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Abstract

ï

Detailed fînite element analysis of the near tip region of a thin plate has 

revealed strong three-dimensional effects at the crack front. The field exhibits 

a gradual loss of plane strain conditions through the thickness which changes 

with increasing levels of deformation. A strain concentration is located at 

the intersection of free surface and crack plane. The distribution of J with a 

deformation levels coincides with the variation of the crack tip stress field.

The effects of constraint were studied through modified boundary layer

formulations using the first two terms of the William's expansion, K and T as
'

boundary conditions. The results show that positive T stresses allow the strain 

close to the free surface to advance more than on the midplane. Negative T 

causes the strain to develop near the midplane more than close to the free 

surface. At large deformation levels, the crack tip deformation tends to a 

uniform plane stress field for both positive and negative T stresses.

Numerical results show that the lateral contr action at the crack tip is 

approximately equal to the crack tip opening displacement in small scale 

yielding.
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A crack in a solid can be stressed in three different modes as illustrated in Figure 1. 

Mode I is called the opening mode. In this mode the body is subjected to a normal 

stress, and the displacements o f the crack surface are symmetric about the crack

Ï
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1. Introduction

The fundamental problem of fracture mechanics is to transfer data from laboratory 

specimens to real structures. Test specimens are usually small and have a simple 

configuration. In contrast engineering components and structures are often large and 

have complicated geometries. The transfer o f experimentally determined fracture 

toughness data to structures o f different size and shape is far from being solved. The 

problem requires an understanding of the role o f geometry, material properties, crack 

length, and loading on the crack tip stress field.

2, Linear Elastic Fracture Mechanics

: .
2.1 Introduction

Linear elastic fracture mechanics (LEFM) deals with cracked materials when 

plastic deformation preceding crack advance is sufficiently small to regard plasticity as 

a minor, and negligible, perturbation o f a largely elastic field.

.

plane. In-plane shear results in the mode II or the edge sliding mode. The 

displacements are anti-symmetric about the crack plane. The shearing mode or mode

ÎIII is caused by out-plane shear such that the displacements are in the plane of the 

crack and parallel to the leading edge of crack. Mode I is usually the most important 

in engineering practice. I
!
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Plane stress and plane strain are fundamental concepts in continuum mechanics.

plane. Plane stress occurs in a thin plate loaded by forces parallel to the plane of the

dz dz dz

:

Plane stress state is a simplification o f the three dimensional stress field o f a thin 

plate, in which one normal stress vanishes, while the other stresses may vary in the

73
plate and distributed uniformly over the thickness. The out o f plane stress

components are zero on both faces of plate and it may assumed that they are zero
#

within the plate (see Figure 2). Plane stress implies that all the stress components in
t:

the thickness z direction are zero and the non-zero components are contained in the
4

x-y plane.

I
= 0 (1)

The term plane strain is used to denote a condition in which all the displacements in a jl

body occur parallel to a given plane. The displacement in one direction is zero which 

means the strain in the thickness direction is prevented by a physical restraint. In the 

interior o f thick plate at the points far fi*om the boundary the state o f stress can be 

viewed as plane strain. Plane strain is defined as.

"ET-

I
=  =Yzy = 0  and

^  = ■ ^  = “  = 0  (2)
dz dz dz

'â

Under linear elastic isotropic conditions, the stress-strain relation gives the condition

<^ZZ=V(C^+(7yy) (3)

i  
i



As an example, long cylindrical thick tubes with internal pressure are often analysed as a 

plane strain problem since the displacement in the tube axis z is zero for most parts o f plate 

thickness (see Figure 3).

2.2 Two Dimensional Crack Tip Fields

2.2.1 Energetics of Crack Advance

Griffith (1921) investigated an infinite cracked panel o f a perfectly brittle material, 

like glass, with a central crack o f length 2a. The plate is loaded under fixed grip 

conditions . Crack extension requires energy, which may be supplied from the work 

done by applied external load or from the strain energy stored in the structure. Griffith 

defined the energy balance for crack growth as,

d U / d a  = d W / d a  (4)

where U  is the elastic energy and W is the energy absorbed in crack growth, a is 

the crack length. When energy released by extending the crack is more than the energy 

required to form new surface, the crack will propagate. Denoting the potential energy 

supply per unit o f crack area extension by G, the strain energy release rate is:

G = - d n  / da -  - d(F-U) / da = dW/da (5)

where f l  is potential energy, F is the work performed by the external load and U  is 

the elastic energy contained in the plate. W is the energy for crack formation. The critical 

condition may be defined by

G=-d(F-U)/da= G„ (6)



Gg is defined as the critical energy consumed during crack extension. In Griffith's 

model, F is zero since the remote displacement is fixed. U = %cr^4a^t/4Et 

=7ta^aVE.

G = dU / da = 2?tCT̂ a /  E (7)

In a brittle material the energy of crack advance is taken to equal to the surface energy 

to form the new fi*ee surface, i.e.

W = 4ay and dW/da = 4y = G^ (8)

Here y is the surface energy per unit area. Equating the energy release rate to the work done 

in cracking fresh surface Griffith proposed:

Tca^a /  B' =  2y and

=(2yE' /a%) i /2  (9)

where E' = E in plane stress and E/ (1-v^) in plane strain.

Irwin (1960 ) and Orowan (1948 ) noted that the energy needed for crack 

extension in a metal is much larger than the energy to create the new free surfaces.

In metals plastic deformation occurs in front o f the crack. During crack advance 

extra energy is consumed in the formation o f the plastic zone at the tip o f crack. I f  

the plastic energy R per unit area is seen as a material constant,

Gç = d W / d a  = d ( y +  R) /da  ( 10)

Gg is still a constant. As R  is much larger than y the equation (9) becomes:



K<ŷ  a /  E  =  R (11)

■

•'":S

Orowan (1948) provided an important modification to Griffith's theory which extends 

the theory from ideal brittle materials to real elastic-plastic materials.

2.2.2 Stress Intensity Factor

Using W estergaard's (1939) complex stress function, Irwin (1952) demonstrated 

that the elastic stress field near the crack tip in a infinite plate with crack length 2a 

under extension could be described for Mode I in the form ;

CT^= Ki ( 2k r)-i/2 cos 0 12 [1- sinO /2 sin 30 /2]

CTyy- Kj ( 2% r)"̂ /̂  cos 0 /2 [1+ sinG /2 sin 30 /2]

Kj ( 2k r)-]̂  ̂ cos 0 12 sin0 /2 cos 30 12 

V ( (?!! + ) Plane strain

0 Plane stress (12)

.
where r,0 are cylindrical co-ordinates centred at the crack tip. The analysis indicates

.
that the stress and deformation field near the crack tip can be uniquely characterised 

by a single parameter called the stress intensity factor, K. The stress intensity factor 

can be regarded as a measurement of the strength of the crack tip singularity. At 

large distances from the crack tip the stress approaches zero in equation ( 12),
-

but should approaches external loading stress a .  The stress field o f the plate consists 

o f two parts, the crack tip stress field and the far field. As the stress intensity factor

K characterises the strength of crack tip stress field, critical values o f K can be used 

to measure crack advance. Under strictly defined conditions the fracture criterion 

in mode I is:

I



Ki=Ki,  (13)

In order to relate K to the strain energy released rate, Irwin (1952) considered a small 

crack extension in the crack plane and calculated the energy release rate by the 

displacement o f the crack surface normal to the crack plane. It was found that

K2 = E’G (14)

Where E' == E for plane stress and E '=  E/(l-v^ ) for plane strain. The critical value 

o f K corresponding to G^ is denoted is a material constant which quantifies

the ability to resist fi-acture. The stress field for a central crack in an infinite plate can 

be expressed in the form;

(J f . . (e )+ . . .+  0 (r) (15)
y v 2 7 tr y

In the case o f a finite geometry,

Where Y is a non-dimensional function o f geometry. When 0 = 0, f  (0 ) -1 , Kj 

Y  G (a7r)̂ 32

Kt= Limit O" (17)
r ->  0 y

Kj is thus proportional to the applied load and the square root o f a characteristic 

dimension such as the crack length a and is a function o f the geometry o f the



4

cracked structure. Various methods have been used to determine K and important 

results are tabulated by Rooke & Cartwright (1976).

2.2.3 The Crack Tip Plastic Zone

To determine the size and shape o f the crack tip plastic zone, either the Tresca 

criterion or the Yon Mises criterion can be applied. The Tresca yield criterion predicts 

that yielding occurs when the maximum shear stress T^^^^exceeds the yield stress in shear. 

The Von Mises criterion, can be written in terras o f principal stresses, cj ,̂ Gj, cjg, and the 

uniaxial yield stress ag:

(Oi -cr, y + (a , -CTj y+ (a, )2= 2 I
3
3

That is

1  

Î
3

{1/2 [(CTj -C7j y  + ( c , -a , y+ (<T3 -a, = cr„ = Co (18)

Cgis the effective stress The crack tip stress field can be expressed in terms o f the 

principal stresses, CJi, C3:

=  K j ( 27t r)-i 2̂ c o s  0  / 2  ( 1 +  s in 0  /2  )

(7 2 =  Kj (  2 t i  r) “’ 2̂ c o s  0  / 2  ( l - s i n 0  /2  )

Gj = 2v Kj( 27r r)- /̂2 cos 0 /2 for plane strain

(73= 0 for plane stress (19)

Substitution o f eqs (19) into (18) provides a simple estimate o f the extent o f the plastic 

zone as a function o f 0  :

Tp ( 0 )  =  (K V  47i:(7o^)[3/2sin^0 + ( l - 2 v ) ^  ( 1 +  c o s 0  ) ]  fo r  p la n e  stra in

7
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Ip (0) = (KV 47rao2)[l + 3/2sin20 + cos0 ] for plane stress

(20)

Directly ahead o f the crack ( 0 = 0  and v = 1/3), the difference between the 

radius o f the plane stress and plane strain plastic zone is a factor o f 9. The Tresca 

criterion gives the shape o f the plastic zone as :

0 0
Tp (0 ) === (K V  2 ti:cJo)[cos^(—) ( 1 + sin— )]^ for plane stress

i*p (0 ) == (K^ /  27iao)[ c o s^ (^ ) ( l-2 v +  s in ^  ) f  for plane strain

(21)

The shape of the Von Mises and Tresca plastic zones are shown in Figure 4.

In deriving the plastic zone boundaries the stresses are limited to the yield stress and 

some extra load has to be carried by the material outside the boundary. A more 

accurate approximation to the plastic zone can be obtained by correcting the 

plastic zone for this stress redistribution, More accurate analyses o f plastic zone 

were contributed by Tuba (1976) using relaxation methods. His results are shown in 

Figure 5.

The plane strain plastic zone is smaller than the plane stress plastic zone. This 

results from the fact that effective yield stress in plane strain is larger than in plane 

stress. In plane stress the maximum stress is limited to the yield stress in the plastic 

zone. In plane strain the maximum principal stress can be as high as three times the 

uniaxial yield stress.

2.2.4 The Effect of Thickness

The thickness of a plate affects the state o f stress at the crack tip. Although there 

may be a state o f plane strain in the interior o f a plate, there must always be a

8
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state close to plane stress at the surface. The surface stress state is not exactly 

plane stress, since plane stress formally requires that,

dG
= = ® (2 2 )

and the stress gradient conditions are not generally met at the surface. The stress 

ÇJ22 does however gradually increase from zero at the free surface to the plane 

strain value near the mid plane. Correspondingly, the size o f plastic zone gradually 

decreases from the plane stress size near the free surface to the plane strain 

size in the interior o f plate. Large displacements in the plastic zone require the 

movement o f material from elsewhere. Thus when the plastic zone is large compared 

to the thickness, yielding can take place freely in the thickness direction by lateral 

contraction, and plane stress conditions apply over most o f the plastic zone.

However when the plastic zone is small compared to the thickness, deformation in 

the thickness direction is contained by the surrounding elastic material and yielding 

can not occur freely in the thickness direction.

Plastic deformation can be viewed as slip caused by shear stresses. The plane 

on which the maximum shear stress is located and the magnitude o f maximum shear 

stress differ in plane stress and plane strain. The two cases are plotted in Figure 6 . 

Slip on a plane through the x axis and at 45° degrees to the surface is an out o f 

plane shear deformation which occurs in plane stress (Figure 6a). In contrast plane 

strain slip occurs on the plane through z axis and at 45° from x-z plane as illustrated 

as Figure 6b.

As the ratio o f plastic zone size to the thickness determines the state o f stress, 

plane strain conditions are maintained when the plate thickness is larger than the 

plastic zone size. The ASTM standard test method for plane-strain fracture 

toughness K o f metallic materials (E399-83) requires the specimen dimensions to 

meet the following requirements:



a, b , B >  2 .5(Ki/Cro)2 (23)

a is the length of crack, b is the width o f the ligament and B is the thickness. Kj^ 

is the fracture toughness. is yield stress. Within these conditions all the specimen 

dimensions are more than 25 times the radius o f the plane strain plastic zone.

The experimental dependence o f fracture toughness Kj^ on thickness is illustrated 

in Figure 7 ( Kaufinan,1970) which shows that is a thickness dependent 

property. decreases with increasing thickness and reaches a constant value 

as plane strain conditions ai e approached.

Figure 8 (Broek,1986) shows schematically the dependence o f fracture toughness 

on thickness which indicates that beyond a certain thickness B  ̂a state of plane strain 

prevails and the toughness reaches the plane strain value Kjq. There is a thickness Bg 

(Bq < Bg ) at where the fracture toughness reaches its highest level. The value is 

usually considered to  be the real plane stress fracture toughness. Between Bg and Bg 

there is a transition region. There is uncertainty about the toughness at thicknesses 

less than Bg, where necking may precede fracture.

Anderson (1969) has analysed the effects o f thickness on the toughness and 

demonstrated that between Bg and B^the data can reasonably be approximated 

in a linear manner. The thickness of Bg is specified by B^= 2.5Kj^ /  o j  and Bg by 

Bg= Anderson and Dodds (1991) proposed a less restrictive size requirement

for cleavage fracture toughness measurement in term of the J-integral given by.

(24)
Og E ( a g + a ^ )

They performed finite element analyses to calculate the ratio o f J-integral in a finite 

size specimen to the J-integral under small scale yielding which can produce the 

equivalent stresses ahead o f both crack front, and thereby equivalent conditions for

10



cleavage fracture. The proposed size requirement specifies the deformation at which 

the ratio deviates from unity for deeply cracked bending specimens. Koppenhoefer 

and Dodds (1994) compared this criterion with five sets of experimental data (Jones 

and Brown et a f 1970). .

An alternative account o f the role o f thickness effects follows from the work of 

Sih and Hartranft (1973), who pointed out that the energy released per unit length 

crack front length is a function o f the thickness. If a large part o f the thickness is 

under plane stress the average stress intensity factor is lower than the nominal stress 

intensity factor.

The usual method of determining K is a global method which assumes that the 

toughness is a constant through the plate thickness. The method o f determining K in 

the three point bending is usually based on two dimensional analyses which result 

in expressions o f the form:

PS 
BW '

K -  f ( a / w )  (25)

P is the applied load. S is the distance between the two support points. B is the 

thickness. W is the width of specimen and a the length o f crack. The stress 

intensity factor is related linearly to the load on the boundary o f specimen. The 

calculation o f fracture toughness does not consider plastic deformation which is 

an inherent limitation o f LEFM.

2.2.5 The Validity of LEFM

The application o f LEFM requires that the material exhibits linear elastic behaviour 

and that any plastic deformation preceding the crack extension is contained within a 

surrounding elastic zone. This ensures that the crack tip stress field is dominated by the

11



stress intensity factor K. To maintain K dominance it is necessary that the plastic 

zone is located within a zone of K dominance . These conditions are expressed 

formally by codified requirements (23). The criteria are based on the requirement 

that the characteristic size o f the plate must be larger than the 30 times o f the size o f 

plastic zone in order to maintain valid LEFM.

=  K, /  ( 27t r)>« fij (0 ) +  T5ij (27)

I

1

2.2.6 Williams Expansion

I
Williams (1957) investigated the linear elastic problem of a two dimensional infinite 

plate with central crack. The stress field was expressed as an asymptotic expansion:

C7jj(r,8) =Aj j ( 8 ) r i / 2+Bj j ( 8 )  +  Cjj(8 ) m  +. . .  (26)

■ir ,0  are polar co-ordinates centred at the crack tip. are the cartesian components of g
■'I

the stress tensor. The first term in the expansion o f crack tip stress field can be 

written in term of the stress intensity factor Kj. The second term in the expansion has 

been denoted T by Rice (1974). The T stress is independent o f the distance and can
1

be regarded as a uniaxial tensile or compressive stress parallel to the crack flanks.

Neglecting terms which disappear at the crack tip (r=0), the field can be expressed in 7
■I

the form:

-7
2.2.7 T-Stress f

1
Ï

Elastic firacture mechanics usually assumes that fracture process occurs close to the 

crack tip where stresses are dominated by K, which is the leading term in the Williams 

expansion. The stress field in the neighbourhood o f the crack tip is then o f most 

concern. Because o f the inverse square root singularity at crack tip stress field, the
4

12
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T-stress is small relative to the singular field and is usually neglected. The values of

T-stress o f a wide range o f geometries have been tabulated by Sham (1991).
.Deeply cracked geometries in both tension and bending exhibit a positive T-stress.

In geometries with shallow cracks, the T-stress is negative. Levers and Radon 

(1983) introduced a biaxiality parameter (3 . This enables the T-stresses to be

P== T(TCa)i(2 /K  (28)

expressed either in terms o f a stress concentration factor T / a  or as a biaxiality 

parameter p  in the form :

Î
■Î

Carlsson and Larsson (1973) demonstrated that the second term in the Williams 

expansion has a significant effect on the shape and size of the plastic zone developed at 

the crack tip. A compressive T-stress both enlarged the maximum radius o f the plastic 

zone and caused the plastic lobes to swing forward. A tensile T-stress decreased 

the size o f plastic zone and caused it to rotate backwards. To determine the role of 

constraint on the stress field, Bilby et al (1986) introduced T as a constraint parameter 

in addition to K.

Betegon and Hancock (1991) modelled the plane-strain elastic-plastic crack tip 

fields with modified boundary layer formulations based on first two terms, K and T, of

the Williams expansion. Boundary layer formulations were originally introduced by Rice

and Tracey (1973) to analyse the crack tip deformation in the small scale yielding. The 

displacement or tractions o f the K field are applied on the outer boundary o f a region 

around the crack tip. The addition o f the non-singular T-stress to the K field as the 

boundary condition gives the modified boundary layer formulation. The results 

indicated that the geometries characterised by zero and positive T stress can be 

characterised by J, while geometries with a negative T-stress require a two parameter 

characterisation. These observation means that the stress field is characterised by two 

terms J and T. The T-stress is a constraint parameter which depends on load and geometry.

Du and Hancock (1991) studied the effects o f the T-stress on the small scale

13



yielding crack tip stress field for a non-hardening material in plane strain conditions 

using modified boundary layer formulations. The mesh of the model consisted o f 12 

rings o f 12 second order elements. The boundary conditions applied to the outer edge 

o f the mesh corresponded to the displacements o f the mode 1 linear stress field and the 

displacements caused by the T-stresses. The stresses surrounding the crack tip were 

represented by Prandtl slip line field when T >0.44(7g. The validity o f slip line field as 

a representation o f the limiting stress state at the crack tip in small-scale yielding 

(T>0) is consistent with the non-linear HRR field. The stress field ahead o f the crack 

was reduced by a compressive T-stress. Compressive T-stresses resulted in reduction 

o f hydrostatic components at all angles within the plastic zone. Tensile T-stress that 

is greater than 0.440o induced plasticity on the flank o f crack and gave rise to region 

o f constant stress state between 150 and 180 degrees. However for a zero and 

negative T-stress, an elastic region was encounted in the crack flanks.

2.3 Three Dimensional Elastic Crack Tip Fields

The three dimensional problem studied is a thin plate with a through crack 

subjected to mode 1 loading. Plane stress is a two dimensional concept which is 

applied to a three dimensional model with the condition that the out o f plane stress 

components are zero and the in plane stress component (Jjj, and

tj^are independent o f position through the thickness. Within the context o f a three 

dimensional formulation, these assumptions are strictly consistent only if the direct 

stresses cTji, O2 2  are a linear function o f the in-plane co-ordinates x and y.

2.3.1 Expression of Three Dimensional Fields

As the mathematical difficulties posed by three dimensional elastic problems are 

greater than those associated with planar problems, there is still no complete solution

14
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to the full three dimensional problem. Nevertheless, numerical studies have been 

conducted and progress has been made. These studies can be sorted into two 

categories, mathematical analyses and finite element analyses.

The problem of a three dimensional stress distribution in a plate with an orthogonal 

through crack was first investigated by Hartranft and Sih (1970) using a variational 

method. In their study they assumed that the local stress field interior to the plate is in a 

state o f plane strain. The results show that the stress state depends on the plate 

thickness to crack length ratio and a dimensionless parameter characterising the stress 

distribution through the thickness. An approximate three dimensional stress field 

distribution formulation was put forward.

Sih and Hartranft (1973) pointed out that the strain energy release per unit length, G, 

is a function o f thickness. The strain energy release rate was shown to decrease with 

increasing plate thickness 

Folias (1975) addressed the problem by the means o f the so-called 'symbolic method'.

The analysis showed that in the interior o f plate only the (Tjj, ^ 22,0̂ 33 and Xj2 

components are singular, while in the vicinity o f the comer all the stresses exhibit a 

singularity o f order (l/2+2v). As the thickness->oo, the plane strain solution was 

recovered and as v- ^ 0  the plane stress solution was recovered.

Levy, Marcal and Rice (1971) presented finite element analyses o f the three dimensional 

stress fields o f a thin plate which showed that the three dimensional near tip stress 

field coincides with the plane stress solution at a distance of twice the thickness from the 

crack tip along mid plane o f a thin plate. Though detailed results were not given, their 

work was one o f the first finite element analysis to present quantitative results o f the 

three dimensional field near a crack tip.

Crush (1971) used a direct potential method to study the problem. Numerical 

results indicated the stresses are lower than these obtained from stress intensity factor, 

while (^33 was a function o f thickness. It was found that plane strain is induced close to the 

crack front and the existence o f a comer singularity was demonstrated.

A three dimensional finite element analysis o f a through cracked elastic plate was

15



presented by Burton et al (1984). They found a decay in the energy release rate through 

the plate thickness and indicated that the drop in energy release rates as the free 

surface is approached is probably not significant from a fracture toughness testing 

point o f view.

An approximate analytical solution which employed a boundary layer approach 

was given by Yang and Freund (1985). Their results showed finite lateral contraction 

at the crack tip in contrast to the plane stress results. The crack tip stress field merged 

smoothly with the plane stress solution at the distance from the tip o f one-half to three 

quarters o f the plate thickness.

Nakamura and Parks (1988) used a three dimensional boundary layer formulation 

o f a thin elastic plate. The results revealed strong three dimensional effects within a radial 

distance o f about one and half thickness from the crack tip. The transition between the 

three dimensional - two dimensional field occurred at the distance of approximately 1.5 

times the thickness. On the mid-plane o f plate the crack tip field converged to that 

given by the local plane strain stress intensity factor solution within a radial distance 

from the tip less than 0.5 % of the plate thickness. Nakamura and Parks also indicated 

that the amplitude o f the comer singularity field could be described by a comer stress 

intensity factor. The asymptotic behaviour o f stress near the intersection o f free 

surface and crack plane was expressed by Benthem (1975,1977) in the form,

p^g.. ( 1 , 0 , 0 )  p / t  - > 0  (29)

Here X is the singularity exponent which depends on Poisson's ratio, the leading root lay in 

the range -0.5 < X <  -0.333 for 0 < v  <1/2. g. is a dimensionless function. Spherical 

co-ordinates at the vertex are defined as:

p = ( r2 + z2)i/2 (30)

z = t  /2  - X3, t  is the thickness o f the plate. X3 is distance to the free surface into the
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plate. (|)= tan-  ̂ ( r/z ). Let the local stress intensity factor along the crack front be 

defined as,

Kiooai (z) = lim %  ( 27ir (31)

With the aid o f equation (26), Benthem argued that for small values o f z

Klocal (z) = B z ^+1/2 (32)

B is a constant which represents the intensity o f the corner singularity field. B is the 

amplitude o f the corner stress intensity factor. Using equation (28) the comer stress field 

can therefore be expressed as,

B /  ( 2%) ^^^gÿ ( K  0, (33)

The work o f Nakamura and Parks (1988) demonstrates that there is a full three 

dimensional near tip stress field within a radial distance o f about one and half plate 

thickness from the crack tip while at greater distances the three dimensional stress field 

coincides with two dimensional plane stress field.

2,3.2 Determination of Elastic T-Stress in Three Dimensional Fields

The studies of Larsson and Carlsson, 1973; Car dew et ah, 1984; Sham, 1991, 

have shown that the T-stress depends strongly on the loading as well as the crack 

length and overall geometry. In two dimensional problems, the T-stress is 

independent o f material elastic properties such as Young's modulus or Poisson's ratio 

and plate thickness.

Nakamura and Parks (1992) introduced a general computationally effective 

method for calculating T stress distribution along a three dimensional crack front from 

finite element solutions based on a method originally implemented by Kfouri (1986).
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Tcr

i
The method is based on an auxiliary solution corresponding to a plane strain line load 

with magnitude f  located along the crack front segment. The stress field in the crack

tip front is given by,

f  3û f .  . 20 f Ûa ,, = —  cos 0 , = —  cos 0  sin —, a . .  = —  vcos 0
’ tit nr 2 nr

f  9
Gi2  - —  COS 0 sin0, a j 3  = 0 ^ 3  = 0  (34)

i

The leading terms in a series expansion o f the three dimensional mode I crack tip 

stress field are supposed to be expressed by the two dimensional plane strain mode I 

crack tip stress field:

Î

Kj 0 . 0 . 30a,, -  — cos—(1 -  sm—sm — ) + T 
a/2ot 2 '  2 2

3
Kj 0 . 0 . 30Q -  -— cos— ( 1 + sm — sm — )

^/2nr 2^ 2 2
"t

_ 0 _  a „  = , * 2 vcos— hT,,

K, 0 . 0 30
a „  =  7 -  cos—sm—cos—

"  V2^F 2 2 2

1̂3 ^ = 0 (35) I

Where the term T( ^T ^J and T33 are the amplitudes o f the second order terms. For 

the purposes o f analysis a reference stress a* can be conveniently defined by cr*=

S33 E, where S33 is strain in thickness direction. The stress component in thickness |

direction T33 is then decomposed into the form :

= a ^  + vT (36) I
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The crack tip stress fields consist o f the superposition o f the mode I crack tip 

stress field and the field due to the line-load. An energy conservation integral at the 

crack firont location s, I(s), allows the interaction integral to be written using the 

relation 833=

I(s) = |[T (S )  (l-V)-va*(s)] (37) or

f(l-vO
T ( s ) = _ ,  I (s) + vE33(s)] (38)

In the integral, the leading term K  in the crack tip field cancels out exactly and only 

the non-singular term T (s) contributes to I (s). Here T (s) is the T-stress at the 

location s o f the crack front, and v is Poisson 's ratio, f  is the line load with unit 

magnitude. E  is Young's modulus. I (s) is the energy conservation integral which can 

be evaluated numerically by domain integral methods ( Li, et al., 1985; Shih, et al., 

1980 ). Equation (38) is used to evaluate the T-stress in three dimensional stress 

fields. The T-stress is a function o f the elastic constants, E  and v. The T-stress as 

shown in Fig. 9 from the analysis o f Nakamura and Parks (1992) increases 

essentially uniformly across the crack front with increasing Poisson's ratio, but the 

through thickness variation remains small except in the region near the free-surface.

As the plate thickness increases, the T-stress decreases and approaches the two- 

dimensional plane strain solution. T is however strongly dependent on the thickness 

o f thin plates due to  the role o f the out o f plane strain 833 as shown in equation (38).

In three-dimensional stress fields the T stress has characteristics that do not 

exist in two dimensional stress field. An important characteristic is that the plate 

exhibits an inherent positive biaxiality parameter displayed in Fig. 10 ( Nakamura 

& Parks, 1992).
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3. Elastic-Plastic Fracture Mechanics

3.1 Two Dimensional Crack Tip Fields

3.1.1 J-integral

Eshelby (1956) has defined some contour integrals based on energy conservation 

which are path independent. A two dimensional form o f one of these integrals can be 

written as:

J = ( w d y " t 5 u / 5 x d s )  (39)

with w = w( x,y) = f dSjj

Here r  is a closed counter clockwise contour in a stressed body, t is the tension vector 

perpendicular to the closed contour in the outside direction, t = Oy rij u is the 

displacement in the x direction and ds is an element o f contour length, w is the 

strain energy per unit volume. J is equal to zero along any closed contour in a 

stressed body.

Cherepanov (1967) and Rice (1968) independently applied this J-integral to

crack problems. The closed contour r  begins at the lower surface o f crack and 

ends at the upper surface of crack. Rice (1968) demonstrated that the integral is path- 

independent with the following argument. Consider the closed contour ABCDEF 

around the crack tip in Figure 11a. Since Tj= 0 and dy = 0 along the CD and AF, the 

integral is zero, if the contribution o f ABC is equal to the contribution o f DEF, but in 

opposite sign. This means that the integral will have a same value along the contour F  ̂ 

as that along the contour F^Xsee Figure l ib )

In the linear elastic plane strain stress field, the J-integral can be expressed in the 

form:
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J = KjVE' (40)

Where E' = E for plane stress and E' = E  / (1 - v^) for plane strain This equation 

defines the important relationship between J and K within the context o f LEFM.

3.1.2 Dual Definition of J-integral

Rice (1968) has shown that the J-integral, defined as a contour integral around 

crack tip, is also the variation o f potential energy for a virtual crack advance da which 

provides an alternative definition o f J, in terms o f the potential energy relaease rate.

J -  -dn /  da B = d(F-U) /da B (41)

where IT is potential energy. B is thickness o f the plate. F is work performed by the 

external force and U is the elastic energy. Since F = U  +W, for a plate o f unit 

thickness the condition for crack growth is,

d(F-U)/da = dW/da (42)

Where W is the energy for crack formation. The potential energy release rate

J = d(F-U)/da = dW/da (43)

The equation J = d(F-U) / da relates J to the external force and displacement o f the 

loading point, and is the basis of the experimental determination o f J. The equation J 

= dW/da states that J is also equal to dissipation energy release rate for virtual crack 

extension which allow J to be determined by numerical methods. The definition o f J as a 

potential energy release rate allows it to be calculated firom the externally applied forces
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and displacement. The definition o f contour integral o f crack tip stress field allows J to 

characterise the stress field, while equation (43) establishes the relationship between 

these two definitions.

The strain energy density o f linear elastic body has the form:

W = 1/2 Cy Sy

= 1 + ^  [ ( 1 - v )(a ? i +  )  -  2 vcTiiCTj, +  (44)

Substituting the stress components o f the mode I crack tip stress field :

W =  ( 0 / 2 )  ( l - 2 v )  +  s in ' 0 / 2 ]

Insert J E  = into (45)

W  =  7 7 ^ f i i ^ [ ( l - 2 v )  c o s ' 0 / 2  +  s in ' 0 / 2 ]  
2 7 tr ( l-v ^ )

 ̂ [ c o s ^ 8 /2  ( l - 2 v )  +  sin^ 8 / 2 ]  (46)

(45)

2 7 ir ( l -v )

I f  J is path independent in the crack tip stress field, the strain energy density is necessarily 

singular, with a strength r k

In the elastic-plastic stress field, Hutchinson (1968), Rice and Rosengren (1968) 

derived the stress and strain crack tip field in term of the J-integral for the non-linear 

elastic material expressed by a Ramberg-Osgood relation. The strain energy density 

o f the HRR field is:

W = W (8) =  f O-y d s  (47)

2 2

So that the dimension o f W i s ^  ' substituting the components o f the HRR
i=l j=l
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stress and strain fields into the equation gives:

t, Z Z  Oo(EJ/ao’l .  r)’'’̂ ”0,j(n,0)*a8„(EJ/acT;i„ r)"''^»8„(n,0)
i= l j= l

= E S ( J /  l„r)d,j(n,0) * £ y ( n , 0 )

=  J /  I„r Z I  âij(n , 0 )  *8y(n ,0 )  (48)

W = J /  I , r  E Z  0 y (n ,0 )* S y (n ,0 )  (49)

From (46) and (49), the J- integral is a quantity directly related to the magnitude o f 

strain energy density of both linear and non-linear elastic crack tip stress fields.

3.1.3 The HRR field

Hutchinson (1968), and Rice and Rosengren (1968) independently investigated 

elastic plastic crack tip stress and strain fields with the aid o f a path-independent energy 

line integral for a two dimensional deformation field o f power law hardening material 

under mode I loading. The uniaxial stress strain curve was modelled by the Ramberg- 

Osgood relation.

fields were described using a stress function technique to give the nature o f the 

dominant singularity:

0
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where a  is material constant and n is hardening exponent. The asymptotic crack tip

Oij =  CTo ( E J / acj' I„ r &ÿ(n ,0)J 0 (51)
Sjj =aBo (E  J /a a ^  I„ r Sij(n ,0 )

.
The J-integral controls the amplitude o f the stress field, in which 6y(n ,0 ) and 

Sj-(n,0)are angular functions. E is Young's modulus, r is the radial distance. I^is

rs'



a tabulated dimensionless constant which depends on strain hardening exponent and 

the angle 0 .

Other parameters are defined by a power law idealisation o f the flow behaviour

J = J (w  COS0 rd0 - T. âu- / (9x. rd0) or

J / r = J(w  cosO d0  " T. (2 û  /  âx.  dO) (53)
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(Eqn.51). The expression provides insight into the crack tip stress field o f non-linear 

elastic materials. The elastic-plastic stress and strain fields are known as the HRR
'

fields or the HRR singularity.

Hutchinson (1968) employed deformation plasticity and a stress function 

method to analyse the stress and strain field in plane strain and plane stress conditions.

Equilibrium was ensured for all stresses derived from a stress function. A higher order

differential equation was solved by numerical methods to yield the stress
-,

components in the form:

where K is a constant and 6;j(0) is fianction o f its argument. Utilising the property 

o f path independence of the J-integral, two paths were selected. One was taken

entirely in the elastic region for which the results o f J-integral had been obtained. 

Another path was chosen such that it lies within the zone dominated by the full 

plastic singularity. The integral must be equal to the value obtained from former, 

allowing the amplitude, K, to be obtained and thus fully defining the field.

Rice and Rosengren (1968) also used the method, but selected a different stress 

function. The crack tip singularity was verified by a simple method. For a circular 

path of radius r enclosing the crack tip J can be expressed.
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As J is path-independent, the integrand which is product of stress and a strain-like 

component ensures path-independence,

w  ̂ f  (6 ) as r—>0 (54)

For power law hardening materials fulfilling this equation, this implies that

Gy =  K 0y(0)

Sy =  aSoK “ ây(0) (55)

As deformation plasticity was used in the analysis, the elastic plastic stress 

field must meet the conditions o f small scale yielding and proportional loading. This 

requires that the crack tip process zone, where non-proportional loading, large strain 

and other phenomena associated with fracture occurs, are encompassed and controlled 

by the J-dominated region.

3.1.4 J Dominance

The asymptotic crack tip solution for power law hardening materials, developed 

independently by Hutchinson (1968), Rice and Rosengren (1968), is known as the 

HRR field. J based fracture mechanics requires that the fracture process zone is 

encompassed by a zone which is independent o f specimen geometry and defined 

by the HRR field. This defines the conditions for valid single parameter fracture 

mechanics. The J-integral, like the stress intensity factor K in the linear elastic stress 

field, characterises the strength o f the HRR field. The elastic-plastic crack tip stress 

field is characterised by the J-integral. J-dominance defines the conditions under 

which the crack tip stress field can be expressed uniquely by the HRR field.

McClintock (1971) observed that in the limit o f non-hardening behaviour and in the 

fully plastic state there is no unique stress and strain field in the crack tip region. Rather 

these fields are dependent on the crack geometry and loading. The slip-line field
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solution for the CBB (cracked bend bar), CCP (central cracked panel) are radically 

different. As an illustration, the plane strain slip line field of a centre cracked panel 

loaded in tension is shown in Figure 12a. In contrast, the deeply cracked bend bar 

shown by Figure 12b exhibits a fully constrained flow field in which plasticity is 

confined to the ligament.

Numerical and experimental work has been conducted to confirm the relevance 

o f the HRR solution and the J-dominance o f real specimens. McMeeking and Parks 

(1979) used plane strain finite element analysis to study the deeply cracked bend bar 

(CBB) and centre cracked panel (CCP) for low hardening and non hardening materials. 

Deformation was followed from small scale yield into full plasticity. The criterion used 

to judge the degree o f dominance was the extent to which stress and deformation field 

corresponded to the large geometry change field calculated under small yielding 

conditions.

Shih and German (1981) also used the finite element method to analyse the stress 

field o f CBB, CCP and single edge cracked panel (SECP) specimen for contained and 

large plasticity. Small geometry change stress fields were compared with the HRR field 

to determine the region o f agreement. Under large scale yielding condition, J-dominance 

is dependent on specimen type and hardening properties. The conditions to ensure J- 

dominance criterion for low hardening rates were suggested to be:

:
C >  (.iJ/CTo

(X > 2 0 0  centre deep cracked tensile panel

[X > 25~50 edge cracked bending bar (56)

}

Here C is the uncracked ligament, Gq is the uniaxial yield stress and p  is a geeometry 

and loading dependent coefficient. For high hardening rates the size requirement may be 

reduced somewhat.

Al-Ani and Hancock (1991) examined the transition from deeply cracked to shallow ÿ

cracked behaviour in edge cracked bend and tension bars. In weakly strain hardening

r

26



materials the J-dominance o f short cracks in tension and bending specimen was lost. 

When a/W was less than 0.3 in bending or 0.55 in tension, plasticity develops initially 

to the cracked face. In this case the crack length becomes the controlling dimension, 

and J-dominance is lost before:

a  > 200 J/Gq (57)

Under large scale yielding conditions, non proportional loading occurs outside the 

intense strain region near crack tip and the crack tip is no longer uniquely characterised 

by the J-integral (Anderson, 1989), Though the J-integral can be successfully used in 

deeply cracked specimens loaded predominantly in bending. For the CCP and DECP 

(double edge cracked panel) geometry, fracture toughness becomes geometry 

dependent (0'Dowd,1995). The J-dominant crack tip field is only limited to high 

constraint crack geometries. J-dominance will be lost for low constraint so that the 

critical value o f J-integral is not a material constant but a specimen dependent 

parameter.

The derivation o f the J-integral and the HRR field is based on deformation plasticity 

theory which is only valid as long as each point o f material experiences proportional 

loading. The main application of the J-integral is to  stationary crack tip stress 

fields.

The assumption o f non-linear elastic stress-strain behaviour o f material does 

not reflect the strong deformation in the region near the crack tip. However, the 

J-integral can still be used to characterise the crack tip field if the high strain zone is 

surrounded by the HRR field. In large scale yielding, plastic deformation occurs 

outside the crack tip zone and depends on the geometry and loading o f the specimen. 

The nature o f the crack tip singularity is affected by the nature o f the macroscopic 

flow field. Under these conditions, the crack tip stress field is no longer dominated 

byJ.
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3.1.5 K-T and J-O theory

B

iÎ
Linear elastic fracture mechanics (LEFM) is based on the assumption that the 

near crack tip stress and deformation field is characterised by a single parameter, 

the stress intensity factor Kj In LEFM, it is understood that the crack tip plastic 

zone is very much smaller than the specimen dimensions and is surrounded by an 

elastic zone characterised by K. The stress field can be characterised by the first 

singular term of the Williams (1957) expansion. However, Larsson and Carsson 

(1973) showed that two dimensional plane strain crack tip stress fields are 

geometry and loading dependent, and argued that these effects arise from second 

term in the Williams (1957) expansion, the T-stress, on the crack tip elastic stress 

field. T is a function o f geometry and loading . The shape and size of the plastic 

zone in modified boundary layer formulation (MBLF) solutions were much closer to 

those o f corresponding specimens. Rice (1974) noted the T-stress does not affect 

the J- integral. This suggested that the single parameter K is not sufficient to 

characterise the near tip fields in some specimens. Bilby et al (1986) showed that 

two parameters ( K and T ) remote loading characterises the near tip elastic plastic 

field better than K alone.

In a recent study, Betegon and Hancock (1991), using the MBLF approach, 

compared the stress profile on small geometry change solution with small scale 

yielding solution in an actual specimen closely matched that o f the MBLF solution 

with the same biaxiality parameter p  as the actual specimen.

An approach developed by Bilby (1986), Betegon and Hancock (1991), Al-Ani and 

Hancock (1991), and Du and Hancock (1991) is based on the introduction o f T as a 

constraint parameter. The linear elastic stress field is thus characterised by two parameters. 

The stress intensity factor quantifies the applied loading, while T-stress quantifies crack 

tip constraint. This two parameter fracture mechanics is called K-T theory.

Elastic plastic fracture mechanics is based on the concept o f J-dominance. Whereby
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the near tip stress and strain states are set by the single parameter. There is now general 

agreement that the applicability o f the J approach is limited to high constraint 

geometries. For power law hardening materials, the elastic plastic stress field can be 

expressed by HRR field. Apart from the deeply cracked bend bar, the crack tip fields 

deviate very quickly from HRR singularity. I f  the crack tip stresses influence the 

fracture toughness, a fracture criterion based on J alone would be expected to be very 

conservative.

Asymptotic expansions o f crack tip fields for Ramberg-Osgood materials have been 

sought by Xia,Wang and Shih (1992) and Chao,Yang and Sutton (1993). The 

expansions have been expressed by the Chao,Yang and Sutton (1993) in the form ;

becomes;

+ QSij for r>J/ao |0 l<7t/2  (60)

I
%

~  = (----- r ' '* " ô ; ( e ) + A ,( f ) * 'â ^ ( e )  + A ^ ( f ) ’'ôfj(0)} (58)
Gg C C S q O q X j j X j  L j  X j  JL/

The first term is the HRR field. The exponents o f the second and third order terms 

are again functions o f n. The amplitude A^ is not determined by the asymptotic 

analysis and can only be obtained by the numerical analysis.

O'Dowd and Shih (1991,1992) have shown that a two parameter description, using J 

and a constraint parameter Q, fully characterises the near tip stress and strain state in 

a range o f cracked geometries. The stress field is thus expressed in the form:
:

( J /aa^f I„r 0 ^ ( 0  ,8 )+Q(^)'&;/n ,0 ) (59)

It is argued that the exponent t can be nearly zero which lead Q to be a distance 

independent second order term. The foim o f elastic-plastic crack tip stress field
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The specimens included compact tension specimens o f different size, a pressurised 

cylinder with a semi-elliptical inner surface flaw in the axial direction and a plate under 

pure bending with a semi-elliptical surface crack. The results showed that in large

5, =d„J/cr„ (61)

I
The parameter Q is determined from a finite element analysis and is the 

difference between the actual stress and reference field stress. It was shown that Q 

is a measure o f hydrostatic stress. Xia, Wang and Shih (1992) have shown that Q 

represents the effect of the four higher order terms in the elastic- plastic field. Two
, ' b ;

fields have been considered as the reference field, the HRR singular field (G y ) ^rr

and (Gy)gsy which is the solution to the small scale yielding problem derived from the

elastic K field. The first term of this expression is a high triaxiality reference field and 
.the second term is a hydrostatic term which is independent o f distance and angle. The 

form provides an approximate, but robust description o f the near tip field over physically 

significant distance. Introduction of Q which depending on the load and geometry as 

the second term into single parameter fracture mechanics have been called J -Q theory.
=

3.2 Three Dimensional Elastic-Plastic Crack Tip Fields
-,c

Brocks and Olschewski (1986) were among the first to study the crack tip stresses 

under elastic-plastic conditions using three dimensional models for different specimens.

scale yielding conditions, the energy release rate J o f the three dimensional model 

dominates the local stress and strain field in a confined area ahead o f the crack front 

independent o f the specimen size. The relationship between CTOD and J was 

confirmed to be o f the same form as the two dimensional problem;

.Here d„ is a constant depending on the material strain hardening rate. 0̂  is crack tip 

opening displacement in the mid-plane.
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Narasimhan et al (1988) analysed a plane sided single edge bending panel having 

W/B=8 with a refined model and demonstrated the maintenance o f high stress levels on 

the mid-plane.

Nakamura and Parks (1990) investigated a three dimensional crack front field in a 

thin plate. The existence and size o f local J-dominated field were determined from a 

comparison o f the near tip stress field with the plane strain HRR solution using a 

dominance parameter, p, which was expressed in the form.

The HRR field was only found at low load levels. The loss o f HRR dominance occured 

at a loading, J^V OgSgt = 2, the loss o f dominance in the plane z/t = 0.3 occurred at a loading 

level o f OgSgt = 1. On the mid-plane, the distance o f the J-dominance region R(30) is 

0.0011 t.

Faleskog (1994) performed fracture tests on a large surface cracked ductile plate and 

on small compact tension specimens. Constraint parameters h and Q were evaluated by 

detailed three dimensional finite element computations, h is a parameter in a damage 

integral suggested by Anderson (1993) which has the form,

O = J exp( — )ds~^ (63)
0 2

Where h is equal to 0"; /̂3. cr^is von Mises effective stress. S'P is effective

plastic strain. In a three dimensional form, if the HRR field has been chosen as the 

reference field, the h can be written as :

h = (64)
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and

Q = (65)

There is a strong physical coupling between the parameter h and the ductile crack growth 

process. Two local positions along the crack front were chosen. The J values as a function 

o f the amount of crack growth for these two positions showed the local constraint 

influenced the crack growth resistance curve markedly. The initiation o f ductile crack 

growth along a three dimensional crack front appears to be independent of the degree 

o f local constraint.

More recently Navalainen and Dodds (1995) studied the crack front field for SE(B) 

and C(T) specimens with very detailed three dimensional non-linear analyses. The J-Q 

methodology and the constraint scaling model for cleavage fracture toughness proposed 

previously by Dodds and Anderson (1991) were applied to determine the crack tip 

constraint. The constraint scaling model was couplied to the J^,with a near tip fracture 

criterion applicable to transgranular cleavage.

The material volume V on which the normalised principal stress o /o o  exceeds a 

critical value was used as local failure criterion. Attainment of equal stressed volume 

aliead o f the crack front in different specimens implied the same probability for fracture. 

The volume o f material along the crack front over which the principal stress a/cQ  

exceeds critical value is given by:

B/2

V = J a ( s ,  o j d s  (66)
-B/2

Walloon (1993) employed extreme value statistics to derive a correction for fracture 

toughness data in specimen with different thicknesses B (l)and B(2) :

K .c ,., (K.c-o, -K .. , .  )V B (1 )/B (2 ) (67)
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where the denoted the threshold toughness of the material. Rewriting above equation 

in the term of J yields.

Jc.,2, = J c- ,W B ( 1 ) / B ( 2 )  (68)

where the J equivalent ofK^^^^was neglected as a small term. Dodds (1993) gave a 

model o f two dimensional toughness scaling which had the form:

J h, / J o=VAv K V Y T U  (69)

where \  denoted the enclosed area within the principal stress contour for an applied 

J=Jq in the SSY boundary layer formulation, Apg denoted the enclosed area for the same 

contour in a fracture specimen loaded to J = Jpg. Jpg is taken on the measured values at 

fracture, Ĵ . With computing Jg from a two dimensional constraint scaling model with 

ApB= Â nax’ replacing Jg_̂  ̂in Eqn.(68) with the Jg and the actual specimen thickness 

appearing in Eqn (68) with the effective thickness, Bg^=V/A^„axs winch quantifies the actual 

portion o f specimen thickness over which crack front stresses reach the level of 

fracture, a measured toughness value, J^, is then constraint and thickness corrected to the 

SSY condition using the modified form :

= f  o ( J o ) A f f / B  (70)

Equation (70) is a three dimensional form o f the toughness scaling model which reflects 

both the statistical effects o f volume sampling due to the thickness difference and 

constraint loss on crack front stress field due to large scale yielding.
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3.2.1 Three Dimensional Boundary Laver Formulations

cy00 — — .....  —  ̂ ^ —  (—) ] cos 0 /2  + cos30/2}
1

^|2^l r 4

K"" 1
^2%r 4

,3 - 3v .z  2

1 - 3v
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The boundary layer formulation is a technique to model two and three 

dimensional crack tip stress fields. In general the stress or displacement distribution 

of the mode I K field are applied as the boundary conditions. In the three 

dimensional m odel, the displacements (u,v) derived from the two dimensional plane 

stress field are used to model the three dimensional boundary conditions o f a thin 

plate containing a mode I crack.
4

K
u = —— V r 72TC cos (0 /2 )  (K - 1 + 2 sin^ 0 / 2 )

2G

V = —^  V r /27C sin (0 / 2 ) (k  + 1 - 2  cos^ 0 / 2 )
2 G

G = E /2 ( l+ v )

k = 3 - v /1 + V  (71)

Plane stress is a two dimensional simplified form o f the three dimensional stress field

of a thin plate whose thickness is small compared with all the in plane dimensions.
.This means the stress field does not change through the thickness and in particular the out

::
of plane Ggg is assumed to be zero. It is apparent that some degree of approximation is 

involved in applying the displacement derived from the two dimensional plane stress field

to a three dimensional thin plate model.

Nakamura and Parks (1988) used the elasticity theory of Timoshenko and Goodier 

(1970) to obtain an approximate three dimensional crack tip field for a thin plate:

OjQ “  ' ' -■■■-- — 11^ ^— (—)  ̂ ] sin 0  / 2  + sin30 / 2 }

i

a.'i



T ^far 1 , g

o„ = - ^ =  -  ([----------------- ]c o s 6 /2 -c o s 3 0 /2 }  (72)
4  ̂ 1 + V r

was expressed in the form:

mode I stress field (74),

Where is the stress intensity factor o f the plane stress field. Numerical results 

showed that this field accurately represents the complete field in the region r/t > 1. 

And at a distance r = 5t, the tractions obtained from (71) were in good agreement

with the results from (70).
.The stress distribution along a crack front o f a three dimensional elastic thin plate has 

also been studied by Hartranft and Sih (1970). The three dimensional elastic stress field

O], = [c o s (6 /2 )-  l/2 s in  6 sin 3 0 / 2 ] +  0(1)

i
O22 = [cos(0 /2 )  + 1 / 2sin 0 sin 30 /2  ] + 0(1)

< j ,j=  [ l / 2 s in 0 s i n 3 0 / 2 ] +  O(l)

0 3 3 =  . [ 2 v c o s 3 0 / 2 ] +  O(l)

^ i 3~ ^ 23~ 0(1) as 1 —>0 (73)

%

In equation (73), the stress intensity factors k^( z ) and k^( z )Vary along the z 

direction and are fiinctions of V, t /a and z. The stress intensity factor increases in 

magnitude very sharply near a free surface and remains constant far from the free 

surface in small scale yielding.. The value of k^( z ) is nearly a constant in most 

parts o f the plate. Comparing (73) with the stress formulation o f the two dimensional

" i '
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022 = COS0/2 +sin0/2sin(30/2)cos0/2] + O(l)

Ojj = “™L=r[ C O S0/2-sin0/2sin(30/2)cos0/2] + O(l)

0^2 cos0 /2sin0 /2cos(30 /2 ) + O(l) (74)
d2iz r

The main difference between Eqn.(74) and Eqn. (73) is that the stress intensity factor 

kj is constant through thickness rather than variable. Any error is focused near the free 

surface, since in most parts o f plate k j(  z ) is largely independent o f (z) (Hartranft and 

Sih, 1970). Thus two dimensional elastic crack tip stress field formulations of mode I 

in a thin plate are acceptable remote boundaiy conditions for the three dimensional near tip 

stress field of an elastic thin plate.

3.2.2 J-iiitegral in Three Dimensional Stress Fields

In two dimensional stress fields the J-integral generalises a surface integral which 

provides a global energy release rate. For a three dimensional configuration, we can 

appeal to the same energetic argument Jda = -dH for a pointwise definition of 

energy release rate along the crack tip. Let da(s) denote the crack advance at the 

points in the direction normal to the crack front and in the crack plane. Let ds denote 

an elemental length along the crack front. Then J(s) is defined by the relation.

fg J(s) da(s) ds = -dH (75)

J (s) can also be defined by the equation ,

J(s) = Lim p(s) ip (wHj, - o..n.  5uj / dx^) dF (76)

Here J (s) is a pointwise value along a three-dimensional crack front; S represents
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3.2.3 J Dominance of a Three Dimensional Thin Cracked Plate
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the location of the crack tip on crack front, w  is strain energy density, and tl-

are the components of the stress and displacement tensors, ilj are components o f a 

unit vector normal to T and to the crack front tangent vector S. F  is a contour at s 

surrounding the crack front lying in the plane perpendicular to crack front. The unit 

vector p(s) denotes the local direction o f crack advance. This integral defines a 

local energy release rate along any crack front in three dimensional space. The J- 

integral as a path independent integrand like that in two dimensions does not exist in 

three dimensional stress fields. However the accurate calculation o f quantities of near 

tip fields is not easy. The J - integral o f thiee-dimensional crack body is now usually 

determined by the domain integral ( Li, Shih, and Needleman, 1985). In the present 

analysis the domain integral method provided by ABAQUS (1995) is employed.

- bS.

%

Nakamura and Parks (1992) have used a three dimensional boundary layer 

formulation method to investigate J-dominance under elastic-plastic conditions. Two 

different boundary layer formulations were applied. The displacement formulation 

o f a mode I plane stress K field was applied under small scale yielding conditions as 

well as the displacement field o f the plane stress HRR field solution for fully plastic 

conditions. The analysis showed that when a plane stress small scale yielding condition 

exists in the far field, strong three dimensional effects were observed within a radial 

distance o f half thickness from the crack front. The in-plane stresses o f the three 

dimensional field merged with the dominant K solution at a radial distance o f 1.5 times 

o f the plate thickness. The distance, denoted by R^, which increased with increasing 

load, may be expressed by,

R ^ - 1 . 5 t  + P J ^ / O g S g  (77)

A

Î
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b > 1 5 t  + rVOgGg (78)

HRR
rfar

If  the criterion o f dominance for plane strain HRR dominance is that RHRR ) D, 

Equations (78) and (79) require,

F^VOgSgt <10 (81)
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Here (3 is constant which is approximately equal to 0 .1 on the basis that the variation o f the

computed stresses from the K solution is less than 10%. As a dominant K field in two

dimensional plate exists within a radial distance from the tip o f 10% of the smallest

characteristic length, b, the geometric requirement for the small scale yielding condition

of the three dimensional thin plate can be written in the form;
■

-far

:;:è:

■I

At higher loading levels, a plane stress HRR field was assumed to exist within the 

plate, A local plane strain HRR field was confined to the crack front while the in 

plane stresses coincided with the plane stress HRR solution at the radial distance o f

1.5 times the thickness. Taking into account the finite deformation zone, D, whose 

size ( McMeeking and Parks, 1979) is given approximately by:

D ^  0.0061^°"' /OgGg (79)

J-dominance demands that the radius o f the zone in which the plane strain HRR 

dominates must exceed D. The mid-plane normalised radius, R™^ can be
■

approximated based on the local stress being within 80% of the corresponding plane 

strain HRR value, in term o f normalised far-field load as.

.  s  0 .026-0 .002  J “ /a„8„t  (80)

'
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It would seems that no dominant local plane strain condition can exist in a thin plate 

at higher levels o f loading.

4. Computational Model

The three dimensional problem studied is a thin plate with a through crack 

subjected to mode I loading. The distribution o f the components of the three 

dimensional crack tip stress field is investigated . The purpose o f this study is 

to assess the effects o f free surface on stress field and to set up a numerical relation 

between J and the quantities o f stress field, and in particular identify the role o f the 

T stress on the plane strain- plane stress transition.

4.1 Geometry and Computational Model

:
■ S '.

4

A cracked geometry similar to that used by Nakamura (1988) has been adopted 

to study the three-dimensional stress field near a through crack front in a thin plate. 

The region around the crack tip o f the thin plate has been represented by a circular 

disk which contains a radial crack, as illustrated in Figure 13. The straight crack 

front is located at the centre o f the disk along the z axis (x = y = zero). The 

radius of disk was sufficiently large compared with the thickness to contain the 

three-dimensional field within the outer boundaiy. The maximum radius o f the 

disk was about one thousand times the thickness (fkna/ f s i 000). On the outer 

ring o f the circular disk displacement boundary conditions derived from the mode I 

plane stress field were applied.

For the finite element analysis only a quarter o f the disk needs to be modelled 

(see fig. 14) since the problem has symmetiy with respect to the mid-plane, the crack, 

and the ligament plane. The finite element mesh was constructed with 8-noded 

hexahedron elements. The element size gradually increased with radial distance 

from the crack tip. The angular span o f each element was constant 15° throughout the
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mesh. The same planar mesh was repeated along the X3 direction from the 

symmetry plane (mid-plane) to the free surface. To accommodate the strong 

variation o f the field quantities along thickness, the tliickness o f the element layer 

was gradually reduced toward the free surface. The behaviour of the material can be 

represented by a power law idealisation. In uniaxial deformation, the stress-strain 

relation can be written:

8 -  a  ( a  /  G g  ) « - !  G  /  E G  >  G g  (82)

8 = g / E  G  <  G g

The stress Gg is a reference value, usually taken to be the 0.2 percent offset o f yield 

strength, a  is a material constant. For deformation plasticity theory the power law 

flow behaviour can be generalised as:

G i j =  3 / 2 a ( o / a o ) - ' S / E  ( 8 3 )

where Sy is the deviatoric stress and Gg is the effective stress. In the model the 

modulus E was 2.0E11. The yield stress Gg 2.0E07. Poisson's ratio V 0.3 and the 

material constant a  was 3/7. Calculation were performed for three values o f the 

hardening exponent 00,13 and 6.

In the present work two finite element models were set up. The first mesh models the 

whole o f disk with the displacement o f mode I plane stress field applied on the outer 

boundary. The second model is a substructure which has the same thickness and 

similar element arrangement. (Figure 15 shows the mesh o f substructure). The radius 

o f the second mesh is half first one and the mesh is finer at the tip. The substructure 

mesh is used to obtain the accurate solution near the crack tip and in the intersection of 

crack front and free surface. The boundary condition of the finer mesh were obtained 

by interpolating the displacements o f the coarser mesh to the nodal position on the outer 

perimeter o f the inner mesh.
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4.2 Computational Procedure

All the finite element analysis results were obtained using the finite element code 

ABAQUS (1995). The three dimensional finite element mesh was built up using the 

package PATRAN (1991). In the present analyses, two finite element meshes were 

employed. The coarser mesh has a total o f about 12,000 elements. The finer mesh 

has about 8000 elements. The loading was applied by increasing the stress intensity 

factor K. Three different levels o f deformation were achieved corresponding to small 

scale, moderate and large scale yielding. The largest level was reached at Ry/1  ?«100 

. Numerical values of the stresses were obtained at the centre of each element. The 

computing time for each non-linear calculation was 16 hours. The calculation was 

carried out on a SUN 4/80 (SPARC station 10).

5. CompMtatîoiial Results.

5.1 Three Dimensional Boundary Laver Formulation Model

5.1.1 Small Scale Yielding for Non-hardening Materials

In small scale yielding, the radius o f plastic zone Ry is defined to be less than the 

thickness o f the plate. The opening stress directly ahead o f crack (0 =0) is plotted 

as a function o f radial distance in Figurel6 . G22 is normalised by the yield stress Gg.

While the radial distance is normalised by the thickness o f plate t. The mid plane is 

denoted z / 1 =0 and the fiee surface, z / t  =1. Figure 16 shows that the opening stress 

G22 changes slowly along the thickness throughout most o f the thickness, but in the 

region close to the free surface the stress drops sharply. Figure 16(a) shows the variation 

o f the stress G^ near crack tip through the plate thickness. Both G22 and Ĝ  ̂

decrease markedly near the free surface.
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The out o f plane stress G33 normalised by Gg is shown in Figure 16(c). The 

maximum value appears at the crack tip on the mid-plane and decreases slowly in 

both X and z directions. G33 declines sharply near the free surface.

Figure 17(a) shows the distribution o f G33/ (G^^+Ggg). In plane strain conditions 

G33 /(G^|+G22 ) is equal to Poisson's ratio v and is zero in plane stress. The term G33 /

(Gj J+G22 ) can be denoted a 'lateral coefficient' since its values characterise the role
'4'

o f out o f plane constraint. In the zone near the crack tip the coefficient is greater than 

0.4 which shows a strong constraint effect. The values near mid-plane are larger than 

the values near free surface.

The stress field demonstrates the results that all the stresses gradually decline 

from plane strain at the mid-plane to the surface. The distributions o f the stresses 

G, J, G22 and G33 thiough the plate thickness on the crack front in the elastic case 

are shown in Figures 31, 32 and 33, respectively. The x direction in the graph is 

indicated by 1 and z direction is indicated by 3.

Figure 17(c) shows the distribution o f the elastic strain energy density along the 

crack front. The elastic strain energy density is a singular quantity which also 

shows the same characteristic decline along the crack front , dropping sharply near 

the surface zone.

Figure 17(b) is a plot o f the distribution o f the out o f plane strain 033 . This 

strain component increases from the mid-plane to surface and where it reaches a 

high level. The main characteristic of the strain field is a strain concentration zone 

located at the intersection o f the crack plane and free surface. It is the strain 

concentration which causes the thickness reduction and lateral contraction o f the free 

surface. The local thinning caused by the thickness reduction is an important feature 

of the field.

The J- integral or local strain energy release rate along the crack front has been 

obtained using the domain integral method in ABAQUS (1993). The variation o f J 

along the crack front is shown in the Figure 18. In this figure, J is a function o f location 

on the crack front for various levels o f loading. Each curve is made up of two parts. One
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part has a small slope and another has high slope. The high slope is located in a zone 

near the free surface where the strain energy density drops sharply and the the size of 

this zone expands with the increasing load. The distribution of J coincides with the 

distribution of elastic strain energy density along the crack front.

5.1.2 Discussion

The stress distribution in a thin plate with a through crack in small scale 

yielding exhibits a highly triaxial stress field near the crack tip which is surrounded 

by the dominant plane stress field. The transition from the plane stress state to the 

triaxial field occurs at a distance o f about three thicknesses from the crack tip.

The transition from plane stress to the plane strain crack tip is gradual.

In the interior of specimen the stresses within the plastic zone near the crack 

tip are highly elevated above the yield stress leading to a strongly triaxial stress 

field. The emergence o f a near tip plane strain crack tip stress field is one o f the 

essential characteristics of the plane stress field o f a thin plate.

The three dimensional crack tip stress field in small scale yielding shows a 

variation from plane strain conditions in the mid-plane zone to a low triaxiality 

stress state near the free surface. The plane strain condition (S33 =0) is gradually 

lost along the crack front since the degree o f out-plane constraint is reduced as the 

free surface is approached. The chief features o f the free surface region are low 

stresses (On,  O2 2  and ) and a low energy density which are neither 

characteristic o f plane stress, nor o f plane strain, but a characteristic o f the 

full three dimensional stress field.

In small scale yielding, the local strain energy release rate, J, along the crack 

front has a similar distribution to both the stress distribution, and the elastic strain 

energy density. As J is a quantity related to the strain energy density of crack tip 

field, the region in which J is weakly dependent on z is also necessarily the region 

in which the stresses are weakly dependent on z.
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In the two dimensional elastic stress field the stress intensity factor K is used 

to characterise the crack tip stress field. Its relationship with J is expressed in the 

familiar formulation = J E'. In the case o f a thin plate field, a plane strain stress 

intensity factor at each section through the tliickness can be obtained using

the equation:

k ;””‘ = E / ( l - v ' )  (84)

where J is the pointwise strain energy release rate along the thickness calculated 

numerically.

The three dimensional elastic crack tip stress field o f each section along the 

thickness can be approximated using a two dimensional mode I crack tip stress field. In 

general, the elastic crack tip stress field through the thickness 

can be expressed by.

YK,local

(27ir)

Here Y is a modifying coefficient and n is exponent which is a function o f loading and 

thickness z. In the interior o f plate (plane strain state) n=l/2, but in the region near the 

free surface n will be bigger than 1/2 .

The stresses resulting from calculations using are in an agreement with the finite

element results. Figure 19 (a, b, c, d) shows the distribution o f obtained from the 

numerical calculation at different section ahead of the crack and through the thickness 

o f the plate compared with determined from the local K. Figure 20 (a, b, c,d ) 

shows a comparison o f from these two methods. These results illustrate that 

stress components o f the three dimensional field can be calculated through a local 

pointwise J in small yielding conditions.

The relationship, J = d( U - F ) / da B, is the basis o f the experimental determination

44



of J. The distribution of J is assumed to be the constant through the thickness, but 

according to the finite element analysis J varies along crack front. The distribution of J 

along the crack front at small scale yielding can be expressed by an equation in the form:

where J is a local pointwise energy release rate J, K is the remote stress intensity 

factor at the boundary, and is constant related to loading. In small scale yielding 

Ai= 4.95KyK,^„j,+2.8, A, = 13370K/K„,„„.,2-5440KÆC„„„,,+ 1040, and A ,=

8 . 5 A comparison o f the J distribution with this equation is given in 

Figure 21.

If  the nature o f J o f the three dimensional field o f a thin plate is examined 

further, the relationship between distribution o f J and the plate thickness 

may be used as an indication o f the role o f lateral constraint and the influence of 

the free surface on the stress field. The J distribution (86) has the same quantities as

J(s)da(s) in the equation, J(s) da(s) ds = - did. Using the equation the

strain energy release rate d ll  o f whole plate can be obtained.

The free surface has an important influence on the crack tip stress field. An 

important parameter is the width o f the low elastic energy zone at the free surface. 

Koers, Braam and Bakker (1989) observed in their experimental investigation of 

the effect o f thickness, that there is a low energy zone that was 5.9mm for a 

thickness o f 30mm and 6.5mm for a thickness of 70mm and 110mm. The width 

o f the process zone is a function o f loading, area of surface, crack length, thickness 

and the material behaviour. From Figure 21 it is seen that the low energy zone 

changes with loading.

The through thickness variation o f the strain field is totally different to the stress 

field. The distribution o f strain through the thickness reaches its maximum value near

45



5.1.3 Moderate and Large Scale Yieldmg for a Non-Hardening 

Material

4

the free surface. The distribution o f J along the crack front does have not the same trend 

as the strain distribution. This means that J is not a uniquely characteristic quantity of 

the three dimensional field. In this investigation the dissipation energy was found to 

develop through the thickness in the same form as the strain distribution.

A thickness reduction due to out o f plane displacements is a feature o f the 

three dimensional crack tip stress field. The surface displacements cause a hollow

i

to develop on the fi ee surface near the crack tip due to the strain concentration of 

633. Figure 22 shows the distribution of displacement, W, on the free surface of 

the boundary layer formulation. In the present work the out of plane displacement 

W has been compared with J using the results o f finite element analysis. An 

equation is obtained from the model to illustrate the distribution o f out o f plane 

displacement directly ahead of the crack tip which is the same as the result put 

forward by Irwin (1989).

W = 0.5 J/Co (87)

W  is the displacement on the surface in the thickness direction. J is J remote.

With increasing load, the radius o f the plastic zone expands, and the von Mises yield 

criterion can be applied to determine the extent o f plastic deformation. The level of 

deformation is defined by the ratio o f radius o f plastic zone to the thickness, Ry/t, on 

the mid-plane. The condition in which Ry is approximately equal to the thickness t is 

now defined as moderate scale yielding. The condition in which the plastic zone is 

very much greater than the thickness ( Ry/t = 75) is defined as large scale yielding.

The distribution o f < 3 2 2 and CJ33 in the moderate scale yielding (MSY) condition
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is shown in Figure 23. The results display a gradual drop in stress from the mid plane 

to the free surface. The SSY feature in which the in-plane stress drops sharply near the 

free surface is lost.

The ratio (cr̂  ̂/ 0*22) in MSY is shown in Figure 24(a). It can be seen that the

plane strain constraint parameter also decreases from the midplane to the free surface 

which illustrates the absence of a dominant plane strain zone in the crack front. The 

distribution o f €33 is plotted in Figure 24(b). The maximum value is increased markedly 

and the zone o f strain concentration expands compared to small scale yielding.

The crack tip field has also been examined under large scale yielding (LSY). At this 

deformation level the plastic zone has a constant radius through the thickness. The ratio 

o f radius o f plastic zone to the thickness is 75 for the data shown. The <̂ 22 <̂ 33

stresses are shown in Figures 25. These Figures should be compared with these for the 

small scale and moderate scale yielding stress field. The maximum values o f the stresses 

at the crack tip are cFj/ cFo=2.61, cf22/cFq=3.76, <̂33/^ 0= 3.17 which are significantly 

greater than the stresses at low levels of deformation. The stresses also decline rapidly 

from the midplane to the free surface.

The distribution of 633 under large scale yielding is plotted in Figure 26. The 

minimum value of €33 occurs at the midplane and is about 50eQ. Figure 26(a) shows 

the distribution o f O33/ (o’22+<7 n). The J distribution along the crack front is shown in 

Figure 27, in which the strain energy release rate J is normalised by J remote. The 

variation o f loading is expressed by J / tCFg. The slope o f J distributions are similar 

to the slope o f the stresses. The distribution and variation o f the energy release rate 

still has the same trend as the stress distribution.

In Figures 28 and 29 the radial variation o f the opening stress ahead o f the crack 

front is compared with the plane strain HRR field in SSY and MSY condition.

Figure 29 demonstrates that very near the crack tip the opening stress in the interior 

of the specimen tends towards the plane strain HRR field.
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5.1.4 Discussion

is uniform over the entire thickness. The distance from which this transition occurs is 

at r/t ==3 in small scale yielding. It is also noted that at large scale yielding all the 

stresses (cr^ ,̂ a 2 2  and <133 ) thiough the thickness at distances larger than r/t = 4 

maintain a low and uniform stress level.

Î

The distribution o f stresses through the thickness depends on the load level. In 

SSY the stresses are almost constant through most o f the thickness and drop 

sharply close to the free surface. In MSY the stresses decline throughout most of 

the thickness in a gradual manner. In LSY the stresses decay from the mid plane 

and drop quickly to the free surface. The variation in the thickness direction are 

totally different at these three deformation levels. The distribution of stresses through 

thickness vary with the increasing load which indicates that the lateral constraint 

effect reduces with increasing deformation.

The ratio o f O33 /  (CT22+ Cu) can be defined as the plane strain constraint 

parameter. The ratio is uniform through most o f the plate thickness in SSY which 

illustrates that plane strain applies over the most o f the thickness. The width o f the
■''I

zone in which the lateal constrant factor CJ33 / (^ 22+ cru) is uniform decreases with
■■■I

increasing load. Under LSY the stress state is in transition between plane strain near 

the mid plane and an unconstrained state close to free surface.

The crack tip strain field also changes with load level. The position o f the peak 

value o f the out of plane strain S33 moves toward the interior of plate compared to 

SSY in which the maximum strain occurs at the free surface.

The extent o f crack tip triaxial stress field in large scale yielding is not the 

same as that in the small scale yielding. The distribution o f 033 within the plastic 

zone through thickness (see Fig.26) shows that at a distances, r/t larger than 4, (F33

J exhibits the same trend as the distribution o f stress through the thickness. In
.

Figures 27 J shows the same slope of curve variation as the stress distribution from

4-
4
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mid plane to free surface in the MSY and LSY condition. The variation o f J through 

the thickness reflects the influence o f lateral constraint on the crack tip stress field.

5.1.5 Stress Field of a Strain Hardening Materials

The elastic-plastic crack tip field of materials which have strain hardening 

exponent 6 and 13 were examined at a deformation level corresponding to Ry/t 

equal to 1.85. The distribution o f stresses o f the two stress fields were similar. The 

distribution o f ^ 2 2  ^cid for the material with hardening exponent 6 are 

illustrated in Figure 33. The results show a decrease o f the stress from the mid

plane to the free surface. The maximum stresses at a distance of r/t=0.02 from 

crack tip on the mid plane are much higher than the non-hardening material at the 

same load level.

The extent of the plane strain region can be seen in Figure 34(a). The 

parameter (?33/(o'n+o'22) has a value close to 0.5 at the crack front which 

demonstrates strong plane strain constraint. Plane strain is contained within a depth 

o f z/t=0.82, which is larger than the zone for a non-hardening material at the same 

loading condition. Figure 34(b) shows the distribution o f the out-of plane strain.

The distribution o f stresses in the crack plane for a material with hardening 

exponent 13 is shown in Figures 35. The maximum stresses at a distance o f r/t= 

0 .02  are much lower than the material with a hardening exponent 6 .

Figure 36(a) shows the distribution o f the lateral constraint parameter 033/(01  ̂  

+022)' The parameter changes from close to 0.5 to nearly 0 which shows the material 

at the mid plane is subjected to the maximum degree o f lateral constraint. The plane 

strain constraint zone is within z/t=0 .6

Corresponding to the decrease in lateral constraint from the mid plane to the free 

surface, the out plane strain 633 increases and the maximum value occurs at about 

z/t=0.99. The distribution of €33 is displayed in Figure 36(b). A strain 

concentration is located at intersection o f crack plane and free surface, the
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maximum value of S33 /Sq is about 21 which is lower than the value o f material with 

hardening exponent 6 .

5.1.6 Discussion

5.2 Three Dimensional Modified Boundary Laver Formulations

50
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The effect o f strain hardening on the crack tip stress field is to cause the stresses 

within the plastic zone to rise. The lower the hardening exponent, the higher crack 

tip stress. The opening stress at a distance o f r/t=0.02 from the crack tip on the mid 

plane in the case of material with hardening exponent 6 reaches 8 times the yield 

stress. But the distribution o f stress through the thickness is similar to the 

distribution for a non-hardening material.

Another effect o f strain hardening is the change in lateral constraint. Referring 

to Figures 34 and 36, the extent o f the plane strain region is different. The plane 

strain region o f material with exponent 6  is confined to depth o f r/t=0.82, compared 

to 0.5 for a non-hardening material. It is apparent the lateral constraint increases with 

the hardening rate increases.

The third role of strain hardening is to affect the maximum value o f the out-plane 

strain 833. The out of plane constraint increases as the hardening exponent decreases.

.r
The three dimensional crack tip stress fields of hardening and non-hardening 

materials at different load levels have been studied using three dimensional boundaiy 

layer formulations. To investigate the effects o f in-plane constraint on the three 

dimensional stress field, the modified boundary layer formulation model has been 

introduced by adding non-singular T-stress to the K-field on the outer boundary of 

the boundary layer formulation model. The boundary displacement conditions are given 

by:



(88)

mode I loading. The displacement W in the thickness direction is allowed to develop 

freely under the action o f in-plane displacement. As the T-stress reflects the constraint 

effects o f the cracked body, the model o f modified boundary layer formulation can

5.2.1 Effects of T-Stress on Three Dimensional Stress Field for a Non- 

Hardening Material

Figures 37 and Figure 38 show the distribution o f opening stress through the 

thickness directly ahead o f the crack with T=0. The stresses are normalised by 

the yield stress while z is normalised by the thickness t. The radial distance r is 

normalised by J/cTq. The stress profiles are shown for two different deformation levels.
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The model adopted is a three dimensional plane stress thin plate subjected to a

be regarded as a simulating crack tip conditions in an arbitrary geometry under contained

yielding. The distribution of the remote T-stress through thickness is supposed to be 

uniform for a thin plate with a through crack reference to Nakamura and Parks 

(1992). Negative, and positive T-stresses at a level o f 0.6 have been imposed on 

the outer boundary.

The boundary conditions were applied in two steps. Initially the displacements 

corresponding to the T-stress were imposed, then the displacement corresponding to 

an increasing stress intensity factor were applied while T-stress maintaining a 

constant. The method of two-steps ensures a constant T stress at all levels o f 

deformation.
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One is small scale yielding (SSY) and another moderate scale yielding (MSY). In small 

scale yielding the radius o f the plastic zone is very much less than the plate thickness, 

while in MSY the plastic zone radius and the plate thickness are comparable.

A negative T stress reduced the stress level ahead of crack. The stress profiles 

for two different deformation levels with a negative T are plotted in Figures 39 and 40. 

Figure 41 and Figure 42 display the opening stress profile under a positive T-stress at 

two deformation levels.

The variation o f the plastic zone radius directly ahead o f the crack through the 

thickness with different stress levels are shown in Figures 43, 44 and Figure 45. A 

compressive T-stress enlarged the maximum radius o f plastic zone. However the 

effect of the negative T-stress on the plastic zone through the thickness is not 

uniform. The radius o f the plastic zone near the mid plane is larger than the parts 

close to the free surface. In contrast tensile, or positive, T-stresses caused the 

plastic zone to decrease in size and shape, the maximum radius o f plastic zone 

through the thickness occurred close to the free surface rather than near the mid 

plane. In large scale yielding the radius o f plastic zone through the thickness 

developed into a uniform state with either positive or negative T-stresses and zero T.

5.2.2 Discussion

The effect o f the T stress on the plastic zone shape and size in two dimensional 

stress fields has been studied by Larsson and Carlsson (1973). Du and Hancock 

(1991) also described the variation o f the size and shape o f a plastic zone as a 

function o f the T-stress in two dimensions. The effects o f T-stresses on a three- 

dimensional plastic zone is similar to the two dimensional field. That is a negative 

T-stress makes the plastic zone enlarge while positive T-stresses cause the plastic 

zone to diminish. Nevertheless the effect o f T-stress on the each part o f the thickness 

is apparently different. A negative T makes the radius o f plastic zone advance near
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the midplane. In contrast a positive T-stress makes the plastic zone near the midplane 

reduce more than the region close to the free surface. The variation o f the plastic zone 

size is also influenced by the deformation level. In small scale yielding the crack 

front is in plane strain state, the distribution o f plastic zone radius is essentially 

uniform. In large scale yielding the plastic zone is in a state of plane stress, the 

distribution o f plasticity through thickness is also uniform It is evident that the 

T-stress affects the stress field in plane strain state. Due to the absence of studies 

o f effect o f T-stress on the plane stress crack tip fields, the action of T-stresses on 

plane stress is not understood. It seems the effects o f T-stress on the plane stress 

field are not vei*y strong which may cause the radius of plastic zone through thickness 

to develop in a non-uniform manner.

From Figures 39 and 41 the distribution of opening stress 022 small scale 

yielding shows that a negative T-stress reduces the stress level in the same way as 

in the two dimensional stress field, while the positive T-stress does not affect the 

crack tip stresses at all. As the stress state in most parts o f crack tip front is in plane 

strain, the distribution o f stress through the thickness are uniform except in the region 

very near the free surface.

The influence of T-stress on the lateral constraint is shown in Figures 38, 40 and 

42. At similar deformation levels, the distribution o f opening stress through the 

thickness with positive T-stress shows that plane strain state exists throughout most 

of the thickness. In the case o f negative T-stress, the distribution curve from midplane to the 

free surface shows the plane strain region is more limited. The width of the plane strain 

zone at the zero T stresses is intermediate between these two cases.
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6. Conclusions

(3) The pointwise energy release rate J characterises the amplitude o f the local 

stress field. The through thickness variation o f J follows the variation in the local 

stresses in the crack front at different load levels. The variation o f J along the 

thickness reflects the variation of lateral constraint.

(4) The distribution of J along the thickness can be expressed by the equation;

(6 ) The effect of the hardening exponent is to increase the stresses in the crack tip 

plastic zone and enhance the lateral constraint.

(7) The T-stress affects the plastic zone size and shape of the three dimensional field. 

As the effects of T-stress on the plane strain and plane stress are different, the 

distribution o f plastic zone thi ough thickness is not uniform.
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(1) The crack tip stress field o f a thin plate shows a strong stress triaxiality in the 

crack front .

(2) The plane strain condition in the mid-plane declines through the thickness. The

Î

variation o f stress distribution from mid-plane to free surface depends on the 

level of loading..

J = ^ [A j- ln ln A j/C z / t) " ^ ^ ]  
E

The equation can be used to calculate the energy release rate o f the whole of plate

(5) The distribution o f out o f plane displacement near the crack tip on the fî ee serface 

in small scale yielding can be expressed in a simple form:

: -
w = 0.5J / G q

■I
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Figure 11 The contour around a crack tip

Figure 12 (a) The plane strain slip line field for a centre cracked plate in tension
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Figure 12 (b) The plane strain slip line field for a deep cracked bend bar
is indicated by the thick lines, while the thin lines indicate the 
extension to the slip line field for short cracks
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Figure 22 The distribution o f  out o f  plane dispbcemmO W  m  

free surface with J= 6.05E08
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Figure 30 The distribution o f  stress a , ,  through the thickness with 

J = 6.05E08
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Figure 31 The distribution o f  stress G2 2  through rhe thickness with 

J = 6.05E08



Figure 32 The distribution o f  stress through rhe thickness with 

J =  6.05E08
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