
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


ADVANCED GLYCOSYLATÏON ENDPRODUCTS IN THE 
PATHOGENESIS OF THE LATE COMPLICATIONS OF DIABETES

AND ATHEROSCLEROSIS.

A thesis presented in part fulfilment of the requirements for the admittance to the 
degree of Doctor of Philo jphy of the University of Glasgow.

Wai Kwong Lee B.Sc. (Hons.)

Dept of Pathological Biochemistry, 
Gartnavel General Hospital, 
Glasgow, G12 OYN 
Scotland



ProQuest Number: 10391490

All rights reserved

INFORMATION TO ALL USERS 
The qua lity  of this reproduction  is d e p e n d e n t upon the qua lity  of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te  m anuscrip t 
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te  will ind ica te  the de le tion .

uest
ProQuest 10391490

Published by ProQuest LLO (2017). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform  Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 4 81 06 - 1346



GLLS '. 
üNiVEkDi'iîf 

ILTBBMY



ABiSTRACT

The accumulation of advanced glycosyiation endproducts (AGE) is important in the 
pathogenesis of the late complications of diabetes and atherosclerosis. This thesis 
examined the levels of AGE in proteins incubated with glucose in vitro, in tissues 
from diabetic animals, in human autopsy material and in patients with end stage 
renal disease.

The measurement of AGE was carried out using protein-linked fluorescence. I have 
attempted to determine the contribution of oxidative processes to generation of 
protein-linked fluorescence by studying the effect of glucose, aminoguanidine and 
antioxidants on the formation of the early and late products of the Maillard reaction. 
We have demonstrated that the MaÜlard reaction is affected by oxidative processes 
at the early stages of Amadori product formation, rather than at the stage of AGE 
formation.

In animal studies, the role of AGE in diabetic complications has been studied using 
alloxan and streptozotocin (STZ) to induce experimental diabetes in animals. We 
measured AGE in the tissues of spontaneously diabetic BB/E rats. We 
demonstrated that the levels of AGE are increased in diabetic rats when compared to 
non-diabetic rats and that the rate of AGE formation differs in different tissues. The 
BB/E rat offers a good model for the investigation of AGE.

Interactions of lipoprotein with extracellular matrix components contribute to 
atherogenesis. Oxidation of LDL has been shown to affect LDL-collagen 
interactions. We studied the binding of native and oxidised LDL to unmodified and 
AGE-modified type I collagen. We have demonstrated that both AGE modification 
and oxidation of LDL affect LDL-collagen interactions.

While the Maillard reaction is ubiquitous, changes observed in diabetic 
complications and atherosclerosis are tissue-specific. In this study we have 
demonstrated AGE-specific fluorescence in different forms of human 
atherosclerotic plaque. Importantly, AGE content was altered amongst the different 
types of atherosclerotic plaques. Also individuals with mild to moderate atheroma 
have lower CLP in superficial atherosclerotic plaques than patients with severe 
atheroma

Plasma levels of AGE are elevated in patients with end stage renal disease. It has 
also been shown that after renal transplantation plasma AGE decrease. Our study
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has focused on tissue levels of AGE in non-diabetic and diabetic patients with renal 
disease before and after transplantation. We have demonstrated that tissue levels of 
AGE decrease after renal transplantation.

In summary, studies described in this thesis contributed to the validation of the 
measurement of collagen-linked fluorescence as a method of measurement of tissue 
AGE accumulation. We have demonstrated tissue differences in AGE accumulation 
in a spontaneously diabetic animal. Focusing on human atherosclerotic plaque we 
observed local differences in AGE concentration in atherosclerotic aorta. We also 
demonstrated that AGE-modification affects the interaction of native and oxidised 
LDL with type I collagen. Finally our studies were first to demonstrate that renal 
transplantation decreases AGE level in tissues.
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Chapter 1.

General introduction.

1 .1 . Summary.

( 1.) The chemistry of the early and late stages of the Maillard reaction.

(2.) The isolation and characterisation of advanced glycosyiation

endproducts.

(3.) The measurement of advanced glycosyiation endproducts.

(4.) The mechanisms of accumulation, removal and degradation of

advanced glycosyiation endproducts in vivo.

(5.) Means of inhibiting the production and accumulation of advanced

glycosyiation endproducts.

(6.) The pathological significance of advanced glycosyiation endproducts.

II

i

This chapter describes:



1.2 .  The Maillard reaction; an overview.

The Maillard (browning) reaction was discovered by Louis Camille Maillard in 

1912 when upon heating glycine with glucose, he observed the glycine-glucose 

solution turning brown [1]. MaiUard repeated the experiment with different 

amino acids and saccharides, and found that glutamic acid and xylose were the 

most reactive. He also noted that the reaction proceeded regardless of whether 

oxygen, nitrogen and hydrogen were present. He postulated that this reaction 

would have relevance to a variety of areas in science and medicine, especially to 

chronic hyperglycaemia (diabetes).

The Maillard reaction occurs in three distinct stages; the formation of the labile 

Schiff base (initial protein glucose adduct: aldimine), the formation of the 

Amadori (ketoamine) product and finally the formation of advanced 

glycosyiation endproducts (AGE) from reactive intermediates such as 3- 

deoxyglucosone. Reactions leading to the formation of the Schiff base and the 

Amadori products are well characterised and are known as "glycation" [2,3,4]. 

Schiff base and Amadori products are termed as "early glycation products", 

whereas AGE are called "late products".

Most research following the discovery of the Maillard reaction has focused 

upon the field of food science. Food containing protein stored in the presence of 

reducing sugars are susceptible to the Maillard reaction. This results in the 

formation of brown pigmented products during the late stages of the reaction, 

the consequence of which is a reduction in the nutritive value of food [5]. It is 

only in the past decade, that a number of investigators have studied the Maillard 

reaction in vivo and its relationship to the ageing process and diabetic 

complications. Maillard's suggestion of the importance of sugar induced protein 

modification in vivo gained substance when Mohammed et al demonstrated that

2.
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the browning of proteins could occur under physiological conditions [6]. Later, 

Rahbar discovered increased concentrations of haemoglobin Ai (HbAi), a 

glycosylated form of haemoglobin, in the blood of diabetic individuals [7,8]. 

Subsequently Bookchin and Gallop used borohydride reduction to label and 

quantitate the Amadori (ketoamine) product on haemoglobin [9]. Amadori 

products formed as a result of the rearrangement, of the initial protein glucose 

adduct Schiff base. Bookchin and Gallop isolated and quantitated the Amadori 

product by acid hydrolysis exploiting the stable nature of the ketoamine.

In addition to the products formed at the early stages of the Maillard reaction, 

advanced glycosyiation endproducts have also been shown to exist in vivo. 

Lens proteins are long-lived in vivo and are therefore susceptible to 

postsynthetic modifications by non-enzymatic glycosyiation. Monnier et al have 

shown that brown pigments with fluorescent properties characteristic of AGE 

exist in human lens protein [10,11,12]. In vitro studies have shown that the 

formation of brown pigments is possible under physiological conditions by 

incubating lens proteins with glucose. Monnier et al postulated that lens proteins 

could be used as a model for the investigation of non-enzymatic glycosyiation 

and the accumulation of AGE in vivo.

It has since been proposed that the long term complications of diabetes develop 

at least in part as a consequence of structural and functional modifications of 

proteins resulting from the Maillard reaction [13,14]. The formation of protein 

glucose adducts via the Maillard reaction leads to the irreversible formation of 

crosslinks (AGE) between adjacent protein molecules. These crosslinks have 

been implicated in the loss of elasticity of ageing tissue [15]. The late 

complications of diabetes (affecting the eyes, kidneys, nerves and arteries) are 

thought to be due, at least in part, to the chronic hyperglycaemia that exists in 

diabetic patients [16,17,18].

.1



1. 3 .  Chemistry of the Maillard reaction.

1 .3 .1 . Schiff base and Amadori product formation.

4.
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Aldimine (Schiff base) is fornied as a result of the non-enzymatic condensation 

of a reducing sugai* with a free amino group of protein. Biological molecules 

that have free amino groups such as proteins, nucleic acids and low moleculai' 

weight amines are susceptible to formation of the Schiff base [19,20,21]. 

Reducing sugars exist in both open and ring form in vivo (fig 1.1), but it is 

only the open form that reacts with amino groups of proteins to form Schiff 

bases. The e-amino groups of lysine and hydroxylysine residues and the a- 

amino groups of N-terminal amino acids, act as a nucleophile and attacks the 

carbonyl group of sugar. Lysine is the most important amino acid involved in 

the formation of the Schiff base in vivo (fig 1.2).

The next stage of the Maillard reaction is the dehydi'ation and énolisation of 

aldimine in a process known as Amadori reaiTangement to form the Amadori 

product (fig 1.2). Unlike the Schiff base, which can readily dissociate back to 

its original constituent molecules, the Amadori product is much more stable. In 

vivo, lysine and valine found on the N-terminus of the a  and (3 chains of 

human haemoglobin react with reducing sugars. This results in the foimation of 

a chromatographically distinct minor haemoglobin component known as HbAic 

[22]. The Amadori products formed on haemoglobin are produced continuously 

throughout the 120 day life span of the red blood cell. There is a two to three 

fold increase in HbAlc in the red cells isolated from subjects with diabetes 

mellitus [23,24]. The measurement of glycosylated haemoglobin provides an 

index of the mean concentration of blood glucose during the preceding two to

5



three months, complementing more traditional measures of glycaemic control 

such as glucose testing in urine and blood [25,26,27].

The rate of formation of Amadori products is dependent on the ambient 

concentration of glucose and the concentration of susceptible amino group 

glycation sites in proteins. The relatively short time (14-20 days) required for 

the formation of Amadori products [28] allows their accumulation on both 

short-lived proteins (haemoglobin, albumin and immunoglobulin G) and long- 

lived proteins such as collagen and elastin. Sugars other than glucose such as 

mannose, fructose (both aldose) and ribulose (ketose) have also been shown to 

be involved in non-enzymatic glycation. Even though the extracellular 

concentrations of these sugars are low, their high reactivity with proteins makes 

them strong candidates for the mediation of molecular damage to long-lived 

molecules via the Maillard reaction [19,29,30].

5.
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1 ,3 .2 , Factors affecting the rate of Amadori product formation.

The non-enzymatic glycation of proteins is affected by temperature, pH, 

substrate concentration and the type of reducing sugar. An important factor in 

the formation of Amadori product is the biological half life of the protein in 

vivo. Rates and sites of glycation on proteins vary depending on buffer species 

and concentration of reactants (amines and reducing sugars). The glycation rate 

of RNase, human serum albumin, lysozyme and haemoglobin is greatly 

enhanced when phosphate buffers rather than organic buffers such as 3-[N- 

morpholino] propanesulfonic acid (MOPS) are used. Similar increases were 

observed with bicarbonate buffers, suggesting a general effect of anionic 

buffers on the glycation rate of proteins [31,32,33].

The rate of non-enzymatic glycation is affected by the pKa of amino groups on 

protein. Lower pKa of amino groups by virtue of its greater nucleophüicity, 

increases the rate of formation of Schiff base adducts [34]. Also, acidic and 

basic amino acids present in the vicinity of the glycation site are known to 

modulate the reactivity of lysine residues with glucose. The presence of binding 

sites for fatty acids and glycosaminoglycans on proteins could either block or 

enhance the glycation rate of specific lysine residues [35,36].



f

1 .3 .3 . The effect of Amadori products on the function of 

proteins.

In non-diabetic subjects the extent of Amadori product formation on proteins is 

relatively constant with age. This is in contrast to patients with diabetes, where 

levels of Amadori products can vary dramatically over a short period of time 

[37,38]. Amadori products affect the function of proteins in vivo. For instance, 

the presence of ketoamine on the NH2 terminal amino group of haemoglobin 

(HbAj) reduces the reactivity with 2,3-diphosphoglycerate (2,3-DPG). 

Although 2,3-DPG binding controls the affinity of haemoglobin to oxygen 

[39], the presence of glycosylated haemoglobin does not alter whole blood 

oxygen saturation curves [40,41]. The clinical significance of this is unclear.

In vitro studies have shown that glycation of lysine residues in or near the active 

site of RNase inactivates the enzyme [32]. The in vitro glycation of low density 

hpoprotems (LDL), to a degree comparable to that seen in diabetes decreases the 

rate of their catabolism by human fibroblasts. The glycation of LDL also affects 

their recognition and catabolism by macrophages [42]. LDL, isolated from 

diabetic patients, was shown to stimulate cholesteryl ester synthesis in 

macrophages, resulting in increased intracellular cholesteryl ester accumulation. 

This could be a mechanism by which hyperglycaemia contributes to the 

atherosclerosis in diabetes [43,44].

Glycation of the components of kidney basement membrane such as fibronectin 

and laminin affects their interaction with heparin and collagen [45,46], 

suggesting a possible mechanism for basement membrane alterations in 

diabetes. Platelet membranes isolated from the diabetic patients have increased 

microviscosity. This is due, at least in part, to the non-enzymatic glycation of 

membrane proteins rather than to an increased cholesterol to phospholipid molar
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ratio which would have the same effect [47]. Increased micro viscosity of the 

membrane could affect the functions of the membrane channels as well as 

receptors on the surface of the cell.

In vitro glycation of antithrombin III results in the inhibition of its heparin 

binding ability and consequently a reduction in its thrombin inhibiting activity 

[48,49].

In diabetes, the glycation of immunoglobulins is increased with a subsequent 

decline in their function [50,51]. To date, there is little evidence that Amadori 

products change the properties of collagen in diabetic patients [52]. Although 

the concentration of Amadori products on collagen is elevated in diabetes, it is 

not related to the presence or severity of diabetic complications [53,54].

Antibodies to the reduced form of Amadori product have been found in the 

plasma of some diabetics and could elicit an immunological reaction against 

proteins modified by Amadori products in vivo [55,56].

1 .4 .  Advanced glycosylation endproducts (AGE) formation.

Reactions leading to the formation of AGE will be termed as either "advanced 

glycosylation" or "browning". Properties of AGE include the formation of 

brown chromophores that fluoresce at 370nm/440nm (excitation/emission 

wavelength) and the formation of inter and intramolecular crosslinks between 

proteins. The elucidation and identification of specific products formed in

tissues during the latter stages of the Maillard reaction has remained difficult
'■1

since AGE are a whole family of compounds.

In contrast to the formation of Schiff base and Amadori products, the reactions 

involved in the late stages of the MaiUard reaction are less clearly defined. It is

_L:___________________________  _ _ ^ _



certain that AGE are formed during reactions that involve the dehydration, 

fragmentation and rearrangement of the Amadori product. To date, only a few 

structures such as 2>furoyl-4-(5)-(2-furanyl)-lH-imidazole [57], pentosidine 

and pyrraline have been characterised. The latter two have been shown to exist 

in vivo [58,59,60].

Glycoxidation and glucose autoxidation are both oxidative processes that are 

involved in AGE formation [61]. Glycoxidation products are formed from the 

oxidative cleavage of fructose-lysine (FL) [62,63,64]. The oxidative 

fragmentation of FL by oxygen free radicals produces pentosidine and the non­

reactive products carboxymethyllysine (CML) and erythronic acid (fig 1.3). 

CML and pentosidine have been isolated from the tissues of diabetic patients 

[37,52,65]. CML could serve as a marker for the formation of glycoxidation 

products. Glucose in common with other a-hydroxyaldehydes, is prone to 

transition metal-catalysed oxidation (a process known as glucose autoxidation). 

Glucose autoxidation generates hydrogen peroxide, as well as reactive 

intermediates such as the hydroxy radical and ketoaldehydes [66,67,68], It has 

been speculated that autoxidation of glucose contributes to the structural 

alterations observed on proteins when exposed to glucose [69].
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Structure of carboxymethyllysine and 3-deoxyglucosone produced from the 

degradation of Amadori product. 3-deoxyglucosone reacts with other primary 

amines to form brown fluorescent pigments.
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The Amadori product can also spontaneously fragment to form dicarbonyl 

compounds, of which 3-deoxyglucosone (3DG) is thought to be an important 

precursor of AGE [70,71] (fig 1.3). In vitro incubation of 3DG with lysozyme 

and bovine serum albumin results in the polymerisation of proteins and 

produces a fluorescent peak characteristic of AGE to that seen in vivo [72], The 

fluorescence of the products of the reaction of bovine serum albumin with 3DG 

is higher than that resulting from the reaction of an equivalent amount of bovine 

serum albumin with glucose. In addition to 3DG, 1-deoxyglucosone and 4- 

deoxyglucosone can be also formed from the degradation and dehydration of 

Amadori product, Deoxyglucosones are thought to degrade into a range of 

products including pyrroles, pyridines and pyrroUnone reductones [60,73,74] 

which are UV active. It has recently been shown that the concentration of 3DG 

is increased in plasma isolated from diabetic rats [75] and in the urine and 

plasma of human diabetic subjects [76].

1 .5 .  The chemical structures of AGE.

Several AGE have been identified to date. Pongor et al isolated the yellow 

fluorescent chromophore, 2-furoyl-4-(5)-(2-furanyl)-1 H-imidazole (FFI) from 

the acid hydrolysate of bovine serum albumin (BSA) incubated with excess 

glucose under physiological conditions [77]. The fluorescent properties of FH  

had striking similarities to those of browned BSA and poly-L-lysine, 

suggesting that FFI was indeed glucose derived crosslink (fig 1.4). FFI was the 

first AGE characterised, but it is now unlikely that it has any biological 

significance. Data concerning its presence in vivo are inconsistent. Acid 

hydrolysis used to measure FFI is notorious for producing an array of 

fluorescent artefacts, Njoroge et al questioned whether FFI existed in vivo. 

Njoroge synthesised an FFI-like molecule by the condensation of two furosine

12.
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molecules which are themselves acid hydrolytic break-down products of 

glycated lysine [57].

FFI was detected in vitro in browned albumin and polylysine by Pelli et al using 

collision spectroscopy [78]. In contrast Lapolla et al, found no FFI present in 

collagen isolated from diabetic rats [79]. Recently, FFI was detected using a 

radioimmunoassay in globin and serum albumin isolated from normal 

individuals [80]. When FFI was coupled to proteins, it was specifically taken 

up by macrophages suggesting the presence of a specific receptor [81], These 

findings imply that even if FFI does not exist in vivo, its structure could be, in 

itself, representative of fluorescent chromophores which do form during the 

incubation of proteins with glucose.

Another AGE, pentosidine, has been isolated from human extracellular matrix 

(fig 1.4). Pentosidine is fluorescent at excitation wavelength 335nm and 

emission wavelength 385nm [82,83]. The Amadori products of ribose and 

glucose, as well as lysine and arginine residues contribute to the formation of 

pentosidine. There is also a requirement for oxygen. Comparison of the ability 

of ribose, glucose, and their Amadori products to form pentosidine showed that 

ribosylated lysine had the highest reactivity, followed by ribose and then 

glucose. The high reactivity of ribose suggest that it may be a main precursor of 

pentosidine. Since plasma levels of ribose are very low, the significance of this 

is uncertain [84,85].

Fructose can also be a precursor of pentosidine. The non-enzymatic 

fructosylation and crosslinking of proteins by fructose in vitro are possible. 

Fructose can react with an amino group via a Heyns rearrangement to form 

pentosidine [86]. This could be of relevance in diabetes since fructose levels in 

diabetic patients are increased as a consequence of activation of the aldose

13,
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reductase pathway [87]. The aldose reductase pathway is a metabolic shunt 

involving the conversion of glucose to fructose with the formation of sorbitol as 

an intermediate. It has been shown that fructose levels in the tissue of diabetic 

animals are increased 2-3 fold when the aldose reductase pathway is active 

[88,89]. Ascorbate and dehydroascorbate are also precursors of pentosidine 

[81]. The breakdown products of ribonucleotide during cell death could also be 

a source of pentose [59,83]. However, pentosidine has been shown to account 

for less than 1% of the total crosslinks formed during the browning reactions 

with glucose in vitro [58,83]. It is necessary to search for other carbohydrates 

as potential precursors of pentosidine.

Finally, pyrraline is a recently discovered AGE which forms under 

physiological conditions [90]. Pyrraline was synthesised in vitro by reacting 

glucose with neopentylamine, a simple amine, in phosphate buffer at 37®C. The 

proposed mechanism of formation of pyrraline is thought to be the condensation 

of 3-deoxyglucosone and protein (fig 1.4). Quantitation of pyrraline on intact 

proteins was carried out by radioimmunoassay. Hayase et al showed an 

increased pyrraline immunoreactivity in the albumin-rich fraction of serum 

isolated from diabetic patients [74]. Recent studies however have cast doubt as 

to whether pyrraline plays a role in the pathology of diabetic complications. It 

has been suggested that immunoassay of pyrraline may have given positive 

results because of non-specific antibodies raised to impure hapten [91]. 

Horiuchi et al have suggested that pyrraline is an early product of the Maillard 

reaction, formed in the initial few days of in vitro incubation, rather than an 

advanced glycosylation endproduct which would form after 3-4 weeks [92].

Further research is necessary to elucidate the structures of AGE present in vivo.
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1. 6 .  AGE-induced protein crosslinking.

On incubating RNase with glucose, Eble et al have observed the polymerisation 

of RNase into dimer and trimer forms. This was accompanied by a decrease in 

the number of primary amino groups of the protein, as shown by a decrease in 

lysine recoverable by amino acid analysis [93]. Polymerisation of RNase was 

inhibited by the addition of lysine, suggesting that the dimérisation of RNase 

occurs by the condensation of an Amadori product and an amino group. 

Importantly, even after the removal of the reducing sugar from the medium, the 

protein continues to polymerise. This suggests that once glycation of the protein 

is initiated, the presence of a reducing sugar is not essential for AGE formation. 

Eble also observed that crosslinking can occur between native and glycated 

proteins. The formation of AGE in vivo is slow (ti/2 = weeks to months [19]) 

when compared to the formation of Amadori product (ti/2 = days to weeks 

[28]).

1.7. Target Proteins for AGE formation in vivo.

Because of the relatively long time required for the formation of advanced 

Maillard products, these reactions occur predominantly on long-lived proteins 

[28]. The in vivo accumulation of AGE is dependent on the biological half life 

of target proteins. Collagen, lens crystaUin and nerve myelin protein are main 

target proteins for AGE formation [94,95,96].

1 . 7 . 1 .  Collagen.

Collagen, one of the most abundant proteins found in mammals, is found in 

connective tissues such as tendon, cartilage, the organic matrix of bones and the 

cornea of the eye. Collagen provides an extracellular framework for aU

16.
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multicellular animals. It is abundant in all tissues and particularly in fibrous 

connective tissue [97,98]. Collagen is rich in glycine (35%), alanine (11%) and 

proline (21%). Two amino acids characteristic of collagen are hydroxyproline 

and hydroxylysine, neither of which are genetically coded and are formed from 

their precursor residues, proUne and lysine respectively by the action of distinct 

oxygenases. So far five types of collagen have been characterised [98,99]. 

Their distribution in the body is summarised in table 1.5.

Native polymer Tissue distribution
I Fibril Skin, tendon, bone, dentin
n Fibril Cartilage
m Fibril Skin, uterus, blood vessels
IV Basement membrane Kidney glomeruli, lens capsule, basement 

lamina of all epithelial and endothelial 
cells

V Unknown Basement lamina of smooth and striated 
muscle cells.

Table 1.5

Tissue distribution of vertebrate collagens.

CoUagen is composed of three left handed helical a-chains wound around each 

other to form a super-helical cable known as tropocollagen [97]. In addition to 

the triple helical structures, collagen fibres are further stabilised by covalent 

crosslinks, formed by lysyl oxidase-mediated oxidative deamination of lysine 

and hydroxylysine residues [100]. The extent and type of crosslinking varies 

with the physiological function and age of the tissue. Formation of such 

crosslinks constitutes a process of in vivo maturation [101]. During maturation, 

collagen becomes both less soluble and less susceptible to proteolytic enzymes.
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The in vitro incubation of collagen with a reducing sugar leads to the formation 

of Amadori products. This occurs via the condensation of glucose with the a- 

amino group of a terminal amino acid or the e-amino group of a peptide bound 

lysine. The end result is the formation of AGE and an associated increase in 

fluorescence [71,77]. Tanaka et al have shown that triple helical regions of a  

chains isolated from rat tail collagen incubated with ribose are both highly 

fluorescent and crosslinked [102].

Collagen isolated from diabetic patients, when compared to collagen isolated 

from age-matched controls has reduced solubility [103,104,105] and increased 

resistance to collagenase digestion [106,107]. Increases in AGE-related 

fluorescence indicative of increased crosslinking of collagen may explain the 

increased stiffness of arterial, skin and lung tissue from diabetic subjects 

[108,109,110], The stiffening of arteries as a result of increased AGE 

accumulation on diabetic collagen could lead to increased blood pressure 

[109,111].

The increased crosslinking of collagen can occur via two pathways. One 

pathway begins with the lysyl oxidase-mediated oxidative deamination of lysine 

and hydroxylysine residues. The aldehyde moieties react further with each other 

to form a series of di- or trifunctional crosslinks [100,112]. AGE formation is a 

second pathway by which increased crosslinking of proteins occurs. Late 

products of the Maillard reaction contribute to increased crosslinking as seen 

during the in vitro incubation of RNase with glucose [113]. Studies by 

Andreassen et al with tail tendon isolated from strep to zotocin-diabetic rats 

showed decreased thermal rupturing under tension [114], which was not related 

to the enzymic ageing process [115,116].
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1 .7 .2 .  Myelin.

The basic unit of the nervous system is the individual nerve cell or neuron 

which is covered by myelin, a fatty material formed from the plasma 

membranes of specialised cells. Myelin insulates the membrane, making it more 

difficult for electric currents to flow between the intracellular and extracellular 

compartments of nerve cells.

The products of the Maillard reaction accumulate in both peripheral and central 

nerve myelin [117,118,119]. Vlassara et al showed that peripheral nerve myelin 

protein isolated from rats with long term diabetes is preferentially taken up by 

macrophages, when compared to either the non-diabetic rats or diabetic rats 

with short term diabetes. The in vitro incubation of nerve myelin protein with 

glucose has the same effect [96]. A long term complication of diabetes meUitus, 

peripheral neuropathy, is characterised by segmental demyelination. The extent 

and degree of this pathological change correlates with the severity and duration 

of hyperglycaemia [120], These observations provide a pathophysiological link 

between excessive non-enzymatic glycosylation of myelin protein as induced by 

hyperglycaemia and segmental demyelination in diabetes. It has been suggested 

that the increased concentrations of pentosidine found on both cytoskeletal and 

myelin fractions of human nerves could affect the turnover rate and may alter 

the phosphorylation/dephosphorylation of axonal cytoskeletal proteins, thereby 

affecting their assembly and transport, and ultimately leading to axonal atrophy 

and degeneration [121]. This most likely acts in synergy with other 

pathogenetic mechanisms known to occur in diabetic peripheral nerve.
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1 . 7 . 3 .  Lens crystallin.

The lens crystallin exists in three distinct forms (a, P and y crystallin) and 

comprises more than 90% of the dry weight of lens fibre cells. The relationship 

between hyperglycaemia and the crosslinking of proteins in vitro and in vivo 

was first demonstrated using lens crystallin [122,123]. Slow turnover rate of 

crystallin makes the post-translational modification by the products of the 

Maillard reaction possible. Cataractogenesis in diabetic and senile cataracts is 

the result of protein aggregates in the lens [124,125]. Lens opacity, observed in 

lenses incubated with glucose is accompanied by the formation of brown 

fluorescent pigments with spectroscopic properties identical to AGE [10,126]. 

The concentration of Amadori products in cataractous lenses is increased in 

young rats with experimental diabetes, and in senile lenses. However, 

cataractogenesis in diabetes is a multifactorial process and apart from AGE 

formation, abnormalities in the aldose reductase pathway, disulfide crosslink 

formation, increased oxidative potential and non-enzymatic glycosylation, all 

play a role in the formation of protein aggregates in the lens [127].

1 . 7 . 4 .  Deoxyribonucleic acid.

The long life of deoxyribonucleic acid (DNA) in the cell makes it a potential 

target for AGE formation [128,129]. Incubation of DNA with reducing sugars 

produces brown pigments that have the characteristic fluorescence of AGE. 

Lorenzi et al have shown that the incubation of endothelial cells with high 

glucose concentrations (30mM) induces an accelerated unwinding rate of double 

stranded DNA in the presence of alkali. This is indicative of increased single 

strand breaks. The increase in single strand breaks was observed in endothelial 

cells but not in fibroblasts [130]. Studies by Lee et al have shown that reactive 

compounds of unknown structure formed from glucose and lysine are twenty
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times more damaging to DNA than glucose alone and may contribute to the 

increased protein-DNA crosslinking seen in cells from aged rats [21,131],

Since endothelial cells are independent of insulin for glucose transport, the 

intracellular concentration of glucose in these cells is related to the extracellular 

concentration of glucose [132,133]. The browning of regulatory DNA binding 

proteins has been shown to occur in vitro and may constitute one of the 

pathways by which gene expression could be altered [134]. Glucose-induced 

crosslinking between amino acids and nucleic acids may be the mechanism 

responsible for increasing amounts of proteins becoming covalently attached to 

DNA as a person ages [135].

1 .8 .  The degradation and elimination of AGE-m odified  

proteins.

1 . 8 . 1 ,  Receptors for AGE.

A possible biological pathway for the removal and degradation of AGE- 

modified proteins may occur via the AGE-specific receptors found on 

macrophages. A receptor that binds AGE (AGE-R) has been isolated and 

characterised and is distinct from other macrophage scavenger receptors that 

recognise chemically modified proteins such as acetylated LDL and maleylated 

albumin [81], The in vitro modification of LDL and albumin by acetic anhydride 

or maleic anhydride results in macrophage recognition and uptake by specific 

distinct receptors [136,137]. Vlassara, using a FFI affinity column, isolated a 

90 kDa polypeptide from a mouse cell derived cell line, RAW 264,7. The 

isolated receptor had a binding affinity of the 3.1 X lO^M'l, which was close to 

that found on intact murine macrophages [138].
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Vlassara et al have observed an increased uptake and accumulation of myelin, 

isolated from diabetic and non-diabetic rats, by mouse peritoneal macrophages. 

In vitro glycosylation of peripheral nerve myelin also resulted in increased 

uptake [96]. In a similar study using human autopsy material, the uptake of 

myelin by mouse macrophages, was 2-3 times higher in diabetic myelin than in 

myelin isolated from non-diabetic subjects [139]. The specificity of the AGE- 

myelin interaction with macrophages was assessed by incubating labelled AGE- 

BSA in the presence of increasing concentrations of unlabelled AGE-myelin and 

AGE-BS A. In similar studies Gilcrease and Hoover have observed that human 

monocytes preferentially degrade non-enzymatically glycosylated collagen 

[140].

Recently, a new receptor for AGE designated as RAGE (receptor for advanced 

glycosylation endproducts) has been isolated from bovine lung endothelial cells 

[141,142], Schmidt et al have identified two endothelial cell surface-associated 

proteins, an apparently unique 35kDa polypeptide (RAGE) and a lactoferrin-like 

polypeptide (LF-L). Molecular cloning studies have shown RAGE to be a 

member of the immunoglobulin superfamily [143]. Binding of the AGE to 

cultured endothelial cells results in endocytosis of AGE, alterations in 

endothelial cell growth, coagulant and barrier functions [144]. The identification 

of RAGE as a member of the immunoglobulin superfamily suggested that in 

addition to interacting with AGE, it might serve other functions, including 

mediation of ceU-cell recognition or binding of growth factors and cytokines.

1 .8 .2 .  Enzymatic degradation of Maillard products.

As described above 3-deoxyglucosone (3DG) is an intermediate in the Maillard 

reaction [70,145]. Therefore, enzymes degrading 3DG could possibly prevent 

the accumulation of the products of the Maillard reaction. Oimomi et al have
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extracted the enzyme, a-ketoaldehyde dehydrogenase, from human liver and 

have shown that 3DG was a substrate for this enzyme [146]. Another enzyme, 

2-oxoaldehyde reductase, isolated by Liang et al, reduces 3DG to 3- 

deoxyfructose and has been found in the liver and kidneys of pigs [147,148]. 

The activity of this enzyme was highest in the liver and kidney (200-350U per 

lOOmg tissue). This kidney enzyme might prevent the propagation of the 

Maillard reaction, in particular crosslink formation.

1 . 9 .  Measurement of the endproducts of the Maillard reaction.

Studies on the relationship between the formation of AGE in tissues and 

diabetic complications have been impeded by the lack of detailed information on 

the chemistry of the late stages of the Maillard reaction and difficulties in the 

measurement of AGE. The early evidence for the occurrence of AGE in vivo 

has been based primarily on criteria such as impaired digestibility of proteins by 

proteolytic enzymes, reduced solubility and increased resistance to heat 

dénaturation [149]. Increased fluorescence at excitation 370nm, emission 

440nm has been found in tissues isolated from older subjects, as well as 

diabetic subjects [13]. Fluorescence measurement has been the most commonly 

used method of AGE determination in vivo. Other methods that include a 

radioreceptor assay, radioimmunoassay and high performance liquid 

chromatography (HPLC) have now been developed to measure AGE in vivo. 

Each of these methods will be discussed in detail below.

1 . 9 . 1 .  Protein-linked fluorescence.

Since many AGE exhibit natural fluorescence, they have traditionally been 

measured by fluorimetry at distinct excitation and emission wavelengths. AGE 

are brown, fluorescent chromophores [150,151,152]. One of the first
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oxidised LDL were elevated in diabetic patients and correlated with AGE-lipid 

levels. This study would suggest that AGE could in fact play a role in initiating 

LDL oxidation in vivo.

The measurement of AGE-modified proteins using fluorescence at excitation 

wavelength 370nm, emission wavelength 440nm has proved useful in 

assessing the level of AGE in tissues [11,158]. The fluorescence of collagen 

samples obtained from dura matter of normal subjects has been observed to
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fluorescent yellow-brown product to be identified from the acid hydrolysates of 

bovine serum albumin and poly lysine that have undergone nonenzymatic 

browning was 2-furoyl-4-(5)-(2-furanyl)-l H-imidazole (FFI), characterised by 

spectroscopic (fluorescence, absorbance and mass spectrometry) methods [77].

Dyer et al, also using fluorescence at specific excitation and emission 

wavelengths detected pentosidine in in vitro browned lysozyme as well as 

human lenses and skin [58]. They observed that pentosidine accounted for only 

a small fraction (<1%) of glucose derived crosslinks.

I
Studies on the effect of free radicals and products of lipid peroxidation on 

coUagen-Unked fluorescence (CLP) have been carried out [153,154], There was 

no significant decrease in CLF in streptozotocin (STZ) diabetic rats 

supplemented with vitamin E, a free radical scavenger [155], even though lipid 

peroxidation measured as thiobarbituric acid (TBA) reactivity was considerably 

lower than in control animals [156]. This would suggest that the generation of 

CLF in vivo is not affected by oxidative stress, at least in the case of lipid 

mediated peroxidative reactions. In contrast, a study by Bucala et al have shown 

that phospholipids do react directly with glucose to form AGE that in turn 

initiate lipid peroxidation in vitro [157]. In the same study LDL isolated from 

diabetic patients had increased levels of both apoprotein-linked and lipid-linked 

AGE, when compared to LDL from non-diabetic patients. Circulating levels of
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linearly increase with age [109,159], Fluorescence of AGE in diabetic skin has 

been related to the severity of retinopathy, arterial stiffness and joint stiffness 

[160]. Unlike radioimmunoassay, HPLC and radioreceptor assay, AGE in 

plasma cannot be measured using fluorescence, since there are too many 

interfering substances in plasma [80,109,137]. This problem does not occur 

when purified tissue collagen is used.

1 . 9 . 2 .  Radioreceptor assay (RRA).

Radioreceptor assay (RRA) utilises the presence of a membrane receptor 

specific for AGE-modified proteins on mouse macrophages [161,162]. The 

binding of labelled AGE-BSA by macrophages is inhibited by adding increasing 

amounts of unlabelled AGE-BSA. BSA chemically linked to FFI also inhibits 

[125I].AGE-BSA binding suggesting that the macrophage receptor recognises 

an AGE structure homologous to FFI [163]. RRA has also been used to 

quantitate AGE on proteins other than BSA such as collagen, LDL and RNase 

modified by glucose in vitro. Amadori products do not inhibit the binding of 

AGE-modified proteins to macrophage receptor.

RRA has been used for the measurement of AGE content on tissue proteins in a 

number of studies, Makita et al measured AGE on arterial collagen isolated from 

diabetic patients and showed that tissue AGE were higher in the diabetic group 

when compared to the non-diabetic individuals. Using RRA, AGE levels in the 

femoral and coronary arteries isolated from the same patient were similar. In 

contrast, fluorescence measurement of the same arterial samples showed no 

such similarity. In the same study, serum of diabetic patients with and without 

nephropathy, were separated into a high and low molecular weight peptide 

fraction (< lOkDa) containing AGE. Separation of the serum into low and high 

molecular weight components showed that AGE levels in the high molecular
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weight component did not differ much between the groups [164], whereas a 

significant difference was observed when measuring AGE levels in the low 

molecular weight component. This probably reflects the poor removal of low 

molecular weight AGE-peptides in patients with diabetic nephropathy. The 

AGE-specific receptor is a useful tool for the measurement of AGE in tissue and 

plasma proteins.

1.9.3» Enzyme linked immunoabsorbent assay (ELISA).

An immunochemical assay fra* AGE has been developed by Makita et al. AGE- 

specific antisera were produced by the immunisation of rabbits with AGE- 

modified RNase. These antibodies reacted with AGE-modified BSA. However, 

none of the known AGE such as FFI, carboxymethyllysine and pentosidine 

were found to compete for the binding of anti-AGE antibody. Amadori products 

were also not recognised by this antiserum. In vitro time course studies have 

shown that anti-AGE serum is specific for the "late" AGE which occur after 

fluorophore formation [165]. Anti-AGE antibody did not react with proteins 

incubated with glucose in the presence of aminoguanidine, an inhibitor of AGE 

formation [166,167]. Anti-AGE serum bound more arterial collagen isolated 

from diabetic rats than from non-diabetic rats. Using the immunoassay and 

RRA, comparable results were obtained when measuring circulating serum 

AGE in diabetic patients. Serum AGE concentration was highest in patients 

with diabetic nephropathy [164,168]. Monoclonal antibodies have also been 

used to detect AGE in atherosclerotic lesions of human and rabbit aorta 

[169,170]. It is now known that the predominant AGE detected by 

immunoassay using antibodies raised to glucose-derived AGE proteins is Ng-

carboxymethyl lysine [349]

1 . 9 . 4 .  High performance liquid chromatography (HPLC).
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HPLC has been used to isolate and characterise AGE-fluorophores from the 

insoluble collagen rich fraction of human dura matter, lens crystallin and plasma 

proteins [82,124,171]. Sell and Monnier were first to isolate, purify and 

characterise AGE-fluorophores by studying the tryptic digests of collagen 

peptides from human dura matter. Collagen was digested with trypsin and 

sepaiated into high and low molecular weight fractions. The high molecular 

weight fraction containing fluorescent material was further digested with 

collagenase and separated using gel filtration chromatography. Fractions 

obtained from gel filtration were injected into HPLC column linked to a 

fluorimeter. Two fluorescent peaks were obtained, designated as P and M with 

excitation/emission wavelengths 335/385 and 360/460nm respectively. To 

avoid fluorescent artefacts, proteolytic digestion of collagen was used rather 

than acid hydi'olysis. It is now known that fluorescent peak P is pentosidine 

[59]. Peak M probably represented other fluorescent AGE detected in increasing 

amounts in the skin and dura matter of diabetic patients [109]. Pentosidine 

levels were found to increase with the biological age of individuals regai'dless of 

whether they were non-diabetic or diabetic. Highest pentosidine concentrations 

were found in individuals with end stage renal failure [143], Pentosidine was 

also detected in red blood cells and plasma proteins [83].

1 .9 .5 .  D isadvantages of RRA, ELISA and H PLC  in the  

m easurem ent of AGE.

A common disadvantage of RRA, ELISA and HPLC methods used for the 

measurement of AGE is the assumption that the use of standards, prepared by 

either the in vitro incubation of a reducing sugar with protein or the chemical 

synthesis of one particular AGE moiety are the same as AGE found in vivo.
K
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All these methodologies are useful tools in the measurement of AGE in tissue 

and serum samples, providing us with an understanding of the relevance of 

AGE in the pathology of disease, especially the late complications of diabetes.

1. 10 .  Elevated AGE and its relationship to disease processes.

Over recent years, our understanding of the involvement of AGE in the late 

complications of diabetes and atherosclerosis has improved. Diabetic patients 

have a 2-3 times higher risk of cardiovascular disease than non-diabetic 

patients. The effect of diabetes is independent of all other known cardiovascular 

risk factors: plasma lipids and lipoproteins, family history of coronary heart 

disease, obesity, age, cigarette smoking, hypertension, thrombogenic risk 

factors and sex [172,173,174,175]. Chronic hyperglycaemia is believed to play 

a major role in the pathophysiology of diabetic complications such as 

retinopathy, neuropathy, nephropathy. Its role in cardiovascular disease is less 

clear. Increased AGE levels in tissue and plasma proteins have been linked with 

each of these complications at the structural (crosslinking of proteins) 

[63,65,176,177] and cellular (release of growth and chemotactic factors) levels 

[178,179,180],

Many studies have examined the relationships between elevated AGE levels and 

the presence and severity of diabetic complications. Monnier et al observed that 

coUagen-linked fluorescence (CLF), was twice as high in diabetic subjects as in 

control patients. CLF also correlated with the severity of retinopathy and arterial 

and joint stiffness [54,160,181]. Limited joint mobility demonstrated in patients 

with diabetes mellitus is thought to be the result of the stiffening of connective 

tissue. Such stiffening has been linked to the crosslinking properties of AGE. 

Dominiczak et al observed that CLF was increased in the skin of young patients 

with IDDM and was related to the duration of diabetes and severity of diabetic
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retinopathy [182]. Beisswenger et al studied the relationship between levels of 

pentosidine on collagen and the severity of retinopathy and nephropathy in 

diabetic patients. They observed elevated tissue pentosidine levels in patients 

with diabetes. Diabetic patients with nephropathy or retinopathy were found to 

have significantly higher pentosidine levels than diabetic patients without either 

of these complications. Also, elevated pentosidine levels correlated with age and 

duration of diabetes [158].

1 . 11 .  Potential mechanisms by which elevated AGE could 

contribute to atherosclerosis.

Previously mentioned is the crosslinking property of AGE and how this may 

contribute to structural and functional changes in collagen. The interaction of 

AGE with specific receptors on macrophages, mesangial and endothelial cells 

leads to the release of several growth factors which in turn may contribute to the 

formation of the atherosclerotic plaque through the remodelling of vascular 

tissue [144,178,183].

Atherosclerosis is defined as "arterial lesions characterised by thickening of the 

intima, the thickenings comprised of fat and collagen-like fibres, both being 

present in widely varying proportions" [184,185]. Atherosclerosis is a 

multifactorial phenomenon involving complex interactions among 

environmental and genetic factors. The formation of an atherosclerotic plaque is 

a localised phenomenon and occurs with consistent topography in relation to 

flow dividers, branching sites and areas of arterial curvature. The focal 

distribution of atherosclerotic lesions suggests that there is a role for 

hemodynamic forces in either the initiation or augmentation of the disease 

[186]. There is still controversy as to what constitutes the earliest lesion of 

human atherosclerosis, though major morphological hallmarks of
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atherosclerosis are lipid deposition, intimai penetration of blood-borne 

monocytes, smooth muscle cell proliferation and fibrosis [187,188]. Normal 

arterial intima is constituted of proteoglycans, collagens, elastin, fibronectin and 

laminin. These components contribute to the normal function and integrity of 

the arterial wall [99,189,190,191]. The extracellular matrix is the medium 

through which essential nutrients are transported across the intima, the site for 

accumulation of products released by intimai cells, the site of the accumulation 

of cell debris, and the avenue for the migration of cells entering and 

transversing the intima. Endothelial and smooth muscle cells are the principal 

cellular components of human arterial intima although isolated macrophages are 

also always present [192,193]. The presence of macrophages in the arterial 

intima have substantial implications, not only for lipid clearance (LDL receptor 

pathway) and accumulation, but in relation to connective tissue proliferation 

which is one of the hallmarks of a mature atherosclerotic lesion.

The arterial wall is composed of four components: the endothelium, intima, 

media and adventitia. The endothelium serves a number of important functions 

which include acting as a permeability barrier, the mediation of vascular tone 

[194,195], the synthesis and secretion of plasminogen activator [196] and the 

rapid metabolism of platelet aggregating agents [184,197]. The arterial intima is 

defined as the region of the arterial wall containing at most, endothelium, basal 

lamina, subendothelial connective tissue, and internal elastic lamina (which may 

be absent in many vessels). Surrounding the intima is the media, the largest 

component of the arterial wall and is composed of collagen, elastin and smooth 

muscle fibres. The elasticity of the media sustains blood pressure between heart 

beats. Finally, the adventitia surrounds the media and is composed of elastic 

collagen fibres and small blood vessels called vasa vasorum which enter the 

outer layers of the media and supply the vascular wall with nutrients.
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Components of the arterial wall such as proteoglycans (PG) have been 

implicated in the development of atherosclerosis through their ionic binding and 

retention of low density lipoproteins and lipoprotein Lp(a) [198,199]. Lp(a) is a 

lipid molecule similar in lipid composition to LDL, except that Lp(a) has an 

additional apolipoprotein (apo a) attached via one disulfide bridge [199]. It is 

thought that Lp(a) may interfere with fibrinolysis in vivo by interfering with the 

binding of plasminogen to fibrin clots thereby inhibiting the conversion of 

plasminogen to active plasmin (proteolytic enzyme). The synthesis of PG by 

smooth muscle cells can be modulated by IL-1, prostaglandins and platelet 

derived growth factor [200,201], In atherosclerotic lesions, the concentration of 

arterial PG such as sulphated glycosaminoglycans increases [189,202].

Accumulation of AGE on collagen increases its mechanical stiffness and its 

resistance to proteolytic degradation [114,151]. AGE content increases with age 

of the human subject and hyperglycaemic states. It has been suggested that 

chronic tissue damage associated with diabetes mellitus may arise in part from 

the continuous accumulation of serum proteins and subsequent in situ immune 

complex formation. Immunoglobulins have been found to bind to long-lived 

structural proteins that have undergone excessive non-enzymatic glycosylation 

[203,204]. Increased accumulation of AGE in tissue could lead to the increased 

deposition of plasma proteins within the arterial wall. In addition to the effects 

that AGE have on the mechanical properties of collagen, AGE-modified 

proteins can be recognised and degraded by macrophages. Receptors for AGE 

have now been isolated and characterised in macrophages, monocytes and 

endothelial cells [81,205]. AGE interaction with macrophages initiates a 

sequence of cytokine-mediated processes known to promote tissue remodelling 

[178] by initiating cellular proliferation, new matrix protein synthesis and 

release of extracellular proteases [206]. These processes may affect the 

development of atherosclerotic plaques.
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Specific receptors for AGE have been found on mouse 

macrophages/monocytes, rat mesangial cells and bovine endothelial cells. The 

binding of AGE to receptors on the surface of mesangial cells have been found 

to increase extracellular matrix production [207,208], as well as increasing the 

endothelial monolayer permeability and to modulate the surface anticoagulant 

properties of endothelial cells [144,209], AGE/macrophage reactions are also 

known to trigger the synthesis and release of cytokines; in particular interleukin- 

ip  (IL-IP), tumour necrosis factor-a (TNF-a) which promote growth 

responses in smooth muscle cells [210,211,212] and fibroblasts [213] and 

contribute to the removal and replacement of extracellular tissue components, 

thereby promoting atherosclerotic plaque formation [178,214]. The release of 

such factors can in turn prompt the release of additional mediators such as 

platelet derived growth factor [215,216], as well as proteolytic enzymes such as 

collagenase [217], which collectively provide the additional signals required for 

tissue remodelling. The increase in connective tissue content of the plaque is 

brought about by the proliferation of smooth muscle cells within the arterial 

intima [218] and by an increase in the synthesis of extracellular connective 

tissue elements such as collagen and elastin [185] by cells of mesenchymal 

origin. This increase in connective tissue content contributes to the occlusion of 

vessels and affects flow of blood.

The binding of AGE to specific receptors found on monocytes induces the 

release of insulin growth factor (IGF-1) [219]. IGF-1 is known to be a growth 

promoting peptide [220,221].

AGE-modified proteins are chemotactic for monocytes, therefore the 

accumulation of AGE in the vessel wall, either on the structural components or 

in the subendothelial space would induce monocyte migration, AGE uptake.

32.

 . . . . .



intracellular degradation and cytokine secretion which could eventually lead to 

tissue remodelling [178,214], Data so far accumulated support the notion that 

AGE proteins might contribute to the progressive tissue disorganisation by 

interacting with AGE receptors found on T-lymphocytes, fibroblasts and 

smooth muscle cell thereby promoting abnormal cellular proliferation and 

protein synthesis observed during atherosclerotic plaque formation [222].

Esposito et al observed that monolayer permeability and the coagulant properties 

of endothelial cells were altered by binding of AGE-BSA [144]. Endothelial 

binding of AGE-BSA was inhibited by AGE-modified ribonuclease and 

haemoglobin. Increased monolayer permeability could result in the increased 

passage of atherogenic molecules such as low density lipoproteins [223,224], 

The entrapment of LDL in the intima of the arterial wall makes it more 

susceptible to lipid peroxidation. Modified LDL are avidly taken up by 

macrophages to form the foam cells [187,225]. Foam cells are found in the 

early stages of atherosclerotic plaque formation. AGE binding also led to the 

down regulation of the anticoagulant endothelial cofactor thrombomodulin and 

induced the synthesis of procoagulant cofactor and could promote clot 

formation [226,227]. The consequences of the accumulation of AGE in tissue 

are summarised in table 1.6.

Schmidt et al have shown that AGE can modulate mononuclear phagocyte 

migration, indicating a possible mechanism by which AGE may contribute to 

the pathogenesis of vascular lesions [228]. Soluble AGE attract mononuclear 

phagocytes into the vessel wall, whereas matrix-associated AGE cause retention 

and activation of mononuclear phagocytes in the subendothelium [214]. The 

ability of AGE to modulate phagocyte migration could contribute to the 

pathogenesis of vascular lesions.

*i

i
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The exposure of mouse mesangial cells to AGE-modified proteins increases 

extracellular matrix production [187]. This would be of importance in renal 

disease as it could lead to a progressive obliteration of vascular spaces and 

cause renal failme [229,230].

There is enhanced binding of erythrocytes from diabetic patients to endothelial 

cells which can be inhibited by anti-AGE IgG or antibodies to the receptor for 

AGE [231]. Binding of diabetic erythrocytes to endothelium generates oxidant 

stress and induces cytokine secretion. The over production of factors such as 

IL-1, TNF, PDGF may contribute to abnormal cellular proliferation and 

synthesis of extracellular matrix, which are hallmarks of atherosclerotic plaque 

formation.
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Table 1.6

The effects of AGE accumulation in vascular tissue.

Mechanism Consequencestissue component involved
Endothelium

Extracellular matrix

Extracellular matrix

Extracellular matrix

Extracellular matrix

Vessel wall

Monokine response to AGE 
(TNF, IL-1).

Decrease in binding of 
proteoglycans to matrix 
proteins with AGE.

Degradation of proteoglycans 
in the matrix, in response to 
AGE/macrqphage binding 
[232],

Resistance of AGE 
crosslinked proteins to 
enzymatic degradation

Plasma p'otein deposits 
through AGE entrapment of 
proteins such as albumin and 
immunoglobulins

Proliferation of matrix and 
ceils in response to AGE- 
induced secretion of growth 
promoting monokines from 
macrqphages and endothelial 
cells.

Increase in vascular 
permeability

Increase in vascular 
permeability

Increase in vascular 
permeability

Thickened, inelastic vascular 
wall

Structural changes in the 
vascular wall

Cell proliferation
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The formation of AGE in tissue proteins is relevant to the development of the 

late complications of diabetes and atherosclerosis but it has be stressed that 

these diseases are multifactorial. The accumulation of AGE causes structural 

and functional modifications of tissue proteins. This induces changes in 

biosynthetic/secretory patterns of macrophages, endothelial and mesangial cells. 

Data so far accumulated has led to the formulation of a hypothesis which 

proposes a central role for the Maillard products in atherosclerosis and in the 

development of late complications of diabetes.

1 . 12 .  Mechanisms affecting AGE formation and accumulation.

1 .1 2 . 1 .  Glycaemic control

A recently completed Diabetes Control and Complications Trial (DCCT) has 

shown that intensive treatment of patients with insulin-dependent diabetes 

meUitus, with the goal of maintaining blood glucose concentrations close to the 

normal range, delays the onset and slows the progression of diabetic 

complications such as retinopathy, nephropathy and neuropathy [233]. AGE 

have been implicated in the late complications of diabetes. The relationship 

between hyperglycaemia and macrovascular disease is complicated by other 

factors such as abnormal changes in lipoprotein metabolism, platelet 

aggregation and the secretion of factors with growth promoting potential which 

influence atherogenesis [16,19,234]. Hyperglycaemia has been linked to the 

increase in non-enzymatic glycosylation of proteins leading to the formation of 

AGE [61].

Beisswenger et al found that tissue levels of AGE increase significantly with 

worsening glycaemic control in patients with type I diabetes [235]. The most 

obvious way to modify the levels of AGE would be by improved glycaemic
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control. Lyons et al in a 4 month study using diabetic patients investigated the 

effect of improved glycaemic control on skin glycation and AGE levels [63]. 

Skin glycation decreased in patients after improvement of glycaemic control but 

AGE levels measured as pentosidine, carboxymethyllysine and fluorescence 

levels, remained unchanged. This confirms that AGE formation is irreversible. 

However improved glycaemic control decreases Amadori product formation 

thereby inhibiting the further formation and accumulation of AGE. The 

normalisation of glucose levels in patients with diabetes mellitus by pancreatic 

transplantation should decrease the rate of accumulation of AGE on long-lived 

proteins.

1 . 12 .2 .  Renal transplantation.

Patients with chronic renal failure (CRF) have a cardiovascular mortality 20 

times higher than the general population [236,237]. Cardiovascular mortality is 

particularly high in recipients of renal transplants. In addition to an increased 

prevalence of hyperlipidaemia, other, as yet unknown causative factors 

presumably exist in these patients. Several studies have shown that elevated 

AGE levels correlate with the severity of nephropathy [160,182,238]. The 

metabolism of AGE-modified proteins, which are both chemically and 

biologically active, has not as yet been fully elucidated [239]. If the breakdown 

products of AGE-modified proteins are eliminated through kidneys, loss of 

renal function could lead to the accumulation of AGE in blood and tissue.

Renal dysfunction involves two major processes. Firstly there is the obliteration 

of glomerular capillaries due to the expansion of mesangial tissue [229,230]. 

This expansion involves the accumulation of mesangial matrix which is a 

complex extracellular material that includes type IV and type V collagen, 

fibronectin, laminin and proteoglycans [240,241,242], In most experimental
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models, progressive renal disease is not limited to the matrix deposition but 

includes mesangial cell proliferation and accumulation of macrophages in the 

kidney [243]. Mesangial cells are primarily responsible for the maintenance of 

glomerular mesangium by providing a structural supportive role, and are 

contractile and phagocytic [244]. When interacting with AGE-modified 

proteins, macrophages are known to release IL-lp, TNF, PDGF and insulin 

like growth factor [219], In response to these, mesangial cell proliferate 

[214,245] and extracellular matrix is synthesised and deposited. Mesangial cells 

have receptors for AGE. Mesangial cells cultured on dishes coated with AGE­

ES A increase both matrix production and secretion. Increased matrix synthesis 

leading to the progressive obliteration of the vascular spaces is central to the 

disease process of end stage renal disease (ERSD) [246],

Three types of therapy are used to treat renal failure: haemodialysis, continuous 

ambulatory peritoneal dialysis (CAPD) and renal transplantation, CAPD 

employs the peritoneum as a dialysis membrane. Presently used dialysis fluids 

contain high concentrations of glucose. Little attention has been given to the 

potential detrimental effects of continued exposure of the peritoneal membrane 

to high glucose concentrations in the dialysis fluid. Recently, the study of 

peritoneal biopsies in CAPD patients suggested that non-enzymatic 

glycosylation of proteins is responsible for changes in the stromal texture and 

the reduplication of basement membrane leading to reduced fluid transfer across 

the peritoneal membrane [247,248,249].

.

Makita et al have shown elevated levels of serum AGE in patients with diabetic 

nephropathy. Serum AGE decreased in both patients treated with haemodialysis 

and renal transplantation [164,250], Hricik et al hypothesised that combined 

pancreatic-kidney transplantation would have a greater effect on lowering 

pentosidine levels than kidney transplantation alone, as the effect of renal
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transplantation would be reinforced by improved glycaemic control [171]. 

However, improved glycaemic control and restoration of renal function had no 

obvious benefit when compared to the kidney transplants alone. Hricik et al 

concluded that renal transplantation was the key factor in reducing plasma 

pentosidine levels.

1.12.3. Pharmacologicai intervention.

Therapeutic agents which inhibit AGE accumulation on proteins could act by 

competing with glucose for the glycation site on the protein molecule or react 

with the Schiff base or Amadori product thereby inhibiting the generation of 

AGE [238]. Some potential agents are listed below:

(1.) Ascorbic acid (vitamin C) and acetylsaUcylic acid have been

shown to inhibit glycation of serum proteins and collagen by competing with 

glucose as a reducing agent for amino groups [251,252]. Both compounds also 

inhibit the formation of high molecular weight aggregates in lens crystallin 

[253,254,255].

(2.) Aminoguanidine, a nucleophilic hydrazine compound inhibits

AGE formation by reacting with a-oxoaldehydes, 3-deoxyglucosones and 2- 

glucosulose, and a,p-dicarbonyI compunds formed during the degradation of

fiructosarmnes [350] and methylglyoxal [351]. Brownlee et al showed that
; '

aminoguanidine prevented the glucose induced crosslinking of collagen in vitro.

Cyanogen bromide digestion of collagen incubated with glucose showed that 

amounts of high molecular weight crosslinked peptides increased with 

incubation time. Arterial collagen, isolated from diabetic rats treated with 

aminoguanidine, also showed decreased crosslinking compared to untreated 

diabetic rats [167,256,257,258]. The accumulation of fluorescent AGE was
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greater in the aortic tissue of the untreated diabetic rats than in the diabetic rats 

treated with aminoguanidine. When compared to the collagen from untreated 

animals, the collagen isolated from diabetic rats treated with aminoguanidine, 

was more susceptible to solubilisation by acetic acid, chemical cleavage by 

CNBr and proteolytic degradation by pepsin [167,255,257], Aminoguanidine 

has been shown to prevent diabetes induced collagen crosslinking and, glucose 

induced vascular dysfunction in retina, peripheral nerve, aorta, and kidney 

[259,260,261,262,263].

Recent studies have shown that aminoguanidine also prevents increases in CLP 

in glomeruli and renal tubules isolated from the kidneys of diabetic rats [261].

(3.) D-lysine reacts directly with free glucose and thus prevents protein

glycation [149,264]. The administration of L-arginine to diabetic mice led to 

increased solubility and therefore decreased crosslinking of collagen. This is 

thought to occur by a mechanism similar to that of aminoguanidine [265].

(4.) D-penicillamine, which is used in the treatment of rheumatic

disease, inhibits hexose-induced crosslinking of RNase in vitro [29] and has 

been shown to reduce crosslinking of collagen from rats with experimental 

diabetes [266].

These agents are useful in determining the role that AGE play In the 

development of diabetic complications and atherosclerosis. The use of the 

agents mentioned above either alone or in combination to inhibit the 

development of diabetic complications and atherosclerosis remains a clinical 

possibility, at least in respect to AGE formation and accumulation. Clinical trials 

of aminoguanidine in the treatment of diabetic complications are now in 

progress.
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Chapter 2.

Protein-linked fluorescence as a marker of AGE formation.

2 .1  Summary,

This Chapter describes:

( 1. ) In vitro formation of AGE-modified bovine serum albumin.

(2.) The measurement of Amadori product.

(3.) The effect of oxidative processes on the formation of advanced

glycosylation endproducts.

41,
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2 . 2 .  Introduction.

Bovine serum albumin (BSA) has a molecular mass of 66,267 Da. BSA is a 

nonglycoprotein and is one of the few secreted proteins that lacks carbohydrate. 

BSA has a low tryptophan and methionine content and a high content of 

charged amino acids such as lysine and arginine [267]. The high content of 

lysine residues (10.1%) makes this protein susceptible to glycation. BSA has 

been used as a model protein in numerous advanced glycosylation studies. 

AGE-BSA has been used as a standard in both radioimmunoassay and 

radioreceptor assays for AGE.

The aim of this study was to determine if fluorescence is a reliable marker of 

AGE accumulation on proteins and what effect oxidative processes have on 

fluorescence generation. We incubated BSA with glucose to produce AGE with 

a characteristic fluorescence at excitation wavelength 370nm and emission 

440nm). The effect of glycoxidation was investigated by incubating the protein 

with butylated hydroxytoluene (BHT); a known antioxidant [268,269]. BHT is 

used in protecting foodstuffs, animal feed and petrol from oxidative damage. 

The effect of glucose autoxidation was studied using sorbitol, a potent 

scavenger of the hydroxyl radical [270,271].

Aminoguanidine, an inhibitor of AGE formation, was added to confirm that 

the generation of fluorescence was due to the accumulation of AGE on 

albumin. '0
■1

#
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2 .3 .2 .  Determination of protein concentration.

43.

2 . 3 .  Materials and methods.

2 .3 .1 .  In vitro glycosylation of bovine serum albumin using D- 

glucose.

BSA (essentially fatty acid free, fraction V, lot No 126F-9350, Sigma 

Chemical Co Ltd, Dorset Poole, UK), (lOOmg/ml) was dissolved in 0.5M 

phosphate buffered saline (PBS) pH 7.4 and D-glucose was added to a 

final concentration of 1.67M. The BSA-glucose solution was filtered 

through a Millex-GV (0.22pm) filter unit (MiUipore S.A. 67 Molsheim, 

France). Toluene (lOpl) was added to prevent bacterial growth. The sample 

was incubated at 37®C over a period of 3-28 days. BSA incubated without 

D-glucose was used as a control. To determine the effect of an antioxidant 

on AGE formation, BHT (0.005%) or sorbitol was (200mM) was added to 

BSA and glucose, at the start of the incubation. To inhibit AGE formation,

aminoguanidine (200mM) was added to the mixture of BSA and D-glucose.

Both control and glycosylated BSA were sampled at pre-determined periods 

(3,6,9,12,15,28 days). After each of the time periods, incubated BSA was 

extensively dialysed against deionised water over 2 days with changes of 

deionised water every 3hours. A molecular porous dialysis membrane with 

a molecular cut off weight of 12-14 kDa was used (Pierce and Warriner 

(UK)).

i:

The protein concentration of the dialysed sample was determined using a 

colorimetric (Lowry) method [272].
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A BSA stock standard (1000 pg/ml) was diluted to give protein standards 

ranging from 0-1000 ug/ml. Lowry reagent (1ml) was added to the samples 

and BSA and allowed to stand at room temperature for 20min. Stock 

Lowry reagent 100ml (2% sodium tartrate), 1ml (1% Na2C0  ̂ in O.IM 

NaOH), 1ml (2% CUSO4 .5H2O)).

Folin and Ciocalteu's phenol reagent (2M phenol reagent diluted 1:1 with 

distilled water) was added (0 .1ml), with rapid mixing, and the colour was 

allowed to develop over 30 minutes. Absorbance was read within 30 

minutes on a Sp8-100 Ultraviolet spectrophotometeA(Pye Unicam Ltd, 

Cambridge, England, UK) at 750nm. Absorbance values were plotted 

against the protein standard concentrations to obtain a calibration curve. A 

typical standard curve is shown in fig 2.1. The protein concentrations of 

both control and glycosylated BSA were calculated using the standard 

curve.
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Figure 2.1

A typical standard curve from a Lowry protein assay. Each point is an average 

of two readings.

2 .3 .3 .  Measurement of Amadori products.

The amount of glycosylated BSA was determined using two methods: 

affinity chromatography, using giycogel columns, and the measurement of 

fructosamine content.

::

■a
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2 .3 .4 .  Affinity chromatography.

Affinity chromatography was carried out using giycogel columns (Pierce 

Warriner, UK). Giycogel is a chromatographic support (6% beaded 

agarose) which incorporates an immobilised ligand, m-aminophenyl 

boronic acid. The Amadori product on proteins reacts with the immobilised

i l
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boronic acid and forms a covalent five member ring complex which can be 

dissociated by sorbitol. Giycogel is insensitive to moderate temperature and 

pH fluctuations.

The columns were stored at 4°C and were equilibrated using 5.0ml 

equilibration/wash buffer (EWB: 250mmol/L ammonium acetate, 

50mmol/L magnesium chloride, 500mmoVL sodium chloride, 3mmol/L 

sodium azide, 0.1% Tween 20 detergent, pH 8.5). The buffer was allowed 

to flow through the columns and the effluent was discarded. The columns 

were suspended over an appropriate reservoir.

The protein concentration of control and glycosylated samples was adjusted 

to lOmg/ml and 200pi of each sample was loaded onto the affinity column. 

The samples were allowed to pass into the columns and 0,5ml of EWB was 

added to ensure complete incorporation of the samples into the 

chromatographic support More buffer (EWB; 19.5ml ) was added and the 

total effluent was collected (total volume 20.2ml). Native BSA (non­

glycosylated) was present in the this fraction (non-bound fraction; NBF).

To elute the bound fraction (BF) which contained glycosylated BSA, 3.0ml 

of albumin elution buffer (Alb-EB: 200mmol/L sorbitol, 500mmol/L 

sodium chloride, 50mmol/L Naa EDTA, lOOmmoI/L Tris, 0.1% Tween, 

pH 8.5) was added and the entire fraction was collected. The measurement 

of the amount of glycosylated protein was performed by measuring the 

protein concentration of the non-bound and bound fraction by the method 

of Lowry. Blank corrections were made using distilled water that had been 

run through a separate column. Protein yield from the columns was >98%.

f
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The degree of glycosylation (%) was calculated as follows:-

BF (\X0 X 100 = ^Glycosylated BSA. 
BF (pg) + NBF (pg)

2 .3 .5 .  Fructosamine measurement.

Fructosamine (1-amino-l-deoxyfructose) is a ketoamine; a derivative of the 

non-enzymatic reaction product of a reducing sugar and a protein. 

Colorimetric measurement of fructosamine was carried out using a Cobas 

Bio centrifugal analyser (Roche Diagnostics, Welwyn, Garden City, UK), 

Fructosamine was measured using a Roche fructosamine calibrator which 

was standardised by the manufacturer against glycated polylysine and 

human serum albumin glycated with 14C-glucose. Unlike the use of 

affinity columns there is no need for the separation of glycosylated and 

non-glycosylated protein. The method was devised by Johnson et al [273] 

and is based upon the reducing ability of fructosamines in alkaline solution.

Samples were diluted appropriately, added to a carbonate buffer (pH 10.35) 

at 37°C and their absorbance was measured at 550nm, after 10 and 15 

minutes. The 10 minute incubation period is necessary to allow fast- 

reacting, interfering reducing substances to react. Fructosamine 

concentrations were expressed as umol of fructosamine per gram of BSA 

(umol/g).

2 .3 .6 . M easurement of AGE content using protein-linked  

fluorescence.
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The fluorescence at excitation wavelength 370nm and emission wavelength 

440nm is characteristic of advanced glycosylation endproducts.

After extensive dialysis of the glycosylated BSA, the sample was diluted 

with distilled water and placed into clear four sided cuvettes (Sarstedt, 

Beaument Leys, Leicester, England, UK.) and read using the LS-3B 

fluorescence spectrophotometer (Perkin-Elmer, Beaconsfield, Bucks, 

England, UK.).

Fluorescence of samples was expressed as arbitrary fluorescence units per 

milligram of protein (U/mg). The concentration of protein was measured by 

the method of Lowry. The sensitivity of the fluorescence measurement was 

reduced with readings over 80 fluorescence units (U), therefore 

glycosylated BSA with fluorescence over 80U was diluted with distilled 

water. Distilled water was used as a blank. The within assay coefficient of 

variation (CV) for protein-linked fluorescence was 3.2% and the between 

assay CV was 6.2%.

2 .3 .7 .  Statistics.

Results are expressed as mean ± standard error of the mean (SEM). Statistical 

analysis was performed using the Student's unpaired t-test. Simple regression 

was calculated by assuming a linear model (y=ax+B) where appropriate and 

minimising the sum of the squares of the residuals for the fitted line. All 

analyses were carried out using Statgraphics software (Statistical Graphics 

System, (1986) Statistical Graphics Corporation Inc., Rockville, Maryland, 

USA).
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2 , 4 .  R esults.

2 .4 .1 .  The fluorescence of BSA incubated with D-glucose.

Emission spectra of BSA incubated over the 28 day period were obtained using 

excitation wavelength 370nm (fig 2.2). The fluorescence of BSA incubated 

with 1.67M D-glucose over a period of 28 days increased from 6.76 ±  0.43 

U/mg at day 3 to 169.65 ±  8.31 U/mg at day 28. In the control sample, there 

was only a minimal increase in BSA fluorescence between day 3 (2.27 ±  0.26 

U/mg) and day 6 (3.01 ±  0.23 U/mg). Fluorescence of the control sample 

remained unchanged thereafter (Table 2.3). Results are means of 3 independent 

experiments using the same batch of BSA. All protein measurements were 

carried out in duplicate and fluorescence measurements in triplicate.
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Figure 2.2

Emission spectra of BSA incubated with 1.67M D-glucose, excitation 

wavelength 370nm.

50.



A . BSA incubated in the absence of D-glucose.

Incubation period 
(days)

F luorescence
(U /m g)

mean

SEM Compared to 
3 day point 

(Students t-Test)

3 2.26 0.105

6 3.01 0.227 p=0.016

9 3.44 0.437 p=0,034

12 3.98 0.497 p=0.007

15 3.20 0.097 p=0.006

28 3.38 0.389 p=0.010

B . BSA incubated in the presence of D-glucose.

Incubation period
(days)

F luorescence
(U /m g)

m ean

SE M Compared to 
3 day point 

(Students t-Test)

3 6.75 0.43 p<0.001

6 18.86 1,65 p<0.001

9 39.14 1.66 p<0,001

12 54.25 3.12 p<0.001

15 77.98 4.54 p<0.00l

28 169.65 8.31 ik O.OOI

Table 2,3

Incubation of BSA in the absence (A) or presence (B) of 1.67M D-glucose 

(0.5M PBS, pH7.4 at 37°C) over a period of 28 days.
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2 .4 .2 .  The effect of am inoguanidine on A G E-related  

fluorescence.

Aminoguanidine, an inhibitor of AGE formation, was added to the mixture of 

BSA and glucose at the start of the incubation period and fluorescence was 

measured at excitation wavelength 370nm and emission wavelength 440nm 

over 28 days as described above. Aminoguanidine incubated with BSA in the 

absence of D-glucose was used as a control.

Aminoguanidine inhibited glucose-induced increase in fluorescence by 81% at 

day 28. There was only a slight increase in the fluorescence of BSA incubated 

with D-glucose in the presence of aminoguanidine between day 3 (2.7 ±0,15 

U/mg) and day 28 (32.2 ± 4.86U/mg), fig 2.4.

The incubation of BSA with aminoguanidine in glucose-fiee media resulted in 

an increase in AGE-related fluorescence between days 15 and 28. No increase 

in AGE-related fluorescence was observed between day 3 (1.9 ±  0.18 U/mg,) 

and day 15 (3.7 ± 1.13 U/mg). Only at day 28 (15.0 ±  2.32 U/mg, p=0.006) 

was there a significant increase in fluorescence when compared to day 3.
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Figure 2.4

The effect of D-glucose (1.67M) and aminoguanidine (200mM) on AGE-related 

fluorescence over a 28 day period. Each point represents three individual 

experiments. Error bars denote SEM.
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2 .4 .3 .  Effect of the antioxidant, butylated hydroxytoluene 

(BHT), on AGE fluorescence.

The addition of BHT to BSA and D-glucose also results in the increase of AGE- 

related fluorescence over the incubation period. BHT had no effect on the 

glucose-induced increase in fluorescence between day 3 (6.5 + 0.47 U/mg) and 

day 9 (44.9 ±  2.63 U/mg) when compared to the fluorescence of BSA 

incubated with D-glucose alone (fig 2.5). In contrast, the addition of BHT 

resulted in an increase in fluorescence between day 12 (66.9 + 3,64 U/mg, 

p=0.020) and day 28 (236.0 ±  11.88 U/mg, p=0.023), fig 2.5.

The addition of BHT to BSA in glucose free media resulted in a minimal 

increase of AGE-related fluorescence between day 3 (2.4 + 0.38 U/mg) and day 

28 (5.9 + 1.45 U/mg, p-0.001). This increase was no different from 

fluorescence observed in control sample without glucose. Therefore BHT alone 

had no effect on AGE-related fluorescence in the absence of glucose.

A
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Figure 2,5

Effect of 0.005% BHT on the fluorescence of BSA incubated with 1.67M D- 

glucose. Excitation wavelength 370nm, emission wavelength 440nm. Error 

bars denote SEM. Results are the means of 3 individual experiments. * p<0.02 

from unpaired Students t-test.
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2 .4 .4 ,  Levels of Amadori products measured by affinity  

chromatography.

The incubation of BSA with D-glucose resulted in virtually complete Amadori 

product formation as assessed by affinity chromatography. No significant 

differences in Amadori products assessed by affinity chromatography were 

found between BSA incubated with D-glucose and BSA with D-glucose and 

BHT or aminoguanidine (table 2,6). In contrast to the increases in fluorescence, 

levels of Amadori product in glycosylated BSA remained unchanged after three 

days (fig 2.7).

3 days 6 days 9 days 12 days 15 days 28 days

BSA 5% 4% 3% 3% 3.5% 4%

BSA + GLUCOSE 95% 99% 99% 100% 100% 100%

BSA + BHT 4% 4% . 5% 4% 5% 4%

BSA+GLUCOSE+BHT 96% 97% 96% 99% 100% 100%

BSA + AG 4% 3% 4% 4% 4% 5%

BSA+GLUCOSE+AG 95% 96% 98% 98% 99% 100%

Table 2.6

Amadori product formation on BSA expressed as percent glycation after 

incubating BSA with and without glucose, BHT and aminoguanidine (AG) over 

28 days. Results are the means of 3 individual experiments.
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Figure 2.7

The effect of D-glucose on BSA glycation and fluorescence as assessed by 

affinity chromatography and fluorescence measurement. Error bars denote 

SEM.
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2 . 4 . 5 .  The effect of sorbitol on the fluorescence of BSA

Incubated with D-glucose.

In this experiment, a different batch of BSA (Sigma (Lot No llH-9312)) was 

incubated in the presence of 1.67M D-glucose, 0.005% BHT and 200mM 

sorbitol over a period of 9 days.

Fluorescence of BSA incubated in glucose free media remained constant over 

the 9 day period. The fluorescence of the BSA incubated with D-glucose 

increased from 11.8 + 1.5 U/mg at day 3 to 54.2 + 4.6 U/mg at day 9, BHT 

added to BSA in the presence of D-glucose caused a further increase in AGE- 

related fluorescence (12,4 + 0.33 U/mg and 79.1 ±  2.36 U/mg) at day 3 and 9 

respectively (fig 2.8).

In contrast, the addition of sorbitol resulted in a decrease of AGE-related 

fluorescence between day 3 (10.3 ±  0.8 U/mg) and day 9 (47.5 ±4 .1  U/mg) 

compared to BSA incubated with D-glucose alone at day 6 (p=0.010) and day 9 

(p=0.025) (fig 2.8).
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Figure 2.8

The effect of BHT and sorbitol on AGE-related fluorescence. Results are the

means of 3 individual experiments.

** BSA + Glucose + BHT vs BSA + Glucose, p<0.001 
** BSA + Glucose + BHT vs BSA + Glucose + Sorbitol, p<0.001 
++ BSA + Glucose + Sorbitol vs BSA + Glucose, p=0.025
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2 . 4 . 6 .  The effect of BHT and sorbitol on the fructosamine

content of BSA Incubated with D-glucose.

In the absence of D-glucose, fructosamine levels of BSA decreased significantly 

over the 9 day period. D-glucose resulted in an increase in BSA fructosamine 

content from 277.2 ±  9.4 umol/g at day 3 to 475.0 ±  27.2 umol/g at day 9 (fig 

2.9).

In the presence of glucose, further increases in fructosamine levels of BSA 

were observed on addition of BHT. At day 9, levels of fructosamine were 

higher in BSA incubated with D-glucose and BHT compared to BSA incubated 

with D-glucose alone (p=0.02). In contrast when sorbitol was added, the levels 

of fructosamine were lower compared to BSA incubated with D-glucose alone 

(fig 2.9.).
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Figure 2.9

The effect of D-glucose, BHT and sorbitol on BSA fructosamine level. 

Experiments were carried out in triplicate and error bars denote SEM.
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2 .4 .7 .  Number of glucose adducts on each BSA molecule.

The amount of protein-glucose adducts on each BSA molecule can be calculated 

from fructosamine content. This was carried out by using Avogadro's constant 

(6.022 X 10^3 ) and assuming the molecular mass of BSA is 66,267 and that all 

BSA molecules are glycosylated to the same degree. Thus as an example BSA 

incubated with D-glucose at day 3 (277.2 umol/g)

( 1.)

(2.)

277.2 umol = 1.67 x 10 ^0 protein glucose adducts per gram of 

BSA.

1.67 X 10 20/ 9.09 xlO = 18.4 protein glucose adducts found 

per BSA molecule.

This gives an insight to the number of glucose adducts found on each protein 

molecule, table 2.10. This calculation is based on the assumption that all BSA 

molecules are glycated to the same degree.

Days BSA alone BSA 
f  glucose

BSA 
+ glucose 

+ BHT

BSA 
+ glucose 
+ sorbitol

3 0.3 18.4 21.5 15.7
6 0.25 26.3 29.4 22.4
9 0.2 31.4 33.8 29.3

Table 2.10

Fructosamine levels expressed as the number of protein glucose adducts per 

BSA molecule.
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2 . 5 .  D iscussion .

2 .5 .1 .  Fluorescence of BSA incubated with D-glucose.

Fluorescence at excitation wavelength 370nm and emission wavelength 440nm 

is a marker for AGE formation on proteins and correlates with increased protein 

crosslinking [151,242,274]. However the inherent lack of specificity of 

fluorescence measurement remains a problem. The use of fluorescence 

spectroscopy in the measurement in plasma is not possible since there are to 

many interfering substances. This problem of interfering substances does not 

occur when the fluorescence of an isolated, purified protein is measured. It has 

been suggested that fluorescence at similar wavelength may also be generated as 

a result of oxidative processes. Recent research has shown that the autoxidation 

of glucose is slow under physiological conditions and only becomes significant 

in protein glycation processes at high phosphate and glucose concentrations 

(>200mM). Moreover the major products of glucose autoxidation are arabinose 

and glyoxal [352,353]. Wolff and Dean showed that autoxidative glycosylation, 

in which a-ketoaldehydes are formed from the metal-catalysed oxidation of 

glucose react with proteins and initiate the advanced stages of the Maillard 

reaction [66,67,68], This can contribute to total protein-glucose adduct 

formation and changes to fluorophoric properties [270].

;

In the present study the fluorescence of BSA incubated in the absence of 

glucose increased slightly between day 3 and day 6 of the incubation period but 

remained unchanged thereafter. This presumably reflects the conversion of 

endogenous Amadori products to AGE. Fluorescence of BSA incubated with 

glucose increased in a linear fashion. In the presence of glucose, protein-linked

fluorescence was higher than the control as early as day 3. However, no plateau 

of fluorescence was observed during the 28 day incubation period.
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2 .5 ,2 . Inhibitory effect of aminoguanidlne on AGE form ation .

Ammoguanidine inhibited fluorescence generated during the incubation of BSA 

with D-glucose. Aminoguanidlne is a nucleophilic hydrazine compound. 

Edelstein and Brownlee, using l^C labelled glucose, showed that in contrast to 

the inhibition of AGE formation, Amadori product formation was not inhibited 

by aminoguanidine and suggested that ammoguanidine reacts with the Amadoii- 

derived fragmentation products such as 3-deoxyglucosone [275]. 

Aminoguanidine has been shown to prevent AGE formation on arterial collagen 

and inhibit protein crosslinking [167]. Collagen isolated from aminoguanidine- 

treated streptozotocin-diabetic rats shows a decreased level of fluorescence 

compared to diabetic rats on no treatment [276]. Soulis-Liparota studied the 

effect of aminoguanidine on experimental diabetic nephropathy and observed 

that aminoguanidine attenuated the rise in albuminuria, glomerular basement 

thickening and mesangial expansion [229,261,277]. Malik and Meek have 

suggested that aminoguanidine causes structural alterations of protein even in 

the absence of sugar. They observed that the intermolecular spacing of collagen 

decreased, indicative of increased cross-linking, when collagen isolated from 

comeal tissue was incubated with aminoguanidine [255]. The small rise in 

fluorescence between day 15 and day 28 in BSA incubated with 

aminoguaiudine only, observed in the present study could reflect a change in the 

fluorescence properties of the protein itself rather than the formation of AGE.

In our study, antinoguanidine inhibited the increase in AGE-related fluorescence 

by 81% at day 28 of the incubation. On the other hand, the levels of Amadori 

products measured by affinity chromatography did not decrease. Percentage 

glycation of BSA incubated in the presence of glucose was comparable to BSA
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incubated with glucose and aminoguanidine. This would suggest that 

aminoguanidine does not inhibit the early stages of MaUlard reaction.

on each BSA molecule is less than 1,

j
Affinity columns when using such a high glucose concentration (1.67M) to 

glycate the BSA, may have limited value, since it can be postulated that all BSA 

molecules with their abundance in glycation sites (lysine) will be glycosylated. 

This method does not measure the numbor of Amadori {«-oducts formed on each 

BSA molecule but only indicates the percentage of glycosylated proteins found

2 .5 .3 .  The effect of BHT and sorbitcd on the levels of Amadori 

products formed on BSA.

As assessed by affinity chromatography, BHT and sorbitol had no effect on 

Amadori product formation of BSA incubated with D-glucose.

In addition to affinity chromatography, the number of glucose-protein adducts 

on the glycosylated BSA can be determined using the fructosamine assay. 

Fructosamine was detected on the control BSA suggesting that albumin isolated 

at source has residual glucose protein adducts. Levels of fructosamine in the 

BSA incubated in the absence of glucose decreased over the nine day 

incubation. This suggests that the Amadori product either dissociates to form 

sugar and protein or undergoes reactions which produce AGE. It would seem 

more likely that the dissociation of the adduct back to its constituent forms is

more likely, since the absence of glucose substrate would favour the production
-

of Schiff base from Amadori product (fig 1.2). However Eble et al on removing 

glucose from the media of browning proteins observed that AGE formation stUl 

continued [92]. Fructosamine content of control BSA indicates that not every 

BSA molecule is glycosylated, as the number of protein glucose adducts found
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Fructosamine content of BSA incubated in the presence of glucose increased 

with time. At day 3 there were approximately 18 glucose protein adducts per 

BSA molecule and this increased to 31 at day 9. The addition of BHT to BSA- 

glucose mixture resulted in an increase in the Amadori product formation. There 

was also an increase in AGE-related fluorescence in BSA incubated with 

glucose and BHT. In contrast, sorbitol decreased the level of Amadori products 

and AGE-related fluorescence. This contrasts the studies of Hunt et al who 

showed that exposure of sorbitol to hydroxy radicals produced by the radiolysis 

of water produces ketoaldehydes which can contribute to glycofluorophore 

development [270]. The varying incubation conditions (protein concentration, 

buffer concentration and incubation time) could explain these differences [278]. 

Our results suggest that BHT and sorbitol affect the Maillard reaction at the 

stage of Amadori product formation

2 . 5 . 4 .  The effect of BHT and sorbitol on the generation of AGE- 

related fluorescence.

In the presence of trace amounts of transition metals, glycation is complicated 

by the ability of glucose to oxidise and generate reactive intermediates such as 

hydroxyl radicals, hydrogen peroxide and ketoaldehydes [69,279]. These 

species, produced by glucose autoxidation, are thought to contribute to the 

development of fluorescence and may cause structural changes such as 

fragmentation. Protein fragmentation can be inhibited by benzoic acid, 

deoxyribose and sorbitol [280]. Glucose autoxidation is inhibited by 

DETAP AC (diethylenetriaminepentaacetic acid) which sequesters the transition 

metals necessary for glucose autoxidation.
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In our studies, BHT increased protein-linked fluorescence of BSA incubated 

with glucose by 39%. If oxidative species were to be produced by glucose 

autoxidation, antioxidant should have inhibited fluorescence generation. We 

used a high concentration of D-glucose (1.67M), compared to 25 mM in other 

studies. It seems that at this glucose concentration, BHT does not inhibit the 

generation of AGE. Fructosamine measurements suggests that the addition of 

BHT to browning BSA aids the production of AGE by increasing the number 

of Amadori products. Although free radicals generated from the autoxidation of 

glucose have been reported to increase the fluorescence of proteins (Wolff and 

Dean), the wavelengths (ex 350nm, em415nm) and incubation conditions used 

in fluorescence measurement were different to that used in the present study 

[69,153].
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Sorbitol, a polyhydric alcohol and hydroxyl radical scavenger, decreased AGE- 

related fluorescence. This is in contrast to that reported by Woolf and Dean who 

observed an increase in fluorophore generation. Again it should be noted that 

measurement of fluorescence was carried out at different excitation and 

emission wavelengths. Fluorophore generation from BSA incubated with 

sorbitol and glucose has been reported to decrease in the presence of DETAP AC 

suggesting that transition metals are necessary for this process. DETAP AC has 

less influence on fluorescence at higher protein and glucose concentrations 

[271].

In the present study, sorbitol decreased the level of AGE-related fluorescence 

by 13% at day 9. This suggests that sorbitol acts as an inhibitor of AGE 

formation. Fructosamine measurements performed in this study suggest that 

sorbitol decreases AGE formation through a decrease in Amadori product 

formation and thus the generation of AGE fluorescence.



2 . 5 . 5 .  Fluorescence as a marker of AGE accumulation in tissues.

Protein-linked fluorescence reflects the majority, but not all of AGE present. At 

one time many structurally different AGE form on a given protein molecule. 

There is to date no ideal method of AGE measurement. The presently used 

methods include fluorescence, macrophage based radioreceptor, ELISA and 

HPLC. Each of these methods has disadvantages. The radioreceptor assay, 

although theoretically more specific than CLP, employs a non-physiological 

labelled ligand such as AGE-BSA, that has been produced in vitro. An 

immunochemical assay developed using AGE-RNase to produce anti-AGE 

antisera, has shown that the formation of AGE fluorophores precedes the 

formation of antibody-reactive material during the incubation of BSA with 

glucose. In the same study, using arterial tissues obtained from experimentally 

induced diabetic rats fluorescence and AGE content measured by ELISA 

increased two fold compared to age-matched non-diabetic rats [165]. 

Measurements of pentosidine, pyrraline or N-e-(carboxymethyl)lysine using 

HPLC have the advantage of measuring chemically defined compounds, but 

again do not measure all AGE present It has been reported that pentosidine 

accounts for less than 1% of the total AGE in vivo.

Using in vitro browned BSA, we validated fluorescence measurement as a 

marker of AGE accumulation in tissues. We demonstrated that aminoguanidine 

inhibited AGE formation. It has also recently been demonstrated by Hepburn et 

al that tissue CLP correlates well with pentosidine concentrations as measured 

by HPLC (unpublished data).
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2 . 6 .  C onclusions.

1, Incubation of BSA with a high concentration of glucose generates 

fluorescence, at an excitation/emission spectra characteristic of AGE. 

Aminoguanidine, an inhibitor of AGE formation inhibits fluorescence 

generation. Thus protein-linked fluorescence reflects AGE formation.

2. Oxidative processes affect the Maillard reaction. BHT, a chain breaking 

antioxidant, increases both fructosamine content and fluorescence of 

BSA incubated with glucose. This suggests that BHT aids the 

production of the Amadori product and consequently increases rate of 

AGE formation. Sorbitol, a hydroxyl radical scavenger, inhibits 

fluorescence of BSA incubated with a high concentration of glucose. 

This decrease is a consequence of the inhibition of the Amadori product 

formation as suggested by the decreased levels of fructosamine. The 

above experiments suggest that AGE-associated fluorescence was 

produced by processes that did not involve free radicals that could be 

scavenged by BHT or sorbitol in the rate-limiting step.
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Chapter 3

The binding of native and oxidised low density lipoprotein to 

AGE-modified type I collagen.

3 . 1 ,  Summary.

This chapter describes:

( 1. ) The in vitro preparation of AGE-modified type I calf skin collagen.

(3.) The binding of native and oxidised LDL to native and AGE-modified

type I collagen.

%

(2.) The isolation of low density lipoprotein (LDL) from the plasma of 

normolipaemic subjects.
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3 . 2 .  Introduction.

Collagen is one of the main targets for AGE accumulation. Recently, 

MacDonald et al measured AGE fluorescence in the mesenteric artery and 

observed a relationship between the age of the patient and AGE fluorescence 

[152]. Increased AGE formation on collagen may be one of the biochemical 

links between excessive LDL accumulation in the arterial wall and persistent 

hyperglycaemia. Binding of LDL to AGE-modified collagen could prevent the 

diffusion of LDL out of the intima and may make the LDL more susceptible to 

oxidation by a variety of cells present within the arterial wall: macrophages, 

smooth muscle cells and endotheMal cells [281,282,283]. The oxidation of LDL 

results in it being taken up more readily by macrophages to foim the foam cell; 

an important stage in atherogenesis [284]. In atherosclerotic plaques, LDL 

appears to be attached covalently to the protein components of the arterial wall 

[285,286]. LDL found in normal intima can be readily removed from the tissue 

samples by electrophoresis whereas LDL found in a fibrous plaque can only be 

released from the lesion by the use of proteolytic enzymes. Most of the LDL 

found in these lesions is extracellular. The reported ability of AGE-modified 

collagen to bind covalently to LDL could promote excessive fibrous plaque lipid 

formation. It is known that elastin prepared fi'om atherosclerotic aortic intima 

binds more LDL [287,288]. The binding of LDL to AGE-modified collagen 

could indirectly facilitate its own glycation by prolonging its half life in vivo.

The aim of this study was to determine the extent of LDL binding to native and 

AGE-modified type I collagen in vitro and to investigate the effect of LDL 

oxidation on its ability to bind native and AGE-modified collagen.
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3 . 3 .  Materials and Methods.

3 . 3 . 1 .  The preparation of AGE-modified type I collagen.

Type I calf skin collagen (Sigma, Poole, Dorset, UK) was AGE-modified by 

incubating collagen with D-glucose-6-phosphate (G6P) monosodium salt 

(Sigma, Poole, Dorset, UK) for 2 weeks. G6P (500mg) was dissolved in 7 ml 

of 0.5M PBS pH 7.4 to give a final concentration of 250mmol/L. Media (6ml) 

containing 250-1000mmol/L was added to type I calf skin collagen (lOOmg) 

and incubated for 2 weeks at 37^0. As a control, lOOmg of calf skin collagen 

was incubated with 6ml of G6P-free 0.5M PBS pH7.4. Streptomycin (lOOjXg) 

and penicillin (100 lU) were added to each incubation to prevent bacterial 

growth.

At the end of the incubation period, 10ml of O.IM PBS pH 7.4 were added to 

both control and AGE-modified samples. The samples were centrifuged 

(Sorvall RT-6000 refrigerated centrifuge, Dupont (UK) Ltd, Stevenage, Herts, 

England, UK.) at 2000g for 15 minutes at room temperature, a pellet was 

obtained and the supernatant was discarded. This procedure was repeated 8 

times to wash off any excess glucose-6-phosphate. The pellets were then 

washed three times with distilled water. These collagen preparations were used 

to study the binding of native and oxidised LDL.

3 . 3 . 2 .  Treatment of collagen for use in LDL binding studies.

Control and AGE-modified collagen samples were partially dried with filter 

paper (Whatman, Qualitative No 1) and lyophilised. Following lyophilisation 

the collagen samples were aliquotted into 5mg portions and stored at -20<̂ C until 

analysis.
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3 . 3 . 3 .  Measurement of collagen-linked fluorescence (CLF).

Aliquots of native and AGE-modified collagen were thawed and digested with 

250U type VII bacterial collagenase (EC 3.4,24.3, Sigma, Poole, UK) in 1ml 

of buffer H for 24h at 31^0 in a shaking water bath. After incubation the 

samples were centrifuged at IflOOg on a bench top centrifuge at room 

temperature. Fluorescence was measured using the LS3B fluorescence 

spectrometer at excitation wavelength 370nm and emission wavelength 440nm 

and corrected against a collagenase blank. CLF was expressed as arbitrary 

fluorescence units per milligram of collagen (U/mg) as described above.

3 . 3 . 4 .  Measurement of hydroxyproline.

Procedure,

Solubilised collagen (50pl) was hydrolysed with 0.5ml of 6M HCl at 115°C on 

a Techne Dri Block DB4 (Fisons Scientific Equipment, Leicestershire, UK) in a 

stoppered glass hydrolysis test tube for 24 hours [289]. Glass beads were 

added to prevent bumping. Cis-4-hydroxy- 1-proIine (50pl of 300 pg/ml) 

solution was processed in parallel with the experimental samples and used to 

calculate the recovery of hydroxproline after hydrolysis. After completion of 

hydrolysis, the samples were evaporated to dryness and distilled water (2.5ml) 

was added. A sample of the hydrolysate (1.0ml) was transferred into a glass 

reaction tube and chloramine T solution (1.0ml) was added, mixed vigorously 

and left standing at room temperature for 20min. A further 1ml of 

benzaldehyde/perchloric acid solution was added, stoppered and heated in a 

water bath at 60°C for 15min. After incubation, the test tubes were cooled
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under water and the absorbance was read at 550nm on a SpS-lOO ultraviolet 

spectrophotometer (PYE) within 15 minutes.

The concentration of hydroxyproline in the solubilised collagen was calculated 

from the standard curve constructed using cis-4-hydroxy-l-proline (300p,g/ml). 

Standard concentrations ranged from 0.3)J.g/ml to 6.0(Xg/ml (fig 3.1). The 

amount of coUagen was calculated assuming 14% hydroxproline content. The 

measurement of hydroxyproline was carried out in duplicate.

Reagents.

Citrate/acetic acid buffer (0.16M/1.07mM), sodium acetate trihydrate (0.59M) 

and sodium hydroxide (0.57M) were dissolved in 75ml of n-propanol and made 

up to a total volume of 375ml with distilled water.

Chloramine T solution (O.IM) was dissolved in 10ml of n-propanol and 10ml 

of distilled water then made up to a total volume of 100ml with citrate/acetic acid 

buffer.

Benzaldehyde/perchloric acid solution was prepared with IM p- 

dimethylaminobenzaldehyde (Ehrlichs reagent) using 13ml of perchloric acid 

and made up to a volume of 50ml with n-propanol using a volumetric flask.

Quality control and assay precision.

To assess the degree of hydroxyproline degradation during hydrolysis an 

internal standard was run in parallel with the digested collagen samples. A 

300|ig/ml (50ul) of cis-4-hydroxy-l-proline solution was used to assess the
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amount of hydroxyproline degradation. If the recovery of the internal standard 

was lower than 95%, the collagen sample was re-hydrolysed.

The within assay coefficient of variation (CV) at a CLF value of 12.4 U/mg was 

4.5%. The between assay CV at a CLF value of 10.2 U/mg was 9%.
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Figure 3.1

A hydroxyproline standard curve. Each point represents the mean of duplicate 

measurements.
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3 . 3 . 5 .  Preparation of LDL,

Low density lipoprotein (LDL) was isolated from plasma obtained from 

normolipaemic subjects using flotation ultracentrifugation. Whole blood (70ml) 

was collected in EDTA vacutainers (Becton Dickinson, New Jersey, USA) and 

centrifuged at 400g at room temperature for 15min on a RT-6000 Sorvall 

centrifuge (Sorvall, Hertfordshire, UK). After centrifugation, 4ml plasma were 

transferred to a 13x64mm Beckman Ultraclear centrifuge tubes (Beckman 

Instruments Inc Spinco Division, Palo Alto, CA 94304, USA) containing 

0.32ml of 0.195M NaCl and 0.5mM EDTA Naa (density, d=1.182g/ml). The 

tube was mixed by inversion then layered with 1.68ml NaCl solution of 

d=1.019g/ml and centrifuged at KXlOOOg for 24h at 4®C on a L8-70M Beckman 

ultracentrifuge using a Ti 50 rotor (Beckman Instruments UK Ltd, High 

Wycombe, Bucks, England, UK).

After ultracentrifugation, the top 2ml containing chylomicrons and VLDL were 

removed and discarded. To the remaining 4ml. 1.47ml of 2.44M NaBr solution 

(d=1.182g/ml) was added, mixed by inversion and then layered with 0.53ml of 

1.063 g/nü NaCl solution. This was centrifuged at lOOOOOg for 24h at 40C. 

The top 2ml of the tube contents, containing LDL, were removed and the 

remainder was discarded.

3 . 3 . 6 .  lodination of LDL.

Procedure.

The concentration of LDL was determined by measuring the UV absorbance at 

280nm (1 absorbance unit = Img/ml) as a rough approximation, and then the 

protein concentration was measured by the method of Lowry. The concentration
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converted into nanomoles (assuming Img of LDL is equal to 15.6nM of LDL, 

molecular mass of LDL = 64kDa). The Lowry method described in chapter 

(2.3.2) was modified by the addition of 1% sodium dodecyl sulphate to the 

Lowry reagent containing copper sulphate. LDL was radiolabelled with 

125iodine by the method of McFarlane Using iodine monochloride (ICI, 25mM) 

and IM glycine, pHlO. A ICliLDL protein ratio of 2,5:1 was used., ICI was 

added to 1.5ml of LDL prediluted with 375pl of glycine. Finally O.OlmCi 

(West of Scotland Radionuclide Dispensary, Western Infirmary, Glasgow, 

Scotland, UK) was added [290]. To separate the free ^25; from the labelled 

LDL, the i^^I-LDL was loaded onto PD-10 Sephadex columns. The columns 

were equilibrated with 25ml binding buffer before use. The sample was loaded 

on and allowed to mn in to the column. Subsequently, LDL binding buffer was 

added to elute the l^^I-LDL. Fractions (0.5ml) were collected and the 

radioactivity measured with a Geiger counter (Series 900 mini monitor, Mini 

Instruments, Essex, UK). Fractions with the highest radioactivity were pooled 

and used in collagen binding experiments, A small aliquot (lOul) of 

was measured on a NE 1612 Gamma counter (Nuclear Enterprises Ltd, 

Beenham, Reading, England, UK.) for 1 minute and LDL concentration was 

calculated. Protein yields from the Sephadex columns were greater than 90%. 

The specific activity of LDL was calculated as follows:-

Specific activity = counts per minute -  cpm/pg LDL
total LDL concentration (pg)

Reagents.

PD-10 Sephadex columns Pharmacia (Pharmacia Biosystems Ltd, Knowlhill, 

Central Milton Keynes, England, UK) containing Sephadex G-25M swollen in 

distilled water and 0.15% Kathon as a preservative.
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LDL binding buffer contained 13,5mM KH2PO4, 46.6 mM Na^PO^ at pH 

7.35.

3 . 3 , 7 ,  Binding studies.

The i25i.LDL was diluted to a final concentration of 200ug/ml and 300pl was 

added to the control and AGE-modified collagen in 5ml polypropylene tubes in 

the presence and absence of 0.5% albumin. The samples were incubated for 

16h at 37°C. Control samples containing labelled LDL and no collagen were 

set-up alongside LDL/collagen incubations and were treated in exactly the same 

manner. On completion of the incubation period the samples were washed with 

LDL binding buffer until radioactivity measured in the control tubes decreased 

to 5% of the level in the tubes containing LDL and collagen. Radioactivity was 

measured on a NE 1612 Gamma counter for 1 minute.

The quantity of LDL bound to collagen was calculated as foUows:-

(1.) LDL bound (cpm) = LDL bound (pg)
Specific activity (cpm/pg LDL)

(2.)  LDL bound ipgl = LDL bound (pg)/coUagen (mg)
Collagen weight (mg)

3 . 3 . 8 .  Oxidation of LDL using copper chloride.

LDL isolated from plasma was dialysed to remove excess EDTA using 

Spectrapor dialysis membrane with a molecular weight cut-off of 12-14kDa. 

Dialysis was performed against O.OIM PBS pH 7.4 for 24h at 4°C in a shaking
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water bath. After dialysis, the LDL concentration was adjusted to 250pg/ml 

with O.OIM PBS pH 7,4. Copper chloride was added to the LDL to a final 

concentration of 5uM, mixed and incubated for 24h at 37°C. Oxidation was 

assessed by measuring fluorescence before and after the addition of CuCl2 at 

excitation wavelength 320nm/emission 420nm and excitation 360nm/emission 

420nm. The oxidised LDL was labelled with purified on a Sephadex 

column and used in binding studies as described for native LDL,

3 . 3 . 9 .  Statistics.

Data were analysed on Mini tab Statistics package (version 8, State college: 

Minitab Inc, 1991) using unpaired Students t-test and reported as mean + SEM.
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3 . 4 .  R esults.

3 . 4 . 1 .  The effect of gIucose-6-phosphate on collagen-linked 

fluorescence.

Incubation of collagen with G6P over a 2 week period resulted in a gradual 

increase in CLF with increasing G6P concentrations. CLF of control collagen 

incubated in the absence of G6P, was 4.4 + 0.35 U/mg, This was significantly 

lower than the G6P-incubated collagen at each of the G6P concentrations used, 

CLF increased from 12.4 ±  0.07 U/mg after incubation with 250mM G6P to 

13.6 ±  0.04 U/mg after incubation with IM G6P (p<0.001; fig 3.2).
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Figure 3.2

The effect of G6P on the generation of collagen-linked fluorescence. Results are 

the mean of 5 separate experiments and error bars denote SEM.
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3 . 4 . 2 .  The effect of LDL concentration on its binding to 

collagen.

The binding of non-modified LDL to native collagen and to collagen modified 

by AGE was concentration dependent at LDL concentrations 200-1000 pg/ml. 

In this range of LDL concentrations, the binding was non saturable (fig 3.3). A 

LDL concentration of 200pg/ml (60pg radiolabelled LDL) and AGE-modified 

collagen browned with 250mM G6P were used in subsequent experiments.

1 0 —1

Native collagen 

-#—  AGE-modified collagen

7 .5-

E

I
■oc

I
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800 1000 1200

LDL c o n c e n t r a t io n  (ug/m l)

Figure 3.3

The effect of LDL concentration on its binding to native and AGE-modified 

collagen (browned with 250mM G6P). Results are the mean of 5 separate 

experiments.
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3 . 4 . 3 ,  The oxidation of LDL.

After the incubation of LDL isolated from normolipaemic subjects with CuCl^, 

an increase in fluorescence of LDL at excitation/emission wavelengths 

320nm/420nm and 360nm/420nm was observed. The increase in fluorescence 

of LDL at the excitation wavelength 360nm is much greater than that seen at 

320nm indicating that LDL is oxidised (fig 3.4). Measurements of LDL 

fluorescence before and after the addition of copper chloride were carried out in 

triplicate. LDL fluorescence after the addition of 5pM CuCl2 varied between 

different batches of LDL prepared from normolipaemic subjects; due largely to 

different oxidative potentials of each of the subjects, (concentrations of 

antioxidants such as vitamin E may vary m different subjects).

82.



40.0

30.0-

S
I
îo3

1
2  h.<

20.0 -

10 . 0 “

E3 Before addition of CuCl2 

0  After addition of CuCl2

320 360

e x c i t a t io n  w a v e le n g th  (nm )

Figure 3.4

Fluorescence of LDL before and after the addition of 5[xM copper chloride. 

Each measurement was carried out in triplicate). Emission wavelength was 

420nm for both excitation wavelengths used. Error bars denote SEM.
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3 . 4 . 4 ,  Non-specific binding of LDL to collagen.

Increasing concentrations of BSA (0 - 1.0%) were added at the start of the 

LDL/coUagen incubation. The binding of LDL to both native and browned 

collagen decreased with increasing concentrations of BSA (0.75% - 1.0%; fig 

3.5). Binding of LDL to native collagen decreased from 7.2 ±  0.26 fxg/mg in 

the absence of BSA to 5.3 ±  0,24 pg/mg in the presence of 1% BSA. The 

binding of LDL to AGE-modified collagen decreased from 4.9 ± 0.12 |Xg/mg in 

the absence of BSA to 2,0 ±0.13 pg/mg in the presence of 1% BSA.

The binding of oxidised LDL to native collagen decreased from 6.5 ±  0.34 

pg/mg in the absence of BSA to 5.0 ± 0,24 pg/mg in the presence of 1% BSA. 

The binding of oxidised LDL to AGE-modified collagen also decreased from 

3.5 ±  0.21 pg/mg in the absence of BSA to 1.9 ±  0.14 pg/mg in the presence 

of 1% BSA. Decreases in binding of native and oxidised LDL to native and 

AGE-modified collagen are comparable (fig 3.5).

Binding of native and oxidised LDL to AGE-modified collagen was not 

significantly different in the presence of 0.5% compared to 1% BSA. Thus 

0.5% BSA was used in subsequent experiments. This BSA concentration used 

is approximately equal to the albumin concentration in normal human aortic 

intima [287].
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Figure 3.5

The binding of native and oxidised LDL to native (A) and AGE-modified (B) 

collagen in the presence of increasing BSA concentrations. Error bars denote 

SEM (n=6).
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3 . 4 . 5 .  The binding of native and oxidised LDL to AGE-modified 

collagen.

Native collagen bound more native LDL (4.3 ±  0.28 pg/mg) than oxidised LDL 

(2.7 + 0.53 pg/mg, p= 0.015). This trend was also evident for the binding of 

native LDL (4.0 ±  0.32 pg/mg) and oxidised LDL (2.26 ±  0.25 pg/m g, 

p=0.0001) to AGE-modified collagen browned with 250mM G6P.

Binding of either native or oxidised LDL decreased as AGE-modified collagen 

was browned to different degrees (using 250mM-1000mM G6P) (fig 3.6). A 

linear relationship was observed for native and oxidised LDL binding to 

collagen browned to different degrees (r=0.98, p=0.004 and r=0.98, p=0.003 

respectively).

At each of the G6P concentrations AGE-modified collagen bound more native 

LDL than oxidised LDL (p<0.001 for all points). Compared to native LDL, 

oxidised LDL showed a 37% decrease in binding in the absence of G6P and a 

56% decrease at 10(X)mM G6P. These experiments were based on 28-43 

individual incubations at each concentration.
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Figure 3.6

The effect of collagen browning on the binding of native and oxidised LDL. 

Error bars denote SEM.
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3 .5  D iscussion.

3 . 5 . 1 .  In vitro glycosylation of collagen.

Many studies on diabetic tissues have indicated that various proteins become 

non-enzymatically glycosylated. Advanced glycation of collagen increases 

covalent cross-linking between and results in decreased solubility of collagen 

[266.274], Kent et al demonstrated, using SDS polyacrylamide electrophoresis, 

that there was increased covalent crosslinking of rabbit tendons incubated with 

glucose [291].

We observed a small increase in collagen-linked fluorescence when increasing 

concentrations of G6P (250mM-1000mM) were used to brown collagen. In 

most proteins, lysine is a primary target for non-enzymatic glycation. The 

number of sites on collagen available for lysine-derived AGE is limited 

compared to BSA, since less than 4% of amino acids is lysine as compared to 

10% found in BSA [292]. The majority of amino acids found in collagen are 

glycine (35%), hydroxyproline (14%) and alanine (11%). Though lysine 

residues are present in collagen, lysine residue is either converted into 

hydroxylysine by oxygenases or is involved in the maturation (covalent 

crosslinking) of collagen [101]. Yamauchi et ai have suggested a role for 

glycosylated hydroxylysine in collagen crosslinking [293]. The small increase 

in CLF when using higher concentrations of G6P (above 250mM) would 

suggest that the non-enzymatic glycation of collagen is saturable at low 

concentrations of G6P.

3 . 5 . 2 .  The effect of LDL on the binding of native and AGE- 

modified collagen.
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Apart from changes in the mechanical properties of collagen such as decreased 

solubility and increased resistance to proteolytic degradation, it has also been 

reported that the collagen binding of proteins such as albumin, immunoglobulin 

and LDL is also increased when collagen is modified by AGE [204,209,294].
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Accumulation of foam cells of monocyte origin in the aortic intima is an early 

event in atherosclerosis [185,295]. The clearance of LDL from plasma is 

dependent on a receptor-mediated endocytosis involving the recognition of 

apolipoprotein B (apo B), the major protein of the LDL particle, by a high 

affinity receptor present on cell membranes. There are few LDL receptors on 

macrophages, but macrophages can internalise LDL by the LDL pathway. This 

leads to lysosomal degradation of apo B and LDL cholesterol ester hydrolysis. 

Acetylated LDL, and other chemically modified forms, are taken up 

preferentially by the scavenger (acetyl LDL) receptor. The lack of regulation of 

the scavenger receptor leads to lipid deposition within the cells [296,297]. To 

date it has not been possible to identify a biologically generated form of LDL 

that behaves hke acetyl LDL. Henriksen et al incubated native LDL with 

cultured endothelial cells, and observed a modification that converts LDL to a 

form recognised by the scavenger receptor [225,298]. Atherosclerotic lesions 

contain higher levels of esterified cholesterol than normal intima. This esterified 

cholesterol is thought to derive from the estérification of cholesterol within foam 

cells [184,188,299,300]. Early lipid deposits in human artery are often 

associated with small extracellular droplets of cholesteryl ester. It could be 

speculated that LDL bound to the extracellular matrix would be more prone to 

modifications by smooth muscle cells and macrophages since the diffusion of 

lipoproteins out of the vascular wall would be impeded. Binding of LDL to the 

extracellular matrix could act in synergy with other mechanisms to produce 

accelerated large vessel disease [199,301].



.-1

There is a well documented association between elevated plasma cholesterol 

concentrations and the prevalence of atherosclerosis-related disease [223,302]. 

Diabetes mellitus increases the risk of myocardial infarction by a factor of 2-3 

[172], It has been postulated that the increased formation of AGE on diabetic 

collagen may contribute to the increased cardiovascular risk.

We observed increased binding of LDL to collagen with increasing 

concentrations of LDL. This is in agreement with previous studies by Brownlee 

et al and Kalant et al [303,304]. No plateau was observed even at 

concentrations of lOOOpg/ml. This would support the hypothesis that higher 

levels of LDL (found in patients with hyperlipidaemia) could result in an 

increased LDL binding to collagen in the aortic intima. This LDL would then be 

"trapped" and be more susceptible to modifications such as oxidation by 

macrophages.

However, in contrast to other studies by Brownlee et al, we found that AGE- 

modified collagen bound less LDL than unmodified collagen when higher 

concentrations of LDL (lOOOpg/ml) were used. Experimental methods used in 

this study differed to those by other groups, since in our study we used intact 

native and AGE-modified collagen and LDL isolated by ultracentrifugation from 

individual patients, rather than a pooled normoHpidaemic source. Brownlee et al 

used denatured type I collagen from calf skin which was immobilised on an 

agarose matrix and non-enzymatically glycosylated at 44^0 for 2 weeks. It is 

not clear whether intermolecular crosslinks that exist between collagen fibrils in 

vivo would be preserved in denatured collagen bound to agarose. Since thermal 

denaturing of type I collagen occurs over the range of 35-40OC, the process of 

dénaturation and advanced glycation of collagen may have altered LDL binding 

sites and could account for the difference results observed in our study [52].
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Clearly using either soluble or insoluble collagen in these binding studies has a 

significant effect on the binding of LDL and needs further study.

3 . 5 . 3 .  Binding of native and oxidised LDL to AGE-modified 

collagen.

Collagen modified by AGE to different degrees, as indicated by higher CLF 

levels, bound less native and oxidised LDL. Thus AGE modification of 

collagen inhibits LDL binding. The mechanism of inhibition of LDL binding by 

AGE-modified collagen is unknown, but it could be that the formation of AGE 

blocks LDL binding sites normally associated with native collagen. It has been 

reported that proteoglycans (glycosaminoglycans (GAG)) isolated from human 

intima have a high binding affinity for LDL and lipoprotein Lp(a), It is now 

accepted that interaction of apo B containing lipoproteins with GAG is one of 

the key features in the sequence of events leading to lipid deposition and plaque 

formation [202,305].

In the present study, the binding of oxidised LDL to both unmodified and AGE- 

modified collagen was significantly lower than that of native LDL. Thus both 

LDL oxidation and modification of collagen by AGE affect LDL binding to 

collagen. This is in agreement with a study carried out by Kalant et al who 

found that the non-enzymatic glycation of collagen gels resulted in the decreased 

binding of oxidised LDL [304]. The oxidation of LDL and the consequent 

damage to apo B may inhibit interactions of LDL with collagen binding sites, 

AGE formation on collagen could sterically block the binding of LDL to 

collagen. These results do not agree with the proposal that AGE-modified 

collagen is involved in the increased "trapping" of LDL.
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A hypothesis, consistent with our results is that inhibition of binding of LDL to 

collagen by AGE modification of collagen and by oxidation of LDL makes more 

LDL more available for the scavenger receptor and thus may stimulate cellular 

cholesterol which leads to the transformation of monocyte-derived macrophages 

into foam cells [281].
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3 . 6 ,  C onclusions.

( 1. ) Collagen binds native and oxidised LDL in a non saturable concentration

dependent manner. AGE formation on collagen is saturable at low 

concentrations of G6P.

(2. ) Modification of collagen by AGE decreases LDL binding to collagen.

(3.) The decrease in LDL binding to AGE-modified collagen is enhanced

when LDL is oxidised.
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Chapter 4

AGE accumulation in tissues of spontaneously diabetic rats.

4 . 1 .  Summary.

This chapter describes:

(1.) Measurement of collagen-linked fluorescence (CLF) in tissues from

non-diabetic and spontaneously diabetic BB/E rats.

(2.) Relationship between glycosylated haemoglobin concentration (HbA ic),

plasma glucose and CLF in spontaneously diabetic BB/E rats.

94.

j



4 . 2 .  Introduction.

m

In man, AGE form slowly and increase with age in both non-diabetic and 

diabetic subjects. Numerous studies have shown that AGE accumulation is 

increased the tissues of diabetic patients. In young insulin-dependent diabetic 

patients who had diabetes for less than ten years, AGE measured as CLF were 

greater than their age matched non-diabetic counterparts [182]. The relationship 

between hyperglycaemia and macrovascular disease is complicated by other 

factors such as changes in lipoprotein metabolism, the aggregation of platelets 

and the secretion of growth factors which can influence atherogenesis.

The diversity of AGE in vivo has made their measurement difficult and has also 

limited clinical progress. To date, when assessing the effectiveness of 

aminoguanidine on tissue fluorescence in animal studies, either streptozotocin 

(STZ) or alloxan have been used to induce experimental diabetes. The unknown 

extrapancreatic toxicity of these compounds and the fact that generation of free 

radicals is at least partially involved in their diabetogenic action (which could 

affect protein glycation [69,306]), questions the suitability of these models for 

the study of AGE metabolism. The aim of this study was to measure AGE 

formation as CLF in tissues from diabetic and non-diabetic animals from the 

Edinburgh (BB/E) colony of spontaneously diabetic, insulin-dependent 

BB/rats, and to determine whether the rate of AGE formation differs between 

levels of AGE in skin, aorta, diaphragm and tail tendon.
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4 . 3 .  Materials and methods.

4 . 3 . 1 .  Animals.

The BB/E colony consists of two sub-lines of animals created by selective 

breeding, the nucleus of which came from the colony maintained at the Animal 

Resources Division of Canada, Ottawa (Dr P. Thibert). The incidence of 

insulin-dependent diabetes in the animals of the diabetes-prone line, 

predominantly maintained by crossing diabetic male and non-diabetic female 

siblings is 55-70%. The mean age (±SD) at the onset of diabetes is 96 + 18 

days. The diabetes resistant BB/E subline has an incidence of diabetes less than 

1%. The rats belonging to both sublines were bred in isolators and then 

removed after 120 days and subsequently maintained in clean rooms with 

filtered air. Samples of tissues from these animals were kindly provided by Dr 

R.M. Lindsay, Metabolic Unit, Western General Hospital, Edinburgh.

4 . 3 . 2 .  Treatment of animals.

Diabetic animals were treated daily with a single subcutaneous injection of 

insulin (Ultratard Bovine Insulin, Novo, Denmark). The dose of insulin was 

adjusted individually on the basis of daily measurements of body weight and 

glycosuria. The rats were maintained at 20^0 on 12 hour light/dark cycles and 

were fed SDS rat and mouse No 1. expanded feed (Special Diet Services, 

Witham, U.K.) and water ad libitum. On the day of sacrifice, the animals were 

weighed.

4 . 3 . 3 .  Tissue collection.
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Blood samples were collected from anaesthetised (sodium pentobarbitone), age- 

matched (mean ±  SE, 259 + 4 days), female non-diabetic (n=10) and diabetic 

BB/E rats (n=10, mean ±  SE, duration of diabetes 161 ±  13 days) and 

dispensed into lithium/heparin anticoagulant containers. Samples of aorta, 

diaphragm, skin and tail tendon were removed, rinsed thoroughly in isotonic 

saline to remove residual blood, and stored at -20°C until analysis.

4 . 3 . 4 .  Plasma glucose analysis.

Plasma glucose was measured by the glucose oxidase method on a Beckman 

Synchron AS4 automated analyser (Beckman-RUC, High Wycombe, U.K.). 

Glucose oxidase is specific for p D-glucose and catalyses the conversion of D- 

glucose into gluconic acid and hydrogen peroxide:

glucose
oxidase

D-glucose + H2 O + O2  ^  gluconic acid + H2O2

The hydrogen peroxide produced in the presence of horseradish peroxidase 

causes a condensation reaction between 4-aminoantipyrine and 2,4,6- 

tribromophenol:

4~aminoantipyrine ^ 2^2 + peroxidase

+ brominated quinonimine

2,4,6-tribromqphenol

The reagent mixtures were incubated at 37®C for 5 minutes. Calibration of the 

described procedure was accomplished by the use of two standards at levels of 

50 and 300mg/dl glucose. The absorbance of brominated quinonimine was read 

at 500nm.
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4 .3 .5 .  The measurement of glycosylated haemoglobin.

Glycosylated haemoglobin (HbAj) in rat blood samples was determined by 

electroendosmosis. Electroendosmosis is the movement of cations and their 

associated water molecules towards the cathode rather than the anode. This is 

caused by the presence of large anionic residues such as sulphate and pyruvate 

on agarose that are fixed in the matrix and cannot move in an electric field 

[307]. Three forms of glycosylated haemoglobin are present in the blood: 

HbA la, HbAib and HbAic. Aldimine (labile haemoglobin Ai) is sixty more 

times more likely to dissociate to free glucose than undergo the Amadori 

rearrangement. Separation of HbAi exploits the greater negative charge 

exhibited by the glycosylated haemoglobin (ketoamine form). Glycosylated 

haemoglobin travels faster through the agarose gel than the native haemoglobin 

(HbAo). The measurement of glycosylated haemoglobin represents the time- 

averaged glycaemia. It is unaffected by short term fluctuations in blood glucose 

concentration.

In the present study glycosylated haemoglobin (HbAi) was measured by using 

ready made agarose plates and buffers (Glytrac Haemoglobin set, Ciba Coming 

Diagnostics Ltd, Halstead^ UK). The blood sample was haemolysed within 7 

days from sampling using a haemolysing reagent (Ciba Coming Diagnostics 

Ltd, Halstead, UK) which contained 0.1% saponin and 0.05% EDTA in 0.5M 

potassium biphthalate buffer pH 5.0. The haemolysate was prepared by adding 

3 parts of haemolysing reagent (30-300pl) to 1 part of the whole blood (10- 

lOOjil), mixing vigorously and incubating at 3 7 ^  for 15min. Electrophoretic 

buffer (95ml, 27.91 g of trisodium citric acid dihydrate and 0.98g of citric acid 

made up to 1 litre) was poured into the chamber of an the electrophoretic cell 

base. The haemolysed blood sample (Ipl) was loaded into preformed wells on
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the agarose plate using a microlitre sample dispenser with disposable tip. A 

normal and abnormal quality control (haemolysates) supplied by Ciba Coming 

(Glyco HB I, U) were run with each batch and contained 8.2% and 13.5% 

HbAi respectively. The cell base was connected to a power supply (Shandon), 

switched on at 60 volts. After 40min, the plate was removed from the cassette 

holder and scanned using a Corning 720 densitometer at 420nm. The 

glycosylated haemoglobin is reported as a percentage of total haemoglobin.

4 . 3 . 6 .  The measurement of collagen4inked fluorescence in rat 

tissu es.

Skin, aorta, diaphragm and tail tendon were dissected. Hair on the skin samples 

was scraped off using a scalpel blade. Adipose and connective tissue 

surrounding the skin, aorta, diaphragm and tail tendon were also stripped off. 

All the tissues were washed with saline. Each specimen weighing 

approximately 40mg was homogenised and delipidated. Three samples for CLF 

measurement were taken from each dissected tissue. Tissue samples were 

stored at -2(K*C until analysis.

Samples were finely nunced using dissecting scissors, suspended in 10ml of 

0.15M phosphate buffer pH 7.4 and homogenised for 30sec using an IK A 

homogeniser (IKA Labortechnik, Germany) in a polypropylene tube. The 

samples were then centrifuged at 1300g for 15min at 4°C on a SorvaU RT-6000 

centrifuge. After centrifugation, the supernatant was discarded and the pellets 

were washed extensively with distilled water and centrifuged. The pellets were 

delipidated using 5ml of chloroform/methanol (2:1) in a shaking water bath at 

40c  for 24h. Subsequently 1.0ml of methanol and 0.5ml of distilled water were 

added to each of the samples and the samples were again centrifuged for 15min 

at 1300g. The pellets were washed twice with ice cool methanol, three times
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with distilled filtered water and once with Hepes Buffer (0.02M Hepes, 0.0IM 

CaCl2, pH7.5) then stored overnight at 4oC. Next day, 125 Units of type VII 

bacterial collagenase (EC 3.4.24.3, Sigma, Poole, UK) were added to each of 

the samples and incubated at 37°C for 24h in a shaking water bath (total volume 

0.5ml). Toluene (2pl) and chloroform (2|il) were added to each of the 

incubations to prevent any bacterial growth. After the overnight incubation the 

samples were centrifuged at lOOOOg on a bench top microfuge (Sanyo 

Gallenkamp PLC, Leicester, England) for 6min at room temperature.

The supernatant containing the solubilised collagen was removed for 

measurement of CLF and hydroxyproline concentration. Hydroxyproline 

content was measured by the method of Stegemann and Stalder (see 3.3.4.) and 

fluorescence was measured at excitation 370nm and emission 440nm on a LS- 

3B fluorimeter. CLF was expressed as fluorescence units per milligram of 

collagen (U/mg). When measuring fluorescence, the digested collagen was 

placed in a clear 4 sided quartz microcuvette (total volume 300|l i 1). A sample 

containing bacterial collagenase only was used as a blank.

4 . 3 . 7 .  Quality control.

A sample of AGE-modified collagen was prepared by the method described 

above (Chapter 3.3.1). Collagen was incubated with G6P, washed with O.IM 

PBS pH 7.4, d istilled water, and Hepes buffer (0.02M N-[2- 

Hydroxyethyl]piperazine-N-I2-ethanesulfonic acid], pH 7.5) and centrifuged at 

3000rpm for 15min at 4^C. This process was repeated three times. To 

equilibrate collagen samples with buffer H (buffer H, 0.02M Hepes, 0.0IM 

CaCl2, pH 7.5) used in the collagenase digestion stage, the peUet was washed 

once with Hepes buffer containing calcium chloride, dried with filter paper, 

aliquotted into lOmg samples and stored at -20oc. A sample of AGE-modified
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collagen was digested with bacterial collagenase and treated in exactly the same 

manner as tissue samples under study, except that there was no need for 

homogenisation. AGE-modified collagen was produced with 250mM G6P as 

described previously in section 3.3.1.

4 . 3 . 8 .  Statistics.

Unpaired Students t-test was used to compare results from the non-diabetic and 

diabetic sub-lines. Correlation between variables was carried out assuming a 

linear model. Data were analysed on Minitab Statistics package (version 8) and 

all results are reported as mean ±  ISEM unless otherwise stated.
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4 . 4 .  R esults.

4 . 4 . 1 .  Animals.

Table 4.2. shows the characteristics of the diabetes resistant and diabetes prone 

sub-lines of BB/E rats. No differences in the age of the animals, body weight 

and plasma glucose concentration were observed between the two groups 

(p>0.1). As expected, the glycosylated haemoglobin (HbAj) was higher in the 

diabetic rats (P<0.001).

4 . 4 . 2 .  Digestion of tissues.

The degree of digestion of tissue collagen samples by collagenase was greater 

than 95%. This was assessed by hydroxyproline assay on the hydrolysate of 

the residual pellet remaining after collagenase digestion. Recovery of 

hydroxyproline after hydrolysis was also greater than 95%. Inter-assay 

variability of CLF measurement calculated using AGE-modified collagen was 

7%. Intra-assay variability was calculated using the triplicate measurements of 

skin, aortic, diaphragmatic and tendon CLF was 9,7%.
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Table 4.2.

Characteristics of diabetic and non-diabetic sublines BB/E Wistar rats, (*

Non-diabetic Diabetic

Age (days) 256 ± 4 261 ± 7

Duration of diabetes (days) - 161 ±  13

Body weight (g) 286 ±  19 268 ± 9

Daily insulin dose (U) 2.7 ±  0.2

Plasma glucose concentration (mmol/L)
7.2 ± 0 .6 9 8.5 ±  4.4

HbAi (%) 4.7 ±  0.6 6.9 ±  0.8 *

n 10 10

4 .4 .3 .  Tissue collagen-linked fluorescence in BB/E rats.

CLF was significantly increased in the tissues of the diabetic animals (fig 4.3). 

Skin CLF in the diabetic rats was 1.5 ±  0.3 U/mg (mean ±  ISEM) compared to 

0.8 ±  0.03 U/mg (p=0.0095) in the non-diabetic animals. Aortic CLF in the 

diabetic rats was 2.8 ±  0.32 U/mg compared to 1.3 ±  0.2 U/mg (p=0.0010) in 

the non-diabetic rats. Diaphragmatic CLF in the diabetic rats was 3.6 ±  0.5 

U/mg and 1.5 ± 0.4 U/mg (p=0.0018) in the non-diabetic rats. Tendon CLF in 

the diabetic rat was 1.45 ±  0.2 U/mg and 0.44 ± 0.06 U/mg in the non-diabetic 

rats (p=0.0012). The diabetic to non-diabetic tissue CLF ratio was 2.0 for skin, 

2.2 for aorta, 2.4 for diaphragm and 3.3 for tendon.

Correlation between CLF in different tissues was only evident in diabetic rats 

where the skin CLF correlated with diaphragmatic CLF (r=0.65, p=0.038), (fig 

4.4). Correlation between skin and tendon CLF was of borderline significance 

(r=0.62, p=0.054). No correlation was observed between the CLF of the 

different tissues of the non-diabetic rats.
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Figure 4.4

The relationship between skin and diaphragmatic CLF in diabetic BB/E rats.
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4 . 4 . 4 .  Relationship between tissue CLF and glycosylated  

haemoglobin (HbAj).

No correlation was observed between plasma glucose and glycosylated 

haemoglobin concentration in either non-diabetic or diabetic BB/E rats.

CLF did not correlate with plasma glucose concentration in tissues from non­

diabetic and diabetic rats. Tendon CLF in non-diabetic rats was inversely related 

to plasma glucose concentration (r=-0.81, p=0.007; fig 4.5).

In non-diabetic rats, skin CLF correlated with glycosylated haemoglobin 

concentration (r=0.72, p=0.017; fig 4,6). In diabetic rats the aortic CLF 

correlated inversely with HbAi (r=-0.74, p=0.0I2; fig 4.7). CLF in other 

tissues in both sublines was not related to HbAi.
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Figure 4.5

The relationship between tendon CLF and plasma glucose concentration in non- 

diabetic (A.) and diabetic rats (B).
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Relationship between skin CLF and glycosylated haemoglobin in non-diabetic 

BB/E (A.) and diabetic BB/E rats (B).
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Relationship between aortic CLF and glycosylated haemoglobin in non-diabetic 

(A.) and diabetic BB/E rats (B.).
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4 . 5 .  D iscussion.

4 . 5 , 1 .  Animals.

In this study, plasma glucose levels of the diabetic and non-diabetic rats were 

not different. This was not unexpected, as the diabetic rats were treated with 

insulin. However, glycosylated haemoglobin concentration, in the diabetic 

BB/E rats was significantly higher than in the non-diabetic rats, suggesting that 

glycaemic control in diabetic animals was worse than in controls. The 

measurement of glycosylated haemoglobin is widely used for the monitoring of 

glycaemic control [24,25]. Lindsay et al observed a 50% increase in HbAj after 

withdrawal of insulin for 2 days in diabetic BB/E rats(unpublished results). One 

reason for this is the much shorter half life of rat haemoglobin (approximately 

30 days in rats compared to 120 days in humans).

Data from other studies indicate that in diabetic rats there is a considerable 

variation of plasma glucose concentration within a 24 hour period. This is 

dependent on the time of sampling relative to the feeding times and on the time 

of insulin administration. Consequently, a single plasma glucose values 

measured are of limited value.

Reported studies on AGE in alloxan or streptozotocin-diabetic rats may be 

misleading, since these animals are in a permanent hyperglycaemic state. This 

does not reflect human diabetes where plasma glucose levels change throughout 

the day with insulin treatment. For the diabetic BB/E rats to survive, a strict 

insulin regime is required. This resembles human diabetes. Thus the diabetic 

BB/E rats may be a better model for studying the accumulation of AGE in 

diabetes than the streptozotocin-diabetic rats.
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4 .5 .2 ,  Relationship between glycosylated haemoglobin and CLF.

In the non-diabetic rats, skin CLF correlated inversely with HbAp This was 

unexpected. An inverse relationship was also found between HbA^ and the 

aortic CLF of the diabetic rat. McCance et al have suggested that the mean of 

serial measurements of HbAj is superior to a single measurement of HbAj 

since this would give a better insight into the rats glycaemic state over a period 

of time. They found that mean HbA^ measurements correlated with the severity 

of retinopathy in diabetic patients [308]. We were unable to measure HbAj 

serially in this study. Studies by Lindsay et al (unpublished data) have shown 

that HbAj in rats changes more rapidly than in humans in response to 

glycaemia. Thus, the single HbA% measurement, performed on the day of tissue 

sampling, does not reflect the glycaemic control of the animal during the 5 

month period of diabetes in the diabetic BB/E rats. Therefore, the observed 

correlations (between HbAj and tissue CLP) found in this study may not give a 

true insight into the relationship between HbAi and tissue CLF. Eble et al have 

shown that AGE formation and crosslinking continues even after the removal of 

glucose in vitro [93], It would seem reasonable to suggest that even when the 

animals are under tight glycaemic control there will be occasions where the 

animal may be in a hyperglycaemic state. On such occasions the equilibrium 

between Amadori products and AGE would be affected and AGE accumulation 

on tissue would occur regardless of the plasma glucose concentration. It could 

be postulated that CLF formation proceeds independently of short term 

glycaemic control.

4 . 5 . 3 .  Tissue differences in coilagen-iinked fluorescence.

We were the first to investigate AGE accumulation in the spontaneously diabetic 

insulin-dependent BB/E rat. The results clearly demonstrate elevated CLF in the
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four tissues studied in the diabetic subline. These results are comparable to 

those from previous studies using streptozotocin-diabetic and alloxan-diabetic 

rats. CLF increased in the diabetic BB/E rats when insulin was being 

administered to keep the animals in a good glycaemic control.

The diabetic to non-diabetic CLF ratio in the BB/E rat is comparable in skin, 

aorta and diaphragm. This ratio was increased in tail tendon compared to the 

other three tissues. This difference in AGE accumulation in tail tendon has also 

been observed by Soulis-Liparota et al who suggested that rat tail tendon differs 

from other tissues with respect to diabetes associated increase in CLF,

It is necessary to find a good animal model for the study of the effects of 

various therapeutic agents on the formation of AGE. AGE-related fluorescence 

is increased in collagen isolated the tissues of rats with streptozotocin-induced 

diabetes [257,258]. Brownlee et al showed that aminoguanidine reduces aorta 

crosslinking in diabetic animals [167]. Yagihashi et al showed that 

aminoguanidine reduced the fluorescence of coUagenase-digested sciatic nerve 

from diabetic rats and demonstrated that the motor nerve conduction velocity 

improved after a 12 week administration of aminoguanidine. These data suggest 

that aminoguanidine has beneficial effects on the development of experimental 

diabetic neuropathy [309].

The generation of free radicals by chemicals such as STZ and alloxan which 

contributes to their diabetogenic action questions the suitability of these agents 

on these models. The role of free radicals and lipid peroxidation in the 

generation of AGE fluorescence have been investigated by several authors [62], 

Aoki et al used vitamin E (a-tocopherol, a lipophilic antioxidant) to modify 

levels of oxidative stress in vivo in streptozotocin-diabetic rats. They found that 

there were no changes in skin CLF of diabetic rats regardless of whether

112.



oxidative stress, assessed by the thiobarbituric acid reactant (TEAR) reaction, 

was modified with vitamin E supplementation in their diet. In the presence of 

reduced oxidative stress CLF in tail tendon was also reduced. Aoki et al also 

showed that the thermal rupturing time of collagen fibres from rat tail tendon 

was increased in the diabetic rat but reduced when the rats were supplemented 

with vitamin E [310]. This indicates that there is less crosslinking of collagen 

fibres in tail tendon in the presence of vitamin E. These findings suggest that 

AGE formation in skin is not affected in vivo by oxidative stress. However, in 

tail tendon, vitamin E may affect the formation of non fluorescent crosslinks or 

lysyl oxidase mediated crosslinking of collagen which is suggested to increase 

in diabetes [311,312]. AGE-related fluorescence was also found to decrease in 

the aorta and kidneys of streptozotocin-diabetic rats treated with 

aminoguanidine. The decrease in AGE-related fluorescence was followed by a 

concomitant decrease in mesangial expansion and albuminuria. Both are 

functional and structural markers of experimental diabetic nephropathy [261].

The problems of free radical generation do not exist in the BB rat (table 4.1) 

which is one of the best animal models of human insulin-dependent diabetes 

currently available [313,314]. A further advantage of the diabetic BB/E rat is 

that, similarly to human type 1 diabetic subjects, daily insulin treatment is 

essential for survival. On the other hand, in chemically-induced diabetic rats, 

although residual endogenous secretion of insulin does not prevent 

hyperglycaemia, it is sufficient for survival. Consequently, investigations using 

either alloxan-induced or STZ diabetic rats usually do not involve the 

administration of exogenous insulin. Advantages and disadvantages of using 

the spontaneously diabetic BB/E rat as a model of insulin-dependent diabetes 

are listed in table 4.1,
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Table 4.1

BB/E rat as a model of diabetes mellitus. 
Advantages;

(1.) A prediabetic period of 2-3 months.

(2.) Involvement of both genetic and immune factors in aetiology.

(3.) The absence of obesity.

(4.) The occurrence of functional and structural changes in the retina, kidneys and nerves.

Disadvantages:

(1.) Increased susceptibility to infection.

(2.) Difficulty in animal care and breeding.

(3.) The need to create a sub-line of diabetes resistant (DR) BB rats as cœtrols for experimental 

diabetic animals, so that any changes seen are diabetes rather than strain related.

Tissues which have been studied so far in the streptozotocin- diabetic rat include 

skin, aorta, diaphragm, tail tendon, lens crystallin, whole kidney, renal tubules 

and glomeruli. In these studies, protein-linked fluorescence has been the most 

widely used method of AGE measurement [315,316,317]. Recently, methods 

employing HPLC and immunoassays have been used to determine the levels of 

AGE [Refer to chapter 1.9]. Aminoguanidine has been used as an inhibitor of 

AGE formation in in vivo studies using rats with chemically induced diabetes. 

Rutin, an aldose reductase inhibitor, was also found to inhibit AGE formation 

[87]. Its mode of action could be different from aminoguanidine; it probably 

acts by reducing the levels of protein fructosylation through the sorbitol 

pathway [258]. D-lysine and L-arginine have also been used as inhibitors of 

AGE formation [265,318].
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In humans, measurement of CLF in skin biopsies has been employed to show 

the relevance of AGE formation to diabetic complications in type I diabetes 

mellitus. Monnier et al observed a relationship between CLF and the severity of 

diabetic retinopathy [160,319]. Similarly, Dominiczak et al observed an 

association between retinopathy and CLF in the skin of young type I diabetic 

patients. Relationships between CLF in the skin and aorta could be of 

importance in future clinical studies using inhibitors of AGE formation as AGE 

in skin biopsies would reflect aortic AGE accumulation. The lack of a 

relationship between skin and aortic CLF in both diabetic and non-diabetic rats 

could be attributed to the relatively narrow range of both skin and aortic CLF 

values obtained form this study.

4 . 5 . 4 .  The use of the spontaneously diabetic BB/E rat as a 

animal model for the study of AGE formation.

The spontaneously diabetic BB/E rat is a good animal model for the study of 

both AGE formation and the late complications of diabetes. Unlike alloxan or 

streptozotocin-diabetic rats, the diabetic BB/E rat develops reproducible 

structural changes in somatic, peripheral and autonomic nerves which are 

characteristic of human diabetic neuropathy [320,321,322], On the other hand, 

streptozotocin and alloxan have significant nephrotoxicity in addition to their 

toxic effect on insulin-secreting cells.
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4 . 6 .  Conclusions.

(1.) AGE measured as CLF are elevated in several tissues of the 

spontaneously diabetic, insulin-dependent BB/E rat compared to the 

non-diabetic BB/E rat. The BB/E rat seems to be a good model of AGE 

formation in human diabetes.

(2.) CLF and therefore the rate of AGE formation vary in different tissues.
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Chapter 5.

Collagen-linked fluorescence in human atherosclerotic plaques.

5 .1  Summary.

This chapter describes;

( 1.) The different stages of atherosclerotic plaque formation.

(2.) Measurement of CLF in human atherosclerotic plaques.

(3.) Measurement of CLF in different human tissues.
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(4.) In vitro formation of AGE in human aorta.
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5 . 2 .  Introduction.

The presence of AGE on vascular tissue is important in the pathogenesis of 

micro and macrovascular diabetic complications [323,324]. The vascular 

changes associated with AGE accumulation could also play a role in the 

development and progression of tissue damage associated with end stage renal 

disease and atherosclerosis.

It is unknown whether local changes in AGE-modified collagen occur within 

arteries. The aim of this study was to investigate the role of AGE in 

atherogenesis by measuring the concentrations of AGE-modified collagen in 

various forms of the atherosclerotic plaque.
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5 . 3 .  Materials and methods.

5 .3 .1 . The source of tissues.

To study the effect of patients age on skin CLF, skin (200mg) was obtained at 

autopsy from 21 individuals (10 males, 11 females) aged between 4-81 years. 

None of the individuals studied had a history of diabetes or renal failure.

In another study, samples of atherosclerotic plaque, skin, tendon, aorta and 

coronary artery were obtained at autopsy from 24 individuals,(15 men, 9 

women), aged 55-99 years (mean 73.5 ± 9.3 yrs).

Causes of death of the 24 individuals are listed in table 5.1. Skin samples were 

taken from the abdominal area and were washed in 0.15M saline. Hair and any 

underlying adipose tissue were removed using a scalpel blade. Aorta (free of 

any form of atherosclerotic plaque), diaphragmatic tendon and coronary artery 

were also removed at the same time. Any connective or adipose tissue 

surrounding the tendon or coronary artery was stripped off. The samples were 

then washed in 0.15M saline, aliquotted into 50mg portions and stored at -20°C 

until analysis.
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Table 5.1.
Characteristics of patients studied:

N o I n it ia ls S ex A «e Diagnosis at autopsy.
1 HN F 61 Peritonitis.
2 FE M 71 Left ventricular failure, coronary artery 

disease, acute myocardial infarction.
3 BL F 73 Bronchai carcinoma, pulmonary 

thromboembolism, old myocardial 
infarction.

4 HF M 71 Pulmonary thromboembolism, stroke.
5 AD F 68 Metastatic cancer, pulmonary embolism, 

myocardial infarction.
6 WL M 62 Respiratwy failure, hepatic failure, old 

myocardial infarctkm, diventricular disease.
7 MD F 65 Acute myocardial infarction, benign thyroid 

adenoma.
8 SM M 69 Pulmonary oedema, ischaemic heart disease.
9 RG M 75 Pulmonary thromboembolism, myocardial 

fibrosis, pleural fit^ sis, previous cancer of 
colon.

10 AM M 80 Occlusion of right coronary artery, 
ischaemic heart disease, left ventricular 
failure.

11 MW F 86 Bronchopneumonia, urinary tract 
obstruction, bladder cancer.

12 AS M 55 Cardiac failure, myocardial infarction, 
mitral valve disease.

13 RC M 73 Myocardial infarction, rupture of left 
ventricle.

14 PM M 71 Multiple pulmonary infarcts, pulmonary 
thromboe»nboii, deep venous thrombosis, 
congenital bicuspid aortic stenosis.

15 AM M 74 Acute myocardial infarction, acute renal 
failure, septicaemia, congestive cardiac 
failure, pmpheral vascuW disease.

16 HG F 89 Bronchopneumonia, endometrial cancer, 
bpeast cancer.

17 WM M 68 Pulmonary embolism, pulmonary 
infarction, deep venous thrombosis, 
septicaemia, hepatic cirrhosis, 
hepatocellular cancer.

18 MW F 79 Bronchopneumonia.
19 JD M 74 Bronchopneumonia, oesq)hageal cancer, 

subacute obstruction.
20 CP M 71 Myocardial infarction.
21 RK M 84 Bronchopneumonia, coronary 

atherosclerosis, hepatic vascular congestion.
22 HD F 77 Acute bronchitis, t«onchopneumonia, 

cancer of lung.
23 JS M 70 Hepatic cirrhosis, biventricular 

hypertrophy, pulmonary oedema.
24 AM F 99 Bronchooneumonia, cardiac failure.
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5 .3 .2 .  Grading the severity of atherosclerosis.

The severity of atherosclerosis was graded by examining the abdominal aorta 

for lesions and different forms of the atherosclerotic plaque on each patient. 

Each abdominal aorta was longitudinally opened posteriorly and fixed in 

formalin. The grading of the atheroma was a two-stage process and was carried 

out on a standard 10cm length of vessel between the renal arteries and the 

bifurcation of the aorta. Firstly, the aorta was pinned onto a flat board and the 

proportion of the total surface area involved by all lesions was estimated using a 

point-counting technique [325], The results of this method compare favourably 

with those obtained by tracing and planimetry. Secondly, the total area of 

disease in each specimen was subdivided into the following categories and 

expressed in tenths: superficial plaques (fatty streaks/spots), fibrous 

(collagenous) plaques, complicated plaques and calcified plaques. By 

combining these two grading stages an overall index of severity of atheroma 

was obtained and graded as mild, moderate or severe. The grading process was 

carried out by a pathologist in ignorance of the clinical details of each case.

5 .3 .3 .  Description of different forms of plaque.

Arterial tissue with the different forms of atherosclerotic plaque was removed 

from affected segments of abdominal aorta. Aorta with no macroscopically 

visible plaques was classed as normal and used as a control in the study. The 

four other forms of atherosclerotic plaque were defined as follows:-

(1.) A superficial plaque (fatty streak) is a slightly raised patch of yellowish 

intimai thickening. Its texture was similar to that of the unaffected aortic 

wall. Microscopically the fatty streak shows an accumulation of smooth
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muscle cells and macrophages in the intima which are loaded with 

lipids.

(2.) A collagenous (fibrous) plaque is a lesion that is thicker and whiter than

the superficial plaque. The fibrous tissue found in the collagenous 

plaque is synthesised, at least in part, by the proliferating smooth 

muscle cells. Smooth muscle cells have been shown capable of 

synthesising collagen and clastin.

(3.) A calcified plaque is aortic tissue containing hard and brittle calcium 

deposits. This type of plaque may form part of an ulcerated or 

collagenous plaque.

(4.) An ulcerated plaque is a result of the breakdown of the fibrous cap

producing ulceration of the plaque. This type of plaque is characterised 

by the breached intimai layer and the presence of mural thrombi. Both 

ulcerated and calcified plaques produce irregularity of the luminal 

surface of the aorta.

5 . 3 . 4 .  Measurement of CLF in different tissues and different 

forms of the atherosclerotic plaque.

In all cases the adventitia was removed and the remaining fragments of the aorta 

were washed with 0.15M saline. CLF was measured in the skin, diaphragmatic 

tendon, coronary artery and aorta (including the four plaque types) by the 

method described in section 4.3.6. Briefly, bacterial collagenase was added to 

the tissue sample after delipidation and incubated for 24h at 37 °C. Fluorescence
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of the digested collagen was then measured at excitation wavelength 370nm, 

emission wavelength 440nm.

Collagen concentration in tissue samples was determined by the measurement of 

hydroxyproline using the method of Stegemann and Stalder. Tissue samples 

from each individual were aliquotted into three portions and analysed 

separately. Hydroxyproline measurement were carried out in duplicate. 

Emission spectra of the diffcsent forms of plaque, skin, diaphragmatic tendon 

and coronary artery were obtained at excitation wavelength 370nm.

5 , 3 . 5 .  The in vitro browning of human aorta.

Aortic tissue free of atherosclerotic plaques was obtained from an 81 year old 

female on autopsy. Post mortem diagnoses were: bilateral pulmonary 

thromboembolism, iliac deep venous thrombosis, acute myocardial infarction 

and primary bronchial carcinoma. The samples of aorta (35-56mg) were 

washed in 0. IM phosphate buffered saline, minced with dissecting scissors and 

incubated in sterile 10ml containers for 14 days at 37*^C in the presence of 

250mM G6P in 0.5M phosphate buffer pH 7.4, which had been passed 

through an Millex-GV filter (0.45pm). To further identify whether the CLF 

measured in the aorta was attributable to AGE, the samples were incubated in 

the presence of 200mM aminoguanidine. Control samples of aorta were 

incubated in phosphate buffer alone. Penicillin/ Streptomycin mixture 

(lOOIU/lOOpg per sample respectively) was added to prevent bacterial growth 

during the incubation period. Five independent samples of aorta where used in 

each of the different incubation conditions (control, G6P alone, G6P + 

aminoguanidine). On completion of the incubation period, the samples were 

washed thoroughly in 0.15M phosphate buffer and CLF was measured as 

described previously.
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Fluorescence spectra generated by the incubation of aortic tissue with G6P and 

aminoguanidine were measured at different combinations of excitation/emission 

wavelengths. The following excitation/emission wavelengths were compared: 

370/440nm (AGE fluorescence), 325nm/390nm (peak fluorescence) and 

335/385nm (fluorescence characteristic for pentosidine).

5 . 3 . 6 .  Inter and intra-assay variability of CLF measurement.

In vitro browned collagen (browned with 250mg G6P over two weeks at 37^0  

was subjected to the same process of digestion with bacterial collagenase as the 

skin sample. The between batch imprecision at fluorescence level 12.8 U/mg 

was 10% (coefficient of variation). The within batch precision was 10.1% and 

11.0% at fluorescence levels 16.8 U/mg and 22.7 U/mg respectively.

5 . 3 . 7 .  Statistical analysis.

Statistical analysis included the Students t-test and Mann-Whitney test as 

appropriate, using Minitab software. Regression analysis (least squares 

method) included linear (Y=aX+b) and exponential models (Y=exp(a+bX)). All 

results are expressed as SEM unless otherwise stated.
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5 . 4 .  RESULTS.

5 . 4 . 1 .  Relationship between patients' age and skin CLF.

CLF in individuals aged between 3 and 81 years ranged from 2.5 to 31.2 U/mg 

respectively. Regression analysis between subjects' age and skin CLF 

assuming a linear model gave a correlation coefficient (r) 0.711, p=0.003. A 

higher degree of correlation was obtained (r=0.818, p=0.0001) assuming an 

exponential model, fig 5.2.

5 . 4 . 2 .  Human artery browned in vitro.

There was a high degree of correlation between fluorescence at 370/440nm, 

325/390nm and at 335/385nm. The addition of G6P led to an increase in 

fluorescence at 370/440nm (p=0.002 when compared to fluorescence of the 

tissue incubated in the absence of G6P) and 325/395nm (p=0.013). There was 

no increase in fluorescence at wavelengths characteristic of pentosidine 

(335/385nm). The addition of aminoguanidine inhibited the increase in G6P- 

induced fluorescence at all three wavelengths measured (fig 5,3). In subsequent 

experiments all fluorescence measurements were carried at 370/440nm.

5 . 4 . 3 .  Fluorescence spectra of human tissues.

Emission fluorescence spectra of different tissues measured at excitation 

wavelength 370nm are shown in fig 5.4. All tissues showed a single 

fluorescence peak at emission wavelength 440nm. A similar fluorescence peak 

was observed on collagenase digests of different forms of atherosclerotic plaque 

(fig 5.4). Spectra obtained from the in vitro incubation of BSA with glucose 

showed the same fluorescent peak (fig 2.2.).
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The relationship between subject's age (years) and CLF (U/mg) in human skin 
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SEM.
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Figure 5.3

Fluorescence of human aorta incubated in the absence of G6P, 250mM G6P 

and in the presence of G6P and 200mM aminoguanidine (AG). (A.) 

Excitation/emission wavelength 370/440nm, (B.) Excitation/em ission 

wavelength 325/390nm, (C.) Excitation/emission wavelength 335/385nm
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Fluorescence emission spectra of human tissues (A) and different forms of 

atherosclerotic plaque (B).
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5 . 4 . 4 .  CLF in different tissues from human autopsy material.

CLF in the aorta was 27.9 ± 1.8 U/mg (mean + ISEM), in the coronary arteries 

25.9 ±1.5 U/mg and in diaphragmatic tendon 47.8 ± 2.6 U/mg. All these were 

higher than skin CLF, 18.3 ±  1.5 U/mg (fig 5.5). There was no relationship 

between the subjects' age and CLF in the aorta and diaphragmatic tendon. 

However, there was a borderline significant relationship between skin CLF and 

age (r^.388, p=0.061). Skin CLF correlated with CLF in the aorta (r=0.467, 

p=0.025) but not with CLF in the coronary arteries (p=0.935, fig 5.6).

When the subjects were separated into those with mild, moderate and severe 

atherosclerosis (as assessed by the numbers of lesions in the abdominal aorta, 

section 5.3.4.), there were no differences between the three groups in CLF

measured in the skin, aorta, diaphragmatic tendon and coronary artery.
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Figure 5.5

Collagen-linked fluorescence in different tissues obtained at autopsy. 

Fluorescence measured at excitation 370nm, emission 440nm. * Skin CLF vs 

other tissues CLF, all P<0.001. Error bars denote SEM,
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Relationship between collagen-linked fluorescence in skin and aorta (A) and 

between skin and coronary arteries (B). Fluorescence measured at excitation 

370nm, emission 440nm.

r=0.935
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5 . 4 . 5 .  CLF in different forms of the atherosclerotic plaque.

CLF was lower in areas covered by superficial plaque compared with adjacent, 

atheroma free segments of the arterial wall (22.2 +1.1 U/mg vs 27.9 +1.8  

U/mg, p=0.0141), fig 5.7. AGE fluorescence in the areas covered by calcified, 

collagenous and ulcerated plaques was not different from that of plaque-free 

aorta. CLF in collagenous plaques correlated with CLF in the atheroma ftee 

regions. However, CLF in superficial, calcified and ulcerated plaques did not 

show this correlation (data not shown).

Individuals with mild to moderate severity of atheroma in the abdominal aorta 

had lower median CLF (20.0 U/mg) in the superficial atherosclerotic plaques 

than those with severe atheroma (22.5 U/mg, p=0.0466; fig 5.8).
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Collagen-linked fluorescence in different forms of atherosclerotic plaque in the 

human aorta. Excitation 370nm/emission 440nm. * Control vs superficial 

plaque: p=0.0141. Error bars denote SEM.
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Collagen-linked fluorescence in the superficial atherosclerotic plaques in 

individuals with different severity of atheroma. Excitation 370nm/emission 

440nm. * Superficial plaque fluorescence mild/moderate vs severe 

atherosclerosis, (p=0.0466). Error bars denote SEM.
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5 . 5 .  D iscussion.

5 . 5 . 1 .  Relationship between skin collagen-linked fluorescence 

and subjects' age.

It has been reported by many groups that the accumulation of AGE in human 

skin is related linearly to the patients’ age and parallels changes in the solubility 

and digestibility of collagen. This linear relationship between CLF and patients' 

age has also been found in mesenteric artery [152]. In the same study, the 

generation of CLF appeared to accelerate in individuals ages > 60 years. It is 

unlikely that this exponential increase is due to declining of glucose tolerance. 

Instead, it may be the combined result of AGE accumulation and the 

progressive decrease of connective tissue turnover as the patient gets older 

[12,326]. The exponential increase in CLF has been also been observed in the 

skin of non-diabetic Wistar rats [258].

5 . 5 . 2 .  The effect of am inoguanidine on coliagen-linked  

fluorescence of aortic tissue browned in vitro.

The fluorescence spectra of the different tissues were consistent with those 

previously observed for BSA incubated with D-glucose and AGE-modified 

collagen (chapter 2 and chapter 3 respectively). Studies by carried out by Kohn 

et al and Dyer et al show comparable spectra both in vitro and in vivo [52,107].

Recently, a radioreceptor assay (RRA) using the macrophage cell line RAW 

264.7 which possesses AGE receptors has been developed [162]. AGE 

concentrations in plasma measured using RRA were lower than those measured 

as CLF [164]. Different specificities of both RRA and CLF measurement would 

explain these differences found when measuring AGE in vivo. However, there
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are disadvantages to using the radioreceptor assay: chiefly that it is assumed that 

the ligand used to produce the standard binding curve in the competitive binding 

studies, produced in vitro, is identical to AGE structures present in vivo. 

Though there may be common epitopes [205].

The incubation of normal aorta with G6P led to an increase in CLF 

characteristic of AGE (ex370nm, em440nm). This increase in fluorescence was 

inhibited by aminoguanidine. These results compare to those observed when 

incubating BSA with glucose and aminoguanidine (chapter 2). This confirms 

that coUagen-ünked fluorescence is a good marker of AGE accumulation.

AGE accumulation may also be assessed by measurement of a recently 

discovered fluorescent AGE (pentosidine) from human extracellular matrix with 

a characteristic fluorescence at excitation wavelength 335nm and emission 

wavelength 385nm [59,82]. Grandhee et al synthesised pentosidine by reacting 

ribose (pentose) with lysine and arginine in vitro [86]. The source of free ribose 

in vivo is unknown but it has been suggested by Dyer et al that other reactants 

apart from ribose such as D-glucose, fructose and ascorbate could be involved 

in the formation of pentosidine [58]. However, in the same study it was shown 

that pentosidine accounted for less than 1% of non-disulfide crosslinks in 

protein dimers formed during the reaction. Both of the above studies reactions 

were carried out at 65°C. In our study, the incubation of human aortic tissue 

with 250mM G6P did not result in an increase in fluorescence characteristic of 

pentosidine (excitation wavelength 335, emission wavelength 385nm). Reasons 

for the inability of G6P to produce pentosidine fluorescence are unclear and 

may be explained by the in vitro incubation conditions used and the fact that 

proteins extensively modified by pentosidine account for only small proportion 

of the total AGE formed.
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5 , 5 . 3 .  Collagen-linked fluorescence in superficial atherosclerotic 

plaques.

The involvement of AGE in atherogenesis has previously been postulated by 

Cerami et al [16]. Since then a wealth of data suggesting that AGE may 

contribute to tissue remodelling has become available [178,179,219]. The 

binding of AGE to a specific membrane receptor on monocytes and 

macrophages induces the secretion of interleukm-lp, cachectin/tumour necrosis 

factor (TNF). This in turn could lead to smooth cell proliferation and the 

synthesis of connective tissue elements which occur during the development of 

atheroma [327,328]. Recently a new class of AGE receptor (RAGE) has been 

characterised, and has been found to be a member of the immunoglobulin 

superfamily suggesting that, in addition to binding AGE, it might also serve 

other functions, including cell-cell recognition and binding of growth factors 

and cytokines [329].

The formation of AGE is a slow process, so the long half life of collagen makes 

it an ideal target for AGE formation. In both animal and human models, AGE 

have been shown to accumulate with age. The levels of AGE correlate with the 

severity of diabetic retinopathy [160], The accumulation of AGE in the tissues 

of patients with diabetic nephropathy may be a result of increased production or 

decreased removal of AGE. High concentrations of serum AGE-peptides were 

found in patients with diabetic nephropathy, suggesting that the kidney 

impairment affects the clearing of circulating AGE [164,250]. The mechanisms 

determining tissue remodelling are similar in diabetic complications and 

atherosclerosis [330]. The formation of AGE on proteins in the diabetic arterial 

wall is best exemplified by its potential role as an accelerator of atherosclerosis, 

the increased stiffening of the arterial wall as well as the thickening of the 

capillary basement membranes, both of which occur at an accelerated rate in
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diabetes. In vitro evidence shows that AGE affect cellular processes such as 

release of cytokines and growth factors and thus contribute to intimai 

proliferation through increased synthesis of collagen and migration of smooth 

muscle cells.

The most important finding in the present study, is that local changes in AGE 

concentration occur within the atherosclerotic lesion. We observed decreased 

CLF in areas of human aorta covered with superficial atherosclerotic plaque. 

This suggests that the formation of the superficial atherosclerotic plaque locally 

affect the AGE concentration. Early macrophage accumulation in plaques could 

lead to the local degradation of AGE-modified collagen and to a consequent 

decrease in CLF. Katsuda et al suggested that low concentrations of collagen 

found in the centres of atherosclerotic plaques may be due to macrophage­

generated coUagenase activity [331]. Cultured arterial smooth muscle cells are 

also known to secrete coUagen-lytic enzymes. Since macrophages and smooth 

muscle cells are the major cell types within human atherosclerotic lesions, it is 

likely that these cells participate in the degradation of collagen within the lesion

[332], Such degradation of AGE-modified collagen by macrophages may 

stimulate macrophages to release growth factors and thus lead to the vicious 

cycle of tissue remodelling.

In our study, individuals with severe atherosclerosis appeared to have higher 

superficial plaque fluorescence than patients with mild to moderate 

atherosclerosis. Further studies are required to establish the significance of this. 

An attractive hypothesis is that initial AGE concentration in the arterial wall may 

be related to the extent of atherosclerosis. Initially, AGE-modified collagen 

within the lesion could stimulate the synthesis of tissue components by smooth 

muscle cells. The measurement of AGE is calculated as fluorescence units per 

milligram of coUagen, thus the synthesis of new collagen could theoretically
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lower the AGE fluorescence of atherosclerotic lesions. However, this is 

unlikely to have occurred in our study as collagenous and ulcerated plaques, 

which have the highest content of newly synthesised collagen, did not show 

lower levels of fluorescence.

In the present study, skin CLF correlated with aortic CLF in atheroma free 

regions. This indicates that the measurements of CLF on skin biopsy material 

reflect aortic AGE concentration and may prove useful in further clinical studies 

on AGE. However, neither skin nor aortic CLF correlated with CLF in the 

coronary arteries. This is in line with the findings of Makita et al who reported a 

difference between CLF and radioreceptor results in coronary arteries [164]. 

This lack of correlation between aorta and coronary artery could be explained by 

the different structure of these two types of vessels (i.e. collagen types and 

thickness of intima, media and adventitia).
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5 . 6 .  Conclusions.

(1.) The present study suggests that the relationship between AGE

accumulation and biological age is exponential process rather linear.

(2.) AGE concentration is affected locally by processes involved in

atherosclerotic plaque formation.

(3.) There is a relationship between AGE content of skin and atheroma free

aorta. This provides a useful marker for studying the dynamics of

AGE formation in vascular tissue.
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CHAPTER 6.

Advanced glycosylation endproducts in patients with renal failure. 

The effect of renal transplantation on AGE levels in skin and 

peritoneum.

6 . 1 .  Summary.

This chapter describes:

(1.) The effect of renal failure on tissue level of advanced glycosylation

endproducts (AGE) in diabetic and non-diabetic patients.

(2.) The effect of renal transplantation on AGE level in the skin and

peritoneum of non-diabetic patients.

(3.) The effect of continuous ambulatory peritoneal dialysis (CAPD) on

AGE levels in the skin and peritoneum.
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6 . 2 .  Introduction.

AGE have been implicated in the processes of ageing, atherogenesis and the late 

complications of diabetes. The removal of AGE-derived crosslinks may be 

impaired in patients with renal failure. On the other hand successful renal 

transplantation may improve the removal of such AGE adducts. Renal 

transplantation may be more effective than conventional haemodialysis therapy 

at lowering AGE levels in plasma [164]. In the present study, we have 

investigated AGE concentrations in the skin and peritoneal membranes of 

patients undergoing either CAPD or renal transplantation. The use of high 

glucose dialysis fluids could lead to AGE formation and to the consequent 

crosslinking of proteins in the peritoneal stroma. The continuous bathing of the 

peritoneal membrane in fluids that are both hypertonic and on initial infusion, 

acidic results in the peritoneal membrane becoming more prone to recurrent 

inflammatory episodes of either bacterial (peritonitis) or chemical (serositis) 

etiology. We hypothesised that the continuous use of such fluids may lead to 

the modification of the peritoneal membrane by AGE.
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6 . 3 .  Materials and methods.

6 . 3 . 1 .  The effect of renal transplantation on AGE levels.

To study the effect of CAPD and renal transplantation on tissue AGE in non­

diabetic patients with renal failure (section 6.3.2). We measured CLF in skin 

and peritoneal biopsies obtained from patients undergoing CAPD or renal 

transplantation.

To study the effect of diabetes mellitus, CLF was also measured in skin 

biopsies from non-diabetic and diabetic recipients of renal transplants (section 

6.3.3). This study was designed to investigate the tissue levels of AGE in both 

groups of patients and to determine the effect of diabetes on the lowering 

capacity of renal transplantation.

6 . 3 . 2 .  The effect of continuous ambulatory peritoneal dialysis 

and renal transplantation on collagen-linked fluorescence 

in skin and peritoneum from non-diabetic patients with 

renal failure.

We have studied 38 non-diabetic patients with CRF. The aetiology of CRF was 

chronic glomerular nephritis (12 patients), chronic pyelonephritis (6 patients), 

analgesic nephropathy (2 patients), obstractive uropathy, renal dysplasia, renal 

calculi, Alport's syndrome, polycystic kidney disease and Henoch-Schonlein 

purpura (1 patient in each of the remaining groups). In remaining patients the 

aetiology was unknown. Patients were divided into four subgroups;

i '
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(1.) Non-diabetic patients with CRF (designated as CRF group; n=18,

mean age 52.1 + 4.3 yrs (+SEM)). Samples of skin and peritoneal tissue were 

taken at the time of Tenckhoff catheter insertion in preparation for CAPD.

(2.) Non-diabetic patients with CRF who had received transplants

while on CAPD (designated as transplant group; n=16, mean age 48.2 + 3,14 

yrs). Samples were taken at the time of Tenckhoff catheter removal, 5-31 weeks 

(11 ± 6.5 weeks) after renal transplantation, when all patients were treated with 

peritoneal dialysis and had good renal function as indicated by serum creatinine 

concentration.

(3.) Non-diabetic patients with CRF who were treated with CAPD but

had not received kidney transplants (designated as CAPD group; n==4, mean age 

57.5 ±  4.6 yrs). Samples were taken when the Tenckhoff catheters were 

replaced due to infection or technical problems.

(4.) The control group consisted of patients with normal renal function

(n=24, mean age 46.3 ± 3.65 yrs) who were undergoing surgical procedures 

such as elective laparotomy for a variety of reasons, or elective inguinal hernia 

repair. In 18 of the control patients the operation involved exposure of the 

peritoneum. In these patients the peritoneal samples were taken in addition to 

skin samples. The study protocol was approved by the local Ethical Committee.

All skin samples were obtained from the abdominal wall, at the site of incision, 

during general anaesthesia. Peritoneal samples were obtained from the parietal 

peritoneum of the anterior wall at the site of the laparotomy or from the hernia 

sac during hernia repair. Tissue samples were extensively washed with 

physiological saline and stored at -20^C until analysis. Collagen-linked 

fluorescence was measured in skin and peritoneal samples as described in
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section 4.3.6 and expressed as fluorescence units per milligram of collagen 

(U/mg), All CLF measurements were carried out in triplicate.

Fluorescence spectra of skin and peritoneum were compared with AGE- 

modified, type I calf skin collagen. The procedure for the preparation of in vitro 

browned collagen is described in section 3.3.1.

6 . 3 . 3 .  Measurement of CLF in skin biopsies from the diabetic 

and non-diabetic recipients of renal transplants.

AGE levels were measured as CLF in diabetic and non-diabetic patients vrith 

chronic renal failure who underwent renal transplantation. Skin biopsies were 

taken under local anaesthetic using a punch biopsy technique. Three groups 

were studied:

(1.) Diabetic patients with renal failure who underwent renal transplantation 

(n=10, mean age 39.0 + 8.51yrs),

(2.) Non-diabetic patients with renal failure who underwent renal 

transplantation (n=12, mean age 38.7 + 12.7yrs).

(3.) Control subjects with normal renal function (n=10, mean age 35.0 + 3.9 

yrs).

The samples of skin weighing lOmg were washed with physiological saline 

then scraped clean of any hair and excess adipose tissue. Samples were then 

stored at -20^C untti CLF measurement. CLF was measured as described in 

section 4.3.6. I
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In addition to measurement of CLF, serum creatinine, glucose, serum 

fructosamine and lipids were also measured. This study was approved by the 

local Ethical Committee.

6 . 3 . 4 .  Measurement of plasma glucose.

Glucose was measured by a glucose oxidase method on a Beckman H glucose 

analyser (Beckman, Yellow Springs, Ohio, USA). Between batch imprecision 

was 2% (refer to 4.3,4).

6 . 3 . 5 .  Measurement of glycosylated haemoglobin.

The measurement of glycosylated haemoglobin represents the time-averaged 

glycaemia. It is unaffected by short term fluctuations in blood glucose 

concentrations and is a marker of glycaemic control. Blood (5ml) was collected 

in a fluoride/oxalate treated tube and glycosylated haemoglobin was measured 

as described in section 4.3.5.

6 . 3 . 6 .  Measurement of serum fructosamine.

Fructosamine measurements reflect average glycaemia over a shorter time 

period than that reflected by the measurement of HbAi. EDTA plasma is added 

to reagents containing carbonate buffer (0.2mmol/L, pH 10.3) and nitroblue 

tetrazolium/Uricase (0.48mmol/L, > 2.5kU/L), mixed at 37^0 and read after 

exactly lOmin (Al) and then again after 15min (A2) at wavelength 550nm 

against a reagent blank on a Cobas Bio analyser. The calibrator is also read 

using the same reagent blank and the fructosamine concentration (FC) is 

calculated as foUows:-

146.

- a . . X  . "



Absorbance 550= A2-A1

FC (umoVL)= Abs 550 (tesO X Calibrator
Abs550 Calibrator Concentration

For samples with a fructosamine concentration greater than 1000 umol/L the 

samples were diluted using 0.9% saline.

6 . 3 . 7 .  Enzymatic determination of total cholesterol.

Total cholesterol was measured using a reagent kit from Boehringer Mannheim, 

(Meylan, SA, France) based on the cholesterol kinetic CHOD-PAP method

[333]. EDTA (ethylenediamine-tetraacetic acid) plasma was incubated with a 

buffered enzyme reagent containing cholesterol ester hydrolase (CEH) and 

cholesterol oxidase (CO). Esterified cholesterol is converted to free cholesterol 

which is then converted to cholest-4-en-3one and hydrogen peroxide by 

cholesterol oxidase. The produced hydrogen peroxide becomes a substrate for 

peroxidase (POD) and reacts with 4 aminophenazone and phenol to produce a 

red chromophore (4-(p-benzoquinone-monoimino)-phenazone). This is 

measured photometrically at 500nm on a centrifugal analyser (Cobas Bio).

Reaction I
CEH

Cholesterol esters + H2O ---------- Cholesterol + Fatty Acids

Reaction H
CO

Cholesterol + O2 ------ ^  Cholest-4-en~3one + H2O2

Reaction M
POD

H2O2 + Aminophenazone ^  4-(p-benzoquinone monoimino)-
phenazone + 4H2O
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6 .3 .8 .  Enzymatic determination of triglyceride.

Measurement of triglyceride was carried out by the modified method of Bucolo 

and David in which triglycerides are hydrolysed enzymatically to glycerol and 

free fatty acids by a lipase reaction [334]. Glycerol produced from the 

triglyceride in the presence of adenosine triphosphate (ATP) is converted to 

glycerol-3-phosphate and adenosine diphosphate (ADP) by glycerol kinase. The 

ADP in the presence of phosphoenolpyruvate is then used as a substrate by 

pyruvate kinase to produce ATP and pyruvate. The pyruvate is further reduced 

with NADH + to produce lactate and NAD. The decrease in NADH + is 

proportional to the total glycerol concentration.

Reactionl
Lipase

Triglyceride + 3H2Ü ---------► Glycerol + Patty Acids + 3 Ĥ

Reaction II

Glycerol + ATP

Glycerol
Kinase

Glycerol-3 -phosphate + ADP

RgactiQnin

ADP + Phosphoenolpyruvate

Pyruvate
Kinase

ATP + Pyruvate

Reaction IV

Pyruvate + NADH+H

Lactate
Dehydrogenase

Lactate + NAD

The reactions were carried out on the Cobas Bio centrifugal analyser (Roche) 

using the Merckotest Triglyceride kit (E. Merck, Damstadt, Germany). All 

reactions were conducted at 37®C and NADH + H+ absorbance was measured 

at 340nm. Samples with concentration greater than 5.0 mmol/L were diluted 

with saline and reanalysed.
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6 .3 .9 .  Q uantitation of lipoproteins by flo tation  u ltra­

centrifugation using a tabletop centrifuge.

Flotation centrifugation separates the plasma lipoproteins according to their 

densities such that the concentrations of VLDL (very low density lipoprotein), 

LDL (low density lipoprotein) and HDL (high density lipoproteins) can be 

calculated.

Blood was taken from patients in 7ml EDTA vacutainers then centrifuged at 

lOOOrpm on a SorvaU centrifuge for 5min. Plasma was separated, transferred 

(2ml) to a quick seal polyallomer belltop centrifuge tube (Beckman) and slowly 

overlayered with a NaCl solution of density=1.006 gA leaving a space at the top 

of the tube for sealing. The density of the NaCl solution was determined using a 

Digital Densitometer (Paar Scientific) and adjusted to d=1.006g/l with either 

distilled water or additional NaCl. The NaCl solution (0.195M) of specific 

density was made with 0.34nM EDTA and 1ml of IN NaOH and made up to

1.13 litres with distüled water.

The polyallomer tubes were sealed with metal caps which were heated using a 

Beckman heat sealer. The tubes were then placed in a TL-100.3 rotor and 

centrifuged in a TL-100 ultracentrifuge at 39,000g at 4<̂ C for 2.5 hours. At 

completion of centrifugation, the tubes were placed in a slicer, the tubes were 

sliced and the top fraction containing the VLDL was transferred quantitatively 

using a syringe into a 1ml volumetric flask. The bottom fraction containing the 

LDL and HDL was recovered quantitatively into a 3ml volumetric flask. During 

the centrifugation of EDTA plasma, NaCl solution (d=1.006) was added and 

during the separation of the fractions the volume of the bottom and top fractions 

were adjusted to 3ml and 1ml respectively.
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The measurements of cholesterol in the top and bottom fractions were carried 

out using the CHOD-PAP method. Measurement of HDL was performed by 

precipitating out the LDL using a heparin/manganese dichloride method. Sample 

of the bottom fraction (25(J.l) was added to 0.5ml Heparin/MnCl2 (7140 

USP/ml/2.1M) in an 1.5ml Eppendorf tube and centrifuged for 15min at 

10,000g in a microfuge (Beckman). The supernatant was then decanted into a 

Cobas Bio sample cup and total cholesterol was measured using the CHOD- 

PAP method. Quality control samples (Coming, setting value of 4.3 mmol/L) 

were used.

To compensate for the dilution of both fractions measured, cholesterol content 

in the top fraction was multiplied by 0.5 to obtain semm VLDL cholesterol 

concentration, measured HDL cholesterol by 1.5 and the measurement of the 

bottom fraction (LDL -+- HDL) by 1.5.

Calculations:

VLDL-cholesterol = total plasma cholesterol - bottom fraction cholesterol
(LDL + HDL).

LDL-cholesterol = bottom fraction cholesterol - HDL cholesterol.

6 . 3 . 1 0 .  Statistical analysis.

Unpaired Students t-test and the Mann-Whitney test were used for the 

comq>arison of samples as appropriate. Regression analysis using a linear model 

was used for determining correlations between studied variables. Minitab 

software (version 8) was used throughout the study.
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6 .4 . Results.

6 . 4 . 1 .  The effect of CAPD and renal transplantation on CLF in 

the skin and peritoneum.

Patient characteristics:

There were no significant differences in age between the four groups of patients 

studied- Plasma glucose concentration (mean + SEM) in the CRF group was 

5.3 + 0.23 mmol/L, in the transplant group 5.5 + 0.46 mmol/L, in the CAPD 

group 5.4 + 0.41 mmol/L group and in the control group: 5.7 + 0.33mmol/L. 

None of the patients was classified as diabetic.

Serum creatinine in the CRF group was 868.1 ± 62.3 mmol/L, in the transplant 

group 123.6 ±  10.7 mmol/L, in the CAPD group 800 ±184 mmol/L and in the 

control group 84.3 ±  2.4 mmol/L. Serum creatinine in the transplant group was 

significantly lower than both the CRF and CAPD groups but higher than in the 

control group. There was no relationship between CLF of skin or peritoneum 

and either plasma glucose or serum creatinine concentrations in all groups 

studied.

6 . 4 . 2 ,  Emission spectra of skin, peritoneum and in vitro glycated 

collagen.

The emission spectra of in vitro browned collagen were measured at excitation 

370nm and were similar to the emission spectra of skin and peritoneum (fig 

6 . 1).
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Figure 6.1

Emission spectra of browned collagen, skin and peritoneum. (Excitation 

wavelength 370nm).
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6 . 4 . 3 .  Coliagen-iinked fluorescence in skin biopsies of CRF, 

CAPD, transplant and control groups.

6 . 4 . 4 .  Collagen-linked fluorescence in peritoneal biopsies of 

CRF, CAPD, transplant and control groups.

Peritoneal CLF in the CRF (30.5 + 5.64U/mg) and CAPD (47.4 + 9.66 U/mg) 

groups were both higher than the control group (16.1 ±  2.25 U/mg, p=0.031 

and p<0.001 respectively) but were not different (p=0.164) from each other. 

Peritoneal CLF of the CAPD group was higher than the transplant group (19.4 

±  3.66 U/mg, p=0.0045).

Peritoneal CLF of the CRF group was not different from the transplant group 

(p=0.11). Peritoneal CLF of the control and transplant groups were not 

different (p=0.45; fig 6.2).
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Skin CLF in the CRF group (20.9 + 2.02 U/mg; ± SEM) and the CAPD group 

(22.2 + 6.23 U/mg) were both significantly higher compared to the control 

group (8.52 + 1.08 U/mg, p<0.001) but were not different (p=0.814) from 

each other. Skin CLF in the CRF group was higher compared to the transplant 

group (10.7 + 2.4 U/mg, p=0.003). Skin CLF in the CAPD group was also 

higher than transplant group (borderline significance, p=0.06). Skin CLF in the 

control and transplant groups were not different (fig 6,2).
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Collagen-linked fluorescence (CLF) in the skin and peritoneum of patients 

before commencement of CAPD (CRF group), during CAPD (CAPD group), 

after renal Uansplantation (transplant group) and in the control group. Excitation 

wavelength 370nm, emission wavelength 440nm (mean + SEM U/mg). See 

text (6.4.3) for description of statistical significance between groups.
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6 . 4 . 5 .  The relationship between patients* age and collagen-linked 

fluorescence in skin and peritoneal biopsies.

In the CRF group skin CLF correlated with patients' age (r=0.618, p=0.006; 

fig 6.5), but no correlation was observed between peritoneal CLF and age 

(r=0.22, p=0.466; fig 6.3). By contrast, in the control group, both skin CLF 

(r=0.548, p=0.007) and peritoneal CLF (r=0.508, p=0.044) correlated with 

patients' age. In the transplant group, peritoneal CLF (r=0.525, p=0.44) but 

not skin CLF (r=0.136, p=0.615) correlated with patients' age.

6 . 4 . 6 .  The relationship between skin CLF and peritoneal CLF.

In both the CRF (r=0.6455, p=0.017) and transplant (r=0.519, p=0.047) 

groups, skin and peritoneal CLF correlated well with each other (fig 6.4 a-b) 

but there was no relationship between skin and peritoneal CLF in the control 

group (fig 6.4 c).
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6 . 4 . 7 .  AGE levels in the skin of diabetic and non-diabetic 

recipients of kidney transplants.

Patient characteristics.

The control group had a normal biochemistry profile (table 6.5). There were no 

significant difference in age (years) between the three groups studied. When 

compared to the control group, creatinine levels were found to be higher in the 

recipients of renal transplants (non-diabetic and diabetic group). The glycated 

haemoglobin (HbAi) in the diabetic group was significantly higher than both 

control and non-diabetic groups (Table 6.5).

Table 6.5.

Biochemical characteristics of the controls, non-diabetic and diabetic recipients 

of renal transplants (**p<0.001. Non-diabetic vs diabetic).

Diabetic 
mean + ISD 

n=IO

Non-diabetic 
mean ±  ISD 

n=12

Controls 
mean± ISD 

n=10

Urea (mmol/L) 11.0 ± 5 .6 7 7.9 ±  2,7 5.4 ± 2 .1

Creatinine (umoI/L) 155 ± 8 4 136 ± 5 0 81 ± 1 0

LDL (mmol/L) 4.0 ±  0.6 4.2 ±  0.5 4.0 ±  0.7

HDL (mmol/L) 1.4 ±  0.6 1.4 ± 0 .3 1.4 ±  0.1

vLDL (mmol/L) 0,6 ±  0.4 0.8 ±  0.6 0.4 ±  0.2

Triglycerides (mmol/L) 1.7 ±  0.7 1.7 ±  0.7 1.0 ±  0.4

Cholesterol (mmol/L) 5.8 ±  0.6 6.3 ±  1.4 4.4 ±  1.2

HbAi (%) 11.9 ± 1 .6 6.6 ± 1 .4 * * 6.1 ± 0 .6
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6 .4 .8 .  Collagen-linked fluorescence in skin biopsies from

diabetic and non-diabetic recipients of renal transplants.
i'f

Skin CLF in the diabetic recipients of kidney transplants (mean + SEM U/mg,

14.1 + 2.6 U/mg) was significantly higher than the control group (6.2 ±0 ,64  

U/mg, p=0.026) but was not different from skin CLF of the non-diabetic 

recipients of kidney transplants (8.7 ± 1 .1  U/mg, p=0.083, bfig 6.6.), No 

correlations were observed between the patients' age and skin CLF in the 3 

groups. Neither were there correlations between skin CLF and any of the other 

biochwmcal parameters listed in table 6.5.
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Collagen-linked fluorescence in the skin of normal subjects, diabetic and non­

diabetic recipients of renal transplants. Error bars denote SEM.
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6 . 5 .  D iscussion.

6 . 5 . 1 .  The effect of CAPD and kidney transplantation on skin 

and peritoneal CLF in non-diabetic patients with renal 

failure.

Non-diabetic patients with renal disease have high levels of circulating protein- 

bound AGE. It is thought that a large portion of these circulating AGE-modified 

peptides are formed from the catabolism of AGE-modified tissue proteins, 

though a small fraction may form from the reaction of glucose with serum 

proteins. When glomerular filtration is impaired by renal failure, high 

concentrations of circulating AGE-peptides in the plasma result [250].

Using a macrophage an AGE radioreceptor assay, Maldta et al have shown that 

there is a correlation between serum AGE-peptide levels and creatinine clearance 

[164]. In the same study, AGE levels in serum were shown to decrease in non­

diabetic and diabetic patients with end stage renal failure (ESRD) who were 

treated with haemodialysis, though levels remained higher than the control 

group. Makita has also shown that diabetic patients with ESRD requiring 

haemodialysis had higher levels of AGE in arterial collagen than diabetic 

patients without renal disease. Diabetic patients who had received transplants 2- 

9 years previously had lower serum AGE concentrations than diabetic patients 

treated with haemodialysis. In two renal transplant recipients who were studied 

longitudinally, kidney transplantation restored serum AGE to levels comparable 

to the control group within 4 days.

Pentosidine levels are also increased in diabetic and non-diabetic patients with 

ESRD. Hricik et al have shown that plasma pentosidine concentrations in
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patients with ESRD fell within 4 months after successful kidney transplants 

[171].

Our study is the first to provide data on tissue AGE levels in patients treated 

with CAPD and kidney transplantation. In patients with CRF, tissue AGE were 

increased when compared to the control group. Skin AGE levels were lower in 

the recipients of kidney transplants when compared to the non-transplanted 

CRF patients and CAPD group but this was of borderline significance in the 

latter group(p=0.06). This suggests that kidney transplantation, apart from 

lowering AGE-peptides in serum, as shown by Makita et al, may also restore 

tissue AGE concentrations towards normal. The cause of increased tissue CLF 

in non-diabetic patients with CRF probably reflects decreased removal of AGE- 

modified proteins. Restoration of renal function following transplantation may 

explain the decrease in the concentration of small AGE-peptides (<10kDa) in 

serum observed by other authors, but a decrease in tissue AGE observed in this 

study suggests the existence of as yet an unknown phenomenon.

We observed no difference between skin CLF in the CRF and CAPD groups, 

suggesting that peritoneal dialysis is not as efficient at removing tissue AGE as 

renal transplantation.

AGE crosslinks in tissue collagen are chemically stable, so dissociation of these 

within a short time is improbable. However since AGE-peptides may be 

deposited in tissues, one could speculate that two fractions of AGE exist : one 

consists of AGE present on structural, intact collagen molecules and the other of 

AGE-protein fragments derived from plasma, which would have been 

secondarily deposited within the tissue. These fragments would remain in 

equilibrium with serum AGE and could be cleared from tissues following 

restoration of renal function. The AGE-specific receptor found on macrophages
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probably involved in degradation and removal of AGE-modified proteins 

[96,163]. Clearly if stimulation of AGE-related macrophage responses was 

associated with the presence of non-covalently bound AGE-peptide fragments 

in tissues, then the decrease in AGE-peptide fragments would be of benefit

During CAPD, peritoneal collagen is exposed to high glucose dialysis fluid. We 

also measured CLF in peritoneal collagen and observed that peritoneal CLF is 

elevated by a factor of two in patients with CRF on CAPD when compared to 

the control group.

Peritoneal CLF in the CAPD group was higher than in the control and transplant 

groups. Thus it might be that dialysis fluid induced AGE formation takes place 

in peritoneal collagen.

It has been suggested that high glucose concentration used in dialysis fluids 

could lead to the formation of peritoneal AGE, and as a consequence, contribute 

to ultra-filtration failure [249]. Lamb et al have observed, that compared to 

serum levels, there was an increased amount of glycated albumin in the 

dialysate from patients treated with CAPD. They however have not been able to 

determine if this represents preferential transport or intra-peritoneal glycation 

[335]. A more recent study by the same group has shown that in vitro formation 

of AGE can occur in dialysis fluids, but dialysate removed from patients on 

CAPD have been shown to contain factors that may modulate AGE formation, 

at least in vitro [336]. In our study, CLF was observed to be higher in the 

peritoneum of patients on CAPD when compared to the CRF group but this did 

not reach statistical significance. Further studies are required to confirm this.

6 .5 .2 ,  AGE and diabetic nephropathy .
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Individuals with diabetes mellitus areata 3-4 fold increased risk of myocardial 

infarction. A similar increase in the risk of atherosclerotic events occurs in 

patients with renal disease. The mechanism of this phenomenon remains to be 

established. Numerous studies have suggested that the high glucose level found 

in diabetes is the common denominator in the of the late complications of 

diabetes. Monnier et al observed an association between collagen-linked 

fluorescence and the severity of retinopathy, nephropathy, arterial stiffness and 

joint stiffness in patient's with diabetes and suggested that AGE may serve as 

an index of the severity of the diabetic complications [160,337,338].

We measured AGE as collagen-linked fluorescence (6.4.2) in diabetic and non­

diabetic recipients of renal transplants. No significant differences in total 

cholesterol, triglycerides, LDL, HDL, vLDL levels were found between the 

control group and the diabetic or non-diabetic recipients of renal transplants. No 

relationship was observed between CLF and patients age in all three groups. 

This was not unexpected as the ages of the patients were in a relatively narrow 

band.

Glycosylated haemoglobin was higher in diabetic patients who had renal 

transplants compared to the non-diabetic and control group. Williams and Siegal 

have shown that glycated proteins are preferentially transported into the renal 

glomerulus [339]. The glomerular mesangial cell is involved in the development 

of diabetic nephropathy, which is characterised by glomerular hypertrophy, 

mesangial matrix accumulation and a thickened glomemlar basement naembrane. 

Cohen and Ziyadeh have shown that Amadori products can inhibit mesangial 

cell growth and stimulate type IV collagen synthesis. The glycated protein- 

induced decreases in cell proliferation and increase in collagen production are 

prevented by monoclonal antibodies against glycated epitopes [340].
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In the present study the skin CLF in the non-diabetic transplant recipients was 

not higher than the control group. Skin CLF in the diabetic transplant recipients 

was higher than the control group but was not significantly different to the non­

diabetic renal transplant recipients. Studies have consistently shown that AGE 

levels are higher in non-diabetic and diabetic patients with renal failure requiring 

haemodialysis [65,158,168]. The fact that in our study the levels of AGE in the 

skin of non-diabetic recipients of renal transplants were similar to that of the 

control group would suggest that the transplanted kidney affects in an unknown 

fashion, the removal of AGE from the skin.

It has been shown that renal mesangial cells cultured in the presence of AGE- 

albumin express extracellular matrix components (EMC). Yang et al have 

shown in mice that in vivo administration of AGE-modified mouse serum 

albumin (AGE-mSA), induced increased EMC gene expression and glomerular 

hypertrophy similar to that found in experimental diabetic nephropathy [341]. 

Co-administration of aminoguanidine with AGE-mSA reduced the glomerular 

hypertrophy observed in mice treated with AGE-mSA alone.

AGE may play a role in the development of cardiovascular disease in both the 

non-diabetic and diabetic recipients of renal transplantation. Higher AGE levels 

in diabetic transplant recipients may adversely affect tissue remodelling 

processes, vascular permeability and the diabetes-related abnormalities in 

vascular responsiveness to endothelial derived relaxing factor (nitric oxide). 

Vascular tone and regional blood flow are mediated in part by nitric oxide (NO), 

a radical species produced enzymatically by endothelial cells. NO can rapidly 

traverse the subendothelial space and induce smooth muscle relaxation and 

vasodilatation. In addition to its role in regulating vascular tone, NO exerts 

antiproliferative effects on different cell types [342]. Protein bound AGE can 

inactivate NO via a direct chemical reaction [343]. Hogan et al observed that
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AGE functionally inactivate the antiproliferative effects of NO in model cell 

culture systems that include a fibroblast cell line, vascular smooth muscle and 

mesangial cells [344]. The inactivation of endothelial cell-derived NO by AGE 

may represent a pathway in the development of vascular disease that 

accompanies diabetes mellitus.

V

In diabetic patients with ESRD the elevation of AGE in tissue and plasma could 

be the result of two mechanisms. Firstly, AGE in tissue increases in direct 

proportion to ambient glucose concentrations which in turn generates an 

increased flux of AGE-protein degradation products (AGE-peptides). Secondly, 

there is decreased elimination of these products as renal function deteriorates. In 

non-diabetic patients with ESRD the increase in tissue and plasma AGE is a 

result of defective AGE removal. A newly transplanted kidney appears to be 

effective at removing tissue and serum AGE. Diabetic patients have the 

problems of increased formation of AGE (when compared to non-diabetic 

subjects) to contend with, other strategies including chemical inhibition of AGE 

formation must be developed to improve life expectancy in this group of 

patients.
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6 . 6 .  Conclusions.

(1.) Tissue AGE are increased in non-diabetic patients with CRF. 1#

(2.) In non-diabetic renal transplant recipients tissue AGE levels were 

lower than in non-transplanted CRF patients. Restoration of renal 

function leads to a fall in tissue AGE. This is the first study to show 

that transplantation lowers tissue AGE.

%

(3.) CAPD employing high glucose dialysis fluid has a minimal effect on

the levels of both skin and peritoneal AGE. Further studies are needed 

to confirm this.

(3.) Diabetic renal transplant recipients have higher skin AGE levels than

control group. Diabetes contributes to the increased AGE levels 

observed after renal transplantation.

,;ÿ.
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Chapter 7.

P erspectives .

Over the past decade a number of studies pointed to the association of AGE 

with various biological and pathological phenomena. The nonenzymatic 

glycosylation of proteins and the subsequent formation of AGE has been shown 

to occur in vivo. Yet the isolation and elucidation of AGE structures has 

remained difficult. Substances such as FFI, pyrraline and pentosidine, are 

thought to be AGE present in vivo, but are not recognised by AGE-antibody 

[165,345]. The origin and the nature of the immunologically reactive material is 

not yet known. Further studies are needed to identify and characterise the 

immunologically reactive substances present in vivo.

Many studies have concentrated on the effects of AGE formation on the 

function of structural extracellular matrix proteins. The recent discovery of 

AGE-peptides (<10kDa) in plasma adds a new dimension to this. The structure 

of these AGE-peptides and their role in diabetic complications are at present 

unknown. Recent experiments have shown that the injection of AGE-peptides 

into animals over several months reproduces pathological sequelae similar to 

that observed in diabetic animals.

It is important to ask to what degree do the formation and accumulation of AGE 

contribute to atherosclerosis and the late complications of diabetes in relation to 

other known mechanisms, which include oxidation of lipids and proteins, 

abnormalities of the aldose reductase pathway and other risk factors that 

contribute to the risk of atherogenesis. The recent discovery that AGE can 

accumulate on low density lipoproteins (both lipid and apoprotein moieties) and 

that LDL isolated from diabetic patients shows a strong relationship between the
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AGE content and the levels of oxidised LDL may suggest that advanced 

glycosylation plays a role in lipid oxidation in vivo.

The characterisation of receptors for AGE-modified proteins on macrophages, 

endothelial cells, fibroblasts, mesangial and smooth muscle cells have opened 

up new fields for the study of the role of AGE-modified proteins in connective 

tissue homeostasis, vascular permeability, and the cell proliferation. It must be 

noted that the extrapolation of results obtained from in vitro to the in vivo 

situation must be done with caution, since other contributing factors cannot be 

accounted for.

Two recent reports provide new evidence that AGE may be involved in the 

development of Alzheimer's disease [346,347]. When amyloid p protein, the 

precursor of Alzheimer’s senile plaques, is modified by AGE, an accelerated 

aggregation of soluble amyloid protein occurs. Furthermore Alzheimer's 

plaques have three times more immunoreactive AGE than does the normal 

brain. Although this does not establish a causal role for AGE in Alzheimer's 

disease, further investigation will define the exact relationship between AGE 

accumulation and Alzheimer's disease. More proteins that can accumulate AGE 

are being characterised [348].

The evidence obtained thus far points to a broad based mechanism by which 

AGE-modified proteins can contribute to disease processes. Drugs such as 

aminoguanidine are being developed to enable the inhibition of AGE formation 

in vivo. Administration of aminoguanidine to human subjects resulted in 

lowering of AGE-haemoglobin (Hb-AGE) a 30 day study period. Hb-AGE 

should prove useful in clinical studies aimed in the evaluation of pharmacologic 

agents that inhibit the Maillard reaction in vivo.
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We have demonstrated that fluorescence used as a marker of AGE formation is 

reliable. Though it has to be stressed that samples used for measuring AGE 

concentration should be homogenous such as collagen extract rather than 

samples of plasma where there may be interfering substances. We have also 

shown that oxidative processes affect the early stages of the Maillard reaction in 

vitro rather than the late stages. In addition, we have also demonstrated that 

both oxidation of LDL and modification of extracellular proteins such as 

collagen by AGE can affect their interactions. In addition we have also shown 

that there are local differences in AGE concentration in atherosclerotic plaques. 

Both the interaction of LDL with collagen and local differences in AGE 

concentration could have relevance in foam cell formation and the release of 

growth promoting substances, both of which are signals for atherogenesis.

The elevated levels of serum AGE-peptides seen in both non-diabetic and 

diabetic patients with end stage renal disease reported in other studies has great 

relevance. We have shown that tissue AGE levels are elevated in both these 

populations, and in that tissue AGE levels are decreased after kidney 

transplantation in the case of non-diabetic patients with end stage renal disease. 

This is the first study to show that tissue levels of AGE can be decreased. It 

does raise the question as to what the tissue components of AGE are, and how 

they are decreased after transplantation? An attractive hypothesis would be that 

they are AGE-peptide fragments that are bound and accumulate on the stmctural 

and extracellular components of tissue. Further research is needed to isolate and 

characterise serum AGE-peptides. We must investigate its role in disease 

processes such as renal failure and determine as to whether serum AGE- 

peptides are a causative factor or just a marker of disease.
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