

(Sollner et al,  1993). Thus, using the NSF/SNAP column, Rothman and colleagues 

purified the prototypes of v and t-SNAREs.

The neuronal SNARE proteins identified by this study were the v-SNARE VAMP, a 

member of the synaptobrevin family, and the t-SNAREs SNAP25 (synaptosomal protein of 

25 kDa) and syntaxin 1 A. Many homologues of these proteins have since been 

discovered. The family of SNARE proteins are now characterised by a homologous 

domain o f-60 amino acids known as the SNARE motif through which they interact with 

each other to facilitate membrane fusion.
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Figure 1.3: Model of SNARE action

Following the docking of the vesicle (in this case a synaptic vesicle) to the target 

membrane (in this case the plasma membrane) SNAREs, one set on the vesicle and 

one set on the target membrane, come together to form a traws-SNARE complex 

known as the SNAREpin. In vitro the formation of this SNAREpin has been shown to 

be necessary and sufficient for membrane fusion. It is thought that the energy from 

the zippering of the SNAREpin may be capable of overcoming the repulsion between 

the two membranes and thus facilitate fusion. Following fusion the v- (synaptobrevin 

in this diagram) and t- SNAREs (Syntaxin and SNAP-25 in this diagram) are said to 

be in a cw-SNARE complex with both their transmembrane domains in the same 

membrane, (taken from Barrick and Hughson, 2002).
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1.5.3.1 Classification of SNAREs

Originally the SNAREs were classified using their intracellular location with v-SNAREs 

being vesicle bound while t-SNAREs were found on target membranes. However, the 

discovery that v- and t-SNAREs could coexist on the same membrane led to their 

reclassification into Q- or R-SNAREs on a structural basis. The Q- and R- classification is 

based on the amino acid residue present at a highly conserved position within their SNARE 

domain, which is involved in the formation of the central layer of the complex (Fasshauer 

et al,  1998). For R-SNAREs (e.g. synaptobrevin) this residue is an arginine while for Q- 

SNAREs (e.g. syntaxin lA  and SNAP25) the residue is a glutamine (Fasshauer et al,

1998). The t-SNARE family has been further classified into Qa, which represents the 

syntaxins, and Qb, and Qc refemng to the N and C SNARE motifs of SNAP25 

homologues respectively.

1.5.3.2 R-SNAREs (VAMPs)

R-SNAREs, also loiown as VAMPs (vesicle associated membrane protein) or 

synaptobrevins, were first identified as components of synaptic vesicles prior to their 

identification as SNAP-binding proteins (Trimble et al, 1988). Synaptobrevin family 

members are small conserved proteins o f—120 amino acids. Ten mammalian R-SNAREs 

have been identified thus far (Steegmaier et al,  1999). Although all Icnown R-SNAREs 

have predicted transmembrane domains which are thought to anchor them to the membrane 

three R-SNARE homologues, VAMP2, snc-1 and snc-2 have recently been demonstrated 

to be palmitoylated on a conserved cysteine residue (Couve et a l,  1995;Veit et a l,  2000). 

Whether this palmitoylation of the R-SNAREs has any physiological significance is yet to 

be investigated.

1.5.3.3 Syntaxins

Syntaxins, also known as Qa SNAREs, were first identified in neurons (Inoue et al,  1992), 

prior to their identification as SNAP-binding proteins (Bennett et al,  1992). The syntaxins 

were first described as two 35 kDa proteins, now known as 1A and IB, which showed 84 

% sequence identity (Bennett et al,  1992). Since then 16 family members have been 

found expressed in mammalian cells (Teng et al, 2001), making them the largest 

mammalian SNARE family identified thus far.
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All mammalian syntaxins, with the exception of syntaxin 11, are anchored in the 

membrane by a C-terminal transmembrane tail (Teng et al., 2001). Such proteins are 

inserted into the membrane post-translationally (Borgese et ah, 2003). In addition to the 

transmembrane domain and a single SNARE domain the syntaxins also have a large N- 

terminal domain that makes up roughly two thirds of the molecule (Fernandez et al, 1998). 

This N-terminal domain encodes 3 a-helices (Ha, Hb and He), which have been predicted 

using NMR to fomi a tliree-helix bundle (Fernandez et al, 1998). This N-terminal domain 

is highly conseiwed in exocytic syntaxins (Fernandez et a l,  1998). In some syntaxins this 

N-terminal domain has been shown to fold back and interact with the SNARE domain 

holding the protein in a closed confonnation however, in other syntaxins this does not 

appear to occur.

The syntaxin homologues show different levels of expression in different tissues (Bennett 

et al,  1993). However, their location within different cell types appears to be isoform 

specific. Syntaxins 1, 2, 3 and 4 have all been found to localise predominantly to the 

plasma membrane where they mediate constitutive and regulated vesicle transport to the 

plasma membrane (Teng et al,  2001).

1.5.3.4 SNAP25 family

To date only 4 members of the SNAP25 family have been identified in mammalian cells. 

While the expression of SNAP25 is restricted to neuronal and neuroendocrine cells, the 

other members of the family SNAP23, SNAP29 and SNAP47 are ubiquitously expressed 

(Wang et al, 1997;Steegmaier et al,  1998;Holt et al,  2006). SNAP23 shares roughly 60 

% sequence homology with SNAP25 (Hodel, 1998).

The N and C-terminal domains of SNAP25 family members are predicted to form coiled- 

coil domains that bind syntaxin, separated by a flexible linker region. Unlike other 

SNAREs, the SNAP25 family does not contain a membrane-spaiming domain. SNAP25 

and SNAP23 are instead anchored to the membrane through the covalent attachment of 

palmitate groups to a number of cysteine residues in a conseiwed cysteine rich domain 

situated in the linker domain which bridges the two coiled-coil domains or through 

interactions with other proteins including syntaxin (Vogel and Roche, 1999). SNAP29 

lacks this cysteine rich domain and is thought to localise to membranes solely through its 

interaction with syntaxin or another membrane bound protein (Steegmaier et al,  1998).
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1.5.3.5 Structure of SNARE complexes

The neuronal SNARE complex, the first SNARE complex identified consisting of syntaxin 

1 A, SNAP25 and VAMP2, remains the most widely characterised SNARE complex. 

SNARE proteins come together through their highly conserved SNARE motifs, adjacent to 

their membrane anchor, to form the SNARE core complex.

The crystal stmcture of the complex formed by the SNARE domains of the neuronal 

SNAREs, at 2.4 Â, revealed that the four SNARE motifs of these proteins come together to 

foim a parallel twisted 4 helical bundle (-12 nm in length) with syntaxin 1A and YAMP2 

contributing one helix and SNAP25B contributing 2 helices (Sutton et al,  1998). Spin 

labelling electron paramagnetic resonance spectroscopy of this SNARE core complex has 

supported a parallel configuration of the helices (Poirier et al,  1998b). The SNARE motif 

is made up of a heptad pattern of hydrophobic residues and the formation of the SNARE 

complex leads to these residues residing on the same face of the helix, typical of a coiled 

coil interaction. The interaction of highly conseiwed amino acids in each helix forms the 

interface between the helices (Fasshauer et al, 1998). Three glutamine residues, one from 

syntaxin 1A and 2 from SNAP25, hydrogen bond with an arginine side chain from 

VAMP2 present in the central zero ionic layer of the core complex (Fasshauer et al., 1998). 

The residues that participate in this interaction form the basis of the classification of 

SNAREs as outlined in section 1.5.3.1. The outer surface of the helical bundle has four 

grooves (Sutton et al,  1998) that have been proposed to function as binding sites for 

interacting proteins. Despite limited sequence homology between the synaptic SNARE 

complex and the endosomal SNARE complex of Syntaxin 7, Vtilb, Syntaxin 8 and 

VAMP8 the crystal structure derived from the SNARE domains of these SNAREs supports 

this overall structure suggesting this structure is highly conserved throughout the SNARE 

family (Antonin et al,  2002).

SNARE complexes appear to be extremely stable structures. The ternary complex formed 

by syntaxin 1 A, SNAP25 and VAMP is resistant to the denaturing detergent SDS (Hayashi 

et a l,  1994) while both the binary complex of syntaxin 1A and SNAP25 as well as the 

ternary complex foimed from the addition of VAMP are protected from protease digestion 

by trypsin compared to the SNAREs alone (Poirier et al, 1998a). The SNAREs are 

proposed to zipper up from their N to C teiminus to fomi a parallel complex, which 

presumably brings the two membranes in which they are anchored into close apposition
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(Fasshauer and Margittai, 2004). Although the crystal structures of the SNARE complex 

revealed a tightly packed parallel 4-helix bundle it was found that the cytoplasmic domains 

of individual SNARE proteins, with the exception of syntaxin, are mainly unstmctured in 

solution (Fasshauer et al,  1997a;Fasshauer et al, 1997b). However, upon forming binary 

or ternary complexes there are major conformational changes and the SNARE domains 

increase significantly in a-helical content (Fasshauer et al,  1997a;Fasshauer et al, 1997b). 

The large change in structure observed on formation of the core complex and the high 

stability of this complex suggests that the formation of such a complex is extremely 

energetically favourable and it is thought that this may provide the energy to overcome the 

repulsion between two membranes and facilitate fusion.

In vitro it has been demonstrated that the fonnation of the binary complex between 

syntaxin and SNAP25 occurs prior to the binding of synaptobrevin to foim the ternary 

complex (Fasshauer and Margittai, 2004). Since syntaxin and SNAP25 are present on the 

same membrane it seems likely that the foimation of a binary complex occurs prior to 

binding of VAMP in vivo. This is supported by recent FRET experiments using labelled 

SNAP25 and syntaxin introduced into PC 12 cells suggesting the foimation of the binary 

complex occurs prior to stimulation of the cell and thus formation of the ternary complex 

(An and Aimers, 2004). However, in vitro data suggests that the binary complex formed 

from the addition of SNAP25 to syntaxin does not yield a 1:1 ratio within the binary 

complex but rather 2 syntaxin molecules bind SNAP25, with one SNARE motif occupying 

the binding site of synaptobrevin (Fasshauer et al, 1997b;Zhang et al, 2002) which 

synaptobrevin displaces to fonn the ternary complex (Fasshauer et al,  1997b). However, 

the homologous yeast binary complex of Ssolp (syntaxin homologue) and Sec 9p 

(SNAP25 homologue) has been shown to have a 1:1 ratio in vitro (Rice et a l,  1997) 

suggesting that in vivo a 2:1 complex of syntaxin and SNAP25 may not exist.

1.5.3.6 Fusion in vitro

The fusion process facilitated by SNARE proteins has been successfully reconstituted in 

vitro (Weber et al, 1998). In this assay one population of liposomes are reconstituted with 

the t-SNARE complex while the other population, which contain a quenched mixture of 

fluorescent lipids, is reconstituted with the v-SNARE. When the two vesicle populations 

fuse the fluorescent lipids become more diluted within the membrane and fusion can thus 

be measured as a function of increasing fluorescence. Using this assay it was demonstrated
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that SNAREpins, that is the complex fomied between cognate sets of v- and t-SNAREs are 

necessary and sufficient to fuse artificial membranes (Weber et al,  1998). The results 

from the in vitro fusion assay suggest that the formation of the energetically favourable 

SNARE complex is alone sufficient to overcome the repulsion between two membranes 

and facilitate frision. This assay has been used to study the regulation of SNARE complex 

formation including the control of specificity.
n

1.5.3.7 Specificity of SNARE mediated membrane fusion

The discovery that there were many homologues of SNAREs and that these occupied 

distinct locations within the cell suggested the possibility that SNARE proteins themselves 

offered a level of specificity within the fusion process. The original SNARE hypothesis 

proposed that the interaction between specific pairs oft- and v-SNAREs offered specificity ^

in complex formation in a simple lock and key manner. However, individual SNARE 

domains have been shown to pair with the SNARE domain of numerous SNARE complex 

partners in vitro with the capacity to form highly stable core complexes (Yang et al,  

1999;Fasshauer et al, 1999;Tsui and Banfield, 2000) suggesting that the interactions 

between SNARE domains are not selective. This is not particularly surprising when the ;|

high conservation of the interacting residues within the SNARE domains is considered. i,

However, these studies were performed using the cytoplasmic domains of SNAREs in 

solution and may not accurately reflect the in vitro situation where the SNAREs are 

anchored in membranes which have a strong repulsion against each other. However, 

studies in Drosophila and yeast have demonstrated that the interactions between SNARE 

domains is also promiscuous in vivo since the overexpression of members of the v- ant t~

SNARE family respectively can compensate for the deletion of other v and t- SNARE 

members (Gotte and Gallwitz, 1997;Bhattacharya et al,  2002).

Studies utilising the in vitro liposome fusion assay, described in section 1.5.3.6, with 

reconstituted full-length recombinant yeast SNAREs have demonstrated higher levels of 

specificity. With one exception, only SNARE pairings thought to be physiologically 

relevant gave substantial fusion using this system (McNew et al,  2000a). However, there 

is the possibility that the lack of fusion in some of these pairings may be due to the absence 

of any additional proteins in the assay. A subsequent study using the same assay 

demonstrated that on removal of the N-terminal domains of the t-SNAREs specificity for 

the v-SNARE was not lost suggesting that specificity is encoded solely in the SNARE
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motif as opposed to the other domains of the SNARE proteins (Paumet et al,  2004). A 

higher level of specificity between SNARE pairings in vivo has also been demonstrated 

using an independent cracked cell assay in PC 12 cells (Scales et al,  2000).

1.5.3.8 Localisation of SNAREs within the cell

Within the cell SNARE members have distinct locations. The targeting of members of the 

SNARE family to distinct locations within the cell may be a means of regulating the 

specificity of fusion at particular compartments. The factors that ultimately control the 

localisation of SNAREs within the cell are still to be fully established. The typical 

locations of SNAREs within the mammalian cell are depicted in Figure 1.4.
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Figure 1.4: The typical location of mammalian

SNAREs within the cell

Members of the R- and Q-SNAREs occupy distinct intracellular locations within a 

typical mammalian cell. (Taken from Chen and Scheller, 2001).
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1.5.3.9 Clustering of SNAREs

When viruses fuse with mammalian ceils the process is similar to that of intracellular 

fusion facilitate by SNAREs. However, in the case of viral fusion the protein machinery 

required for membrane fusion is only present on viral membrane. Membrane fusion 

involving these viral fusion peptides, which interact with the host plasma membrane to 

facilitate fusion during viral entry to the cell, has been widely characterised. Electron 

microscopy and X-ray crystallography studies of the Semliki Forest virus fusion 

glycoprotein El suggests that 5 trimers facilitate the fusion of the virus to the host cell 

(Gibbons et al,  2004). Kinetic studies on the influenza virus fusion protein hemagglutinin 

(HA), which facilitates viral frision to the host endosomal membrane, have suggested that 

membrane fusion events facilitated by this protein also involve a number of subunits with 

at least 3 to 4 homotrimers of HA cooperating together to facilitate fusion (Danieli et al, 

1996). It is now thought that intracellular membrane fusion in mammalian cells also 

requires multiple sets of protein subunits, SNARE complexes, however the exact number 

of SNARE proteins required for each individual exocytic event is presently unknown.

SNARE proteins have been demonstrated to occur in clusters which supports the idea that 

more than one SNARE complex is need to drive the fusion of one vesicle into the plasma 

membrane (Sieber et a l , 2006). A study of recombinant SNAREs reconstituted into 

liposomes using AFM revealed that when v- and t-SNAREs interact they form circular 

arrays (Cho et al, 2002). Using Transmission Electron Microscopy (TEM) native synaptic 

SNARE complexes, purified from a detergent extract of bovine brain, have been shown to 

oligomerise into star shaped bundles containing mainly 3 or 4, but also up to 6 complexes 

(Rickman et a l,  2005). Purified recombinant full-length SNAREs also displayed the same 

pattern of oligomerisation suggesting that the ability to oligomerise is intrinsic to the 

SNAREs themselves (Rickman et a l , 2005). A recent study, which studied the clustering 

of full-length and a deletion of the N terminus of syntaxin la, suggested that the formation 

of higher order structures of SNARE proteins is primarily mediated by their SNARE 

domain in vivo however these proteins still contained the transmembrane domain (Sieber et 

a l , 2006). However, the ability of purified recombinant SNAREs to form clustered arrays 

was lost with the deletion of the transmembrane region of syntaxin 1A suggesting that the 

transmembrane forms the point of oligomerisation (Rickman et al,  2005). Recombinant 

and native complexes have also been shown to oligomerise into higher order stmctures 

using native SDS-PAGE (Rao et al,  2001 ;Tokumaru et al, 2001). Synaptobrevin and
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syntaxin 1 have been shown to homodimerise and heterodimerise through interactions 

dependent on conserved residues in their transmembrane domains (Laage et al., 2000).

By examining the kinetics of membrane fusion, following addition of increasing amounts 

of the soluble domain of VAMP2 to a cracked PC 12 cell assay, Hua and Scheller estimated 

that 3 SNARE complexes cooperate in the fusion of one vesicle to the plasma membrane 

(Hua and Scheller, 2001). Site directed mutagenesis of the syntaxin 1A transmembrane 

region, amperometry and membrane capacitance measurements have led to a model where 

5 to 8 syntaxin transmemhrane domains fonn alpha helices which line a fusion pore and 

cooperate to facilitate fusion of one vesicle to the target membrane (Han et al, 2004). 

Controlling the clustering of SNAREs within the cell may be a level of regulation in the 

fusion process.

1.6 SNAREs involved in Glut4 trafficking

Since the discovery of the neuronal SNARE complex many homologues of the neuronal v- 

and t-SNAREs have been cloned. Conceptually the recruitment of a pool of intracellular 

vesicles containing Glut4 is similar to that of neurotransmitter release from neuronal cells. 

In neuronal cells neurotransmitters are stored in a preformed vesicle population, which 

upon stimulation fuse with the plasma membrane through a process of synaptic exocytosis, 

and are retrieved following action by endocytosis (reviewed by Lin and Scheller, 2000) 

much like Glut4 transporters in insulin responsive cells. These similarities prompted 

research into the possibility that SNARE proteins were involved in Glut4 storage vesicle 

traffic.

1.6.1 v-SNAREs

Two members of the synaptobrevin family, VAMP2 and cellubrevin (VAMP3), are 

expressed in adipocyte cells (Cain et al,  1992;Volchuk et al,  1995). Both of these 

isoforms colocalise with Glut4 in adipocytes and are emiched on Glut4-containing vesicles 

(Volchuk et al,  1995). In addition, both of these isoforms showed a similar pattern of 

insulin-stimulated movement from low density microsomes to the plasma membrane, 

although to a smaller extent, as Glut4 (Martin et al, 1996). However, when vesicles 

containing cellubrevin were immmioprecipitated, it was found that although these 

contained Glut4 they were devoid of VAMP2 (Volchuk et al,  1995), suggesting the
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existence of two separate pools of Glut4-containing vesicles. The existence of two pools 

has been supported by immuno-electron microscopy of rat adipocytes which showed that, 

although VAMP2 colocalised with Glut4 in a high proportion of intracellular 

compartments, Glut4 was also present in vesicles which lacked VAMP2 (Ramm et ai,

2000). The use of compartmental ablation and subcellular fractionation showed that, while 

the majority of cellubrevin was found in the endosomal fraction, a large proportion of 

VAMP2 and Glut4 were found in a separate compartment, suggesting VAMP2 was the 

isofonn more likely to participate in insulin-stimulated Glut4 translocation (Martin et al,

1996).

The discovery of toxins, which specifically cleave individual SNARE proteins, has helped 

define which sets of SNAREs are involved in particular fusion events. Tetanus toxin light 

chain, botulinum neurotoxin D and hotulinum toxin B have been shown to cleave both 

VAMP2 and cellubrevin (Cheatham et al,  1996;Macaulay et al,  1997a;Macaulay et al, 

1997b;Foran et al,  1999;Randhawa et al, 2000). The introduction of these toxins into 

adipocytes was shown to inhibit insulin-stimulated translocation of Glut4 to the cell 

surface (Tamori et al,  1996;Cheatham et al,  1996;Macaulay et al, 1997a;Macaulay et al, 

1997b), Although this supported the involvement of a one of the isofoims in insulin 

stimulated translocation of Glut4 to the plasma membrane, it did not distinguish between 

the contributions of each isofonn. The concomitant introduction of tetanus resistant forms 

of the two isofoims along with tetanus toxin light chain into L6 myoblasts demonstrated 

that only VAMP2 was able to rescue the toxin inhibition of insulin stimulated Glut4 

translocation (Randhawa et al,  2000). The introduction of recombinant soluble domains 

of the two isofoims into adipocytes showed that only the soluble domain of VAMP2 was 

able to substantially inhibit insulin-stimulated Glut4 translocation (Martin et al, 

1998;Millar et al,  1999). VAMP2 is thus proposed to regulate the insulin stimulated 

exocytosis of Glut4-containing vesicles while cellubrevin is proposed to play a role in the 

constitutive endosomal recycling of the transporter.

1.6.2 t-SNAREs

Adipocytes were found not to express syntaxin 1A or IB (Volchuk et al 1996;Timmers et 

al,  1996). Adipocytes do however express syntaxin 2, 3 and 4 (Timmers et al,

1996; Volchuk et al, 1996;01son et a l,  1997). Of the syntaxin isofoims only syntaxin lA  

and syntaxin 4 have been shown to bind VAMP2 (Pevsner et al,  1994a). Syntaxin 4 was
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shown to be predominantly located at the plasma membrane of adipocytes and its 

localisation appeared to be unaffected by insulin stimulation (Volchuk et al,  1996;Tellam 

et al,  1997). The introduction of anti-syntaxin 4 antibodies into adipocytes tlirough 

permeabilisation or micro injection led to reduced insulin-stimulated glucose transport and 

Glut4 translocation to the cell surface respectively (Volchuk et al,  1996;Tellam et al,

1997). Introduction of the cytoplasmic domain of syntaxin 4 into adipocytes either through 

overexpression driven by vaccinia virus or recombinant protein introduced into 

permeahilised cells also inliibited insulin stimulated Glut4 translocation (Cheatham et a l , 

1996;Olson et al,  1997). There is therefore strong evidence for syntaxin 4 playing a key 

role in insulin stimulated Glut 4 translocation.

Using the cytoplasmic domain of syntaxin 4 to screen a cDNA library Ravichandran and 

colleagues identified a novel SNAP25 isofonn, known as SNAP23 or syndet 

(Ravichandran et al, 1996). This isoform was found to be expressed in numerous tissues 

(Wang et a l,  1997;Wong et al, 1997), SNAP23 was highly expressed in adipocytes 

where it was mainly localised to the plasma membrane (Wang et al., 1997). Much like 

syntaxin 4 the localisation of SNAP23 was unaffected by insulin stimulation (Wang et al, 

1997;St Denis et al, 1999). The interaction between SNAP23 and syntaxin 4 was 

confiimed by co-immunoprécipitation horn solubilised rat adipocyte plasma membrane 

and this interaction seemed to be unaffected by insulin stimulation (St Denis et al, 1999). 

The introduction of antibodies directed against SNAP23 tlirough permeabilisation or 

microinjection into adipocytes reduced insulin stimulated Glut4 translocation (Rea et al, 

1998;Foster et a l,  1999). This reduction in insulin-stimulated Glut4 translocation was also 

observed following the introduction of a SNAP23 peptide encoding the first 24 amino 

acids into permeahilised adipocytes (Rea et a l,  1998). The overexpression of a mutant of 

SNAP23 able to bind syntaxin 4 but not VAMP2 in adipocytes tlnough the use of 

adenovirus gave a similar reduction (Kawanishi et al, 2000).

Using surface plasmon resonance Rea and colleagues demonstrated that VAMP2, SNAP23 

and syntaxin 4 form an extremely stable SDS-resistant SNARE complex in vitro through 

their SNARE domains as outlined in Figure 1.5A and 1.5B(Rea et al,  1998).

All of these studies strongly suggest that the v-SNARE present on insulin responsive Glut4 

storage vesicles VAMP2 interacts with the binary complex formed by syntaxin 4 and 

SNAP23 present on the plasma membrane to facilitate the exocytosis of the GSV.

a
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Figure 1.5: The structures of the t- and v- SNAREs
involved in Giut4 translocation to the plasma membrane

(A) Plasma membrane syntaxins, including syntaxin 4, contain a C-terminal 

transmembrane region (red), a C-terminal conserved region termed the SNARE 

domain (yellow), involved in forming the core complex, which is joined through a 

flexible linker domain (turquoise) to the N-terminal domain composed of three helices 

termed Ha, Hb and He, collectively known as the Habc domain (blue). SNAP23 is 

composed of two SNARE domains (yellow and green) connected by a linker that is 

post-translationally modified by addition of palmitate groups to conserved central 

cysteine residues. VAMP2 has a short N-terminal region, one SNARE domain (pink) 

and a C-terminal transmembrane domain through which it is anchored to the 

membrane (red). (Taken from Grusovin and Macaulay, 2003) (B) It has been shown 

that syntaxin 4, SNAP23 and VAMP2 come together through their SNARE domains 

to form a highly stable SNARE core complex thought to be similar to the structure 

formed by the neuronal exocytic SNAREs as shown here. Sb = SNARE domain of 

synaptobrevin (VAMP2, Blue), Sx = SNARE domain of syntaxin la (Red), Snl and 

Sn2 = SNARE domains of SNAP25 (green). (Taken from Sutton et a i, 1998)
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1.6.3 The exocyst

Following the characterisation of the SNAREs involved in Glut4 translocation to the 

plasma membrane, the complex that tethers the Glut4 containing vesicle to the plasma 

membrane prior to fusion was identified.

The exocyst is a large multi-protein complex that tethers vesicles destined for exocytosis 

with the plasma membrane. The exocyst was initially identified in Saccharomyces 

cerevisiae where it was localised to sites of active exocytosis (TerBush and Novick,

1995;Guo et ai,  1999b). The yeast exocyst complex is composed of 8 subunits Sec3p, 

Sec5p, Sec6p, Sec8p, Seel Op, Secl5p, Exo70p and Exo84p (TerBush et al, 1996;Guo et 

al,  1999a). Mammalian homologues of all these subunits have since been identified and 

these are highly conserved (Hsu et a l,  1996;Grindstaff et al, 1998;Hsu et al, 

1999;Lipschutz et al., 2000;Matem et al,  2001;Yeaman et al,  2001).

Two independent studies have now proposed a role for the exocyst in Glut4 traffic to the 

plasma membrane. Exo70, a component of the mammalian exocyst complex, was recently 

found to bind TCIO, a component of the insulin-signalling cascade localised to rafts, in a 

GTP-dependent manner (Inoue et al, 2003). The activation of TCIO is thought to direct 

the relocation of Exo70 to the plasma membrane (Inoue et a l,  2003). Exo70 

overexpression significantly increased while the dominant negative version significantly 

decreased insulin stimulated glucose transport giving strong evidence that Exo70 is 

required for insulin stimulated glucose uptake (Inoue et a l,  2003). In contrast to their 

effects on glucose transport these two mutants had no effect on the translocation of GFP- 

Glut4, which may be inserted in the plasma membrane or held under the membrane in a 

docked vesicle, to the cell surface following insulin stimulation (Inoue et al, 2003).

These data strongly suggests that Exo70 must be acting at the site of tethering and docking 

of Glut4 containing vesicles to the plasma membrane. Consistent with a role in 

tethering/docking, WT Exo70 increased the insertion of Glut4, monitored using an HA 

epitope on an exofacial loop of the protein, following insulin stimulation, while the 

dominant negative mutant inhibited this insertion (Inoue et a l , 2003). A role for the 

exocyst in Glut4 vesicle trafficking was further supported by a second study which utilised 

adenoviral overexpression of two other subunits of the mammalian exocyst complex, rsec6 

and rsec8, leading to an increase in insulin-stimulated glucose transport in 3T3-L1 

adipocytes (Ewart et al,  2005).
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SeclSp, a yeast exocyst component, has been shown to bind activated Rab GTP as e Sec4p, 

that is normally present on secretory vesicles (Guo et al,  1999b). The interaction between 

Secl5p and Sec4p is proposed to allow the tethering factor to link the secretory vesicle to 

its target membrane (Guo et a l,  1999b). Whether the mammalian exocyst subunit binds to 

GTPase Rab4, which has been found to be present on Glut4-containing vesicles, remains to ' 

be established.

1.7 Regulation of Fusion

While it is widely accepted that SNAREs are central to the process of membrane fusion 

within the cell the control of such a fusion step is far from understood. A large number of 

proteins have been found to interact with the neuronal SNAREs and most of these proteins 

have conserved homologues in other cell types. These proteins have a variety of effects on |

SNARE complex assembly; some positive, some negative and in some controversial cases 

both.

1.7.1 NSF and SNAP

SNARE proteins were originally identified by the ability of the assembled synaptic 

SNARE complex comprised of syntaxin 1 A, SNAP25 and VAMP2 to bind to NSF and 

SNAP to form a 20 S complex (Sollner et al, 1993). NSF was originally identified as a 

protein that is inactivated by N-ethylmaleimide and was initially believed to be involved in 

directly activating membrane fusion (Malhotra et al, 1988). It is now Imown to be 

involved in priming SNAREs for fusion by disassembling cis-SNARE complexes in 

concert with aSNAP (Mayer et al, 1996). Cis-SNARE complexes are foiined following a 

fusion reaction when the v- and t-SNARE reside on the same membrane. The disassembly 

of such complexes by NSF and SNAP allows for the recycling and reactivation of the 

SNAREs for further rounds of fusion. NSF and aSNAP are both expressed in rat 

adipocytes (Timmers et al, 1996).

1.7.2 SM (Sec 1/Munc like-) pro teins

Although SM proteins are thought to be of great importance in the control of membrane 

fusion there is apparently conflicting data regarding the molecular basis of their function.

I
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1.7.2.1 Original identification

The first SM protein, called Une-18, to be discovered was found by screening C elegans 

for mutations that caused an uncoordinated phenotype (Brenner, 1974). A subsequent 

screen in yeast for genes involved in the secretory pathway found a homologue to Une-18 

which was called Seel (Novick et al., 1980). A homologue of Seel has been found in 

Drosophila, this is called ROP (Hanison et al,  1994). A neuronal homologue to Une-18 

was also discovered which encoded a protein of 67 kDa, which was found to bind stably to 

syntaxin 1 (Hata et a l,  1993;Garcia et a l,  1994). This homologue has subsequently been • 

called Munc 18a.

SM proteins comprise a family ofhydiophilic proteins, which span 60 to 70 kDa in size. 

Members of this protein family are found either within the cytosol of cells or attached to 

membranes tlirough a high affinity interaction with their cognate syntaxin. In mammalian 

cells seven members of the SM family have been identified Munc 18a, -b, -c, Slylp, 

mVps45, mVps33a and mVps33b (Dulubova et al., 2003). Sequence homology is 

observed throughout the coding sequence suggesting that no one domain of the SM 

proteins is critical for function, compared with SNAREs where homology is only strongly 

observed within the SNARE domain (Halachmi and Lev, 1996).

1.7.2.2 Role of $M proteins in fusion

Although it is thought that all intracellular trafficking events require the participation of a 

member of the SM family, their exact role in membrane fusion has remained a contentious 

issue due to apparently conflicting data. While some studies suggest a positive role in 

membrane fusion others suggest that SM proteins play a negative role.

Null mutations of SM proteins in mice (Munc 18a), C elegans (UNC-18), S. cerevisiae 

(Seclp, Vps33p, Vps45p, Slylp) and Drosophila (Rop) all led to a blockage of membrane 

fusion which suggests that SM proteins are essential for membrane fusion and play a 

positive role in fusion (Novick et al,  1980, Banta et a l,  1990, Ossig et a l,  1991;Harrison 

et a l,  1994;Cowles et al, 1994;Verhage et al,  2000;Weimer et a l,  2003). This positive 

role has been supported by a recent in vitro fusion experiment which showed that fusion 

was stimulated on addition of the cognate SM protein (Scott et a l,  2004).
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However, there is also data which points towards a negative role for SM proteins in 

exocytosis. Mutations in Drosophila syntaxin la  which dismpt the interaction with the SM 

protein ROP increased the exocytosis of neurotransmitters supporting an inliibitory role for 

SM proteins in membrane fusion (Wu et a l , 1999). Munc 18a has also been shown to bind 

to a closed form of syntaxin la  (Misura et al,  2000b), which prevents the formation of 

SNARE complexes in vitro (Yang et al,  2000) which further supports a negative role of 

SM proteins in SNARE complex fonnation and fusion.

It therefore remains to he established whether SM proteins play a positive or negative role 

in membrane fusion.

1.7.2.3 Munc 18 isoforms

The SM protein Munc 18a was found to be exclusively expressed in neuronal tissue (Hata 

et a l,  1993;Pevsner et a l,  1994b). Following the identification of Munc 18a two 

homologues were discovered. Munc 18b (or Munc 18-2) was identified by homology to 

Munc 18a (Hata and Sudhof, 1995). Unlike Munc 18a it was expressed in non-neuronal 

tissues (Hata and Sudhof, 1995). Using GST pull downs and a yeast two hybrid approach 

it was shown that both Munc 18a and Munc 18b could bind syntaxin 1, 2 and 3 but neither 

had an affinity for syntaxin 4 (Hata and Sudhof, 1995;Tellam et al,  1997). Munc 18c was 

identified from a 3T3-L1 adipocyte cDNA library by homology to Munc 18a (Tellam et 

al,  1995). This isoform of Munc 18 has been shown to bind to both syntaxin 2 and 

syntaxin 4 tlmough GST pull downs (Tellam et al, 1997). Both syntaxin 4 and Munc 18c 

are ubiquitously expressed and have both been implicated in tissues which regulate whole 

body glucose homeostasis, namely adipocytes, muscle and pancreatic (3-cells.

1.7.2.4 Munc 18c

Like other studies on SM proteins, the role of Munc 18c in insulin-stimulated Glut4 

translocation is highly contentious. Some data points towards a positive role for the SM 

protein in the fusion of Glut4 storage vesicles to the plasma membrane while other data 

supports a negative role.

While overexpression of Munc 18c in 3T3-L1 adipocytes inliibited insulin-stimulated 

Glut4 translocation and insulin-stimulated glucose transport, the overexpression of Munc
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18b had no effect (Thurmond et a i,  1998;Tamori et al,  1998). The overexpression of 

Munc 18c in transgenic mice also led to impaired glucose tolerance and glucose uptake 

into adipocytes (Spurlin et al, 2003). The downregulation of Munc 18c by tetracycline 

repression of the transgene in these mice, or coexpression of syntaxin 4 noimalised the 

response of these animals to glucose (Spurlin et al, 2003). Together these data suggest that 

this SM protein has a negative regulatory role in Glut4 translocation to the cell surface.

Other studies however, have supported a positive role for this SM protein in the 

translocation of Glut4. The microinjection of a peptide h'om the sequence of Munc 18c, 

which was shown to compete for binding of Munc 18c to syntaxin 4, led to an inliibition of 

GSV fusion to the plasma membrane and an accumulation of these vesicles under the cell 

surface suggesting that this interaction is need for fusion of GSV to the cell surface 

(Thurmond et al, 2000). This study has been supported by data from knock out mice. 

Homozygous knock-outs of Munc 18c are embryonically lethal, while heterozygote mice 

are viable (Oh et al, 2005;Kanda et a l,  2005), supporting an essential role for this SM 

protein. In addition, heterozygous mice show an impaired ability to translocate Glut4 in 

response to insulin along with a reduced ability to secrete insulin from islet cells in 

response to insulin suggesting that this protein is a positive regulator of both of these 

fusion events (Oh et al, 2005).

In contrast to the above, another study using adipocytes from mesenchymal embryonic 

fibroblasts from homozygote mice emhryos showed that in these cells Glut4 translocation, 

measured by surface exposed Glut4 and 2-deoxyglucose uptake, is enhanced at suboptimal 

insulin doses in the absence of Munc 18c suggesting that Munc 18c may play a negative 

regulatory role in Glut4 translocation (Kanda et al, 2005). However, at higher optimal 

insulin doses the absence of Munc 18c appeared to have no effect on Glut4 translocation 

(Kanda et al,  2005).

The role of Munc 18c in Glut4 translocation is therefore still a contentious issue.

1.7.3 Rab protein family

The Rah family is the largest family in the Ras superfamily of small GTPases (20 to 30 

kDa), being comprised of 60 family members in humans (Bock et al, 2001). Rabs are 

loiown to be key regulators of vesicular traffic, and are located at distinct locations along
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the exocytic and endocytic pathways of the cell, making them ideal candidates to regulate 

the specificity of fusion.

Rab proteins exist in two fonns, one GTP bound which is considered to be active and 

interacts with downstream effectors, and one GDP bound which is considered to be 

inactive. A class of proteins known as guanine nucleotide exchange factors (GEFs) 

catalyse nucleotide exchange from the GDP to the GTP bound state, while another family 

of proteins the GTPase activating proteins (GAPs) catalyses GTP hydrolysis from the GTP 

to the GDP bound state. While GTP-bound Rabs are membrane bound, upon GTP 

hydrolysis Rabs are released from the membrane and associate with Rab GDP-dissociation 

inhibitor (GDI) in the cytosol (Novick and Zerial, 1997).

Several studies have demonstrated interactions between Rab proteins and members of the 

SNARE machinery or the SM family. In yeast, the delivery of Golgi-derived secretory 

vesicles to the plasma membrane depends on the Rab Sec4p that is known to interact with 

the large multi-protein tethering complex, the Exocyst (Guo et a l,  1999b). An interaction 

between the yeast t-SNARE Sed5p and the Rab-like GTPase Yptlp has been shown 

(Lupashin and Waters, 1997). The data on this interaction suggested that this Rab reduced 

the amount of Slylp, a member of the SM protein family, binding to Sed5p and facilitated 

the fonnation of v-/t-SNARE complexes (Lupashin and Waters, 1997) suggesting a key 

role for Rab proteins in the regulation of this fusion event. Recently it has been suggested 

that Rab proteins may displace SM proteins from syntaxin (Misura et a l , 2000a), whether 

Rab 4 displaces Munc 18c from syntaxin 4 is yet to be assessed.

Rab 4 has been suggested to play a role in Glut4 vesicular trafficking in adipocytes 

(Cormont et a l,  1996;Vollenweider et al, 1997). Rab 4 has recently been shown to 

directly interact with syntaxin 4 which was modulated by the nucleotide hound state of Rab 

4 (Li et al, 2001). Whether Rab 4, or any other Rab family member, plays a role in 

regulating the fusion facilitated by syntaxin 4, SNAP23 and VAMP2 remains to be 

established.

1.7.4 Tomosyn

Tomosyn was first identified as a SNARE binding protein tlirough its interaction with 

syntaxin lA  in neuronal tissues (Fujita et al,  1998). The N-terminal of tomosyn is made 

up of WD-40 repeats the function of which are unknown (Hatsuzawa et a l,  2003). The C-
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terminal of tomosyn contains a VAMP-like coiled coil domain thi'ough which it binds 

syntaxin (Fujita et ah, 1998).

Using a cell free system to study fusion, consisting of fusion competent secretory granules 

attached to isolated plasma membrane from PC 12 cells, it was demonstrated that Tomosyn 

is inhibitory to exocytosis (Hatsuzawa et a l,  2003). The crystal structure of the SNARE 

motifs of syntaxin lA, N/C-terminal portions of SNAP25 and the VAMP-like motif of 

tomosyn to 2.0-Â resolution revealed an overall structure extremely similar to the 

structure of the ternary complex of SNARE domains from the synaptic SNAREs (Pobbati 

et al,  2004). However, this complex is less stable as it is not resistant to SDS (Pobbati et 

al,  2004). Using the differential SDS resistance of the two complexes and fluorescently 

labelled proteins the authors demonstrated that prebinding of tomosyn's R-SNARE motif 

to the binary complex of syntaxin 1A/SNAP25 prevents the binding of VAMP2 while the 

prebinding of VAMP2 prevents the binding of Tomosyn (Pobbati et al, 2004). This data 

suggests that Tomosyn plays a key role in regulating the formation of the ternary complex 

and thus membrane fusion.

Tomosyn was pulled out of a yeast two-hybrid screen using SNAP23 as bait (Masuda et 

al,  1998). Tomosyn has 3 splice variants, s-, m- and b- (Yokoyama et al,  1999). Full- 

length b-tomosyn has been shown to bind to syntaxin 4, more weakly to SNAP23 and with 

much higher affinity to the binary complex of syntaxin 4 and SNAP23 (Widberg et a l ,

2003). This binding is facilitated through the same VAMP-like domain that facilitates 

binding to syntaxin 1A (Widberg et al,  2003). The overexpression of h-tomosyn in 3T3- 

L ls led to a 40-50 % reduction in the ability of insulin to stimulate the translocation GFP- 

Glut4 to the cell surface as judged by cell surface staining and subcellular fractionation 

(Widberg et al, 2003). The distribution of Tomosyn in the cell was unaffected by insulin 

stimulation, and although it is predominantly found in the cytosol of 3T3-Lls, it is also 

found in the LDM fi*action and at the plasma membrane where it could interact with the 

fusion machinery responsible for exocytosis (Widberg et a l,  2003). This data suggests 

that Tomosyn has a negative effect on the fusion of Glut4 storage vesicles to the plasma 

membrane. Tomosyn was previously shown to compete with Munc 18a for binding to 

syntaxin lA  (Fujita et al, 1998), however it appears that in the case of syntaxin 4, Munc 

18c and tomosyn are able to bind simultaneously (Widberg et al,  2003).



Fiona M. Brandie, 2006 Chapter 1, 53

1.7.5 Synip

Synip, short for syntaxin 4 interacting protein, was isolated in a yeast two-hybrid screen of 

a 3T3-L1 adipocyte cDNA library using the cytoplasmic portion of syntaxin 4 as bait and 

was shown to be expressed in all insulin-responsive tissues (Min et al., 1999). Synip binds 

specifically to the syntaxin isofonn syntaxin 4 (Min et al,  1999). The binding of synip to 

syntaxin 4 does not effect the binding of SNAP23 but does compete for binding of the t- 

SNARE complex to VAMP2 to foim the ternary complex (Min et al,  1999). Insulin 

stimulation was shown to decrease the binding of full-length synip to syntaxin 4 (Min et 

al,  1999). The overexpression of full-length synip had no effect on insulin stimulated 

glucose uptake or Glut4 translocation to the plasma membrane (Min et al, 1999). Synip is 

however, considered to be a negative regulator of Glut4 translocation in adipocytes since 

overexpression of the carboxy-terminal domain that does not dissociate from syntaxin 4 

upon insulin stimulation inhibited Glut4 translocation and glucose uptake (Min et a l ,

1999).

The insulin stimulated dissociation of synip from syntaxin 4 has subsequently been shown 

to be sensitive to wortmarmin treatment, while expression of a dominant negative CAP was 

without effect, suggesting that the classical insulin-signalling pathway is responsible for 

the dissociation observed upon insulin stimulation (Yamada et al,  2005). In vitro synip is 

phosphorylated on ser 99 by PKBp and this phosphorylation is thought to control 

dissociation from syntaxin 4 (Yamada et a l,  2005). While it has been suggested from data 

in cells expressing a mutated synip, with this serine replaced with a phenylalanine, that this 

phosphorylation played a positive role in insulin stimulated glucose uptake (Yamada et al, 

2005) a subsequent study which mutated this serine to a alanine found no effect (Sano et 

a l , 2005) suggesting this result may be an artefact.

1.7.6 Protein Kinases

A plausible way that insulin signalling could influence fusion is through the activation of 

protein kinases that may phosphorylate the fusion machinery. A number of kinases have 

been shown to phosphorylate the SNAREs involved in Glut4 exocytosis as outlined in 

Table 1.1.
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Protein Kinase Effect of 

phosphorylation

Reference

Syntaxin 4 PKC Reduced binding to 

SNAP23

Chung et ah, 2000

PKA Reduced binding to 

SNAP23

Foster et ah, 1998

casein kinase 11 Not determined Foster et ah, 1998

SNAP23 PKC Reduced binding to 

syntaxin 4

Polgar et ah, 2003

SNAK Not detemiined Cabaniols et ah, 1999

VAMP2 PKCÇ Not determined Braiman et ah, 2001

Munc 18c PKC Reduced binding to 

syntaxin 4

Sclnaw et ah, 2003

Table 1.1 : Protein kinases that phosphorylate the

SNAREs Involved in Glut4 exocytosis (Adapted from Weinberger

and Gerst, 2004))

PKC is an important downstream effector involved in the classical insulin-signalling 

pathway. In insulin responsive tissues the activation of PI3K by the classical insulin 

signalling pathway leads to the activation of PKCÇ which has been shown to be important 

in the subsequent transport of the Glut4 isoform (Standaert et a l, 1997). In myotubes the 

overexpression of PKC^, through the use of an adenovirus, increased basal glucose 

transport and translocation of Glut4 to the plasma membrane, while the expression of a
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dominant negative mutant had no effect on basal glucose transport but prevented insulin 

stimulated glucose transport and Glut4 translocation supporting the key role of this enzyme 

in insulin stimulated glucose transport (Braiman et a l , 2001). Upon insulin stimulation 

PKC^ was shown to associate with the Glut4 containing compartment (Braiman et a l,

2001). Insulin stimulation of myotubes was shown, through probing immunoprécipitations 

of VAMP2 with a anti-phosphoserine antibody, to lead to phosphorylation of serine 

residues within VAMP2 (Braiman et a l, 2001). The overexpression of PKC( led to a 

more rapid phosphorylation of VAMP2 while the overexpression of a dominant negative 

version of PKCc  ̂prevented any insulin stimulated serine phosphorylation of this SNARE 

(Braiman et a l, 2001). PKCÇ was also shown to directly phosphorylate VAMP2 using an 

in vitro kinase assay (Braiman et a l, 2001). The consequences of this phosphorylation 

await further investigation.

Another important downstream effector of PBK is PKB. Three isoforms of PKB have been 

identified, called PKB a, PKBp and PKBy. PKB was substantially recmited to the Glut4 

containing compartment following insulin stimulation of 3T3-L1 adipocytes (Calera et a l,

1998). Several studies have shown that activation of PKB isofomis is involved in GIut4 

translocation. The microinjection of 3T3-L1 adipocytes with a PKB substrate peptide or 

antibody specific for PKBa and PKBp led to an inliibition of insulin-stimulated Glut4 

translocation measured as cell surface Glut4 (Hill et a l, 1999). However, this study did 

not elueidate exactly which isoform is involved in Glut4 translocation. Using siRNA to 

reduce the expression level of PKB isoforms it was shown that Imock down of PKBa only 

gave a small inhibition while, knock down of PKBp by 70 % inhibited of Glut4 

translocation by 50 % (Jiang et a l, 2003). Isoform specific imock down of PKB was also 

carried out by another group and like the previous study showed that while PKBa knock 

down did slightly inhibit both insulin stimulated 2-deoxyglucose uptake and Glut4 

translocation in 3T3-L1 adipocytes the effect was much greater on knock down of PKBp 

(Katome et a l, 2003). This study also showed that the Imock down of PKBy had no effect 

on either insulin-stimulated glucose uptake or Glut4 translocation (Katome et a l, 2003). 

Genetic ablation of PKBp in mice has been shown to lead to insulin resistance (Cho et al, 

2001a) while mice deficient in PKBa demonstrated no defect in clearance of blood glucose 

during a glucose tolerance test (Cho et al., 2001b). These results were supported by a study 

using adipocytes differentiated from mouse embryos with homozygous deletion of PKBa 

and PKBp (Bae et al, 2003). The main PKB isoform involved in regulating insulin 

stimulated Glut4 translocation is therefore thought to be PKBp.
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PKBp has been shown to be capable of phosphorylating proteins on immunoabsorbed 

Glut4-containing vesicles form rat adipocytes but whether its substrates include VAMP2 is 

yet to be confirmed (Kupriyanova and Kandror, 1999). Recently an assay has been 

developed to study the fusion of Glut4 storage vesicles to the plasma membrane in vitro 

(Koumanov et al., 2005). This assay allows the study of the fusion of these two 

membranes in isolation fi'om effects on other Glut4 trafficking events within the cell. The 

assay involves isolated plasma membrane reconstituted into liposomes, isolated GSVs and 

fusion is monitored by a modified glucose substrate. Using this assay it was shown that 

fusion between the reconstituted plasma membrane and the isolated GSVs was dependent 

on PKBp (ICoumanov et a l, 2005). Fusion was greatly increased when plasma membrane 

from insulin treated cells was used as opposed to basal plasma membrane suggesting that 

the target of the insulin signalling pathway is a component of the plasma membrane in 

adipocytes and demonsti'ating this fusion event is indeed regulated by insulin signalling 

(Koumanov et a l, 2005).

In addition to Synip, as mentioned above, two other substrates of PKB have been identified 

which have been implicated in insulin-regulated Glut4 trafficking. One of these substrates 

AS 160, was initially isolated from pull down experiments in 3T3-L1 adipocytes using a 

phospho-PKB substrate antibody raised against the PKB consesus phosphorylation site 

(Kane et al, 2002). In addition to a GAP domain, AS 160 has 6 PKB phosphorylation 

consensus sites (Sano et al, 2003). Five of these consensus sites have been shown to be 

phosphorylated in response to insulin, namely Ser318, Ser570, Ser588, Thr642 and Thr571 

(Sano et al, 2003). The phosphorylation of four of these sites has been implicated in 

insulin-regulated Glut4 trafficking, since overexpression of a mutant of AS 160 with these 

sites mutated to alanines led to an inhibition of Glut4 translocation in 3T3-L1 adipocytes 

(Sano et al, 2003). RNAi of AS 160 in 3T3-Lls has provided further support for its role in 

insulin-stimulated Glut4 translocation, since reduced cellular levels of AS 160 led to an 

increase in Glut4 translocation to the plasma membrane (Larance et al, 2005). This study 

also found that upon insulin-stimulation AS 160 dissociates from Glut4 containing vesicles 

(Larance et al, 2005). Although AS 160 has been shown to have GAP activity against a 

subset of Rab proteins, none of these Rabs have so far been shown to participate in insulin- 

stimulated Glut4 translocation ( Miinea et al, 2005). The precise molecular role for 

AS 160 in insulin-stimulated Glut4 translocation is therefore yet to he established.
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The second potential PKB substrate to be identitified, PIKfyve (Phosphoinositide kinase 

for five position containing a Fyve finger), was characterised using a proteomic approach 

with a antibody raised against the PKB consensus phosphorylation site (Berwick et al, 

2004), PIKfyve is phosphorylated in respose to insulin, on Ser318 (Berwick et al, 2004).. 

A kinase dead version of PIKfyve inhibited the translocation of GIut4 in 3T3-L1 adipcytes 

(Ikonomov et al, 2002). In addition, the overexpression of a mutant of PIKfyve, with 

Ser318 mutated to an alainine, was shown to increase Glut4 translocation in 3T3-L1 

adipcytes (Berwick et al, 2004). These data support a role for this PKB substrate in 

insulin-stimulated Glut4 translocation.

1.8 Membrane domains and Insulin signalling

It is now widely believed that instead of a sea of lipids the plasma membrane is organised 

into a number of different discrete domains, and that these domains may play an important 

role in a number of cellular processes. Many proteins are thought to be confined to regions 

or domains within the plasma membrane that have a different lipid composition to the 

surrounding membrane.

The mammalian plasma membrane is made up of thi'ee main classes of lipids; 

glycerophospholipids, sphingolipids and cholesterol. The plasma membrane has been 

proposed to exist of domains enriched in cholesterol and saturated sphingolipids 

(sphingomylein and glycosphingolipids), temied lipid rafts, surrounded by a sea of 

membrane mainly made up of unsaturated glycerophospolipids (Simons and Ilconen, 1997). 

These domains have also been proposed to concentrate some proteins while excluding 

others in effect acting as signalling platfoims (Simons and Ikonen, 1997). Cholesterol is 

known to interact more favourably with sphingolipids than glycerophospholids resulting in 

very tight packing between the molecules which gives the “liquid ordered state” in 

comparison to the bulk plasma membrane which exists in a “liquid disordered state” as 

shown in Figure 1.6.
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Figure 1.6: Proposed organisation of iipid raft domain

The different geometries of membrane lipids are thought to lead to the formation of 

domains within the bilayer known as lipid rafts. (A) Most glycerophospholipids 

(GPLs), which make up the bulk membrane, are cylindrical in shape. Cholesterol, 

Glycosphingolipids (GSLs) and sphingomyelin (SM) have a cone like shape. (B) Lipid 

raft domains are enriched in GSLs and cholesterol. The bulky head groups of the 

sphingolipids leave space to accommodate the tight packing of cholesterol which 

intercalates between the acyl chains. This tight packing gives rise to a “liquid ordered 

state” or Lo state in comparison to the bulk plasma membrane which exists in a 

“liquid-disordered state” or Lc state. (Taken from Fantini et al ,  2002)

j
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1.8.1 Caveolae

Using electron microscopy Palade and Yamada independently identified morpholigiaclly 

distinct regions of the plasma membrane in two different cell types; endothelial cells and 

gall bladder (Palade, 1953;Yamada, 1955). These domains appeared as flask-like 

invaginations of the plasma membrane, and were termed caveolae by Yamada who thought 

they looked like small caves (Yamada, 1955). Caveolae are estimated to have a diameter 

of ~50 to 100 mn and have been found in abundance in many tissues. While individual 

caveolae are observed at the surface of the cell a number of caveolae can come together to 

form grape like structures.

Following the identification of caveolae a marker protein caveolin-1 was discovered 

(Rothberg et a i, 1992). Cells from Caveolin-1 knock out mouse lack the flask-like 

morphology of caveolae suggesting that this protein forms the architecture of these 

domains (Drab et al., 2001). Caveolin has been shown to bind directly to cholesterol 

(Murata et a i, 1995), and the caveolin isofonns have been shown to homo- and hetero- 

oligomerise: these interactions are thought to be of fundamental importance to the 

morphology of caveolae (Sargiacomo et a i, 1995; Scherer et a l, 1997). Two other 

caveolin isofoims, expressed from separate genes, have since been identified, caveolin-2 

and caveolin-3. All of the caveolin isoforms are integral membrane proteins with a mass 

of 21 to 25 kDa. While caveolin 1 and 2 are coexpressed in nearly all cell types (Scherer 

et a l, 1997), the expression of caveolin 3 is specific to muscle cells (Song et a l, 1996).

Research has demonstrated that many signalling proteins are present in caveolae and 

caveolae have subsequently been proposed to represent signalling platforms within the cell. 

These signalling proteins include GPCRs, heterotrimeric G proteins and nitric oxide 

synthase. Endothelial nitric oxide synthase (eNOS) has been shown to bind to caveolin-1 

and this binding keeps eNOS in an inactive form, with the activation of eNOS being 

initiated by its dissociation from caveolin-1 (reviewed in Goligorsky et a l, 2002). In 

addition to eNOS a number of other proteins have been shown to bind directly to caveolin, 

including the EGF Receptor (Couet et a l, 1997b). The insulin receptor contains a binding 

motif, similar to that contained in the EGF receptor, for caveolin-1 suggesting it may be 

recruited to these domains (Couet et a l, 1997a). Although the insulin receptor has been 

immunolocalised to caveolae (Gustavsson et a l, 1999), a subsequent study failed to find 

the receptor within these domains (Souto et a l, 2003). While caveolin 1 deficient mice
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display insulin resistance in adipose tissue (Cohen et a l, 2003), caveolin 3 deficient mice 

display insulin resistance in muscle (Oshikawa et a l, 2004) suggesting that the protein 

caveolin has an important role in insulin signalling.

In addition to their signalling role caveolae are thought to facilitate the transport of proteins 

into the cell. Caveolae are now known to pinch off into the cell. This is though to be 

facilitated by the large GTPase dynamin (Henley et a l, 1998;Oh et a l, 1998) and a direct 

interaction between dynamin 2 and caveolin has been observed (Yao et a l, 2005).

1.8.2 Lipid rafts

Due to their distinguishable morphology the existence of caveolae at the cell surface is 

widely accepted. The existence of membrane domains enriched in cholesterol and 

sphingolipids with no morphologically defined features by electron microscopy is more 

controversial (Munro, 2003). The existence of lipid raft domains was originally suggested 

following their isolation as detergent insoluble domains form cells lacking caveolae 

(Gorodinsky and Harris, 1995).

Lipid rafts are commonly biochemically isolated on the basis of their insolubility in ice- 

cold non-ionic detergent such as Triton X I00, which is thought to be caused by the tight 

packing of their lipid constituents, and light buoyant density on sucrose gradient 

centi'ifugation (Chamberlain, 2004). Caveolae, discussed above, which are also purified 

using this technique due to their high cholesterol and sphingolipid content are considered 

to be a subset of the lipid raft domain.

Many proteins have been found to be associated with raft domains in mammalian cells.

The addition of saturated acyl chains, such as myristate or palmitate, is thought to target 

proteins to lipid raft fractions as these are particularly well suited to the packing between 

lipids in these domains (Wang and Silvius, 2000). The recmitment of transmembrane 

proteins to rafts is yet to be characterised but it has been shown that the thickness of a 

liquid ordered domain is greater than that of the crystalline state suggesting the length of 

the transmembrane domain may play a role in directing proteins to lipid rafts (Gandhavadi 

et a l, 2002).

A recent proteomic analysis of detergent resistant domains suggests that signalling proteins 

may be enriched ten fold in raft domains compared to the rest of the plasma membrane
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(Foster et a l, 2003). The recruitment of proteins involved in signalling cascades to lipid 

raft domains is thought to facilitate local and efficient interaction, which has led to lipid 

rafts being proposed as signalling platfoi*ms within the cell.

1.8.3 insulin signaiiing and lipid raft domains

The spatial organisation of signalling molecules into areas of close proximity has been 

proposed to increase the specificity, efficiency and level of regulation of signalling 

cascades. It has therefore been postulated that as such areas of organisation lipid rafts may 

act as signalling platforms within the plasma membrane. Components of the insulin- 

signalling pathway have been localised to lipid raft domains and caveolae within 

adipocytes.

Using immunogold microscopy and subcellular fractionation it has been shown that a 

fraction of the insulin receptor itself colocalises with caveolae in adipocytes (Gustavsson et 

a l, 1999), although a subsequent study has questioned this data (Souto et al., 2003). The 

insulin receptor has been shown to, most probably indirectly, phosphorylate the main 

marker protein of caveolae, caveolin (Mastick et a l, 1995;Kimura et a l, 2002) supporting 

the possibility of localisation within DRMs. The PI3K-independent insulin signalling 

pathway has also been extensively localised to lipid raft domains (reviewed in Saltiel and 

Pessin, 2003).

Recently it was obseiwed that individual caveolae present on the plasma membrane of 

differentiated adipocytes are often aiTanged into ordered ring-like structures, and that these 

structures are associated with F-actin (Kanzaki and Pessin, 2002). TCIO, a member of the 

PI3K-independent insulin signalling cascade, has been localised to these ring-like 

organisations (Watson et a l, 2001;Kanzaki and Pessin, 2002). This is of interest as Glut4 

translocation has been shown to require actin remodelling (Kanzaki et a l, 2001), and TCIO 

is a member of the Rlio family of GTPases which are involved in actin remodelling. These 

novel macrodomains are only found in differentiated adipocytes (Parton et al, 2002). In 

response to insulin stimulation, Glut4 appears to be recruited to these cave like structures 

(Parton et al., 2002). Although these macrodomains contain caveolin they also contain 

non-raft markers and clathrin coated pits (Parton et a l , 2002). Glut4 has previously been 

shown to translocate to caveolae upon insulin stimulation of adipocytes (Ros-Baro et a l.
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2001;Karlsson et a l, 2002), but the relationship of caveolae to caves in this study is not 

clear.

1.8.4 Raft association of SNAREs involved in Glut4 

transiocation

SNARE proteins were Erst localised to detergent insoluble lipid raft domains in polarised 

Madin Darby Canine Kidney cells. In this cell type the t-SNARE syntaxin and the v- 

SNARE TI-VAMP were both shown to be present in the lipid raft fraction following Triton 

extraction and sucrose gradient centrifugation (Lafont et a l, 1999). The raft targeting of 

these proteins was suggested to facilitate the targeting of these SNAREs to the apical 

membrane of the cell (Lafont et a l, 1999). The association of SNAREs with lipid raft 

domains has subsequently been demonstrated in a number of other cell types, including 

endothelial cells (Schnitzer et a l, 1995) and rat brain synaptosomes (Gil et a l, 2005).

The components of the neuronal exocytic t-SNARE complex syntaxin 1A/SNAP25 and the 

v-SNARE VAMP2 have also been shown to partition into detergent insoluble domains in 

PC 12 cells, a rat neuronal cell line (Chamberlain et a l, 2001). These Endings led to an 

investigation into whether the SNAREs involved in Glut4 translocation to the plasma 

membrane are also associated with detergent insoluble domains. Using 3T3-L1 adipocytes 

it was demonstrated that both the t-SNAREs syntaxin 4 and SNAP23 and the v-SNARE 

VAMP2 did partition into such domains (Chamberlain and Gould, 2002). A substantial 

proportion of both of these t- SNAREs, roughly 70 % of SNAP23 and 35 % of syntaxin 4, 

were associated with detergent insoluble domains isolated from the plasma membrane of 

this cell type (Chamberlain and Gould, 2002). The distribution of the t-SNAREs within 

the plasma membrane seemed to be unaffected by insulin stimulation and depletion of 

cholesterol, by treatment with methyl-p-cyclodextrin, led to dispersion of these t-SNAREs 

through the membrane supporting the evidence they were associated to lipid raft domains 

(Chamberlain and Gould, 2002). Immuno-fluorescence showed that SNAP23 did not co- 

localise with caveolin-1, the caveolae marker protein in this cell type, suggesting that these 

domains are distinct from caveolae.

Proteins known to be regulators of SNARE function, including Munc 18, Munc 13, aSNAP 

and NSF, were not found to be present in the detergent insoluble domains isolated from 

PC 12 cells (Chamberlain et a l, 2001). Wliether the exclusion of these proteins from lipid
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raft domains plays a role in regulating the fusion SNAREs facilitate remains to be 

established.
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1.9 Aims of this study

The basis of this study was to investigate the fusion facilitated by the exocytic SNAREs 

involved in Glut4 translocation, syntaxin 4, SNAP23 and VAMP2.

In Chapter 3 as a first step towards studying the fusion facilitated by these SNAREs an in 

vitro fusion assay was established using these SNAREs expressed in and purified from E. 

coli as recombinant proteins.

The exocytic SNAREs involved in Glut4 trans location have been localised to lipid raft 

domains in the insulin-responsive cell 3T3-L1 adipocytes, hi Chapter 4 in order to 

investigate whether the lipids known to be enriched in such domains, sphingomyelin and 

cholesterol, influence the fusion facilitated by these SNAREs these lipids were introduced 

into the in vitro fusion assay established in Chapter 3. SNAP23 is known to be associated 

to the membrane thimigh the addition of palmitate groups to a central cysteine rich 

domain. In order to purify palmitoylated SNAP23 for fiiture experiments a recombinant 

baculovirus expressing the t-SNARE complex of syntaxin 4 and SNAP23 was also 

constructed in Chapter 4.

In the final results chapter, Chapter 5, the conformation of syntaxin 4 and its interaction 

with the SM protein Munc 18c was investigated. Like SNARE proteins SM proteins are 

Imown to be involved in every intracellular fusion event and the conformation adopted by 

syntaxins is thought to influence their mode of interaction with these regulatory proteins.

In neuronal exocytosis syntaxin la  is thought to be held in a closed conformation by its 

cognate SM protein Munc 18a preventing the formation of SNARE complexes. In chapter 

5, we set out to investigate whether the interaction between syntaxin 4 and its cognate SM 

protein Munc 18c takes place through a similar mode.
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Materials

All materials used in this study were of high quality and were obtained from the following 

suppliers:

2.1 Materials

2.1.1 General reagents

Agar Scientific

Quantifoils

Amersham Biosciences UK limited, Little Chalfont, Buckinghamshire, UK

ECL western blotting detection agents

Horseradish peroxidase (HRP)-conjugated donlcey anti-rabbit IgG antibody 

Glutathione Sepharose 4B 

Anachem Ltd., Luton, Bedfordshire, UK 

30 % acryl ami de/bi sacrylamide 

Avanti polar lipids, Alabaster, USA

1,2-dioleoyl phosphatidylserine (DOES)

Cholesterol

l-palmitoyl-2-oleoyl phosphatidylcholine (POPC)

N-(Lissamine rhodamine B sulfonyl)-1,2-dipalmitoyl phosphatidylethanolamine 

(rhodamine-DPPE)

(N-(7-nitro-2,l,3-benzoxadiazol-4-yl)-l,2~dipalmitoyl phosphatidylethanolamine 

(NBD-DPPE)

Sphingomyelin
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Bio-Rad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK

Biobeads

Bradford protein assay reagent 

Eco-Pac disposable chromatography columns 

Low molecular weight protein markers 

N,N,N' ,N'-teramethylethylenediamine (TEMED)

Calbiochem, Beeston, Nottingham, UK

4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF)

Fisher Scientific Ltd, Loughborough, Leicestershire, UK 

Ammonium persulphate 

Calcium chloride

Diaminoethanethanetera-acetic acid, disodium salt (EDTA)

Glycerol

Glycine

N-2-hydroxyethylpiperizine-N'-2-ethanesulphonic acid (HEPES)

Hydrochloric acid

Isopropanol

Methanol

Potassium Chloride

Potassium dihydrogen orthophosphate

Sodium chloride

Sodium dihydrogen orthophosphate dihydrate 

Sodium dodecyl sulphate
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Invitrogen Ltd, Paisley, UK

Cellfectin Reagent 

DHIO Bac™ E. coli 

Graces insect cell medium 

PCRII-TOPO™ TA cloning kit 

pFastflac™ Dual

10000 U/ml penicillin, 10000 U/ml streptomycin 

Sf9 cells SFM (serum free media) adapted 

S1900-11 media 

SOC Media

Kodak Ltd, Hemel Hempstead, Hertfordshire, UK

X-ray film 

Melford Labs

Micro agar 

Terrific broth 

Tryptone 

Yeast extract 

Merck Bioscience, Beeston, Nottingham, UK

Rosetta™ (DE3) pLysS Singles™ Competent cells 

MWG-Biotech, Germany

Oligonucleotide orders 

New England Biolabs (UK) Ltd, Hitchin, Hertfordshire, UK 

Pre-stained broad range protein marker (6-175 Kda)
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Premier Brands UK, Knighton, Adbaston, Staffordshire, UK

Marvel powdered milk 

Priceton Separations, Adelphia, NJ

Chymotrypsin (Bovine) Sequencing Grade Modfled 

Promega, Southampton, UK 

All restriction enzymes 

Deoxynucleotides (dNTPs)

Pfu polymerase 

Taq polymerase 

Qiagen, Crawley, West Sussex, UK

Nickel NTA-agarose (Ni-NTA agarose)

QIAfilter™ plasmid maxiprep kit 

QIAprep^^ spin miniprep kit 

Qiagen gel pmification kit 

Roche, Bassel, Switzerland

Complete™ and complete^'^ EDTA-free Protease Inhibitor Tablets 

Schleicher & Schell, Dassel, Germany

Nitrocellulose membrane (pore size: 45 pM)

Spectrum laboratories

Float-a-lyzer, 3 ml 10000 kDaMWCO 

TAGN, Newcastle, UK

Oligonucleotide orders
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Whatman International Ltd, Maidstone, UK

Whatman No. 2 filter paper 

Whatman No. 3 filter paper 

Whatman 3 mm filter paper

All other chemicals used were supplied from Sigma Chemical company limited, Poole,
Dorset, UK unless otherwise stated.

2.1.2 Primary antibodies

Syntaxin 4 and SNAP23 primary antibodies were both purchased from synaptic systems

and were raised in rabbits.

2.1.3 Escherichia coii (E. coli) strains

All bacterial strains used are modifications of E coli.

DH5a F" ^m dlacZ  AMI5 A {lacZYA-argV) U169 recAl
endAX hsdRll{Y\c, nik+)phoA sup'E^4 X thi-\ 
gyrA96 relAX

TOPIC F' mar A  E{mrr-hsdRMS-mcrBC) (|)80/acZAM15
ElacXlA- recAl araA\?>9 A {ara-leu)1691 galUgalK  
rpsh (Str^) endAX nupG

BL21 DE3 F" ompT /ï.s'riSsCrB’mB') gal dcm (DE3)

Rosetta™ (DE3) pLysS Singles™ F~ ompThsdSB{rB~ 1%") gal dcm lacYl (DE3)
pLysSRARE {argU, argW, ileX, glyT, leuW, proL) 
(Cm^)

DHIO Bac™ F~ mcrA {mrr~hsdRME>-mcrBC) 4)801acZAMl5
MacX14 recAX endAX araDX?>9 A{ara, leu)1691 
galU gaJK X  rpsl. nupG /pMON14272 / pMON7124

2 . 1.4 General solutions

A200 25 mM HEPES pH 7.4, 200 mM KCl, 10 % (w/v)

glycerol, 2 mM DTT pH 7.4
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DNA loading buffer

HIS-purification buffer

LB media

GST-purification buffer

40% (w/v) Ficoll, 0.25% bromophenol blue

100 mM HEPES, 200 mM KCL, 5 mM imidazole, 2 

mM (3-mercaptoethanol pH8.0

0.1 % (w/v) Tryptone, 0.5 % (w/v) Yeast extract, 0.1 

% (v/v) glycerol

100 mM HEPES, 500 mM NaCl, 5 mM MgClz, 2 

mM p-mercaptoethanol pH 7.4

Phosphate buffered saline (PBS) 136 mM NaCl, 10 mM NaH2P0 4 , 2.5 mM KCL, 1.

mM KH2 PO4 pH 7.4

PBS-T

SDS-PAGE electrode buffer 

SDS-PAGE sample buffer

SOC media

TAE

PBS, 0.02 % Tween-20

25 mM Tris base, 190 mM glycine, 0.1 % (w/v) SDS

93 mM Tris. HCl pH 6.8, 20 mM dithiotlireitol 

(added immediately before use), 10 % (w/v) glycerol, 

2% (w/v) SDS, 0.002 % (w/v) bromophenol blue.

2 % (w/v) Tryptone, 0.5 % (w/v) Yeast extract, 10 

mM NaCl, 2.5 mM KCL, 10 mM MgCL, 10 mM 

MgSÜ4 , 20 mM glucose

40 mM Tris-acetate, 1 mM EDTA pH 7.8

Terrific broth 1.2 % (w/v) Tryptone, 2.4 % (w/v) Yeast extract, 0.4 

% (v/v) glycerol, 2.3 % (w/v) KH2PO4, 12.5 % (w/v) 

K2HPO4

Transfer buffer 25 mM Tris base, 192 mM glycine, 20 % 

(v/v) methanol
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2.2 General laboratory procedures

2.2.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were separated on the basis of size using SDS-PAGE. SDS-PAGE was carried 

out using Bio-Rad mini-PROTEAN III apparatus. The percentage of acrylamide in each 

gel ranged from 8 to 15% depending on the molecular weight of the protein of interest.

This was overlaid with 100 % isopropanol, leaving enough room for the stacking gel.

Protein samples were solubilised in SDS-PAGE sample buffer and incubated in a heat 

block at 95 °C for 5 minutes. Gels were mn in SDS-PAGE electrode buffer, at a constant 

voltage of 80 volts thiough the stacking gel, which was increased to 140 volts through the 

resolving gel. Gels were electrophoresised until the dye front had reached the desired 

position or the pre-stained broad range markers had adequately separated.

2. 2.2 Western Blotting

Following SDS-PAGE proteins were transfeiTed onto nitrocellulose membrane for 

immunodetection analysis. Gels were carefully removed from the plates. A sandwiched 

arrangements of components, individually soaked in transfer buffer were made as follows 

from bottom to top; a sponge pad, a layer of whatman 3 mm filter paper, nitrocellulose 

paper (pore size 0.45 pm), polyacrylamide gel (electrophoresed to resolve proteins as 

outlined in section 2.2.1), a layer of Whatman 3 mm filter paper, a sponge pad. The 

sandwich was placed in a cassette and slotted, bottom nearest to cathode, into a Bio-Rad 

mini trans-blot tanlc filled with transfer buffer. Transfer of proteins was performed at room 

temperature for 3 hours at a constant cuiTent of 250 mA or overnight at 40 niA. Efficiency 

of transfer was determined by staining the nitrocellulose with Ponceau S solution, which 

was then removed by washing in PBS-T, prior to blocking.

2. 2.3 Immunodetection of proteins

Following western blotting, as outlined in section 2.2.2, proteins were detected by 

Enhanced Chemical Luminescence. The nitrocellulose membrane was removed from the 

sandwich and washed with PBS-T. The membrane was incubated with 5% (w/v) dried 

non-fat milk made up in PBS-T for 1 hour to block non-specific binding sites. Primary
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antibodies were diluted in 1 % (w/v) non-fat milk/PBS-T at the appropriate dilution. The 

membrane was incubated with the primary antibody for at least 1 hour at room temperature 

while shaking. Membrane was washed three times over 30 minutes with PBS-T and 

incubated with the appropriate secondary antibody (HRP-linked Ig) at a 1:1000 dilution for 

1 hour at room temperature. The membrane was then washed three times over 30 minutes 

with PBS-T.

Immunolabelled proteins on western blots were visualised using HRP-conjugated 

secondary antibody and the ECL system (Amersham, UK). ECL reagents 1 and 2 were 

mixed in a 1:1 ratio and the membrane immersed in this mix for 1 minute. Excess ECL 

was removed and the membrane exposed to Konica X-ray film in a light proof cassette.

2.2.4 Coomassie blue staining of SDS polyacrylamide gel

A  Coomassie blue stain solution was produced by mixing 10 mis of methanol:water at a 

ratio of 1:1 with 90 mis of distilled water and 0.25g of Brilliant Blue R. This was 

thoroughly stirred and then filtered through whatman No 2 filter paper. Gels were stained 

by soaking in the Coomassie blue stain solution at least 1 hour. Gels were then destained 

in the same solution as the Coomassie blue stain but without the addition of Brilliant Blue 

R, for 2 hours to overnight depending on the resolution required.

2.3 General Molecular Biology

2.3.1 Amplification of DNA by Polymerase Chain Reaction 

(PCR)

Appropriate foiward and reversed primers containing the desired restriction sites were 

designed and ordered from TAGN (Newcastle, UK) or MWQ (Ebersberg, Gennany). All 

PCRs were carried out in thin walled tubes in a thermocycler.

Plasmid DNA purified using a QIAprep^^ spin miniprep kit, as outlined in section 2.3.10, 

was generally used as the template. Primer stocks were made up in nuclease free water at 

100 pmol/pl.
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Reactions were set up on ice typically as follows:

Nuclease-free water

10 X  DNA polymerase buffer (with MgCh)

Template DNA (50-100 ng)

Forward primer (4 pmol / pi)

Reverse primer (4 pmol / pi)

dNTP (10 mM each dCTP, dGTP, dATP, dTTP)

Pfu Turbo DNA polymerase

Total volume

37 pi 

5 pi 

1 pi

2.5 pi

2.5 pi 

1 pi

1 pi 

50 pi

The general conditions used for PCR are outlined below:

95 °C 2 min

94 '"C 

55 °C 

72 °C

30 sec

30 sec ^ 25 cycles

2min/Kb

4 T

10 min

Hold

The annealing temperature of 55 °C was adjusted depending on the melting temperatures 

of the primers involved. An aliquot of the PCR mix, typically 10 pi, was run on an agarose 

gel to check for the presence of a product of the correct size as outlined in section 2.3.3.

2 .3.2 Site-directed mutagenesis

This was essentially carried out according to the QuikChange® method (Stratagene). The 

exchange of one base to another was performed by using synthetic oligonucleotides which 

were designed with the desired mutation in the middle of the primer. Plasmid DNA



Fiona M. Brandie, 2006 Chapter 2, 75

purified using a QIAprep™ spin miniprep kit was generally used as the template. The 

reaction mixture used for site directed mutagenesis is as follows:

Nuclease-free water 37 pi

10 X DNA polymerase buffer (with MgCli) 5 pi

Template DNA (5-50  ng) 1 pi

Foi*ward primer (4 pmol / pi) 2.5 pi

Reverse primer (4 pmol / pi) 2.5 pi

dNTP (10 mM each dCTP, dGTP, dATP, dTTP) 1 pi

Pfu Turbo DNA polymerase 1 pi

Total volume 50 pi

The tubes were flick mixed and briefly spun in a microfuge.

The thermo cycling conditions used for site directed mutagenesis were as follows:

95°C 1 min

94T  30 sec

55°C 30 sec

68°C Imin/Kb

A

> 16-18 cycles

68°C 10 min J

4°C Hold

After the reaction was complete the mixture was cooled on ice for 10 minutes prior to the 

addition of lp l  of Dpn I (10 units/pi). The reaction was then incubated for 1 hour at 37 °C 

in order to cut the parental DNA. A small aliquot of the mixture, 1-2 pi, was transformed 

into DH5a competent cells. The plasmids were isolated from single colonies as outlined in 

2.3.10 and the mutations were confmnedby DNA sequencing as outlined in 2.3.12.
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2.3.3 Agarose Gel electrophoresis

Agarose gels were made with 1 % agarose in TAB buffer. For a standard 1 % agarose gel 

0.5g of agarose added to 50 ml of TAB buffer and this was boiled using a microwave. The 

agarose solution was then allowed to cool to roughly 50 °C and Ipl of ethidium bromide 

(10 mg/ml) was added to this. The agarose solution was then poured into a horizontal gel 

plate containing an appropriate comb and tape at each end. The agarose was allowed to 

fully set and then the tape and comb were removed and the gel plate transferred to a DNA 

gel tanlc for loading and running of DNA samples.

DNA samples were prepared by adding 6x DNA load dye and loaded into the appropriate 

lanes. Either a 1 kb or a 100 bp DNA ladder was run alongside these samples depending on 

the expected size of product. The gel was run at 80 volts until the dye front was at a 

relevant point and then the gel was viewed on a transilluminator. A photographic record 

was taken of each DNA gel.

2.3.4 Purification of PCR product

Following electrophoresis as described in section 2.3.3 agarose gels were examined under 

UV light for the presence correctly sized product. Bands of the coirect size were excised 

with a clean scalpel blade. PCR products were then purified using the Qiagen gel 

purification kit following the manufacturers instructions. Briefly 600 pi of solublisation 

Buffer QC was added to the gel slice, which was subsequently incubated for 10 minutes or 

until the agarose had completely dissolved at 50 °C. Following this incubation 200 pi of 

isopropanol was added and this mixture was transferred to a QIAspin column. This was 

spun at 14,000 xg for 1 minute. The column was then washed with 750 pi of Buffer PE. 

The column was then spun for 1 minute at 14,000 xg and any remaining traces of ethanol 

removed by a final spin at 14,000 xg for 2 minutes. The DNA was eluted in a final volume 

of 50 pi of nuclease-free water, which was added to the centre of the column and incubated 

for 1 minute prior to centrifugation for 1 minute at 14,0000 xg.

2.3.5 Restriction digestion

Plasmid or PCR product were cut with a pair of restriction enzymes either to identify DNA 

with the expected restriction pattern or to pmify fragments prior to ligation. The buffer
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used for restriction digest was selected on the basis that both enzymes retained 75 -100 % 

activity in this buffer. Restriction digests were set up as follows

DNA (0.5 - 1 pg) 5 pi

10 X Buffer Ipl

Restriction enzyme 1 Ipl

Restriction enzyme 2 Ipl

Sterile nuclease free water 2 pi

The tubes were flick mixed and briefly centrifuged prior to incubation at 37 °C for 2 hours. 

Following digestion products were analysed using agarose gel electrophoresis as outlined 

in section 2.3.3.

2.3.6 TA Cloning

In order to clone PCR products into pCRII-TOPO a 3' A overhang must be incorporated 

into the purified Pfu PCR product (the pCRII-TOPO vector contains a complimentary 5' T 

overhang). This was achieved by incubation with Taq polymerase. Incubations were set 

up as follows:

Gel purified DNA 20 pi

10 X Mg free Buffer 2 pi

MgCb 1.2 pi

Taq polymerase 0.4 pi

dNTPs 0.4 pi

The tubes were flick mixed and briefly centrifuged prior to incubation at 72 °C for 20 

minutes.

TA cloning was perfoimed using the pCRII-TOPO kit (In vitro gen), according to the 

manufacturers instructions. Briefly 2 pi of purified Taq treated PCR product was added to 

0.5 pi of pCRII-TOPO vector in a sterile eppendorf tube and the overhangs allowed to
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anneal at room temperature for 5 minutes. The reaction was terminated by the addition of 

0.5 pi of salt solution. The whole reaction was then used to transform chemically 

competent TOPIC cells as outlined in section 2.3.9.

2.3.7  Ligation

Restriction digests of the destination vector and the vector containing insert were prepared 

separately using the same buffer and appropriate enzymes. The digests were then 

separated using agarose gel electrophoresis, as outlined in section 2.3.3, and the digested 

band(s) of the appropriate size was/were excised using a clean scalpel. The DNA from the 

gel slice(s) was/were purified as outlined in section 2.3.4. The vector and insert were 

mixed at a ratio of 1:3. The final reaction volume was 10 pi, and this included 1 p of lOx 

T4 DNA ligase buffer and 1 pi of T4 ligase. Ligations were incubated at 16 °C overnight 

to allow the complimentary ends to anneal. The following morning the whole ligation 

mixture was used to transform DH5a cells as outlined in section 2.3.9.

2.3.8 Preparation of competent E. coii

A single colony from a freshly streaked agar plate of the appropriate strain was used to 

inoculate 5 ml of 2YT. This culture was grown overnight at 37 °C with shaking at 250 

ipm. The following morning this culture was used to inoculate 500 ml of 2YT. The 

culture was gi'own at 37 with shaking at 250 rpm until the optical density (OD) at 600 

nm was roughly 0.6. At this point the culture was spun down at 4000 xg for 10 minutes 

(in a Beckman bench top centrifuge) and resuspended in 50 ml ice cold CaCb on ice for 30 

minutes. Following this incubation the cells were again pelleted at 4000 xg and 

resuspended in ice cold CaCb, to which 15 % (w/v) glycerol was added. Aliquots were 

then frozen in liquid nitrogen and stored at -80 °C until needed.

2 . 3.9 Transformation of E. coii cells

Competent E. coii were defrosted from -80 °C for 15 minutes on ice. Plasmid was added 

and the cells incubated for a further 15 minutes on ice. Cells were then heat shocked for 

exactly 45 seconds at 42 °C in a water bath and then returned to the ice for 1 minute to 

recover. After this minute 250 pi of room temperature SOC media was added to each 

transformation. Each transformation was then incubated at 37 ®C with shaking at 250 rpm
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for 1 hour. E.coli were then plated onto appropriate antibiotic plates at different dilutions 

and these were incubated upside down at 37 overnight.

2.3.10 Small scale DNA preparations (miniprep)

Single bacterial colonies were picked from fresh selective agar plates and grown in 5 ml of 

2YT in a sterile universal containing the appropriate antibiotic overnight at 37 °C with 

shaking at 250 ipm. Plasmid DNA was then extracted from the cell pellet using the 

QIAprep™ spin miniprep kit following the manufactures instructions. Briefly, 3 ml of 

cells were pelleted in a 1.5 ml eppendorf by spimiing for 5 minutes at 14,000 xg in a 

microfuge. The cell pellet was thoroughly resuspended in 250 pi of Buffer PI (containing 

Rnase A). Following resuspension cells were lysed by the addition of 250 pi Buffer P2, 

the contents of the tube being mixed thoroughly by inversion. Buffer N3, 350 pi, was then 

added to the tube and the contents once again mixed by inversion. Precipitated protein and 

lipids were then removed from the sample by centrifugation at 14,000 x g for 10 minutes in 

a microfuge. The supernatant from this spin was applied to a QIAprep^^ spin miniprep 

colmnn and this was spun for 1 minute at 14,000 xg in a microfuge. The column was then 

washed first by the addition of 0.5 ml of Buffer PB followed by 0.75 ml of Buffer PE with 

a 1 minute spin at 14,000 x g in a microfuge between each wash. In order to ensure the 

removal of ethanol from the column, from the wash with Buffer PE, the column was 

finally spun for a further 2 minutes. The DNA was then eluted in 50 pi of nuclease-free 

water which was pipetted into the centre of the column and incubated for 1 minute before 

the DNA was collected in a fresh sterile 1.5 ml eppendorf tube by centrifugation at top 

speed for 1 minute.

2.3.11 Large scale DNA preparations (maxiprep)

Large-scale DNA preparations were made using a QIAfllter^^ plasmid maxi kit, following 

the high copy number plasmid protocol. A single colony was picked from a selective agar 

plate and used to inoculate 5ml of 2YT containing the appropriate antibiotic. This culture 

was grown overnight at 37 “C with shaking at 250 rpm. The following evening 1 ml of 

this culture was used to inoculate 50 ml of 2YT containing the appropriate antibiotic and 

this culture was grown overnight at 37 °C with shaking at 250 ipm. The cells from this 

culture were pelleted by centrifugation at 4,000 xg for 10 minutes (in a Beckman table top 

centrifuge) and the cell pellet was resuspended in 10 ml of Buffer PI (containing RNase
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A). The cells were lysed by the addition of 10 ml of Buffer P2 which was thoroughly 

mixed with the resuspended cells and then incubated at room temperature for 10 minutes. 

The reaction was neutralised by the addition of 10 ml of Buffer P3. The mixture was then 

poured into a Qiagen filter and allowed to sit for ten minutes. In the meantime a P I00 

Qiagen column was washed with 10 mis of Buffer QBT, which was allowed to thoroughly 

drain by gravity. Following the ten minute period the supernatant from the Qiagen filter 

was pushed through the filter into the column and this was allowed to run thiough the 

column by gravity. The column was then washed with 2 x 30 ml of Buffer QC (with 

ethanol). The DNA was then eluted into a 50 ml sterile tube by the addition of 15 ml of 

Buffer QF. Isopropanol (10.5 ml) was added to the DNA solution and mixed well. 

Precipitated DNA was collected by centrifligation at 15,000 xg for 30 minutes in a JA-20. 

The supernatant was discarded and the pellet was washed with 10 ml of 70 % (v/v) 

ethanol. The Tube was then recentrifuged at 15,000 xg for ten minutes in a JA-20 and the 

ethanol was carefully poured off and the pellet of DNA allowed to air dry for 

approximately 20 minutes. The air dried pellet was then resuspended in 200 pi of nuclease 

free water. The DNA concentration was assessed spectrophotometrically.

2.3.12 DNA sequencing

DNA sequencing was carried out by Dundee University sequencing service. This was 

performed after all cloning to ensure enor free sequence.

2.4 Protein Expression and Purification

2.4.1 Recombinant protein production in E. coii

A  single colony from a fresh selective agar plate was used to inoculate an overnight 

culture, containing the appropriate antibiotics. This overnight culture was typically 1/10 of 

the volume of the final culture volume. The overnight culture was grown at 37 °C 

overnight with shaking at 250 rpm. The following morning, this was used to inoculate 

larger cultures directly, in the case of kanamycin resistance, or in the case of ampicillin 

resistance spun down at 4000 xg for 10 minutes and the pellet used to inoculate a fresh 

culture. The ampicillin resistance gene codes for p-lactamase, which when secreted breaks 

down ampicillin which can lead to the loss of plasmid in some cells. The spin at 4000 xg 

removes any (3-lactamase which may have been secreted into the culture overnight.
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Typically cultures were grown at 37 with shaking at 250 rpm until the OD at 600 nm 

was roughly 0.6. At this point, protein production was induced by the addition of 

Isopropyl-p-D-Thiogalactopyi'anoside (IPTG) (0.2 -  1 mM). Protein production was 

typically induced for 3-4 hours at 37 °C or overnight at 22 °C, before the cells were 

harvested by centrifugation at 4,000 xg for 20 minutes. Cell pellets were resuspended in 

the appropriate buffer and either processed for purification immediately or stored at -  80 

"C.

2.4.2 Recombinant protein purification

Proteins were purified by use of tags at either the N- or C-tenninus. Two tags were 

utilised, Hexa-HIS (HIS) and GST. Cell pellets were resuspended in HIS-purification 

buffer (containing EDTA-free complete protease inliibitor tablet and 1 mM 

Phenylmethylsulfonyl fluoride (PMSF) or GST-purification buffer (containing complete 

protease inhibitor cocktail and 1 mM PMSF) depending on the tag utilised to purify that 

particular protein. Lysoyzme was added to the resuspended cells to a final concentration 

of 1 mg/ml from a 100 mg/ml stock, and the tube was inverted several times to ensure 

thorough mixing. The mixture was incubated for 30 minutes on a rotator in the cold room. 

The lysate was then sonicated 4 x 30 sec using a Sanyo Soniprep 150 sonicator, set at an 

amplitude of 15 microns, with a 30 sec pause between sonications. DNA was then digested 

by the addition of DNase I (10 pg/ml) for 30 minutes at 4 ^C. The lysate was clarified by 

centrifugation for 1 hour at 30,000 xg in a Beckman JA-20 rotor at 4 ®C. The clarified 

lysate was then transferred to a 50 ml centrifuge tube containing 2.5 ml bed volume of 

washed Ni-NT A agarose (Qiagen) for HIS-tagged proteins, or glutathione sepharose 

(Amersham) for GST-tagged proteins. The tube was sealed with parafilm and placed on a 

roller for 2 hours at 4 °C. Following centrifugation at 500 xg for 5 minutes in a benchtop 

centrifuge, the supernatant was removed.

NTA agarose was washed five times with 50 ml 100 mM HEPES, 200 mM KCl, 15 mM 

imidazole pH8. The protein was eluted by incubation for 5 minutes with 2.5 mis of 100 

mM HEPES, 200 mM KCl, 250 mM imidazole pH8.0 and this was repeated tlii'ee times. 

Eluted protein was collected by spinning the beads at 500 xg for 5 minutes and removing 

the supernatant.
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Glutathione sepharose was washed 3 times with 50 ml of PBS pH7.4+ 1 % triton, followed 

by 3 times with 50 ml of PBS pH7.4/0.5 M NaCl, and subsequently three times with 50 ml 

of PBS pH7.4, Protein was eluted from the beads by either incubating the beads for 5 

minutes with 50 mM Tris , 10 mM reduced glutathione pH8.0 or incubation with 25 Units 

of tlrrombin in PBS pH7.4 for 4 hours at room temperature to cleave the fusion protein for 

the GST tag.

The concentration of protein in each eluted fraction was analysed as outlined in section 

2.4.3.

2.4.3 Protein estimation

Protein concentrations of purified protein fi'actions was measured using Bio-Rad Bradford 

protein assay reagent. Bovine serum albumin (1 -2 0  pg) was used as the standard. The 

amount of sample assayed was decided on so the absorbance would fall within the linear 

range of the standard. Assays were set up in duplicate, in 1 cm pathlength disposable 

cuvettes, according to the manufactures instructions and absorbance measured at 595 nm. 

Protein concentrations were calculated using a curve derived fr om the standard values.

2.4.4 GST pulTdowns

Protein, 5 pg of GST or GST-tagged protein, was incubated with 10 pi of glutathione 

sepharose in a volume of 100 pi of binding buffer (150 mM Potassium acetate, 1 mM 

MgCh, 0.05 % Tween 20, 20 mM Hepes pH 7.4) for 1 hour in the cold room with end- 

over-end rotation. Unbound protein was removed by washing the beads with tln'ce 0.5 ml 

washes of binding buffer, beads were collected by centrifugation at 500 xg in a microfuge 

at 4 “C for 2 minutes. HIS tagged protein was added (0 -  50 pg) to appropriate tubes in a 

total volume of 500 pi of binding buffer and this was incubated with the beads overnight in 

the cold room with end-over-end rotation. Unbound protein was removed by washing 

tlrree times with 1 ml of binding buffer with the addition of 1 mg/ml fish skin gelatine, 

followed by thi ee washes with 1 ml of binding buffer with 5 % (w/v) glycerol and three 

washes with 1 ml of binding buffer alone. Between each wash the beads were pelleted by 

centrifugation at 500 xg in a microfuge at 4 °C for 2 minutes. After the final wash the 

beads were pelleted by centrifugation at 500 xg in a microfuge at 4 °C for 2 minutes and all 

remaining supernatant carefully removed. The beads were then resuspended in 15 pi of IX
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SDS-PAGE sample buffer. The samples were boiled for 5 minutes and eluted protein was 

analysed by running on a 12 % SDS-PAGE gels as outlined in section 2.2.1 followed by 

staining in Coomassie blue as outlined in section 2.2.4. A similar amount of GST bound 

protein was present in each experiment.

2.5 Fusion assay

2.5.1 Full-length SNARE expression and purification

To purify the syntaxin 4 / SNAP23 complex plasmids encoding both of these proteins were 

both transformed at the same time into BL21 DE3 cells. Cells containing both plasmids 

were selected for on dual antibiotic plates. A single colony was used to inoculate an 

overnight starter culture, 1/10 of the volume of the induction culture containing 500 pg/ml 

ampicillin and 50 pg/ml kanamycin. The following morning the overnight culture was 

spun down at 4,000 xg for 10 minutes, the supernatant removed, and the pellet used to 

inoculate 1 litre cultures containing 200 pg ampicillin and 25 pg kanamycin, which were 

grown at 37 °C with shaking at 250 rpm. An additional 100 pg ampicillin was added each 

hour. These 1 litre cultures were grown until the OD at 600 mn was roughly 0.6. At this 

point protein production was induced by the addition of 1 mM IPTG. Protein production 

was induced overnight at 25 °C with shaking at 250 rpm.

The cells were harvested the next morning by centrifugation at 4,000 xg for 30 minutes. 

The cell pellet was then resuspended in A200 containing complete protease inhibitors and 

2 mM PMSF. Following resuspension, 14 volume 20 % Triton X I00 was added to the 

resuspended cells. The cells were broken by two passes through a French press at 950 psi. 

Insoluble matter was removed by centrifugation at 30,000 xg for 1 hour in a JA-20 rotor. 

The protein was then purified from the supernatant was using glutathione sepharose. 

Protein in the supernatant was incubated with 5 mis of pre-equilibrated glutahtione 

sephaorse overnight at 4 °C. The following day, the beads were pelleted by spinning at 

500 xg for 5 minutes, the supernatant was removed and the beads resuspended in 20 ml of 

A200 containing 1 % Triton X I00, and applied to a Bio-Rad Eco-pac disposable 

clrromatography column. The buffer was allowed to flow through, and the column was 

washed with 5 column volumes (20mls) of A200 contaning 1 % Triton X I00. The triton 

was then exchanged for n-octyl-(3-d-glucopyranoisde (OG) by washing the column 10 

times with 15 mis of A200 + 1 % OG. The bottom of the column was sealed using the cap
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provided and nescofilm. The beads were resuspended in an equal volume of A200 

containing 1% OG, and 125 Units of thrombin were added. The top of the column was 

sealed with the provided cap and nescofilm. The beads were incubated on a rotator for 4 

hours at room temperature, following which the top and the bottom of the column were 

uncapped and the supernatant was collected into a clean 15 ml coming tube from the 

bottom of the column by gravity. The eluate was then aliquoted into 550 pi aliquots, snap 

frozen in liquid nitrogen and stored at -80 until use.

VAMP2 was expressed in a similar manner with the exception of addition of kanamycin to 

the culture medium. The cultures were grown to an OD at 600 nm of roughly 0.8. Protein 

production was then induced by the addition of ImM IPTG for 3 hours at 37 °C. Cells 

were resuspended, broken and cell lysate centrifuged as outlined for syntaxin 4 / SNAP23. 

The supernatant was then purified using Ni-NTA agarose. Pre-equilibrated Ni-NTA 

agarose, 3 ml bed volume, was incubated with the supernatant for 2 hours. The beads were 

then washed once with 50 mis of A200 containing 1 % Triton X I00, and the beads were 

collected by centrifugation at 500 xg for 5 minutes. The beads were resuspended in 20 ml 

of A200 containing 1 % Triton X I00 and applied to a Bio-Rad Eco-pac disposable 

ciiromatography column. The buffer was allowed to run tlnough by gravity and the beads 

were washed with 5 column volumes (20 mis) of A200 containing 1 % triton. The Triton 

X I00 was then exchanged for OG by washing the column 10 times with 10 mis of A200 

containing 1 % OG and 20 mM imidazole. The protein was then eluted from the column 

by incubating the beads with 3 mis of A200 containing 1 % OG and 500 mM imidazole for 

30 minutes in a sealed column, following which the top and the bottom of the column were 

uncapped and the supernatant was collected into a clean 15 ml corning tube from the 

bottom of the column by gravity. Thrombin was inhibted by the addition of 2 mM 

AEBSF. The eluate was then aliquoted into 550 pi aliquots, snap frozen in liquid nitrogen 

and stored at -80 °C until use.

Z 5.2 Lipid stocks

Lipid stocks were made up in chlorofomi and stored at -  80 °C under nitrogen. For t- 

SNARE liposomes a 15 mM lipid stock was made up in chloroform containing 85 mol% 

POPC and 15 mol% DOPS. For v-SNARE liposomes a 3 mM lipid stock was made up in 

chlorofonn containing 82 mol% POPC, 15 mol% DOPS, 1.5 mol% NBD-DPPE and 1.5
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mol% rhodamine-DPPE. Trace amounts of [^Hj-DPPC (1,2-dipalmitoyl 

phosphatidylcholine) are added to monitor lipid recovery.

2.5.3 Lipid resuspension, detergent diiution and dialysis

100 pi of 15mM unlabelled lipid stock, for t-SNARE liposomes, or 500 pi of 3 mM 

labelled lipid stock, for v-SNARE liposomes was placed at the bottom of a 12 x 75 mm 

glass test tube. The chloroform was then evaporated off using a stream of nitrogen for 15 

minutes in a fume hood. To ensure that the lipid films were completely dry the samples 

were then dried for 30 minutes under vacuum. Purified t- or v-SNARE (500 pi) purified as 

outlined in section 2.5.1, containing 1 % OG, was then added to each tube. The lipid film 

was then completely resuspended, by vortexing for 15 minutes.

After the lipid film was completely resuspended the detergent was diluted below its critical 

micellar level by the addition of 1 ml of Buffer A200 + 1 mM DTT. This was added 

dropwise while the sample was continuously vortexed.

After the detergent had been diluted the samples were dialysed to remove any remaining 

detergent. The samples were placed into 3 ml Float-a-Lyzers with a MWCO of 10,000 

pre-equilibrated in dialysis buffer and these were floated in 4 litres of Buffer A200 

containing 1 mM DTT with the addition of 4 g of Bio-Beads, with stimng, in the cold 

room overnight. Samples were recovered the following day, and placed at the bottom of a 

SW60 tube on ice for subsequent separation using gradient centrifugation.

2.5.4 Proteoliposome recovery

Proteoliposomes were recovered by floatation on a nycodenz gi*adient. All solutions were 

pre-chilled prior to use. An equal volume of 80 % nycodenz in buffer A200 containing 1 

mM DTT was mixed with the recovered dialysate to produce a 40 % nycodenz mixture. 

This was overlaid with 1.5 ml of 30 % nycodenz in buffer A200 containing 1 mM DTT. 

This layer was then overlaid with 250 pi of glycerol free A200. These gradients were then 

spun for 4 hours at 46,000 rpm in an SW60 rotor at 4 °C. Proteoliposomes float to the 

interface between the glycerol h'ee A200 and the 30 % nycodenz, due to their lipid content, 

and free protein remains in the 40 % layer. Proteoliposomes were recovered from the top
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of the gradient by removal of 400 pi in a 1.5 ml eppendorf, snap frozen in liquid nitrogen 

and stored at -  80 °C.

2.5.5 Proteoliposome characterisation

Proteoliposomes were characterised by Transmission Electron Microscopy. Briefly, a 

carbon coated quantifoil was glow discharged to increase the hydrophobicity of the carbon 

surface. The quantifoil was then placed carbon face down on a 10 pi drop of liposome on 

nescofilm. The Quantifoil was then put through five 10 pi drops of dHzO to remove buffer, 

for 10 seconds per drop. The liposomes were stained by incubating the quantifoil face 

down on a 10 pi drop of carbohydrate/negative stain mixture of 5% w/v ammonium 

molybdate for 5 seconds. The quantifoil was secured in forceps and excess negative stain 

wicked away using filter paper touched to the edge of the grid. The negative stain was 

allowed to dry for 10 minutes prior to analysis by Transmission Electron Microscopy.

2.5.6 Fusion assays

Typically fusion assays were set up by mixing 5 pi of v-SNARE liposome with 45 pi of t- 

SNARE liposome directly in a well of a 96 well microtitre plate, on ice. This was then 

sealed using sticky tape and incubated overnight at 4 °C. For assays requiring the addition 

of soluble v-SNARE, 2 pi of purified protein in buffer A200 was added to the t-SNARE 

liposomes on ice for 10 minutes prior to the addition of v-SNARE liposomes. To correct 

for the resulting difference in volume 2pi of A200 was added to all other wells In that run.

The micro titre plate was rapidly wanned to 37 °C for 20 seconds by floating in a 37 °C 

water bath, and then fluorescence was monitored in a fluorescent plate reader. The 

fluorescence was measured for 2 hours with the excitation set to 460 nm and the emission 

recorded at 538 nm at 2 minute intervals. After this period, the plate was removed and 10 

pi of 2.5 % (w/v) n-dodecylmaltoside was added to each well. The plate was gently mixed 

for 2 minutes, and then fluorescence was recorded, as before, for 40 minutes at 2 minute 

intervals.
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2.5.7 Da ta analysis

Raw fluorescence data was transfened to KaleidaGrapli, Synergy Software, a graphing and 

analysis programme. Raw fluorescence was plotted against time. This was then 

normalised to percentage maximal detergent signal and percentage maximal detergent 

signal was plotted against time. Using an equation derived from a calibration curve 

percentage maximal detergent signal was converted to fold lipid dilution or “rounds of 

fusion” and this was plotted against time (see section 3.2.5)

2.6 Cells and culture conditions

2.6.1 Passage of Sf9 ceils

Sf9 cells were giown in 150 cm^ flasks containing Sf900-II with 1 % (v/v) penicillin and

streptomycin. Cells were cultui ed at 27 °C in a humidified atmosphere with no CO2 . The

media was replaced every 48 hours.

S19 cells were split when they reached roughly 90% confiuency. Following aspiration of 

the media from a 150 cm^ flask, fresh media was added and the cells monolayer was 

dislodged by rapping the flask numerous times. This cell suspension was then added to 5 

times the original culture volume of fr esh media, and split between the desired number of 

plates or flasks.

2.6.2 Freezing down ceils

Sf9 cells were frozen down in 50 % conditioned medium, in which cells had been grown 

for 2 days, and 50 % fresh medium containing 10 % DMSO, which was filter sterilised and 

pre-chilled to 4 °C. Cells, which had been grown to roughly 80 % confiuency, were 

dislodged by rapping the flask numerous times. At this point cells were counted. The cell 

suspension was then transfeiTed to a sterile falcon tube, and centrifuged for 5 minutes at 

500 xg. The supernatant was aspirated, and the pellet was resuspended gently in the 

appropriate volume of chilled, fr eezing-down media to give a cell density of more than 1 x 

10  ̂cells/ml. Once thoroughly resuspended, the suspension was transferred to a cryo-vial 

and placed at -80 °C overnight, insulated in blue roll and a polystyrene box, to fr-eeze 

slowly, before being transfened to a liquid nitrogen vat.



Fiona M. Brandie, 2006 Chapter 2 , 86

2.6.3 Resurrection of frozen cell stocks from liquid nitrogen

A  vial of frozen cells, prepared as outlined in section 2.6.2, was removed from liquid 

nitrogen and transferred immediately to a 37 °C water bath. The cells were thawed with 

occasional agitation, and pipetted into a 75 cm^ flask containing SF900-II, 1 % (v/v) 

penicillin and streptomycin which had previously been equilibrated at 27 °C in a 

humidified atmosphere. The cells were allowed to attach to the flask for 1 hour.

Following this, the media was aspirated from the flask, and replaced with 15 ml of fresh 

media. Once the cells reached 90 % confiuency, they were split appropriately, as outlined 

in section 2.6.1.

2.7 Baculovirus Production

2.7.1 Homologous recombination

For each transfonnation a vial of DHIO Bac™ cells was thawed on ice and 100 pi of cells 

were transferred to a sterile 15 ml coming tube. To each tube Ing of pFastBac™ Dual 

DNA was added and the cells were then incubated on ice for 30 minutes. The cells were 

heat shocked in a water bath prewaimed to 42 °C, without shaking, for 45 seconds and 

allowed to recover on ice for two minutes. After recovery 900pl of room temperature SOC 

was added to each tube and the cells were incubated at 37 °C for 4 hours with shaking at 

225 rpm. During this incubation LB selective plates containing 50 pg/ml kanamycin, 7 

pg/ml gentamicin, 10 pg/ml tetracylcin, 40 pg/ml IPTG and 300 pg/ml Bluo-Gal using the 

stock solutions indicated below, were poured and prewarmed to37°C  prior to the plating 

of cells.

Component Stock soln. Final Cone.

Kanamycin 10 mg/ml (in distilled water) 50 pg/ml

Gentamicin 10 mg/ml (in distilled water) 7 pg/ml

Tetracycline 5 mg/ml (in ethanol) 10 pg/ml

IPTG 200 mg/ml (in distilled water) 40 pg/ml

Bluo-Gal 20 mg/ml (in DMSO) 300 pg/ml
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A portion of the neat transformation, 100 pi, as well as 1:10 and 1:100 dilutions were 

plated on the selective plates, which were incubated at 37 °C for 48 hours. Following this 

incubation colonies were restreaked on selective plates and incubated for a further 24 hours 

at 37 to verify the white phenotype. From these plates single white colonies were 

selected and used to inoculate a 2 ml culture of 2YT containing 50 pg/ml Kanamycin, 7 

pg/ml gentamicin and 10 pg/ml tetracycline. These cultures were grown for 48 hours at 37 

°C with shaking at 225 rpm.

2.7.2 Purification of recombinant DNA

Precipitation was carried out as outline in the Bac-to-Bac manual with modifications. 

Briefly a portion of the bacterial suspension from the 2YT culture, 1.5 ml, was spun down 

in a 1.5 ml eppendorf at 14,000 xg for 1 minute to pellet the cells. The remaining bacterial 

suspension was used to make glycerol stocks which were stored at -  80 °C. The pellet was 

thoroughly resuspended in 0.3 ml of Buffer PI (from a Qiagen miniprep kit). The 

resuspended pellet was then mixed with 0.3 ml of buffer P2 (from a Qiagen miniprep kit) 

and this was incubated for 5 minutes at room temperature. Following this incubation 0.3 

ml of 3M Potassium acetate pH 5.5 was slowly added to the tube and the mixture was 

placed on ice for 10 minutes. The sample was then centrifuged at 14,000 xg for 10 

minutes to remove genomic DNA and precipitated protein. The supernatant from this spin 

was transferred to a clean 1.5 ml tube containing 0.8 ml of isopropanol and mixed 

thoroughly by inversion before being placed on ice for 10 minutes. The samples were then 

centrifuged for 5 minutes at 14,000 xg at room temperature. The supernatant was removed 

and the pellet was air-dried. The dried pellet was then resuspended in 40 jul of sterile TE 

buffer pH 8.0 with gentle agitation. The resuspended DNA was stored at 4 °C.

2.7.3 Production of baculovirus particles in Sf9 ceils

Briefly, Sf9 cells (in log phase) were seeded into each well of a 6 well plate in 2 ml of 

Sf900-II, containing antibiotics, at a density of 9 x lOVwell and allowed to attach for an 

hour. During attacliment the transfection mixture was made up. For each transformation 5 

pi of bacmid DNA was added to 100 pi of unsupplemented Graces insect medium. The 

transfection reagent cellfectin, 6 pi, was diluted with a further 100 pi of unsupplemented 

Graces insect medium. The two were subsequently mixed and incubated at room 

temperature for 30 minutes. Each well containing insect cells was washed once with 2 ml
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of unsupplemented Graces insect medium. Each transfection mixture was made upto 1ml 

with unsupplemented Graces insect medium and then added drop-wise to the relevant 

wells. The insect cells were incubated with the transfection mixture for 5 hours at 27 °C. 

After this incubation the DNA:lipid mix was removed and replaced with 2 ml of S1900-11 

containing antibiotics. The cells were incubated for 72 hours at 27 °C in order to produce 

the PI recombinant virus.

After the 72 hour incubation the supernatant from each well, which should contain the 

virus, was removed and transferred into a sterile 15 ml coming tube. The supernatant was 

spun at 500 xg for 5 minutes in order to clear any cell debris. The supernatant was 

transferred into a sterile 50 ml coming tube and filtered through a 2 pM low protein- 

binding filter into a new sterile 15 ml coming tube. Baculovims stocks were stored in the 

dark at 4 "C.

2.8 Analysis of Paimitoyiation

Lysate from Sf9 cells infected with recombinant baculovims for 72 hours was prepared in 

lysis buffer (A200, 1 %0G, 2 inM PMSF and complete protease inhibitors) containing 25 

inM NEM. The cells were broken by ten passes through a 10 gauge needle. The protein 

content was assayed as outlined in section 2.4.3, and 100 pg of protein in a total volume of 

700 pi was placed in two separate eppendorf tubes. The lysate was incubated at 4 °C for 10 

minutes. Following this incubation, protein was methane 1-chloroform precipitated. To 

each tube 150 pi of methanol and 600 pi of chloroform was added. The tubes were 

vortexed thoroughly to mix and spun at 14,000 xg in a microfrige. The upper layer was 

gently removed and a further 450 pi of methanol added. The tubes were again vortexed 

and protein was pelleted by centrifugation at 14,000 xg in a microfuge. The protein pellet 

was allowed to airdry. This pellet was resuspended in 50 pi of high urea buffer (2 % SDS, 

8 M Urea, 100 mM NaCl, 50 mM Tris pFI 7.4) by sonication for 30 minutes in a sonicating 

water bath. To one tube 700 pi of IM hydroxylamine pFl 7.4 was added and to the other 

700 pi of IM Tris pH 7.4. To each tube 300 pM biotin-BMCC (from Pierce) was added. 

The tubes were then incubated in the cold room for 2 hours with end-over-end rotation. 

Protein was then methanol-chlorofonn precipitated and resuspended in high urea buffer as 

described above. The resuspended protein was diluted in 2 ml of lysis buffer and 

incubated with 100 pi of streptavidin-agarose (pierce) for 1 hour at room temperature with 

end over end rotation. Beads were thoroughly washed 3 times with 1 ml of PBS

0___
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containing 0.5 M NaCl and 0.1 % Triton X I00 and collected by centrifugation at 14,000 xg 

in a microfuge. The beads were finally washed with 1 ml of PBS, collected by 

centrifugation in a microfuge at 14,000 xg and resuspended in 20 pi of high urea buffer 

and 40 pi of 4 X SDS-PAGE sample buffer. The beads were boiled for 5 minutes and 

eluted protein was run on a 10 % SDS-PAGE gel as outlined in section 2.2.1, transferred to 

nitrocellulose as outlined in section 2.2.2, and probed for GST-SNAP23 using an antibody 

raised against SNAP23, as outlined in section 2.2.3.
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In vitro Fusion Assay using the SNAREs invoived 

in Giut4 vesicie exocytosis, syntaxin 4, SNAP23

and VAMP2
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3.1 Introduction

Since the discovery of SNARE proteins in neuronal tissue in 1993 (Sollner et a l, 1993) 

many homologues of these proteins have been identified (Jahn and Scheller 2006). Each 

vesicle fusion event within the cell is now known to involve members of this highly 

conserved family of proteins (Jahn and Scheller 2006). Several studies have shown that 

the plasma membrane t-SNARE complex, syntaxin 4 and SNAP23, and the v-SNARE 

present on Glut4 containing vesicles VAMP2 mediate the insulin-stimulated fusion of 

Glut4 containing vesicles to the plasma membrane of insulin-responsive cells as outlined in 

section 1.6.

3.1.1 Syntaxin 4

Syntaxin 4, a member of the syntaxin family, encodes a 298 amino acid 34 IcDa protein 

expressed in a variety of cells types (Bennett et a l, 1993). Syntaxin 4 is predicted to 

contain four domains, a C-tenninal transmembrane tail (Teng et ai, 2001), a SNARE 

domain tlnough which interactions with other SNAREs are mediated, and a N-terminal 

domain composed of 3 a-helices which have been predicted to form a three helical bundle 

(Fernandez et a l, 1998). There is strong evidence supporting the role of syntaxin 4 in 

insulin-stimulated Glut4 vesicle fusion. This isofoim of syntaxin has been shown to be 

predominantly expressed at the cell surface of adipocytes (Volchuk et a l, 1996;Tellam et 

a l, 1997), and studies to perturb its actions have been shown to substantially inhibit insulin 

stimulated Glut4 translocation (Cheatham et a l, 1996;01son et a l, 1997) and insulin- 

stimulated glucose transport (Volchuk et a l, 1996;Tellam et a l, 1997).

3.1.2 SNAP23

SNAP23 is a ubiquitously expressed protein of 210 amino acids with a predicted molecular 

weight of 23 kDa (Ravichandran et a l, 1996). SNAP23 is highly homologous to SNAP25 

(Wang et a l, 1997), and is predicted, like SNAP25, to be made up of two SNARE domains 

comiected by a linker domain that is palmitoylated in a cysteine rich region thought to 

mediate attachment to the membrane (Hodel, 1998). SNAP23 was isolated from 

adipocytes by virtue of its ability to bind the cytoplasmic domain of syntaxin 4 in a yeast 

two-hybrid screen (Ravichandran et a l, 1996). Similar to syntaxin 4 it is predominantly 

localised to the plasma membrane of adipocytes (Wang et a l, 1997). The perturbation of
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the function of SNAP23, like that of syntaxin 4, also led to a substantial inliibition of Glut4 

translocation to the plasma membrane (Rea et a l, 1998;Foster et a l, 1999;Kawanishi et 

a l, 2000).

3.1.3 VAMP2

VAMP2 encodes a polypeptide of 116 amino acids yielding a protein of 16 IdDa. This v- 

SNARE is enriched on Glut4-containing vesicles (Volchuk et a l, 1995). The perturbation 

of the function of VAMP2 by the introduction of the soluble cytoplasmic domain of 

VAMP2 into adipocytes inlnbited insulin-stimulated Glut4 translocation (Cheatham et a l , 

1996;Martin et a l, 1998;Millar et a l, 1999), strongly supporting its role as the v-SNARE 

in the exocytosis of Glut4 containing vesicles.

3.1.4 Syntaxin 4, SNAP23, VAMP2 ternary complex

It has been demonstrated that in vitro VAMP2, SNAP23 and syntaxin 4 form an extremely 

stable SDS-resistant SNARE complex much like that of the neuronal exocytic SNARE 

complex (Rea et a l, 1998).

The studies undertaken so far strongly suggest that VAMP2, v-SNARE present on insulin 

responsive Glut4 storage vesicles interacts with the binary complex foinied by the binding 

of syntaxin 4 to SNAP23 present on the plasma membrane to facilitate exocytosis of Glut4 

storage vesicles. Although it has been assumed that these SNAREs come together to form 

a complex capable of supporting fusion this is yet to be definitively shown. There is also 

little known about the regulation of complex formation by these SNAREs.

3.1.5 In vitro fusion assay for membrane fusion

In vitro fusion assays have used either partially intact purified cellular components or 

completely artificial liposomes reconstituted with recombinant proteins (reviewed in 

(Avery et a l, 1999). These types of assays allow the study of protein-mediated events in a 

defined setting, and allow the addition or depletion of various factors to study the effect 

these have on the fusion process.

The most widely adapted in vitro fusion assay for SNARE mediated fusion is based on a 

fluorescence energy resonance transfer (FRET) lipid mixing assay described in 1980 by
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Struck and colleagues (Stmck et a l, 1981). This assay makes use of a FRET pair of 

fluorophores, NBD (N-(7-nitro-2,l,3-benzoxadiazol-4-yl)) and Rliodamine (N-(lissamine 

rhodamine B sulfonyl)), covalently attached to lipid species in the reconstituted liposomes. 

The assay utilises the overlap in the excitation and emission spectrum of this pair. When 

the molecules are within close proximity, the excitation of NBD leads to emission, which 

is absorbed by Rhodamine. This transfer is extremely dependent on the proximity of the 

fluorophores. When the liposomes fuse, as shown in Figure 3.1, the bulk lipid in the 

resulting liposome is diluted by a factor of 2, and fusion can be measured as an increase in 

NBD fluorescence at 535 mn. Using an assay, based on this original assay it has been 

shown that the exocytic SNARE complex, formed by the t-SNARE complex of syntaxin 

la/SNAP25 and the v-SNARE VAMP2, is sufficient and necessary to promote membrane 

fusion of liposomes (Weber et a l, 1998), although the fusion is much slower than that 

observed physiologically (Wolfel and Sclnieggenburger, 2003).
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Figure 3.1: The principie of the in vitro fusion assay

The liposome fusion assay makes use of two head group labelled lipids, one labelled with 

NBD (light spheres) and one with Rhodamine (dark spheres). A quenched mixture of 

these lipids is reconstituted in the same membrane (v-SNARE containing liposomes. 

Donor). When fusion occurs between labelled liposomes and unlabelled liposomes (t- 

SNARE containing liposomes, Acceptor) the group labelled lipids are diluted and this can 

be measured as an increase in NBD emission with time (Taken from Scott et a i,  2003).
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3.2 Aims of this chapter

The aims of this chapter were to purify the tlrree full-length SNAREs: syntaxin 4, SNAP23 

and VAMP2, and reconstitute them into synthetic liposomes in order to establish an in 

vitro system to study the regulation of fusion facilitated by this SNARE complex.

In this chapter I have successfully purified all tlrree SNAREs, reconstituted them into 

liposomes, and successfully perfoimed fusion assays using these reconstituted liposomes.
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3.3 Results

In order to establish a fusion assay using these SNARE proteins, we first had to express 

and purify the full-length versions of these proteins. Recombinant DNA technology allows 

the addition of tags to proteins that can be exti emely useful, when used with 

chromatography procedures, enabling the purification of proteins to high purity and high 

yield. The SNARE proteins successfully reconstituted thus far in the in vitro fusion assay 

have all been expressed and purified from E, coii as tagged proteins. Since most SNARE 

proteins have a C-terminal transmembrane tail the successful purification of these proteins 

from E. coii relies on the inclusion of detergent throughout the purification process.

3.3.1 Expression and purification of cytoplasmic and full- 

length VAMP2.

We chose to express full-length VAMP2 as a Hexa-HIS-tagged protein in BL21 DE3 cells, 

and to purify this protein using Ni-NTA agarose ciiromatography. VAMP2 was expressed 

as a C-temiinally HIS tagged protein from the plasmid pET-VAMP2FL-myc-HIS which 

was a kind gift from Giampietro Schiavo (London, UK). A fraction from each of the steps 

involved in purification was analysed by SDS-PAGE followed by Coomassie staining, as 

shown in Figure 3.2A. It was found that this protein was expressed at high levels in these 

cells and was mainly soluble in detergent.

As a control in the in vitro fusion assay, to ensure any fusion observed is protein mediated, 

the soluble cytoplasmic domain of VAMP2 is added (Weber et al, 1998). This should 

bind to the t-SNARE complex present on the acceptor liposomes and preclude binding of 

VAMP2 present on the donor liposomes thus blocking frision. Soluble VAMP2 (VAMP2 

missing the C-terminal transmembrane domain) was also expressed as a HIS-tagged 

protein in BL21 DE3 cells and purified using Ni-NTA agarose chromatography in a similar 

manner to the purification of full-length VAMP2 with the omission of any detergent. The 

eluted fractions with the highest yield of protein were pulled and dialysed overnight 

against glycerol free A200, the buffer the fusion assay is performed in. A SDS-PAGE gel 

of the dialysed fraction is shown in Figure 3.2B.
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Figure 3.2: Purification and purity of fuii-iength and the

cytoplasmic domain of VAMP2

(A) Expression of full-length HIS-tagged VAMP2, in BL21 DE3 E. coii cells, was induced 

for 3 hours at 37 °C by adding IPTG and HIS-tagged VAMP2 was purified as outline in 

section 2.5.1. The Figure shows the purity of the pre-induction lysate (LI), post-induction 

lysate (L2), detergent washes, detergent exchange and fractions eluted using imidazole 

(200-500 mM) run on a 15 % SDS-PAGE gel and stained with Coomassie blue as outlined 

in sections 2.2.1 and 2.2.4. (B) The cytoplasmic domain of VAMP2 was purified in a 

similar manner with the omission of detergent in the purification buffers, dialysed against 

A200 with no glycerol and analysed for purity by SDS-PAGE on a 15 % SDS-PAGE gel 

followed by staining with Coomassie blue. Positions of the pre-stained broad range and 

Bio-rad low molecular weight protein markers are respectively indicated
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As can be seen in Figure 3.2A the elutions of full-length VAMP2 contained only one major 

product of the coiTect size for full-length VAMP2, 16 IcDa, indicating that the protein had 

been successfully expressed and purified. Likewise for the soluble cytoplasmic domain of 

VAMP2 only one major product was observed on SDS-PAGE analysis.

Having successfully purified the full-length and cytoplasmic domain of VAMP2 we went 

on to attempt to purify the t-SNARE complex of syntaxin 4/SNAP23.

3.3,2 Optimisation of expression of fuii-iength syntaxin 4 

complexed with SNAP23.

We chose to express syntaxin 4 and SNAP23 together in the same E. coli cell and purify 

them as a complex. This methodology had previously been successfully employed to 

express and purify the homologous neuronal t-SNARE complex consisting of syntaxin 1A 

and SNAP25 (Weber et ah, 1998). Syntaxin 4 was expressed as a HIS-tagged protein from 

the vector pQE30 and SNAP23 was expressed as a GST-tagged protein from the vector 

pET41a. These vectors contain cassettes for resistance to two different antibiotics, 

ampicillin for pQE30 and kanamycin for pET41a, allowing for dual selection of a single 

E.coli colony containing both vectors. Purification was carried out using glutatliione 

sepharose, which binds specifically to the GST tag present on SNAP23. The t-SNARE 

complex was subsequently eluted from the glutathione sepharose by cleaving the GST tag 

from SNAP23 using thrombin.

Initially we attempted to express full-length syntaxin 4 and SNAP23 using similar 

conditions as described for VAMP2, however, this proved problematic with SNAP23 

being grossly over purified compared to syntaxin 4 (data not shown). This appeared to be 

due to syntaxin 4 being mostly insoluble when over-expressed in E. coli. Further 

purification steps were employed using the HIS tag on syntaxin 4 and a similar purification 

protocol as employed for full-length VAMP2 in order to increase the concentration of 

syntaxin 4. While this did increase the concentration of syntaxin 4, it was still not 

equimolar to SNAP23. Since this recombinant SNAP23 has no palmitate groups it should 

not be incorporated into subsequent liposome populations, hi agreement with this only the 

complex appeared to be reconstituted in vesicles (perfoimed by Kirilee Wilson, data not 

shown). However, when a fusion assay was set up using these liposomes it was found that
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the concentration of t-SNARE complex in these liposomes was too low to support fusion in 

this system (performed by Kirilee Wilson, data not shown).

Although E. coli is very useful for expressing recombinant proteins, the over expression of 

heterologous gene products can lead to aggregation and accumulation into insoluble 

inclusion bodies. The expression of many recombinant proteins has proved problematic in 

E. coli, and successful expression and purification is often due to trial and eiTor. Many 

strategies have been employed for increasing solubility in E. coli including low IPTG 

concentrations, low temperatures and the co-expression of chaperone proteins (reviewed in 

Lilie et al, 1998). Due to the poor solubility of syntaxin 4 it was necessary to optimise 

expression conditions to enable the purification of sufficient quantities of syntaxin 4 for the 

in vitro fusion assay. Eventually it was found that inducing protein production at an 

OD600 of 0.6, overnight at a low temperature (25 °C) significantly increased the solubility 

of syntaxin 4 (data not shown). Low temperatures have been proposed to increase protein 

solubility because while folding is relatively unaffected by low temperatures the rate of 

transcription/translation is reduced giving recombinant proteins more time to fold correctly 

within the E. coli cell.

3.3,3 Purification of fuii-length syntaxin 4 complexed to 

SNAP23

Syntaxin 4 in pQE30 and SNAP23 in pET41a were co-transformed into BL21 DE3 cells, 

and selected for on agar plates containing both ampicillin and kanamycin. A single colony 

was used to start an overnight culture and this was used to inoculate 8 litres of culture, the 

following morning, as outlined in section 2.5.1, Protein production was induced when the 

OD at 600 nm was roughly 0.6 by the addition of 1 niM IPTG for 16 hours at 25 °C.

Protein was purified, as outlined in section 2.5.1, and a fi'action from each step was 

analysed by SDS-PAGE, followed by Coomassie staining, as shown in Figure 3.3.
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Figure 3.3: Purification and purity of SNAP23/syntaxin 4 t-

SNARE compiex recovered from E. coli lysates.

Full-length syntaxin 4 and SNAP23-GST were expressed in BL21 DE3 E. coli cells. 

Expression of the t-SNARE complex was induced overnight (roughly 16 hours) by adding 

1 mM IPTG and the complex was purified by virtue of the GST tag on SNAP23 as 

outlined in section 2.5.1. The GST tag was cleaved from SNAP23 by incubation with 

thrombin for 4 hours at room temperature. The purity of the protein was assessed by SDS- 

PAGE on a 12 % SDS-PAGE gel followed by Coomassie Blue staining of the gel as 

outlined in sections 2.2.1 and 2.2.4. The Figure shows the purity of the pre-induction 

lysate (LI), post induction lysate (L2), detergent washes and exchange. The three final 

lanes show precleaved complex bound to glutathione sepharose (4 pi, A), bead slurry after 

4 hours thrombin cleavage (4 pi, B) and recovered cleaved complex (1 pi, C). Positions of 

the broad range molecular weight markers are shown.
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In Figure 3.3, lane A a band of the appropriate size for syntaxin 4, 34 kDa, can be seen. A 

further, more intense band, can be seen just above the 47.5 kDa marker, roughly the 

expected size for SNAP23-GST fusion. In Lane B it can be seen that this upper band is 

significant reduced while two new bands appear one at the 25 IcDa marker, the coiaect size 

for GST, and one slightly above this which is SNAP23. The major band in the cleaved 

supernatant, lane C, is SNAP23 following cleavage from GST, this runs slightly higher 

than expected due to vector sequence that runs after the thrombin cleavage site into the 

coding sequence for SNAP23. The band above this band is syntaxin 4.

The protein concentration of the cleaved supernatant was estimated using the Bio-Rad 

protein assay as outlined in section 2.3.3. The concentration was typically estimated at 

roughly 1 mg/ml. The yield of syntaxin 4 was vastly improved by the change in 

expression conditions. Although the levels of SNAP23 and syntaxin 4 were still not 

equimolar, this did not pose a problem to the use of this purified protein for reconstitution 

into liposomes, because as mentioned previously, recombinant SNAP23 from E. coli cells 

lacks the addition of palmitate groups and therefore only SNAP23 complexed to syntaxin 4 

is incoroporated into reconstituted vesicles.

Since we now had all the full-length SNAREs purified to an appropriate concentration it 

was possible to reconstitute these into synthetic liposomes.

3.3.4 Reconstitution of fuil-iength recombinant SNAREs into 

liposomes

Lipids, labelled for VAMP2 liposomes, and unlabelled for syntaxin 4/SNAP23 liposomes, 

were dried to a film and re-suspended in a solution of the relevant protein in detergent as 

outlined in section 2.5.3. In order to reduce the concentration of OG below its critical 

micellar concentration, 1 ml of buffer A200, without detergent, was added as outlined in 

section 2.4.4. Detergent was then completely removed by dialysis overnight against buffer 

A200 as outlined in section 2.5.3. The following morning the liposomes were separated 

from soluble protein by floatation on a density gradient of nycodenz. The top fraction of 

this gradient, containing the liposomes, was removed and flash frozen in liquid nitrogen as 

outlined in section 2.5.4. Recovery of liposomes, and incorporated protein, following 

floatation on the nycodenz gradient was assessed by analysing 10 pi of liposomes on SDS- 

PAGE followed by Coomassie blue staining as outlined in sections 2.2.1 and 2.2.4.
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Figure 3.4: Reconstitution of t-SNAREs into liposomes.

Purified t-SNARE complex was successfully reconstituted into vesicles. The purified t- 

SNARE complex, consisting of syntaxin 4 and SNAP23 (A, 2 pi), along with t-SNARE 

complex that co-purified with vesicles (B, 10 pi) were separated on a 12 % SDS-PAGE gel 

and stained with Coomassie Blue as outlined in sections 2.2.1 and 2.2.4. Positions of the 

Bio-Rad low molecular weight markers are shown.



Fiona M. Brandie, 2006 Chapter 3, 105

B
97 . 

66.2.

45 . 

31 .

21

14

Dimer of VAMP2

VAMP2

Figure 3.5: Reconstitution of v-SNAREs into liposomes

The purified v-SNARE protein (A, 2 pl) and the v-SNARE that co-purified with liposomes 

(B, 1G pl) were separated on a 15 % SDS-PAGE gel and stained with Coomassie Blue as 

outlined in sections 2.2.1 and 2.2.4. Positions of the Bio-Rad low molecular weight 

markers are shown.
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Figure 3.4 shows the t-SNARE complex of syntaxin 4/SNAP23 was successfully 

reconstituted into liposomes. It can also be seen that flotation on the nycodenz gradient 

was successhil in separating reconstituted t-SNARE complex from the excess soluble 

SNAP23, seen in the lower band in lane A

Figure 3.5 shows the v-SNARE VAMP2 was successfully reconstituted into liposomes.

As has previously been obseiwed VAMP2 forms dimers, which run just above the 31 kDa 

marker, when reconstituted into liposomes (Weber et al, 1998). This fonnation of dimers 

is thought to be mediated through the transmembrane region of VAMP2 (Laage et al, 

2000;Roy et al, 2004),

Since both the t-SNARE complex and the v-SNARE had been successfully reconstituted 

into their appropriate liposome species it was possible to set up an in vitro fusion assay 

using these liposomes.

3.3.5 In vitro fusion assay using reconstituted liposomes

Reconstituted liposomes were used to set up an in vitro fusion assay as outlined in section 

2.5.6. Briefly 45 pl of liposomes reconstituted with syntaxin 4/SNAP23, Figure 3.4 lane 

B, was added directly to the bottom of 2 duplicate wells of a microtitre plate on ice.

Soluble VAMP2, 2 pl, Figine 3.2B, was added to the first well. To the other well 2 pl of 

glycerol free A200 was added to account for the volume difference. The plate was 

incubated on ice for 10 minutes prior to the addition of 5 pl of liposomes reconstituted with 

VAMP2, Figure 3.5 lane B, to each well. The top of the plate was sealed with tape and 

incubated at 4 °C overnight in the dark.

The following morning an additional two duplicate wells were set up in a similar manner 

just prior to commencing the fusion assay in order to see if pre-incubation at 4 °C affected 

the kinetics of fusion facilitated by these SNAREs.

NBD fluorescence was measured at 2 minute intervals for 2 hours in a fluoroskan II, with 

the excitation set at 460 mn and the emission measured at 535 nm, at a temperature of 37 

‘̂ C. Following this two hour period, 10 pl of 2.5 % w/v n-dodecylmaltoside was added to
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each well (to give NBD fluorescence at infinite dilution) and the plate mixed for 2 minutes. 

Fluorescence was then monitored for 40 minutes at 2 minute inteiwals.

Raw data from this experiment was plotted against time, as shown in Figure 3.6A, using 

KaleidaGraph. This was nonnalised to maximal detergent signal where this is represented 

by 100 %, as shown in Figure 3.6B. Using an equation from a calibration curve, 

performed by James McNew, of the NBD fluorescence given by different ratios of labelled 

lipids to unlabelled lipid this normalised data was converted into "rounds of fusion”

(Parlati et al., 1999;Scott et a l, 2003), as shown in Figure 3.6C. This calculation assumes 

that the two liposome populations which fuse are of approximately equal size. Liposomes 

are reconstituted with VAMP2 using lipid ratios of unlabelled to labelled that would result 

from zero rounds of fusion i.e. one labelled liposome, one round of fusion i.e. one labelled 

liposome fusing with one unlabelled liposome, two rounds of fusion i.e. one unlabelled 

liposome fusing with the previous resulting liposome, up to eight rounds of fusion. These 

liposomes are then monitored for NBD fluorescence at 535 mn before and after addition of 

n-dodecylmaltoside, normalised against the fluorescence given with just labelled liposomes 

(i.e. from the zero "rounds of fusion”) before addition of detergent and % maximal NBD 

fluorescence calculated for each liposome population. A calibration curve is then plotted 

of noimalised % maximal detergent signal for each liposome population with the y axis 

representing "rounds of fusion” and the x axis reprinting % maximal NBD fluorescence.

A double exponential fitting of the plotted results gives the equation Y = (0.49666 x e 
(0.03603ix)^ -  (0.50597 X e '^ ’̂ ^3946x^^ where Y stands for "rounds of fusion” and X stands for 

% maximal detergent signal at any one time (Scott et al 2003). Using this equation, % 

maximal detergent signal measured for each liposome population can be converted into 

rounds of fusion at each different time point. The data shown in Figure 3.6 is 

representative of 2 separate experiments.
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Figure 3.6: VAMP2 and syntaxin 4/SNAP23 form a functional

compiex capable of fusing liposomes

(A) Raw fluorescence data directly from the Fluoroskan II was plotted against time.

Fusion assays were performed in which 5 pl of fluorescently labelled donor VAMP2 

liposomes were mixed with 45 pl of unlabelled acceptor syntaxin 4/SNAP23 immediately 

before the assay, or pre-incubated overnight. (B) The raw Fluorescence was normalised to 

maximal detergent signal after addition of n-dodecylmaltoside (DM). (C) The percentage 

of maximal DM fluorescence was converted to “rounds of fusion”, or fold lipid dilution by 

a calibration curve derived from the absorbance of dilutions of the two head group labeled 

lipids. As a control, the syntaxin 4/SNAP23 liposomes were preincubated for 10 minutes 

with soluble VAMP2 (+ soluble VAMP2).

-©— Syt4/SNAP23 + VAMP2 
-B - Syt4/SNAP23 + VAMP2 + soluble VAMP2 
^  - Preincub Syt4/SNAP23 + VAMP2 
X -  - Preincub Syt4/SNAP23 + VAMP2 + soluble VAMP2 
+ - - Protein free + VAMP2
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Incubation of the fluorescent donor liposomes, reconstituted with VAMP2, with unlabelied 

liposomes, reconstituted with syntaxin 4/SNAP23, at 37 led to a time-dependant 

increase in NBD fluorescence (Red circles). Preincuhation of these liposomes overnight at 

4 (green squares) led to an increase in this fluorescence. As has been observed for the 

neuronal exocytic SNARE complex of syntaxin la/SNAP25 and VAMP2 (Weber et al,

1998), but not for any of the yeast SNARE complexes, fusion is enhanced when liposomes 

are preincubated overnight at 4 ^C. This increase in fusion has been proposed to be due to 

the formation of unfrised intermediates where SNARE complexes are prefonned (Weber et 

al, 1998). The level of increase in fusion on preincuhation of syntaxin 4/SNAP23 

liposomes and VAMP2 liposomes was however, of a smaller magnitude than that observed 

for the neuronal exocytic SNARE complex (Parlati et al, 1999).

As a control the soluble domain of VAMP2 was added to fusion reactions, both 

preincubated (black crosses) and unpreincubated (blue squares), in order to be sure that any 

fusion which was observed was protein mediated. This soluble VAMP2 forms complexes 

with the t-SNARE complex extremely quickly and thus blocks the fonnation of complexes 

between the two vesicle populations (Weber et a l, 1998). As can been seen in Figure 3.6C 

the addition of soluble VAMP2 did inliibit the fusion obseiwed showing that any fusion is a 

result of the reconstituted SNARE proteins. As a further control to ensure that any fusion 

observed was mediated by the SNARE proteins, a fusion assay was carried out using 

VAMP2 acceptor liposomes and donor liposomes which were protein fine. No fusion 

between these liposome populations was observed (pinlc crosses).
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3.4 Discussion

The fusion process facilitated by SNARE proteins has been successfully reconstituted in 

vitro (Weber et al., 1998). In this Chapter I have established an in vitro fusion assay for 

the SNAREs involved in the exocytosis of Glut4.

The t-SNAREs, syntaxin 4 and SNAP23, found on the plasma membrane of insulin 

responsive cells (Volchuk e? a/., 1996;Tellam a/., 1997;Wang <r/., 1997) were 

reconstituted into one population of liposomes, the acceptor. The v-SNARE VAMP2, 

which has been localised to Glut4-containing vesicles in insulin responsive cells (Volchuk 

et al, 1997), was reconstituted into a separate population of liposomes, the donor. While 

the acceptor liposomes are composed of unlabelled lipid, the donor liposomes contain a 

small percentage of lipid labelled with either NBD or Rhodamine, at a concentration which 

leads to quenching of the NBD emission when excited with light at a wavelength of 

485mn. When the liposomes fuse with each other these lipids are diluted in the membrane 

and fusion can thus be measured as increasing NBD emission. This assay is well 

established in the study of fusion facilitated by SNARE proteins (Scott et al, 2003). Using 

this assay it was demonstrated that SNAREpins, that is the complex formed between 

cognate sets of v- and t-SNAREs, are necessary and sufficient to fuse artificial membranes 

(Weber et a l, 1998). This suggests that the fomiation of the energetically favourable 

SNARE complex is alone sufficient to overcome the repulsion between two membranes 

and facilitate fusion. Although VAMP2, syntaxin 4 and SNAP23 have all been implicated 

in Glut4 exocytosis in insulin-responsive cells and, have been shown by surface plasmon 

resonance to form a highly stable SDS-resistant SNARE complex in vitro (Rea et al,

1998), they have until this study not been shown to form a SNAREpin capable of 

facilitating membrane fusion.

In order to set up the in vitro fusion assay using these SNAREs, they first needed to be 

purified from E. coli. The expression and purification of full-length VAMP2, which has 

been successfully purified by other groups (Weber et al, 1998;Paralti et al, 1999) was 

relatively straight forward. The expression and purification of the syntaxin 4/SNAP23 

complex for reconstitution proved to be more problematic, with syntaxin 4 being 

significantly insoluble under many of the conditions tested. By reducing the temperature at 

which expression was induced, a high enough yield of syntaxin 4 was obtained for 

reconstitution.
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Fusion assays were carried out using the reconstituted donor and acceptor liposomes.

Upon incubation at 37 °C, an increase in NBD fluorescence was observed, showing that 

these liposomes were capable of facilitating fusion. Preincuhation of the liposomes 

overnight at 4 °C led to an increase in the level of fusion. This increase, upon 

preincuhation, has previously been observed in vitro using the neuronal exocytic SNARE 

complex (Weher et al, 1998;Parlati et al, 1999). However, in this case the increase was of 

a much larger magnitude (Weber et al, 1998;Parlati et a l ,1999). This increase is proposed 

to occur due to the predocking of the liposomes (Weher et al, 1998;Parlati et n/., 1999). A 

preincuhation dependant increase in fusion has not been observed in vitro using yeast 

SNAREs (Scott et al, 2003). Exocytic syntaxins have a large highly conserved N-terminal 

domain (Fernandez et al, 1998) which, in some syntaxins has been shown to fold back on 

the SNARE domain holding it in a closed confonnation (discussed in detail in Chapter 5). 

The removal of this N-terminal domain from the neuronal exocytic syntaxin la has been 

shown to accelerate fusion, without preincuhation, in vitro (Parlati et al, 1999) suggesting 

a role for the N-terminal in controlling docking of liposomes. The fact that preincuhation 

of yeast SNAREs does not increase in vitro fusion (Scott et al, 2003) suggests that in these 

SNAREs the N-terminal of syntaxin may not play such a role.

In order to confinn that any fusion of the liposomes was mediated by the reconstituted 

SNAREs, two controls were employed. The first control was the addition of soluble 

VAMP2, lacking the transmembrane domain, to acceptor liposomes prior to fusion (Weber 

et al, 1998). This soluble VAMP2 binds the t-SNAREs, sequestering them from 

interaction with full-length VAMP2 on the donor membrane. The addition of soluble 

VAMP2 inliibited fusion facilitated by liposomes, which had been freshly mixed or 

preincubated overnight, showing that the fusion was mediated by the reconstituted 

SNAREs. A second control experiment was performed where the fusion of VAMP2 

liposomes to protein free acceptor liposomes was monitored. No fusion was obseiwed in 

this experiment, again showing that fusion was mediated by the SNARE proteins. Further 

controls, which could have been employed, include the addition of toxins which cleave the 

SNARE proteins. Tetanus toxin light chain, botulinum neurotoxin D and botulinum toxin 

B have all been shown to cleave free VAMP2 (Cheatham et al, 1996;Macaulay et al, 

1997a;Macaulay et al, 1997b;Foran et al, 1999;Randhawa et a l, 2000). To show that the 

fusion mediated by the two liposome populations is facilitated by the reconstituted 

SNAREs, donor liposomes could be treated with one of these toxins prior to incubation 

with the acceptor liposomes.
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In summary, in this Chapter I have successfully purified and reconstituted full-length 

syntaxin 4, SNAP23 and VAMP2 into liposome populations. The fonnation of syntaxin 

4/SNAP23/VAMP2 ternary complex is sufficeint to directly fuse membranes, a fact thus 

far assumed but not definitively shown. This assay can now be used to study the effects of 

different factors on the fusion mediated by these SNARE proteins.
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4.1 Introduction

Recently SNARE proteins have been localised to lipid inicrodomains of the plasma 

membrane termed lipid rafts in a number of different cells. A significant proportion of the 

t-SNAREs, syntaxin 4 and SNAP23, and the v-SNARE, VAMP2, involved in Glut4 

exocytosis in insulin-responsive cells have been isolated in lipid rafts purified as detergent 

resistant membranes (DRMs) from 3T3-L1 adipocytes (Chamberlain and Gould, 2002). 

Other proteins known to be regulators of SNARE function including Munc 18c were found 

to be excluded from these domains (Chamberlain and Gould, 2002). Whether targeting of 

these SNARE proteins to rafts regulates the fusion facilitated by these SNAREs is yet to be 

established.

It has been shown that in PC 12 cells the targeting of the SNAP23 homologue SNAP25 to 

detergent resistant membranes, which appears to be dependent on the palmitoylation status 

of this molecule, effects the ability of the neuronal exocytic SNARE complex to support 

fusion (Salami et al, 2005a). Palmitoylation, which is reversible, is therefore a potential 

way to regulate SNARE complex formation and fusion.

4.1.1 Regulation of fusion by partitioning into raft domains

Lipid rafts have been shown to be involved in a viral entry into a nmnber of cells 

(reviewed in Rawat et a l, 2003). The mechanism of fusion facilitated by viral fusion 

proteins has been speculated to share many similarities with that of the fusion facilitated by 

SNARE proteins (Sollner, 2004). While certain proteins are found to be enriched in lipid 

raft domains others seem to be excluded. This selective recmitment of proteins makes 

these domains ideal to spatially regulate fusion. Components of the insulin signalling 

pathways (along with the SNAREs involved in Glut4 exocytosis) have also heen localised 

to these domains, suggesting that in insulin-responsive cells these domains might spatially 

regulate fusion.

Many studies have used the agent methyl-p-cyclodextrin that extracts cholesterol from the 

membrane to study the function of rafts. Two independent studies showed that exocytosis 

was inhibited in cells treated with this agent (Chamberlain et a l, 2001;Lang et al, 2001), 

suggesting that cholesterol enriched domains may be the site of exocytosis within the cell.
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However, these studies must be treated with caution as cholesterol depletion may have 

other effects within the cell (Munro 2003;Rodal et al, 1999).

4.1.2 Targeting of SNAREs to raft domains

The addition of palmitate groups to proteins has been suggested to influence their targeting 

to raft domains (Brown, 2006), Palmitate gioups are saturated, and have therefore been 

proposed to partition into raft domains due to favourable packing (Brown and London,

1998). There are several studies that provide evidence for the importance of 

palmitoylation of proteins in targeting to lipid rafts. Blocking the palmitoylation of the 

protein Fyn using 2-Bromopalmitate significantly reduced its association with DRMs in 

COS and Jurkat cells (Webb et al, 2000), while blocking the palmitoylation of aO subunit 

of the heterotrimeric Gi-like protein by site directed mutagenesis of a cysteine residue 

similarly reduced the affinity of this protein for the detergent insoluble fraction in COS 7 

cells (Guzzi et al, 2001). In Madin Canine Kidney cells, a high proportion of raft proteins, 

isolated along with DRMs, were found to he labelled with ^H palmitate (Melkonian et al,

1999). However, as not all paimitoylated proteins were found to he targeted to lipid rafts 

palmitoylation does not seem to be a universal signal for association with lipid raft 

domains (Melkonian et al, 1999).

SNAP25 and SNAP23 are both paimitoylated on a conserved cysteine rich domain in the 

linker region between their two SNARE domains (Lane and Liu, 1997;Vogel and Roche,

1999). In SNAP25, four cysteines in this domain are thought to he paimitoylated, while in 

SNAP23 palmitoylation seems to occur on five cysteines in the same conserved domain. 

The palmitoylation state of SNAP25 and SNAP23 influence their targeting to raft domains 

in PC 12 cells, with the five cysteine motif of SNAP23 supporting a higher level of 

association of the protein with these domains than the four cysteine motif of SNAP25 

(Salaun et a l, 2005b). A subsequent study showed a negative correlation between the 

extent of SNAP25/23 associated with DRMs and the level of exocytosis that was supported 

(Salaun et a l, 2005a). Whether cycles of palmitoylation and depalmitoylation represent a 

regulatory mechanism of SNAP25/23 raft localisation and therefore regulate the ability of 

the SNARE complex to support fusion remains to be established.

While raft association of SNAP25 and SNAP23 appears to he controlled by palmitoylation, 

the mechanism controlling the association of syntaxin with raft domains is less clear. It
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has been suggested that perhaps the transmembrane domain of syntaxin may preferentially 

partition into raft domains due to its ability to interact with cholesterol (Lang et al., 2001). 

However, recombinant syntaxin does not localise into cholesterol/sphingolipid rich 

domains in reconstituted giant unilamellar vesicles (Bacia et al., 2004), or supported 

bilayers (Saslowsky et a l, 2002). More recently it has been suggested that syntaxin la 

may associate with the lipid species PI4,5P2, which has been shown to he enriched in raft 

domains (Aoyagi et al, 2005).

The v-SNAREs VAMP2, Snclp and Snc2p have been shown to be paimitoylated on a 

conserved cysteine residue adjacent to the transmembrane domain (Couve et al, 1995;Veit 

et a l, 2000). Recently a proteomic approach to identify paimitoylated proteins in yeast 

found 47 proteins modified with palmitate, 12 of which where already laiown to be 

paimitoylated (Roth et al, 2006). This screen pulled out 8 SNARE proteins, including 

Snclp and Snc2p, all of which have juxtamembrane cysteine residues (Roth et al, 2006). 

The physiological significance of the addition of palmitate to these SNAREs is yet to be 

characterised.

4.1.3 Palmitoylation

Mammalian proteins are commonly post translationally modified by the addition of lipid 

moieties (reviewed in Resh, 1996). S-palmitoylation is the addition of a palmitate group 

(C l6:0) to a cysteine residue within a protein through a reversible covalent thioester bond 

(Bijlmakers and Marsh, 2003). A thioester bond is formed when a sulfhydryl -SH group 

reacts with a carboxylic acid group -COOH, with the release of a molecule of water, to 

fonn a thioester -S-CO- group. This particular post-translational modification is wide­

spread and is found almost exclusively on membrane associated proteins. In some cases it 

attaches otherwise soluble proteins to the membrane while in others it is attached to 

proteins which contain transmembrane domains (Bijlmalcers and Marsh, 2003). Although 

palmitoylation can occur on internal sequences the addition of palmitate to otherwise 

soluble proteins typically occurs at either the C or N terminus. Proteins that are inserted 

into the membrane are generally paimitoylated at the juxtamembrane region (Bijlmakers 

and Marsh, 2003).

The addition of palmitate groups to proteins is facilitated by a group of proteins called 

palmitoyl acyltransferases within the cell (reviewed in Dietrich and Ungennami, 2004).
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Apart from the requirement for a cysteine residue, a consensus sequence for the addition of 

palmitate to a protein has not been characterised. The compartmental site of palmitate 

addition to proteins within the cell by palmitoyl acyltransferases is still a matter of debate. 

While the addition of some lipid moieties e.g. myiistoylation or prénylation is usually 

irreversible, the addition of palmitate groups is reversible, and subsequently could be used 

as a dynamic means to control protein function (Bijlmakers and Marsh, 2003). 

Depalmitoylation is believed to occur through the action of palmitoyl thioesterases, but 

only a limited number of these enzymes have so far been identified in mammalian cells 

(reviewed in Huang and El Husseini, 2005). So far the enzymes that add and remove 

palmitate groups from SNAP23 have remained elusive.

4.1.4 Palmitoylation and fusion

Palmitoyl acyltransferase activity has been observed at various locations within the cell 

(Mitchell et al, 2006). The cellular site for the palmitoylation of SNAP25 is unlmown. 

Palmitoylation does require a functional secretory pathway, as the addition of palmitate to 

SNAP25 is prevented hy treatment with Brefeldin A (Gonzalo and Linder, 1998). This 

suggests that SNAP25 is paimitoylated post ER either in the Golgi, or at the plasma 

membrane, or that the palmitoylation of SNAP25 requires another protein which traffics 

through the Golgi.

While some studies have suggested that the palmitoylation of SNAP25 homologues 

provides membrane targeting of this otherwise hydrophilic protein, chemical déacylation 

of the protein does not lead to displacement from the membrane, suggesting this may not 

be the case (Gonzalo and Linder, 1998). This suggests that the membrane association of 

SNAP25 may be due to association with other membrane constituents, the most likely 

candidate being syntaxin or membrane lipid. This is supported by the fact that the yeast 

homologue of SNAP25, Sec9, and SNAP29 are found associated with the membrane 

despite the fact that they have no palmitate groups or transmembrane domain (Brennwald 

et al, 1994;Steegmaier et al, 1998). This has been supported by pulse-chase experiments 

which showed that SNAP25 first associates with syntaxin before the t-SNARE complex 

enters the membrane (Vogel et a l, 2000). In addition, removal of the central cysteine 

domain did not stop this interaction, or the membrane association of SNAP25, suggesting 

that SNAP25 becomes paimitoylated following recruitment to the membrane by syntaxin 

(Vogel et a l, 2000).
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Palmitoylation of SNAP25 does not seem to influence the ability of this SNARE to enter 

into SNARE complexes (Washboume et a l, 2001). However, mutation of the cysteine 

residues in SNAP25, and therefore blockage of palmitoylation, prevented rescue of 

exocytosis in PC 12 cells treated with BoNT/E, compared to unmutated SNAP25, 

suggesting an important role for palmitoylation in fusion (Washboume et a l, 2001). 

However, in HIT cells, similar mutants were able to rescue some degree of exocytosis 

(Gonelle-Gispeit et al, 2000). Furthermore, in a cracked PC12 cell assay, the introduction 

of recombinant SNAP25 produced in E. coli, which is mipalmitoylated, was able to rescue 

calcium dependent exocytosis: However, this study did not compare this to the level of 

rescue achievable with the paimitoylated protein (Scales et al, 2000). A role for 

palmitoylation in the regulation of fusion has also been suggested by the observation that 

vacuole to vacuole fusion is stimulated by palmitoyl-CoA in an in vitro fusion assay (Haas 

and Wickner, 1996). The addition of palmitoyl-CoA also stimulates the fusion of vesicles 

to the Golgi in vivo (Pfanner et al, 1990).

4.1.5 Post-translational modification of recombinant 

proteins

For the majority of studies involving SNAREs, recombinant protein has been expressed in, 

and purified from, E. coli. While the use of E. coli has a number of advantages, such as 

cost and ease of scale-up, E. coli cells, as prokaryotes, are incapable of many of the post 

translational modifications which normally occur in mammalian cells. As mentioned 

above, SNAP23 is covalently modified in mammalian cells by the addition of palmitate 

gi'oups. Baculovirally driven expression of protein within insect cells, a eukaryotic host, 

offers a way to obtain near-authentically processed recombinant proteins.

4.1.6 Baculoviruses

Baculovimses, insect viruses that predominantly infect butterflies and moths, have been 

used to produce a great number of recombinant proteins. Over 500 types of bacuiovirus 

have been identified however, the bacuiovirus most commonly used for foreign gene 

expression is the bacuiovirus Autographa californica multiple NPV (AcMNPV) (HU, 

2005). Baculovirally infected insect cells have many advantages over other systems used 

for the production of recombinant protein. In the majority of cases, since insect cells are
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higher eukaryotes, proper post-translational modifications of the recombinant proteins 

occur (HU, 2005). Baculoviruses have large 130 kb dsDNA genomes, allowing large 

inserts to be engineered into it (HU, 2005). Baculoviruses also have a very restricted host 

range and do not replicate in mammalian cells, making them non-hazardous and easy to 

propagate. The promoters commonly used to drive the production of recombinant proteins 

are very strong which can give high yields of recombinant protein with protein expression 

levels often similar to, or higher than, those seen in prokaryotic systems.

Baculoviruses have a biphasic life cycle with two viron fomis, polyhedra and budded vims 

(reviewed in Okano et al, 2006). Vimses of the genus nucleopolyhedrovims (NPV) 

produce large proteinaceous polyhedron-shaped occlusion bodies (2 pm -15 pm in size), 

called polyhedra that contain multiple virions (membrane-enveloped nucleocapsids). 

During the natural infectivity cycle AcMNPV, occluded in polyhedi'a, is ingested by the 

insect, the poyhedra broken down by the alkaline enviromnent of the midgut, and the 

virions are released. These virions are then free to infect the epithelial cells of the gut. In 

these cells the DNA genome is replicated and ti'anscribed in the nucleus and new virions 

are synthesised. Bacuiovirus gene expression is regulated at the transcriptional level and 

can be separated into tliree phases: early, late and very late. These virions then bud from 

the initially infected cell through the plasma membrane, giving rise to budded vims and 

subsequently lead to a systemic infection of the insect host. Budded vims is highly 

infectious to cultured insect cells and is the main form used for protein production.

The late genes encode for proteins involved in the lysis of the host cell and the survival of 

the virus. During the natural viral life cycle large amounts of these proteins are produced. 

In tissue culture these genes are non-essential and their promoters can he used to drive the 

high expression of recombinant proteins. The two main promoters used for the production 

of recombinant protein are plO and PH (Beljelarskaya, 2002). The PH promoter drives the 

expression of the protein poyhedrin, the major component of polyhedra. It is the second 

most abundant protein in the infected cell late in infection. The p 10 promoter is also non- 

essential in insect cell culture, although its gene product is less well understood. Deletion 

of these genes reduces background problems caused by the expression of large amounts of 

endogenous protein while increasing the expression of foreign proteins.

The initial baculoviral systems used to produce recombinant protein relied on an inefficient 

homologous recombination event. Since the viral genome is too large to allow easy
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foreign gene insertion through conventional cloning, a transfer vector must be used. Insect 

cells, from Spodoptera frugiperda (Sf), were transfected with both the transfer vector and 

the bacmid encoding the bacuiovirus genome. The rates of recombination were estimated 

at 0.1 %, and recombined bacmid had to be separated from parental bacmid by a series of 

technically difficult and time consuming plaque assays. Although the method was 

improved hy using linearised viral DNA to give recombination rates of upto 90 % the 

isolation of recombinant bacuiovirus still required plaque assays (Kitts and Possee, 1993). 

This step has since been cut out with a new system to produce recombinant bacuiovirus. In 

this system the transposition step is carried out in E. coli cells that stably express both the 

bacmid DNA and a helper plasmid providing proteins to enable the transposition upon 

introduction of the transfer vector. From these E. coli cells recombinant bacmid can be 

isolated and this is then used to transfect insect cells to ultimately produce the bacuiovirus 

(Luckow et a l, 1993). This method of ti'ansposition was first described in 1993 by 

Luckow and colleagues (Luckow et a l, 1993), and has since been commercialised by 

Invitrogen as the Bac-to-Bac system.

4.1.7 Bacuiovirus protein production and palmitoylation

Many recombinant proteins produced using the baculoviral system appear to be correctly 

folded and post-translationally modified. Most post-translational modifications appear to 

be carried out in the same way in insect cells as in mammalian cells, with the exception of 

glycosylation. These modifications include the addition of fatty acyl chains including 

palmitate. The addition of palmitate groups to recombinant proteins has been shown to 

occur in insect cells (Pickering et a l, 1995;Ponimaskin et al, 2001). Recently it has been 

shown that SNAP25 expressed using baculoviral infection of Sf9 cells is paimitoylated 

(Kammer et a l, 2003).

'-m
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4.2 Aims of this chapter

The t-SNAREs syntaxin 4 and SNAP23, along with the v-SNARE VAMP2, involved in 

the exocytosis of Glut4 containing vesicles, have been found in detergent resistant 

membranes isolated from 3T3-L1 adipocytes (Chamberlain and Gould, 2002). In order to 

assess whether the main lipids, cholesterol and sphingomyelin, found in lipid rafts have 

any effect on fusion, these lipids were incorporated into liposomes which were used in the 

fusion assay outlined in Chapter 3.

Although non-pahnitoylated SNAREs purified from E. coli are capable of facilitating 

fusion in vitro when reconstituted into liposomes (Weber et al, 1998), the rate of frision 

observed is substantially slower than that observed in vivo (Wolfel and Schneggenburger, 

2003). It is possible that the acyl chains on SNAP25 and SNAP23 may perturb the 

membrane in vivo, and thus facilitate fusion. Recently it has been shown that SNAP25 

expressed in, and purified from, insect cells is acylated (Kammer et al, 2003). A 

bacuiovirus was engineered to allow expression and purification of syntaxin 4 and 

SNAP23 from insect cells.
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4.3 Methods and Results

4.3.1 Reconstitution of SNAREs into cholesterol and

sphingomyelin containing liposomes and fusion using these 

liposomes

Lipid rafts are specialised regions of the lipid bilayer that are known to be enriched in 

certain lipids including sphingomyelin and cholesterol. In order to investigate the effect of 

these lipids on fusion facilitated by SNARE proteins they were incoiporated into t-SNARE 

containing liposomes that were subsequently used for the fusion assay as outlined in 

Chapter 3.

Liposomes were reconstituted with t-SNAREs as outlined in sections 2.5.3-2.5.4. In order 

to investigate whether the inclusion of detergent resistant membrane lipids influenced 

fusion supported by these SNAREs, liposomes were produced with the standard lipid 

composition (85 mol% POPC/15 mol% DOPS), 33 mol% cholesterol/52 mol% POPC/15 

mol% DOPS and 33 mol% cholesterol/20 mol% sphingdmyelin/32 mol% POPC/15 mol% 

DOPS. The lipid recovery of each t-SNARE population was similar as judged by the trace 

amounts of [^H]-DPPC added to the lipid mix. Fusion assays were earned out as outlined 

in section 2.5.6, and data analysed as outlined in section 2.5.7. The data shown in Figure

4.1 is representative of 2 separate experiments.
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Figure 4.1: Affect of cholesterol and sphingomyelin on

fusion facilitated by syntaxin 4, SNAP23 and VAMP2

120

(A) Syntaxin 4 and SNAP23 purified as outlined in section 2.5.1 (P) were reconstituted 

into liposomes containing (1) 85 mol% POPC/15 mol% DOPS, (2) 33 mol% cholesterol/52 

mol% POPC/15 mol% DOPS (3) 33 mol% cholesterol/20 mol% sphingomyelin/ 32 mol% 

POPC/15 mol% DOPS as outlined in sections 2.5.3 and 2.5.4. Purified protein (2 pl) and 

liposomes (10 pl) were run on a 12 % SDS-PAGE gel as outlined in section 2.2.1 and 

stained with Coomassie blue as outlined in section 2.2.4. Positions of broad range 

molecular markers shown. (B) Reconstituted liposomes were used to perform a fusion 

assay as outlined in section 2.5.6. The data was converted to rounds of fusion as outlined 

in section 2.5.7. POPC/DOPS = liposomes of standard lipid compostition, 33% Chol = 

liposomes of 33 mol% cholesterol/52 mol% POPC/15 mol% DOPS, 33% Chol/20% Sping 

= liposomes of 33 mol% cholesterol/20 mol% sphingomyelin/32 mol% POPC/15 mol% 

DOPS. VAMP2 CD indicates that t-SNARE containing liposomes were first preincubated 
with the soluble domain of VAMP2.
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From Figure 4.1 A, it can be seen that the t-SNAREs syntaxin 4 and SNAP23 were 

reconstituted into the different liposome populations to approximately equal levels. The 

fusion assay, shown in Figure 4. IB, shows that the inclusion of either 33 mol% cholesterol 

or 33 mol% cholesterol and 20 mol% sphingomyelin appears to have no effect on the rate 

of fusion of these liposomes with liposomes containing VAMP2.

These data were unexpected due to the difference in lipid compositions of the liposomes 

involved. The calculation from raw data to rounds of fusion, as explained in Chapter 3, 

assumes that the two liposome populations which are fusing are of approximately equal 

size, it was therefore decided to investigate whether the inclusion of these lipids had any 

effect on the size of the t-SNARE liposomes produced.

4.3.2 Sizing of cholesterol and sphingomyelin containing 

liposomes

The size of the t-SNARE liposomes was analysed by Transmission Electron Microscopy as 

described in section 2.5.5. The results are presented in Figure 4.2.
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Figure 4.2: Sizes of reconstituted t~SNARE liposomes

t-SNARE liposomes were reconstituted containing 85 mol% POPC/15 mol% DOPS, 33 

mol% cholesterol/52 mol% POPC/15 mol% DOPS and 33 mol% cholesterol/20 mol% 

sphingomyelin/32 mol% POPC/15 mol% DOPS as outlined in sections 2.5.3 and 2.5.4. 

These were sized by TEM as outlined in section 2.5.5. (A) Representative EM images. (B) 

The sizes of the liposomes +/- standard deviation (n=310 for each liposome species, 

p<0.05)
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The inclusion of these lipid species obviously has a dramatic effect on the size of the 

liposomes produced. Since the inclusion of cholesterol and cholesterol/sphingomyelin 

significantly increased the size of the t-SNARE liposomes produced, the rounds of fusion 

calculated for these liposomes will be overestimated due to the much greater surface area 

produced and therefore much higher NBD fluorescence on fusion with one v-SNARE 

liposome. The inclusion of cholesterol and sphingomyelin into the t-SNARE liposomes 

therefore appears to be inliibitory to fusion however, in order to directly compare this data 

new calibration curves using the resulting ratios of lipids from one round of fusion etc, as 

outlined in section 3.2.5, would have to be generated. This was unfortunately out with the 

time constraints of this project.

4.3.3 Generation of recombinant baculovirus to express full- 

length syntaxin 4 and SNAP23 in Sf9 cells

Although it has been demonstrated, in vitro, that SNAP25 purified from E. coli is 

palmitoylated in the absence of an enzyme upon addition of [^H]pal-CoA and that this 

palmitoylation is increased on association of SNAP25 with syntaxin 1 A, the estimated 

levels of SNAP25 palmitoylated were less than 3 % (Veit, 2000). Recently it has been 

shown the majority of SNAP25 purified from insect cells infected with a baculovii*us 

expressing SNAP25 was palmitoylated on the central cysteine region (Rammer et al, 

2003). It was therefore decided to generate a recombinant baculovims to co-express full- 

length syntaxin 4 and SNAP23 in Sf9 cells. In order to generate this baculovirus the Bac- 

to-Bac system supplied by Invitrogen was used.

There are 3 main stages involved in creating a recombinant baculovirus, as outlined in 

Figure 4.3. These are:

4.3.3. A Cloning of gene of interest into pFastBac™ Dual

4.3.3.B Homologous recombination of pFastBac™ Dual and the baculovirus 

backbone vector in E. coli

4.3.3.C Production of baculovirus particles in Sf9 cells
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Figure 4.3: 

baculovirus

The steps foiiowed ta generate recombinant

(adapted from the Bac-to-Bac manual)

Step 1 : Cloning of gene of interest into pFastBac^^ Dual

Step 2: Homologous recombination of pFastBac™ Dual and the baculovirus 
backbone vector in E. coli

Step 3: Production of baculovirus particles in Sf9 cells

The methods used are described in sections 4.4.3.A, 4.4.3.B and 4.4.3.C.
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4.3.3.A Cloning of genes into pFastBac™ Dual

Baculoviral transfer vectors typically allow for the expression of single recombinant 

proteins in one insect cell. Multiprotein complexes have been produced by coinfection of 

insect cells with multiple baculovimses, but the reproducibility of this is difficult to 

achieve. The development of a transfer vector capable of supporting the expression of two 

proteins simultaneously has allowed the coexpression of the proteins within one insect cell. 

pFastBac™ Dual contains two multiple cloning sites, each under the control of two 

separate promoters: plO and PH. The left and right arms of Tn7, which enables 

recombination with the baculovirus shuttle vector, flank the expression cassette containing 

these two multiple cloning sites and promoters. The vector pFastBac™ dual is a non­

fusion vector, therefore when cloning the gene of interest into this vector a start AT G site 

and a stop codon for termination must be engineered into the insert.

GST-SNAP23

Since the vector pET41 a, which SNAP23 had previously been cloned into, had 

complementary restriction sites prior to the GST tag and after the teimination of the 

SNAP23 sequence GST-SNAP23 could be conveniently excised in whole and cloned 

directly into pFastBac™ Dual. GST-SNAP23 was ligated into the multiple cloning site 

under the control of the polyhedron promoter using the restriction sites Hind III miàXba I. 

GST-SNAP23 was first excised from pET41a by restriction digest with Hind III ^n&Xba I 

as outlined in section 2.3.5. The fi*agment was mn on an agarose gel as outlined in section

2.3.3, shown in Figure 4.4A, and gel purified as outlined in section 2.3.4. The purified 

fragment was subsequently ligated, as outlined in section 2.3.7, into the pFastBac™ Dual 

vector which had been cut with the appropriate restriction enzymes, as shown in Figure 

4.4A, and gel purified as outlined in section 2.3.4. Following ligation the DNA was 

transformed into DH5a cells, as outlined in section 2.3.9. Colonies were minipreped, as 

outlined in section 2.3.10, and screened for the presence of insert by restriction digest with 

Xba /  and Hind HI, as shown in Figure 4.4B.
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Figure 4.4: Cioning of GST-SNAP23 into pFastBac^'^ Duai

and digestion for subsequent cioning

(A) Restriction digest of pET41a-SNAP23 and pFastBac™ Dual with Hind III and Xba 1 

prior to ligation of pFastBac™ Dual and GST-SNAP23. The Band between the 3 kb and 

10 kb marker is cut pET41a, the band running at roughly 1.5 kb is GST-SNAP23. Cut 

pFastBac™ Dual gave a band of the expected size (B) Restriction of pFastBac™ Dual 

with Hind III and Xba I to identify presence of insert and digestion using Nhe I and Xho I 

for subsequent ligation with syntaxin 4. lane 1 -  uncut pFastBac™ Dual-S23, lane 2 - 

pFastBac™ Dual-S23 digested with Hind III and Xba I. The band running at roughly 1.5 

kb is GST-SNAP23, lane 3 -  uncut pFastBac™ Dual-S23, lane 4 - pFastBac™ Dual-S23 

digested Nhe I and Xho I.

UC indicates lanes containing uncut plasmid while C indicates lanes containing cut

plasmid. The positions o f  the Promega 1 kb DNA ladder are indicated.
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Full-length syntaxin 4

Full-length syntaxin 4 was amplified by PCR fiom pQE30 using the forward primer 

5’CTCGAGATGCGCGACAGGACCCACG 3’ and the reverse primer 

5’GCTAGCTTATCCAACGGTTATGGTG 3’ as outlined in section 2.3.1 (restriction 

sites Xho I and Nhe I were incorporated into the primers and are shown in bold 

respectively). Following PCR the fi'agment, which was of the appropriate size was excised 

from an agarose gel, gel purified and TA cloned into pCRII-TOPO as outlined in section 

2.3.6. Colonies were screened for the presence of insert by digestion with Nhe I and Xho I. 

Colonies which contained insert were sequenced to ensure eiTor fi ee sequence as outlined 

in section 2.3.12.

The restriction enzymes Nhe I and Xho I were used to digest the pFastBac™ Dual vector 

containing GST-SNAP23 (shown in lane 4 of Figure 4.4B) and pCRII-TOPO containing 

full-length syntaxin 4 (shown in Figure 4.5A) as outlined in section 2.3.5. Appropriate 

fragments were gel purified, ligated and transfoimed into DH5a as outlined in sections

2.3.4, 2.3.7 and 2.3.9. Colonies were minipreped as outlined in section 2.3.10 and screened 

for the insertion of DNA encoding full-length syntaxin 4 by restriction digest using the 

restriction enzymes Nhe I màXho  I as outlined in section 2.3.5, shown in Figure 4.5B.

1
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Figure 4.5A: Restriction of pCRii-TOPO iigated with syntaxin 4 to 

confirm presence of and isoiate insert for subsequent cioning 

into pFastBac^'^ Duai containing GST-SNAP23 (pFastBac^^ DuaF 

S23)

Restriction digest of pCRII-syntaxin 4 with Xho I and Nhe I prior to ligation. The Band 

running between the 3 and 4 kb marker is cut pCRII-TOPO while the band running just 

below the 1 kb marker is syntaxin 4.

Figure 4.5B: Restriction of pFastBac^'^ Duai~S23 /S4 with Xho i 

and Nhe i to confirm the presence of syntaxin 4

Colonies from the ligation of gel purified syntaxin 4 and pFastBac ™ Dual-S23 fragments 

were minipreped and screened for the presence of syntaxin 4 by restriction digest with Xho 

I and Nhe I. The bands running just below the 1 kb marker are syntaxin 4.

UC indicates lanes containing uncut plasmid while C indicates lanes containing cut

plasmid. The positions o f  the Promega 1 kb DNA ladder are indicated.
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4.3.3.B Homologous recombination of pFastBac™ Dual and 

the baculovirus backbone vector in E. coli

Homologous recombination

The homologous recombination between pFastBac™ Dual-S23 /S4 and the baculoviral 

bacmid was achieved using the E. coli strain DHIO Bac™. This E. coli strain contains the 

baculovirus shuttle vector tenned the bacmid, which contains a mini-attTn? target site for 

recombination with pFastBac™ Dual, and a helper plasmid, which provides transposition 

proteins to facilitate the recombination. During recombination a new plasmid is produced 

with the expression cassette from pFastBac™ Dual inserted into the baculovirus genome. 

As a positive control for subsequent transfection into Sf9 cells a recombination reaction 

was also set up with the +ve control pFastBac™ Dual-GUS/CAT plasmid supplied by 

Invitrogen. Homologous recombination was perfoimed as outlined in section 2.7.1.

Purification of recombinant DNA

In order to screen the recombinants to verify successful recombination the bacmid from 

each colony selected had to be purified. Since the bacmid alone is 136 kb it was necessary 

to use precipitation to isolate the DNA, this is outlined in section 2.7.2.

Screening of recombinants

Since the recombinant DNA is so large it was advised to screen for positive recombinants 

using PCR with primers that flank the Tn7R points of recombination between the bacmid 

and the expression cassette. If no recombination has taken place a product of roughly 300 

bp should be amplified. If recombination has occurred between the bacmid and 

pFastBac™ Dual alone a product of 2560 bp (the size of the expression cassette) will be 

amplified. Upon recombination with pFastBac^^ Dual containing other gene inserts the 

product will be 2560 bp plus the size of the relevant genes. Bacmid recombined with 

pFastBac™ Dual-Gus/CAT should give an amplification product of roughly 5340 bp.

The Protocol used for the PCR screen of recombinants was adapted from the Bac-to-Bac 

manual. Since the expected PCR product was above 4 kb the use of platinum Taq 

polymerise was advised. The PCR screen was initially carried using the conditions as 

directed by the manual with the Ml 3 forward (-40) and M l3 reverse primers. However,
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this was unsuccessful and, different primers and, conditions were subsequently advised by 

Invitrogen technical services. The primers advised were

5’CCCAGTCACGACGTTGTAAAACG3’ and 5’AGCGGATAACAATTTCACACAGG 

3’.

10 pi of each PCR reaction was analysed on a 1% agarose gel, shown in Figure 4.6, as 

outlined in section 2.3.3.
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Figure 4.6: Screening of recombinants for insert using PCR

PCRs were set up as outlined above to screen for the recombination of pFastBac™ Dual- 

S23/S4 and pFastBac Dual™-GUS/CAT with the baculoviral genome. An aliquot of the 

PCR, 10 pi, was run on a 1 % agarose gel as outlined in section 2.3.3 for analysis. Lane 1 

= -ve control (no template), lanes 2 - 8 = colonies from recombination of pFastBac™ 

Dual-S23/S4 with bacmid, lanes 9 -15 = colonies from recombination of pFastBac™ Dual- 

Gus/CAT with bacmid. The positions of the Promega 1 kb DNA ladder are shown.
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As can be seen in Figure 4.6 the recombination of pFastBac™ Dual S4/S23 with the s

baculoviral genome in E. coli cells was successful for all colonies screened. The 

recombination of pFastBac™ Dual-GUS/CAT with the baculoviral genome in E. coli was 

successful for 6 out of the 7 colonies selected (clone 11 was bacmid with no 

recombination).Since the recombination had been successful the next step was to transfect 

these recombined plasmids into Sf9 cells in order to produce baculoviral particles for 

subsequent infections for expression of the proteins of interest.

4.3.3. C Production of bacuiovirus particles in Sf9 cells

Transfections of the recombinant bacmid into Sf9 cells were set up as outlined in the Bac- 

to-Bac manual, outlined in section 2.7.3, in order to produce the PI vims. Initially one 

positive recombinant for pFastBac™ Dual-S23/S4 was chosen for transfection into Sf9 

cells in order to produce a low titre PI stock. Following initial failure to detect 

recombinant protein production through western blotting of the transfected cell population 

it was decided to transfect all positive recombinants into Sf9 cells and screen more of the 

positive recombinants for protein production.

4.3.4 Screening of recombinants for protein production

The pFastBac Dual-Gus/Cat bacmid was used as a positive control in the transfection and 

expression experiments. This expresses a gene encoding p-glucoronasidase which can be 

assayed for. Briefly 5 pi of 20 mg/ml X-glucoronide solution in DMSO was mixed with 

50 pi of supernatant from the well transfected with this bacmid and assessed for the 

development of blue colour over two hours. Blue colour was established within half an 

hour indicating that the gene for p-glucoronasidase was being expressed and that 

transfection and vims production had been successful.

Following the collection of the PI stock from each well the cells from the transfection 

were washed twice using PBS and subsequently lysed directly in 1.5 ml of IX SDS-PAGE 

sample buffer. The lysed cells were then boiled for five minutes and 2 pi of each sample 

was mn on a 12 % SDS-PAGE gel as outlined in section 2.2.1. The gel was then 

transferred and blotted against using antibodies directed against syntaxin 4 and SNAP23 as 

outlined in sections 2.2.2 and 2.2.3.



Fiona M. Brandie, 2006 Chapter4, 137

-ve 2 7 +ve

62

47.5

32.5 

25

16.5 

62

47.5

32.5

25

16.5

a-SNAP23

a-Syntaxin 4

Figure 4.7: Screening of pFastBac™ Duai -S23/S4

recombinants for protein production in Sf9 ceils

Recombinants were transfected into Sf9 cells using cellfectin. The cells were then 

incubated at 27 °C for 72 hours after which the supernatant was removed. Cells were 

washed two times in PBS and then lysed directly into IX SDS-PAGE buffer. Lysed cells 

were boiled for 5 minutes and the lysates then run on a 12 % SDS-PAGE gel as outlined in 

section 2.2.1. The gel was transferred and probed for SNAP23 and syntaxin 4 as outlined 

in sections 2.2.2 and 2.2.3. Lane 1 : -ve control (no plasmid added to transfection mixture), 

Lane 2-7: Recombinants from PCR screen, Lane 8: +ve control (lysate from 3T3-L1 

adipocytes). The positions of the broad range markers are indicated.
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The negative control indicates that neither antibody cross reacts with endogenous Sf9 

protein. Cells transfected with recombinants 2-4 gave good expression of both GST- 

SNAP23 and syntaxin 4, which ran at the expected sizes, in Sf9 cells. Cells transfected 

with recombinant 5 gave good expression of syntaxin 4 but poor expression of GST- 

SNAP23. Cells transfected with recombinants 6 and 7 appear to have no expression of 

either GST-SNAP23 or syntaxin 4.

On the basis of this screen for protein expression it was chosen to amplify the supernatant 

from Sf9 cells transfected with recombinant 4 for subsequent expression experiments.

Prior to amplification and optimisation of expression the palmitoylation status of SNAP23 

expressed by the recombinant baculovirus was studied.

4.3.5 Palmitoylation of recombinant SNAP23

As previously mentioned E, coli, as prokaryotic cells, are incapable of carrying out post- 

translational modifications that would normally occur in mammalian cells including 

palmitoylation. Insect cells are eukaryotic cells and have been shown to be capable of 

modifying recombinant proteins post-translationally including the addition of palmitate 

groups.

Palmitoylated SNAP23 should be less mobile on SDS-PAGE than its unpalmitoylated 

counterpart (Voldez-Taubes and Pelham, 2005), due to the increase in molecular weight 

from the covalently attached palmitate group(s). In order to see if there was any 

difference in mobility between GST-SNAP23 expressed in E. coli and that expressed in 

insect cells a fraction of lysate from both cells was boiled in 2X SDS-PAGE buffer 

containing 10 mM DTT and run on a 8 % SDS-PAGE gel as outlined in section 2.2.1, 

transferred onto nitrocellulose as outlined in section 2.2.2 and blotted against SNAP23 as 

outlined in section 2.2.3. Data from this experiment is shown in Figure 4.8.
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Mobiiity of GST-SNAP23 produced in E. coli and

Cells from E. coli transfonned with pET41a SNAP23 (shown in Lane E) or SIP cells 

infected with baculovirus expressing GST-SNAP23 (shown in Lane SfP) were lysed in 2X 

SDS-PAGE sample buffer containing 10 mM DTT, boiled for 5 minutes and run on an 8 % 

SDS-PAGE gel as outlined in section 2.2.1. The gel was then transferred as outlined in 

section 2.2.2 and probed for SNAP23 with an anti-SNAP23 antibody as outlined in section

2.2.4. Positions of broad range molecular markers are shown.
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As can be seen in Figure 4.8 GST-SNAP23 expressed in Sf9 cells has reduced mobility 

compared to that expressed in E. coli. This reduced mobility is most likely due to a post- 

translational modification that occurs only in the Sf9 cells, since the sequence encoding the 

fusion protein under the control of the promoter is exactly the same in each cell type. In 

order to establish whether this reduced mobility is due to the addition of palmitate groups 

to SNAP23 in SIP cells two techniques were employed.

Initially cell lysate fiom SfP cells, infected with the baculovirus for 72 hours at 27 °C, 

expressing GST-SNAP23, was treated overnight at room temperature with either with 1 M 

Tris pH 7.4, as a control, or IM Hydroxylamaine pH 7.4, which is laiown to cleave the 

thioester bond which covalently attaches palmitate groups to proteins (Pepperberg et al, 

1995). The following morning these lysates were boiled for 5 minutes in 2X SDS-PAGE 

buffer and run on an 8 % SDS-PAGE gel as outlined in section 2.2.1. The gel was then 

transferred as outlined in section 2.2.2, and probed for SNAP23 with an anti-SNAP23 

antibody as outlined in section 2.2.3. As shown in Figure 4.9A, GST-SNAP23 in the 

lysate treated with hydroxylamine does have increased mobility on the SDS-PAGE gel 

compared to that treated with Tris as a control, suggesting the difference in mobility is due 

to the addition of palmitate groups in SfP cells. The smearing in the Tris control lane may 

be due to degradation of the protein due to the overnight incubation at room temperature.

A second technique was used to study the palmitoylation state of GST-SNAP23 expressed 

in Sf9 cells. This technique was developed by Drisdel and Green (Drisdel and Green, 

2004) and has been used to study the palmitoylation of yeast SNARE proteins (Valdez- 

Taubas and Pelham, 2005). The protocol followed was adapted from a recent publication 

by Valdez-Taubes and Pelham (Valdez-Taubas and Pelham, 2005). Unpalmitoylated 

cysteine gi*oups are first blocked by the addition of N-ethylmaleimide (NEM) which 

hydroxylamine caimot cleave. Hydroxylamine is then used to cleave the thioester bond 

between any palmitate groups and protein. Free sulfhydryl groups of previously 

palmitoylated cysteines revealed by hydroxylamine cleavage can then be labelled using 

sulfliydryl -biotin-conjugated -specific reagent which can be pulled down using 

streptavidin (which binds to biotin) linlced to beads. To control for non-specific binding 

between the protein of interest and the streptavidin beads, a pull down is run concurrently 

with lysate treated with NEM then Tris instead of hydroxylamine, which should not lead to 

any fr ee cysteines. Pull downs were carried out as outlined in section 2.8.
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Figure 4.9: Paimitoyiation of SNAP23 expressed in Sf9 ceils

(A) HA treatment of Sf9 lysate. Sf9 cells were infected with recombinant baculovirus for 

72 hours. Lysate was prepared in A200 with the addition of 1 % OG, 2 mM PMSF and 

complete protease inhibitors. Cells were broken by ten passes tlirough a 10 gauge needle. 

Equal volumes of lysate were incubated with an equal volume of 1 M Tris pH7.4 (Lane 1, 

as a control) or 1 M hydroxylamine pH7.4 (Lane 2) overnight. The lysate was then mn on 

a 8 % SDS-PAGE gel and blotted for SNAP23 as outlined in sections 2.2.1, 2.2.2 and 2.2.3

(B) Streptavidin-agarose pull down from Sf9 lysate, incubated with 25 mM NEM, treated 

with either IM Tris pH7.4 (Lane 1) or 1 M hydroxylamine pH7.4 (Lane 2) and 300 pM 

biotin-BMCC. The positions of the broad range markers are indicated.
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As can be seen in Figure 4.9B GST-SNAP23 is only pulled down by streptavidin-agarose 

from lysate treated with hydroxylamine confirming that GST-SNAP23 expressed in Sf9 

cells infected with recombinant baculovirus is palmitoylated.

As it had been established that SNAP23 expressed by the baculovims in Sf9 cells was 

palmitoylated, the baculovims was amplified and used for expression and purification 

studies.

4.3.6 Amplification of initial low titre stock

Since the initial PI stock is of very low titre, it is necessary to amplify the virus for large 

scale protein expression. To amplify this initial PI stock, the amplification protocol 

supplied on the website for the institute of cancer research stmctural biology was followed. 

Briefly, Sf9 cells were seeded in Sf-90011 at a density of 2x 10  ̂cells/ml in 15 ml per 150 

cm  ̂flask. Each flask was inoculated with 300 pi of PI stock and cultured at 27 for 72 

hours. At the end of this incubation the supernatant was removed and spun at 500 xg to 

clear any cell debris. The baculovims P2 stock was stored at 4 °C.

4.3.7 Optimisation of expression of SNAREs using the 

recombinant bacuiovirus

In order to optimise the expression of the two target proteins before progressing to large- 

scale protein expression, two factors, dose response and time course were considered.

Cells were seeded into a 24 well plate at a density of 6 x 10̂  cells per well and allowed to 

attach for 1 hour. The media was removed and the cells were washed once with Sf~900II 

medium. After washing, 300 pi of Sf-900 II medium was placed into each well. The 

baculovims P2 stock was assumed to have a titre of 1 X 10̂  pfu/ml as multiple attempts to 

quantify the titre using plaque assay were unsuccessful. The baculovirus stock was then 

added to each well at the desired dose (M.O.I. was calculated as set out in the Bac-to-Bac 

manual). The cells were incubated at 27 °C for the appropriate amount of time after which 

cells were washed twice with 300 pi PBS and lysed directly into 400 pi of 1 x SDS-PAGE 

sample buffer. The samples were frozen at -20 °C until all samples could be boiled for 3 

minutes, i*un on a 12 % SDS-PAGE gel and transferred in order to blot for the relevant 

proteins as outlined in section 2.2.1, 2.2.2 and 2.2.3. Data is shown in Figure 4.10.
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Figure 4.10: Optimisation of expression of syntaxin 4 and

SNAP23 using recombinant bacuiovirus

Cells seeded at a density of 6 x 10̂  cells per well in a 24 well plate in 300 pi of Sf-900 II 

were infected with a set M.O.I. of baculovirus and cultured for the indicated period of time 

at 27 °C. After the indicated time cells were washed twice with 300 pi PBS and lysed 

directly into 400 pi of 1 x SDS-PAGE sample buffer. The samples were frozen at -20 °C 

until all samples could be boiled for 3 minutes. Samples were run on a 12 % SDS-PAGE 

gel as outlined in section 2.2.1, transferred onto nitrocellulose as indicated in section 2.2.2 

and probed for SNAP23 and syntaxin 4 as outlined in section 2.2.3.
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Expression of proteins under the control of very late promoters normally peaks around 48- 

72 hours post-infection. From Figure 4.10 it was decided to infect the Sf9 cells at an 

M.O.I. of 5 and culture them for 72 hours, as this gave a good expression of both of the 

proteins, prior to collecting the cells for subsequent protein purification.

4.3.8 Purification of recombinant protein from Sf9 cells

Following the optimisation of protein expression large-scale protein expression was 

attempted. SI9 cells were grown to a density of 6 x 10̂  cells/ml in a total of 48 150 cm  ̂

each containing 30ml. The cells were inoculated with the appropriate amount of vims and 

allowed to grow for 72 hours at 27 The media was removed from the flasks and the 

cells were gently washed twice with PBS, The cells were then dislodged in 50 ml of lysis 

buffer (A200 containing 4 % OG, 2 mM PMSF and complete protease inliibitors) by 

rapping the flasks, and resuspended cells were frozen at -80 °C. The resuspended cells 

were thawed on ice, and broken by 2 passes thi'ough the French press at 950 psi. Insoluble 

material was pelleted by centrifugation at 30,000 xg in a JA20 rotor for 60 minutes, and the 

GST-tagged protein in the supernatant was bound to 2.5 ml of glutathione sepharose pre­

equilibrated with lysis buffer overnight on a rotator in the cold room. The following day 

the beads were washed in 7 times with 20 ml of A200 containing 1 % OG, and 

resuspended in 1 ml of the same buffer to which 100 units of thi'ombin had been added. 

Tlrrombin cleavage, was carried out at room temperature for 4 hours on a rotator.

Following thrombin cleavage the supernatant containing the cleaved protein was collected 

from beads that had been centrifuged for 5 minutes at 500 xg. Aliquots of washes, beads, 

cleaved products and supernatant (15 pi) were boiled in 2X SDS-PAGE sample buffer for 

5 minutes and analysed for protein content by running on an 12 % SDS-PAGE gel as 

outlined in section 2.2.1 which was stained using Coomassie blue as outlined in section

2.2.4. The data are shown in Figure 4.11
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Sf9 ceiis

Purification of syntaxin 4/SNAP23 complex from

s 19 cells were infected with recombinant baculovirus, and syntaxin 4/SNAP23 was 

purified by virtue of the GST tag on SNAP23. The cells were washed once with PBS and 

resuspended in A200, with the addition of 4 % OG, 2 mM PMSF and complete protease 

inhibitors. Cells were lysed by two passes through a French press at 950 psi and insoluble 

matter pelleted by spinning at 30,000 xg in a JA20. Lane 1 shows the cell lysate pre-spin 

and lane 2 shows the lysate post-spin. The lysate was then bound overnight to glutathione 

sepharose. The beads were washed 7 times with 20 ml of A200 containing 2 mM DTT and 

1% OG, an aliquot (15 pi) of each wash is shown in lanes 3-10. The protein bound to 

beads, shown in lane A (15 pi), was then liberated from the beads by incubation with 

thrombin for 4 hours at room temperature. Lane B (15 pi) contains the cleaved products 

and lane C (15 pi) contains the soluble supernatant collected from the beads. Samples were 

boiled for 5 minutes in 2X SDS-PAGE buffer and run on a 12 % SDS-PAGE gel as 

outlined in 2.2.1 and stained with Coomassie blue as outlined in section 2.2.4. The 

positions of the broad range markers are indicated.
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Figure 4.11 shows the purification of syntaxin 4/SNAP23 complex from Sf9 cells infected 

with recombinant baculovirus. The pre and post spin lanes show very similar levels of 

total protein indicating that the majority of protein expressed in Sf9 cells was soluble in the 

lysis buffer. In the lane containing the supernatant cleaved from the beads two bands of the 

expected size for the products of syntaxin 4 and SNAP23 can clearly be seen. The t- 

SNARE complex of syntaxin 4/SNAP23 can therefore be successfully purified from Sf9 

cells infected with recombinant baculovims.
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4.4 Discussion

In this chapter I have investigated the influence of sphingomyelin and cholesterol on fusion 

facilitated by the SNARE proteins known to be involved in Glut4 vesicle exocytosis by 

incorporating these lipids into t-SNARE liposomes used for the in vitro fusion assay set up 

in Chapter 3. I have also successfully engineered a baculovirus to express the t-SNARE 

complex of syntaxin 4 and SNAP23 in order to purify this complex from a eukaryotic host 

in which SNAP23 should hopefully be palmitoylated.

SNAREs have been localised to lipid rafts, isolated as DRMs, in many cell types. The 

function of these domains in the regulation of SNARE mediated fusion is yet to be 

established. According to the zipper model of SNARE mediated fusion, the SNARE 

complex zippers together from the N to the C terminus bringing the membranes into close 

apposition and facilitating fusion. Studies in yeast and in vitro fusion data have both 

emphasised the importance of the transmembrane domain of SNAREs in fusion (Grote et 

al., 2000;McNew et al., 2000b). The replacement of the transmembrane domain of 

synaptic SNAREs with lipid anchors that did not span the lipid bilayer allowed foimation 

of the core complex, in vitro, but prevented fusion of the membranes (McNew et al.

2000b). When these lipid anchors were replaced with longer lipids which could span the 

bilayer in vitro fusion was facilitated (McNew et al, 2000b). This suggests that force must 

be transduced through the membrane to facilitate fusion and, merely bringing the 

membranes into close apposition is not sufficient. Within the cell the same principle 

appears to be true as replacing the transmembrane domains of yeast exocytic SNAREs 

with geranyl-geranyl moieties (C l6) leads to a block in fusion (Grote et al, 2000). The 

study of fusion between large unilammelar vesicles with varying lipid compositions in 

vitro has also supported a role for lipid composition in the regulation of fusion (Brock et 

al, 1994). The in vitro fusion of liposomes to an intact secretory granular fi*action from rat 

parotid glands has also been shown to be dependant on the lipid composition of the 

liposomes (Mizuno-kamiya et al, 1995). In S. cerevisiae membrane composition has 

been shown to influence the ability of SNAREs to facilitate membrane fusion (Colucciois 

et al, 2004). Recently it has shown that the acyl-CoA family of lipids, which have an 

inverted cone shape, inhibit fusion in the in vitro fusion facilitated by SNAREs (Melia et 

al, 2006). It is therefore possible that the lipid composition surrounding the 

transmembrane domains of the SNARE proteins influences fusion. Recruitment of
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SNAREs into lipid raft domains may have a direct influence on fusion facilitated by 

SNARE proteins due to the different geometries of the resident lipids.

Although the fusion assay showed that there was little difference in the rounds of fusion 

supported by vesicles with either the standard lipid composition, the addition of 33 mol% 

cholesterol or 20 mol% sphingomyelin/33 mol% cholesterol this data can unfortunately not 

be fully interpreted due to a substantial difference in liposome diameter on incorporation of 

these lipids. The calculation to determine rounds of fusion assmnes the two fusing 

populations of liposomes are of approximately equal size. The difference in the diameter 

of the t-SNARE liposomes means that the data from the 3 different liposome populations 

cannot be directly compared. In order to directly compare this fusion data new calibration 

cuiwes would have to be produced using the different proportions of lipids that each round 

of fusion would incur for each of the different liposome population, this was unfortunately 

out with the time constraints of this project.

The majority of in vitro studies on SNARE proteins have been earned out using SNAREs 

expressed and purified from E. coli. Although these SNAREs support fusion in vitro, the 

rate of fusion is much lower than that obseiwed in vivo. This is possibly due to the lack of 

additional co-factors. This could also possibly be due to the absence of palmitate gi'oups 

attached to SNAP25 and SNAP23 purified fi-om this prokaryotic host. Recently it has been 

shown that SNAP25 expressed by baculovims in insect cells is palmitoylated (Rammer et 

al, 2003). In order to express and purify the t-SNARE complex, syntaxin 4 and SNAP23, 

from insect cells a baculovims expressing both of these genes was engineered. This was 

successfully constmcted to express both full-length syntaxin 4 and SNAP23 

simultaneously. Analysis of SNAP23 revealed that like SNAP25, this protein is also 

palmitoylated within insect cells. Although these data showed that SNAP23 expressed in 

Sf9 cells is palmitoylated, it cannot be established from these teclmiques alone how many 

palmitate groups have been added to the protein, or the location of the cysteine residues 

that are modified by palmitate. In order to establish this, mutational analysis of the 

cysteine residues in the linker domain of SNAP23, and quantification of either 

streptavidin-pull downs or palmitate labelling would have to be earned out. It is 

possible that the acylation of SNAP23 on the central cysteine region has a direct affect on 

fusion, independent of its influence on targeting this protein to raft domains. In order to 

compare the ability of palmitoylated SNAP23 and unpalmitoylated SNAP23 to facilitate 

fusion, in vitro fusion assays using liposomes reconstituted with t-SNARE complex
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purified from E, coli and Sf9 cells could be carried out. Unfortunately this was out with 

the time constraints of this study.
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Conformation of syntax!n 4 and Interaction with
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5.1 Introduction

A family of proteins called SNAREs mediates the fusion of intracellular membranes. 

Although it has been demonstrated that SNAREs are necessary and sufficient to facilitate 

this fusion in vitro, it is clear that this event is regulated by other proteins in vivo. One 

family of proteins known to be particularly important in this regulation is the Secl/Munc 

18 (SM) family of proteins. Although, like SNAREs, the SM family of proteins are highly 

conserved and are known to play a critical role in membrane traffic, their precise role is yet 

to be established. Investigation into the conformation of syntaxins and their interaction 

with SM proteins has revealed two main modes of binding between these families of 

proteins.

5.1.1 Structural studies of SNARE complexes

The biophysical characterisation of bacterially produced SNARE proteins in monomeric 

and complexed forms has yielded important information about their conforaiations.

The first syntaxin to be identified, and by far the most thoroughly characterised, is the 

neuronal plasma membrane syntaxin 1 a. In addition to the SNARE domain, this syntaxin 

has a large N-terminal domain that comprises roughly two thirds of the full-length protein 

sequence (Fernandez et al, 1998). The general structure of the N-terminal domain of 

syntaxin family members consists of a short N-teiminal peptide followed by 3 helices 

temied Ha, Hb and He (Fernandez et a l, 1998), as shown in Figure 5.1 A. Analysis of the 

N-terminal domain of syntaxin la  by NMR and circular dichioism (CD) has shown that 

these tliree helices interact, and are found folded into a thi'ee helical bundle temied the 

Habc domain as shown in Figure 5.IB (Fernandez et al, 1998). In syntaxin la the Habc 

domain encompasses residues 28-144 (Fernandez et al, 1998). Residues 1-27, the N- 

teiminal peptide, and 145-180, fi om the end of the He helix to the SNARE domain 

comprising the linlcer region were found to be unfolded (Fernandez et a l, 1998). The use 

of electi on paramagnetic resonance spectroscopy has predicted this linlcer region to be 

highly flexible and capable of undergoing conformational change (Margittai et al, 2003).

NMR data also highlighted the existence of a groove between the interface of helix b and c 

that is postulated to be important in binding to effector molecules or the SNARE domain 

(Fernandez et al, 1998). A subsequent study using X-ray crystallography of the Habc
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domain showed that this groove contains a high proportion of hydrophilic residues 

strengthening the probability that this domain folds back on the SNARE domain (Lerman 

et al., 2000).

The overall domain structure of syntaxin la, as depicted in Figure 5.1 A, is conserved 

through all syntaxins characterised so far although the exact length of the N-terminal 

domain does show some variation. The sequence of the N-terminal domain of plasma 

membrane syntaxins (syntaxin 1,2, 3, 4 and yeast isoforms Ssolp and Sso2p) involved in 

exocytosis show a high degree of conservation that is not observed in other syntaxins 

(Fernandez et al, 1998). Thus it is possible that the N terminus of plasma membrane 

syntaxins may play a specific role in regulating the specialised form of fusion exocytosis.
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Figure 5.1: General structure of the syntaxin family

(A) Plasma membrane syntaxins contain a C-terminal transmembrane région, a C-terminal 

conserved core complex region (the SNARE domain which is involved in forming the core 

complex) joined through a flexible linker domain to the N-terminal domain composed of 

three helices termed Ha, Hb and He, collectively known as the Habc domain. This N- 

terminal domain is preceded by a short N-terminal unstructured peptide. (B) The Habc 

domain viewed in 2 different orientations. The Ha, b, c helices form a 3 helical bundle. 

Residues annotated are representative of syntaxin lA (Fernandez et al., 1998)
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5.1.2 Conformation of syntaxins

Members of the syntaxin family have been shown to exist in two distinct conformations 

(Hanson et ai, 2000). In the so-called “open” conformation the Habc domain is spatially 

separated from the SNARE motif, which is therefore available to participate in SNARE 

complexes (Toonen and Verhage, 2003). In the “closed” conformation, the Habc domain 

folds down and shields the SNARE motif rendering it inaccessible for entry into SNARE 

complexes (Toonen and Verhage, 2003).

Different syntaxins seem to adopt either a “closed” or “open” conformation in solution, 

and the conformation they adopt appears to influence the mode through which SM proteins 

can interact with them.

5.1.2.1 dosed syntaxins and binding of SM proteins

In syntaxin la  and its yeast homologue Ssolp, the N temiinus has been shown to fold back 

on the SNARE domain holding these proteins in a so-called closed confomiation.

Munc 18A/syntaxin la

Surface plasmon resonance studies of syntaxin la  have shown that the Habc domain binds 

weakly to the SNARE domain (Calakos et al, 1994). This binding of the Habc domain to 

the SNARE domain inhibits the binding of both synaptobrevin (Calakos et al, 

1994;Pevsner et al, 1994a) and SNAP25 (Pevsner et al, 1994a). In the SNARE complex 

the N-terminal domain can be seen flexibly linked to the core complex by EM (Hanson et 

al, 1997). Thus it appears that syntaxin la  can exist in two conformations, referred to as 

“open” when in complex with other SNAREs and “closed” in isolation where the N- 

teiininal domain folds back onto the SNARE motif. This closed conformation was also 

observed using NMR of monomeric recombinant syntaxin la (Dulubova et al, 1999). 

Mutations engineered into syntaxin 1 A, LI65A and E l66A, were found to prevent the 

formation of the closed conformation and hold the molecule in a constitutively open form 

in isolation (Dulubova et a l, 1999). These mutations are within a postulated helix in the 

linker region (Dulubova et a l, 1999), which is thought to contact both the SNARE domain 

and the He helix (Margittai et a l, 2003). While the SM protein Munc 18a was found to
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bind with high affinity to wild type syntaxin la  the open form was found to be incapable of 

binding to Munc 18a (Dulubova et al., 1999).

Crystallographic studies have revealed that Munc 18a is an arched shaped molecule with a 

central cavity that cradles monomeric syntaxin la in its closed conformation making 

contact with syntaxin la  tlirough domains 1 and 3, as shown in Figure 5.2 (Misura et al, 

2000b). hiterestingly the structure adopted by syntaxin la in this complex is similar to the 

structure of monomeric syntaxin la (Dulubova et al, 1999). This suggests that Munc 18a 

acts to hold syntaxin la in a closed confonnation. Consistent with this obseiwation it has 

been reported that Munc 18a does not bind to the binary complex of syntaxin la/SNAP25 

or the ternary complex of syntaxin la/SNAP25/VAMP in vitro (Yang et al, 2000). This 

highlights the possibility of an inhibitory influence of this interaction.
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Figure 5.2: 

syntaxin 1a

Crystai structure of Munc 18a interaction with

Two different views of the crystal structure of Munc 18a in complex with syntaxin la. 

Domain 1 of Munc 18a is shown in blue, domain 2 in green and domain 3 in yellow. The 

H3 domain of syntaxin 1 a is depicted in purple, the Habc/H3 linker in orange and the Habc 

domain in red. Munc 18a forms an arched shape structure which cradles syntaxin 1 a in its 

closed conformation (taken from Misura et a l, 2000b).
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Ssol/Seclp

Like syntaxin la, the N-terminal domain of Ssolp inhibits the binding of the SNAP25 

homologous region of Sec9p to the SNARE domain (Nicholson et a l, 1998). In support of 

Ssolp adopting a default closed confonnation, gel filtration assays and CD measurements 

demonstrated that removal of the N-terminal domain of Ssolp led to greater than 2000-fold 

increase in the rate of binary complex formation with the SNAP25 homologous portion of 

Sec9p (Nicholson et a l, 1998). Isolated C and N-terminal domains were also 

demonstrated to interact directly using a gel filtration assay, supporting the adoption of a 

closed conformation (Nicholson et al, 1998). A subsequent study performed by Fiebig et 

al, using NMR of the cytosolic portion of Ssolp, along with CD and size exclusion 

cliromatography of a mixture of the Habc domain, and the Hcore domain gave 

complimentary data to the previous study (Fiebig et al, 1999). Ssolp has since been 

confirmed to adopt a closed conformation using X-ray crystallography (Munson et al, 

2000).

However, imlike the binding of Munc 18a to syntaxin la it was initially shown that 

monomeric Ssolp, proposed to be in the closed conformation, did not bind to its cognate 

SM protein Seclp and that Seclp only bound to the assembled yeast exocytic complex 

(Carr et al, 1999). This data has recently been called into question by a subsequent study 

which showed that Seclp could bind monomeric Ssolp but with a lower affinity than the 

binding to the exocytic binary or ternary complex (Scott et a l, 2004).

These studies support a model in which SM proteins hold their cognate syntaxins in a 

closed conformation and thus regulate SNARE complex assembly, perhaps by facilitating 

the switch of syntaxins from a closed to an open form. This model however, has recently 

been called into question with the discovery that some syntaxins use an alternative mode of 

binding to their SM proteins.

5.1.2.2 Open syntaxins and binding of SM proteins

In other members of the syntaxin family, Vam3p, Sed5p, Tlg2p and Pepl2p (Dulubova et 

al, 2001;Dulubova et al, 2002), the Habc domain does not appear to fold back upon the 

SNARE domain, and these SNAREs are thought to exist in a constitutively open foim. 

Some of these SNAREs have a 30 amino acid peptide sequence prior to the Habc domain, 

which is thought to be important in the binding of their cognate SM protein.
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Vam3p is a yeast syntaxin involved in vacuolar fusion. NMR studies of this syntaxin 

revealed that, despite no sequence homology with the N terminus of plasma membrane 

syntaxins, the N terminus of Vam3p folds into a three helical bundle very similar to that 

observed for syntaxin la and Ssolp (Dulubova et al, 2001). However, unlike these 

plasma membrane syntaxins, the Habc domain of Vam3p contains no groove and was not 

found to fold back on the SNARE domain holding the protein in a closed conformation 

(Dulubova et al, 2001). In addition, it was found that only the SNARE domain was 

necessary to facilitate binding of the appropriate SM protein Vps33p to Vam3p from yeast 

lysates (Dulubova et al, 2001) suggesting a completely novel mode of binding obseiwed 

for a SM protein to its cognate syntaxin. A direct interaction between Vps33p and Vam3p 

is yet to be shown.

Through a yeast two-hybrid screen and GST pull downs, the yeast SM protein Slyl was 

found to bind to Sed5p (which localises to the Golgi) and Ufelp (which localises to the 

ER) through a short 20 amino acid peptide present at the N teiminus of these syntaxins 

(Yamaguchi et a l, 2002). NMR analysis showed that Sed5p also has a three helical folded 

Habc domain (Yamaguchi et al, 2002). The crystal structure of the complex of SedSp and 

Slylp was solved, and revealed a 45 amino acid N-terminal peptide of Sed5p interacted 

with domain I of the SM protein Slylp, a completely different mode of binding from that 

obseived for Munc 18a and syntaxin la (Bracher and Weissenhom, 2002). This result was 

highly unexpected since the two SM proteins have a highly similar arch shaped stmcture 

(Misura et a l, 2000b;Bracher and Weissenhom, 2002). In addition to binding to 

monomeric Sed5p tlirough this N-terminal interaction, Slyl was also found to bind to the 

assembled SNARE complex of Sed5p/Betlp/Boslp/Sec22p and to regulate the specificity 

of which SNARE complexes Sed5p can enter into (Peng and Gallwitz, 2002). Slylp has 

also been shown to bind to non-syntaxin SNAREs Betlp, Boslp, Sftlp and Goslp through 

interactions with their SNARE motifs (Peng and Gallwitz, 2004). This discovery led to the 

suggestion that the SM protein serves to bridge the v- (Betlp or Sftlp) and t-SNAREs 

(Boslp or Goslp) from separate membranes, possibly ensuring the specificity of SNARE 

complex assembly, or catalysing the assembly into a four helical bundle, and hence 

membrane fusion.

Similar to that of Sed5p, the N terminus of Tlg2p (a syntaxin involved in traffic in the 

TGN and early endosome) has been shown by NMR to have a stmctured Habc domain. 

However, this syntaxin does not display a closed confonnation in vitro (Dulubova et al,
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2002). Like the binding of Sed5p to Slylp, the binding of Tlg2p to Vps45p occurs through 

a 33 amino acid N-terminal peptide motif (Dulubova et a l , 2002). It has recently been 

suggested that Tlg2p may be capable of adopting a closed conformation in vivo. A  

chaperone role for Vps45p has been suggested since it prevents the proteosomal 

degradation of Tlg2p (Bryant and James, 2001). In proteosome-deficient cells Vps45p was 

required for assembly of the SNARE complex containing Tlg2p, Tlglp and Vtilp, 

suggesting it positively influences the formation of this complex (Bryant and James, 2001). 

In the absence of both Vps45p and the proteasome, an N-terminal truncated version of 

Tlg2p, suggested by the authors to be equivalent to open, is capable of foiming SNARE 

complexes (Bryant and James, 2001). Vps45p has therefore been suggested to facilitate a 

conformational change in Tlg2p that switches it from a closed confoimation, which is 

inaccessible to participation in SNARE complexes, to an open conformation (Bryant and 

James, 2001). In addition to binding to monomeric Tlg2p in vitro (Dulubova et a l, 2002) 

Vps45p has been shown to bind to the fully assembled cis-SNARE complex of 

Tlg2p/Tlglp/Vtilp/Snc2p but not trans-SNARE complexes in vivo, suggesting a role in the 

regulation of SNARE complex formation (Bryant and James, 2003). Recently, Vps45p has 

also been shown to bind to Snc2p (Cai'pp et a l , 2006), strengthening the hypothesis that 

some SM proteins may sei*ve to bridge the gap between t- and v-SNAREs on opposing 

membranes.

The syntaxin Pepl2p, involved in late endosome traffic, binds indirectly to Vps45p (Bryant 

and James, 2001). Pepl2p was also shown to have a folded Habc domain, but again, this 

domain was not found to fold back on the SNARE domain by NMR spectroscopy 

(Dulubova et al, 2002). The N-tenninal peptide preceding the Habc domain was found to 

be shorter in Pepl2p than in Tlg2p, may explain the fact that the SM protein Vps45p can 

not bind directly to this syntaxin (Dulubova et al, 2002).

5.1.3 Binding modes of SM proteins to syntaxins

In summary there appears to be three distinct modes of binding of SM proteins to their 

cognate syntaxin:

1. The SM protein binds the closed conformation of syntaxin. This binding requires 

the Habc domain and the SNARE domain.
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2. The SM protein binds the open form of the syntaxin. This binding involves a short 

peptide sequence located N-terminally to the Habc domain.

3. hr direct binding of the SM protein to the syntaxin, facilitated by interactions with 

other proteins.

5.1.4 Binding of Munc 18c to syntaxin 4

Immunoprécipitation experiments from COS cells (Ai'aki et a l, 1997), and a yeast three- 

hybrid screen (Thurmond et a l, 1998), have shown that Munc 18c inliibits the binding of 

SNAP23 to syntaxin 4. A similar inliibition of the binding of SNAP25 to syntaxin la has 

been obsei-ved with Munc 18a (Pevsner et al, 1994a). Munc 18c has also been shown to 

inliibit the binding of VAMP2 to syntaxin 4 through in vitro pull downs (Tellam et al, 

1997), and a yeast three hybrid approach (Thurmond et a l, 1998). This suggests that Munc 

18c may hold syntaxin 4 in a closed confonnation much like that seen for syntaxin la, and 

prevent syntaxin 4 from entering into SNARE complexes. Pull downs from solubilised 

adipocytes have shown that, although syntaxin 4 is capable of binding both SNAP23 and 

Munc 18c, Munc 18c is only able to bind syntaxin 4 (Tamori et al, 1998), supporting the 

notion that Munc 18c holds syntaxin 4 in a closed conformation. This data suggests a 

negative role for Munc 18c in the fusion of GSVs to the plasma membrane of insulin 

responsive cells.

Immunoprécipitations from basal and insulin stimulated CHO/IR cells, overexpressing 

Munc 18c, showed that upon insulin stimulation Munc 18c dissociates from syntaxin 4 

(Thurmond et al, 1998). This supports a model whereby Munc 18c holds syntaxin 4 in a 

closed confonnation, which is released upon insulin stimulation.
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5.2 Aims of this chapter

Studies on the exocytic neuronal and yeast syntaxins have shown that the assembly of 

SNARE complexes may in part be dependent on the confomiation adopted by syntaxin. 

Monomeric syntaxin la  favours a closed conformation whereas as part of the SNARE 

complex syntaxin la  exists in an open confonnation. Mutations within the hinge region, 

between the SNARE domain and the Habc domain, of syntaxin la  lead to an open 

conformation. The aim of this chapter was to test the hypothesis that monomeric syntaxin 

4 also adopts a closed conformation and that equivalent mutations in the hinge region 

cause syntaxin 4 to undergo a similar change in conformation.
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5.3 Methods and Results

Most structural and biophysical studies have been carried out using the cytoplasmic 

domains of SNAREs since the transmembrane region is dispensable for complex 

fonnation. In order to assess whether monomeric syntaxin 4 adopts the same default closed 

structure as syntaxin lathe cytoplasmic domains of these proteins were expressed and 

purified in E. coli for further study. Rational mutations based on the mutations which 

cause monomeric syntaxin 1 a to switch from the closed to the open form (Dulubova et al., 

1999) were introduced into the cytoplasmic domain of syntaxin 4.

5.3.1 Alignment of syntaxin 4 against syntaxin 1a

In order to design the mutations to be introduced into the cytoplasmic domain of syntaxin 4 

the sequences of syntaxin 4 and syntaxin la were aligned as shown in Figure 5.3.
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Figure 5.3: 

1a.
Sequence alignment of syntaxin 4 with syntaxin

Mutations to be introduced into syntaxin 4 were rationally designed by aligning the 

sequence of full-length syntaxin 4 with that of syntaxin la using Vector NTL Residues 

L165/E166 in syntaxin la align with L173/E174 in syntaxin 4. The residues shaded in 

grey are the consensus between the two sequences. Vector NTI AlignX® uses the Clustal 

W algorithm to align multiple sequences.
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5.3.2 Site directed mutagenesis

Mutations were rationally designed by alignment of the sequence of syntaxin 4 with that of 

syntaxin la. L173/E174 of syntaxin 4 align with L165/E166 of syntaxin la. It was 

therefore decided to mutate these residues to the same residues that had been shown to 

facilitate the switch of syntaxin la  from a closed to an open state (Dulubova et a l, 1999).

The LI 73 A, E174A mutations were introduced into the syntaxin 4 sequence using pGEX- 

syntaxin 4 cytosolic domain as a template and the QuikChange ® Site-directed 

mutagenesis kit. Mutations were introduced as outlined in section 2.3.2, using the primers 

5'-GTGTCTGACGAGGAGGCGGCACAGATGCTGGACAGTGG-3' and 5’- 

CCACTGTCCAGCATCTGTGCCGCCTCCTCGTCAGACACC-3’. Once the sequence 

had been confinned the plasmids were maxipreped as outlined in section 2.2.11 for long 

term storage at -20 ‘̂ C.

5.3.3 Purification of syntaxin 1 and syntaxin 4 cytoplasmic 

domains

The cytoplasmic domains of syntaxin 1 a and syntaxin 4 were expressed as GST fusions 

from pGEX vectors. The vectors pGEX-syntaxin la  and pGEX-syntaxin la L165A/E166A 

were kind gifts from Robert Burgoyne (Liverpool, UK) while the pGEX syntaxin 4 

plasmid was a kind gift fr'om Jeffrey Pessin (Stony Brook, NY, USA).

The proteins were expressed in Rosetta pLysS cells as outlined in section 2.4.1. Expression 

was induced using 0.5 mM IPTG. Proteins were expressed at 30 °C overnight with shaking 

at 250 rpm. Following harvesting of the cells the cytoplasmic protein fusions were purified 

as outlined in section 2.4.2.

The proteins were cleaved from the GST tag using the thrombin cleavage site between the 

GST and syntaxin cytosolic domain coding sequences for biophysical studies. Proteins 

were dialysed against 4 litres of 50 mM KH2PO4-K2HPO4 pH 7.4 in the cold room 

overnight. Protein bound to beads and the cleaved supernatant were analysed by running 

on a 12 % SDS-PAGE gel followed by Coomassie Blue staining as shown in Figure 5.4.
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Figure 5.4: 

study

Coomassie stained gel of proteins used in this

The cytoplasmic domains of syntaxin 1 a, syntaxin 4 and respective LE mutants were 

expressed in Rosetta pLysS cells as GST fusions as outlined in section 2.4.1. The proteins 

were purified by binding the lysate to glutathione sepharose as outlined in section 2.4.2. 

DNA was removed by incubation with DNase I. Stringent washes were carried out and 

protein bound to the glutathione sepharose was cleaved from the GST tag by 4 hours 

incubation at room temperature with 25 units of thrombin in PBS and collected by 

centrifugation at 500 xg for 5 minutes. Cleaved proteins were dialysed overnight against 

50 mM KH2PO4- K2HPO4 pH 7.4. Protein bound to beads prior to thrombin cleavage (G) 

and dialysed supernatant (C) were run on a 12 % SDS-PAGE gel and purity analysed by 

staining with Coomassie blue as outlined in sections 2.2.1 and 2.2.4. The purified 

cytoplasmic domains were wild type syntaxin la (la WT), syntaxin la L165A/E166A (la 

LE), wild type syntaxin 4 (4 WT) and syntaxin 4 L173A/E174A (4 LE). The positions of 

the broad range molecular markers are shown.
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As can be seen in Figure 5.4 all of the beads (lanes marked G) have one major product of 

the predicted size for the cytoplasmic domains of syntaxin la or 4 respectively fused to 

GST bound to them. The cleaved protein from the glutathione beads (all lanes marked C) 

contain only one major product, which runs at the expected molecular size for the 

cytoplasmic domains of syntaxin la  or syntaxin 4 respectively. Having successfully 

purified the cytoplasmic domains of syntaxin la, syntaxin 4 and the respective LE mutants 

to a high degree of purity and sufficient yield biophysical experiments to study the 

confonnation of these proteins were carried out.

5.3.4 Circular dichroism of purified syntaxins

Circular dichroism (CD) was used to examine and compare the secondary structures of 

syntaxin la, syntaxin la  L I65A/Ll66A, syntaxin 4 and syntaxin 4 L173A/E174A.

Circular dichroism is a method that is commonly used to detennine the secondary 

structural content of proteins in solution (reviewed in Kelly and Price, 2000). It depends 

on the differential absorption of left and right circularly polarised light by optically active 

(chiral) elements within the protein. Within the protein these elements include backbone 

amide bonds, disulphide bonds and aromatic side chains such as tyrosine, tryptophan and 

phenylalanine. Within a particular secondary structure these elements will have a 

distinctive arrangement, which can be detected by CD.

The far UV region of the CD spectra (180 - 260 mn), which is mainly contributed by 

peptide bonds, gives tliree distinct patterns depending on the secondary structure motifs of 

the protein (alpha-helix, beta sheet and random coil).

The near UV region of the CD spectra (250-350 nm) is mainly contributed by the aromatic 

side chains and disulphide bonds and can be used to assess tertiary structure.

The composition of the buffer in which CD on proteins is carried out is critical as some 

buffer constituents have strong absorptions, which can mask those of the protein of 

interest. The CD spectra was obtained from cytoplasmic domains which had been purified 

and dialysed against 50 mM KH2PO4- K2HPO4 pH 7.4 in order to minimise any 

background absorption.
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Far UV CD spectra were recorded from 180 mn to 260 nm using quartz cells of patlilength 

0.05 cm, near UV CD spectra were recorded from 250 nm to 320 nm using quartz cells of 

0.5 cm pavelength on a Jasco J 810 spectropolarimeter. Scamiing parameters used to 

record the spectra were as follows -  bandwidth of 1 nm, data pitch of 0.2 nm, response 0.5 

seconds, scamiing rate 50 nm/min and recording time point intervals of 0.25 seconds.

Eight scans were collected for each protein.
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Figure 5.5: Far UV CD spectrum of the cytoplasmic domains of 

wild type syntaxin 1a and syntaxin la  L165A/E166A

CD spectra was recorded for the cytoplasmic domains o f wild type syntaxin la  (Blue) and

syntaxin la  L165A/E166A (Green) from 180 to 260 nm. The proteins were diluted to 0,3

mg/ml in 50 mM KH2PO4- K2HPO4 pH 7.4. The data shown is pooled from 8 scans.
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Figure 5.6: Far UV CD spectrum of the cytoplasmic domains of 

wild type syntaxin 4 and syntaxin 4 L173A/E174A

CD spectra was recorded for the cytoplasmic domains o f  wild type syntaxin 4 (Blue) and

syntaxin L173A/E174A (Green) from 180 to 260 mn. The proteins were diluted to 0.3

mg/ml in 50 inM KH2PO4- K2HPO4 pH 7.4. The data shown is pooled from 8 scans.
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Monomeric syntaxins are almost entirely a-helical whereas other SNARE members are 

unstmctured in solution as assessed by CD (Fasshauer et al, 1997a;Fasshauer et al,

1997b). The far UV CD spectra of all 4 cytoplasmic domains show characteristic double 

minima of proteins with alpha helical content, as shown in Figure 5.5 and 5.6. Although 

there are slight differences in the far UV CD spectra of syntaxin la  and syntaxin la 

L165A/E166A, shown in Figure 5.5, there is no significant change in overall structural 

content of the cytoplasmic domains from the mutations introduced into syntaxin 4, shown 

in Figure 5.6.

While protein spectra in the far UV region is useful for assessing the secondary structure of 

proteins the spectra from the near UV region (250-350 nm) is useful for studying the 

tertiary structure of proteins. Over these wavelengths the major contribution to the spectra 

is from aromatic side chains and disulfide bonds. Near UV circular dicliroism requires 

protein concentrations in the range of 1 mg/ml, while there was a sufficient concentration 

of syntaxin 4 and syntaxin 4 L173A/E174A to perform this analysis there was 

unfortunately not enough of either syntaxin la  or syntaxin la  L165A/E166A to allow 

analysis and comparison.
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Figure 5.7: Near UV CD spectrum of wild type syntaxin 4 and 

syntaxin 4 L173A/E174A

Near UV CD spectra was recorded for the cytoplasmic domains o f  wild type syntaxin 4

(Blue) and syntaxin L173A/E174A (Green) from 250 to 320 nm. The proteins were diluted

to 1 mg/ml in 50 mM KH2PO4- KH2PO4 pH 7.4. The data shown is pooled from 8 scans.
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Since the main contribution of the near UV spectra is from aromatic side chains this can 

give information on the tertiary structure of the protein since different folding of 

polypeptides will lead to a variation in positions of side chains in chiral environments.

From Figure 5.7 it can be seen that there is a small difference in the intensity of the peaks 

in the near CD region. The overall shape is similar which suggests the environments of the 

aromatic residues have not changed significantly. The difference perhaps suggests that the 

open form is less rigid.

5.3.5 Protease digestion of syntaxin 4 and syntaxin 4 

L173A/E174A

Limited proteolysis is commonly used to assess the 3D stmcture of proteins (Fontana et a l, 

1997). In general a protein folded tightly will be less susceptible to protease digestion than 

one folded loosely as the peptide chain will not be readily accessible to the active site of 

the protease. Limited proteolysis was earned out on the recombinant cytoplasmic domains 

of syntaxin 4 wild type and syntaxin 4 LI 73/El 74 using chymotrypsin. Chymotrypsin 

cleaves peptide bonds on the carboxyl side of methionine and the aromatic side chains 

tryptophan, tyrosine and phenylalanine. If the WT protein does adopt a default closed 

conformation and the mutations in the hinge region lead to a more open form of syntaxin 4 

where the Habc domain does not interact with the SNARE domain WT syntaxin should be 

digested at a slower rate. Syntaxin la L165A/E166A has been previously shown to be 

digested more rapidly by trypsin than wild type syntaxin la (Graham et al, 2004).
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Figure 5.8: Chymotrypsin digestion of the cytopiasmic domains 

of wiid type syntaxin 4 (WT) and syntaxin 4 L173A/E174A (LE)

Recombinant protein was diluted to 0.3 mg/ml with PBS in a total volume of 100 pi. 

Chymotrypsin was added at a 1:100 ratio to recombinant protein and at the time points 

indicated samples were taken and immediately boiled in an equal volume of 2X SDS- 

PAGE sample buffer, with the addition of 10 % v/v (3-mercaptoethanol for 5 minutes. 

Samples were then stored at -  20 °C until all of the samples could be analysed by running 

on a 12 % SDS-PAGE gel followed by staining with Coomassie blue as outlined in 

sections 2.2.1. and 2.2.4. Positions of the broad range molecular weight markers are 

shown.
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The bands correspounding to the cytoplasmic domains of syntaxin 4 and syntaxin 4 

L173A/E174A were quantified by densitometry in the 0, 1 and 5 minute lanes as shown in 

table 5.1.

Time (mins) % undigested wild type 

syntaxin 4

% undigested syntaxin 4 

L173A/E174A

0 100 100

1 56 39

5 22 8.5

Table 5.1 ; Percentage of undigested cytoplasmic 

domains following treatment with Chymotrypsin

The upper band coiTesponding to wild type syntaxin 4 and syntaxin 4 L173A/E174A were 

quantified using densitometry. The quantification of each protein at time zero was set to 

100 % and the results from subsequent time points were nonnalised to the quantification of 

the corresponding protein at time zero. (n=l)

As can be seen from the chymotrypsin digest in Figure 5.8 and the quantification in Table 

5.1 wild type syntaxin 4 is digested at a slower rate than syntaxin 4 L173A/E174A 

suggesting wild type syntaxin 4 is in a more inaccessible confoimation than syntaxin 4 

L173A/E174A.
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5.3.6 Interaction of Munc 18c with syntaxin 4 and syntaxin 4

L17 3A /E l 74A

5.3.6.1 Purification of Munc 1 Sc

The family of SM proteins has proved difficult to express and purify from a heterologous 

system due to insolubility. The overexpression of protein in E. coli is thought to enhance 

the aggregation of non-native proteins due to the high level of protein crowding within the 

E. coli cell that may lead to promiscuous interactions and misfolding. Low temperatures, 

overnight incubations and low IPTG concentrations have all been used to increase the yield 

of other SM family members. The coexpression of a class of proteins called Chaperonins 

has been shown to increase the solubility of several recombinant proteins (Yasukawa et al, 

1995) including SM proteins in coli (Scott et al, 2004).

Within the cells the successful folding of proteins into their unique 3 dimensional structure 

is facilitated by a class of proteins called chaperones (reviewed in Hourey, 2001). These 

chaperone proteins are thought to prevent proteins from misfolding and aggregating but not 

actually control the process of folding (Mogk et al, 2002). During translation 

polypeptides emerge from the channel present in the large ribosome at a relatively slow 

rate and folding often occurs after the whole domain of a protein has emerged from the 

ribosome (Mogk et al, 2002). Chaperones act to either hold the protein in a state that is 

competent for folding when the protein is released from the ribosome or larger chaperone 

proteins provide an environment for the whole protein to fold isolated from the cytosol 

(Mogk et al, 2002).

GroEL is a member of the chaperonin family of protein chaperones (Walter, 2002). In 

order to successfully express and purify Munc 18c from E. coli cells it was coexpressed 

with the chaperonin protein GroEL and protein expression was induced with low levels of 

IPTG (0.2 mM) at low (22 °C) temperatures overnight as outlined in section 2.4.1 HlSe- 

tagged Munc 18c, in pQE30, was expressed in M l5 cells that also coexpressed the 

chaperone GroEL fi*om a separate plasmid. While the GroEL is expressed Irom a plasmid 

that contains a kanamycin resistance cassette, pQE30 contains an ampicillin resistance 

cassette allowing selection of a single colony of E.coli expressing both proteins on dual 

antibiotic plates. HISe-Munc 18c was purified using Ni-NTA agarose as outlined in 

section 2.4.2.
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Figure 5.9: Purification of Munc 18c

HISô-Munc 18c was expressed from vector pQE30 in M l5 expressing GroEL. Expression 

of HISô-Munc 18c was induced overnight at 22 °C by adding 0.2 mM IPTG. The Figure 

shows the purity of pre-spin lysate (LI), post-spin lysate (L2), wash 1 (Wl), wash 2 (W2) 

and fractions eluted (15 pi) using imidazole (200-500 mM) run on a 12 % SDS-PAGE gel 

and stained with Coomassie blue as outlined in sections 2.2.1 and 2.2.4. The positions of 

the broad range molecular weight markers are shown.
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As can be seen in Figure 5.9 the elutions from the Ni-NTA agarose contained only one 

major product of the correct size for HISe-full-length Munc 18c, the small band observed 

below Munc 18c is residually bound GroEL.

Pull downs of the cytoplasmic domains of syntaxin 4 using HISô-Munc 18c were 

unsuccessful as a high degree of non-specific binding between the cytoplasmic domains of 

syntaxin 4 and the resin was observed (data not shown). Glutathione sepharose bound 

GST-syntaxin cytosolic domains were therefore employed to pull down HISô-Munc 18c to 

overcome this technical difficulty.

5.3.6.2 Purification of GST~syntaxin 4 and GST-syntaxin 4 

L173A/E174A

GST tagged syntaxin 4 and syntaxin 4 L173A/E174A were purified as essentially 

described in section 5.2.3, however, once GST-protein had been bound to glutathione 

sepharose and unbound protein removed by washing, the protein was not cleaved from the 

GST tag using thrombin but instead eluted from the beads by incubation with 2 mis of 10 

mM reduced glutathione, 50 mM Tris pH8.0 for 30 minutes at 4 °C in the cold room on a 

rotator. Supernatant containing GST-tagged cytoplasmic domains was collected following 

a spin at 500 xg for 5 minutes in a bench top centrifuge to pellet the glutathione sepharose 

beads. GST alone was also expressed from empty pGEX vector and purified as outlined 

above. The protein was then dialysed overnight against 5 litres of PBS to remove the 

reduced glutathione. The fusion protein was run on a 12 % SDS-PAGE gel as outlined in 

section 2.2.1 which was stained with Coomassie blue as described in section 2.2.4 to 

analyse it for purity. The protein concentration was then estimated as outlined in section 

2.4.3.

A gel of the purified proteins used for pull-downs is shown in Figure 5.10.



Fiona M. Brandie, 2006 Chapter 5,178

M18c GST 84 84 LE

175 '

83

62

47.5

32.5 

25

Figure 5.10: Proteins used for GST puii downs

The cytoplasmic domains of syntaxin 4 and syntaxin 4 L173A/E174A along with GST 

(from empty pGEX vector) were expressed in Rosetta pLysS cells as GST fusions as 

outlined in section 2.4.1. The proteins were purified by binding the lysate to glutathione 

sepharose as outlined in section 2.4.2. Following stringent washes the protein was eluted 

from the glutathione sepharose by incubation with 10 mM reduced glutathione, 50 mM 

Tris pH 8.0. The protein was dialysed overnight against PBS and run on a 8 % SDS- 

PAGE gel and stained with Coomassie blue as outlined in sections 2.2.1 and 2.2.4. The 

positions of the broad range molecular markers are shown. M 18c = Munc 18c, GST = 

GST, S4 = GST-wild type syntaxin 4, S4 LE = GST-syntaxin 4 L173A/E174A.
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S.3.6.3 Interaction of Munc 18c with GST-syntaxin 4 and GST 

syntaxin 4 L173A/E174A

GST-pull down experiments are now a widely established method of investigating 

interactions between two or more proteins. With the inclusion of appropriate controls they 

are an ideal method to study the specificity of binding within a protein family. Here, 

recombinantly expressed proteins were used to establish whether Mime 18c bound to the 

cytosolic domain of syntaxin 4 and the putatively open mutant of this cytosolic domain, 

L173A/E174A. Soluble GST was used as the control in these experiments. A set amount 

of GST or GST-cytosolic domain of syntaxin was immobilised on glutathione sepharose 

and incubated with increasing amounts of purified HISg-Munc 18c. Pull-downs were 

earned out as outlined in section 2.4.4. Results of a typical experiment are shown in 

Figure 5.11 A. In Figure 5.1 IB the level of Munc 18c bound to syntaxin 4 and syntaxin 4 

L173A/E174A was quantified from the lane where 20 pg of Munc 18c had been incubated 

with the GST-fusions. The ratio of Munc 18c binding to the GST-syntaxin fusions was 

calculated. The ratio of Munc 18c bound to syntaxin 4 wildtype was set at 100 % and the 

ratio of Munc 18c bound to syntaxin 4 L173A/E174A was compared to this.
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Figure 5.11: Binding of Munc 18c ta GST- wiid type syntaxin 4

and syntaxin 4 L173A/E174A

Recombinant GST, GST-syntaxin 4 wt or GST-syntaxin 4 L173A/E174A (5 jig) was 

immobilised onto glutathione sepharose for 1 hour at 4 °C. Unbound protein was removed 

by washing and the indicated amounts of Munc 18c were incubated with bound protein 

overnight at 4 °C in 500 pi of binding buffer. Beads were then separated from unbound 

protein by thorough washing and bound protein was analysed by running on a 12 % SDS- 

PAGE gel, as outlined in section 2.2.1 which was subsequently stained with Coomassie 

blue as outlined in section 2.2.4. The positions of the broad range molecular markers are 

indicated. (A) SDS-PAGE of the protein bound to beads (B) Quantification of Munc 1 Sc 

bound to wild type syntaxin 4 and syntaxin 4 L173A/E174A.
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As can be seen in Figure 5.11 minimal background binding of Munc 18c was observed 

with GST alone across all concentrations of Munc 18c added. Munc 18c bound strongly to 

the cytoplasmic domain of wild type syntaxin 4, at all concentrations tested. However, the 

introduction of the L173A/E174A mutations into this domain appeared to substantially 

reduced the binding of Munc 18c, even when Munc 18c was added at a 10:1 ratio to the 

syntaxin. This agrees with the data that corresponding mutations in syntaxin 1 reduced the 

binding of Munc 18a to syntaxin la (Dulubova et a l, 1999). This data suggests that like 

syntaxin la, syntaxin 4 also adopts a closed confoiination tlrrough which Munc 18c binds 

suggesting a common mode of binding.
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5.4 Discussion

In this chapter I have investigated the confonnation adopted by monomeric recombinant 

syntaxin 4 and the mode through which Munc 18c binds this syntaxin.

SNARE proteins and SM proteins are both indispensable for intracellular membrane 

fusion. There appears to be three main modes of binding observed between SM proteins 

and their cognate syntaxins. The first, exemplified by the Munc 18a/syntaxin la  complex, 

involves a closed conformation of syntaxin where the SM protein fonns an arch shape 

cradling the syntaxin in this conformation. The second mode involves a short N-teiminal 

peptide of the syntaxin. The third mode involves indirect binding through other proteins.

The fusion of vesicles containing Glut4 to the plasma membrane in insulin responsive cells 

on stimulation with insulin has been shown to involve the exocytic SNARE complex 

comprised of syntaxin 4, SNAP23 and VAMP2. The SM protein Munc 18c was cloned 

from a 3T3-L1 adipocyte cDNA library and has been shown to interact specifically with 

both syntaxin 2 and syntaxin 4 (Tellam et a l, 1997). Like most SM proteins there is 

conflicting data on the function of this iso form in fusion. While some studies support a 

negative role in Glut4 exocytosis others have suggested that this SM protein may play a 

positive role, reviewed in section 1.7.2.4.

Munc 18c has been assumed to bind to syntaxin 4 through a similar mode to that of the 

binding of Munc 18a to syntaxin la, that is it binds to a closed conformation of syntaxin 

preventing it from entering into SNARE complexes, although this has not been definitively 

shown. Monomeric syntaxin la  has been shown by NMR to adopt a default closed 

conformation (Dulubova et al, 1999). The interaction of Munc 18a appears to hold the 

protein in this closed conformation (Misura et a l , 2000b) preventing SNARE complex 

foimation. Mutations introduced into the hinge region of syntaxin la  have been shown to 

flip this syntaxin from the closed conformation to an open conformation which is incapable 

of binding to Munc 18a (Dulubova et al, 1999). In order to study whether syntaxin 4 

adopts a default closed conformation mutations were designed based on the mutations 

introduced into the cytoplasmic domain of syntaxin la and the confonnation of syntaxin 4 

and mutated syntaxin 4 (LI 73A/El74A) was studied using CD and limited proteolysis.
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Far UV CD showed that the introduction of these mutations into syntaxin 4 had no effect 

on the overall structural composition of the cytoplasmic domain confirming that the 

mutations did not cause any gross misfolding of the protein. Near UV analysis of syntaxin 

4 and syntaxin 4 L173A/E174A showed that the introduction of these mutations may lead 

to a less rigid protein conformation. Limited proteolysis, using chymotrypsin, showed that 

syntaxin 4 L173A/E174A was digested at a more rapid rate than wild type syntaxin 4 

suggesting a more accessible, and perhaps open, structure. In order to fully confiim that 

syntaxin 4 adopts a closed conformation and the L173A/E174A substitutions result in an 

open conformation a high resolution technique such as NMR or X-ray crystallography 

could be employed. However this was unfortunately outwith the time restraints of this 

investigation.

GST-pull downs were used to study the interaction of Munc 18c with the GST tagged 

versions of wild type syntaxin 4 and syntaxin 4 L173A/E174A. The introduction of these 

mutations into the hinge region significantly decreases the ability of Munc 18c to bind to 

syntaxin 4. The corresponding mutations in syntaxin la, which have definitively been 

shown to change the conformation of this protein to open, prevented the binding of Munc 

18a to syntaxin la  (Dulubova et a l, 1999). This data suggests that like syntaxin la 

syntaxin 4 also adopts a closed conformation through which Munc 18c binds, suggesting a 

common mode of binding. There does however, seem to be a low level of Munc 18c 

binding to syntaxin 4 L173A/E174A above that seen with GST alone. This is not 

unexpected since low levels of binding of Munc 18a to open syntaxin la were also 

obseiwed using GST pull downs fi'om rat brain lysate (Graham et al, 2004). A weak 

interaction between the open syntaxin la  and Munc 18a was also observed using a yeast 

two-hybrid screen (Dulubova et al, 2003). Using an ELISA technique some binding of 

Munc 18a to open syntaxin la  was observed but this was gi'eatly reduced compared to the 

binding of Munc 18a to wild type syntaxin la  (Graham et al, 2004). The authors argue 

that this is due to a difference in maximal binding not affinity. This would agree with the 

data shown in Figure 5.11, since the level of weak binding of Munc 18c to syntaxin 4 

L173A/E174A does not change on increasing the amount of HISg-Munc 18c added to the 

GST pull down.

One explanation as to why a weak interaction is observed between the open syntaxin and 

Munc 18a is that at any one time a small proportion of the open mutant is in the closed 

conformation. This has been supported by a recent in vivo study using FRET between
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Munc 18c and syntaxin la which showed that the introduction of the L165A/E166A 

mutations into syntaxin la reduced FRET by approximately 70 % compared to control, 

suggesting that a proportion of this mutant syntaxin is in a closed confonnation (Liu et al, 

2004). This may also be the case for syntaxin 4 L173A/E174A and may explain the weak 

but detectable binding of Munc 18c to this mutant.

So what is the function of this binding of SM proteins to closed syntaxins? The ability of 

SM proteins to hold exocytic syntaxins in a closed conformation may be a mechanism to 

regulate the foimation of SNARE complexes.

In C. elegans, Une-13 null mutants have impaired evoked synaptic vesicle release 

(Richmond et al, 2001). This supports a role for UNC-13 in synaptic vesicle priming.

The rat homologue of UNC-13, Munc-13 has been shown to interact with the N-temiinus 

of syntaxin and core complexes of syntaxin 1, SNAP25 and VAMP2 (Betz et al, 1997). 

UNC-13 has been shown to displace the SM protein UNC-18 horn Ce syntaxin in vitro 

(Sassa et al, 1999). These data suggest that UNC-13 promotes synaptic vesicle priming 

by either displacing the SM protein UNC-18 or by stabilising the open form of Ce 

syntaxin. The expression of a constitutively open form of syntaxin in C. elegans bypasses 

the requirement for UNC-13 in vesicle priming, while overexpression of wild type 

syntaxin was without effect in Une-13 null mutants (Richmond et al, 2001). These data 

suggest that UNC-13 promotes priming by promoting the opening of syntaxin, perhaps by 

displacing UNC-18, supporting a negative regulatory role for the SM protein in complex 

assembly and fusion.

The idea that core complex assembly is regulated by the conformation of syntaxin is 

supported by the observation that mutations that destabilised the closed conformation of 

Ssolp significantly enhanced the rate of binary complex fonnation with Sec9p in vitro 

(Munson et a l, 2000) and the fonnation of ternary complex was also significantly 

increased in vivo (Munson and Hughson, 2002). However, another study showed that once 

the binary complex is formed the N-terminal domain seems to have no effect on the 

fonnation of ternary complex upon addition of Snc2p (Nicholson et al, 1998) suggesting 

that the closed confonnation of syntaxin only seiwes to regulate the fonnation of the t- 

SNARE complex. Mutations which destabilise the closed confonnation of syntaxin la 

have not however, been shown to increase the ability of this syntaxin to recruit SNAP25 

(Dulubova et al, 1999;Graham et a l, 2004). Another possibility is that binding of SM



Fiona M. Brandie, 2006 Chapter 5,185

proteins to a closed conformation of syntaxin may prevent SNARE complexes 

disassembled by Secl8p/NSF from immediately reassembling.

The elucidation of a common mode of action of SM proteins has been hampered by the 

lack of overlap between binding studies of members of the SM and SNARE family.

Using a yeast two hybrid screen it was shown that the Habc domain of syntaxin 4 was not 

sufficient to mediate an interaction with Munc 18c and that binding to Munc 18c required 

the full-length of syntaxin 4 (Grusovin et al, 2000). This suggests that like syntaxin la  

syntaxin 4 exists and interacts with Munc 18c in a closed confoimation. However, this 

Habc domain was missing the N-terminal residues which may mediate binding to Munc 

18c (Gmsovin et al, 2000). It was also found in this study that the minimal domain of 

Munc 18c required for binding to syntaxin 4 comprised of only the N-terminal 139 amino 

acids (Grusovin et a l, 2000) consistent with the binding observed between Sly Ip and Sed5 

(Grabowski and Gallwitz, 1997). Munc 18c has also recently been shown to interact with 

the t-SNARE complex of syntaxin 4 and SNAP23 as well as the ternary complex of 

syntaxin 4, SNAP23 and VAMP2 (Latham et a l, 2006). The interaction of syntaxin 4 with 

Munc 18 has been shown to be dependent on the N-tenninal of syntaxin 4 since its deletion 

abolishes binding to Munc 18c (Latham et a l, 2006).

In this chapter the confoimation of monomeric syntaxin 4 and its interaction with its 

cognate SM protein Munc 18c was studied. Equivalent mutations to those introduced into 

syntaxin la which caused this iso form to flip from a closed to an open form were 

introduced into the cytoplasmic domain of syntaxin 4. The introduction of these mutations 

appeared to lead to a more accessible fomi of syntaxin 4 suggesting that like syntaxin 1 a 

monomeric syntaxin 4 may exist in a closed conformation. The fact that these mutations 

also reduced the binding of Munc 18c to syntaxin 4, much like the reduction in binding 

observed between Munc 18a and mutated syntaxin la  frirther supported these syntaxin 

molecules adopting a similar conformation thi'ough which they bind their cognate SNARE 

protiens. The recent discovery that Munc 18c can bind syntaixn 4 through its N terminus 

(Latham et al, 2006) suggests the possibility that Munc 18c can bind syntaxin 4 through 2 

distinct modes which awaits further investigation.
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Chapter 6

Discussion
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Although it has been over 25 years since the first demonstration that insulin stimulation 

caused the mobilisation and translocation of an intracellular store of glucose activity to the 

plasma membrane of insulin responsive cells (Cuslunan and Wardzala, 1980;Suzuki and 

Kono, 1980) the molecular mechanism underlying this phenomenon is yet to be fully 

characterised. In individuals with type 2 diabetes the ability of insulin to elicit this effect is 

impaired, therefore investigating the moleculai* mechanism imderlying this is of particular 

importance. Several advances have been made in this field including the identification of 

an insulin responsive glucose transporter Glut4 (as outlined in section 1.2.1) which is 

thought to be held in a population of highly specialised vesicles, and the discovery of many 

members of the insulin-signalling cascade whose activation leads to the translocation of 

this isofonn (reviewed in section 1.4). However, the regulation of Glut4 trafficking in 

response to insulin is still not fully understood.

The fusion of Glut4 containing vesicles to the plasma membrane of insulin responsive cells 

has been demonstrated to be dependent on members of the SNARE family of proteins, 

namely syntaxin 4 and SNAP23 located at the plasma membrane along with VAMP2 

located on Glut4-containing vesicles (reviewed in sections 1.6). SNARE proteins are a 

family of highly conserved proteins that are known to be essential for all intracellular 

fusion events. Membrane fusion must be tightly orchestrated in order to maintain the 

integrity of the different cellular organelles and the fonnation of SNARE complexes and 

therefore membrane fusion is thought to be tightly regulated within the cell. Whether the 

fusion facilitated by the SNARE complex of syntaxin 4, SNAP23 and VAMP2 at the 

plasma membrane of insulin responsive cells is regulated in response to insulin is yet to be 

established. However, a recent in vitro study using isolated Glut4-containing vesicles and 

plasma membrane reconstituted into liposomes suggests that this fusion event is indeed 

regulated by insulin since fusion was greatly increased when plasma membrane from 

insulin stimulated cells was used as compared to basal plasma membrane (Koumanov et 

a l, 2005). Since this potential point of regulation is a possible defect in diabetes and 

diabetes is on the substantial increase it is highly interesting to discover more about how 

this process is regulated.

The fusion process facilitated by SNARE proteins has been successfully reconstituted in 

vitro using recombinant SNAREs purified from E. coli, with these SNAREs being both 

necessary and sufficient to facilitate membrane fusion (Weber et al, 1998). This type of 

assay is particularly useful since it allows the study of the process of membrane fusion
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without the contributions of any other cellular components. As the first step towards 

studying the regulation of fusion facilitated by the exocytic SNAREs involved in Glut4 

translocation, an in vitro fusion assay reconstituted with these SNAREs produced as 

recombinant proteins in E. coli was established. In Chapter 3 a fusion assay using these 

reconstituted liposomes reconstituted definitively showed that these 3 SNARE proteins are 

necessary and sufficient to facilitate fusion. This has been previously presumed but never 

proven. This assay may now be used to study the fusion event further.

Although in vitro SNAREpins that is the complex between cognate SNAREs, one set on 

the target membrane and one set on the vesicle membrane, are capable of fusing artificial 

membranes in vivo fusion is believed to be regulated by a number of protein and lipid 

species. Many members of the SNARE family have been localised to lipid raft domains, 

isolated as detergent resistant membranes (Sclmitzer et al., 1995;Lafont et a i,

1999;Chamberlain et a l, 2001 ;Gil et a l, 2005). Lipid raft domains are discrete areas of 

the bilayer which are enriched in cholesterol and sphingolipids, the tight packing of which 

foims a “liquid ordered state” in comparison to the bulk bilayer which is fonned by mainly 

unsaturated glycerophospholipids which fonn a “liquid disordered state”. The t- and v- 

SNAREs involved in Glut4 vesicle fusion to the plasma membrane have been localised to 

lipid raft domains, isolated as detergent resistant membranes, in 3T3-L1 adipocytes 

(Chamberlain and Gould, 2002). Proteins known to regulate SNARE function were found 

to be excluded from these domains (Chamberlain and Gould, 2002). Whether lipid rafts 

play a role in regulating SNARE mediated membrane fusion is a matter of debate.

Although experiments where cholesterol was depleted from the membrane of neuronal 

cells using methyl-p-cyclodextrin suggest that cholesterol rich domains are involved in 

positively regulating exocytosis (Chamberlain et al, 2001;Lang et al, 2001) in this cell 

type this data must be treated with caution since cholesterol depletion may have other 

effects in the cell. A recent study in PC 12 cells has shown that the targeting of the 

SNAP23 homologue SNAP25 to detergent resistant membranes is dependent on its level of 

palmitoylation (Salaun et al, 2005b) and increased association with rafts inhibited 

exocytosis (Salaun et al, 2005a).

In Chapter 4 the fusion assay established in Chapter 3 was utilised to study the effect of 

adding lipids known to be enriched in these detergent resistant membranes to the t-SNARE 

containing liposomes. The results from these experiments cannot be directly compared as 

the resulting liposomes from inclusion of these lipids vary drastically in size from the
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control liposomes. However, these data do suggest that the inclusion of cholesterol and 

sphingomyelin into these liposomes is most likely inhibitory to fusion which would agree 

with the observation that targeting SNAP25 to lipid rafts led to an inhibition of fusion.

The transmembrane domains of SNARE proteins have been shown to be important for 

fusion (Grote et a l, 2000;McNew et a l, 2000b) and it is possible that the lipid 

enviromiient suiTounding such domains would influence fusion. Lipid raft domains have 

also been shown to be thicker than the rest of the membrane in vitro (Gandhavadi et al.,

2002), which may effect the conformation of SNAREs localised to these domains and the 

fusion that they can support.

The appearance of Glut4 in lipid raft domains in the plasma membrane has recently been 

shown to precede the appearance in the non-raft fraction suggesting that fusion of Glut4- 

containing vesicles may occur initially in raft domains (Inoue et al, 2006). Members of 

the exocyst complex which is responsible for docking the Glut4-containing vesicles to the 

plasma membrane have also been localised to lipid raft domains suggesting these domains 

may participate in fusion (Inoue et a l, 2006). It is possible that the lipid raft targeting of 

SNARE proteins in insulin responsive cells serves to spatially organise them in the 

membrane and bring them into close contact with the insulin signalling pathway, members 

of which have been localised to these domains, which may regulate complex formation by 

an as yet unknown mechanism (Reviewed in Saltiel and Pessin, 2003).

SNAP25 and its homologue SNAP23 are Icnown to palmitoylated at conserved cysteine 

residues within a short sequence on the linker domain separating their two SNARE 

domains. There is evidence that palmitate may be stimulatory for fusion (Pfaimer et a l, 

1990;Haas and Wickner, 1996;Washboume et al, 2001) and since palmitoylation is a 

reversible post-translational modification there is the possibility that palmitoylation of 

these exocytic SNAREs regulates their ability to support fusion. Although non- 

palmitoylated SNAREs purified fr om E. coli can facilitate fusion in vitro the rate is much 

slower than that seen in vivo. It is possible that the acyl chains of palmitate may distort the 

membrane leading to more efficient fusion. Most in vitro studies including the in vitro 

fusion assay, described in Chapter 3, have so far been carried out using protein purified 

fi'om E. coli. While this is a convenient system for expression of recombinant proteins 

these proteins are not subjected to the normal eukaryotic post-translational modifications 

within this prokaryotic host. Recently SNAP25 expressed in insect cells by infection with a 

recombinant baculovirus has been demonstrated to be palmitoylated (Rammer et al,
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2003). In order to express the t-SNARE complex of syntaxin 4 and SNAP23 to purify this 

for in vitro studies in insect cells a recombinant baculovirus was constructed. The 

baculovirus was successfully created and the t-SNARE complex was puiified, with 

SNAP23 being palmitoylated. However, in comparison to the E. coli system the yields 

were lower and due to time and material constrictions it was unfortunately not possible to 

perform the fusion assays using this complex.

Although like SNAREs it is thought that all intracellular membrane fusion events require 

the participation of a member of the SM family the exact role of these proteins in 

membrane fusion has remained a contentious issue due to conflicting data. In insulin 

responsive cells Munc 18c is known to interact with syntaxin 4 (Tellam et a l, 1997), 

although like most SM proteins there is conflicting data as to the function of this SM 

protein in Glut4 translocation as outlined in section 1.7.2.4.

The most widely studied interaction between an SM protein and its cognate syntaxin is the 

interaction between Munc 18a and syntaxin la. Exocytic syntaxins have a highly 

conseiwed N-tenninal domain, which form an autonomously folded 3 helical bundle 

termed Habc (Fernandez et a l, 1998). In syntaxin la  this Habc domain is thought to fold 

back onto the SNARE domain holding the protein in the so-called “closed” conformation 

which is incapable of entering into SNARE complexes (Dulubova et a l, 1999). The 

crystal structure of Munc 18a in complex with syntaxin la  shows that Munc 18a forms an 

arch shaped confoimation through which it cradles syntaxin la (Misura et al, 2000b). It 

has been proposed from this stmcture that Munc 18a holds syntaxin la in  this “closed” 

SNARE complex incompetent state. The introduction of mutations into tlie linlcer domain 

which joins the Habc domain to the SNARE domain of syntaxin la  have been shown to 

flip this syntaxin from the “closed” conformation to a more “open” confonnation with the 

Habc domain and the SNARE domain spatially separated (Dulubova et al, 1999). The 

“open” conformation is accompanied with the loss of the ability to bind Munc 18a.

In order to investigate whether syntaxin 4 assumes a similar “closed” confoimation 

through which it binds Mime 18c, equivalent mutations were introduced into the 

cytoplasmic domain of syntaxin 4. The conformations of wild type and mutated syntaxin 4 

were studied using CD and limited proteolysis. From these experiments it seems that the 

introduction of these mutations into syntaxin 4 leads to a more accessible and perhaps open 

form. This transition from “closed” to “open” needs to be confiimed by a higher resolution
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technique for example NMR or X-ray crystallography. Next the interaction of Munc 18c 

with syntaxin 4 and the mutated version was studied using in vitro GST pull-downs. The 

introduction of these equivalent mutations into the linlcer domain of syntaxin 4 led to a 

substantial reduction in the ability of this protein to interact with Munc 18c in comparison 

to the wild type protein. This reduction in binding supports syntaxin 4 adopting a “closed” 

conformation through which it binds to Munc 18c in a similar fashion to the binding seen 

for syntaxin la to Munc 18a (Dulubova et a l, 1999).

A recent study of the interaction between Munc 18c and syntaxin 4 has suggested that 

Munc 18c binds the N-terminal peptide of syntaxin 4 that precedes the Habc domain 

(Latham et a l, 2006). This mode of binding is similar to that seen for the binding of the 

SM proteins Slylp and Vps45p to the syntaxins Sed5p and Tlg2p in yeast (Yamaguchi et 

a l , 2002). It is therefore possible that Munc 18c interacts with syntaxin 4 via two 

independent modes, the first in a “closed” confoimation which Munc 18c cradles (much 

like that seen for syntaxin la  and Munc 18a) and the second in an “open” conformation 

with Munc 18c binding to the very N-terminal of syntaxin 4 (much like the binding 

observed between the SM proteins Slylp and Vps45p and their cognate syntaxins Sed5p 

and Tlg2p). This could explain why the binding of Munc 18c to syntaxin 4 was not 

completely abolished on introduction of mutations into the hinge region.

In order to investigate further the binding of Munc 18c to syntaxin 4 by these two different 

modes the affinities of the interactions between Munc 18c, wild type syntaxin 4, syntaxin 4 

L173A/E174A and an N-terminal deletion mutant of syntaxin 4 could be studied by 

Surface Plasmon Resonance, which is a much more sensitive technique than in vitro pull- 

downs. The functional effects of the two different binding modes on fusion could also be 

evaluated by introducing these two mutants of syntaxin 4 into the in vitro fusion assay, as 

described in Chapter 3, in the presence of Munc 18c. These studies have highlighted novel 

insights into the interaction between Munc 18c and syntaxin 4 which may influence and 

regulate the fusion facilitated by syntaxin 4, this awaits further investigation.
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