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Abstract

Functional languages are mathematically pure, and easier to reason about than their
imperative rivals. Because of this, they are an attractive paradigm of programming. They
allow programmmers to express complex algorithms in a declarative manner, resulting in
powerful programs that are also well written.

Good interaction with users is important for programs which are to be used for
real applications. This normally involves creating a user interface using devices such
as menus, buttons and scrollbars. Tt is now increasingly common for the interface of
programs to be developed using specialised tools allowing a faster development cycle,
with less programming involved.

In the past, pure functional languages have been poor at creating graphical user
interfaces resulting in good applications with poor interfaces. This is due to the mixing
of the user’s world which involves complex multi-level interactions, with the functional
world which has a single threaded state. This is not a very good abstraction of the world
to interact with. When the traits of the user’s world are introduced into the functional
world it is found that the purity of the functional world is compromised, and the clean
declarative style of functional programming is lost. If the user interaction is separated
from the functional program, allowing users to communicate with functional programs
using external interface programs, it is possible to preserve the natural simplicity of the
functional world, This would also allow programmers to take advantage of user interface
development tools.

Llook at current solutions for performing input and output from functional languages,
wilh particular reference lo the Monadic I/O style which is clurently gaining popularity. 1
then present a scheme where | have deliberately separated interaction from functionality,
allowing functional programmers to build programs that interact with the “Real World”,
with less interference of the real world into the pure environment within the functional
program.
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Preface

Reader’s Notes

This thesis can be seen as having two audiences — one in functional programming
research, the other in HCI research. My own background is in functional programming,
therefore much of the writing is addressed towards other functional programmers. In
particutar, the sections on HCI research have been written for an FI” audience, and so may
appear over-simplified to HCI researchers. On the other hand, I have tried to address the
sections on functional programming to both functional programmers and HCI researchers
wishing to know morc about functional programming,.

Source code given in the appendices is available on selected I'TP archive sites, or by

e-mailing the author, at Duncan Sinclair <sinclair@dis.strath,ac.uk>.

Contribution

The basic contribution of this thesis is to show that using separate interfaces to functional
programs is a good solution, and that as user interface devclopment tools improve, it will
become increasingly difficult for functional solutions to user interaction to meet users’
expectations. T further claim that most external interaction which is not functional in
nature is better done outside of the functional environument.

My key goal was fo try to meet a list of requirements generated by examination of a
number of areas of study outside functional programming while creating a system to allow
graphical user interfaces to be created for functional programs. In particular, [ wanted to
enable the programs created using my system to have a high level of modularity, with
relative ease of design and programming. T also regard the extensibility of the resulting

system to be very important.
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Chapter 1

Introduction

Computing has come a long way since the time when most programs were written in
languages such as COBOL or FORTRAN, submiltted on paper tapes or cards and run
in batches — the output being collected from the computer centre the next day. Now
we all have our own personal computer on our desk, and we expect it to ‘interact” with
us. At the same time, programming languages have developed and there are now many
paradigms of programming languages. One such is the functional paradigm, which
is based upon mathematical foundations, and allows a greater expressive power than
previous paradigms.

Unfortunately, the interactive power of these functional languages has found it diffi-
cult to keep up with the interactive systems in common use. They tend not to offer input
and output features even as advanced as the dinosaur languages mentioned above.

The functional programming community now needs to find a way to enable functional
languages to be used to build interactive programs that can communicate with users
in a way with which they are comfortable. Furthermore, the programmer’s task of
creating these inferactive programs must not be any greater than in any other language —
otherwise the programmer may choose to stay with non-functional languages, and lose
all the advantages of the functional style.

The introduction begins by examining functional languages, aspects of good interac-
tive systems, and the requirements that will be used to build a better system fo provide
good interactive interfaces. The chapter concludes with a statement of goals and a

sketched outline of the remainder of the thesis.




Introduction 2

1.1 Functional Languages

Functional languages are mathematically pure. This means that programs written in a
functional language can be manipulated and reasoned about in the same way as math-
ematical functions. The particular property of functional languages which allows such
equational reasoning is called referential transparency, and guarantees that any parlic-
ular function when called with identical arguments will always return the same value.
Although this may not appear immediately useful to all programmers, it is extremely
useful when they come to compile their programs — the compiler can perform mathe-
matical transformations knowing that it will not change the meaning of the program. A
more obvious direct benefit for programmers is that if they wish to show that particular
portions of their code are correct according to some higher-level specification, they can
use equational reasoning to prove properties of their program.

Functional languages are declarative. This means that rather than specifying a pro-
gram as a sequence of operations to be performed, as is usual in “imperative’ program-
ming, the program is written as a description of the result desired. This can be illustrated
with a simple example. In a non-declarative, imperative language, in order to sum a list
of numbers it is necessary to explicitly keep a running total, accumulating a sum as each
element of the list is examined. In the declarative siyle, the program would express the
sum of a list in a mathematical way which might imply the same operations as for the
imperative code, but without the programmer having to think at that lower level. Put
succinctly, declarative programming means you program ‘what’, rather than ‘how’.

There are anumber of particular features that tend to be found in all modern functional
languages. The most obvious is the Hindley-Milner type system [19] which provides
a powerful, flexible type system, with sum (similar to variant records in Pascal) and
product (tuple) types, and flexible polymorphism. It also makes explicit typing optional,
as normally the types of all functions can be inferred from the conlext by automated
analysis. Thisrigorous type system is extremely powerful and flexible, and will guarantee
that all programs that are type-checked cannot fail due to a run-time type mis-matches,
a problem that is too commonly found in programs written using languages with less
rigorous type systems.

A good case for the importance of functional languages was made by Hughes [17]. In
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his paper, Hughces puts forward two compelling reasons why functional languages arc
interesting and useful. Firstly, he shows how funetional programs have compositional
properties based on simple function composition that allow large scale code re-use by
allowing majot sub-programs to be bolted together in a flexible manner. Secondly, he
points out that, by writing small functions which are not specific to a particular data type,
Le. they are polymorphic, these functions can be re-used with lots of different types.
Simple examples of this include list map, fold, and filter, all of which take a function and
list as arguments, and will apply the function to elements of the list in ditferent styles.
Thunctional languages by their nature are particularly good in applications which
involve some process of transformation of input data into output data [30]. Compilers

are an obvious and well exercised example of this [3,12].

1.1.1 Tunctional Languages and User Interfaces

This thesis is about providing user interfaces for programs written in functional languages,
and whether functional languages make this easy. Unfortunately functional languages
do not seem especially well suited to the task. Currently creating good user interfaces for
functional programs is a difficult task, harder than it is for unsophisticated imperative
languages like C. Lintend to find out why, and to put forward a system which will allow
good user interfaces to be used for functional programs.

Why do 1 want to do this? With ail the features and benefits made available by
choosing to program in a functional language, it would also be advantageous to be able
to interact with programs written in functional languages in the ways programmers are
used to. Compromising the interface for the sake of being able to write in a nicer language
is not a viable option for real applications.

Writing traditional interactive functional programs has always been a problem; in
1985 William Stoye gave a brief discussion of this [34]. Over the years there have been
two main contenders for how to do input and output from functional languages which
atlow interaction, first the ‘streams’ or ‘dialogues” approach outlined by Stoye. In this
system the result of the functional program, instead of being a conventional type such as
anumber or a list of characters, is a list of commands which would perform various input

or output operations. Results of these actions, including user input, are supplied in a list
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as an argument to the function,

The second approach is that of ‘continuations.” This works by providing functions
which will carry out input and output requests and then ensuring that these functions
are evaluated in a particular order. The order is defined by setting down that the result
of cach continuation function is supplicd as an input to a subsequent continuation. This
ensurcs a linear execution of I/O operations, which kecps the program free of side-effects
that can affect referential transparency.

Both continuations and dialogues create a definite sequence of interaction so as to
ensure that referential transparency is not compromised. If I/O actions were to be al-
lowed to be performed in an undefined order, then functions could give varying results
depending on what I/O actions had preceded their evaluation.

Hudak and Sundaresh [16] provide some good arguments in favour of continuations
over the dialogues approach, but still manage to make simple interaction appear awk-
ward. Examples of simple interaction programmed in these two styles are presented in
full in Chapter 2. However, as soon as they are applied to graphical interaction, both
styles of programmed interaction just break down. I consider this point also in Chapter 2.

Laziness increases the chances that you will not know if one particular section of
program will be evaluated before another. This will lead to preblems in programming
interaction. There are some functional languages, e.g. Scheme and SML, for which
interaction is not a problem. This is because they use side effects within a strict evaluation
framework. This makes most of the difficullies go away, but at the expense of referential
transparency.

Lisp must also be mentioned here. There are many good toolkits and user interface
development environments built round dialects of Lisp. Hlowever, Lisp is only marginally
a functional language and in this particular area it is not very pure in its functions. It does
make a good mode] for what is possible in a non-procedural language.

So I shall restrict my attention mostly to pure, non-strict functional languages where
interaction remains a problem. The most obvious instance of these is Haskell[15] with
some reference to a similar, but older language, Lazy ML[3]. I shall not investigate
languages which have had their type system extended, a potentially expensive option,
which buys little over what can be achieved with some clever programming as described

in Section 2.4. I shall survey the I/0O techniques with which Haskell is supposcd to be
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able to achieve user interaction in Chapter 2.

Within the context of Haskell some new solutions fo the interaction problem have
appeared in recent ycars, notably the monadic approach to I/0 [27], a refinement of
continuations, and the Fudgets functional interactive toolkit [5], a system based around
an enhanced dialogues scheme. Unfortunately both suffer from the basic dilemma which
functional programmers face when programming interaction — the functional language
has to sequentialise all I/Q, while interaction is not naturally sequentialised in the user’s
mind. Aslazy languages are not especially sequential in their execution, it is no wonder

that programming in sequentiality is difficult.

1.1.2 What Functional Programming is Missing

Why should I take notice of work outside functional programming on user inferaction?
Early indications show that functional languages on their own aren’t doing so well. So
much of the current work on uscr interaction for functional programs is coming from a
functional programming point of view. Itis typically mathematical, with a high theorctical
content and little regard to research in other areas.

While it is fine that monadic I/Q has good theoretical under-pinnings, did anyone
stop to think if it helped in user interface programming? If all that itis is a means sormefiow
to construct interactive programs, then it succeeds, but that is not enough. A programmer
chooscs a language based not on only on ability, but also usability.

When the Fudgets system was created, some HCl user interface researcl was consulted
and as a result good interfaces can be constructed using the toolkit. Unfortunately some
software engineering and HCI principles were missed, leading to a poor programming
style which lacked the flexibility required to allow easy iterative design of interfaces.

Clearly these new approaches have not delivered large interactive programs yet, and
as shall be seen in Chapter 2, there is some doubt that they will. Therefore Ishall presentan
alternative approach that draws some basic concepts from software engineering, human

computer interaction, and user interface design.
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1.2 Approaching Interactive Systems

When creating interactive systems there are three areas of computing science research from
which programmers might learn something: Software Engineering, on how programs
should be constructed; Human-Computer Interaction (HCI): on how an interface should
be adapted to the user; and User Tnterface Software Technology (UIST), on how an

interface should be programmed.

1.2.1 Software Engineering

I shall address two prominent aspects of software engineering. The first is that it is
difficult to write large and complex programs. The sccond, by far the more important, is
that the programs, once written, have to be maintained. As functional languages mature,
and programs written using them grow older, the ability Lo adapt functional programs to
work with the latest technology or requirements will be very important.

Incivil engineering terms, in order to maintain any newly built bridges, it is important
that the correct construction techniques have been used, or else they will fall down. Itis

no different when a programmer sets out to build a new program.

Modularity

The number one principle of software engineering is modularity, which involves the
concepts of coupling and cohesion.

Coupling is how much any particular module depends upon the implementation or
services of another. By reducing coupling to a minimum, it is possible to change patticular
implementation techniques within a program without affecting the behaviour of other
parts that need not be concerned with such detail.

Cohesion relates to how specific any particular code section is to one particular task.
When maintenance time comes around, it is easier to modify a section of code which does
only one thing, rather than a number of related or even unrelated things.

Separation has always been an important principle in HCI, which advocates reducing
coupling between the user interface and the ‘functional core’ of a i)rogram ~-that is, the

part of the program which takes no part in communicating with the user, but which is
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responsible for all of its functionality. To avoid confusion with functional languages, I
shall term this the ‘application core’ or, more simply, the ‘application.’

Whether this separation is possible in practice is a matter of debate but as a general
principle of design it is difficult to argue with. By separating the interface from the
application a number of benefits are immediately to be found. Portability and isolation
of change are two principal examples. Further discussion on separation follows below in
the discussion on UIST issues.

HCT has learnt from software engineering, and the functional programmer wishing to

write user interfaces must do so also.

Extensibility

As there are new and better ways of doing things always being found, there is a need to
program in a certain amount of extensibility into programs, to allow them to grow and
keep up with the rest of the world. Therefore system designers should not limit the scope
of their programming systems, but instead build in a certain amount of flexibility which
can be taken up later.

To achieve a good level of extensibility there are no simple concepts such as cohesion
as a guide. It is more a principle to keep in mind during the design of any system, that
features may be required to be added to the original design at a later date.

[xtensibility is also very important in the design of a language. The original designers
of the Haskell language did not allow for programmer extension to the I/0 system, and
50 many of the things that were required of the language were just not possible. This was

one of the motivations for the monadic I/0O system that I discuss later on.

Portability

It is sometimes necessary that programs have to be moved to new operating systems ancl
computers. It is desirable that this can be done with as little re-programming as possible
— at least, no more than for similar code written in an imperative language. Also, as
current fashions change, the style of user interface required will change — functional
programming needs to keep up with this.

In the discussion of modularity above, I gave one example of how portability can be
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increased — by separating system-dependent (user interface) code away from system-
independent (application) code.

In designing the [/O system of a language, it is important that the designers choose
a set of primitives which can be supported on different architectures but which, at the
same time, can exploit particular features of whatever architecture is in use at the time.
This brings back the discussion on extensibility - that designers must plan for features
which are not currently available on one particular architecture,

So portability is again all about an attitude of programming. It is something to be

borne in mind during the design and implementation of any program.

Summary

The programs written today may be in use many years from now. If they cannot be
maintained, then when change comes, new programs will need to be written. As this i3

an expensive job, it is essential that programs are easy to build upon.

1.2.2 Human Computer Interaction

HCT research is still an inexact science. There are major limits to current knowledge of
how humans interact with computers and how this knowledge should affect the design
of user interfaces.

Study has shown that in order (o cope with this problem, development of user inter-
faces needs to be experimental, with prototypes being constructed and tested, leading to
a iterative design strategy.

There are three important issues here, for design must be:
e Iterative.

Construction of user interfaces is normally an iterative process. An initial interface
is created and then evalualed by its designer. Based on the testing it can be enhanced
or changed as required until it is satisfactory. This can be a time-consuming process.
If the interface is written in a compiled language, it has to be re-compiled on each
iteration. If a small portion of the interface is under test, quitting and restarting,

and then re-navigating the interface to get to the area under test will take time if
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this is what is required. Once its designer is happy, more expensive user evaluation
would be required which will cause yet more iteration.
« Participative.

As the design of a user interface develops, it is important that the eventual users
of the system, or representalives of them, are able to try out the system and make
suggestions for possible improvement. During this time the aims of a particular
interface may be changed dramatically as user-feedback could result in a complete
re-design, or re-engineering of a design. Limitations in a programumer’s toolkit
cannot impede this. For example, it will not be a sufficient reason for why a button

cannot be moved from where it currenily is situated, why it cannot be part of a

menu, or why it cannot be based on some others style of interaction.

e Exploratory.

As an interface develops, during iterative uscr evaluation, it becomes apparent that
the space of possible interfaces to a particular program is huge, and that there is
always more than one way to meet required features. Thus this space of possi-
bilities must be attacked in a exploratory manner, with the ability to retract and
try other avenues of design. Again, this needs a certain inherent flexibility in the

programming system used to create the interface.

Generally this is simply requiring some of the same things I stated as good software
engineering — modularity and extensibility. Because of the participative aspect, it is
difficult to formalise the design of interfaces, as users tend not to think along logical lines

of specification and refinement.

1.2.3 User Inlerface Software Technology

By taking current thoughts from HCI research and using these o create tools to help build

user interfaces, this is UIST. UIST may be thought of as an applied branch of HCL where

HCI concerns how it should be, UIST reveals how it really is for cuarent technology.
UIST is built upon established HCI principles. From UIST a number of assumptions

about computer users can be made.

* They are opportunistic.
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Users have a habit of trying to do more than one thing at a tiine. When given a
system flexible enough to allow multiple tasks to be tackled at the same time, users

will often advance more than once task concurrently.

¢ Users vary in the way they like to do things.

There is a great variation in the preferred means to achieving any particular aim.
Programs should not constrain users to doing a particular task in one way when
there are other ways possible. A simple example is the order buttons are pressed or
text fields are filled in in a dialog box. Therefore my system should be “user-driven,’

where tasks are advanced under the control of the user.

o Users make mistakes.

This is obvious. Users must be allowed to go back and correct mistakes, especially

if they are critical and subsequently would be irreversible,

o Multiple views of objects aid user understanding,.

Allowing users to examine data in more than one way, perhaps even allowing com-
plete display rearrangement, willhelp them control and understand the information
they are manipulating. An cbvious example of this is the Macintosh Finder, where
icon positions may be moved around to taste, or different styles of listings of files

are allowed.
+ Users like to be in charge.

The user should be in charge — the interface should act for themn rather than for
the program. If the interface seems hostile or sluggish as a result of the program
taking control away from the interface, then this will result in user frustration. The
interfaceis allowed to take charge if it needs to ask pertinent questions atappropriate
moments. Interfaces must also allow some amount of tailoring for the user — this

must be immediate, allowing experimentation by the user on a completed program.

Overall, these aspects of interface design make one thing clear — graphical user
interfaces cannotbe programmed in the same way as batch or older interactive paradigms,
such as command line interfaces or menus. The most important aspect is that graphical

interfaces require non-linear control; there is not a single thread of control that runs
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through the program, but instead control moves around very quickly, in short threads of

interaction which intertwine.

Separation

An important theme which has already been touched on and will appear frequently
through this thesis is separation. This is quite a simple concept — thal systems doing
different tasks should be keptapart. In UIST this means that the user interface component
of a program should be a separate part of the application and not intermixed with other
functional parts of the program. In software engineering separation is expressed as a
lack of coupling between modules, as discussed in Section 1.2.1. The need for separation
is made in many other places in this introduction, but more genetal reasons involve the
limitation of user influence within the core application, allowing easier data checking,
and the ability Lo alter the interface withoul reference to the core functionality.

The UIST literature has much in the way of discussion about separation. Edmonds’
survey[9] is to be noted in particutar, with the collection edited by Pfaff[28] essential
reading for UIST researchers, Cockton'’s thesis[7] has a whole chapter addressing many
aspects of separation in the context of user interface management, which contain many
useful references.

One point to note is the degree of separation. Whether it is possible to achieve complete
separation, where different user interfaces may sit on top of the same back end without
changes, is a current area of research. For the purposes of this work, it is accepted thatin
the systems presented the separation will not be complete in this sense.

The dilemma is that, for the user interface to be completely separate, it must be totally
ignorant about the particular style of implementation for a particular functionality, but at
the same time this can be essential knowledge for the interface to be able to communicate
with the application. This also warks the other way around. The application should not
be aware of the mode of interaction that the interface presents to the user. Hlowever some
aspects of the {unctionality may be required to be structured in a particular compatible
style.

The solution is that either the separation is compromised, or else a third agent is

required which is allowed to be knowledgeable of the interface and application, while
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the latter two are ignorant of each other.

Some further exploration of this area can be found in the conclusions to this work.

Non-linearity

In order to program the non-linear interaction model which graphical interfaces produce,

new styles of programming have been developed.

o The Main Event Loop

In this scheme the complete program is controlled by a single loop which dispatches
control to various sub-routines based upon user events such as button clicks or key

presses.

The major benefit of this approach over localised handling of events is the ability
to support the opportunistic approach outlined above. If there is specialised event-
handling code for each part of the interface then, as the user switched their attention
around, control would be transferred between the various event-handlers. This,
however, would be difficult in practice and, without extra code, would be required

to handle the switches in context and ensure consistency.

Having the event control in one place enforces a certain amount of consistency in
event handling, ensuring that controls work in the same way between different
parts of the program. The down-side is the programming bottlenceck that the main
loop becomes. As new user interface components are added to a program, the
handling of them all must be added 1o the main event loop. This is an issue for team

programming and in later maintenance of the code.

o Callbacks

The caliback scheme is an abstraction over the main event loop — the main event
loop still exists, but it is not directly programmmed by the interface creator. This goes
some way fo removing some of the problems of the main event loop. A callback is

a function associated with a particular event,

As new user confrols are added, callbacks can be registered for particular events
happening in that particular area of the screen. Then when event loop receives

an event, by determining where on the screen it happened, it can go to a table of
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callbacks and pass control back to the interface component which registered the

event for handling.

This results in an overall increase in modularity, as the main event loop can be
programmed without any knowledge of the structure of the rest of the program,
and so there is looser coupling in the final program. The only possible negative
aspect of this is the lack of intimate control over the main event loop which may be

required in a particular application but usually there are hooks to help cover this.

Both these schemes give a crude form of multi-threaded program execution as different
parts of the program are able to do their own independent actions without conflict from

other parts of the program.

Window Systems

Modern interfaces on conventional computers now tend to rely on high resolution dis-
plays, typically sub-divided into “windows”, controlled by the user using a standard
keyboard, plus a mouse, allowing direct manipulation of the display.

Typical abstractions used with this type of display are buttons which frigger specific
actions, or act as flags; scrollbars which allow the display of large windows within smaller
windows, allowing the area in view to be changed; pop-up menus which allow grouping
of functions; and icons which allow objects to be manipulated by the user directly.

Of course interacting through windows and with a mouse is by no means the only
way, with pen and voice based input increasing in popularity but, as it is currently the
only common style, I shall concentrate my efforts here. Any user interface system built
for functional languages should be sufficiently extensible to allow work to be carried over

to new paradigms of interaction.

Toolkits

It is normal to build toolkits to harness the raw functionality of windows and graphics
primitives to be used to construct interfaces and manage callbacks.
As with many parts of computing, toolkits are concerned with providing abstraction

to make the power given more controllable. Typically, a set of “widgets” will be provided
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which supply a bundle of functionality in a window on the screen and will employ
callbacks to allow the programmer to assign specific functions to them.
Widget sets usually include buttons, menus, scrollbars, and text entry boxes, plus

higher-level widgets uscd to structure on-screen appearance.

Review of UIST Techniques

UIST is all about making key programming tasks for user interface creation easier. The
most important aspect of this is the user interface separation principle, but there are other

specific tasks frequently expected of a UIST tool.

e Multiple Active Threads

The program should be able to give the impression of being able to do more than
one thing at a time, as this is what the user will require.

As mentioned above, this is normally done by structuring the program into small
independent units — widgets, running from call-backs from the main loop of the
program, and suspended as other threads run. Naturally, this requires each indi-

vidual widget to manage ils own state between calls.

o Imperative Control Structures

When there are particular sequences of dialog or interaction, these would be con-
trolled by the UIST framework. Thus standard imperative control structures of
looping, branching, conditionals and sub-routines for particular interactions when

required, must be available.

In some cases a tight loop of comanunication between the interface and application
is required to cnsure that user inputs conform to program-set requirements. This is
called ‘semantic feedback’, as the interface itself only understands user syntax and

requircs the application to decide on the validity of the input.

o Multiple Views of Data
An important feature of many interactive programs is that the program is able to
present multiple views of the same data; for example, a text editor might allow

multiple windows to be open on the one file, with updates in one window would
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be mirrored in the other. Another example is the ‘fat-bits” bitmap editing available
in various graphics packages, where fine pixel editing is aiso reflected immediately

in the normal size image, perhaps in another window.

Such features tend to be implemented either with a centralised abstraction on the
data, which then controls the multiple views from inside, or by a distributed system
in which the multiple views are kept in tune with each other by broadcasting events

from one view to all other views.

Nalurally different toolkits and UIST tools will implement these tasks to different
degrees, with simple toolkits doing much less than a full user interface management
system but, for complete flexibility and simplicity in small productions, it can be beiter

to use a simple toolkit, rather than committing to a all-encompassing UIST framework.

1.2.4 An Example Toolkit — Tcl/Tk

T shall now present briefly one particular toolkit to show how toolkits in general work,
and what sort of features they provide. This toolkit — Tcl/Tk [25] - will be used in
Chapter 3 to provide interfaces for functional programs.

John Ousterhout’s Tel [23], which stands for “Tool command language”, is a simple
interpreted language, intended to be extended and embedded within an application.
Its purpose is to provide a means by which systems may be controlled by users and
programmed by the application writer.

Tk [24], also by Joln Qusterhout, is a toolkit for the X Window System [29], based
around the Tcl language. It allows the creation of user interfaces built out of components

such as buttons, menus, and dialogs.

The Tcl Language

Tel has a clean and simple syntax. It is designed fo be able to be used as a user-centred
shell for graphical programs. Tcl has strings as its only base type. It can arrange these

into lists and lists of lists, etc. Numeric strings can be regarded as numbers.
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Here is a small examyple program to calculate the factorial of 10:

proc¢ fac x {

if $x==1 {return 1}

return [expr {Sx * [fac [expr %$x-11] }]
}
set a 10

puts stdout "The factorial of $a is [fac Sal"

Square brackets cause in-line evaluation. Braces are a form of quoling, usually used
to build lists — especially lists representing fragments of lel code, which can then be
interpreted in a recursive manner. In these respects Tel is very similar to Lisp, with a nicer
syntax. ltis even possible to program a system of anonymous higher-order functions,

using the standard ways available to the user of the language for extending it.

The Tk Toolkit

Tk can be programmed either from a compiled language, such as C, or more usually in
Tcl, extended with commands for Tk. This makes it possible to write complete programs
in Tel, using Tk for the interface.

Here is a very trivial Tk program, written in Tcl:

lakbel .hello ~text "Hello, World!"

pack append . .hello {}

Without going into too much detail, this creates a small label which says “Hello, World!”,
and displays it in a window.

This two-ine script is at least an order of magnitude shorter than the equivalent
in C and another popular toolkit, OSF/Motif (see Appendix A.1). This makes writing
user interfaces much easier than before and, with the full functionality of Tel at hand,
no expressive power is lost. As one might expect, there arc user interface builders for
Tk which allow user interface creation using direct manipulation, in the style of other
toolkits.

Tk interface builders, written in Tcl/Tk, have two advantages over other toolkits.

Firstly, the Tk system is creating and manipulating the interface by programming the

PR
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widgets with code which will allow them to tailor their own behaviour. This code
becomes part of the output of the interface builder and can be used at any time to modify
the interface created. Secondly, because of the ability of Tel/Tk Lo take commands from
other input sources, it becomes possible to manipulate the running program, even when
it is fully implemented. Therefore, inlerface experimentation and manipulation can be

combinied with interface evaluation.

Summary

Tel is a simple clean interpreted language. Tk, designed to be used with Tcl, is a powerful
toolkit which is easy to program. I shall be looking at other aspects of Tcl and Tk in
Chapter 3.

On the basis of what can be expected from UIST, Tcl/Tk is not a complete sclution.
However it does provide many of the features and it can be built upon to come closer to
a full UIST design.

Add-on tools for 'Icl/Tk include extensions to the Tcl language to make it object
oriented. There is also a sophisticated user interface design environment which, by using
featuresin Tel / Tk, can edit the interface of an application it created live, while the program
is running. With the power of interpreted Tcl, it is possible to run the interface, while the
design program allows simple programming tasks stich as menus and pop-up windows

to be automated, at the touch of a button.

1.3 Implied Requirements

I'wish to take the techniques of software engineering, HCI and UIST, and apply these to
functional programming. To build a user interface system for functional languages, I will

use the implied requirements covered above, and use them to judge the resull.

1.3.1 Tunctional Programming Requirements

First of all, it is important that I am able to take advantage of the features of functional
languages. In particular, T want my systems to preserve referential transparency. This is
perhaps the most important feature of functional languages, and without this, much of

the efficiency and elegance of the language would be lost.
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On a more pragmatic level, the compositional style of functional programming malces
some programming tasks easicr, If 1 were to adopt a style which prevented casy compo-
sition of scctions of code, then again I would have lost much of the beauty of functional

languages.

1.3.2 Software Engineering Requirements

Software engineering presents three areas which I need to address.

The most abvious aspect of software engineering concerns modularity. The two basic
measures of modularity are cohesion —how much a procedure or function focuses on a
single task —which should be maximised, and coupling —how much one section of code
depends on another’s implementation — which should be minimised, Functions should
be written to do exactly one task and sub-dividing this with local functions is appropriate.
Requiring code to be written in one section of a program to maintain incidental data used
in another part of the program is a good example of poor modularity.

In addition the maintainability of a program can be affected by how easy it is to extend
the program to handle areas not originally considered when the program was designed
and written. Obviously if any of the tocls which have been used in the program’s
construction are extensible this will help.

Finally, T might wish to move my program (o different systems, perhaps to different
operating systems, with different capabilities. Problems here can be guarded against by
keeping the design of the program as independent as possibie from particular system
features, and also isolating interaction with external systems into a module which can be

rewritten without requiring the rest of the program to be adapted.

1.3.3 HCI Requirements

The processes involved in creating good interactive programs tend not fo be formal, but
more experimental. I must allow interfaces to be built in this way also.

The most important aspect of interface design is that it is iterative, and will not be
correct first time. Prototype interfaces must be created, and evaluated, and the cvaluation
used to create further prototypes. This process can cycle for many iterations.

The design process is iterative, participatory and exploratory. It is essential that
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whatever system I devise for user interface creation can support this style of design.

If the interface is tightly coupled to the application code, then adapting it during
design would be difficult. Plus, it must be possible to adapt the user interface rapidly, to
allow users to try out different styles. An interface which required major programming

to be done during each iteration would not permit this kind of exploratory design,

1.3.4 UIST Requirements

The requirements suggested by UIST are more demanding but, as such, help me find a
working solution to the interaction problem with functional languages. Without these
strict requirements, I would not know if I were solving the problem or not.

The UIST framework, being tied up in the programming of the system, has many
requirements in common with what is demanded for good software engineering. There
are, however, some specitic features that are required.

The interface must run as a logically separate component of the program so that it
can be developed and maintained separately. There must be, however, a high level of
communication between the interface and the rest of the program so that the user gets
a realistic notion of what the program is actually doing. If the interface is too loosely
coupled to the main program, it becomes difficult to transmit a complete picture of the
slate of the program to the user, semantic feedback becomes difficult, and the user would
lose control over the execution of the program.

I must be able to build up sequences, with loops and jumps in them, to correspond
to particular dialogues with the user. This level of dialogue sequencing belongs com-
pletely in the interface component of the system, and should not appear at all within the
application core.

As most interfaces give the user multiple choices as to which task to pursue at any
one moment, while still allowing rapid task switches, it is important that some form of
multiple threading of execution takes place. It should be possible for one part of the
display to be updating, while the user is still able to interact with another.

Error recovery is very important. The user must be able to cancel a dialogue or
recover from inconsistent data with the program state being recoverable. At the same

time, undoing critical actions is an important feature if it can be achieved.
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1.3.5 Overall Requirements

I shall now review some of the notions that have come up in the discussion of require-~

ments, framing them as overall requirements as they are demanded by more than one

aspect of my investigation, and so might be regarded as principle requirements.

» Ease of Design

The framework used to build interfaces must make the design process during inter-
face creation easy. So the toolkit I use needs tobe well designed, with the appropriate
level of functionality, without being overly complex. Also the connection between
the interface and the application requires a high level of flexibility to cope with

whatever information the interface desigh will require.

Ease of Construction

It is important that the task of programming the applications for the interfaces
designed is made as simple as possible. Without this, people will not be motivated
to use functional languages, preferring approaches with which they are familiar.
One way to help ensure success is to make interface manipulation as easy and
as similar to existing systems as possible with, of course, improvements on this

desirable.

Portability

I wish to make my interactive programs casy to move between different systems,
Interface separation helps in this. Also, the design of the interface system should

avoid making assumptions about the targel environment.

Extensibility

T have emphasised how important it is to build programs so that they may be main-
tained easily. This requires not only rigorous design and implementation methods,
but also that the tools with which I build are able to grow with requirements.

With respect to interface creation, this might imply a toolkit approach allowing the
basic system to be built upon with new widgets, and so allowing the most features

for the least programming effort, but the toolkit must be powerful enough to supply

enough functionatity to create the programs programmers wish to write.
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1.4 Goals of Work

The main goal of this work is tc explore the synthesis possible between functional pro-

gramming rescarch, and HCI/UIST research. To this end I have been experimenting with

the Tcl/Tk system as a tool to create user interfaces for programs written in Haskell.
This work follows on from a series of similar experiments, all of which involved

creating separate interfaces for functional programs.

1.4.1 Early Work

In the past 1 have built a number of systems which are meant to help create user interfaces
for functional programs. These started at the very basic level of a simple widget which
would allow simple drawing controlled by a Lazy ML program. The widget would also
return user input back to the functional program. The complete interface was built and
controlled from the functional language [32].

The interface ran as a separate process, but there was no intelligence in it. It was
separated mainly for convenience, but also to allow the interface to respond to cvents
while the main program was active.

A later system improved on this, using the frecly available system Wafe [20]. Wafe
uses the language Tcl, as I have here, but gives a different interface style to that used by
Tel/Tk. Its purpose is to allow scripting languages, withoul the ability to access normal
library routines, to create user interfaces.

This system allowed a programmed agent to control the interface, rather than having
it controlled only by the application side of the program. This is what I had wanted for
my earlier system, and it was the addition of a scripting language to build and manipulate

the interface which made the difference.

1.5 Thesis Qutline

This thesis continues with a study of current I/ O solutions available in functional lan-
guages in Chapter 2. This includes an examination of a number of proposed systems

which try to solve the same problem as I am addressing.
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Chapter 3 describes my solution to solving the problem of interaction, with examples
of the techniques described.

A full assessment of this work is made in Chapter 4, with a measure of how well I
meet the requirements given above.

I follow this with a summary and conclusions in Chapter 5, Source code for the

programs discussed in the thesis is given in the Appendices, after the Bibliography.




Chapter 2

Functional I/0O

This chapter examines the particular styles of I/Q in functional languages, with particular
reference to the three major styles of 1/Oused in the language Haskell. These are Dialogues,
Continuations and Monads. Dialogues and continuations are standard in the language.
Monadic I/O is a extension in the Glasgow Haskell Compiler, but is likely to be adopted
as standard in a later version of the language.

Following is an examination into why none of these systems are particularly helpful
when it comes to writing interactive programs,

The chapter concludes with a look at some of the current techniques for building
graphical interactive interfaces, concentrating on the Fudgets system [5] and Concurrent

Clean [1].

2.1 1/O Styles

Communication with external systems in functional languages is typically encapsulated
within the [/ O system so that informaltion can be passed between the internal world of the
functional program and the impure world which the external systems inhabit, without
referential transparency being compromised.

There are a number of ways of achieving this [16]. Thosc covered are the two popular

systems, dialogues and continuations, plus a newer rival, monadic 1/QO [27].

23
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2.1.1 Equivalence

In his thesis {11], Andrew Gordon shows that these three systems are fundamentally
equivalent, in that any onc can be implemented using another as a basis without needing
any extensions to thelanguage. However, the programming style adopted for each system
is very different.

Indeed, in the Glasgow Haskell Compiler system [12], a continuations implementation
is built upon a dialogues implementation, which in turn is built upon a monadic 1/0

system.

2.1.2 Haskell Channels

In this thesis, Haskell [15] will be used to demonsirate the I/O systems, as there are
implementations of all three I/O systems in Haskell.
Much of interactive I/0O in Haskell revolves around the concept of a “channel”. A

section of the Haskell Report explains this:

The channel system consists of a collection of channels, examples of which
include standard inpul (stdin) and standard oulput (stdout) channels. A
channel is a one-way communication medium—it either consumes values
from the program or produces values for the program. Channels communicate
to and from agents. Examples of agents include line printers, disk controllers,
networks, and human beings. As an example of the latter, the wser is normally

the consumer of standard output and the producer of standard input. [15]

2.1.3 Examples used in this Chapter

Two simple examples will be used in this Chapter to help demonstrate the strengths and
weaknesses of each I/0 system.

The first is a ‘minimal interactive program’. The computer queries the uscr, who
will either reply in the affirmative or negative. The computer will then respond with an
appropriate reply. Thus there are basically only two possible traces of interaction in this
program. Computer output is shown in this font, while user inpuf is shown in this

font.
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1. Do you feel all right?
Yes.

Great!

2, Do you feel all right?
No.

Sorry to hear that.

These example programs will be written in the style of a relatively unsophisticated
functional programmer. In each of the programs, further work could be done to imprave
them, but that would not reflect the sort of program that might be written in real life, An
obscure heavily optimised program will reveal little about just how difficult programming
in each I/Q style can be.

A further example, taken from Cockton’s thesis |7], is a simple simudation of the
interactions involved with an Automatic Teller Machine., In Figurc 2.1 is the slightly
modified version of his CSP! description, which 1 will use as the specification of the
dialogue.

Programs implementing the ATM dialogue will be of a more sophisticated nature
than the first example, reflecting the fact that larger programs require greater effort of
programming for elegance. As such, these programs try to represent the particular style
in their best light,

It should be possible to implement this example in a staged manner, starling with the
event sequencing, introducing the system output, then the user input, without the actual
‘application’ code of a bank system being present. This order is not fixed, but it appears

in practice to have worked well.

2.2 Dialogues

A popular system of 1/O is that of dislogues [21], which is the primary I/O system specified
for Haskell. The basic concept is of the program and the system engaging in a sequence

of dialogues, the program making requests, and the system responding to them.

' CSI' {Cominunicating Sequential Processes) is a formalism for specifying concurrent systems. See Hoare's
hook of the same name [13],
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AT = IngercCardMessage -> CardlIn ->
EnterPinMessage -> CUSTOMER

CUSTOMER = PinNo -> ValidatePinNo ->
{ "Thief -> KeepCardMessage -> ATM
{] Wwally > LearuNumberMessage ->
BjectCard -> ATM
[1 Retry -> RetryMessage -» CUSTOMER
[l PinOK -> ServicePrompt -> SERVICES !
) i

SERV_CES = { ReguestChecueBock -> AcknowledgesCheqgqueBock ->
MORE
[] Reguastlalance -> ShowBalance -> MORE
{] RequsstStatement -> PrintandProfferStatsment ->
TakeStatement -> MORE
{] ReguestCash -> CASH
)

CASH = AmountPrompt -> Amounit ->
{  AmountHopaeful -> SorrxyBuilMessage -» CASH
[] AmountOK -:» ConfirmPrompt ->
( Confirm -> ProffexCard -»>» TakeCard ->
ProfferCash ->» TakelCash -> ATM
(] Cancel -> MORE
)

MORE = FjectCard AnotherServiceMessage ->
{ Continue -> ServicePrompt -» SERVICES
[1 Cardou= -> ATM
)

Figure 2.1: CSP specification of ann ATM.

The two halves of the sequence of dialogues can be represented within the functional
program as two lazy lists, one being constructed by the program and executed by the run-
time system of the language, and the other having the opposite property of being created
by the run-time system and interpreted by the functional program. The run-time system
is the agent responsible for constructing replies to the functional program’s request, based
upon the response of the user and other systems external to the functional program, such

as the operating system.
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2.2.1 How Dialogues Work

In Haskell, the idea of a pair of lazy lists appears clearly since the type of the main

program, a function called main, is Dialogue, which is defined as:

> type Dialogue = [Response] -> [Reguest]

> main :: Dialogue

whete the result of the function is the list of “Requests” to the run-time system, for which
an equal number of “Responses” are generated and returned in a lazy list as the first
argument to the program.

Request and Response are algebraic data types; this basically means that they are
tagged union types. The tags are called constructors as they behave like functions which
construct values in the type. In Haskell, constructors usually appear named with a capital
letter — this is also the case with names of types.

So, the types Request and Response describe, by their constructors, all the available
operations available from the I/O system and the various possible results from these
requests. These types are fixed and cannot not be extended by the programmer and so
should be flexible enough to meet all possible demands. This is hard to guarantee and it
should be noted that in actual implementations of Haskell additional requests have been
added to provide previously unforeseen facilities.

Constructions available from the Request type include AppendChan and Read-
Chan, for appending to the end of or reading from the front of, the data in a channel.
The Response constructors returmed from these requests would be one of Success,
Str stringorFailure ioerror,success and failure being self-evident and the Stx
construct returning the “string” contents of the channel as a Jazy list.

Note that a different approach has been taken for handling input than for output —a
difference that can unnecessarily complicate programs. The program can incrementally
add to the end of a channel, but can only gain access to the user input as a single list

which then has to be maintained in addition to the response and request lists.

2.2.2 Example of Dialogues

Figure 2,2 shows a dialogues implementation of the first example. It can be seen that

the two lists input and res have to be carried around betwcen functions, cluttering the
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code. Two ancillary functions are used; die, which reports an error, and returns an empty
list, which terminates the output list and thus the program, and also lines, a standard

function which is used to split the input list into a list of lines of input.

nmodule Main{main) where :

main = setup

setup res = ReadChan stdin : getinput res
getinpu= ((3tr input) :res) = how {(lines input) res
getinpur {{Failure err):res) = die err

how input res = AppendChan stdout "Do you feel alright?\n"
okhiow input res

okhow input.  {Success:res) = getanswer input res
okhow input ({Failure evrr):res) die err

getangwer [] res = [}

getanswer (l:input) res
case 1 of

viixs -> good input res

'Y’ :xs ~> good input res

-» bad input res

Il

good inpulb res = AppendChan st:dout *Great!\n"
okgoodbad iaput res

bad irput res = AppendChan stdout "Sorry to hear that.\n"
okgoodbad input res

clkgoodbad input (Success:res)
ckgoodbad input ((Failure err) :res)

how inpul res
die err

Figure 2.2; Interaction with dialogues.

This program is very hard to read. Replies from requests are handled in different
functions from where the request was made, meaning that there is no obvious indication
that the two things are at all related. Program flow is not obvious from the program
structure and, to make a change to any function within the dialogue, would require
changing a number of apparently unrelated functions in order for the dialogue to succeed.

Writing the program was also non-trivial. Too much time was spent on managing
the various success/ failure results, rather than on the actual dialogue. Various ancillary

functions, such as the die function, also had to be written.

I A LYY R
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Counting the number of lines in the complete program, including functions not shown
in the figure, leads to the relatively high 39. This is especially high as an equivalent
program in C takes 10 fewer lines! It is surprising that the higher expressive power of

Haskell does not lead to a more concise program than C.

2.2.3 Assessment

The dialogues scheme seems to be universally condemned these days [26,27]. Just trying
to manipulate these lists in a straightforward manner, and at the same time getting a well
written program working, can be quite a trial.

Other serious problems are:

o Modularity.

The example shows much constructing and taking apart of lists. It does not show
what happens when you wish to call a number of larger funclions which wish to
communicate through the dialogues scheme. This requires intricate passing around
of versions of lists, which can easily lead to typographical mistakes in the code, or
space leaks if the progranuner is not paying attention. This is an obvious case of
increased coupling, as functions depend on each other to handle the dialogues lists

correctly.

In the example, care is taken to separate functions which pattern match on either the
input list or the responses list from functions that request output. This is to ensure
the outpul will happen before the input is required. This leads to a great number
of small functions in the code, all doing a small parl of a larger task. This is poor
cohesion, where each function is not addressing one whole task. Extra care wouid
have to be taken if these functions were to be combined to make sure that pattern

matching happens lazily or else space leaks could easily occur.

« Flexibility.
The types of Response and Regquest are not extensible, and so programmers
wishing to do more either have to modify the compiler, or else implement the

required functionality outside of the functional system, and then somehow link it

together with the program.
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» Effort.

Every request returns a response — no matter whether it is needed or not. This
response has to be checked explicitly for failure. The okhow function in the program
is a good example of this, its sole purpose being to check for an error response before
continuing interaction. In the next section it will be seen that continuations provide

an elegant method for dealing with errors.

Due to the style in which dialogues programs are written, and the shortcomings

listed above, anything more than superficial error handling is difficult.

224 Summary

Even in short programs, the unnecessary complexity of dialogues can be troublesome.

For this reason a dialogues version of the second example was not attempted.

2.3 Continuations

The continuation styte of 1/O is a similar scheme [16] and can be implemented on top of
the dialogue system, as in Ilaskell, where the explicit request output and response input
lists are concealed within higher-order functions. This removes many of the problems
listed above for dialogues.

The basic notion behind continuations is that each I/O function takes an extra argu-
ment which is the next function to be exccuted. This is why this I/O system and these
functions are normally called continuations — they specify what function will be exe-
cuted next in an operational sense. This gives a sequential model of I/O which directly

parallels the sequential lists in the dialogues model.

2.3.1 How Continnations Work

Higher-order functions make the implementation and understanding of continuations
more difficult than the simple scheme of lists seen in the dialogues approach, but once
understood, continuations can be quite pleasing in their operation.

A continuation is a function which is used as an argument to another function, and is

usually tail-called’ by that function, passing working data. This continuation in turn will
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probably have been given at least one continuation which will then be used to continue the
path of execution. If a continuation does not take another continuation as an argument,
then it must be a terminating continuation. If it takes more than one argument, then it
implements a conditional operation, and will choose which continuation to use as a result
of the conditional test.

All continuations will have the same result type, which is the type of the main program,
and is typically an algebraic or abstract data type. In Haskell, however, it is the type
Dialogue, the type of the main program, as it was for dialogue-style /O,

So, the type of a continuation would be something like this.
> line :: Siring -> StrList -> StrlistConk -> Dialogue

The function 1ine takes two arguments, and then a continualion. The funclion returns a
Dialogue.

At this point the reader may be wondering what continuations are doing with the
result and responses list embedded in the Dialogue type, and made visible by the
dialogues style of I/0.? This is due to the fact that in Haskell continuations are built on
top of dialogues, where each primitive continuation is manipulating the responses and
resulls lists cancealed within the type of the continuation.

Internal choice can be given {0 a continuation by supplying more than one continuation
as an argument and allowing it to choose which one to follow. This is a better solution than
the programmer having to investigate the result of each operation and build a conditional
expression for each action. This solves some of the problems in dealing with errors in
the dialogues scheme, in that a continuation may be given a ‘success’ confinuation and a
‘failure’ continuation, and the appropriate one is followed without further programming.

For each of the requests in the dialogues style, Haskell provides an equivalent con-
tinuation. The Response type is not seen at all by the continuations programmer, the
responses being automatically interpreted by the continuations to return only useful
information.

The programmer can then build their own continuations around the primitive oper-

ations with their own code encapsulating more primuitive functionality, giving a higher

%1t becomes very obvious at this point that dialogues style I/Q is primitive to Haskell, and that continua-
tions are built on top of it. Itisa pity that the type Dialogue could initially lead to confusion for continuation
programmers who should not be thinking in terms of the dialogues I/O style.
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level of abstraction to their I/0 routines.

2.3.2 Example of Continuations

Figure 2.3 shows the example expressed in the continuations style. It can immediately
be seen to be more concise and easier to read than the dialogues example in the previous
section. This section of code also uses the 1 ines function seen in the dialogues example.
The continuations exit and done are both terminating continuations, which return and
report, as appropriate, cither failure or success.

Slightly more obscure is the $ function, which can be seen at the far right of the code.
This is simply function application, but at a differentJevel of precedence. This allows what

&

would otherwise have tobe writtenas (f x {(gy (hz)yasf x $ g v $ h =z

module Main{main! where

main = getinpuz

getinput = readChan stdin exit S
\input -> how (lines input)
how input = appendChan stdout "Do yvou fesl alright?\n* exit §

cage input of
{(l:input) -» case 1 of
'y’ i1xs —-> good input
Y’ 1Xs -» good input
. -> bad dinput
-> cone

r

good Zinpubt = appendChun stdout "Great!\n" exit
how input

had input = appendChan stdout "Sorry to hear that.\n" exit 4
how input

Figure 2.3: Interaction using continuations.

In conltrast to dialogues, continuations can be very readable. If the $ function is read
as a sequencing operator, which it effectively is, then it is easy to see the flow of control,
with the results of operations being handled within the same function as asked for them.
The structure of the program is good, split into the simple chunks of interaction.

Writing it was not so easy. Given thal it was easier {0 write than the same program

in the dialogues style, it was harder to hold in mind the more abstract concepts involved

e vt phes
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in continuations. Working out the types involved in sequencing continuations using
the ubiquitous $ operafor can be quite difficult without practice. On the other hand
modifying this code would be a lot easier than dialogues code. As continuations combine
so easily, adding extra actions into a function poses no problem: it is not necessary to
worry about affecting the global correctness of the rest of the program.

This program is half the length of the version for dialogues. It is also shorter than
the C version. This is more in keeping with what would be expected from the highly

declarative style of programming.

2.3.3 Assessment

Continuations seem to be easier {0 use, but can be hroublesome to understand as the
number and level of higher-order functions tend to grow at an alarming rate. Passing
and applying continuations in some cases can easily be forgotten about, leading to type
conflicts.

The key to writing continuations-based programs lies in understanding the types.
It was found that, when writing a complex continuation which might take a number
of continuations as arguments, it is easy to become confused about which arguments a
particular continuation needs. Getting this wrong invariably leads to a type etror during
compilation, often involving functions not immediately associated with the erroneous
continuation use, but sometimes in the function which calls it. However, being more
explicit with types of continuations tended to both make error reporting from the compiler
easier to understand, and actually helped understanding of the use of the continuations.

The following are some of the problems with the continuations style, some of which

it sharcs with the dialogues style.

 Modularity.

Except for the input stream which, once a handle has been created for it using the
readcChan function, can be thought of as living outside the 1/0 system, the lazy
request and response strecams are done away with. They actually still exist, but are

handled implicitly by the built-in continuations.

As the sequential ordering of operations is made more explicit, problems of inter-

leaving input with outputis not a problem. Input actions are given as continuations
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of the output actions, and so must happen after them.
So, in fact, continuations can produce relatively good modular code.
» Flexibility.
The continuations style has no improvement over dialogues in this area. Although
requests now appear as functions, these functions still map onto the same limited

set of requests. In principle, continuations have a high degree of flexibility — they

are let down only by their Haskell implementation.

o Effort.

Here continualions do splendiclly over dialogues. By being able to specify a failure
continuation as well as a success continuation, the cluiter of explicit error checking
has been removed, This is the main reason why the continuations style results in a

more Concise program.

S0, error handling is much improved. Error handling can be moved to a different

part of the program where greater attention can be given to it.

2.3.4 Formalised Interaction using Continuations

Turning now to the second example of the ATM. This program turned out very clean.?

The program was initially constructed by taking each CSP event and turning it into a
continuation. System events became continuations producing outpult, while user events
became input continuations, returning a value selected from a data type which corre-
sponds to all the possible user input at that time. The CSP choice operator became a
case expression over the data type. Uscr input without choice was naturally handled
internally to the appropriate continuation. After the basic structure was in place, the
actual (minimal) functionality of each continuation was then coded.

This scheme of programming results in a main section of code which is very similar
to the CSP version and has no traces of the primitive functions used to achieve the
interaction. In fact this code was written and debugged before the low level input and
output code was written. Simple stubs of each continuation were used to test the structure

of the program and ensure the types were correct before working on the interaction.

%[he program listing appears in Appendix B.1.
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Next came the output. This was very simple. For each system event a call to ap-
pendChan was used to output the appropriate message. Again, this was written and
debugged without any input code being written.

Programming the input was more difficult. As already noted, input is inexplicably
separated from the I/O system once ‘retrieved” using a readChan request returning a
list representing the input stream. If this is to be used within a program it must be
passed as an argument to, and handled by, each continuation within the program. This
lack of inclusion of input lists within the rest of the I/O system can result in code being
unnecessarily cluttered.

A different solution was used. Continuations are flexible and easily extended or
encapsulated. Normally the result type of the continuations is Dialogue. Anew Result

type was created, encapsulating Dialogue:
> type Result = [String] -> [Response] -> [Reguest]

As well as each continuation getting a hidden ‘response’ list, it will first get a list of
strings. This is the input st split into lines. This can be used and then passed onto the
next continuation. Standard system continuations are passed the response list only.

Once this was done and the initial call of the ATM was modified to pass the input
list, no other modilication of the main program was required, Continuations dealing
with input can then use this input list. Qutput continuations required modifications to
deal with the extra argument, but, with the appropriate abstractions, this modification of
output code on a global scale could hopefully be kept to a minimum.

These modifications are needed because in a functional language if you want a global
state it must be all-pervasive. Rather than being used in only one location, the state must
be carried along the path of execution. The lists managed by the continuation functions
are an example of a global state and thus when the structure of the global state is modified,

all functions manipulating this global state must also be modified.

2.3.5 Summary

Continuations, although potentially confusing to begin with, are easier to use in real
programs than dialogues. They have a clean nature which resulls in tidy programs,

which are easy to read and debug once the types of the functions are understood. The
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ability of continuations to be extended and encapsulated allows programs to be built up

in phases without requiring redesign of existing code.

2.4 Monads

A new refinement to this system comes with the application of monads to 1/QO [27].
Trivially, the monad system can be seen as a refinement of the continuations mechanism,
but with a greater level of encapsulation of control. Monads work with a token which
represents the current world and all 1/O operations are based on this token. This token
is tlhe basis of the monad.

Monads are a categorical concept. Category theory is an advanced branch of math-~
cmatics, discussion of which is outside the scope of this thesis. Interested readers are
referred to Barr & Wells’ introductory text [4). Further good references concerning mon-

ads arc the papers by Wadler [37,38].

2.4.1 Theory of Monadic Programming

Here is a brief description of what a monad means to the programmer. In the I/0 world
the general monad used is called the state monad, but in this thesis the terro monad will
usually be used.!

The idea behind the state monad is that it contains all global state that the programmer
wishes to manipulate — including the ‘world’ outside of the functional program. The
programmer will then define a number of primitive operations which will create a new
world, manipulate it or, more practically, modify it (o some desired end. Referential
transparency must not be compromised however — for example, by being able to modify
part of the global state in one place and having a corresponding effect elsewhere in an
unrelated part of the program. In order to preserve referential transparency it is sufficient
to ensure that there is only one current state available to the program, i.e. that the state
monad is not duplicated, but remains unique through the execution of the program. This
implies a single thread of operations on the state monad, each modifying the state it

contains in turn,

* Another monad the programmer would use, but not immediately recognise asa monad, is the list monad,
which defines how lists are constructed, and provides many of the primitive functions on lists.
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This aim is achicved by ensuring that all monad operations are linear, i.e. that they
use the monad only once (they are passed exactly one monad as an argument) and return
it only once (their result type must contain exactly one monad type). Primitives are
programmed to do this and other functions canmot break this rule because they do not

have access to the actual monad except via the defined primitives.

2.4.2 Practical Monadic Programming

At the theoretical level, a monad is defined strictly by two functions, bind and unit,

with types:

bind :«t Ma ~-> {(a -> M b) ~> M b

unit :: a -> M a

Exactly what these types mean is not especially important to this discussion — M is the
monad type and bind and unit are functions which operate of values of this type. These
functions are the basis of the principal operations on any monad.

The bind function is normally used for sequencing monad operations. It takes the
result of one monadic operation then passes it as an argument to the next operation. Often
an analogous operation then is used. It is strict in its first argument and thus forces the
first operation to fully return its result before the second operation is started.

The unit function is used as a constructive monad operator. It is often usec as a
return function at the end of sequences of monadic operations to encapsulate a result
into a monad to return it to the calling function. In Haskell the function is usually called
return.

These then are the basic functions used to build together a particular sequence of
monad operations. For any specific monad, new bind, then, and return functions
need to be defined. In the case of Haskell I/O, the state monad is called 10 and so the
functions are called bindI©, thenIo, and returnIC.

As noted, bindI0 and thenIO will pass the result of the previous operation as an
argument to the next operation; often this will be seen being taken by alambda abstraction,
which in Haskell is written thus \x -> <expression>. For use when the previous

result is to be discarded, variants on bindI0 and thenIO are provided: bindIo. and
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thenIO. The underline character is a reminder that each operator is dropping the result
normally passed to the right.

These operators just encapsulate the basic structure of monadic [/O. Beyond that is
needed some monadic operations which perform specific /0 actions. Quite logically
each of the standard dialogue requests has a corresponding monacdic operation, which
has the same name except with ‘10" appended to it. Thus the examples will be using

readChanI0 and appendChanIo for file operations.

2.4.3 Monads by Example

In Figure 2.4 is the monadic style version of the example.

mocule Main (rainIQ) where
import PreludeGlaIQ
mainiQ = getinput

getinput =
readChanIO stdin ‘thenlio!
\input -> how (lines input)

how input =
appendChanIQ stdout "Do you feel alright?\n"* 'thenIQ *
case input of
{lL:input) -»> case 1 of
'yiixs -> good input
'Y?:xs —->» good input
_ ->» bad input
_ -> returnIC ()
good input =
appendChan]O stdout “Great!{\n" ‘thenIO_*
how input

bad input =
appendChanIO stdout "Sorxry to hear that.\n” ‘thenTO_°
how input

Figure 2.4: Interaction using monadic I/0.

The monadic style shows its colours as a child of continuations here. Indeed the
differences between this code and the continuations version appear mainly syntactic end

so most of the comments about the continuations example can be carried forward to here,

ALt e,
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The general readability is similar to continuations, The program is slightly more ver-
bose with the thenI0 operations perhaps being more mnemonic than §, but in imperative
languages where ‘;” tends to suffice, this is an arguable point. Writability is improved

over continuations. One reason is that each monad operation stands on its own, without

complex high-order function to confuse issues, and so it is much clearer exactly what

arguments each operation takes, and where they should be.

2.4.4 Assessment

Again the problems that the other systemns have are used (o assess how good the monadic

[/0 system is for the programmer.

e Modularity.

The previous problems with lists are not so much an issue in the monadic style, The
request and responses lists simply don’t make any visible appearance. Whether
they actually exist or not is up to the implementation of monads and whether

monadic /O is primitive or built on top of une of the other systems. The input list

is still a problem, still being separated {rom the main [/O system after its creation,

introducing coupling between functions as it is passed around. Fortunately, as a

result of the extensibility of the monad style this is not a major problem.

e Flexibility.
As shall be seen in Section 2.3, the monadic style lends itself to being extended by
the programmer, in a safe and convenient manner. So a programmet can build up

compound monad operations from the simple atomic ones and use them in their

programs without extra effort.

» Effort.

The way in which monads work guarantees that in a expression “opl *thenIo®
op2” opl must return a result before op2 can happen. This means that it is easier

to write a program knowing that prompts will appear before input is needed.

With dialogues, every request has a response which will be handled in a different

part of the program. Often these responses are simply a report that no error had
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happened, Continuations correct this problem, catching any important responses
and passing them as arguments on to the next continuation. Monadic 1/0 works in
a similar way (o the continuations style, but with a tighter discipline. All monadic
operations return a value which is to be used by the next operation or else discarded

by using a thenIO_ operator

Unfortunately, the current design of error handling for monadic1/Ois not as elegant
as for continuations. Presently, the programmer can either ignore errors, which will
lead to program termination when an error happens, or else can choose to use an
extended monad which also carries error information. This extended monad system
allows a monad operation to be specified to handle the exror in a similar way to
continuations, but in making this choice the programmer then has to change all

existing monadic coding to use this extended monad.

The monadic system does not lead to as many type problems as seen with continua-
tions and, as a result, user functions tend to be of simpler types, at least on the surface.

In Section 2.5 there is some discussion on some other problems which may surface.

2.4.5 A Turther Example

The ATM example using monadic I/Q turns out to be very similar to the continuations
solution. In the same way that continuations needed to have its return type extended, a
new monad was required which would allow user input to be carried along with the rest
of the program state. It would have been possible to avoid this by using the extended
choice of primitives available with monadic I/0, but it was decided to use only the
facilities available in continuations to ensure a fair comparison.

Thete was some initial difficulty building the new extended monad operations, the
style being unfamiliar. As with continuations, confusing type errors from the compiler
did not help in tracking down these problems, but again, explicit typing brought out the
problems more clearly.

Once the new monad was working, implementing the AIM operations in terms of
this monad was remarkably straightforward, with only the previous complexity of con-
tinuations leading to problems when similar implementalion were attempted. Instead,

the monadic functions tended to be simpler, with easy types. Unfortunately, the monadic
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program does not look as nice as the continuations version, as it has so many ugly infix
thenIo functions which obscure the code.

The program listing appears in Appendix B.2.

24.6 Summary

Monads come out very similar to continuations. Their unique feature is the high level of
encapsulation which means that all the passing of data belween continuations is inter-
nalised and the amount of effort required to build monadlic programs can be less than for
continuations. However, this bundling up of state in the one token introcuces a coupling

where state is shared between many functions.

2.5 Glasgow Monads

Asjust seen, monadic [/O1is very similar to continuations. But their properly of encapsu-
lation enables the Glasgow IHaskell Compiler designers do some interesting things with

them.

2.5.1 The Glasgow Style of I/O

The Glasgow compiler uses the monadic scheme as its primitive I/O system, in that
when you use the standard dialogues scheme, its lazy lists are interpreted and created by
a library function which was programmed using the monadic I/O system.

Glasgow’s Haskell compiler implements its 1/O system by direct “C-calls” to external
libraries, potentially causing side-effects in evaluation, but allowing direct access to all
external systems. With this ability, it would be possible to implement dialogues directly
within the run-time library, so why does it usc monads?

The answer is because with monads there is a discipline of evaluation which would
not be guaranteed otherwise. The single-threaded nature of monads means that it is not
possible for dialogue requests to be evaluated out of turn or for a response to be made
available before the corresponding request is processed.

The monadic I/O system is also made available as an alternative to dialogues and

continuations to the normal Haskell programmer, who can now receive its immediate
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benefits. Instead of being limited to the small number of primitives provided by the
dialogue system, the programumer can use either a (currently limited) standard library of
external calls, or write his own C-calls to external systems. As external calls can cause
side-effects, it is first necessary that these be sequenced by the monadic I/0O systems,
and that the programmer has made sure that referential transparency is not lost by any
resulting side-effects. If this is not done, the results of executing the resulting programs
cannot be predicted.

The library of external functions made available is based upon a subset of what is
available from the standard C library, rather than the limited requests from the dialogues
system. This has an immediate benefit, that user input can be requested a bit at a time
using monadic C-calls to the C functions £gets, elc., rather than using the readChan
request and having a lazy list of characters which would have to be passed around and
maintained, even in a monadic framework.

So the functional programmer now has a way of calling external functions which can

cause side-effects, while retaining referential transparency.

2.5.2 Benefiis

There are a number of more direct benefits, both to the compiler author, for whom the
monad system was first intended, and to the end user, to whom it is a bonus.

For the implementer, the C-call system means that it is possible to create the whole
1/0 system using Haskell itself, If it is casicr to write parts of it directly in C, then they
can still be called from the functional language.

For the programmer, a highly imperative style can be used within a functional frame-
work. This means that translating from C into monadic C-call is fairly straightforward,
and could almost be done automatically. This can give you an interesting mix of functional
and imperative code.

A more tangible benefit comes from the efficiency of the C-call mechanism. If the
compiler is able to unfold the definitions of the monad operations, then the functional
program will be compiled down to highly efficient code. In long sequences of C-call
operations, the code generated will basically be these C function calls, with none of the

standard list-manipulation overhead seen in the dialogues example.
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2.5.3 Limitations

The monadic system is by no means perfect and there is much research to be done on
problems such as the difficulty in handling more than one monadic world in a program
[18]. If, using monads, there is a single thread of interaction and a single thread of stale
transforming functions, it may be desirable for these two threads of operation to work
together in sections of the program. Currently this is not possible.

It was noted earlier that C-calls, with monadic control, can lead to greater efficiency,
but this system still has difficully implementing such standard requests as readChan,
which creates a Haskell channel supplying input in a lazy manner, as it appears. In order
to be able to implement this request il is necessary to go below the level of monadic
control of the thread of execution and have a concutrent branch of execution involving
C-calls which is not governed by the safety mechanisms builtin to the monadic style. This
mechanism is also available lo the regular programmer, who would be expected to use it
with the utmost care as there are no controls on what is allowed at this level.

The need to leave the clean monadic world now and then arises because the monadic
scheme tries to hold a complete representation of the outside world within a single token,
rather than actually hold the complete state of the world — an impossible task. What is
actually required in the case of readChanis for the current state of every open channel to
be held in the monad. This would lead to implementation problems, and experimentation
also shows it to be very inefficient.

Earlier it was asserted that converting from C into monadic C-calls can be fairly trivial.
This is at least for straight sequences of function calls, with semi-colons between them. It
ig hard to match the flexibility of control flow possible in imperative languages even using
Monads. For example, all conditionals and “loops” needed to control basic interactions
must be performed in the functional language, causing an unfortunate mixing of language

styles.

2,54 Dangers of C-Calls

The “imperative within functional” style can be deceptively attractive and can lead to
some ghastly hybrid programs. A common resultis a functional program which is mostly

imperalive code. Out of frustration with the non-global state of functional programining,
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mainiQ =
malloc 4 ‘thenl0* ( \ state ->
malleog 4 ‘theni0* ( \ flag ->
assign state normal ‘thenIo_ ¢
assign flay false *thenIQ_*

<<application code deleted>>

free state ‘thenlIo
free flag )

Figure 2.5: Example of cmbedded C in a functional language

the imperative code will have its own global memory management system, rather than
passing small amounts of data back and forward with a state monad, because this has a
high overhead.

Figure 2.5 contains a section of code from an application written as a student project
showing heavy use of monadic I/0O with C-calls, and acts as a good example of how the
C-call system can be abused when wriling “imperative” code.

This code does explicit memory allocation and assignment of two variables so that
they may be used efficiently in other C-calls within the application. It looks a lot like
the code which the programmer would write in C, except that in C local variables get
memory allocated on the stack automatically. The corresponding C code consists of two
lines declaring and initialising the variables.

This functional code uses none of the features of functional languages, instead it
is using the functional language as a meta-language to hold sections of imperative code
together. Its programmer is battling against the clean semantics of the functional language
to generate state transforming semantics.

Further, the code produced is hard to maintain, because it is hard to read® and more

prone to errors in programmer-controlled memory management.

5The section of code included is remarkably readable compared to other code in this application,
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2.5.5 Two Way Communication

Monadic 1/0 provides a convenient way for a functional program to call out to external
systems using the C-call facility. But while control of execution is held by an external
system, it is difficult for the external system to do the reverse and call code back inside
the functional program. Being able to do this would allow an external system to directly
control the execution of portions of functional code. The functions called may even jump
back out of the functional world via further C-calls, leading to a mixing of calls back and
forward between the two languages.

These features would be useful to allow common vperations such as mapping external
user events into actions on the part of the functional program, or to handle exceptional
conditions, stuch as signals, occurring during the execution of the program. In the Unix
process model, signals are a form of interrupt and are used to inform processes of excep-
tional conditions. They are handled by the operating system calling a program-registered
section of code, which would then modify the global state in order to influence the exe-
cution of the program. One proposed solution would be to allow the functional program
to poll for signals, but often such signals require immediate attention which cannot wait
for the program to get round to checking whether there has been a signal, while it was
engaged in other aclivily.

To allow external code to call into functional code, the run-time system of the functional

language which would manage this would first have to overcome a number of obstacles.

1. Heap Consistency.

Functional code cannot be executed if the heap is in an inconsistent state, such as in
the middle of a garbage collection. Much of the operation of a functional program
is not re-entrant, unless special care has been taken in the compiler to allow this.
This means that it is very difficult, if not impossible, to have Haskell code executing
during signals. It is only possible when you know that the heap is in a consistent

state, perhaps during a C-call, but signals can interrupt execution at any time.

2. Types.

Haskell types tend to be arranged in memory differently to the types found in

non-functional languages. As such, converting between functional representation
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of values and non-functional representation can be difficulf. Obvious examples of
this are representing large record structures, often found in C libraries, in a Haskell
data-type. The easiest way to achieve this would be to make the data type abstract
inside the functional language, and provide selection functions to manipulate the

fields of the record via further C-calls. This is hardly an ideal solution, however.

3. Referential Transparency.

Itis important, when. a call from outside the functional language causes parts of the
functional program to be executed, that referential transparency is not lost. Thus the
functional code called must not directly influence the state of the currenily running
program. This might imply that sich a call is a totally pointless operation; however,
the monadic 1/0 system allows state to be carried along implicitly, allowing mod-
ifications of state which can be seen in the rest of the program, but which do not
compromise referentiality. So, as long as changes of state occur through monadic

operations, referential transparency should be maintained.

Thus there is a limited way for outside code to call back into functional code. External
systems, such as window and operating systems, commonly wish to call code supplied by
the programmer o handle exceptional conditions (such as operating system signals) and
user input (such as window system callbacks, triggered by user events, or from non-user
driven external communications), but there is only lmited scope within the functional
monadic world to cater for this. Exceplional conditions which arrive asynchronously
cannot be handled by the operating system calling an arbitrary section of the functional
prograra, as the compiled functional code is rarely re-entrant, and has limited scope if the
code cannot modify the global state to reflect its actions. It is only in the case when the
functional program has already surrendered control to the imperative world that it could
call sections of functional code, passing the global monadic state, without fear of failure

due to inconsistent state within the functional world.

2,5.6 Summary

The monadic style of I/0O is only especially useful because of the C-call feature that comes

with it, It gains little over continuations when seen with its disadvantages. Its major

=
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contribution is of controlling the way that C-calls work, to sequentialise them, ensuring
that referential transparency is not compromised.

The overall system is very powerful, but the use of low-level calls to C can still
be questioned. It is very good at providing a C-style language by which functional
programmers may access features of a system not normally available, but if functional
programming is to convince people that it really is a step above imperative programming,

then such regression is worrying.

2.6 Why is it Hard to Interact with Functional Languages?

Functional languages have a problem with external communication. Although dialogues
and continuations provide a method of communication, they are rather limiting. Monadic
1/0 certainly extends the power of functional /O, but there is a compromise in readability
and the solution is not total.

What are some of the problems found when trying to write functional programs
that are interactive? I feel that there is something fundamental about the applicative,
declarative style of functional languages that makes them poor at creating interactive
programs.

In this section I shall review a number of features of funclional language, starting first

with simple problems, to see what the root causes of this problem are.

2.6,1 Modularity

An important concept in software engineering is separation of low-level code, dealing
with operating systems, et¢, from the higher-level “application” code, which is more con-
cerned with functionality. This allows the low-level code to be modified and rearranged
in porling it between systems, without any modification of the higher-level application
code.

Currently, there is nothing in the way that any of the standard 1/0 schemes work to
encourage modular programming. The fact that lists, continuations, or monads have to
be threaded around a program, introducing couplings, makes it hard to structure code

without dependencies between high-level and fow-level code.
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At the same time, if there is any global state int your program, this needs to be passed
around between many functions that are notinterested in the contents of the state. Further,
this pscudo-global value has be declared in one place and is visible within all functions

through which it is passed. This makes it difficult to create truly modular programs.

2.6.2 Multithreaded Input/Qutput

Continuations and monadic I/0 have at their heart the idea of a single thread of oper-
ation: the reason for this is mainly to ensure that state changes do not break referential
fransparency. Single threadedness is unfortunate, in that interaction tends to be a multi-
threaded activity, with users likely to be switching their attention between various parts
of an interface. If the functional program can be carrying out only one picce of dialogue
at a time, ag in the ATM example, then the user is tied into a single thread of interaction.
Either the single threaded nature of functional I/0 has to be multiplexed (as in the Fud-
gets system presented later, in Section 2.8.2), or perhaps Haskell’s 1/0 system needs to
develop some way of achieving multithreadedness, perhaps using the ideas that Holyer

and Carter propose [14]. Their proposals are discussed more fully in Section 3.1.2.

2.6.3 State in Functional Languages

As noted in the introduction, there are some non-pure functional languages for which
interaction with external systems is not a problem. Could it be that there is some inherent
property of pure functional languages which means that interaction will always be a
problem? The very nature of interaction is based around the modification of shared state
through an interface. Unless the language is tolerant of these side-effects in some way,
then state changes as a result of external systems will always be hard to control.

In current systems, in order to control the handling of state, lists or tokens need to be
managed or, in the case of primitive continuations, if is necessary to work in an awkward
higher-order style, where program readability can be compromised. Certainly, writing
programs in any of these styles can be a trial.

The clean management of state in functional languages is difficult, while inimperative
languages it is simple. The linperative language’s semantics are concerned with a global

environment, with some scoping rules and, as such, directly addresses state changes.
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The functional language’s semantics is based more on manipulating values, and does not

address globat state well at all.

2.64 Summary

There are a number of specific reasons why functional languages are poor at interaction.
Tirstly, functional languages do not encourage modular programuming, which makes some
aspects of interaction difficult. Secondly, the single-threaded nature of I/O in functional
languages is at odds with the multi-threaded nature of the external world. Thirdly, as
interaction tends to be based on medifications to an interface shared between the user
and the program, the apparent statelessness of functional languages does not help in
programming interaction. Lastly, functional programming has not yet found a good way
in which to separate application code functionality from interface functionality, making

it difficult to produce well-written interactive programs.

2.7 Further Requirements

By investigating limitations in current solutions for simple I/O in functional languages
some more specific requirements are found which any solution to the problem of inter-
action with functional languages needs to address. Some of these come directly from the

discussion of the monadic style.

2.7.1 Modularity

It is common for interaction code to become entangled with application code. T should
avoid this in any system I build.

This requirement links back to the original requirement that the interface be separate
from the application, but with an added fact that doing so will make programs more

modular.

2.7.2 Flexibility

The traditional dialogues and continuations schemes are non-extensible, meaning that

only the operations determined by the language designers are available. Monadic 1/0
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does not suffer from this problem, nor should any future solution.

2.7.3 Effort

Some of the programming required to achieve the most basic interaction is quite detailed.
More so, a lot of it is fluff, dealing with verbosity of the I/O system, or awkward error
handling. Often it is hard to see the useful code amongst all the bits of irrelevant code
holding it all together. I want a more direct style of coding. Notice that the monadic
style has its own limitations, and it is not a complete solution to interfacing functional

languages to external systems.

2.7.4 Multi-threading

User interaction can have a high level of concurrency, and it is apparent that, currently,
functional languages make it difficult for different logical parts of a program to be able to
take part in interaction without a great deal of cooperation between the various parts, as
they pass around a monad or manipulate the lists of the dialogues system. T wish to be

able to manage interaction within independent threads of a program.

2.8 Other Proposed Solutions

As user interaction within functional languages is not a new problem, there have been
many solutions proposed. In the introduction I covered some of the history of my own
work and now I shall cover some of the solutions proposed by others.

Many people have written of the problems functional languages have with user inter-
faces and have proposed various solutions. These solutions range from some of my own
simplistic solutions {32] to the more powerful systems that Singh has produced [33], with
some truly innovative possibilities explored by Carlsson and Hallgren [5] and by Dwelly
[8].

Because I wish to develop a system for building interfaces outside the functional
language, it is not necessary to examine cvery system which allows the building of user
interfaces inside the functional language, but will concentrate instead on two currently
popular schemes. The investigation begins by looking at the research area in general,

examining in particular schemes which also employ separation.
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2.8.1 Overview

All systems built to allow a functional language to interact with the user have, at some
level, the functional program communicating with an external agent, receiving events
from the user and replying with requests telling the agent what to do next. This can
be done either by low-level calls emmbedded within the run-time system of the language,
or by an external process, connected to the input and output streams of the language.
This difference of technique is of no concern; what matters is that at some level there is
a protocol between the program written in the functional language and another system
which acts as its agent, creating and manipulating the interface.

Where designers have used a separate program to build and control the interface
of a functional program, it has always been that this process had no intelligence of its
own. The functional program was, in effect, controlling a robot which would create the
interface, but could only channel user feedback directly to its controller, not being able to
decide for itself how to react. This mecans that although there is a physical separation of
interface and application, there is no separation of control, everything being managed in
the functional program. This sclution works, but is certainly not elegant.

To my knowledge, ne one else has proposcd using an programmable agent to control
the interface for functional programs, taking away the effort of programming interaction
functionally. However, the idea of a programimed agent is not new, its use outside the

functional world implies that there must be some merit to the idea.

2.8.2 Fudgets

A recent innovation in the field of graphical interaction and functional languages is
the Fudgets system, by Magnus Carlsson and Thomas Hallgren [5]. This is a complete
window system toolkit written in a lazy functional language, making heavy use of higher-
order functions to provide its power. This is the first full implementation of a graphical

interactive toolkit in a lazy functional language.

Review

The Fudgets system is very impressive. It allows some very complex programs to be

created without leaving the functional language. Its authors have created a number of
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relatively large demonstration programs, showing the flexibility of the system.

The key concept is a so-called ‘functional widget’, or “fudget’. Fudgets correspond
to the widgets of imperative toolkits, providing buttons or simple dialogs which, when
combined, build into a complete program. Functionality is provided either directly in
the semantics of each fudget, or else by non-display fudgets used to build other fudgets
together.

The authors acknowledge the desire to separate the aclions generated by user interac-
tion and the resultant processing of those interactions. Indeed, they achieve this aim quite
well, butit appears that the structure of the application is tightly bound o the structure of
the high-level interaction. This means that it would be difficult to redesign the interface
to one of their programs without some alteration to the structure of the application.

There are some other, less fundamental, problems with the current Fudgets scheme

which [ summarise below,

e Error handling.

Currently there is no discussion of how errors returned from the window system
may be handled. Ican only assumc that the system always take the common route of
exiting when such a fundamental exrror occurs. This is forgivable in an experimental

system, but is unacceptable in a production system.

o Run-time tailoring.

It is possible to set “resources” (configuration options) for individual fudgets when
they are created, but there is no obvious way of modifying these resources during
the lifetime of the fudget. This makes it impossible to manipulate the interface

during execution, and also limits the over-all flexibility of the system.

e Information flow.

There is a limited path of information between the application and the interface.
All control and information paths between application and interface have to be ex-
plicitly programmed. To modify an already programmed application could require
extensive rewriting of the interface, when the currcat paths of information flow

need to be altered.
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» Efficiency.

The Fudgets scheme makes heavy use of lists. The threads of I/O that the fudgets
process are initially sourced from the Haskell I/O replies stream, which has to be
split up and routed appropriately, and channeled into the requests stream in an efab-
orate mulliplexing scheme. Thus, there is a lot of list construction and destruction
within any fudgets program. This could be addressed by a deforestation optimisa-

tion, but such optimisations are not common in real compiler implementations.

Program Structure.

Asdiscussed in Section 1.2.3, there is a multi-threaded nature to user interaction and,
indeed, fudgets reflect this in some sense by having each ‘fudget’ as an individual
thread, which is run independently of other fudgets. These fudgets then need to be
connected by making explicit the dataflow between the program and its interface.
This can impose an inelegant style of programming within the application core. If
the flow of data in the interface differs greatly from the dataflow of the application
then coding can become difficult. Further, changing layout may require major
changes to the structure of the application. This is very poor in modularity terms, as

there is a very tight coupling between interface structure and application structure.
Locality

Each fudget, unless specifically controlling a number of sub-fudgets, has no access
to the state and resources of other windows. This makes cooperation between
fudgets difficult, such as a fudget controlling a palette of tools which needs to be in

a separate window from the fudget where the tools operate.

A Different Implementation

Alastair Reid and Satnam Singh have developed an implementation of Fudgets based

upon the OSF/Motif widget set {22], using the monadic I/O system. This system has an

efficiency gain over the original fudgets system since much of the tedious list consltruction

and destruction has been replaced by direct calls using monadic I/O.
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Summary

The Fudgets system is a good way of structuring applications, given that application
dataflow is unlikely to change especially radically during the life of a program. However,
building an interface above this structure is not always good because there is too tight
a coupling between application structure and interface structure which can affect future

maintenance.

2.8.3 Concurrent Clean

Concurrent Clean [10] is a lazy functional programming language which runs on a num-
ber of different platforms and fealures concurrency operators and extensive 1/Q abilities.
To ensure good portability between platforms, Clean implements its own abstraction of
the various I/O facilities, avoiding the need to call outside the functional world and thus

the problems such calls create, A detailed description of how Clean I/0 works is in [2].

Review

Like Fudgets, Concurrent Clean dees its graphical interaction by imposing a particular
style of coding. In Fudgels the code is structured by the dataflow of the application. In
Clean the structure is by a hierarchy of event types.

Windows and menus are registered as interested in particular types of events with
a main event dispatcher, so that the appropriate block of code is called when particular
events happen. These functions can then do output operations by using the built-in
abstract functionality of Clean.

The Clean 1/0O system, because it uses built-in datatypes and functions to achieve its
aims is, unfortunately, hard to extend in comparison with the monadic system. Unless a
rich enough set of I/O primitives have been provided, there will be programs which just
cannot be written in Clean, As the authors of Clean claim their I/O system to be at a very
high level of abstraction, it is questionable whether enough low-level systems to ensure
flexibility is provided.

Clean provides functions for all oulput operations. In order to achieve this without
compromising referential transparency, Clean requires a system which achieves the same

as monadic I/O; i.e. which avoids side-effects to shared data. Monadic I/O does this by
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encapsulating all mutable values in an abstract token which cannot be shared. Clean does
this by extending the type system, introducing values with “unique” types, which the type
system then ensures that these values are only used lineatly, i.e. that they are not shared.
In practice, the restrictions imposed on the Clean progranuner are not especially different
from those imposed upon the monadic programmer, with the type system implementing
the discipline for both regimes.

Alas, Clcan does not live up to its name. Either its syntax, or the coding style
requived by the I/0 system, renders programs written in Clean as rather opaque. This
is unfortunate as it is becomes hard to compare programs written in Clean with those

written using either Monadic 1/0O or the Fudgets system.

2.84 Summary

There are no complete solutions to the problem of creating interactive programs with
functional languages. Both Fudgets and Concurrent Clean attempt to solve the problem
from within the functional language. In both cases the result is extra effort in program-
ming, with reduced efficiency, reduced clarity and reduced extensibility being related

problems which affect one or both of the systems.

2.9 Summary

I'have looked at the current standard techniques for programming input/output within
Haskell. This comes down to a choice between dialogues, continuations or monadic I/0.
Monadic I/Q is currently gaining favour, and has removed some of the limitations in the
other systems. Dialogues-style I/O has been shown to have little value beyond very short
programs, and its use is not recommended. Continuation-based I/0 is, at its heart, very
similar to monadic 1/0 and could achieve similar results if it were given the same level
of consideration as is given to the monadic style.

With all this said, I still find that functional programming language, complete with
their modern I/O systems, are still quite inadequate for writing interactive programs. In
systems such as Fudgets, or Clean, where the language has been extended, a sclution has
been searched for within the functional language and the result has been compromises

and complexities. There are fundamental problems in the functional style which limit ifs
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usability in inleractive systems.




Chapter 3

Making Interaction Easier

It is now clear that there are problems when functional programs are asked to comumuni-
cate with the non-functional systems which allow interaction with users, and that none
of the systems considered so far solve these problems. In this chapter I shall explore these
problems further, proposing a solution based on ideas seen in Section 1.2, taken from
software engineering, HCI and UIST research.,

A valuable principle of UIST is that the user interface should be separated from the
application core. T shall show see how this can be achieved in functional systems, using
the Tel/ Tk toolkit introduced in Section 1.2.4, and how this solves some of the problems
listed in Section 2.6.

By extending Tcl/Tk, I shall show how it is possible to reduce the effort required {o
produce good user interfaces from functional languages, providing greater ease-of-use
than given by the monadic [/O system. The resulting system will be extensible, so that
it can grow with the programmer’s needs, and which will integrate smoothly with the
functional language, not disturbing the smooth functional programming style.

lo illustrate my solution I present four example programs — two new ones written to
demonstrate the practicality and functions of my design and a further two based on the
examples from the previous chapter. I shall also examine possible further developments,
and different approaches to the development of my system.

The interfaces are written using the Tcl/Tk toolkit introduced in Section 1.2.4. By
moving interaction with external systems from the functional program into a separate

process which communicates with the program at a high level of abstraction, I improve
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maintainability by increasing modularity, portability and coherence of software design.
The interface and the functional program communicate by means of a high-level protocol,
defined by the program designer. A good choice of protoacol should reduce coupling
between interface and application core.

1 have gained an immediate improvement on effort required to build interfaces by
using Tcl /Tk. Its efficient, clean syntax makes interface design, creation and modification
a pleasure, since it is easier to program than even the normal imperative languages, and
also more straightforward than the use of the C-call feature of monadic I/0.

I start by reviewing Tcl/ Tk, considering how it should be extended.

3.1 Modifications to Tel/Tk

In Section 1.2.4 Tcl and Tk were introduced. Tcl is a simple embeddable language for
which a graphics user interface toolkit called Tk has been created which uses the Tel
language as its core. Using Tcl, scripts are written to control the actions of the toolkit.

The Tcl interpreter used by Tk is made available in a program called wish, standing
for windowing shell. It is common to extend the Tcl/Tk system with new features, and
create an enhanced version of wish with a different name. I have followed this lead,
creating an enhanced wish called swish.

I have extended the Tel language with commands to allow communication between
Tcl/Tk and an external system which, in this case, is a Haskell program. This allows
programs written in functional languages to communicate with users through interfaces

written in Tel/Tk. The design and implementation of this is discussed below.

3.1.1 Design Background

There is along history of grafting user interfaces onto the front of less interactive programs.
These normally work by creating ‘pipes’ of inputand output for the core program to which
the user interface is attached.

This approach has also been used to create user interfaces for programs wrilten in
functional languages [32]. Howecver, this approach lacks something in that either the
interface has to be tailored for the individual program or an elaborate protocol has to be

created which allows the functional program to control the creation and running of the

PR, LI
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interface that the front-end program creates {33}, Again, the mechanism, which allows
complete control of the interface to be dictated by a separate communicating process, has
been implemented in the non-functional world to permit programs, written in languages
without the flexibility to call C functions, to have graphical user interfaces. A good
example of this is a small program called ‘dox’ which is designed to allow Unix shell-
scripts access to Xlib functions. Naturally, the programming language used with a system
like ‘dox’ could just as easily be functional.

Another program in a similar vein is ‘Wafe’ [20], whose purpose was to allow graphical
user interfaces to be created for programs which cannot interacl for themselves. The
major difference between Wafe and ‘dox” is that with Wafe the interface is programmed
in Tel. This allowed interfaces to be designed in Tcl, a language well suited to interface
creation and management, allowing whatever program it attaches to, to concentrate on
the application functionatity.

Wafe can be used to create user interfaces for programs written in a functional lan-
guage. In [31] I created a couple of examples of functional programs using Wafe for their
user interfaces. However, Wafe has a number of limitations {(e.g. no ability to do direct
graphics) and, in my opinion, design flaws (its method of attaching the two processes
together is limiting). This led me to an alternative tack.

Being impressed with the Tcl language that Wafe used, I decided to investigate Tl / Tk,
the Tk toolkit having features lacking in the Athena toolkit used by Wafe.

It was at this point that I chose fo use Tel/Tk, but any other toolkit or UIMS could
have been used. One particular reason for my choice was its nature as both a language
and a toolkit. Using a toolkit with a built-in high-level interpreted language allows a
programuncr lo adapt the interface at run-time from the functional programs if desired.
This allows tailored code to be loaded into the interface, and thus ensures thatit is always

running at its most efficient.

3.1.2 Process Communication Design

In current systems functional programs have to communicate with external systems at
a relatively low level of abstraction, directly using whatever I/0O system the language

provides. I want instead to have the functional program communicate with a interface

s a3
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broken off into a separate system, and communicated with ata much higherlevel. Such an
interface would need to be specially written for each particular application, and it would
be programmed to do all the low-level interaction that the functional program would
have had to do otherwise, communicating with the functional program at a high-level.

Getting the communications right is essential. A poor choice of design for the con-
nection of interface to application, risks making it difficult or impossible to code some
interactions. If the wrong level of abstraction is chosen for the communication, then there
is the risk of over-loading the channels and creating a bottle-neck or, at the other extreme,
limiting the expressive power of the communications.

The interface and the application communicate using the standard I/O system of
the functional language, and whatever I/Q system is available in the interface’s coding
language. The two parts of the program do not have to be separate processes in operating
system terms. Itis possible for the two parts of the program to exist as cooperating threads
of execution, where this can be implemented within the language. Itis then possible to use
call-backs to channel information from the interface to diffcrent parts of the application.
Also possible is true concurrent threading, if the operating system supports it within the
same process.

Assuming that the interface runs as a separate process from the application, it is neces-
sary to look at how the interface and the application will communicate. An obvious first
idea is to have two communication channels between the interface and the application;
this is how ‘dox’ and Wafe work. Then all messages the interface generates may be passed
on to the application, and any responses can be sent back in the other direction from the
application. User events will also be sent along this channel, asynchronously, to ensure
they get timely processing. This system is illustrated in Figure 3.1.

I reject this model for the following reason: if the application has to make a query to
the interface, it then has to find the reply to the query within the input stream arriving
from the interface, while ensuring that incoming events are not lost. How hard this is to
achicve in functional languages can be seen in the implementation of Fudgets [5] where
special handlers are required to queue events while searching for replics awaited. The
same queuing and filtering process can be seen in the protocol of the X Window System
[29], where replies to X protocol requests and user events are multiplexed on the same

connection and must be carefully separated and requeued as appropriate.
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Haskell program.

ReadChan AppendChan

Replies Commands
and events

User Interface.

Figure 3.1: Two-way communication between Interface and Application.

Idcally there would be four channels, sc that each system has both an asynchronous
and a synchronous connection to its peer. This would allow easier handling of incoming
communication, but with the overhead of twice the number of channels of the two-way
system. Is there a real need for this amount of bandwidth to be maintained and controlled?
If X can work, albeit with some effort, with only one bidirectional connection, perhaps
four unidirectional channels is more than required.

Between these two extremes I favour a three channel solution, as illustrated in Fig-
ure 3.2. From the interface to the application there is firstly an asynchronous channel
for events. Events can be sent on this channel at any time. From the application to the
interface is a command channel. A second channel from the interface to the applica-
tion then allows synchronised replies to commands sent on the command channel. The
Haskell application can handle concurrent reading from more than one incoming channel,
if necessary, using the ReadChannels primitive, rather than the simple ReadChan.

Some early results have shown this model to be much easier to program than the
previous norm of two channels, which led to an almost synchronous protocol between
the cooperating processes to ensure that events did not get intermixed with other com-

munications.
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Haskell program.

ReadChannels AppendChan

Evenis Replies Commands

User Interface.

Figure 3.2: Three-way communication between Interface and Application.

This three-way system bears some similarity to the system of communications de-
vised for Took’s Presenter system [36]. Presenter is a “surface interaction” system, which,
in place of a simple window system, provides an abstraction of windows, frames and
other interactive objects with which interfaces can be built. As in my system, the presen-
ter system is a separate program which communicates with the application to provide
its services. Between the presenter system and the application it is serving, there are
three communication channels established, which correspond almost directly to the three

channels I employ.

High level interaction

Naturally, the functional program will still have to communicate with the outside world,
but via the separated interface. This will have to be managed using the traditional
I/0 system of the language. The difference is that that the functional program will
now take part in the interaction at a much higher level and so mote information can be
communicated, thus increasing the bandwidth. Instead of passing the complete dialogue
needed to achieve a particular aim, the functional program only has to communicate the

intention, with any necessary data, and the interface can look after all the details. Equally,
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the information returned from the interface to the program could be at a much higher
level than that found in typical I/O systems.

For example, if the user wanted to save a current document, the discrete events
generated by the user would not be seen by the application. Instead it would be handed
a high-level event conveying the user’s wish to save the document. At this point the
application would pass a copy of the document to the interface for it to save to disk,
without the application needing to go through the step-by-step processes involved.

So there is now a separation of the low-level processes which happen in both the
interface and application and the high-level dialogue which the two sides enter into.
At the lower level is key presses and mouse click in the interface and calculations and

manipulations in the application. The high-level dialogue does not deal with such details.

Protocol Format

Communication protocols tend to be based on low-level byte formats for efficiency. For
the purposes of this excrcise, however, efficiency is not a major requirement and the desire
for an easy interpretation of the communication streams leads me to choose a flexible text
based protocol, where each line of text (terminated by a new-line) is the basic packet.

This altows the functional program to communicate with the Tcl/Tk process on the
command channel using simple Tcl commands which can be handled directly by the Tcl
interpreter. For communication in the other direction, Haskell has flexible routines for
handling streams of text, and will allow direct pattern matching of words. An additional
benefit is that a textual protocol is easier to debug by inspection or mimicking that a
byte-stream.

So events sent from. the interface to the application will be simple strings representing
actions on the part of the user. Examples might be “quit,” to lerminate the program, or
“font 12,” to set a particular piece of text to a different font size.

In reply the application will send strings to the interface. Examples of this mighl be
“about,” which would produce an’About’ window for the program, or “change old-string

new-string,” for application-led manipulation of some data used in the interface.
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The Application Core

Thave specified how F'would like to construct the interfaces, using Tl as a high-level proto-
col to afford communication with the interface. Niow I consider the remaining application
core of the program. What particular features are required within the application, and
how the application is structured must now be considered.

The monadic system of embedding C code inside the functional language, as shown
previously, can lead to ugly codle. By having a separate interface which will contain the
previously embedded imperative code, the putity and coherence of the functional code
can be improved. It certainly makes more sense to write imperative code in an imperative

language, and functional code in a functional language.

Multithreaded Application

To allow complete user freedom, components of the interface should behave in an in-
dependent manner with a dialogue in one window not interfering with a dialogue in
another. For this reason [ choose to have a system of processes, rather than the sequential
solutions normally made available by functional languages.

Even though functional languages arc intrinsically parallel in nature, there is little
notion of threading seen within their design. Again imperative languages come to the
rescue. [t is now normal for languages, or the operating systems they run on, to offer
some sort of threading support [35].

Morc recently, Hoylier and Carter have proposed an extension to Haskell which
allows easier threading by permitting multiple output streams using a new 1/0 request
“WriteChan’ which would split off a separately evaluated stream of output, in the same
way as itis currently possible to have multiple input streams with the "‘ReadChan’ request

[14].

3.1.3 Process Communication Implementation

Implementation of the process communication system required two pieces of code to
be written. Firstly, Tcl/Tk was extended to allow it to set up the two processes of the
interface and application. This produced the extended wish shell, swish. Secondly, the

Haskell run-time system had to be adapted (o allow it to communicate on the channels
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created by the Tcl/ Tk system.

Ovarview

For simplicity I chose to implement the process communication using the pipe system
call, as opposed to the more powerful but more complex socket operations. Whereas
sockets allow bidirectional communication between independent processcs anywhere on
anetwork, pipes provide only unidirectional communication and only between processes
which share a common ancestry — the pipe is created by and inherited from a common
ancestor.

I use three pipes, corresponding to the three data paths in the design. In order to
arrange “common ancestry” [ have the Tel/Tk interface create the pipes and then spawn
the Haskell program. The spawning is done using the fork and exec system calls,

This is all cocled as an extension to the Tel/ Tk system ratber than the Haskell system,
as the Tcl/ Tk system is smaller and simpler. Doing this also allows me to use the same
Tel/ Tk system with diffcrent Haskell compilers, or indeed different languages.

The additions to Icl/ Tk are covered below in more detail. The code can be inspected
in Appendix C.1. The processes required to create extensions to Tcl and Tk are covered

in detail in Ousterhout’s book on the Tel and Tk system [25].

The Spawnchannels command

The spawnchannels command is the main extension to Tel/Tk. All process and channel

setup is done by this command. It has a very simple syntax.
spawnchannels program {arguments]

The comuiand takes a single argument which is the name of the Haskell program to
spawn, plus optionally any arguments to pass to the program when it is executed.

The implementation of the command is fairly straightforward. Ignoring error check-
ing, it simply creates the pipes for the communication channels, then forks. At this point
there are now two processes running. One will stay as a Tcl/ Tk process, the parent pro-
cess, the other, its child, will become the Haskell program. These twa processes are now

covered in detail below, separately.

LR VI L
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The parent process after the fork has a simple task. By using the dup2 system call, it
arranges its end of the pipes to be at file descriptors 13, 14 and 15 and closes all its original
references lo the pipes. It does this to ensure that the processes exit cleanly when either
side closes a pipe; if is the last close on a pipe which causes it to shutdown, and so it can
only exist in one place. The parent then sets these new descriptors to non-blocking mode
to guarantee that the interface will never block while waiting for the Haskell program. It
finally sets up the handlers for each of the channels as will be described later.

The child process follows a similar path, using dup2 and closing the original pipes.
It does not set its ends of the pipes to non-blocking as the Haskell program it is about
to execute may not be able to cope with this, and it is not a problem if it blocks anyway.
Finally, before execing the Haskell program, it closes the connection to the window
system that it inherited from its parent, but which cannot be used in any other process.

Figure 3.3 shows the arrangement of pipes set up by the two processes, showing the

number of each file descriptor, and the direction of each pipe.

Commands
13 L 13
Haskell Tel/Tk
program Events User Interface
14 {e I4
Replies
15 {- i5

Tigure 3.3: Communication between Tcl/Tk and Haskell

At this point, the Tcl/Tk process — the parent process — is ready to run its inter-
face, accepting commands from the user and from the functional program through the

command channel,
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The Command channel

The command channel is implemented by the ComProc procedure in the swish program.
Itis based upon the standard input handling function, but with more error handling, and
some changes of behaviour in exceptional circumstances.

Lines of text incoming on the command channel are assembled into complete Tcl
commands — employing the parser to decide if the command is complete or not — then
executed. Making use of functions supplied by the Tcl parser to determine whether a
command is complete or not avoids the additional complexity that would otherwise be
involved in supporting mulliline commands.

The ComProc procedure is registered with the Tel/Tk system so that it is called
whenever any input appears on the command channel. This ensures that the input is
handled in a timely manner, and that the program will not ‘hang’, waiting for input from

the funclional program.

The Event and Reply commands

The event and reply commands are further extensions to Tcl. These commands send
tokens of information from the interface off to the functional language. The danger of
blocking is a greater problem, If the functional language is busy processing other data,
then the interface must not be delayed.

This is a very real problem when the functional program is acting as a computalional
engine, and thus would not normally be very responsive. Of couuse, on the occasions
where this problem can be expected, care should be taken within the interface and program
to slow or stop communication while the application is busy. The easiest way to achieve
this is to lock-out certain parts of the interface while processing continues.

[ solve the problem by having a simple queuing system, where any data that the
application is not ready to receive from the interface is appended to a quene. Two
queues are axrranged, one for each of the event and reply channels. Both are important
as the functional program may not be processing events when it is in the middle of a
command /reply dialogue with the interface. At the same time, unexpected replies will
not be read by the program until it is looking for a particular reply to a particular query.

(It is for this reason that I would suggest that replics are tagged in order to ensure that
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the correct reply is identified.}

Special care is taken to ensure robustness in the face of extra long messages, where
dynamically allocated data structures used to hold the messages are extended as needed.
Likewise, the queue can grow to effectively infinite length, limited only by memory. It
is hoped that the queue would not need to be particularly large and, as security against
programs with bugs in them, it might perhaps be better to limit the lengths of the queues
to stop large amounts of data from building up in a queue.

When either quene contains data to be sent, Tcl/Tk is instructed {o call a function to
transfer the data when the channel is ready, similar to the way in which Tel/Tk calls a
function to manage incoming data on the command channel. This ensures that data is
sent at the earliest possible opportunity, while ensuring that the interface can never hang,

waiting for the functional program.

Interprocess Communication with Haskell

The spavnchannels command in the Tel program is responsible for starting execution
of the Haskell program. It inherits from its parent — the interface - three pipe ends
on which it will communicate. These are found on file descriptors 13, which is used
for sending commands to the Tel program; 14, which is for receiving events sent by the
event command in the interface; and 15, which receives replies to commands sent on the
command channel generated by the reply command in the interface.

In order to be able to read from the event channel, the reply channel, standard input,
or any other channels the programmer may be interested in, it is a good choice to use
the ReadChannels request (or continuation equivalent) to read from multiple channels
simultaneously, if the particular Haskell implementation provides it. This is especially
useful with the Faskell B implementation, which has two pseudo-channels called TLCK
and TIMEOUT. These allow you to use keadChannels and, at the same time, be able to
perform other actions if user input is not received between ticks or before a timeout has
been reached.

The ReadChannels request takes a list of channel names which it uses to associate
Haskell channcls with operating system channels. In most Haskell implementations, the

only recognised channels are "stdin®, "stdout", “stdexr" and "stdtty". Hasgkell
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B originally interpreted any other string as a filename to open.

To open actual Unix file descriptors it was necessary to modify the Haskell B run-time
to recognise the small positive integer values of file descriptors, and use them when
possible. These modifications were fairly trivial.

Thus, using ReadChannels, the Haskell programmer can set up a high-level event
loop, in the style of any other interactive program, but at a higher level, which can call
into functions which can communicate using the command and reply channels. As an
output channel, the command channet would be accessed via 2ppendChan requests,
while the reply channel, as it is not relevant inside the event loop, would be attached to

by a ReadChan request.

3.2 Two Examples

[ present two example programs written in Haskell, using Tet/ Tk as the interface system.
The first, a simple clock, demonstrates how it is possible to write programs that can
both respond to user input, and update the display at regular intervals of one second. I
then present a larger example of a three dimensional maze simulation. The Haskell code
involved in this program is quite complex, but very little of it is concerned with dealing
with user interface actions.

Inn this section I only describe the external design of these programs; in the section
following their inlernal construction is exanvined.

A later section will examine the examples from Chapter 2, where I have written new
graphical interfaces for these textual interactive programs. The first of these is relatively
small, so is the only one which will have sections of its code presented in the text, rather

than in Appendix app:easier.

3.2.1 An Alarm Clock

For the first example, a simple alarm clock program, the Haskell program keeps note
of what the time is and when it should activate an alarm. Lvery second it advises Tcl
what the time is, using a procedure defined in the script that the swish interpreter has
executed. The Tcl/Tk process then updates the display, without the Haskell program

knowing whether it is running an analogue or digital clock. When the user sets the alarm,
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the dialog is conducted exclusively within the Tcl/Tk process. When this is concluded,
the Haskell program receives an ‘alarm set’ event, telling it when to activate the alarm.

When the alarm is activated, the Haskell program sends a command to the Tel/Tk
process to display a flashing window. This window is then completely managed by the
Tcl/ Tk process, flashing it every second until the user acknowledges it. Meanwhile, the
Haskell process continues counting time.

This shows how a greater degree of separation between the interface and application
can be reached using this method, compared with other methods where the distinction

tends to be blurred.

3.2.2 A Maze Game

As a more substantial example, [ created a three dimensional maze game, written in
Haskell, using Tel/Tk for its interface. The general idea is for the player to completely
navigate the maze, using simple commands such as turnleft, turn right and move forward
{(crawling up walls or over precipices as they are met.) An indication of the separation
between the interface and the program is that the two halves were written by different
people in different countries.

The Haskell program is responsible for looking after the creation of the maze, keeping
track of where the player is in the maze, and the current view of the maze. It takes events
such as ‘left’, ‘right’, and “forward’ and causes the display to be updated by sending to
the cl/Tk process a list of where there are walls visible.

The Tel/ Tk program sets up the display, which includes buttons that the player uses
to navigate the maze, plus a perspective view of the maze as ‘seen’ in the direction the
player is facing. When a button is pressed by the player, the program passes on the
appropriate event to the Haskell process, The Tcl/Tk program also receives the list of
visible walls, and updates the display accordingly.

Neither process 'knows’ what the other does with messages sent, and either could be
implemented totally differently, without affecting the other. The only constant factor is
the protocol between them.

Figure 3.4 shows what the maze program’s user interface looks like. A complete copy

of the source may be requested from the author using electronic mail. Highlights of the
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You're still missing 46 rooms.

Figure 3.4: Functional Maze in X
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Tel interface code are in Appendix C.4. Listings of the Haskell modules are given in
Appendix C.5.

3.2.3 Summary

I'have shown that it is possible to create useful interactive programs in Haskell, using
Tcl/Tk to create the interface. The resulting programs are flexible and responsive. It is
interesting to note that the maze application and its interface were developed completely

independently.

3.3 The Protocols, Interfaces and Programs

The mostimportant part of the creating of these programs was in the design of the protocel
used by the application and interface to communicate. The interface builds high-level
events to send to the application, while the application will send commands to query or
update the display.

Ag explained above, the interface is responsible for all communication with the user
and translates task-specific user actions into high-level events for communication to the
application core. These are then sent textually to the core using the event channel.

In turn, the interface makes available a number of procedures which the functional
core is expected to call using its command channel to the interface. Of course, the core may
also use any other standard Tcl command, even creating new procedures, or re-writing
existing ones il required. This could be useful in a highly interactive interface where
display parameters can be computed on the fly using core-supplied functions while stili
in the context of the interface. A good example of this might be a program which displays
mathematical functions selected by the user. Another example is when a data structure
controlled by the core also has to be displayed by the interface. The core would mirror
the relevant parts of the structure within the interface for rapid display.

In this section I shall examine the construction of the interfaces of the two example
applications, and examine the communication which occurs between each and its appli-
cation core. I hope to demonstrate that the designs meet the requirements laid down in

Section 1.3. This will be discussed further in Section 3.5.




3.3, The Protocols, Inferfaces and Programs 73

3.3.1 The Alarm Clock Program

The alarm clock has a simple design with a resulling simple protocol, interface and
program. The majority of this program is presentation: not much programming is

required to know what time it is.

The Alarm Clock Protocol

The protocol used by the alarm clock program is very simple in design.
There is only one event the interface can send to the application.
® HH:MM:SS

A specification of when the user wishes the alarm to be activated, in a strict 24-hour
format, using 2 digits to express each of the hour, minute and second. An example

would be “23:59:59”.
There are two commands which the application will usc in the interface.

o disp time-string
This command should be called periodically to update the displayed time to that
given by the time-string.

e alarm

This command should be called when a previously set alarm time has arrived,

The replies channel is not used and the informalion flow across the event and com-

mand channels is very simple in form and content.

The Alarm Clock Interface

The interface, despite the simplicity of its task, has very little knowledge of its purpose.
1t is limited to the fact that the dialogues have titles to say it is an alarm clock program
written using Haskell and that, within the alarm-setting dialogue, the user should type a
time of day. These are the only (wo strings in the interface of any substance. There is also
the flashing alarm dialogue, but this could be used by the application to display urgent

error conditions, and again is in no way tied to the operation of an alarm clock.
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There is only one event which the interface will send to the main program; this
communicates what the user has asked the alarm to be set to. This format of the event is
a string strictly of the form “HH:MM:SS”, with each component being two digits. This is
basically the string that the user types in, with first a validity check to ensure it conforms
to the correct syntax. It is important that the interface implements this check as, by the
time the application is in the position to check its syntax, the dialogue will have been
dismissed.

The code for the interface is in Appendix C.2.

The Alarm Clock Application

The main program of the alarm clock has two main roles. Firstly, to update the time
display every second and, secondly, to store the alarm clock setting and activate the
alarm when the appointed time arrives. The code for the application is in Appendix C.3.

Control of the intexface by the program is through two simple commands. The first,
disp, sets the display of the clock and will be called once a second to keep the clock
display correct. The second, alarm, is used when the alarm is to be triggered. Once
triggered, the application program takes no further interest in it.

The initial implementation of the clock used the dialogues style of input/output but,
as [ developed it adding the alarm feature as an extension to the original code, T found
dialogues difficult to work with, requiring non-localised changes in the program to add
the new feature. It was for this reason that [ re-wrote the program in the continuations
style, again developing the clock portion of the code before adding in the alarm feature.
This time the alarm was easily integrated, requiring orly one new function, and onc other

function to be changed to call the new function at each tick.

3.3.2 The Maze Program

The maze game was an idca by Carstenn Kehler Holst, and he agreed to write e main
program. As he was in Sweden af the time the program was wrilten, it was vitally
important the the communication protocol between the application and interface was
clearly specified. After this was donc, a certain amount of cxperimentation was possible

to get the best design of interface, and the most efficient application.
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The Maze Protocol

The construction of the protocol for the 3D maze game was substantial task. The first part
was an investigation of the topology of the mazes itis trying to describe. 'Thereis naturally
a large difference between a three dimensional representation of a flat two-dimensional
maze, and the three dimensional representation of a truly three-dimensional maze. The
protocol designer needs to take such factors into account.

The maze can be visualised as a cube made up of smaller cubes. Where the cubes join
there is either a wall, or no wall. There is the guarantee that all locations can be reached
by navigating the passages created by the missing walls.

So, in order to visualise this maze for the user, the interface needs to know which walls
are absent from the user’s point of view. This is achieved by the application core telling
the interface which walls in front of the game player are there, and which are absent —
or in simpler terms, which walls are “on” and which are “off”. You could imagine a
textual interface describing what paths are available from the user’s position, given this
information.

The complete protocol specification written by the interface designer and shared
with the core program author is presented in Figure 3.5. In it the protocol designer’s
comment can be seen, that, of the walls potentially visible (twenty-one), only nine will be
implemented initially. Ina character interface perhaps fewer walls would be implemented
or, in a more sophisticed graphical version, perhaps more.

As well as the maze display there is a ‘status’ line displayed. This is used to relay
information from the application to the player, reporting the player’s progress.

So there are a total of three commands which an interface has to provide to the core.
e on if

The on command simply turns ‘on’ a wall at distance { away from the uscr, wall

number j, so that the player may not move there,
e OFff if

‘The of £ command is the inverse of the on command, making passages available

for the player to navigate.
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e status c/i]

This informs the interface of the current status of play. The particular message is
encoded into the character ¢, with any extra data required given in optional integer
i. Anexample would be “status f 45 updates the message to indicate that the player

has finished the maze, and that it took 45 moves.

Itis important to notice that the actual ‘status’ message to be shown is generated by the
interface, based on the code letter sent from the application, This allows easy adaptation
of the program, for example when translating the program into a different language. In
this case only the interface needs to be changed, and the application remains constant,

In the opposite direction, the most important user events are the movement com-
mands. There are four possible moves understood by the application core, which the
interface may wish to employ. These are ‘move forward’, ‘turn right’, ‘turn left’, and
‘move backwards.” At all times, the interface can assume these commands are valicd.

Two other user commands affect the application program; the user may restart the
same maze from the beginning, or can choose to play on a new, different maze.

So there are six high-level events that the interface can send to the application.
¢ in

¢ out

o lefi

e right

These four events signal player movement and will be triggered cither by the player

pressing buttons or typing keys.
s init
Sets the player back to the start of the current maze.

$ new

Creafes a new maze.

Once the protocol had been specified, the interface and application were then written

completely separately.
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The Maze Interface

The maze is represented in the interface Thave constructed by a three dimensional display
of the walls, as seen from the game player’s point of view. The walls have been created
using the Tk canvas widget, and each wall has been drawn explicitly. Walls are turned on
and off by altering the colours of these walls, making absent walls transparent. Directly
below the walls is the status information.

To the right side of the main display is a panel of buttons to control movement. This
area is the main source of user events.

The four events signaling player movement are triggered cither by the player pressing
on the directional buttons in the pancl, or elsc using the keys ‘v, 1§', k', and 1’ to control
movement, in the Unix tradition.

Inresponse to these events the application is expected to send a sequence of commands
which will update the displayed scene in the maze, as explained above. There is, however,
no knowledge within the interface of what a particular directional command means.

The two majoyr sections of code in the interface are for building the interface and
display. All other code is fairly trivial. Parts of the program which implement the

interface can be seen in Appendix C4.

The Maze Application

The maze program is written as two Haskell modules. The most crucial is the module
of functions which implement the maze, creating it, manipulating it and determining
movement around it.

The mraze is structured as a three dimensional array of boxes, where the size of each
dimension is arbitrary, Each box has between 3 and 6 neighbours, with which it shares a
wall. Paths are then cut through the maze by removing walls until all boxes are reachable
from each other, creating a fully navigable maze.

The other module is almost exclusively concerned with the interface, translating
user commands into maze operations and then passing back display information to the
interface. This code is perhaps only a quarter of the complete program. Only a small
part of this, perhaps one third, is involved with communication with the interface, the

rest being the mechanics of the game, keeping track of where the player has been and
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determining whether the maze has been completed yet or not.

This module might be seen as being a ‘linkage” between the interface for the user,
and the raw functionality of the maze maniputation code, The maze functionality is not
written for the specific application and could be used in any exploration of a maze. It is
this linkage portion which is the key to how the functionality is presented to the interface.

Interpreting the commands is fairly straightforward. The commands which turn the
player around to face diffcrent directions are implemented by rotating the view in the
maze about a point. The motion commands have to be handled specially. The program
must ensure that the player is standing on a solid wall after the move. When faced with
a solid wall directly in front of the player, the program allows the user to ‘climb’ the wall,
in the way a spider might. When faced with a hole, the player is moved onto the side wall
of the hole or, if that does not exist, the player will actually end up on the other side of
the wall they had previously been standing on. Imagine the spider walking off the edge
of a table to understand what happens.

The maze manipulation code is very rich in good functional programming techniques,
using a greal deal of composition of higher order functions, and applying mathematical

theory for the construction of mazes. It may be studied further in Appendix C.5.

3.3.3 Summary

I have presented details of the workings of the interface for the two example programs.
The dialogue that occurs between each interface and their application cores have been
presented to show that I have achieved a high level of separation between application

and interface in my programs.

34 Running Examples

In this section I present the examples from Chapter 2, showing how I have modified them
and given them graphical user interfaces. The purpose behind this is to demonstrate what
modifications are required to give an existing functional program a better user interface.

Both examples lack any real functionality, as they both exist as simple examples of
interaction within functional languages. For this reason, the particular design and imple-

mentation of each application will not be considered a great deal in this investigation, To
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annt o

This is a minimal intera (S 7am. ’ .

ow| Do you feel alright?

Yes :-)

No :-(I

Great!!!

Figure 3.6: Minimally Interactive Program

get the best design would involve re-writing the program, which would not show how

easy it was to adapt them.

3.4.1 Minimally Interactive Program

Figure 3.6 is a screen-shot of the graphical version of the ‘minimally interactive program’.
The user has just been asked “Do you feel alright?” and has answered by clicking on the
“Yes’ button. The program’s response is displayed below while the program waits for
another response. At any point the user can exit from the program by pressing the ‘Quit’
button of the main window.

This program repeatedly asks how the user is. This is a natural “main loop”, so
no major changes were required in the structure of the code to make it suitable for
graphical interaction. I used the continuations based version from Page 32 to build the
new graphical version. The modified code is presented in Figure 3.7.

In fact the most obvious changes are three simple ‘global substitutions’, the first being
a terminology change of ‘input’ for ‘events’, abbreviated as ‘evs’. The other two are
changes of the input channel from ‘stdin’ to ‘epipe’, the stream on which events arrive,
and of the output channel from ‘stdout’ to ‘cpipe’, the command stream to the interface.

The other major change is that, instead of outputting questions directly to the user,
we must encapsulate them into commands — the “ask’ and ‘answer’ commands.

The only addition to the code is definitions of ‘cpipe’ and ‘epipe’, as file descriptors
which we are using as streams. A simplification to the code has also been made. As

programmed, the interface will always give a lowercase 'y’ response for ‘yes’, and so we
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moduls Mairn{main) waere

main = getevents

getevents = readChan epipe exit 8
\evs -> how (lines evg)

how evs = appendChan

cpipe "ask \*Do you feel alrighz?\"\n" exit $
case evs of
(l:evs) -» case L of
'yvfixs —-> good evs
-> bad evs

- -> done
goo& evs = appendChan
cpipe "answer \"Great!!!\"\n" exit S
how evs
kad evs = appendChan
cpipe "answer \*Sorry to hear that.\"\n" exit $
how evs
cpipe = "/dev/fdal3"
epipe = "/dev/fal4"

Figure 3.7: Minimally graphical interactive application program.

do not need to deal with uppercase at all.

The interface needs to be custom written for each new application. Portions of the
interface code are presented in Figure 3.8, the full code is presented in Appendix C.6. It
would make no sense to go through the code for the interface line by line, as this thesis
is not a tutorial for Tel/ Tk, but the creation of the ‘Yes” and ‘No’ buttons should be clear.
Pressing either of these buttons will cause either an “event yes” or “event no” command
to be executed, which will in turn send the appropriate event back to the application.

At the foot of the interface code is the call to the ‘spawnchannels’ command which
I added to Tcl/Tk. This call has the effect of starting up the main application once the
interface’s main window has been created.

So, the changes to the actual functional program were very small and it retains its
structure and general appearance. The resulting program is as readable as the texfual
version and adds no complexity for the functional programmer to understand.

| would argue further that the interface is relatively simple, requiring no great level
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proc mainwindow {} {
# zode Ecxr main window creation removad

button .bot.death -text "Quit®* -command {destxroy .}
pack append .bot .bolL.dsath (left expand padx 20 pady 2C}
}

proc ask {text} {
toplevel .ask

# code for construction of guery window removed...

button .ask.mid.yes -texbk "Yes :~-)" -command "event yea"
outton .ask.mid.no -text "No :-(" -cowmmand "event ro"

# further code removed...

proc answer {text} {
.ask.bot.answer configure -texu $Stext

}

# create main window...
mainwindow

# run wmain program. ..
spawnchannels how

Figure 3.8: Minimally graphical interactive interface.
of understanding over the basic commands which are used in Tk to build interfaces.

3.4,2 Bank Machine

Porting the ATM was quite a different task to the one before. The ATM was programmed
to simulate the trace of interactions possible in a bank machine, but it was not intended
as an example of a use(ul progran:. PFor this reasan the structure of the program is the
same as the interaction presented by the bank machine. In real life this structure woutld
only occur in the interface and nof the application.

It was thus necessary to build an interface which could interact with the very fixed
modes of interaction in the application, rather than with a structure like an event loop or
similar. The original version of the program daes no checking of input, and will terminate

with an error if it has trouble with user input. The same is true of the graphical interface,
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Sinclair Bank ATM
Select:
Cash < 1 2 3
Check Book « 4 s 6
Balance Az 7 8 9
Statement i cont 0 Enter
Card In/Out |
Money |
Statement |
Quit |

Figure 3.9: Interacting with a Bank Machine

which is merely layered on top of the textual interface. Figure 3.9 contains a screen-shot
of the interface in action.

The interface was programmed to communicate with the application at approximately
the same level as the user would in the textual version. Textual output from the application
was encapsulated into commands for the interface, while user input was passed by the
interface as entered.

All input to the program is numerical or simply to confirm an action, and so a simple
numeric key-pad was provided on the display, with an “enter” button to feed numbers
and confirmations into the program. For actions, such as taking money or entering a card,
special buttons were provided, but these were, in effect, the same as the “enter” button.
In addition, a column of buttons forming a menu beside the display was provided, but
again, these buttons were simply short-cuts for numerical input.

Output was tricky for the simple reason that the textual version assumed that all
messages written out to the screen could be read and that there was no limit to what
could be displayed at one time. However, in the graphical version, we provided a small
viewing screen which could only hold a small amount of text at a time.

This was solved by classing the messages into 4 different variations:

1. A message which could simply be written to the display.
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2. A message which should be writlen to the screen after it is first cleared — that is,

that nothing was written before it which the user has not had a chance to read.

W

. A message which must be acknowledged before the program will continue.

4. A message which forms a menu, and makes use of the menu buttons placed along-

side the display.

Again, the changes to the application are fairly limited. the code changes for the
application are in Appendix C.8. [xcepting the changes of the communication channels
to use the pipes connecting to the interface, the only other changes were in the code which
managed the messages output. This was changed to match the 4 different styles of output
which we had decided upon above. Instead of all cutput messages being handled by the
output function ‘message’, there is now also ‘nmessage’ which clears the screen first; "ack’
which presents a message and waits for a confirmation; and ‘messages’ which supplies a
menu choice to the user.

The interface has been custom-written for the application. The complete code of the
interface is given in Appendix C.7. The basic elements of the interface are an input panel
with a numeric key-pad and other buttons, and the output area where messages are
presented to the user and feedback from the numeric keypad is displayed.

The buttons are either wired to send an event string or, for the numeric key-pad, to
add a digit to the number to send. The ‘Enter’ key then sends the stored number to the
application.

The display area is managed by three commands, one of which clears the display,
another displays a message, and the last one formats a menu for a choice to be made
using the menu buttons.

S0, we have a graphical version of a textual program, built with very few changes to
the original program. The key part of the program — the description of the interaction
of an ATM was completely unchanged. The changes recquired were mainly due to the
problem that in the original ATM specification timings considerations were abstracted
away.

The modifications fo the program to give it a graphical interface took less than two
hours, with the required modifications to the outpul functions adding around another

hour.
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3.4.3 Summary

I adapted two existing textual functional programs ta give them graphical interfaces with
Tcl/Tk. The changes to the program were minimal, with no major alterations required.
The major tasks were desighing the interface and the protocol of communication used

between the interface and application.

3.5 Discussion

L wish to highlight a number of particular features in my design which add to its merits
as a workable solution to user interface creation for functional languages, beyond what
has been specified in the requirements from Chapter 1.

One important aspect is the simplicity of my solution. Its design and implementation
were very straightforward, most effort going into ensuring that the resulting swish
program is robust in the face of bugs in other programs. The evolutionary design of the
system made the implementation easier, because I was alveady familiar with the operating
system features I needed to use.

The evolution from previous solulions involved using a programmable system to
manage the interfaces. I could have implemented such a system from scratch but, instead,
minimised effort by using toels already in existence, and already proved able to do the
job. If I had built my own programmable interface system, there would have been
no guarantee that it would have worked and, if it had, it would have been a case of
reinventing the wheel.

As a result of choosing to use Tel/Tk, I have also gained the use of a more powerful
interface creation system than if I were to build my own. Tcl/Tk was expertly designed,
and this shows in the simplicity of programming notation required to build large, pow-
erful interfaces. I am also able to use interface building tools to build interfaces, making
it even easier to construct interfaces for functional programs.

It is important to repeat that all the interface conslruction, layout and management
happens within the Tcl/ Tk programs. This takes all this out of the scope of the functional
program, where if can obstruct good programming techniques.

This means that there is more time and scope o usc the features of functional lan-

guages, such as laziness and compositionality. The Haskell portion of the maze game is
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especially rich in functional techniques.

Finally, as the interface is being written in the imperative languages Tcl, all the usual
interaction with external systems not possible in a functionat language can now be man-
aged. For example, signhals from operating systems can be programmed in standard
ways. These can be handled within the Tcl/Tk system without affecting the operation
of the functional program. If a signal requires some action on the part of the functional

program, then it can be turned into a high-level event and handled in the normal manner.

3.6 Summary

Thave presented a system whereby a functional program may be connected with a separate
interface process, thus providing a means of user interaction for the functional program.

This external system is written using the Tel/Tk system, a language and {oolkit com-
bination. Using Tcl the interface designer can create a fully functioning interface which
may then be connected, by way of simple communication channels, to any other program
which understands the communication protocol.

Inmy case, [ was interested in providing this interface for functional programs, written
in Haskell. Using the standard [/Q mechanisins in the functional language, the interface
and application program communicate, commangts being sent to the intexface in the Tcl
language for direct interpretation by its interpreter. Events and replies coming from the
interface are coded as simple strings, which may be parsed by the functional program.

The first two examples show how easy it is to build interfaces for functional programs
in Tcl/ Tk, and how easy it is to communicate with these interfaces using simple commands
to instruct the interface.

The examples taken from Chapter 2 show how easy it is to adapt existing programs
to put a graphical interface on top of its textual one.

In the next chapter I shall discuss to what extent my solution meets the requirements

set out in the Introduction.




Chapter 4

Assessment

In this chapter I review my system to see if it meets the requirements as I have laid them
out. I will also highlight any strengths or weaknesses in the system, which can lead to

improvements in the overall system.

41 Requirements

I have set a number of requirements over the course of this thesis, initially set out in the

introduction, then extended further in Chapter 2. I shall now review them quickly.

» Requirements from Funclional Programming
The programs written to use my system must be programmed in a functional manner
and it is not acceptable to modify the language in a way that would compromise
referential transparency.

» Software Engineering

The system I create must be capable of creating good modular programs. Mainte-

nance and portability of these programs are very important,

e HCI

The process of interface creation is iterative, participatory and exploratory. T must

ensure these elements of interface design are properly supported.
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o UIST

The first aspect of UIST requirements demands that the interfaces arc separated

from the application core. This helps make possible the demands of the HCI issues.

The other key area is that of supporting multiple concurrent threads of operation.
Within each thread a programmer may wish to impose some sequencing, but sep-
arate dialogue threads in different areas of the interface must be able to operate

independently of each other, without interference.

Overall Requirements
There are requirements which all of the above areas demand.

The first is that of effort, both in design and construction of the program and
its interface. There is no point in creating a system which meets all the other
requirements if it is impossible to design and implement useful programs with it.

The system 1 produce must be easy to use.

Portability is always a desirable element. I should avoid making choices which lock

programmers inlo one environment.

Lastly, I should plan for the future, and allow the system I build to grow with
people’s requirements. 1should also be aware that a flexible approach is required
to allow for new developments. Whatever system T devise should have good

extensibility.

Further Requirements

After my investigation of Functional 1/Q in Chapter 2, I enhanced my requirements
with some specific points which would apply to the functional programs that would

be written.

I need to ensure modularity within the functional program. The code which man-

ages the interface cannot get entangled with the actual application code.

[ found that some I/ O solutions were not immediatcly cxtensible to allow for future

flexibility. I shoudd ensure this does not happen,

It is important that the programming effort within the functional program of 1/Q is

not too high. Ttis important that a simple I/0 system is used.
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['wish to support a multi-threaded style of functional programming, which would

match the multi-threaded nature of inferaction.

4.2 Do I meet the Requirements?

I believe that my system meets all the requirements outlined above. While the addi~
tional functional programming requirements are not perfectly matched, I feel that there
is nothing inherent in my design which would prevent further work in this area to move
it nearer the actual requirements. In all other arveas, I believe that I mcet or exceed the
requirements.

For each of the requirements, I shall now discuss below whether my solution matches

them and, if a particularly good match, any additional benefits accrued from my system.

4.2.1 Requirements from Functional Programming

It is important that programmers are allowed to use the particular features of functional
languages when they write their programs and are not forced to compromise their design
to fit in with the interaction style. I believe that I accomplished this.

By programuning the interface in a separate system, the only interaction that the
functional program would have to take pact in would be at a very high level with the
interface. This allows the functional programmer to concentrate his programming efforts
on the main task and not have to worry about the complexities of interacting with users. I
argued in Chapter 2 that functional languages were not well suited to programming user
mteraction.

My second example program, the maze game, uses functional features, such as com-
position and laziness, a great deal. When handling the interaction, continuation-style
I/O was employed which is very compositional and is well suited to small amounts of
interaction.

I also stated that I should not compromise referential transparency within the func-
tional framework but, as I have not needed to adapt the functional language at all, I easily

meet this requirement.
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4.2.2 Software Engineering

Programs written using my system must be modular. Maintainability and portability are
very impartant. Unfortunately, these cancepts are very hard fo measure.

My example interfaces were too small to get a good idea of how modular their code
was, but I have a clear distinction between code which is used to create the interface, the
code which is used to maintain it, and the code used to communicate between interface
and application, Their maintainability can only be guessed at, but their Lypically small
size must help here. Portability rests on Tk/Tcl and [ have avoided using any particular
system-dependent features.

[nside the application code, I have separated code which deals with the interface and
interaction from code which deals with application data, and its manipulation. Because
of this, maintainability is kept high and portability is limited only by the way in which the

functional I/O system interacts with the operating system the program is running upon.

4.2.3 HCI

Tel, as an interpreted language, cuts out the compilation phase, leading to faster turn-
around of interface design. This leads to a fast loop in an iterative design loop.

Much more important is that Tk will allow external processes to communicate with
the running program; for example, to up-load revised versions of procedures or to change
the values of variables. This allows the interface o be created interactively, textually or
using a combination of the two techniques. It is possible to actually adapt the interface
while a user is working with it, allowing high levels of participation in the design of the

interface and making exploration easy and fast.

4.2.4 VUIST

The key area which needs to be addressed from UIST is separation. Ilook at this first,
discussing other aspects of UIST afterwards.

Separation

My complete system was built upon the concept of separation, so it is no surprise that I

do particularly well here. I have complete divorce of control between the interface and
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the application program.

The discussion in Section 2.6.1 explained how it is easy to break software engineering
guidelines by unnecessary coupling between user interface code and application code.
I want such interaction to be minimised in my implementation. My separate interface
provides this.

By operating the interface of a program as a separate process it is more difficult to
compromise the modularity of the code by having too much coupling. The interface
communicates with the application, but as separatcly written bodies of code, and so the
coupling is minimised. An especially useful consequence of this is that it becomes much
easier to modify the intcrface without requiring much, if any, restructuring of the rest of
the program.

This does not go as far as the complete separation put forward by some HCI re-
searchers[6] where it would be possible to completely change the structure and style of
the interface without modifying the application — separation of representation. However,
taking the initial small step of having the interface constructed separately is a sufficient
goal for which to aim. For complele separation a greater abstraction would be required
between the interface and the application program. Currently, the applicalion needs to
have some knowledge of aspects of the interface and, likewise, the interface needs to
know things about the structure of the application, such as requiring that the application
works in an event style of programming. A third component of the system could manage
communication between the interface and application, cootdinating their interaction and
removing assumptions they have to make about each other.

I'have demonstrated that the functional application can be developed separately from
the interface, with the example of the maze game which was developed in two different

countries.

Other aspects of UIST

Tcl provides a sequencing within its language. Concurrent interaction is achieved by
running the inlerface as a separate process from the application, so user input will continue
to be handled while the application is busy.

I have not addressed threading directly, but some amount of threading is natural in
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Tel/ Tk programs. Within the functional tanguage, threading is not done.
An important area I have also failed to address fully is error-handling, both in terms
of system errors and the user’s mistakes. This should be addressed in any further

explorations on the interface side of this work.

4.2.5 Overall Requirements

These were the requirements commeon to all the above areas.

Ease of Design

Designing interfaces in Tel/ Tk is casy. First there exist tools which make it easy, allowing
interaction lay-out of an interface, with simple programmatic tasks being written for you.

Designing the communication protocol between the interface and application is a
matter of deciding the semantics and functionality available in the interface. It should be
possible to express all this in a concise format within the protocol.

As for the design of the application, it is easier than before, where all the interface had
to be included in the design or the program, along with all the functionality.

By separaling the design into these three arcas, it becomes easier to modularise the

design phase and the difference between interfacc and functionality becomes clearer.

Ease of Construction

The Tk toolkit is very casy to use, allowing people with no experience of programming
for the X Window System to create simple programs after only hours of experience with
Tel and Tk. Of course, to get the most out of Tk requires careful study, but vemarkable
complexity of design can be achieved with relative ease.

The functional programmer s interface to the user interface, being via the standard I/ O
system of the functional language, is no worse than any other current way of programming
user interfaces from a functional language. Any user interface system implemented
within a functional language that does not communicate via the [/O system could be
used to conlrol a Tk interface. Any new abstraction over the I/0O system could also be

employed to communicate with the interface.

g
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[ argue that, just as Tcl/Tk makes creating graphical interfaces for programs written
in C easier than just using C on its own, the same benefits are to be found by using
Tel/Tk rather than a functional language for interface creation. I feel it is important
to acknowledge that special-purpose languages can produce better results, easier than

general purpose languages, either imperative or functional.

Portability

Tcl creates a slight layer of abstraction over the normal operating system functions, al-
lowing the same Tcl program to run unchanged on different versions of the same (Unix)
operating systems and with little change between different operating systems.

Likewise, Tk abslracts from features of the X Window System, making it possible
to move between versions of X and different displays with different features, without
requiring special handling within the program. In the future it is expected that versions
of Tk will exist which will run on Macintosh and Microsoft Windows, allowing easy
porting, i.e. with very little modification required, of Tk/Tcl programs between very
different operating systems.

By handling all these issues outside of the functional language and programs, porting
the functional language between different machines is made easier. Also, because the
functional programs do not use an embedded interface to a window system in my system,
no modifications are needed if extensions of the system are required. If Iused an extension
to the language, then incompatibilities could be introduced when the devised intexface

does not abstract sufficiently from the implementation.

Flexibility

My system gains all its interface flexibility from Tk. Tk has been used to create many
diverse programs, from simple games to complex presentation creation systems. Plus,
if Tk is found to be lacking in any particular feature, then it is easily extended: many
extensions already exist for Tk, proving how simple this is.

Often Tcl and Tk are used to create graphical interfaces for programs which are not
interactive or not so sophisticated in their interaction. This is basically what my system

does, except that the unsophisticated interactive programs in this casc have been written

L P T R P R
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in a functional language and a discipline of communication has been specified.
As Lam not changing the functional language, I do not affect its inherent flexibility. It
must be pointed out, however, that unlike other systems, I do not put any restrictions on

the I/O system in use in the functional language.

4.2,6 Further Requirements

I had some further requirements specifically from the point of view of the functional
program, and the use of its I/0 system. Some of these points are simply lending extra
weight to the requirements already given. The main emphasis, however, is that I do not

restrict the way functional programumers goes about their task.,

Modularity of FP

With respect to modularity of the functional programs, my system docs not impose a
particular style of functional programming that inhibits intrinsic modularity within a
program. This can be seen as meeting the requirement.

At the same time, the application has an overall benefit by having the interaction code
removed into a separate system. The removal of interface code will make the functional
code cleaner in design, with less management of interaction, which can be troublesome

in functional languages.

Tlexibility in I/O system

It is important that the way users communicate with the functional programs through
the inlerfaces is not restricted to current ideas, but that the environment can grow to meet
future requirements. I have been using the continuations I/0 system to communicate
with the interface. As this communication is simple text, there is no danger of unknown
features being unavailable due to lack of power in the functional /O system. However,
there is the possibility that more structured communication is required some time in the

future,
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Effort

By taking the handling of the interface out of the functional program, I have simplified the
programming task. The functional programmer still has to deal with high-level events,
but these are by nature well specified and do not need the careful handling that low-level
events require in order to achieve good interaction.

The communication between the interface and application core is purely texfual. This
is very easy for the functional programmer to deal with, splitting the input up into lines,
which can be easily pattern matched. Qutput is, again, line-based and is made very easy

for the functional programmer using the standard I/O system of the language.

Multiple threads in FP

Muiti-threaded execution of the functional program is an area I have not addressed at all.
[ have taken an evenl-loop structure for my functional programs and this, to an extent,
gives an illusion of multi-threading, but multiple threads of state are what is missing, and
so my programs are still fixed to a sequential evaluation model, with the programming
overhead of current state being passed around all parts of the program. This is an area of

current rescarch, and I will come back to it in the conclusions in Chapter 5.

4.2.7 Summary

With its clean interpreted style, Tel makes a good language with which to build user
interfaces. The Tk toclkit built cn top of Tel provides a complete system for creating
interactive programs. Its ability to multiplex multiple input and output strecams allows
it to build responsive interfaces which can interact with the user and application at the

same time.

4.3 Strengths and Weaknesses

There are places where my system does not match up with the ideal. There are also places
where my system excels, simply because of some of the decisions made in its design.
Perhaps the most obvious flaw is that functional programmers, in order to create

interfaces using Tk andl Icl, need to learn the imperative Tcl language, which can surely
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not be as powerful as the functional langunages they are used to. The answer to this is
simple: user interface creation is not the same as programming. Interface creation is
becoming a more specialised job, not involving as much programuming but, instead, it
involves tools tailored for the creation of user interfaces. Many of these tools require the
use of their own language for specifying aspects of interaction which are not necessarily
programmatic in nature. Tcl has full programmability, making it more powerful than
many other languages used in such applications, while its use is normally limited to
quite a simple subset of its facilities. At a more pragmatic level, learning to use the Tk
toolkit will be no harder than any other way of communicating with a window system to
implement an intcrface.

I have a very strong reliance on Tk and Tel. As a result, I am limiled to what they
offer, although I could resort to programming, in a different language, to enhance Tk
and Tcl, incorporating any features I might need. For existing applications, few other
authors have needed to extend either Tk or Tel, although some require one or more of
the readily available extensions, which are also available to the functional programmer, if
needed. Often the key reason why people are forced to program extensions to Tel/Tk is to
speed up the application’s processing. As the applications are already in a fast compiled
language, this should not be a concern.

1run the interface as a separate process from the functional program. Some operating
systems are not able to do this and so I have limited the ability to port my system.
However, any opcrating system, with some form of multi-threading, will be able to
use the same basic techniques. Without some form of concurrency, any system which
provides graphical interfaces to functional languages would have to be careful about lack
of response trom the interface when the functional program is executing. It is for this
reason that T have used separate processes, and so I avoid this problem.

My biggest strength is the simplcity of Tk. Tk is far simpler to learn to program than
the raw programmer’s interface to the window system. It is also much simpler than most
toolkits. Tk interfaces are easy to write. Tk sits at a relatively high level of abstraction,
and Tcl creates such a clean programming environment that Tk programs can be a tenth
of the size of competing systems. The ubiquitous “Hello World” program in standard
OSF/Motif is 38 lines long, while in Ik /Tcl it is only 2 lines long,

Despite my current reliance on Unix discussed above, my approach, although per-
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haps not my particular implementation, is highly portable and could allow a functional
program fo be moved between different machines with only a recompilation. To port
the interface, assuming that Tk exists on the target system, would require little work.
Withoul having Tk on the remote system, as long as some similar system exists, such as
Visual Basic on Microsoft Windows, it would be possible to re-write the interface in that
language, without needing to re-work the functional code,

My biggest feature is that the interface is created and exists separately from the
appfication. This allows rapid prototyping and testing of interfaces while functional code
is incomplete. Tk is an ideal tool for rapid prototyping. The interface creator can directly
work with the interface, while it is running, using the Tl language, both testing the
application’s programmatic interface, and modifying and customising the user interface
directly. Using a uscr interface creation tool allows the programmer to test-drive the
interface, and to modify it seemlessly.

Separation of interface allows programs to be developed separately, the application
code being written by one person, the interface by another. Once there is a high-level
protocol defined between the application and its interface, the two programmers can
work totally independently, only bringing the two parts together when complete.

Tk with Tcl is powerful. The interfaces created using Tk do not lack features compared
to other systems which might appear better due to their greater complexity. While the

Motif toolkit has features that Tk lacks, the reverse is also true.

4.4 Summary

I believe that my system of using Tcl/Tk to create user interfaces mects the require-
ments laid out, I have found an especially useful facility in Tcl/1k, to create interfaces,
simplifying the job of the functional programmer, whao is saved the frouble of complex

programming of user intecfaces in a functional language.

by
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Chapter 5

Conclusions

Iconciude with summaries of the background to my work and what [have done, followed
by a list of my achievements and how my work could be further exploited. I then set out

a number of areas where this tesearch could be extended.

51 Summary of Background

I set out to tackle the problem of creating good user interfaces for programs written in
functional languages. I shall review why this is an interesting problem. Firstly, why
bother with functional Janguages?

Functional languages take a very high level approach to programming, where they de-
scribe mathematically the solution to a problem, thus implying a computational method,
rather than explicitly specifying what operations are required, as is needed in the more
traditional imperative languages. This gives the programmer a much more expressive
language to work with, making shorter, more powerful programs.

During the time functional languages have been developed, user interaction tech-
niques have developed, allowing users to interact with programs in a simple and easy
fashion, typically through a window-based interface, controlled by a mouse. These in~
terfaces have brought more power to the user by providing easy ways to do complex
things.

Unfortunately, programming graphical user interfaces has always been done in a

very imperative style, reflecting current techniques. Until recently, little work had been
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done to adapt either functional languages or user interface tcolkits, to allow them to
work together. Functional languages have not been able to exploit current technology
from Human-Computer Interaction (1ICI) and User Interface Software Technology (UIST)
research.

By adopting principles from other branches of computer science, I set out to find
a solution to this problem. I took with me principles of program design from softwaze
engineering, rules of interface creation from HCIand, {inally, techniques for programming

user interfaces from UIST.

5.2 Summary of Work

I have surveyed existing methods of simple textual 1/0 in the language Haskell, as a
representative of functional programming languages, It is currently rich in I/O tech-
niques, with the well-tried traditional dialogue style; its cousin, continuations; and the
new technigue, monadic I/O. I concluded that continuations were much easier to use for
simple tasks than the other two, but monadic I/O wins out in the end due to its greater
over-all flexibility.

Moving on from textual I/O, I examined two systems which allow user interfaces to
be created from within a functional program. The first, Fudgets, is a totally functional
solution, developed on top of the existing dialogue I/0 system from Haskell, with some
simple extensions to allow the language to communicate at a low-level with the window
system. The second was built into the language Concurrent Clean, which provided
primitives and a novel type system to allow the programmer to invoke user interface
functions in a functionally pure style. Both these approaches T found to be awkward,
requiring a difficult programming style which is alien in the clean world of functional
languages. Neither allows programmers to exploit user interfaces designed by UIST tools.

Wit all this behind me, Iset oul to create a powerful system for creating user interfaces
for functional languages, while retaining the purity and style of the functional language.
I did this by creating the user interface outside of the functional world, but tied the
interface to the functional program through a high-level dialogue, which the functional
program would interact in using conventional I/O methods. This was a key point from

UIST, which showed that interfaces should be highly separated from their application
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programs.

The interfaces for my programs are created using a language called Tcl, a simple
interpreted imperative language, and the user interface toolkit, Tk. Together, they allow
highly complex interfaces to be built with remarkable ease. By using the Tcl language to
allow the interface to be conftrolled by the functional program, I was also able to give a
very high level of interaction between program and interface. The Tcl/ Tk system, by its
nature, allowed a highly flexible interface development style, as guided by HCI research.

I implemented this by extending the Tcl language to allow it to spawn a new process,
a functional program, with which it can communicate via three channels. These arc used
by the functional program to communicate with, and control, the interface. Because
the interface existed as a separate process to the application, many of my requirements,
involving modularity and interactive response, were easily met.

Experiments with the system involved creating two sample applications — a very
simple clock, and a more complex three-dimensional maze game. I found it to be easy
to create interfaces to the functional applications which had been written. The maze
application program and the interface were written separately by two people, showing
that the interface was created through a separate design process from the application.

Further trials involved taking the examples developed in Chapter 2, and giving them
new interfaces using my system. This shows how my system is a relatively uncomplicated
addition on top of the existing I/0 system of a functional language.

The four example programs show my system to be workable, meeling all my early
requirements in full, Particular requirements concerning how the functional program
should be written, and how T/0 within functional programming might be improved,
were not examined especially closely, as they would inevitably require development and
modification to the basic language, but I believe that I have made some improvement by
removing interaction code from the functional program, where it obscures the clarity of

the functional computation.

5.3 Achievements and Possible Developments

My achievements are as follows:
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» | have developed a system for building graphical interfaces to functional programs.
This uses an external program to provide the interface, which communicates with
the functional program using a high level of abstraction. This allows the functional

programmer to devise functional programs with less worry of how it will interact

with the user.

» | have enabled principles of program and interface design to be applied to the

construction of interfaces for functional programs.

From software engineering, I have used the concept of cohesion and coupling to

guide programmers in producing modular programs.

From HCIL, I have applied principles of interface design to guide my choice of
interface creation system, ensuring that interfaces for functional programs are easy

to design.

From UIST, T have employed guidelines which mean that the inlerfaces created with

my system are flexible and usable, while being easy o program.

¢ Technically, I have extended the Tcl/Tk system, and so created a means of build-
ing communication links from the Tcl/Tk system to programs written in other
languages. The modifications required to the run-time system of the Haskell B
compiler system I was using were minimal, and were subsequently adapted and

adopted by the compiler’s author.

¢ Ihave shown that this system is usable in both small and larger applications.

[ created a small interactive alarm clock program which, by necessity, has a periodi-
cally updated display. This display remains active no matter what other interactions
arc also happening, showing that programs which must respond attentively to the

user are possible.

A larger program, a maze game showed that more complex interaction is possible,
where large graphical displays could be managed by my interfaces, controlled by a

functional program.

» I have shown how cxisting programs can be adapted to give them a graphical

interface, rather that a textual one. This involved taking the examples developed
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in the discussion of T/O systems for functional languages and adapling them to my

system.

It is possible for others to apply this work in further ways. A nuunber of people have
experimented using the same system to allow better interfaces to be created for non-
functional languages which also have suffered problems with interaction. It would be
interesting to see how suited the system is to large-scale applications, involving multiple

windows and a greater level of interaction.

5.4 Further Work

Further investigation should be given to ways of structuring the development of func-
tional programs, to find a natural way to codify such things as event loops or callbacks
or to find better abstractions which are more suited to the functional style. This would
allow functional languages to be structured in ways better suited for interaction.

Multi-threading should be investigated in the context of functional languages. Cur-
rently, laziness gives a natural form of multi-threading based upon data demand, but I
would like to investigate ways of running co-operating threads of execution which do
not, or rarely need to, communicate. Chapter 2 referred to a scheme which would aliow
multiple output threads, involving the creation of new demand-driven ovutput channels,
I believe this to be a poor choice, for the same reasons that I believe the lazy inputs
channels, as currently implemented by Haskell, to be a poor feature. Instead, if the idea
were to be extended, to have multiple I/O worlds which could rendezvous to exchange
data, this might be one way of introducing threading.

In this work I have only considered interaction with users. This can be seen as a
specialisation of other types of interaction, such as the interaction a program would
have with an operating system. For portability reasons, it does not make sense to define
specific operating system interfaces in a functional language. This would resultinreduced
portability to different operating systems which might not support the same feature set,
or could require a different style of interaction to achieve equal results. Instead, for the
same reason as I prefer to deal with nser interaction cutside of the functional language,
I'would like to take all operating system interaction out of the functional language, and

into a system like Tel/Tk. In fact, there are extensions to Tel which allow for large amounts
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of system interaction which could be pursued further.

HCTresearch goes very much further than Ihave along the road of separation between
user interface and application core. Cockton [7], for example, separates the complete
program into interface, application and, between them, a ‘linkage’. It is the linkage
component that maps between what the application expects of the interface, and the
interface expects of the application. The linkage is allowed to have knowledge about
interface and application, permitting them in turn to be totally ignorant about each other.
This gives even higher portability of interfaces and application, which can be created
using specialist tools which would not need the extra weight of requiring tailoring to a
particular mode of interaction. Twould like to investigate what effects this would have

on ease of creating interactive functional programs.




Bibliography

[1] PM Achten, JHC van Groningen & MJ Plasmeijer, “High level specification of 1/Q in
functional languages," in Functional Programming, Glasgow 1992, T Launchbury &
PPM Sansom, eds., Springer-Verlag, Workshops in Computing, Ayr, Scotland, 1992.

[2] PM Achten & M] Plasmeijer, “The Beauty and the Beast," TR 93-03, Dept of Informatics,
University of Nijmegen, March 1993.

[3] Lennart Augustsson, “A compiler for lazy M1L," in Proc ACM Symposium on Lisp and
Functional Programming, Austin, Texas, Aug 1984, pp. 218-227.

{4] M Barr & C Wells, Category Theory for Computing Science, Prentice Hall, 1990.

[5] Magnus Carlsson & Thomas Hallgren, “Fudgets — Graphical User Interfaces and /O
in Lazy T'unctional Languages,” Chalmers University, Sweden, May 1993.

[6] G Cockton, “A New Model for Separable Interactive Systems," in Human-Computer
Interaction — INTERACT ‘87, H-] Bullinger and B Shackel, ed., North-Holland, Am-
sterdam, 1987, pp. 1033--1038.

[7] G Cockton, “Architecture and Abstraction in Interactive Systems," Heriot-Watt Uni-
versity, PhD Thesis, Edinburgh, 1993.

[8] Andrew Dwelly, “Graphical user interfaces and dialogue combinators," ECRC, 1989,

[9] Ernest Edmonds, “Ihe Separable User Interface,” Academic Press, separation collec-
tion survey, 1992.

[10] MCJD van Eekelen, HS Huitema, EGJMH Nocker, MJ Plasmeijer & JEW Smetsers,
“Concurrent Clean Language Manual —- version 0.8," TR 92-18, Dept of Informatics,

University of Nijmegen, 1992.

104




Bibliography 105

[11] Andrew Gordon, “Functional Programming and Tnput/QOutput,” PhD Thesis, Univer-

sity of Cambridge, 1992.

[12] C Hall, K Hammond, W Partain, SL Peyton Jones & PL Wadler, “The Glasgow Haskell
Compiler: A Retrospective," in Functional Programming, Glasgow 1992, J Launchbury
& PM Sansom, eds., Springer-Verlag, Workshops in Computing, Ayr, Scotland, 1992,

[13} CAR Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985.

[14] Ian Holyer & David Carter, “Concurrency in a Purely Declarative Style," in Functional
Programming, Glasgow 1993, Ayr, Scotland.

[15] P Hudak & et al, “Report on the functional programming language Haskell, Version
1.2," SIGPLAN Notices 27 (May 1992).

[16] P Hudak & RS Sundaresh, “On the expressiveness of purely-functional I/O systems,”
YALEU/DCS/RR-665, Department of Computing Science, Yale University, March
1989.

[17] RJM Hughes, “Why functional programming malters," The Computer Journal 32 (Apr
1989), 98-107.

[18]) David King & Philip Wadler, “Combining Monads," in Functional Programming, Glas-
gow 1992, ] Launchbury & PM Sansom, eds., Springer-Verlag, Workshops in Comput-
ing, Ayr, Scotland, 1992,

{19] R Milner, “A theory of type polymorphism in programming," JCSS 13 (Dec 1978).

[20] Gustaf Neumann & Stefan Nusscr, “Wafe: An Interface te Xtand Athena," Part of wafe

distribution, May 1992.

[21] JT O'Donnell, “Dialogues: a basis for constructing programming environments,” in
Proc ACM Symposium on Language Issues and Programming Environments, Seattle,

Jan 1985, pp. 19-27.
[22} Open Software Foundation, OSI"/Motif Series (5 volumes), Prentice Hall, 1990.

[23] John K Qusterhout, “Icl: An Embeddable Command Langnage,” in Proc. USENIX
Winter Conference 1990,

[24] John K Qusterhout, “An X11 Toolkit Based on the Tcl Language,” in Proc. USENIX

Winter Conference 1991,




Bibliography 106

[25] John K Qusterhout, Tel and the Tk Toolkit, Addison-Wesley, April 1994,

[26] N Perry, “The implementation of practical functional programming languages,” PhD
thesis, Imperial College, London, 1991.

[27] SL Peyton Jones & TI. Wadler, “Imperative functional programming,” in 20th ACM
Symposium on Principles of Programuning Languages, ACM, Jan 1993,

[28] CE Pfaff, User Interface Management Systems, Springer-Verlag, 1985.

[291 Robert W Scheifler & Jim Gettys, “The X Window System,” ACM Transactions on
Graphics vol. 5, No. 2 (Apr 1986).

[30] Duncan CSinclair, “Solid Modelling in Haskell," in Functional Programming, Glasgow
1990, Workshops in Computing, Springer-Verlag, Aug 1990, pp. 246-263.

[31] Duncan C Sinclair, “Lazy Wafe : Graphical Interfaces for Functional Programs," Draft,
University of Glasgow, July 1992.

[32] Duncan C Sinclair, “Graphical User Interfaces from Functional Languages,” Final Year
Project, May 1989.

[33] Satnam Singh, “Using XView / X11 from Miranda,” in Functional Programming, Glas-
gow 1991, Workshops in Computing, Springer-Verlag, Aug 1991.

[34] William Stoye, “Input and Qutput," in The Implementation of Functional Languages

Using Custom Hardware, December 1985, pp. 8.1-8.12.

[35}] Sun Microsystems Inc., “LightWeight Processes," in Programming Ulilities and Li-
braries, March 1990, pp. 2.1-2.43.

[36] Roger Took, “Surface Interaction: A paradigm and model for separating application
and interface,” in CHI "90 Proceedings, April 1990, pp. 36-42.

[37] PL Wadler, “The essence of functional progranuning,” in Proc Principles of Program-

ming Languages, ACM, Jan 1992.

[38] PL Wadler, “Comprehending monads,” in Proc ACM Conference on Lisp and Func-
tional Programming, Nice, ACM, June 1990.




Appendix A

Example from Introduction

A.1 Graphical Interface Hello World in C

/

&

* xhello.z - simple program to put up a bammer on the display

4

/* Feacder files required for all Toolkit programs */
finclude <¥11l/Intrinsic.h> /% Intrinsics delinitions =/
finclude <Xm/Xm.Lk> /* standard Motif dzfinitions */

/* Public header file for widgets actually used in this file. */
finclude <Xm/Label.na> /% MotiI Label Widge: */

main{arge, argv)
int arge;
char **argv;

{

[

XEAppContext app_contexk;
Widget Toplavoel, hello;

toplievel = XtValArpIniciclize!

&app_context, /* dpplicaticn context */

"¥Hellov, /* Application class */

NULL, 0O, /* command line option list */
&argc, argv, J* comrand line args */

NULL, /% for missing app-defaults file */
NULL) ; /* terminate varargs list =/

he_ lo = XtvaCreateManagedWidget (

"nello, /* arbitrary widgat name */
xmLakelWidgeltClasg, /* widget class from Labal.nh */
coplevel , /* parent widget */

NULL] ; /* terminate varargs list */

/* Create windows for widgets and map them., */
XtRealizeWidyek (topLevel)

/* Loop for events. </
XtappMainLoop (app_conctext]

107




Appendix B

Examples from Chapter 2

B.1 Continuation-style ATM

module Main whezxs

{_
- The “bank" program... A sinple auko-teller.
- W2’'re going to use continuations for chis one.
|
main = raadChan stdin =sxit S
Vinput -> atm {lines input)
- The behaviour of an atm specified in concinuatioms. ..
A 1 Rasult
aztmn = irgert_card_messags 8
card_in 5
entey_pin_rassage K
customer
sustomer - Result
Lustomar =
rin_no S
\pln -> validate_pin_no »in &
\valid_pin -> case valid_pin of
Pin_OUK =» serviece_prorpt H
services
Retry . retrv_messzge 5
customexr
Thisf  -> keep_card_message E
atm
Wally - learn number_message 5
cjecl_ecard §
atm
- -> mydene
services o Result
services =
service §
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“which - case which of
Recquest_Cssh -2 cash
Request_Check Book - ack_chegk_book 3
more
Reyguest_Dalanca - skow_kalance H
more
Reyuest _Statement - do_statement s
more
- - mydone
cash i Result
cash = amount_prompt. s
amount 5
yamount_quary -> case amount_guery of
Amount_ Hooeful -> sorry_but_message 5
cash
Amounk_OK -> confirm prompl 3
confizn, §
\doit - case doin of
Confirm -»> proffer_card 3
take_card 8
prcffer_cash $
take_cash ]
atr
Cancel -> more
. -> mydone
_ -> mydone
more te Result
nore = eject_canrd 3
another_service_ressage ¢
eject H
\answer -> case answer aof
Continue - service_prempt &
services
Card_»Out -> atm
_ -> nydone
-- NeSSAgOE. .

insert_card_messzage

message
enter_pir_messase

massage
keep_carc _messace

messags
learn_nunber_message

message
retry_message

message
service_prompt

messags
ack_check _boak

messac=
show_balance

JUICTERSETS fa)
do_statement

messags
amount_promp:t

message
sorry_»dut_messags

messags

confirm_orompt

“Flease insert your card for service..."

"Please Lype your PIN,"

"Sorry, oo many Lrics, I’wm kecwing it!®

"SOrrY,

‘Ircorrect PIN, please try again.”

wrong numberi"

"Flease select a service 1-4.°

"A cheque-book will be senl out to you."

“Your bulance is <sowms-cwount>”

rplease take your statemenc."

*Flease type an amount of cash."

"You'il

ke lacky!"
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message

zoffer rcard =
message

proffer cash =
MESSage

aeject_card =
message
another_service_mezsage
message

card_in

take_caxd =

kit return...

i

take_cash

functions for

"1 te continae, 2 ta cancal"

:Please take your caxc.,"

"Flemase take your money, have a nice day!tV
"Here's your card."

"take it with 1, put it ir again with 2.¢

hit_rsturn
hit_rsturn
hit_raturn

the

‘“Renly" types...

data Valid Replys = Pin OK | Retry | Thief | wally
data Service_Replys = Requast_Cash
{ Requ=st_Check_Rook
} Reguest Balance
| Reguast_Stabement
data Amount_Xeplys u amourt_Hopeful | Amouni_OK
data Confirm_Replys = confirm | Cancel
data Zject_Replys = Continue | Card_Out
int2vzlid i = Pin_OK
int2wvzlid 2 = Retry
int2valid 3 Thiel
int2velid 4 = Wally
int2service 1 = Requaat._Casgh
intZsexrvice 2 = Recu=st_Check_Baok
int2sexrvice 3 = Regquast_Ralance
int2service 4 = Request_Staktement
int2Zamount L | n < 30 = Amount, 0K
|etherwige = Amounl_lcpeful
int2confirm i = Confirm
intZconfirm 2 = Canrzl
int2eject 2 = Continue
int2eject 1 = Card_Ou:

-— functions o take usger input into various types,..

validate_pin no :: Trt

validate_piza_no

H

pin_no
sexvice =

amount

aonfirm =

eject =

continuation

->» (Valid_Replys -> Resulz) -> Ressuln

= continuation inz2vali@

number_input
nunber__input
number_input
number_input

numbar_input

id
int2service
int2amount
int2c¢oniirm

intleject

£ (b ~» a) ~> b -» (a -» Resalt) -> Resulr
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continvnationr Ky 2z =z (X ¥)

noop x = x

-- diZficult stuff...

type Result = [Stxingl -> [Respeonge] -> [Reguest)
type Nuawlone = Int -> Result

message :: String ~> Result ~» Regult

message mMass w6
\Vinpue -> appendChan stdout {"\a“~+tmess++"\n") exit (xx input)

mydone input = done
hit_return s Result -> Rasull
hit_relturn cent =
\Vinput  —> case input of
{1:18} = coul ls
[l -> done
nunber_inpuat HE {Int -» a} -» (a -> Result) -» Result
number_input f cont =
Vinput  -» case input of
{1:19) -» cont (£ (read 1)) 1s

[1] -> done
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B.2 Monadic /O ATM

medule Main (mainIQ) where

import PreludeGlaIo

- :
-- The "banx" pragram.,. & simple auto-teller. :
-- This time using Monads.
-]
mainIQ :: 17O ()}
maini0 = readChani© stdin ‘thenIQ'
Vinput -» atm {lines input) ‘thenlo’
Va =» donelld h
-~ The behaviour of an atm specified in menadic cperasions...
atm :: B ()
atm = ingcrl_card uessage ‘thenD_ ' -
card_in ‘thenp ' K
enter_pin_message ‘thenB ' :
customer
customer :: B ()
customer =
pin_nc ‘thenn:
\pin ~-» vzlidate_pin _ne pin  ‘thenB®
\valid_pin -> case valid_pin of
Pin_OK -> service_prompt ‘thenk_' services
Retry -> retry_message ‘thenB_ ' custoner
Thief -> keep vard_message ‘thenB_* atm
Wally -»> learn number_message 'thenB_' eject_card ':thenB_‘ atm
_ => deneB :
gervices ;: B () :
services = p
service ‘thenB® ;
Awhick -> case which of E
Request_Casa -> pash
Request_ Check_Book -> acknowledgs_check_hoaok ‘thenB ' more .
Reguest Balance -> show_balance ‘thenB_ ' more .
Request_Statement -> princ_and _vroffer_sltatement ‘thenB_‘ more ’
- -> donzB

cash 1 3 ()
cash =
amount_prompt “Lhaens v
amount ‘thenB*
\amount_guery -»> <¢asa amourt_cquery of
Amount_Hopeful > sorry_but_message ‘thenB_‘ cash
Amourt_O0K ~> confirm promp: ‘theng_*
confirm ‘thsnb*
\doit -> case doit of [
Confirm -> profifer_card ‘thenE ' take card ‘thenk *
profier_cash ‘thenB_‘' take_cash 'thenE_‘ atm ;
Carcel -> more :
~» daneB

-» donebB

mere ;3 3 {)
more =
eject _card ‘thenB_*




B.2. MonadicI/O ATM

113

another_sgervice message ‘thenB_°

eject ‘thenE"

Zanswer -» case onswer of

Continue -»> service_vrorpl ‘LhonB_‘ setrvices
Card_Out -» &tm

- -» deneB

C MESBACKS, . .

insert_card _message = negsage "Plsase insert your card for sarvice...!
entsr_pin_gessags = wessage "Please type your PIN,

keev _card_messags = reggage "Sorry, too many triaes, I'wm keaping iLu!®

lzarn_number_nessage = messayge "Sorry, wrong number!d

retry_messages = message “‘Inecrrect PFIN, pleasge try again.”
s2Yvice_prompt = message “Please seleat a sevvice 1-4."

acknowledgz check_%ock = messags "A cheque-book will be sert out to you."
show_balance = message "Your balance is <some-amcunt>"

trint_and_oreffer_statement = message "Plezse take your statempent.

amount_pronpt = message "Pleass type an amounl of cash."

sSOorry_put_message = message "You’'ll be luckyi"

confirmw_prompt = message "l to continune, 2 to cancel"

preifer card = message "Please take your card."

praezfer_cash = message "Pleasge take your roney, bave a nice dayl®
aject_card = message "here’s y=zr card.’

ancther_sexvice_meszage = mersage “Lake it with 1, shove it in again with 2.7

~= hit returmn...
card_in = hit_return
take_cazd = hit_return
take_casgh ~ hit_return
functions [ar tho 'Reply" bypes. ..

data Valid_Replys = Pin UK | Retry | Thief | wally
duta Sexvice_Resplys = Request_Cash

| Reguest_Check_Roak

| Request_Balance

| Request_Statement
data Amount_Revnlys = Amount Hopeful | Amount_OK
data Coafirm_Replys = Confizm | Cancel
data Eject_Replys = Centinue | Card _Out

int2valic 1 = PIPin_OK
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ink2valid 2 = Retry
int2valid 3 = Taief
int2valicd 4 = Wally

irnt2ssrvice
int2ssrvice
intaservice
irt2ssrvice

Request_Cash

- Recuest _Check_Book
= Request_Balance
Request Statenent

PN FORR 8 3 )
1] |

int2amount n | 2 < 30 Amcunt_CK
| otherwise = Amount liopeful

ey
i

= Confira
Cancel

int2confirm
int2confirm 2

I

int2eject 2 = Continue
int2=ject 1 = Card_Out

-~ functions tuo lake uscer input inte various types.

validaze_pin_no :: Int -» B (Valld_Replys}
validate_pin_no X = re-urnB {(int2vaiid x)
pin_ne = numbker_inpuk id

service = rumbar_input int2service
amount = rumber_input inlZdnount
ceonfirm = rumker_input int2eonfirm
a2ject = rumk2r_input int2aject
-- some2 menadic operations. ..

message ¢+ String -» B ()
messasge mess
appencChan® stdout ("\n“+wmass++"\n")

hit_raetuwrr :; B {]
hit_return =
getlLinesB ‘thenB!®
Vinpaut -» case lapul oi
Just. 1 -> returnB {)
Nothing -> dones

nunber_jinput :: (inz -» a) -> 3 {al
munbar_input £ =
getLinesD 'thenB®
Vinput -> case input of
Gust 1 -> returrB (f (read 1))
Nothing -» donel

-- Lower-level monad hackery.

type Linss = [String]
data Maybe a = Nothing [ Just a

type B a = Lines -» TO ({a,Lines}

thenP :: Ba -» (& -» 3 b} -» B DL
thenk a k llines =
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a linea ‘thenTd' \(b, linesl) ->
kb linesl

thenB_ :: Ba - Bh ->Bbh

LhienB_ a « lines =
a lines 'theald' \{_,iinesl) -»
k linesl

getlhinesB :: 3 [Maybe String)
getLinesB [] = returnTO (Nothing, []1)

getlLinesB (l:lines) = returnld (Just 1,lines}

returnB ::{ a -> B a
returnd a lines = returniC (a,lines)

promoteB ¢; I0 a -> B a
promotel io linss
= ic 'thenldt \a ->
reiurnIo (a, lines)
appendChanB x y -~ promcteB (appendChanI0 x v

doneE = prornoteb deneIld

"done" in cortinuations will exit the program.

doneId = ccall =xit 0# ‘thenIO_Int#* \ a -» zeturnId

(error "exit feziled?")
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Code and Examples from Chapter 3

C.1 Swish.c — Extension to Tk

/¥

k]

# o+ % * X ¥ X ¥

L

* ok k4 ¥ F A F

Copyright 1992-1994 Cuncan Sinclair

Porzicns Copyright 1990-1994 Regents of the University of California.
Pornigsion to use, copy, modify, and distributs this software and its
deocumerntation for any purposc and without ter i3 herceby granted, provided
that tlie abovs copyright nokice appear in all cepies. The auchor make no
repressntation zbout the suivabilicy of this software for any purpase. It
i provided "as is* without expresa or iwplied warranty,

/

Ar sxtznslion to allow concurrent communication with an external process.
2.g. a Haskell program.

Crealbed September 1982

Renamed Jaouary 2393,

rorted te tk 3.1 Febh 1983,

Ported to tel7.3 & tk 3.6 april 1994.
/

#include "tk.h"

’
‘*

*

Some extra includes...

*/

#include <stdio.h>
#inelude <ctype.h>
#inc.ude <fontl.h>
#inc_ude «stdlib.h=
tinc.ude <string.h>
#inciude <gys/typesz.h>
#ine.ude <eryrns.h>

12X

ternn inl _2YINno;
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I
* @lobal variables used by swish;
* /‘

static Tk_wWindcw w; /* The main window for the applicazion. If
* NJLL then the applicatisn no longer
* exigbs. %/

ataltlc Tel_Toloerp *interp; /7 Interpreter for <his applicatioa. */

static Tcl_DString combuffer; /* Usad to assemble lines of process inpuk
* inte Tzl commands, */

/‘k
A Stuff used by my rToucking process, . .
*,’

/* ftdefina FPTFO */

/% thaeir sids */
#define C_OUT 13
#define Z_IN 14
#define R_IN 15
/% gur side %/

#caefine C_IN 12
#eefine B_OUT 14
féefine R_OUT 13

#ifdel FITC
/* nates for named pipes */

char cl] = "/upd.pipec’;

char ell = "/onp/ . pipee:

¢char r(l] = "/omp/.piper';

fendi £ /% FIFD */

stat.c int cpipe[2); /* Commands in %/

stalic int epipal[2]; /* Bvents out */

static int rpipal2]; /* Replies out */

static int eid; /* vid of child process (also used as flag) */

/* gtarting size cf length of line =/
#define LINE_TEN 200

struct line {

chaxr =frep; /* wikat to free */
char *this; /* The line */
int len; /* Line length */
struct line *next; /% Next one */
}
gtruct ghead {
ins fd; /* where Lt's to you */
inz langth; /* Bazizally is there anything in queuer */
sLouct line *head; /* First one - romove £rom here v/
struct line *tail; /* Last one - add after here *}

}:

static struct chead egueue, riasue;

I

* Worward declaraciens for procedures defined later in this [ile:
*/

extorn int Swish_Initt(};
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stat.c int EventCmd()
statlie int ReplyCrd{):
statla int “hingCrd{);
statlie inlk DumnyCrd { ) ¢
static void ComProc();
’I','f
* Extexnally visibkle init routine, called by TkAppInit{}.
*
*/
int
Swish_Trit (intp)
Tcl_Interp *intp;
{
interp = latp;
w = Tk Mainwindow!{interp);
Trrl_CreateCommand(interp, *svent", EventCmé, (ClientData) NULL,
(void {*) ()} NULL);
Tcl_CreateCommznd (interp, "reply", ReplvCmd, (ClieciData) NULL,
tvoid {*] )} NULL);
Tcl CreateCommand(interp, ®"spavmchannels®, TairgCmd, (ClientData) NULL,
(void (*, ()} NULL);
Tel_CreateCommand (interp, "dummy', DumnyCrd, (ClisntDaza) NULL,
{valdd [*) () NULL);
Tel_ DSkringlnit{&conbuffer);
rezurn TCL_OK;
)]
/*
* ConProc tzkes inpub coming from “com® channel, and feeds it to
* interpreter,
*
*/
static wvoid
CemProc (clientDaza, maslk)
ClientData zlientbata; /% Not used. */
int mask;
{
static int gotPartial = 0;
char line(LINE, _LEN ;
char *cmd;
inl ret, raesult;
int i;
if (!{mask & TK_READARLE))
relurn;
for (1 = 0: 1 < 10; i++) {
rat = read(C_IN, line, {LINE_LEN - 1)|;
if {ret == -1) {
if (erzno == EINTR) {
contirue;
#it ©
} else if (errno == EBADF}
fputs i 'Something not richt!\n", stderx);
fElush{stderr};
Tx_DeleterileHandler {C_IN) ;
break;
#endis
) else if (({errno == EWOULDBLOCK) || (errno == EAGAIN]) (

break

Lho
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) else | /* something bad's happsned... */
Tcl _Eval(interp, "exitv);
axit{0);
]
/* NOTREACHED */
break;
}
if {ret == 0) { /% is it eof, or is it SysV semantics ?? */
Tcl_Eval (interp, "exit");
ex.z(0};
}
linefret] = '\0’;
cmd = Tcl DStriangApsendl&oombuffer, tine, rec);
if {rec != Q) {
if ((lineiret - 1] !I= "\n’) && (iine{ret - 1] ! “;73) {
gotPartial = 1;
continue;
}
if {(1Tcl_CommandComplete (caxd}) |
gotPartial = 1;
continue;
}
}
Tk _CreateFileHandler (C IN, 0, CowPron, (Clientbata) 0);
result = Tcl_Eval (interp, cmd};

Tk_CreataFileHandler(C_IN, TK_READABLE, ComFroc,
Tcl CStringFrae{&ccmbuffer);

#if 1
/* Not sure what to do wirh exxors vet... */
if (*interp->result != 0) {
if {tresult != TCL.OK)) {
printf{"%s\n", interp-=resull);
}
}
fendif
}
/*

{ClientDzta; 0} ;

* These functions handled queued events and replys to send to the external

* orocess,
*

*f

static void

Quenelnit (queue, Zd)

struct ghead *queue;
int Ed:

{
quane~>fad = Fd;
queue->lergth = J;
cueue-rhead = NULL;
queue->tail = NUILL;

}

statie int
WriteLine(queve, data)

struct ghead roqueue;
glruct line *data:

{
int rat, ofl;
char ig<H
p = data->this;

off = data-»len;
for (:;) {

ret = write(cqueue->£fd, p, cif);
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if (ret == -1) {

if (errne == EINTR) {
centirue;

} alse if ({erino =
break;

} else {
Tel Eval {interp,
exit (0}

EWOULDBLOCK] || (errano == EAGAINY) {
/* must be eof */
"exit");

}
/* NOTREACHED */
breax;
I else iZf
breax;
} else {
p o= rek;
off -= ret;
if {eZf) ¢
/% we’ll go round again,
centinge;
} else {
break;

fret == C} {

rakher than kreax this line up #*/

)
Lf {off) {
/* didn‘t manage to write it all 1 ¥/
cata->this = p;
data->len = off;
return C;
1
return 1;

}

static void

FileQueue(clientata, mask)
Clientilata *¢lientData;
int maslc;

/* holdy Lhe queus */

int
struct ghead
struci:. line

reT;
*Queue =
*data =

(struct ghead *) clientData;
{struct line *) NULL:

if [t {mask & TE_WRTTABLE))
return;
for {data = qguesue->head; data != (stract line *) NULL;] {
if i'WriteLine(queue, data))
break; X
/* Great! MNow let’s cditch this entry %/ |
quenae->head = cata~>next;
(void) free((ckar *) data-=frep);
(void) freel(ckar *) datal;
queue->length--;
data = queue-rheac;

(e

f ({data == (struct line *} NULL} ||
Ik _SeleteFilafdandler {queue~>Ic};

{gneue >langti

static int
WriteQueus(intarp, argce, argv, gaeie) B
Tcl_ _Intexp *interp; /* Current interpreter. */

int arge; /* Number of arguments. */
chaxr Fhkargvy /* argument stxings. */
struct <thead *cazue; /* whers to queue it., */
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int i, off, ret;
charx *leck, *p, *qg, *r;
int iz = LIKNZ_LEN;

Bleock = (char =) malloc{siz ¥ sizeofichar});
if (block == NJULL) {
Tel AppendResult{interp, "out of memcry in \*¢,
arygv|C], "\".,", (char *; NULL};
return TCL_LRROR;

3
p = bleek;
r = black ~ siz;

/* L love this kird of cade! */
Zor (1 = 1; 1 < arge; i++) {
for {g = argv{il; *p++ = *@++:) |
if {({r - p) < 4} {
off = p - klock:
plock = realloctblock, siz += 10C});
P = 2lock + ofi;
r = nlock + sin;
if {block == NULL}
Tol _AppendResult{interp, "out of memary in \"",

argv[C], "\".", ichar %) NULL};
return TCL_ZRROR;
}
}

}

p - 1) = 7
1
(o - 1) = '\n’;
*po= N0

off = p - block:

i
* OK, now that block cuntains all argviarge] strung together wilkh spacas
* betwesn them, what we gning to do with it?
*
» = block;
/* 1f th= queue i empty, we .l try writing it atraight cut, =/
if (gueus->length - 0} {
for (i;) {
ret ~ writel{queue-~£fd, », cff);
1f {rsbk == -1)
if {exrno == RTNTR) {
continue;
} 2ise if {(errno == EWQULDRTOCK) || (exrno == ZAGAIN)) {
break:
} elze | /* wust be ecf */
Tal_Eval {interp, "exit");
exit(d);
}
/* NCTREACEED */
break;
} else if (ret == 0} |
break;
} else {
p += ret;
cff -= rekt;
if (of£) {
/* we'll go round again, rather than break this line up */
continue;
] else {
break;
}
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}
if (0ff) |
/* something to be gueued */
struct line *data = {szruct line *) mallsci{gizecl (struck line));
if (data == NULL) (
Tcl_appendResuit(interp, "out of memcry in \*",
argw [0, "\".", {char *} NULJ.);

return ICL_IRRDOR;
}
if {!quena->lsngth) {
/* first entry, register file handlcr */
Tk _CreateFiledandler {queve->I&, TK_WRITABLE,
Filedueue, (ClientData! cusue);
}
data-»>Zrep = block;
data->this = p;r
daca-»len = off;
data-¥next = (3Truct line *) NULL;

/* QK, here’s the fun Dbii - add the sunker te the end of the queue! */
queta->lengtn++;
if (gueue-=head == (struct line *) NULL}
queue~>head = data;
else
cqueue-=tail-=nexkt = data:
queue->tail = data;
) else {
tvoid) free{ (char *) block):

H

return {TCL_UK;

BventCmd & Replvimd grab their arus, stick ‘em zogether, and trxy ts send
* them off to the otlier side. I[ iLhis blocks, then we stick ‘em on thse end
* of a queue, and worry zboul them ancther time.
*/

static int
Eventlnd (dummy, interp, argc, argv)

Clientbata durnmy ; /% Nolk used. */
Tel Interp *interp; /% Current interpxeter, */
int argc; /* Number of arguments, */
char **argv; /% Argument strings. */
{
if (!pid) ¢
Tel appendResult (interp, "No co-process currently running, in \"",
argv([0], "\".", {ckax *} NULL):
return TCL_ERROR:
}
raturn WrilkeGueue{interp, arge, argv, &egueaue);
}

static Int
ReplyCmd {dimmy, interp, argc, argv)

CliertData cuamnry /% Not used. */
Tzl _interp *interp; /% Cuxrent interpreter. */
it arge; /* Numbher of arguments. =/
char YEaTgV; /¥ Argument strings. */
{
R pid) |
Tcl_AppendResult (interp, "No <o process currently runcing, ic \"",
argv{0], “\".", (char *) NULL);

return TCL_ERROR;
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recurn WriteQueuelinterp, args, argv, &rqueus)
1

static ink

makepipes )

{

#fifdef FIFQ
unlink{c};
unlinkie};
unlinkir);
if ({mkfifolc, 0600} == -1} |j

{(mkfifolz, 0600) == -1))
goto error;

if ((ecpipeld] = cpenic, O_RDCNLY | O_NDELAY))
goto errox:

1f {(epip=2[0] = cpen(e, O _RDCNLY | D NRLLAY!)
qoto orror;

if ((rpioe(0] = cpenir, O_RDONLY | O_NDXLAY))
goto error;

if {(lepipa[l! = cpentc, O_WRONLY)) =: -1)
goto error;

if {(epipe[l} = cpenle, O_WRCNLY))
gulo error:

iE ({rpipa[l] = cpenlr, O_WRONLY)}
foto error;

imkfifole, 0600

-1)

=13

return 0;
errox:
unlink(c);
unlink (e} ;
uwalink(x);
retuxn -1:

f=la= /* FIFQ %/
if ({pipelcpipe; == -1) || (pipa(epipn) == -1}
return -1;
}
$ondif
H

/7 FIFO =/

static void
CloseBmr ()
{
if (epipa(0] » 0)
close{cpipe([0]);
i (epipe[0] > Q)
close({epipe[0]);
if (rpipe[d] > Q)
close(rpipe(0]);
if {opipefl1] > 0}
close{cpipe([2]);
if (epipe(l]l > 0}
cloge{epipe(1]);
if {rpipel(l] > 0}
close{rpipell]);
}

/s\‘

* Splitc, fork, etc...

* The ‘'spawnchannels’ command. ta.k.a ‘thing‘)
*/

sktatic in:
ThingCmd{<ummy, interp, zrgc, argv)
ClientData dummy ; /* Not used. */
Tel_Inzerp *inzerp;

) os= 1) |
== -1)
== -1)
] -1)
|| (pipeirpipe! == -1}} (

/* Current interpreker. %/

e
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int

argc;
char *EANGV]
int temptd;

if (arxgs <= 1) |
Tcl_aAppendResult {inzerp,

'oprogram <args>\"",

return TTL_BRROR;

1f (pidi (
Tcl_2appsndResultlinterp,
argv(0’,
return TCL . ERROR:

1f {(makepipes{) =
CloseEm{);
Tel _AppendResult (incecp,
argviol,
return TCL_EXROR;

-1)

if ((pid = fork()) ==
ClogeEm!) ;
Tel_AppendResull{interp,
argv{0;,
return YCL_ERROR;
y else if (pid == 0; {
Lf {({dup2(epipe(l],
{dup2 {(rpipel(l],
perros [ "depst )
_exiti2);

-1y i

R IN}

CloseEm();
/* 17 (fileName
close!Q};

'= NULL}

it {(temptd = ogpen{"/dev/null", O_RDONLY)) != Q) {

cloge{temnfd);
}
I’* } *‘,
if {w != NULL}

C_OUT} ==

/% Numher of arxrgumenks. */
/¥ Argument strings., */

"wrong # args: shculd be \"",
fchar *) NULL};

argv([0],

"co-process currerntly runring,
"he,v, {chaxr *) NULL);

in \nn'

"eouldn’ Lo eroace pipes in \"",
"NYor, {char *) NULL);

“couldnt
N

Torkx im \"",
{char *) NULL):

/* child ¥/
-1t
== -1]) {

(Qup2 (epipe (0], b_LN)} == =Lk} ||

{ >/

f* give up ¥/

close {XConnectionNurber (Tk_Display(w)}i;

execvp{argvil], &argv[1l])

pexxor{"execvp’);

_exit[3);

) etac {
if ({Qup2(cpipe[0], C_IN)
(dup? (rpipe (1},

pid = 0;
Closezm{);
close{C_TIN);
close(E_QUT) ;
cloge(R_QUTY};

1'cl_AppendResult {inlerp,
argv(0],

return TCL_ERROR;
}
CioseEm{);
fentl (C_IN,
Zent L(E_OUT,
fontl (R_OUT,
3

Tk_CreaceFileHandler (C_IN, TK_READABLE, ComProc,

CcueuaInit{aqueusa, B_QUT};
QuevalInitc{&rgueue, R_QUT});
/* Tcl_DetachPids (L, &pid):

i

R_OUT) ==

H

/* parent */
== -1) || (dup2iepipeil;.
-1y {

E_0UT) == -1} {i

fToculdon’ L dup ia \A'M,
“\“,",  {char ¥) NULL);:

F_SETFL, O_NDELAY);
F_SETFL, C_NDELAY:;
F_SET¥L, C_NDELAY);

(ClientData) 0}:

*/
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* Any other initiziisations here...

Y/
return TCL_OJK;
¥

static iat

DumnyCrnd {duriy, inksrp, argc, argv)
ClientDaba dummy ; /*
Tcl_Interp *intexrp: /*
int arge; Iad
chax rargv; VA

return TCL_OK;

Not used. */

Current interpreter. */
Nunber of arguments, */
Argument strings. */

125
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C.2 Alarm Clock — Tcl Code

It /uer/E11 Tecal/kin/swish -£

*
# Front-end Lo a Haskell Clock
*

# Some variables...

set alarmed 9§
zet setting 9§

proc mainwindow {1} {

}

frame .top -relief raised -lbordexr 1
frame .bot -reliei raised -horder 1
pack append . .top {tZop fill expandl .kot {top £ill expand}

message (top.info -text "The time sponsored by Hazkell is"
-justify cenlter -aspoct 1200 -font -*-times-medium-i-#-~*-240-%
mesasage . top. bime -‘ustify cencer -aspact 1200

~font ~*-times-medium-1i-*--*-240-*
pack appeard .top .kop.info [top padx 1C pady 10 expand}
paclk appenrd .top .top.time {itop padx 10 pady .0 expand}

button .oot.alarn -text "Set Alarm” -command {setalzrm}
button .bol.deazth -tex: "Out Cf Time' -command {destroy .}
vack append .bot .bot.alarm {left expand nadx 20 pady 20}
pack appond (hot .bot.cdeath {laft expand padx 20 pady 20}

proc alarm {7 {

}

global alarmed

1L {$alarmnec} {return}
set alarmed 1

toplevel .slarm

hutton .alasrm.button —text "Alarm!!!* -ccmmund "desalarm" \

-font -*-charter-bcld-r-*--*-240--*
pacik append .alarm .alarm,bultcen {expand padx 30 pady 30}
after 200 Clasher

prov {_asher 7} {

}

glchal alarmed
if {[expr !Salarmed]} {retuxn}

.alarm.bucten flash
after 500 flasher

proec setalarm {} {

global s=iting

if {$setting} {return}
set setting 1

desalarm

coplevel ,sectsr

frame ,setter.top -relief ralsed -border 1

frame .setber.bot -relief raised ~border 1

pacik append .sa8cter .settar.bkop ‘top tiil expand}

AT I N
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.eebtor.bob {top £1)7 expand)

message .setter.top.text -text "Set zlarm for HH:MM:SS" -aspect 1200
entry .sebtter.top.time -ralief sunken

bind .setter <Return> "getalarm®

bind .seftter.top.time <Return> “getalarm"

paci append .sstter.top \
.setter.top.text {Top pady 10 £illx} \
.setter.top.time {cop padx 10 pady L0 expand}

buzton .setter.bot.ox -text OK -command 'getalarm®
peek append .selbsr.bot .setter.bot.ok (expand padx 20 pady 20}
}

proc getalarm [} {
glubal setting

if {[expr !$setting]! {return}

set tim (.setter.top.Lime goet]

if {[regexp [(0-9.[0-91::0~9]1[0-9)1:[0-31(0~91) $tim]} ¢
event $zim
destxoy .sebter
scl setving 0
}

H

rroc desalarm {} {
glokal alarmed

1E (Salarmed} {
destroy .alarm
set alarmed O

}
proc disp {args} {
.top.time configure -text $args

}

i create main windcw. ..
mainwindow

# run the program...
spawnchannels hce




Code and Examples from Chapter 3

128

C.3 Alarm Clock — Haskell Code

module Maia(main) where
import Yime
type Chars = [(String,Chzr)]

main = openevents $
\avents ~-> openreply $
\reply -» prccess (cepipe,events,reply,”","")

process :: Result
pro¢ess = gstevent S
Vevent -» case evenl of
{c,x) | ¢ == epipe -> dockar x § procvess
(e, x) | ¢ == ticker -> dotime 5 process
_ -> nvdene

“ype Result = (String,Chans,Chans,Soring,Suring) -> [Response] ~> {Request])

getevent :: {{&tring,Char} -> Result} -:» Result
getevenlk conl =
\{chan, (a:events), renlys,alrn, new) >
cont a (chan,evanis, renlys,alrm, new)

dochar :: Char -» Rasull -» Resulg
dochar x cont =
A (ohan, cvoents, replys, alrm, new) -»

if (x == chr {~1)! then -- eof
mydore (charn,events,replys,alym,new)
else
casa x of
‘An’ -» {cont ichan,events,recwlys, new, "))

_ ->» {vonL ivharn,eventz, replys,alrm, (new ++ [x]1})

dovime :: Result => Result
dozime ront =
\ {chan, events, replys,alm, new} ~>

getLocalTime (die "dotime") §

\time -> Lf ((lss Lime) == glem) thern
appendChan chan "alarm\n' {dle "alarm") $
appendChan ¢kan (ts time) {(die 'dotimea"} §
cont {chan, events, replys, alrm, new)

else
appendChan ckan (ts time) {die 'dotimea"} §
cont (c¢han, events, replys, alro, now)

mydone :: Result

mydone _ = done

centinuation 3¢ {b -~ al -» h -» {& -> Result) -> Result
centituation x v z = 2 {x y)

openevents = readChamels [cplpo, Licker] (die 'opene”)

ovenreply = readChannesls [rpips, tmoutl {(die 'cpenr*}

-~ bits




cpipe = Y/dev/£413"
eplpe = "/dev/Edl4a”
rpipe = "/doev/ FA15"
tlicker = "TICK:1"
tmouk = "TIKEQUT:S5"
ts num = "disp " ¢+ {((CineToeSLe . dblToTime) nur) ++ "\n*
tss = timeTotStr . dblToTime
show2 :: Int ->» String
show2 x = [chr (x ‘guet® 10 + oxrd “0'), chx (x ‘rem' 10 + o
weekdays = [“Men", *Tue’, "wed®, "Thu", "Fri"*, "Sat", "Sun" ]
months = [“Jan","feb", "Mar", "apr", "May", "Jun",
qult , "Aug, "Sep" ,"Ocz", "Nov* . "Dea” ]
th 1 = "sgt*
th 2 = "ng*
th 3 = "ra"
th 21 = "st"
th 22 = "na"
th 23 = "rg*
th 31 = "gg"
th x = "th"
timeTot3tr :: Tims -» String

timeTotStr (Time year mon day hceuy min sec sdec wday!
show2 aoux ":' ar show2 min -+ ':" ++ show2 s=c

- "

timeToStr Time -> String

timeToSty (Tiwa year mon day hour min szc sdec wday)
show2 heur ++ ":" ++ show2 min showl ++
weekdays ! iwday ++ " ++ months! !won ++ " ++ ghow day
th day ++* ++ show yeax

I N I e N

type Taglont Charg ~» Dizlogus

readChannels [String] ->» FailCent --» PagCont -» 2ialugue

readChannels list tall suece resps
(ReadChannels list! tagblispztch fail suce roun:

-

H ]

taghigpatch Zail suegr [rasp:resps) =
case resp of
Tay val -> SucC

Failure msg -> fail

val resps
msg resps

cdie what ( WriteError foo) =

apvendChan stderr {(what ++ "; writs: ¢ 4+ foo e "
die what { ReadErrur fon) =

appencChan stderr (what ++ ": read: " ++ foo -+
die what (SzarchError foo; -

appencChan stderr (what ++ ": search: " ++ foo ++
die what {rormazErroxr foo} =

appencChan sktderr (what ++ ": formaz: " ++ foo +#
dle what { O:therBrror fqo! =

appendChan stderr (what ++ ': erroxr:

rd

Q7))

++
++

\i1' ) abor. done

“\n"}) abort done

“\n"} abort donc

"\n") abort done

" ++ foc ++ "\n"} abort done
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C.4 Functional Maze in X — Tcl Code

#lswich -2

i

F Copyright 1992, .993 Duncan Sinclaixr
i

set krnotlilh "swish"

set amaze "amaze"
set icon “Gmaze.icon®

# Targe windew. ..
set area 600

set biock 535G

sat eye 100

sel gap 150

sot depth §

#light
set cl #ffak0on
#lighter

set c2 #faa200
#darker

set <3 #L58L00
#dark

set cd #f08c0{

set col0 $cl
get colla "

set coll §
soeb cold §
set c¢oll3 &
set cold &

i

W W ww

(e

set col5 $22
set cole §c2
set gol? $c2
set col8 §22

set col9 $c4

proc mainwindew {} {
glokal area depth block

frame .buttors -relief raised -border 2 -width 30
frame ,view -relief raised -border 2
pack append ., .view {left fill sxpand} .buttons {left fill expand}

frame .buttons,gridl -
frame .huttons,.grid?

frzme .buttons.grid3

frama  buttons.gridd

pack append .buttons \

button

Jbutcons . gridl {top

buttons
Jbullons
.buttons

Jbuttons.gridl. forw -zext "Forward" \

=counE ed

Lgrid2 {top
gridi {top
.gridd {top

"pvont in”

£illx} \
£illx) \
Eillx} \
fill expand}

-height 3

button .kuttons.gridz.left -text "Left" \
~command "event left" -height 3
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}

button .burtens.gridi.righ -text "Right" \
-conmznd "event right' -height 3

buttor .buttons,gridl.back ~text "Back uUp" \
—command "ewvenl out® —hoeighkt 3

pack append .buttons.gridl \
buttons.gridl.forw {top padx 20 pacdy 23 L[i.l expand}

pack append .buttons.grid2 \
buttons.grid2.left {lett padx 20 pady 20 £ill expand}l \
.buttons.gridz.righ {left padx 20 pady 20 fill expand}

pack append .buctbons,.grid3 \
.buttons.grid3.back {(bottem padx 20 pady 20 £il1l axpand}

button .bulbtang.gridd,start -taxt "Restart"
-width 20 -c¢ommand "event inilL*

kPutton ,buttons.gridid.new -text "New Game" %
~width 20 -command "evert new"

butten .buttons.gridd.gquit -text "Guit" \
-widthk 20 -command "destroy ."

pack appsnd .buttons.gridd \
Jbuttons. gridd.quit  {hottom padx 20 pady 20} A
.buttons.grid4. new {bottom padx 20 pady 20}
Jbuttons. gridd. start {bottom padx 20 pady 20}

carvas .view.piccy -relief raised ~border 1 -height S5area -width sarea
nessage .view.status -text ' -aspect z000 ~relief suaker -burder

pack append .view ,view.piccy {padx 27 pady 20}
pack append .view ,view.status {bottom £ill}

bind , I "event lefg"
bind . j "event out"
bind . k "event in®
bind . 1 "event rigat"

prec drawrects ()} {

global area depth block eye gap
global col0 colla coll colZ coll zols
global col5 c£olf ¢ol7 col8 col?d

set can .view.piooy

$can crealoe recrangle 0 0 $area Sarea -width 0 -£111 $col9
set centre [expr "Sarea / 2%]
set cpersp %Scentxe
set cpersp [expr "{ Scentre * Seye } / \

( $eve < $gap - ( $depth * $hlock | )"}
2et ¢ [expr "$centre - Sopersp")
set d [2xpr "Scentre + Sonerap"”)
Scan create roctungle $co $c 3d $d -width 0 -fill white
Scan craate restangle $c $c 3d $d -wiath 9 ~-fill black -stipple graySso
set s 0
set  farca
for {set i jdepth) {$i>=0} {(set i lexpr "3i - 1")} {

srl persp (expr "(Scentrs = $eye)/ \

{seye + Sgap + ({61 - 1) * $block)}']
if {lexpr "Si == 06*]} <
seb persp $centre

}

get a [expr "Scuutre -~ Spersp”]
et b [expr "Sceatre + Spevsp*]
set ¢ [a2xpr "$aenktre - Sopersp)




_ Code and Examples from Chapter 3 132

g2t & [expr "Scentre + Sopersp")

sat al [expr "Sa + 1
set a2 [expr "§a + 2
set bl (expr "5b - 1
set b2 [=xpr "Sb - 2
sa2t 21 [sxpxr "8z - 1
sat dl [axpr 83 + 1

# back walls
$can create polygen ¢ $c $c 84 ¢4 $d $d Sc -£1l) $cold -tays w081

# 4 wolls ajoining back wall.

Sea crzate polygen $c de So $o 834 $c SA %: -
$can crzate palygen $t Sc $d Sc $4 $d L $& -
Sczn crzate polygen $E St 3d 54 fe $d 3¢ St -
Saan oraate polygen $s 3d $c $d $c $c $s Sc

l %coll ~tags alsi
1 sScol2 -tags al$i
scoll -tags a3ji
1 gcol4d -tags ad$:i

Moty
b
SR el
=

# becrder lines of this layer‘s walls.

Sczn crzate line Sa Sa $c¢ S S $s $c $c $& Sc 3d §s 34 fo $h fa
Sosn exzate line $b $a $d S St $c $d $c &4 94 3t §d4 $4 54 sb b
Scan crsate lire $b $b $d $8 34 $t $& 84 $c sd 3¢ &t 3¢ 54 $2 sb
Soan vroate line §a $b Sc 3d $s §4 $c 44 8¢ sc 3s Sc $c Se $a Sa

# 4 side walls.

Scan crsate polygon $a2 %al Sc $c $d $c Sbl $al N
-£111 Scoib -Lags absi

$can create pelygon $bh $al 341 $c $di S Sh Sbo A
-fill 3cel6 ~tags a68i

$oan create pelygon $bh $h 8d $d  S¢ §41  %al $b N
-fi11 $col7 -tags a7si

$can create polygon $a $bl  Sc §d Sz 3¢ Sa Sa A\
-fill $colB8 -tags aBsi

sa2t cpersg Sperap
}
# “"public" proceedures...

# set a wall cn...
proc¢ on {depth wall} {
g.obal colld coll col2 colld ¢2l4 colsS colb6 col? ecld col?

append aa a Swall Sdepth
avpend bb col 3wall
Lview.piecy itemeontigux2 $aa -£ill [set 54b]

1

#aet a wall off...
preoc oft {depta wall) {

avpend aa a $wall Sdepth

view.plucy ditemconiiguro San -Lill «¢
1

# =set the walls for z paxticalar depth...
pro¢ walls {depth args} {
global col0 coll cel2 ecl3 cold col5 ca2l6 20l7 col8 coll

set wal_ 0
foreach foo Sargs {
set aa '*"
set bbb v
append 2a & Swall 5Sdepth
case $foo in {
(e}

{.view.piccy itemconfigure $za -=:111 ""}
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{
append bk col Swall
wview,picoy itemconfigure $aa -fill [ss=t $bb)
}
}
set wall [expr [($wa~l + 1}]

}

#set Into message...
proc¢ status {a arxgs) (

sut mess "*
case $a in {
{b}
{append mess "Hey you’ve been here kefore, You're gtill missing " A
Sargs \
* yooms. "}
{w}
{append mess "Welcome to the Maze!"}
{£}
{appoend mess "You’'ve now z2een all the rvoms, Lt tocok you " \
Zargs \
" moves. "}
{m}

{append mess "You're stil} missiag * Sargs " rooms. "}
}

.view.status coniigure -text S$mess

win icorbitmap . Sicon
mainwindow

gtatus Welcome Lo the Maze!ll
drawrects

spawnchanrels $amaze Sargv
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C.5 Functional Maze in X — Haskell Code

Amaze.hs

moduie Main{main) where
impor: Maze

{--

=== Maza constants
-=)
mazelDimanX = 4
mnazeDimanY = 4
mazeDimanZz = 4
good = 587
{....‘
—— Main
-=}
main = gethvgs exit {(\argv -»
let arg = case argv of {fwi -» words w; _ -> [}
[,%,y¥,2] = if lengta arg ==
tnen (map read axg ' [Int]]

else [seed,mazedimen¥,razelimenY, magediunen )

readChan epipe exit
(\ine -» newMaze [davidsRandoms =) x ¥y z {"init":1linas io0)})

display = displayMaze

newMaze (€:88) X ¥ z events =
ek maze = makaMaze 3 X ¥ Z
mazeDepth = min 8 (maximum (x,v,z])

meinleop hm ) = dcne
mainkcop hm [i:r) =
case i of
“nzw" -x newMaze 88 X Y 2 1
“irife ->
toCpipe ({(display maze mazeDepth)
(telpipe "statug win" -~ "w'eloome
{mainLoop (0, peosition maze]) mazc ») ]
"inpy <> mainLoop’ (hsuce L} (m, (walkFoxward n)) r
“left* -» mainLoop! {hsucc hy (m, [turnbeft m)) r
veighe" == mainToop’ (hsuee h} (m, [turnRight m}) x
tout -> mainLoop’' (heuce h} (m, [walkBack m)}) r
othex ->
toZErr {"Unknown instruction: "++gthar++"\n")
(rainLoop h m r)

maintoop’ h {(wC,wl) r
= toCpipe (display rl mazeDspthi
iareyeThere 11 (m0,l) )

areWe“here (roves,sszen} (m0,ml) r
= i€ pusiltion m =- posizion ml
tnen {- we are just locking around -}
mainLaop (moves.seen) mi r
e.se {- weé are im a new room, Mayoe! -}
if pecsition ml ‘elem' seen
then {- we’'ve been here before -}
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haunt (meves, seen) al r
else {- thle iz new - maybe we are lcst :~) -)
congratulate {moves,seen) ml @

haunt {(moves,seen) m 1
= toCplipz (hauntString (x*y*z~{lengtih seen)}))
{malrloop (mwoves, seen) o x)

congratulaloe fimoves, seeni) m r
= let nsean = posibion m : seen
rext = mainLoop (moves,nseen) o r
in if {length nseer) == {x*y*a)

then {~ we've seen it al: -}
tolpipe (seenallStrinc moves) next
else {- we still missing some rQoms -
tolpipe {(gettingThereString (x*y*z-(length nseen)})) rext

haunt8tring n -~ "b"sen here before,
= "status b " ++ show n ++ "\r"

seenillString n -- *f"inisked the mazs

= "status Z " 4+~ ghow n ++ "\n"
++ "It took you " +- show . ++ " moves.\n"

gettingThereString n - "m"issing zooms
= "status m " +~ sShow n ++ "\p"

in
mainloop emptylistory maze {("init'“:events)

toCpips s = appendChan ¢pipe s 2xit
toErr s = appendChan stderr g exit
LeOul s = zopendChan stdout s exit

empeyHistery - (0, [}
hisuce in,s) = (n+l,s;
pcsition iwalls, orienv,orviens,pos,size) = pos

{ J—

~-~ Implementation censtants

--]

-=- these are Lhe correct definitions for hbe v, 0.959.{1,21}
cpipe = "“/dev/fd 3"

epipe = "/dew/fAidn

rpipe = "/dev/fdi5"

Maze.hs

nodule Mzaze where

(~w
—-—— A waze i represented by threes ‘arrays’ of wslls
- (Lefuwalls,downWalls, backiwalls)

—-—— tke orientatcion of the beetle is represented by threas
- wacter selector Zunctions
- (right,up, front)

- Lastly there is the position ¢ the beetle in ths array
-—— ard the dimensicns of the array
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(.._

-—— Turning in a Maze {haze?)

--- we ars missing the rollLeft, and rcllRight
~=}

turnRight (walls, {(xv,uv, v}, {rs,us, fs), pos, size)

= (walls, (vneg fv, uwv, rv), (Lks, us, rs}, pos, sizc)
turnLeft (walls, (zv,uv,fv),{xs,us,fs), pos, size)

= (yalls, (fv, uv, vieyg cv), (Es, uy, rs}, pos, size)
turnUp (walls, (cv,uy, £v), (vs,us, fs), pos, sizza)

= (walls, (rv, vnea fv, uv), (rs, fs, us), pos, size)
turnbown {wallu, (zv,uv, fv), {rs,us, fs), pos, size)

= (walls, (xv, fv, vieg uvl, (rs, fs, us), pos, size)

——— Let'’'s Move

P

woveRel (x,y,z) (walle, (rv,av,Lv), (gs,us,fs), pos, sizol
= let rpos = (vadd (vsca X xv)
(vadd (vsica y uv)
{vadd {vsca z fv) poa)l)
in {walls, (rv,uv,fv}, (rs,us,Zs), rpos, size)

move_eft = movelel {(-_,0,0)
moveRight = moveRel {(.,0,0)
movelUp = moveRel (C,1,0)
moevelbovn = moveRel (0,-1,0)
moveforward = moveRel (0,0,1]
moveBack = moveRel (0,0,-1)

-——- Lec's do cher Reelble moves.
—~— Shake ‘aem, shake ‘em,

walkForward maze =
if frontwall {(0,0,0) maze than turnllp maze alse
if downWall (0,0,1) maze then moveForward maze else
3f backWall (0,-1,1) naze than turnDown (meoveDown (noveForward waze))
else (- that wall has to be thsre we are standing on it -}
turnDowrl {turnDown [(movaDown maze) )

walkBack = turnLeft , turri=ft . walkForward . lurnLeil . turaLoell

—— wall veening

lookatirontwall {wallws, (xv, uv, fv}, {rs,us,fs), pos, size!
= let cpos = vadd pos (vhalZ (vadd (vabs Iv) fwv})
in {fe walls; cgos

leftWall r = looxAtFrontWe.l . turnbteft , roveRrel

rigatwall r - lookArFrontWall . turnRight . movekel r
dowaWall ¥ = lookatFrontWall . turnbCowr . moveRecl r©

upWall r = lcokatFrontWall . turnUp . noveRsel o

backWall r = lockAtFrontWall . turnLeft . turnLeft . mcveRel r
frontWall r = lcokdtFrantikall . woveRel x

——— Ma7ze Creatinn,
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makeMaze seed a b ¢ =
let allR = fullMazeXooms a b c
allw = shuffie seed (fullMzzeWalls a o ¢)
demolishedwalls = fst3 (iterate connect ([],allR,allw)l!{arb*e-1})

1WA = wcray ((2,1,1), {a, b, <))
[{x.¥y,2} = {{x-1,y,2),(x,y.2)) ‘notElem’ demolishkedwalls |
X <= [2..a), v «- [..k], z «- [1l..c}]

dwa = array {(1,2,1},{a,b,2h
[{x,vez) o= {{x,y=1,2}, {x,y,»}) ‘votk)oem® demelishodwalls |
®<- 1..a], ¥y <- {2..2}, z <= [1..c]]

bwa = arxay ![{J,L1,2),{a,b,e))
[{x,v,2) := ({x,¥,2-1}, {x,y,2}] 'notElem’ demclishedwalls |
x <= il.,.a), ¥y <= {1..0), z <= [2..c]]

W (x,y,2) inkange ({2,1,1),{a,b,c)) (x,¥.2) = WAl {x,y.2)

I Trae = True

aw (x,¥,2) | inRange ({1,2,1},(a,b,c)) {x,y,z) = dwat(x,v.z)
| Trae = True

W (x.y,2) | inRange ({1,1%,2},ia,b,c}) {(x.¥,2) = bwat{x,y,z)
| True = True

pusd = (1,1,1)
ovicnv = ((1,9,C),{(0,1,0}),(9,C,1))
oriens - (fst3,snd3,chd3)
in {({1W,dw,bwW), orienv, oriens, vos0, (a,.b,2))

connect (ws,raoms, (Ww:rw)) =
let {ri,x2) =w
{connected, nrooms) = isConnectedRcoms roons rl r2
in if rot conrected
ther { Good Wall -}
fwiws, nrooms, rv)
else {- Bad Wall, —ry again -}
connoect (ws,nrooms, rw)

{_._
- Connecting equivalence classsas
--)

igComnectboedRooms xooms xl r2 =
let connected = rooms rl == recoms r2
nraoms = GonnaclRoors roomns ol o2
in if connscted then (connected, rocms)
else (connected,nrcons’

{- We start out with all roosms ureonnected -}
full¥azeRooms a » ¢ = \ix,y.z) -> {{xx-1)*Db - {(y-1l})i*c + (z-1)

{~ Jazer wa conn2ek Lhe rooms cne by one -3
connectRooms rooms a b =

12t r& - rooms a
rk = rooms B>
in (At -» let rr = rooms ¥ in if rr == va then rh &lse rv}

{- lets kuilé some walls -1}

fullMazemalle a b ¢ =
[{(x,y,z), [x+él,y+d2,2z+32))
| {d1l,d2,d3} <- [{1,0,0}),(0,1,0%,{D,0,1}],
x <- 1..(a-d41)],
v <= [1..(b=d2}],
z <= {1l..{c-d3}]]

-—- Shuffle a list so the =zlements come in random order
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-—= Male sure that we don‘t heve to ke in the sama Maze all thse time

--}
shuffle :: Int -> f(z] -> (&]
shuffle seed =
let leq ::; {Int,a) -» {(Int,a) -> 3ool

leg {=,_) {y,_}) = x <~ y
in map snd

quicksort leg

zip (BavidsRandoms seed)

{- David Leusters random numbers -}

davidasRandems :: I(nt -> [Int]
davidsRandoms = filter (/= {(m-1))
iterate (\ssed-> (a * sced - ¢} ‘med' m)
wherxe m = 65537
a = 272
c = 2113

{~ The sLandard Quicksort - or is it more like shell short -}

muicksore leg [] = []
quicksort leg {(mixs} =
quicksort leq [x|x<-xs, x ‘leq’ m)
++ [m] ++
quicksort leg [x|x<-xs, not(x ‘leg' m}l

{__
——— Make a nice picture of the maze
=~}
printMaza m -
lat {w,ov,0s,p, a,b,c)} = m
maze = (w,ov,0s,{0,0,0}, (a,b,e))
frontww y z =
AR

coneat {if frontWall (x,y,z) maze =hen "-4+" else " +"
| x <~ [1..a}]++"\n"
leftWallanadFRlocr ¥y z =
ccncat{ {if leftWall (x,y,z) maze then "|" elge " "} -+
(1l downWall {x,y,z) maze then " " elge "*")
{ x <= [1..a])++{if rightwall (a,y.z) maze
then "|\n* else "\a"}
layer y =
concat [ frontW y z ++ leftMWallandrloor y z | z <~ [z, ({c-1}..11] ++
"+rarconcat{if kackWall (x,y,]1) maze then "-+" else ® +"
fx <= [1..@)1++ \n\n"
Ln concat [ layer y | v <- {k, (b-1)..1}]

(--
- Set. the walls oulb into the

--)

display¥aze m éisplaybepth =
lez setOnOkt b 4 j =
{if b then "on " elze "off ")
++ skow 1 - " " 4. ghow J 14 "\n"
setlLevel 1 =

setOnOff (frontwe’l (0,0,1) m) 1 0 +=
setOnOff (frontwWz’l (0,1,i' m) 1 1 =
setOnOff (frontWa’l (1,0,i) m) 1 2 +-
aetOnQff {(frontWall {(0,-7,1) ) 1 3 4+~
setOnOfL (frontWa’l {(-1,9,1i) m) 1 & +-
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setOndff (upWall (0,0, m) 1 5 ++
satOnOff (rightWall (0,0, i) m) & 6 ++
getOnDff (downWall ({(C¢,0,i; m) 1 7 ++
z22t0on2ff (leftwWall (0,0,i) m) 41 8

in concat [ setLevel i | i <- (0..displayDepthl]]

——— Change th2 Walls - save timz -~

displaybifiMarze (a0,ml) displayDepth =
let setDiZfOnQOff w x . J =
if wrwh /= w r ml Lhoen scecondff (w r mi) 1 j else “*
setOnoff b i j =
(15 b then "on " else "off ")
-+ show 1 ++ " " ++ shkow j ++ *\r"
setlevel i =

setDiffOnQff frontwWall (0,0,i) 1 0 ++
setDif fOnOff frontwall (0,1,i) 4 1 ++
soLDIELONOEE frontWall (1,0,1) 1 2 +
setDiffonOff frontWall (J,-L1,1) 1 3 +«
setDIiffOnOEf frontWall (-L,G,i1 1 & ++
setDiffOnOff upwall (0,0,1) 1 5 #+
setDiffonOff richtwall (0,0,3) i 6 ++
setDiffOnOff dowmWall (0,0,1) 1 7 +w
selDIiffOnOff letftWall (0,0,1) i &

in concat [ setlevel i | i «- [0,.displayDepthl]]

disolaylevels m dispiayDepth =
lat zetCnOff b = if b then " 1" elge " O
setLevel i =

"walls " ++ show i ++
setOnCif (frontwall (0.0,1i} m) ++
setOnoff {frontwall (0.1,1i} m) A
setOnOtf (frontwall (L,0,i) m) s
setOnCit (fronzwall (0,-1,i} m} ++
getOner{ (Frontwall (-1,0,1i) m) ++
setOnOff (upWall {(¢,0,1} m) ++
sabtOnOff (righsWall {(0,0,1) m) ++
get0n0ff (downWall ({(0,0,1i) m) ++
set0nOff (leftwall ({0,0,1i} m) ++ "Ant

in concat [ setLevel i | i <~ [0..displayDepth ]

amaze seed a » ¢ = printMaze (maxeMaze seed a b ¢)

(,.._
- Primitive operations used.

{~ zipWith -}
viz p (%, y.2) {a,b.¢} = {pxa&a pyb pzct

{~map-}

imp (X,¥v.z2) = ip X, Y, D 2)
{-foldr-}
vif putxy,z) =px{py pzul
type Int3 = (Int,Int,Inkt)
vadd :: Tntd -> Tntl3 -»> Tntd

vadd = w3z (+)
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vsca !: Int -> Tnt3 -» Intl
vsca = \s = vim {8%)

vabs :: Int3 -»> Int3
vabs = v3m abs

vneg :: Inl3d -> Int3
vneg = vin {negace)

vhalf :: Int3 -» Tntl
vhalf = ¥3m [‘div' 2)

fst3 (%, _,_) = x
snd3 {_,x%x,_) = X
thd3 {_,_,x) = x
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C.6 Minimal Interactive Program — Tcl Code

% Interface [or Minlually Inzeractive Program,
% A single gloha! wvariable.
set asked 0

prxoc mainwindow {} {
frama .top -re_iesf raised -border 1
frame .bolt -reliasf raiszed -border 1
raclk append . . top {tep £ill expand} .bect {top fill expand}

rassage . Lop.iefo -text “Yhis is a minimal Interactive program.® \
-justify zenter -aspect 1200 -~font -*-times-medium-i~¥--%-240-%
rack append .tcp .top.info {top padx 10 pady 10 expand}

button .bot.death -text "Quit" -command {deszroy .}
pack append .bet .bet.deata {left expand padx 29 pady 20}
}

prce ask {zext) {
glohal asked

Lf {$asked} {return}
set asked 1

tonlevel .ask

frame .ask.top -relief raised -border 1

frame .ask.mid -relief raised -border 1

frame .ask.bot -relief raizcd -lborder 1

pack append .ask .ask.top {top fil1l expand} \
vask.mid {top £ill expand: \
.ask.bot {top f£ill expand’

message .ask.top.question -text $text A\
-justify center -aspect 200 -font -*-times-medium-i-*--*-.240-%*

pack apnand L ask.ton ausk. top. guestien {Lop padxk 10 pady 10 expand}

button ,ask.mid.yes ~text *Yes :-;" -zommard 'ves" \
-tont -*-charter bold-xr-*- -#.-240-*
button .ask.mid.no -text "No :-(" -comnand "no" \

~-font *-charter-hold-r-+--*-240-*

pack oppend .asik.,mid .ask.mid.yes (expand padx 30 pady 302
pack append ,ask.mid .ask.mid.ne {expand padx 30 pady 30}

message .ask.bot.arswer -zext "" \
-justify center -aspent 120C ~font ~*-times-nedium-i-*--%*=240-*

pack append .ask.bct .ask.bot.answer {top padx 10 pady 10 expand)
1

proc ves {(} {
ovenl yes

}

proc no {} {
event no

}
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proc¢ ansver {text} {
.ask.bot.answar confligure -sext Stext

}

# create main window. ..
mainwindow

# run main progranm.. .
spawnchannels how
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C.7 ATM — Tcl Code

#!/usr/X12/loccal/bin/awish ~f

#

# Copyrxight 1995 Dunzan Sinzslair

it

#  Sma’l window. ..
fear arez 400
fset klock 350
#set eye B00

#set gap .50

#

s=2t buffer "

proc¢ mainwindow {}
nessage ,title
~text "Sinclair
pack append .
frame .view

frame .buttons
pack append .

view {lelt f£ilix filly expand}

{

-aspect 2000 A\
Bank ATH"

,citle (top fill}

-widzh 200
-width 10U

-relief raised -border 2
~relief raised -boxder 2

buttors (left £i11}

WU

frame .buttens.gridl
frame .buttons.grid:z
frame .buttons.gridl
frame .butteas.gridd
frame .buttons.gxids
pack zppend .buttons \
Joattens.gridl {vop Lfillx}
Jbattens.grid2 {(top fillx} \
battons.gridl {top Fillx} A\
.buttons.gridd {vop [illx} \
buttens.grids {top f£fill expand}
button .butteons.gridl.bx -text "<-' -command "event 1" -height 3 -width
button .buttons.grid2.ny -text "<-' -zomrand "evant Z¢' -height 3 -width
button .buttons.grid3d.bz -lLexk "<-" —cumand "evenl 3% ~height 3 -width
button .buttons.gridd.bw ~texi “<-" -gomrand "event 4" -heighl 3 -widkh
button .auttons.gridl.bl -text "1" -gommand "zypa 1" -height 3 -width §
button .buttons.gridl.b2 -text "2" ~command "typz 2% -height 3 -width S
button .buttons.gridl.b3 -~text "3" -command "typs 3" -height 3 -width 5
button .puttons.grid2.bd -text "d" -command "unyps 4" -height 3 ~wldth S
button .pduttons.grid2.b5 -text *5° -command "type 5" -height 3 -width 5
button .suttons.grldZ.bs -text “6¢ -command *:=yre 6" -height 3 -width %
button .buttons.grid3.b? -text *7¢ -command "tygp2 7" -height 3 -width 5
button .buttons.gridi.b8 -text "8" - command "type 8" -height 3 -width 5
Ivtton .buttons.grid3.b9 -text "9" -compand "tyre 9" -height 3 -width 5
button .buttons.gridd.bc -text "Cont" -command "svent ¢" -height 3 -width
button .buttons.grid4.bd -text "0" -command “"type 0* ~height 3 -width 5
button .buttons.gridd.be -text "Enter" -comrand 'enter' ~height 3 -width 5
pack append .buttons.gridl \
Cbuttons.gridl.bx {lett padx 20 pady 15 expand}
.buttons.gridl.bl ‘left padx ZD pady 15 expand} 3
buttons.gridl. b2 {left padx 20 pady 15 expand} \
Jhbuttons.gridli.on3 {left padx 20 pady 15 expand}
rpack append Jhuttors.grid? N\
buttons.grid2.by {left p=zdx 20 pady 1% expand} \
JJbuttons.grid2.nd {left padx 20 pady 1% expand}
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buttona.gric? . b% {leit padx 20 pady 15 expznd. \
.buttons,cxrid2.bé {left padx 20 pady 15 expznd:

pack append Jbuttons.gridld A

buttons,gridld.bz (left padx 20 pady 15 expand; \
huttons.grid3 b7 {lefl padx 20 pady 15 expand: \
buttons.grid3 . b8 {left padx 20 pady 15 expznd: \

Jbuttons . .gridld b8 {laeft padx 20 pady 15 expand)

rack append .buttons.gridd \
Cbuttons.oridd , hw {(left padx 20 pady 15 expand} \
buttons.gridd.be {left padx 20 pady 15 expand; \
buttons,cridd B0 {left padx 20 pady 15 expand: \
buttons.gridd.be {left padx 20 pady 15 expand!

button .buttons.gridS.state -text "Statenent® ~width 3C -commend "event x"
button ,buttons.grid5.cash -text "Mocney" ~width 30 -command "event x"
butkon .buttons.gridS.card -text "Card In/Oul" —width 30 ~command "ovenl x"
button .buttons.gridb.gquit -text "Quit" -width 30 -command "destroy ."

pack append .buttons.gridS i\
.buctons,gridS.quit {bottom padx 80 pady 20) \
Jbuttons.gridS.ztate {bottom padx 30 pady 20) \
.bucttonz.grids.cash {bottom padx 30 pady 20) \
butzons.gridS.card (bottom padx 8¢ pady 20}

text .view.texl]l -border 0 -height 2¢ -width $0 -state disabled\
-font '-*-hnelvetica-bold-r-normal--*-180-*%-*.¥%.* ig08859-1"
# -justify -ight -text 'a text®

pack append .view .view.textl {fillx filly} {

pzoc type {a args} {
global buffer
append bufier Sa
.visw,textl configure -state ncrmal
view. textl insert erd Sa
.view, textl configure -state disakled

¥

proc¢ enter ()} {
global buffer

event Shutfer
set buffer "¢
}

ttprcc event {azgs} {
it puts stdout Sargs

i}
it "puklict proceadurcs, ..

proc claar (} ¢
.viaw.textl configure -stace normal
.view.textl delete 1.0 end
.view.textl configure -state diszhled

proc out {a args} {
.viow. texkl configure -stace normal
.view.ltextl insert end "\n"
.view, textl insext end 3%a
view.textl insert end “\n"
view, texlbl coniigure -state disabled
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view.textl
. view, textl
view.textl
wiew, texkl
view.textl
viaew.textl
.view. textl
.view. textl
.view, textl

me inwindow

spawnchanaels

proz lcut {a b ¢ 4 args) {
wiew.hoextl
vtew. textl
view.textl
,view.textl

configure -

dclcte
insert
insert
ingsert
ingert
ingert
ingert
inserc
insert
insert
insert
insert
inser:
inser:

state normal
enad
"Selact:\n"
sa

"\n\n\n*

b

"\n\n\n*

Xl

“yninin®

o

sd

n \nll

configure ~state digakled

J/tank Sargv
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C.8 ATM — Haskell Code

module Main whzre

{_
-- The "bank" program... A simple auto-teller.
-~ We'rs geing te wuse conbinuazions for this one.

-~ Flus a T¢l/Tk front-end!

-}

main = readChan epipe exis 5
Vinput -> atm {lines input)

-- The behavicur of an atm specified in continuations...

atm :: Result

atm = lnsert_card_message
¢axrd_in
enter_pin_message
customer

Ur Ur i

customer :: Result

customer =
pin_ro 3
\pin -> walidate pin_nc pin &
\wvalid _pin ->» case valid_vin of

Pin_0OK -> service_prcipt % services
Retry -> retry_m=assage % gustomer
Thief «~» keep_card_megsage $ awn
Wally ->» learn_numker nessege $ eject_card § atm
_ - mydcene
services :: Result
sexrvices =
service $
\wailch -> case which of
Request_~Casn -» cash
Request_Check _=2ock -> acknowledys check ook 4 more
Request_Balance => show balance $ more
Re¢uest_Statenenl -» print_and proffer_statement $ more
_ => mydane
cash :: Result
cash =
amaunt_prompt 5
amount s

\amount_guery -> case amcunt_query of
Amount_Hopeful -»> sorry_but_messags § cash
Awmoual_CK -» conbtirm _prompt S
confirm 5
\dcit -> case doit ¢f
Confirin -> protler_card § take_card 3
proffer_cask & take_cash § atm

Canccl  ~> noroe
- -> mydone
_ -> mydcons
more :: Result
nmore =
ejret_card s
auathar_aervice_messaga S
ezt B
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\answer -» case answer o
Centinue -> service_promp:z § services
Card_Odut -> atm

— -> mydone
—— MECSAGAS. . .
insert_card_message - amessage ‘Please inserl your card for scrvicea.., . !
enter_pin message = nmessage "Pleasc type your PIN."
keep_card_message T message "Sorry, Loo many briss, IT/m keeping Lot

learn_number_message = message "Sorry, wrong numbexi"
retry_message = message "Iucorract PIN, please try again. "

service prompt = messages "Cash" 'Check Book' "Balance" "Statemsnt"

ackuowledge_checix_dook =ack "A cheque-book will be sent out to you.\nPress Cont"

show_balance = ack “"Your balance is <some-amcunt>.\nPress Cont"
print and_profler statemen: = ack "Please take your statement.'
amnount_prompt = message "Plroasa type an amount of cash. "

sorry_but_wesssage = nmessage "You'll be lucky!:®

contirm_prompt = messages "Continue' "Cancel" "' n"n

proffer_card = nmegsage "Please take your card.”

proffer_cash = nmessage "Zlease Ltake your money, nave a nice day!*
eject_card = message "nere’s yer card,"

arother_service_message = messages 'Finish Now' "Further Service" " »*

-- hit recurn,..

card_in = hit_return

take_card — hit_return

take_cash = hit_return

-- tunctions for tne "“Reply" typss...

data Valid_FReplys = Pin_OK | Retry | Thief & wally
data Servivoe Replys = Roequest_Cuash

| Request_cCheck_Book

| Request _Balance

| Request_Stztemenk

data Amcunt_Replys = Amount_Kopeful | amount_OK
data Confirm Replys = Confirm | Cancel

data Eject_Feplys = Continue | Card_dat

int2valid 1 = Pin_2K
int2valid 2 = Retry
int2valid 3 = Thief
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incZvalid 4 = Wally

intlservice 1 = Reques:_Cash
inL2sorvice 2 = Reques:_Cheack_Book
int2service 3 = Request_Balance
intZsevryice 4 - Reques:t_Statemenc
intZamount n | 1 < 30 = Amcunt_OK

| otherwise = Amcunt_Hopeful

—_
H

int2confirm = Confirm
int2confiym 2 = Cancel

int2eject 2 = Continue
ink2eject 1 = Caxd_Oux

-~ fuactions te take user input into varicus types...

validaze_pin_no :: Int -> (Valid_Replys -> Result} ~-> Result
validaze_pin ne = continuaticn int2valid

pin_ro = number_inpuz id
serxvice = number_input int2s=srvice
amourt = number_input int2anmount

confirm = nunber. input int2confimm

eject -ooumber_input int2eject

continuakion :: (b -> a} -» b -» {a& -> Result} -> Result
continuation x ¥y z = z (kX v)

noop X = X

~~ difficult stuff,..

type Result = [Stringl =-> [Response] -> Requestl
type NumCart = Int -» Result

ack :: Btring -> Result -» Raesult
ack mess cont =
Vingut -> appendChan cpipe ("aut \V'"—+mess++"\*\n') exit 3%
case input of
{1:1ls) -> cont ls
[3 ~> done

nmessage :: String -> Restlt -> Result
Imessage mess Xx =
Vinpul -» apperndChan cpipe ("clear ; out \""++mess++"\"\a"} exit [XX input)

message :: String ~> Result -»> Rasult
message MEss XX =
\input -> appendChan cpipe {"out \""++ress++'\"\n"} exit {xx input}

messages :: String -> String -> String -> Striny -> Result -> Result
messages I my M2 W XX =
Vinput -> apvendChan cpipe
(11ouE A" MEARncRH N N ey AT N Tz Y T e AL
exil {(xx inpat)

mydone input = done

hit_return :: Result -» Result
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hit_return aont =
\input ~> case input of
(L:18) =» cont is
[: -» done

number _input :: [Int -> a} -= {a -» Rasult) -» Resgult
nunker input £ cont =
Vinput -> case input of
(l3ls) -> cont {f {read 1)! ls
[ -> done

cpipe = "/dev/fél3"
epipe "/dev/fdl4"
rpipe "/dev/LEl5"

]




