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Abstract

The main challenge in computational aerodynamics is to provide practical, cred-

ible, cost and schedule e�ective methods for routine design application and for full

integration of these methods into the design cycle. Although advances in phys-

ical modelling and solution algorithms are continuing requirements of the aerospace

industry, other more practical di�culties also impede the full realisation of the po-

tential of existing methods. The contribution of this thesis is to examine and tackle

several of these issues and to evaluate computational aerodynamics as a tool for

engineering design and scienti�c enquiry.

An advanced computational aerodynamics method is evaluated as an engineering

tool for axisymmetric forebody and base 
ow problems. First the adaption of an

existing two-dimensional 
ow solver to axisymmetric 
ow is described, then speci�c

test cases are considered. The motivation for creating an axisymmetric 
ow solver is

the considerable performance improvements compared to a fully three-dimensional

method. The accuracy and robustness of the method are very good for forebody

problems. For base 
ow problems accuracy and robustness are less satisfactory,

although the performance of other prediction methods is also poorer for this more

demanding problem. For both problem types the speed of the 
ow solver, the

required computing resource and the time and e�ort necessary for pre- and post-

processing are all satisfactory for routine calculation in an engineering environment.

Shock re
ection hysteresis and plume structure in a low density, axisymmetric

highly underexpanded air jet is examined using a Navier-Stokes 
ow solver. This

type of jet is found in a number of applications e.g. rocket exhausts and fuel in-

jectors. The plume structure is complex, involving the interaction of several 
ow

features, making this a demanding problem. Two types of shock re
ection appear

to occur in the plume, regular and Mach, depending on the jet pressure ratio. The
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existence of a dual solution domain where either type may occur has been predicted,

in agreement with experiment where the same phenomenon has been observed for

a nitrogen jet. There is a hysteresis in the shock re
ection type; the re
ection type

observed in the dual solution domain depends on the time history of the plume

development. A quasi-steady approach is employed in order to calculate the entire

hysteresis loop. The results of the computational study are used to examine the

structure of the plume, and are compared with experimental data where possible.

Some 
ow features not initially recognised from experiment have been identi�ed,

notably curvature of the Mach disc, recirculation behind the Mach disc and the

`regular' re
ection having Mach re
ection characteristics. Included in the study is

a review of the two dimensional shock re
ection hysteresis problem to establish a

theoretical background. The value of CFD as a tool for scienti�c investigation is

clearly demonstrated by this study.

The need for automation of the multiblock grid generation process is discussed.

A new approach to automatically process a multiblock topology in order to prepare it

for the grid generation process is described. The method is based on a cost function

which attempts to model the objectives of the skilled grid generation software user

who at present performs the task of block positioning and shaping in an interactive

manner. A number of test cases are examined. It is also suggested that an existing

unstructured mesh generation method could be adopted as an initial topology gen-

eration tool. Further work towards creating a fully automatic grid generation tool

and extension into three dimensions are discussed.

The parallel execution of an aerodynamic simulation code on a non-dedicated,

heterogeneous cluster of workstations is examined. This type of facility is commonly

available to CFD developers and users in academia, industry and government labor-

atories and is attractive in terms of cost for CFD simulations. However, practical

considerations appear at present to discourage widespread adoption of this techno-

logy. The main obstacles to achieving an e�cient, robust parallel CFD capability

in a demanding multi-user environment are investigated. A static load-balancing

method is described which takes account of varying processor speeds. A dynamic

re-allocation method to account for varying processor loads has been developed. Use

of proprietary software has facilitated the implementation of the method.
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Chapter 1

Introduction

In the last forty years the discipline of computational 
uid dynamics (CFD) has

undergone considerable growth. CFD methods are now employed in a number of

diverse �elds including aircraft, ship and road vehicle design, meteorology, ocean-

ography, haematology, astrophysics, mineral recovery, polymer manufacture and

machinery lubrication. This work is primarily concerned with computational aero-

dynamics, an important subset of CFD in which many of the elements of CFD

technology were �rst developed. However, much of the discussion applies to other

application areas.

The primary impetus for the development of computational aerodynamics has

always been the requirements of aircraft designers, who need reliable aerodynamic

predictions to produce better aircraft. Before the advent of computational tech-

niques the primary tool for aerodynamic investigation was the wind tunnel. This was

complemented by an advanced theoretical understanding of 
uid mechanics which

aided interpretation of experimental results. Aerodynamic theory itself provided

analysis tools, notably Kutta-Joukowski aerofoil theory, Prandtl's wing and bound-

ary layer theories, Jones' slender wing theory[1] and Hayes' linearized supersonic 
ow

theory[2]. Notwithstanding the ingenuity and continuing relevance of these meth-

ods, they all require simplifying assumptions which limit their applicability; none of

the methods are suitable for complex 
ows with strong nonlinear e�ects. The advent

of electronic computers made possible the use of numerical methods for calculating

aerodynamic values. An early example of a numerical approach to an aerodynamic



2 Introduction

problem is the manual calculation of the Theodorsen method for conformal mapping

to develop the NACA 6 aerofoil series in the 1940's[3]. In 1947 tables for supersonic


ow around cones were compiled by solving the Taylor-MacColl equation using a

primitive computer[4]. Calculating machines created the potential to greatly extend

the practicality of a numerical approach. By the 1960's the possibility of using high

speed digital computers arrived. A major breakthrough was the development of

panel methods for the solution of linearized potential 
ow. Despite being restric-

ted to inviscid, incompressible, irrotational 
ow this approach proved very useful in

calculating pressure forces for commercial airliner con�gurations where the 
ow is

largely attached. The method was �rst developed in 1962[5] and was subsequently

applied to lifting 
ows[6] and linearized supersonic 
ow[7].

The 1970's saw considerable e�ort devoted to nonlinear 
ow models, focus-

sing on transonic 
ow with shock waves. A major advance was Murman and

Cole's scheme for solving the transonic small-disturbance equation[8]. Full potential


ow methods followed quickly[9],[10],[11],[12]. Algorithm capability for the Euler

equations[13],[14],[15] was greatly enhanced by the introduction of 
ux-splitting[16]

for better shock capturing. Subsequent algorithm development for the Euler and

Reynolds-Averaged Navier-Stokes (RANS) equations has continued apace; a very

wide variety of discretisations and solution procedures are now available, see for

example[17],[18].

Inevitably the development of CFD is strongly in
uenced by advances in com-

puter hardware. Calculations using more complex mathematical models on a pro-

gressively larger scale have been made possible by improvements in computer speed

and memory size. It has been estimated that better algorithms and better hardware

have contributed roughly equally to CFD progress in the last two decades[17]. In

the 1950's the state of the art was represented by the solution of a linear 
ow model

with a few hundred unknowns. Before 1965 computational methods were scarcely

used in aerodynamics, but within ten years linear potential methods applied to en-

tire aircraft con�gurations were well established. In 1983 an Euler solution for an

entire aircraft con�guration was regarded as an attainable objective[19]. By 1989

three-dimensional steady and two-dimensional unsteady RANS solutions were being

obtained on supercomputers[20]. Now in 1998, three-dimensional unsteady RANS
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solutions can be obtained using a parallel machine, based on commodity processing

units, which is two orders of magnitude less expensive than the previous generation

of supercomputers.

CFD is now su�ciently developed to be widely accepted as a key tool in aero-

dynamic design. Due to impressive algorithm development, especially in the past

two decades, the underlying principles for the design and implementation of robust,

accurate schemes are now well established[17]. CFD complements the other two

approaches of pure theory and pure experiment in aircraft design. However, the

aerodynamics community unanimously recognises that CFD still has far to go be-

fore fully realising its potential[17],[21],[22],[23]. The main challenge of today is to

provide practical, credible, cost and schedule e�ective codes for routine design ap-

plication and for full integration of these codes into the design cycle, i.e. to obtain

a mature CFD capability. Obstacles to this aim are the well-known modelling di�-

culties which limit the �delity of computational aerodynamic simulation, principally

regarding turbulence but also in other areas such as �nite reaction rate chemistry

and nonequilibrium thermodynamics. Industry would naturally welcome any ad-

vances in modelling as well as in solution algorithms to improve the robustness and

reduce the turn-around time of simulations. However to fully exploit today's CFD

technology, the best way forward for engineers is to learn to live with the modelling

and algorithm limitations, to anticipate and quantify them, in the same way as in-

herent limitations of wind tunnel testing can often be tolerated and accounted for by

drawing on the large body of experience accumulated over time. The well established

experimental and semi-empirical methods for aerodynamic analysis are useful tools

because they are applied with sound engineering judgement. Credibility of CFD

simulations is often doubted in industry; the best way to reduce the credibility gap

is through gaining experience and understanding of the strengths and limitations of

CFD methods to promote the application of engineering judgment. To encourage

this, and to make CFD more attractive to the wider engineering community, the

practical di�culties which impede use of CFD must be overcome; at present only

large enterprises have the resources and expertise to purposefully exploit CFD. Ef-

fective use of computational aerodynamics in the design process is hindered by long

lead times (especially for grid generation) and very high computational and human
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costs. These practical di�culties will remain despite any advances in modelling or

algorithms. The contribution of this thesis is to examine and tackle several of these

issues and to evaluate CFD as a tool for engineering design and scienti�c enquiry.

The work presented here is based around an existing two-dimensional multiblock


ow solver for the Euler and Navier-Stokes equations, developed by the CFD group

in the Department of Aerospace Engineering at the University of Glasgow. Details of

the 
ow solution method and implementation will be described where appropriate.

However, it is useful to explain the term \multiblock" now since the concept is

important to each of the following chapters. Figure 1.1 shows a structured grid

for an aerofoil calculation. Note that for this case the grid can be mapped onto a

rectangle in parametric space. This facilitates the implementation of a 
ow solution

method; the grid points and 
ow quantities associated with grid cells are considered

as elements of two-dimensional arrays. However, this feature does not extend to

arbitrary geometries. Even for relatively simple con�gurations it becomes di�cult

or impossible to create a structured grid. There are two main approaches to this

problem. An example of an unstructured grid for a two-element aerofoil problem is

shown in Figure 1.2. It is possible to construct an unstructured grid for any geometry

since there are no associated geometric restrictions. However, 
ow solution methods

are less e�cient due to the necessity of a more laborious data structure. A detail

of a multiblock structured grid around the leading edge slat of an aerofoil is shown

in Figure 1.3. The premise of the multiblock method is to employ a number of

structured grids, or blocks, in order to achieve geometric 
exibility. The outlines of

the grid blocks are shown in Figure 1.4. The advantages of the structured grid 
ow

solver are retained, but at the expense of considerable grid generation complexity.

Thus the choice between an unstructured or multiblock approach is primarily a

trade-o� between 
ow solver and grid generation complexity. Note however that

there are also other issues; for example many researchers assert that shear layer

resolution on unstructured grids is unsatisfactory. The multiblock method used

here and unstructured grids are the two most common approaches, although other

inventive approaches also appear in the literature[24].

The main body of this work is split into two parts. Part I (Chapters 2,3,4)

concerns the implementation of an axisymmetric 
ow solver and its application to
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Figure 1.1: Structured grid

Figure 1.2: Unstructured grid
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Figure 1.3: Detail of a multiblock structured grid

Figure 1.4: Block outlines of a multiblock structured grid
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engineering and scienti�c problems. Part II (Chapters 5 and 6) focusses on the more

practical issues of multiblock grid generation and parallel computation.

In Chapter 2 the adaption of an existing two-dimensional 
ow solver to axisym-

metric 
ow is described in detail. A fully three-dimensional 
ow solver is required

to simulate large, complex aerodynamic problems. However, for the special case of

axisymmetric 
ows, an essentially two-dimensional method can be employed, requir-

ing substantially less memory and two orders of magnitude less computation time.

The surprisingly wide application range for an axisymmetric 
ow solver and the clear

performance advantage over three-dimensional methods provides the motivation for

this work.

In Chapter 3 the ability of an advanced CFD method to model two classes of


ow, axisymmetric forebody and base 
ow, is examined. The capability of the CFD

method as an engineering tool for these problems is assessed. First the adaption

of an existing two-dimensional 
ow solver to axisymmetric 
ow is described, then

speci�c test cases are considered. The accuracy of the results, the robustness and

speed of the 
ow solver and the time and e�ort required for pre- and post-processing

are considered. Particular emphasis is given to the prospect of routine calculation

in an engineering environment for these problem types.

Computational aerodynamics has principally been viewed as a design tool which

complements experimentation and theory. There is also the possibility of its use

as a tool for scienti�c investigation[28]. The direct numerical simulation (DNS) of

turbulence is a good example of this. In engineering codes turbulent 
ow is usually

modelled using the Reynolds-averaged Navier-Stokes equations with a single-point

closure turbulence model to account for the e�ects of turbulent motion, which is

impractical to compute directly. The complexity of turbulence models varies from

a modi�ed laminar viscosity coe�cient to an additional series of partial di�erential

equations to model transport of turbulent stresses. Despite the plethora of models

available, none have been accepted as generally accurate and applicable. The lack of

an appropriate statistical description of the e�ects of turbulence is frequently quoted

as the pacing item for CFD simulation. Each model contains adjustable coe�cients

which are determined empirically. Part of the di�culty in turbulence modelling is

that experimental measurement of the modelled quantities is di�cult, rendering the



8 Introduction

empiricism unreliable. However, DNS results for simple turbulent shear 
ows on a

small scale are becoming available, a�ording direct testing of turbulence models and

investigation of turbulence phenomena in general.

Another area where CFD is used to promote understanding of physical phenom-

ena is in shock re
ection studies. Freestream perturbations in wind tunnel experi-

ments on the stability of shock patterns have caused real uncertainty in interpreting

results, so researchers are now relying heavily on the results of CFD simulations.

In addition to improving the practicality and accuracy of simulations for design,

how best to employ numerical techniques in scienti�c investigations such as the ex-

amples given is another challenge to the CFD community. A detailed numerical

study of shock re
ection hysteresis in an underexpanded jet is described in Chapter

4. This can be viewed as a model situation where experimental studies are limited

and CFD can potentially play a very important role. The theoretical background

and understanding of this complex phenomenon is reviewed. Recent experimental

and numerical contributions in this area are discussed. The CFD method described

in Chapter 3 is applied to an underexpanded jet 
ow. Comparison with experi-

mental data is made where possible. The detail obtained from the CFD simulation

enables identi�cation of several 
ow features not initially recognised from the ex-

periments. Understanding of the plume structures and hysteresis phenomenon have

been greatly enhanced by the CFD study.

Part II concerns the more practical issues of pre-processing and parallel com-

puting, each of which are in their own right important sub-topics in CFD. A major

bottleneck in CFD analyses of complex con�gurations occurs at the pre-processing

stage, consisting of geometry de�nition using computer aided design (CAD) soft-

ware, interfacing the CAD model with grid generation software, and grid generation

itself. Pre-processing remains a labour intensive task, especially at the grid gen-

eration stage. Several man-months of skilled e�ort may be required to generate a

structured grid around entire aircraft con�gurations. Generating unstructured grids

requires less e�ort in general, but is still very time consuming. The large amount

of time and e�ort taken in generating grids is recognised as the major di�culty

in the routine use of CFD[17],[25]. In Chapter 5 the need for automation of the

multiblock grid generation process is discussed. A new approach to automatically
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process a multiblock topology in order to prepare it for subsequent grid generation

is described. The method is based on a cost function which attempts to model the

objectives of the skilled grid generation software user who at present performs the

task of block positioning and shaping in an interactive manner. A number of test

cases are examined. It is also suggested that an existing unstructured mesh genera-

tion method could be adopted as an initial topology generation tool. Further work

towards creating a fully automatic grid generation tool and extension into three

dimensions are discussed brie
y.

The exploitation of emerging technology as computing power continues to in-

crease raises research issues in its own right. However, the large amount of research

into parallel CFD is not matched by the amount of research conducted using parallel

CFD as a tool[26]. The potential of using low-cost commodity processors or no-cost

spare capacity on existing workstations for parallel aerodynamic simulations has re-

cently added further to the large number of research papers devoted to parallel CFD,

see for example[27]. In order for parallel CFD technology to have a greater impact

on the productivity of CFD simulation, a number of practical di�culties must be

fully addressed, most importantly e�ective parallelisation and robust, reliable exe-

cution on non-dedicated parallel machines. This is the type of resource available to

small and medium sized enterprises, rather than the large organisations with access

to powerful dedicated computers on which the majority of parallel CFD research

has been focussed and for which parallelisation is largely a solved problem. The

parallel execution of an aerodynamic simulation code on a non-dedicated, \open"

cluster of workstations is examined in Chapter 6. This type of facility is commonly

available to CFD developers and users in academia, industry and government labor-

atories and is a very attractive option to achieve an upgrade in computing resource

for CFD simulations without large expenditure. However, practical considerations

appear at present to be discouraging widespread adoption of this technology. The

main obstacles to achieving an e�cient, robust parallel CFD capability in a demand-

ing multi-user environment are investigated. A parallelism strategy for a structured

multiblock 
ow solver which takes account of heterogeneity of the parallel machine

and of load variation due to the presence of other users is described. The emphasis

is on robustness and ease of implementation, distinct from other published work in
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this area.

In the concluding chapter progress towards the stated aims of this work is re-

viewed. General experiences gained in the course of this study are discussed, and

recommendations are made for future work.



Part I

Application of an Axisymmetric

Flow Solver





Chapter 2

Axisymmetric Formulation

2.1 Introduction

In order to simulate large, complex aerodynamic problems using CFD a fully three-

dimensional 
ow solver is necessary, using a multiblock approach or otherwise to

cope with geometric complexity. However, there is a class of aerodynamic 
ows

for which it is not necessary to resort to the complexity and expense of a full 3-

D method. It is possible to make use of an existing two-dimensional 
ow solver

to develop an axisymmetric 
ow solver, thus achieving a level of three-dimensional

capability, albeit limited to axisymmetric geometries at zero incidence and sideslip.

For this type of problem an axisymmetric rather than a full 3-D solver is a more

e�cient tool, considering the comparatively large amount of memory and CPU time

required for 3-D calculations. The equations for axisymmetric 
ow can be cast in a

form very similar to those for planar two-dimensional 
ow, which can then be solved

using a numerical scheme with few alterations from the planar case. Examples of

interest include slender bodies, base 
ows and nozzle/plume 
ows. This e�ort is

therefore worthwhile because the modi�cation required is relatively straightforward

and the range of application surprisingly wide.

Several examples of computational aerodynamics codes solving the axisymmetric

Euler and Navier-Stokes equations appear in the literature, for example for base 
ow

applications[35],[36],[37],[38],[39],[40],[41] and missile forebodies[42],[43],[44],[45].

Some other applications are hypersonic 
ow[46] and internal nozzle 
ow[47]. Ap-
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plications to underexpanded jets are discussed in [48]. Some 
ow solvers use the

present approach of considering the axisymmetric case as an extension of the two-

dimensional case[35],[36],[39],[40],[41],[42],[44],[46],[47], thus allowing one 
ow solver

to be used for two di�erent types of 
ow. In this chapter the modi�cation of an

existing two-dimensional 
ow solver to axisymmetric 
ow is described. The 
ow

solver will be applied to two classes of problem, supersonic forebody 
ow and high

speed base 
ow. The aim of this chapter is to evaluate the e�ectiveness of a modern

CFD method as a design and evaluation tool for these problem types. As well as

examining the accuracy of the results from the 
ow solver, other issues which are

important in an industrial context are considered: robustness, turnaround time, pre-

and post-processing e�ort.

The 
ow solver used is based on the existing planar two-dimensional, steady-state


ow solver PMB2D developed by the CFD group at the University of Glasgow,

which has reached a level of maturity enabling application to a diverse range of

aerodynamic problems. The main features of the 
ow solver are outlined here; for

full details see [30],[31],[32],[33].

A cell-centred �nite volume method is employed. Osher's scheme and MUSCL

variable interpolation are used to discretise the convective terms and central di�er-

encing for the di�usive terms. The linear system arising at each implicit time step is

solved using a Generalised Conjugate Gradient method. A Block Incomplete Lower-

Upper (BILU) factorisation is used as a preconditioner. A structured multiblock grid

system is employed. The BILU factorisation is decoupled between blocks to reduce

communication, improving e�ciency on distributed memory parallel computers. An

important feature of the 
ow solver is the use of approximate Jacobian matrices for

the left hand side of the linear system. This has led to substantial reductions in

memory and CPU-time requirements compared to the use of exact Jacobians. The

k � ! turbulence model is employed with MUSCL variable interpolation and the

Engquist-Osher scalar conservation law for the convective terms.

This chapter begins by presenting the equations for axisymmetric 
ow. Com-

parison is made with the equations for two-dimensional planar 
ow. The alterations

made to the original linear system in the implicit solution method are then dis-

cussed. The test case of laminar Poiseuille 
ow in a pipe is then examined. The
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axisymmetric 
ow solver will be applied to engineering and scienti�c problems in

subsequent chapters.

2.2 The equations for axisymmetric 
ow

2.2.1 Introduction

The Navier-Stokes equations and the two-equation k � ! turbulence model are

presented in forms suitable for axisymmetric 
ow; the equations are written in cyl-

indrical coordinates (r; �; z) with the assumptions of zero angle of incidence and

sideslip (@=@� = 0) and no spin (v

�

= 0). A large part of their derivation from

general vector/tensor forms is also included for completeness. This should help to

highlight the origins and purpose of the `extra' terms present in the axisymmetric

equations compared to the two-dimensional equations.

2.2.2 Mass continuity

The equation of mass conservation, or continuity equation, is written in conservation

form as [50],[51]:
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With our assumptions of axisymmetric 
ow with no spin this reduces to
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2.2.3 Momentum conservation

The equations of motion or momentum equations neglecting body forces can be

written in vector form as [50]

�
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where V is the velocity vector. When expanding the vector terms in equation (2.5)

it should be recalled that in cylindrical coordinates the unit vectors are not invariant

in space [51],[52]. Following equation (2.2), the divergence of velocity in cylindrical

coordinates is given by
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The strain tensor rV in cylindrical coordinates is:
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Expanding the Laplacian of the velocity vector in cylindrical coordinates gives
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(2.8)

Finally the pressure gradient term is

rp =
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(2.9)
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The equations (2.5) to (2.9) are the momentum conservation equations in cylindrical

coordinates. It is convenient at this stage to introduce our assumptions concerning

axisymmetry, viz. @=@� = 0 and v

�

= 0 . The momentum equations in the radial

(r) direction and axial (z) direction then become respectively

�

@v

r

@t

+ �

�

v

r

@v

r

@r

+ v

z

@v

r

@z

�

+

@p

@r

�

�

3

@

@r

�

@v

r

@r

+

v

r

r

+

@v

z

@z

�

��

�

@

@r

�

@v

r

@r

�

+

1

r

@v

r

@r

+

@

@z

�

@v

r

@z

�

�

v

r

r

2

�

= 0 (2.10)

�

@v

z

@t

+ �

�

v

r

@v

z

@r

+ v

z

@v

z

@z

�

+

@p

@z

�

�

3

@

@z

�

@v

r

@r

+

v

r

r

+

@v

z

@z

�

��

�

@

@r

�

@v

z

@r

�

+

1

r

@v

z

@r

+

@

@z

�

@v

z

@z

��

= 0 (2.11)

These equations can be simpli�ed, using the continuity equation (2.4), to
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where the shear stress components are written as
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As will be seen later, it is convenient to re-arrange equations (2.12) and (2.13) to

the following form (which resembles the planar equations)
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2.2.4 Energy equation

The equation for the conservation of energy can be written as[51], [53]

�

de

dt

+ p (r:V) = �r:q +

@Q

@t

+ � (2.17)

where e is the internal energy per unit mass, q is the heat transfer vector and Q is

the heat added per unit volume by external agencies. � is the dissipation function,

which can be written as
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We are interested in the form of the energy conservation equation suitable for

axisymmetric 
ow. In cylindrical coordinates, with the assumptions that @=@� = 0

and v

�

= 0, the dissipation function becomes
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Equation 2.17 can then be written, with the same assumptions, in the form
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assuming also that there is also no external heat addition. It can be shown using

the continuity equation (2.4) that
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The following equation is obtained by substituting equation (2.21) into (2.12) mul-

tiplied by v

r

, and adding this to the equation obtained by substituting (2.22) into

equation (2.13) multiplied by v

z

:
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An equation representing the conservation of energy per unit mass is then obtained

by adding together equations (2.20) and (2.23) :
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The total energy per unit volume E

t

is calculated as
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It can be shown using the continuity equation (2.4) that
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As will be seen later, it is convenient here to express this equation in the following

form (which resembles the planar equations):
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2.2.5 Non-dimensional, Reynolds-averaged form

The equations shown above are in dimensional form. In practise it is more convenient

to use non-dimensional quantities. The procedure used for non-dimensionalising is

described in sections A.2 and B.1. The Reynolds-averaging procedure, see appendix

A.3, enables consideration of turbulent 
ow. The equations for mass continuity

(2.4), momentum (2.16 and 2.15) and energy (2.26) become in non-dimensional,

Reynolds-averaged form :
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Momentum
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Energy
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2.2.6 The two-equation k � ! turbulence model

The k � ! turbulence model of Wilcox[54] is written in non-dimensional, general

vector-tensor form in appendix B.1. In cylindrical coordinates, for axisymmetric


ow with no spin, this becomes
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Speci�c Dissipation Rate
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In the above relations,
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2.2.7 Curvilinear form

Mean 
ow equations

Compare the equations for axisymmetric 
ow, equations (2.27) to (2.30), with those

for planar 
ow (see appendix A), swapping the radial ordinate r for y and the

axial ordinate z for x; the left hand sides of the equations are identical. Hence the

axisymmetric equations can be considered as consisting of the 2-D equations plus a

source-like correction term for axisymmetry. See section (2.3.1) for a discussion of

the numerical implications. The transformation of the left-hand side of the equations

into (�; �) space is therefore identical to that described for the two-dimensional equa-

tions in appendix A.4. The right hand side of the transformed system of equations

is written simply as
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(2.33)

after splitting the source-like term into inviscid and viscous parts.

Two equation k � ! turbulence model

The axisymmetric (equations 2.31 and 2.32) and the two-dimensional (see appendix

B) formulations for the k and ! equations can be compared in a similar manner to

above; the axisymmetric equations can be considered as consisting of the 2-D equa-

tions plus a correction for axisymmetry. This correction is treated as an additional

source term. Again the transformation of the left-hand side of the equations into

(�; �) space is the same as for the planar equations, see equation (B.2). The right

hand side of the transformed system of equations can be written as
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(2.34)
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where

^

S

T

is the `original' source term from the two-dimensional equations and

^

S

a

T

contains the additional axisymmetric terms.

2.3 Modi�ed numerical scheme

2.3.1 Axisymmetric source terms

In the present method, the equations for axisymmetric 
ow are formulated to look

like the planar 
ow equations except for a non-zero right-hand side which is treated

as a source term. The 
uxes on the left-hand side are treated as in the planar case.

In this way an existing planar 
ow solver can be modi�ed easily for axisymmetric


ow. This approach, which we will call here approach A, is popular in the literat-

ure, see[35],[36],[39],[40],[41],[42],[44],[46],[47]. Another approach appearing in the

literature[44],[45],[49], approach B, uses an alternative formulation. The equations

(2.35) show the axisymmetric Euler equations written in this manner. In this ap-

proach the source terms of approach A do not appear, being contained in the radial


ux terms on the left-hand side. The source term here consists only of a pressure

term in the radial momentum equation. The manner in which the 
uxes are calcu-

lated for approach B cannot be taken directly from a planar method since the 
ux

quantities are di�erent.
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(2.35)

Good results are reported in the literature for both approaches and neither approach

is reported to out-perform the other concerning accuracy or numerical implementa-

tion issues. Accepting then that both approaches are valid, it is nonetheless inter-

esting here to brie
y discuss and compare the approaches since such a discussion

does not appear in the literature, and at the same time hopefully gain some in-



24 Axisymmetric Formulation

sight into the physical meaning of the source terms. For guidance we can refer to

the application of the integral form of the conservation laws to a control volume

�xed in space, which can form part of the derivation of the partial di�erential form

of the equations [50]. This will shed some light on the origin and purpose of the

source terms. Diagrams of control volumes for derivations in Cartesian (x; y; z) and

cylindrical (r; �; z) space are shown in Figures 2.1 and 2.2.

Note that in Figure 2.2, the areas of the faces in the (�; z) plane of the control

volume are not equal; one has area (r�dr=2) and the other (r+dr=2). Note also that

a pressure force acting normal to the control volume faces which are of area drdz has

a component in the radial direction. This means that when the integral forms of the

conservation laws are evaluated for this control volume, involving 
uxes through and

normal stresses acting on each face, terms are retained in the resulting equations

which cancel out due to symmetry in the equivalent procedure for the Cartesian

control volume. These terms are the axisymmetric source terms. An example is

shown below; �rst the equation for conservation of x-momentum is derived using

the Cartesian control volume, then the radial momentum equation is derived using

the cylindrical control volume and assuming @=@� = 0 and v

�

= 0 . The equation

for the conservation of momentum, discounting viscous e�ects and heat transfer,

can be written in integral form as [50]

@

@t

Z




�Vd
 +

I
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�V (V: dS) = �

I

S

pdS (2.36)

where 
 denotes the control volume and S its surface.

Momentum conservation in Cartesian coordinates (x-direction)

Refer to equation (2.36) and Figure 2.1 :

@ (�u)

@t

dxdydz � dydz

"

�u

2

�

@

�

�u

2

�

@x

dx

2

�

 

�u

2

�

@

�

�u

2

�

@x

dx

2

!#

� dxdz

�

�uv �

@ (�uv)

@y

dy

2

�

�

�uv �

@ (�uv)

@y

dy

2

��

� dxdy

�

�uw �

@ (�uw)

@z

dz

2

�

�

�uw �

@ (�uw)

@z

dz

2

��

= dydz

�

p�

@p

@x

dx

2

�

�

p�

@p

@x

dx

2

��



2.3 Modi�ed numerical scheme 25

which reduces to
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Momentum conservation in cylindrical coordinates with axisymmetry (r-

direction)

Refer to equation (2.36) and Figure 2.2 :
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The axisymmetric source terms can be interpreted physically as the additional mass,

momentum or energy, compared to the planar case, which enters the control volume

normal to the (r; z) plane due to the axisymmetry of the 
ow. The e�ect of these

terms is therefore equivalent to the e�ect of a surface source acting on the (x; y) plane

in the planar case. Restated, the axisymmetric equations written as in sections 2.2.5

and 2.2.6 can be considered as the planar two-dimensional equations with additional

surface sources of mass, momentum and energy which account for the shape of

the control volume in cylindrical coordinates. We can therefore conclude that the

present treatment of our right-hand side as source terms, approach A, is reasonable.

Approach B may be attractive to the researcher developing an axisymmetric 
ow

solver `from scratch' due to the neater appearance of the governing equations when

written this way. The inclusion of the radial ordinate in the 
ux quantities, a feature

which does not occur naturally from a direct application of the integral form of the

conservation laws as shown above, does appear slightly arti�cial in that it is di�cult

to interpret physically.
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Figure 2.1: Volume element in Cartesian coordinates
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Figure 2.2: Volume element in cylindrical coordinates
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2.3.2 Implicit scheme, mean 
ow equations

The integration in time of the discretised equations to a steady state is done using

an implicit time-marching scheme. The linear system arising at each time step for

the 2-D planar formulation can be summarised as [31] :

�

I

�t

@W

@P

+

@R

@P

�

�P = �R

(n)

(2.37)

where P = 1=J (�; v

r

; v

z

; p)

T

is the vector of cell based primitive variables, W =

1=J (�; �v

r

; �v

z

; �E)

T

is the vector of cell based conservative variables, �P is the

update in P from time level n to n+1, R

n

is the 
ux residual arising from the

spatial discretisation at the time level n, and �t is the time step. The updates are

written in terms of primitive rather than conservative variables since the calculation

of the linearisation matrices proves more e�cient with respect to P than W. For

the axisymmetric case, there are extra terms on the right-hand side, see equation

(2.33). The axisymmetric inviscid part is treated implicitly, but the viscous part is

treated explicitly. Numerical experiments have shown that it is necessary to have

an implicit treatment for the axisymmetric inviscid terms if a tight restriction on

the allowable time step is to be avoided. The explicit treatment of the axisymmetric

viscous terms does not have a deleterious e�ect on stability or limit the allowable

time step, on comparison with the original planar code, so an implicit treatment was

not attempted. See Section 3.2.4 for an example of the importance of the implicit

treatment for the axisymmetric inviscid terms. The modi�ed linear system for the

axisymmetric case is then written as :
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�P = �R
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+H
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(2.38)

where H

i

and H

v

are the inviscid and viscous parts respectively of the discretised

source term. System (2.37) is solved using an identical scheme [31] as used for (2.38).

The inviscid source term Jacobian is evaluated as
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where j

!

V

j

2

= v

2

r

+ v

2

z

.

2.3.3 Implicit scheme, k � ! equations

The equations forming the turbulence model are solved in essentially the same man-

ner as the mean 
ow equations. The linear system arising at each implicit time step

for the 2-D planar formulation can be summarised as
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is the vector of cell based conservative variables, �P
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is the update

in P

T

from time level n to n+1 and R
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T

and H

(n)

T

are the 
ux and source term

residuals arising from the spatial discretisation respectively. For the axisymmetric

case, there are extra terms on the right-hand side, see equation (2.34). The `invis-

cid' parts of the additional source term are treated implicitly. The modi�ed linear

system for the axisymmetric case is then written as :
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are the additional source term elements of the axisymmetric formula-

tion. Its Jacobian is written as (discarding viscous terms)
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2.4 Laminar Poiseuille 
ow

2.4.1 Purpose of test case

An analytic solution of the Navier-Stokes equations exists for the case of laminar,

incompressible, fully developed 
ow through a straight pipe of constant circular

cross-section. A simulation of this type of 
ow using the laminar, axisymmetric

version of PMB2D therefore provides a useful check on the formulation.

2.4.2 Description of test case

Fully developed 
ow in a pipe is characterised by a zero pressure gradient across

the pipe, a constant pressure gradient along the pipe and a velocity pro�le which is

invariant along the pipe. This situation arises because the pressure forces which drive

the 
ow are exactly balanced by shear forces such that no acceleration can occur.

For fully developed, steady, incompressible, laminar 
ow through a pipe of radius

r

�

o

(axisymmetric Poiseuille 
ow) the analytic solution for the velocity components

is written as [52] :
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where r and z are the radial and axial directions respectively. The superscript (

�

)

denotes dimensional quantities. The 
ow solver uses non-dimensional quantities, so

it is more convenient to use this expression in the form
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�
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and l

�

is a characteristic length, for example the overall length of the pipe. Here

the reference conditions are taken as the conditions at the centre-line of the inlet.

A subscript 1 is retained here to denote such conditions in order to follow the

convention used in section A.2 . The Mach number and Reynolds number of the


ow considered correspond to low speed laminar 
ow: M

1

= 0:01 and Re

l

= 500 .

2.4.3 Grid generation

The grid generation for this test case is straightforward. Two single block grids

were used. Details of the grid dimensions and spacings are summarised in Table

2.1. The grids used are shown in Figures 2.3 and 2.4. The 
ow is in the direction of

increasing z. The grids are re�ned slightly towards the wall because of the higher

viscous stresses expected in this area.

Name Dimensions Grid spacing at wall

Grid A 15 x 25 0.010

Grid B 31 x 51 0.005

Table 2.1: Grids used for Poiseuille 
ow test case

2.4.4 Boundary and initial conditions

At the outlet, the pressure is imposed at a value of p = 1:0 and the density and

velocity components are extrapolated from the interior. At the inlet, the velocity is

imposed using the analytic expression (2.41) normalised to unity at the centreline.

The density is imposed at � = 1:0, the 
ow being incompressible, and the pressure

is extrapolated from the interior. The walls are modelled as being adiabatic with

no slip; the velocity components are set to zero and the pressure and density are

extrapolated from the interior. The following initial conditions were used throughout

the domain: � = 1:0, v

r

= 0:0, v

z

= 1:0, p = 1:0.
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Figure 2.3: Grid A used for Poiseuille 
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Figure 2.4: Grid B used for Poiseuille 
ow test case
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2.4.5 Results

Solutions were obtained successfully using both grids. The convergence criterion

used was the reduction by eight orders of magnitude of the L2 norm of the residual.

The rate of convergence was slow in both cases, taking around 8000 work units in

total

1

. This was expected when using a compressible 
ow solver for such a low

speed 
ow, but is unimportant here where we are interested solely in the accuracy

of the solution. The solutions obtained with the coarser grid A are identical to those

obtained with grid B therefore the solutions can be considered grid converged. The

pressure coe�cient at every cell centre is plotted in Figure 2.5 for the calculations on

both grids. This clearly shows features which correspond with the analytic solution:

there is a constant pressure gradient in the axial direction and no radial pressure

variation. Figures 2.6 and 2.7 show the calculated velocity pro�le for grids A and B

respectively. Both are compared with the exact solution for the calculated pressure

gradient. There is excellent agreement between the theory and the calculation. The

computed pro�les shown were taken from central sections; any section could have

been used because the pro�le does not change along the pipe.

Here we are concerned with axisymmetric 
ow. The analytic solution for planar

Poiseuille 
ow[52] is similar but the maximum velocity is twice the magnitude of

the axisymmetric case for the same axial pressure gradient. Planar Poiseuille 
ow

has also been calculated using PMB2D, see [55]. The same approach was used as

above and again very good agreement with theory was obtained. This underlines

the important role played by the `additional' viscous terms (section 2.2.7) in an

axisymmetric formulation.

2.5 Conclusions

In this chapter the adaption of a two-dimensional 
ow solver to axisymmetric 
ows

has been described. The equations for axisymmetric 
ow have been presented in

full. It has been demonstrated how the axisymmetric 
ow equations can be cast in

a form very similar to that of the two-dimensional equations. The equations can

1

1 work unit corresponds to the CPU time for 1 explicit time step
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Figure 2.7: Computed and theoretical velocity pro�les for Grid B, Poiseuille 
ow

test case

then be solved using essentially the same numerical scheme, the only alteration be-

ing the introduction of source terms to account for axisymmetry. The introduction

of the discretised source terms into the implicit scheme is also presented, the in-

viscid parts are treated implicitly and the viscous parts explicitly. The simple test

case of laminar Poiseulle 
ow through a pipe was examined. Excellent agreement

between theory and computational results was obtained. The accuracy of the res-

ults establishes con�dence in the axisymmetric viscous treatment. In Chapters 3

and 4 the axisymmetric 
ow solver is applied to engineering and scienti�c problems.

In each case comparison is made between experimental and computational results.

Section 3.4 includes an example of the performance advantage obtained by using an

axisymmetric solver over a fully three-dimensional method.



Chapter 3

Engineering Evaluation: Forebody

and Base Flows

3.1 Introduction

The engineer's choice of aerodynamic analysis method has always been a trade-o�

between the cost of implementing the method and the accuracy of the results ob-

tained. When faced with the task of evaluating multiple con�gurations the engineer

would like to base conclusions on the results of exhaustive wind tunnel testing,

but must usually employ a less expensive method. The purpose of this chapter is

to evaluate the axisymmetric 
ow solver described in Chapter 2 as a tool for the

aerodynamic analysis of engineering problems. Two classes of 
ow problem are con-

sidered, axisymmetric forebody and base 
ow. For these problems it is likely that a

large number of con�gurations over a wide range of 
ow conditions would be con-

sidered in an evaluation study, so the performance gains of an axisymmetric over a

three-dimensional 
ow solver are important. A number of test cases for which ex-

perimental data is available will be examined. Accuracy, robustness, speed and pre-

and post-processing e�ort required will be assessed, with emphasis on the potential

for routine calculation.
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3.2 ONERA B1 and B2 ogive cylinders

3.2.1 Description of test cases

The ONERA B1 and B2 test case con�gurations appear frequently in the literature

as benchmark test cases for slender-body supersonic 
ow, see for example [56]. Data

from the original wind tunnel tests and from other computations are available for

comparison. These are therefore useful test cases for code validation.

ONERA B1

The ONERA B1 con�guration consists of a pointed convex forebody continued tan-

gentially by a circular cylinder of diameter D. The forebody is of length 3D and is

described by the arc of a circle of radius 9.25D. The test conditions reported from

the original experiment are as follows:

Laminar 
ow

Freestream Mach number; M

1

= 2:0

Reynolds number; Re

D

= 0:16 � 10

6

Freestream stagnation pressure; p

t1

= 50 � 10

3

Pa

Freestream stagnation temperature; T

t1

= 330K

Wall temperature; T

w

' 315K (adiabatic)

Incidence; � = 0

o

ONERA B2

The ONERA B2 geometry is very similar to that of the B1. The convex forebody is

described by a parabolic pro�le, equation (3.1) rather than a circular arc. Again the

forebody is of length 3D. The test conditions reported from the original experiment
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are as follows:

Turbulent 
ow

Fixed transition at z=D = 0:15

Freestream Mach number; M

1

= 2:0

Reynolds number; Re

D

= 1:2 � 10

6

Freestream stagnation pressure; p

t1

= 120 � 10

3

Pa

Freestream stagnation temperature; T

t1

= 300K

Wall temperature; T

w

' 285K (adiabatic)

Incidence; � = 0

o

r

D

=

1

3

�

z

D

�

�

1

18

�

z

D

�

2

(3.1)

3.2.2 Grid generation

The grids used in this study were standard grids supplied by ONERA as part of

a GARTEUR workshop. Two grids were supplied for each case, the coarser inten-

ded for inviscid (Euler) calculations and the �ner for viscous calculations. Details

of the grids are summarised in Table 3.1. Grid B1c, the coarser grid for the B1

case, is shown in Figures 3.1 and 3.2. The other grids are very similar. All of the

grids include a small nose boom, one cell in width, of very small but �nite radius

(1.0x10

�7

D). This feature was intended to aid contributors to the workshop using

three-dimensional 
ow solvers which would not handle the singularity at the nose.

It was not needed here, but was retained since experiments using a modi�ed grid

with the nose boom removed showed that it has no e�ect on the solution.

Name Dimensions Grid spacing on cylinder surface

B1c 61 x 53 1:74 � 10

�2

D

B1f 61 x 85 2:00 � 10

�4

D

B2c 61 x 53 1:74 � 10

�2

D

B2f 61 x 85 2:50 � 10

�5

D

Table 3.1: Grids used for ONERA B1 and B2 test cases
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Figure 3.1: Euler grid, ONERA B1 test case

Figure 3.2: Nose region detail of Euler grid, ONERA B1 test case
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3.2.3 Boundary and initial conditions

All variables were extrapolated from the interior across the out
ow boundary. The

wall boundary was modelled as being adiabatic with no slip. A characteristic-based

far-�eld boundary condition was employed at the remaining two domain boundaries.

3.2.4 Results

Solutions were obtained for all four cases: inviscid (Euler) calculations for B1 and

B2, laminar Navier-Stokes for B1 and Reynolds-averaged Navier-Stokes with k � !

turbulence model for B2. A summary of the calculations performed is shown in

Table 3.2. Included in this table are the CPU times for each calculation on a Silicon

Graphics Indy R5000. In each case, the calculation was considered converged when

the L2 norm of the residual had reduced by eight orders of magnitude. Convergence

histories for each case are shown in Figures 3.3 to 3.6. The B1 Euler calculation

was also attempted using an explicit treatment for the axisymmetric inviscid terms

to examine the e�ect of the implicit treatment, see Section 2.3.2. In order to obtain

a solution it was necessary to use twice as many explicit steps before switching

to the implicit scheme, and the implicit CFL number was limited to 50, rather

than a value of 250 used in the calculation shown. As a result the overall time

taken for the calculation was increased by 50%. This supports the present method

where the implicit treatment is used. The B1 Euler case has also been examined

using a fully three-dimensional version of the present method. The calculation

takes approximately 100 times as long and requires 50 times as much memory. The

solutions are identical. This clearly demonstrates the utility of an axisymmetric 
ow

solver.

Calculation Grid used CPU time

B1, Euler B1c 50 s

B2, Euler B2c 47 s

B1, Laminar B1f 288 s

B2, Turbulent B2f 822 s

Table 3.2: Summary of calculations for ONERA B1 and B2
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Figures 3.7 to 3.12 show the calculated values of pressure coe�cient, skin friction

coe�cient and local axial force. Comparison is made with experimental data [57]

where possible and otherwise with other computations [58]. Table 3.3 shows a

summary of the calculated total axial force coe�cients: Ca

p

denotes the pressure

component, Ca

f

the viscous component and Ca is the total.

Calculation Ca

p

Ca

f

Ca

B1, Euler 0.0953 - 0.0953

B2, Euler 0.0947 - 0.0947

B1, Laminar 0.0985 0.0511 0.1496

B2, Turbulent 0.0982 0.1310 0.2292

Table 3.3: Summary of calculated axial force coe�cients

Good agreement was obtained with the experimental values of pressure coe�cient

for the B1 case, see Figure 3.7. The calculated skin friction coe�cient curve, see

Figure 3.8, agrees well with the ONERA computational results over the forebody.

However, the two curves begin to diverge downstream, and at z=D = 15 the ONERA

computation predicts nearly twice as much skin friction. The calculated local con-

tribution to the axial force for the B1 case, Figure 3.9, shows up the same di�erences

between the results i.e. a good match for the pressure component and a poor match

for the viscous component. The axial force coe�cient values quoted in Table 3.3 are

calculated as the area underneath the local axial force curves. The good agreement

of the pressure values with experiment shown (and with ONERA pressure results

not shown) is encouraging from the point of view of veri�cation of the 
ow solver.

It is not possible at present to say much about the skin friction results since we

only have the results from two computations, although the di�erence in results is

disappointing.

The calculated pressure coe�cient for the B2 case matches the experimental

values very well over the forebody, but over the remainder of the surface the com-

putational results seem to be o�set slightly, see Figure 3.10. Comparison with the

ONERA results for Cp values is not shown, but the agreement is very good. The cal-

culated skin friction coe�cient curves for the present calculation and from ONERA
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are in fairly good agreement, see Figure 3.11. Note that the k�! turbulence model

was used for the present calculation, and ONERA used a Baldwin-Lomax turbulence

model. Comparing the local contribution to the axial force for the B2 case with the

B1 case, Figures 3.9 and 3.12, for the B2 case the e�ect of viscous drag appears to

be relatively more important. This is a trend that we expect since the B2 case is

turbulent with a higher Reynolds number.

3.2.5 Numerical implementation of the turbulence model

In the present method, a number of explicit (backwards Euler) iterations are per-

formed before switching to the implicit scheme with a high, constant CFL number

(say 250). Experience has shown that this is an e�ective way of initiating the calcu-

lation. During this explicit stage in the turbulent B2 calculation the scheme became

unstable. This seemed to be caused by the appearance of small and negative values

of k and !. Other workers have also experienced such di�culties in the initial stages

of a calculation when using two- and one-equation turbulence models [36], [59], [60],

[61]. The various remedies reported apply speci�cally to implicit schemes. Here the

problem arises during the explicit stage, and the straightforward remedy of limiting

the values of k and ! to be no less than the freestream values was applied. These

limits were only used during the explicit stage. Figure 3.5 shows a convergence

plot of the calculation. It is noted that the number of explicit iterations required

is relatively large and that the residual for the turbulent quantities is small in the

initial stages. An explicit CFL number of 0.4 was used here for both the mean 
ow

and the turbulence equations. In an attempt to speed up the calculation by making

the turbulent quantities do more work, the calculation was re-run using an explicit

CFL number of 0.4 for the mean 
ow equations and 0.6 for the turbulence equations.

Figure 3.6 shows a convergence plot of the calculation. In this case less explicit steps

were required and the overall CPU time for the calculation was reduced by nearly

20%.

When using an implicit scheme and a two- or one-equation turbulence model,

the treatment of the source term Jacobian arising from the time linearisation of the

updates for the turbulent quantities is reported to be important for stability, partic-
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ularly during the initial stages of the calculation[36],[54],[59],[60],[61]. As discussed

above, in our case the initial instability problem is dealt with during the explicit

stage. The e�ect of the suggested modi�ed implicit schemes was investigated in any

case for the B2 problem. The modi�ed schemes all involve some variation of the

turbulent source term Jacobian in the form of neglecting o�-diagonal terms, varying

the size of coe�cients or altering the terms in the matrix according to sign changes.

The modi�ed schemes showed no improvement, either regarding robustness (the

number of explicit steps required was unchanged) or speed of convergence.

3.2.6 Conclusions

The axisymmetric version of PMB2D has been successfully applied to two super-

sonic slender-body aerodynamics problems. The results have been compared with

experimental data and computational data from other sources. The agreement with

other data is good. Together with other successful applications of the code to this

type of 
ow [62], this gives con�dence in the accuracy of the code for this type

of problem. Some useful insights into the numerical implementation of the k � !

turbulence model have also been gained. An implicit treatment of the inviscid part

of the axisymmetric source term allows larger time steps to be used than an expli-

cit treatment, and hence reduces run-time. The axisymmetric 
ow solver has been

demonstrated to be signi�cantly faster than a fully three-dimensional method, and

also requires much less memory.

3.3 GARTEUR Base Flow

3.3.1 Description of test case

The aerodynamics of the base region strongly in
uences the drag of a projectile.

However, reliable prediction of base 
ow for the wide range of possible condi-

tions (and geometric con�gurations) that a designer may wish to examine has still

to be attained. Semi-empirical and multi-component methods are very useful in

this �eld but the time-averaged Navier-Stokes approach is the most credible and

promising[63],[64]. However, despite the apparent suitability of a Navier-Stokes ap-
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Figure 3.13: Mach number contours for ONERA B2 test case

proach to this type of aerodynamically complex problem results of studies to date

have not always been quantitatively satisfactory[63]. Recent studies[36],[37],[65],[66],

[67], have indicated the importance of grid generation and turbulence modelling .

In particular, the algebraic Baldwin-Lomax turbulence model is dismissed as wholly

inappropriate for base 
ows and the results for k�� models and variations are better

although inconsistent. Some improvement is reported through the use of more soph-

isticated turbulence models[36]. The present study aims to evaluate the ability of

the present method, which uses a k� ! turbulence model, to provide accurate base


ow predictions by examining a test case particularly designed for Navier-Stokes


ow solver validation. At the same time the robustness of the present method, the

e�ort required by the engineer in its application and the overall calculation time are

kept in mind since accuracy is not the only consideration of the designer operating

in a commercial/industrial environment.

AFTERBODY TEST CASE 1B: CONICAL BOAT-TAIL

The afterbody geometry consists of a short cylindrical section followed by a conical
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boat-tail at 6

o

to the cylinder's surface and one cylinder diameter D in length. The

geometry and test conditions are described in detail in [68]. The 
ow conditions are

summarised as follows

Fully turbulent 
ow

Freestream Mach number; M

1

= 0:35

Reynolds number; Re

D

= 1:54 � 10

5

Freestream stagnation pressure; p

t1

= 10

5

Pa

Freestream stagnation temperature; T

t1

= 330K

Incidence; � = 0

o

3.3.2 Grid generation

The grids used for previous numerical studies of this test case[64] vary widely in

�neness, topology, stretching and far-�eld boundary extent. In addition, grid con-

vergence checks were absent from these studies. In the present work, the far-�eld

boundary extent was set at the largest values used in the previous studies (15 dia-

meters downstream of the base and 5 diameters normal to the axis of symmetry).

In order to determine the number of grid points to use, the number of points in

each direction from the coarser grids in [64] was noted, and a grid with four times

as many points in each direction was constructed. Successively coarser grids were

then obtained by extracting points from this very �ne grid, see Table 3.4. This

hierarchy of grids formed the basis of the grid convergence study, see Section 3.3.4.

The �nest grid used here has more than twice as many points as any used in the

previous studies. Figure 3.14 shows the coarse grid.
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Figure 3.14: Coarse grid used for GARTEUR afterbody 1B

Number Grids used :

of points a(very fine) b(fine) c(medium) d(coarse)

Along base 121 61 31 16

Along boat-tail 161 81 41 21

Along symmetric line 281 141 71 36

Normal to symmetric line 281 141 71 36

Total 105163 26583 6793 1773

Table 3.4: Summary of grid dimensions

3.3.3 Boundary and initial conditions

The boundary layer thickness at the in
ow boundary is included in the report of

the experimental results[68]. In order to obtain values to impose at the in
ow

boundary for the main calculation, a short preliminary calculation was performed

using the same conditions on a cylindrical body to simulate the 
ow upstream of the

afterbody. At the axial position where the calculated boundary layer has grown to
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the reported thickness the values were extracted and used for the in
ow condition

of the main calculation. All of the 
ow variables are imposed except the pressure

which is extrapolated from the interior since the 
ow is subsonic. A description of

how the in
ow boundary condition was tackled in the previous calculations was not

included in their respective reports. The conditions at the remaining boundaries are

more straightforward. The wall boundary was modelled as being adiabatic with no

slip. Symmetry was imposed along the axis of symmetry and a characteristic based

far-�eld boundary condition was employed at the remaining two domain boundaries.

The calculation was initiated from freestream conditions in order to obtain the

coarse grid solution. This solution was used as the initial condition for the sub-

sequent medium grid solution and so on. In this way the calculations on the �ner

grids were initiated from already `good' conditions thus reducing overall run times.

3.3.4 Results

Results were obtained on the coarse and medium grids without any problem. How-

ever, on the two �ner grids it was not possible to obtain a solution without altering

the turbulence model implementation in an attempt to circumvent an instability

problem. The solution would proceed apparently normally before becoming unstable

in the vicinity of the free stagnation point and crashing. The initial manifestation

of this instability is a sharp increase in the calculated turbulent kinetic energy pro-

duction term

^

P

k

(see Section B.2). A variety of alternative turbulent source term

Jacobian matrices, see Section 3.2.5, were implemented in an attempt to improve

stability with no success. In order to obtain a solution, the ratio of production to

dissipation

^

P

k

/

^

D

k

was limited. Using the �ne and very �ne grids the maximum

value of this ratio resulting in a stable solution were 1.7 and 1.6 respectively. Note

that for the coarser grid calculations (and for calculations on the �ner grids em-

ploying �rst-order convective accuracy) this ratio could reach 4.0 in the converged

solutions. Figure 3.26 shows a contour plot of this ratio for the solution on the

medium grid. The highest values occur at the beginning of the boat-tail on the

cylinder, in the free shear layer and in the recirculation region. Imposing a limit

on this ratio forces a reduction on the amount of turbulent kinetic energy in the
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ow and aids stability in the vicinity of the free stagnation point. Note that at the

free stagnation point the ratio becomes negative. In addition, a stable solution was

also obtained on the �ne grid by `freezing' the turbulent quantities at their values

20 iterations before the failure and continuing to update the mean 
ow quantities

normally. The justi�cation for this is that before the solution becomes unstable

the residuals for the mean 
ow and turbulent quantities have already decreased by

more than three orders of magnitude, the calculation having been initiated from the

medium grid solution, so the turbulence �eld should be a reasonable approximation

to the `real' solution. At the least a solution obtained in this way provides a useful

comparison with the solution obtained by using a limit as described above.

Figure 3.15 shows the calculated pressure coe�cient distribution along the sym-

metric line using all four grid levels. The results shown for the �ne and very �ne grids

are those obtained with the production-dissipation limit described above. Figure

3.16 shows how the calculated pressure coe�cient distribution along the symmetric

line for the `frozen turbulence' and `limit' calculations on the �ne grid di�er slightly.

From these �gures it is clear that a grid converged solution has not been obtained.

It is not possible to blame the di�erences between the �ne and very �ne grids solely

on the uncertainty caused by the limit used in the calculation. To help indicate

whether the grid hierarchy should be su�cient to obtain grid independent results,

laminar calculations were also performed. The calculated pressure coe�cient dis-

tributions along the symmetric line are shown in Figure 3.17. These are also not

grid converged. The calculated pressure coe�cient along the base compared with

experimental data is shown in Figure 3.18. These results again indicate that grid

independence has not been achieved and also show poor agreement with experiment.

The present pressure coe�cient results are similar to the numerical results presented

in [64] regarding the location of the maximum and minimum pressures on the sym-

metric line and generally poor prediction of the base pressure. The present study

has strongly indicated the necessity of performing a grid independence study, raising

considerable doubt over the validity of computational results obtained without the

bene�t of such a study even before possible modelling shortcomings are considered.

Previous experience and CFD results from other researchers had suggested that the

grids used here would be su�ciently �ne so the lack of grid independence is disap-



3.3 GARTEUR Base Flow 53

pointing. To complete the study an even �ner grid should be used, although solving

the instability problems noted above is perhaps a higher priority.

Figures 3.19 to 3.24 show the calculated axial velocity and turbulence kinetic

energy pro�les for the medium and �ne grids compared with experimental data.

Figures 3.25 and 3.27 show the calculated pressure and velocity vector �eld for the

medium grid respectively.

The initial calculation performed on the coarse grid took 18 minutes for the resid-

ual to converge by 8 orders of magnitude using a Silicon Graphics R5000 processor.

The medium and �ne grid calculations required 1 hour 17 minutes and 3 hours 20

minutes to converge by 4 orders of magnitude on the same machine. The very �ne

grid calculation required 6 hours 2 minutes to converge by four orders of magnitude

using a 200MHz Intel Pentium Pro processor. The strategy used for obtaining initial

conditions is explained in Section 3.3.3. The convergence criteria used here in terms

of residual levels are conservative. The overall execution time for these analyses

is therefore very reasonable using widely available desktop computing power. For

this case the problem geometry and grid topology are straightforward so the time

required for preprocessing should also not be excessive. It is reasonable to conclude

that the necessary e�ort and time required to perform this type of analysis for base


ows with the present method should not be restrictive to the design or evaluation

engineer.

3.3.5 Conclusions

The present method has been applied to an axisymmetric base 
ow test case de-

signed speci�cally for the validation of Navier-Stokes 
ow solvers. The issue of grid

convergence has been shown to be very important for this type of 
ow. Validation

of the present approach has been hampered by numerical instability thought to be

due to the implicit treatment of the source term in the k�! turbulence model. The

results which have been obtained are in reasonable agreement with calculations by

other researchers. The promise of this type of analysis for base 
ow problems has

been underlined. The potential for relatively inexpensive and fast calculations has

been demonstrated.
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Figure 3.15: Symmetric line pressure coe�cient, 1B

3.4 Discussion

In this chapter the applicability of the present method to aerodynamic problems of

interest to industry has been assessed. Test cases representative of two classes of

problem, namely missile forebody and base 
ows, have been examined. It should be

noted that other types of problem, for example aerofoil 
ows, have been examined

elsewhere[31],[32],[34].

It has been demonstrated that the present method performs well for supersonic

missile forebody calculations involving strong oblique shocks. This conclusion is

drawn not only from the results presented in this chapter but also from [62] where

a range of forebody geometries and freestream Mach number were considered. The

calculations were performed using widely available desktop computing power on a

timescale measured in minutes. In contrast, a calculation performed using a three-

dimensional 
ow solver achieved the same results, but took approximately 100 times

as long and requires 50 times as much memory.

Application of the method to base 
ow proved more problematic. Although
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Figure 3.16: Fine grid results, symmetric line pressure coe�cient, 1B
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Figure 3.25: Pressure contours, 1B
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it is still possible to obtain solutions relatively quickly, the method is not robust

due to an instability associated with the implementation of the k � ! turbulence

model. Before the method can be applied routinely and with con�dence to 
ows

of this type this shortcoming must be redressed. An improved implicit treatment

of the turbulent source term may provide the solution to the robustness problem.

On a more fundamental level, the de�ciencies of two-equation turbulence models

including the Boussinesq approximation are well known, see for example [54],[69].

The k � ! turbulence model gives accurate results for two-dimensional boundary

layer 
ows. However, when the normal components of the Reynolds-stress tensor

become non-negligible compared to the shear components, such as in 
ows with

boundary layer separation and sudden changes in shear strain rate, the Boussinesq

approximation becomes inaccurate. It is therefore unlikely that close agreement with

experiment can be obtained for base 
ow problems, as seen in the present results.

This obvious disadvantage has to be seen in the correct context. Simpler analyses,

using semi-empirical methods or CFD with an algebraic turbulence model, give
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Figure 3.27: Velocity vectors, 1B

less accurate results in general and/or require case-dependent �ne tuning. A CFD

analysis employing a more advanced non-linear turbulence model entails prohibitive

added complexity.

For axisymmetric problems of this nature a bottleneck in the analysis process

often associated with other aerodynamic problems is avoided; grid generation is

straightforward due to the relatively simple geometries. An engineer familiar with

a structured grid generation tool should be able to construct a grid within a few

hours, or modify an existing grid within a few minutes. The post-processing stage of

an analysis is now also straightforward due to the wide availability of accomplished

software for this purpose. For missile forebody and base 
ows the pre- and post-

processing associated with the present method should not impede the engineer who

requires routine and e�cient analyses. For the calculation of axisymmetric forebody


ows the present method therefore ful�lls the criteria of accuracy and e�ciency.

Before the present method can be used with the same con�dence for base 
ows

further re�nement of the numerical method is necessary, although the potential of
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a Navier-Stokes 
ow solver for these demanding problems is clear. At present, a

standard two-equation turbulence model provides a good balance between accuracy

and complexity.



Chapter 4

Scienti�c Investigation: Shock

Re
ection Hysteresis in an

Underexpanded Jet

4.1 Introduction

4.1.1 Underexpanded Jets

A jet is said to be underexpanded if the gas pressure at the nozzle exit is greater than

the ambient pressure. When this pressure ratio is large, the jet is said to be highly

underexpanded and the jet plume is characterised by a complex repeated shock

structure. Many examples of real aerodynamic 
ows where knowledge of the beha-

viour of this type of jet is necessary can be found in the literature. Rocket exhausts

at high altitude may have highly underexpanded plumes. The study of such 
ows

is important for predicting propulsive e�ciency and plume signatures[70],[71],[72].

Experimental studies are also important for the validation of CFD codes which

are used extensively in plume signature prediction work[71]. Vehicle manoeuvring

thrusters may also give rise to underexpanded plumes[70],[71]. Proposed scramjet

engine designs include supersonic underexpanded fuel injectors for which detailed

modelling of the mixing process is required[73]. The behaviour of highly underexpan-

ded jets must be understood for accurate consequence and risk assessment studies
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for accidental and operational releases of high pressure gas[74]. Underexpanded ex-

haust plumes interacting with the freestream may arise in aeropropulsion testing in

wind tunnels[75]. An appreciation of underexpanded jet plume structures is import-

ant for the problems of plume-surface and plume-plume interaction and avoiding

wall interference when studying thruster nozzles in ground facilities like vacuum

chambers[76]. Supersonic underexpanded jets are used in experiments to exam-

ine the aeroacoustic properties of strong shock cell structures [77]. Underexpanded

hypersonic jets are used to study aerothermodynamic characteristics of hypersonic

vehicle models in wind tunnels[78]. The same paper includes a very comprehensive

account of how underexpanded jets are used in experimental and numerical studies

of nonequilibrium thermo- and gasdynamic processes in hypersonic 
ow. The ex-

perimental studies of Crist[70] and Abbett[79] established the basic wave structure

of a highly underexpanded jet plume and that regular or Mach re
ection may occur

depending on the conditions. The method of characteristics has been employed by

many authors[79],[80],[81],[82] in an attempt to develop predictive models for the

core expansion and Mach disc location.

A phenomenon associated with low density highly underexpanded jets which has

yet to be fully understood is shock re
ection hysteresis as reported by Welsh[71].

For a (laminar) nitrogen jet exhausting from a nominally Mach 3 nozzle a set of

conditions exist at which either regular or Mach re
ection may occur depending on

the history of the plume development. Since the re
ection type strongly in
uences

the interaction of the jet with its environment an understanding of the phenomenon

and de�nition of the hysteresis loop limits are important. Quantitative experi-

mental investigation of this problem, aside from being expensive, su�ers from probe

interference with the jet structure, necessitating the development of non-intrusive

measurement techniques[71]. However, these promising methods have yet to reach

full maturity and the potential of a CFD analysis is clear, providing the motivation

for this study.
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4.1.2 Shock Re
ection Hysteresis

The existence of a hysteresis e�ect in the type of re
ection of a two-dimensional

oblique shock wave at a wall or symmetric line has been established in recent years.

The re
ection of the oblique shock wave may take the form of a regular re
ection

(RR) or Mach re
ection (MR). The type of re
ection which occurs depends on the

Mach number upstream of the incident shock and the shock angle. However, there

is a dual solution domain where either type may occur and the solution exhibits a

hysteresis e�ect. A summary of the elements of this topic which are of interest to

this study is included in section 4.2.

4.1.3 CFD and Underexpanded Jets

Axisymmetric Euler and Navier-Stokes solvers have been used to obtain solutions for

underexpanded jet plumes with impressive results, see for example[73],[74],[83],[84].

These calculations demonstrate good agreement with experiment for a wide range

of conditions using parameters such as Mach disc location and centreline velocity

and are reported to capture the complex wave structure in detail. No CFD study of

the hysteresis phenomenon in underexpanded jets has been found. The hysteresis

phenomenon associated with two-dimensional shock re
ection has been successfully

modelled numerically, see section 4.2. In this case the crucial quantities (upstream

Mach number and incident shock angle) are relatively easy to control and model

correctly in a computational approach. However in the case of shock re
ection in the

underexpanded jet, these quantities are inherent parts of the calculation rather than

being \set" a priori. All of the interacting features of the complex 
ow �eld must

be resolved accurately, making this problem far more demanding. The application

of a Navier-Stokes 
ow solver to shock re
ection hysteresis in an underexpanded jet

is described in section 4.3, with the objective of contributing to the understanding

of this type of 
ow by combining the known features of two-dimensional shock

re
ection (see section 4.2) with the detailed solutions provided by a CFD analysis.

The axisymmetric 
ow solver described in Chapter 2 will be used. In Chapter 3 it

was demonstrated how the axisymmetric 
ow solver has a considerable performance

advantage over a three-dimensional 
ow solver. This feature is important to the
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present problem in particular and to jet plume studies in general since multiple

solutions are typically required over a wide range of parameters, for example the

ratio of nozzle exit and ambient pressures.

4.2 Two-Dimensional Shock Re
ection Hysteresis

4.2.1 Introduction

Two di�erent types of shock wave re
ection, now known as Regular Re
ection (RR)

and Mach Re
ection (MR), were �rst recorded by Ernst Mach in 1878. Analytic

models for RR and MR were �rst developed by von Neumann in the 1940s. The

existence of a hysteresis e�ect in the transition between types was �rst suggested in

1979[85]. Subsequent experimental[86] and numerical studies[87],[88],[89] have since

con�rmed the existence of the phenomenon. These references together with review

papers[90],[91] provide an extensive introduction to the topic of shock re
ections and

associated phenomena. This chapter summarises the parts of the above references

relevant to the main study of underexpanded jets for which it is useful to introduce

the theory and terminology of the two-dimensional case, and leans particulary on

[86] and [90]. In addition, the current explanation for the hysteresis phenomenon is

discussed. An attempt is made to �ll the gaps in the explanation by applying the

principle of minimum entropy production.

4.2.2 Shock Re
ection Types

Schematic diagrams of the Regular and Mach re
ection types are shown in Figure

4.1. In the �gures, i is the incident shock wave, r is the re
ected shock wave,m is the

Mach stem and s is the slip line. The re
ection and triple points are labelled R and

T respectively. �

i

and �

r

are the incidence angles of i and r respectively. �

i

, �

r

and

�

m

are the 
ow de
ections on passing through i, r and m respectively. The regular

re
ection, as shown in Figure 4.1(a), consists of an incident and re
ected shock wave

meeting at point R on the re
ecting surface. The incidence angle �

i

is small enough

such that the 
ow de
ection caused by the re
ected shock wave is su�cient to cancel

that caused by the incident shock wave. In this way the condition of 
ow tangency
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Figure 4.1: Schematic diagrams of (a) regular re
ection and (b) Mach re
ection
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at the re
ecting surface is maintained. Thus the boundary condition for RR is

�

i

� �

r

= 0 (4.1)

The Mach re
ection type, shown in Figure 4.1(b), consists of incident and re
ected

shock waves, a Mach stem and a slip line, all of which meet at the triple point. The

Mach stem is perpendicular to the re
ecting surface and may curve as shown to

become concave as viewed from upstream. The 
ow being processed by the Mach

stem may be considered to form a bu�er region between the 
ow tangency condition

at the re
ecting surface and a detached regular re
ection which cannot maintain this

condition on its own. The 
ow behind the Mach stem is subsonic. The net 
ow

de
ection behind the triple point is in general non-zero. Note that since the Mach

stem is curved the conditions in region (3) are non-uniform; conditions behind the

Mach stem in the vicinities of R and T will be denoted with the subscripts

3;R

and

3;T

respectively. Since 
ow on either side of the slip line must be parallel, the

boundary conditions for a Mach re
ection are

�

i

� �

r

= �

m

p

2

= p

3;T

(4.2)

It is important to note that equation (4.1) considers local conditions in the vicinity

of R only. In the same way equations (4.2) consider local conditions in the vicinity

of T. To apply these relations globally the shock waves i and r and slip line s must

be straight, implying regions of uniform 
ow.

4.2.3 The Dual Solution Domain

Graphical solutions in the pressure-de
ection (p��) plane, which are obtained from

oblique shock theory[92], are useful for understanding shock-wave phenomena, and

in particular the conditions for which each re
ection type is possible. Figures 4.2

are examples of (p� �) diagrams. In these �gures, the I polar represents the locus

of all possible solutions (1) when the free-stream state (0) is de
ected through an

angle � via an oblique shock wave. Similarly, the R polar represents the locus of all

possible solutions (2) when the free-stream (1) is de
ected through an angle � via
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an oblique shock wave. In the �gures �

i

is increasing as we progress from Figure

4.2(a) to Figure 4.2(e). The RR boundary condition (4.1) implies that the solution

of a regular re
ection is at a point where the R polar intersects the p-axis, i.e.

where � is zero. Figure 4.2(a) shows two such points; the higher pressure point is

observed to be unstable in experiments[86] and has been shown to be aphysical[93],

a result which will be discussed in Section 4.2.6. Consequently, conditions at (2)

are represented by the point RR. The MR boundary conditions (4.2) imply that the

solution of a Mach re
ection is at a point where the I and R polars intersect, e.g.

Figure 4.2(e). States (2) and (3) of Figure 4.1(b) map onto the point MR indicated,

state (2) being on R and state (3) on the I polar.

Three interesting cases which lie between those discussed above are shown in

Figures 4.2(b) to 4.2(d). First, reconsider the case represented by Figure 4.2(a). If

the upstream Mach number is held constant but the angle �

i

is gradually increased

then the solution point RR moves up the p-axis until the condition represented by

Figure 4.2(b) is reached. Since at this point both polars and the p-axis intersect,

both RR and MR solutions are possible. The smallest incident shock angle for which

MR is possible for a given upstream Mach number is represented at this point (except

in the special case of Inverted Mach Re
ection as discussed below). This condition

is known as the von Neumann criterion. As �

i

is increased further the situation

represented by Figure 4.2(c) occurs. The R polar intersects both the I-polar and

the p-axis, so again both RR and MR solutions are possible although in this case

with di�erent values of p and �. This �gure represents typical solutions in the dual

solution domain. The second limit of the dual solution domain is represented by

Figure 4.2(d) where �

i

has been further increased such that the R-polar is tangent

to the p-axis. The largest incident shock angle for which RR is possible for a given

upstream Mach number is represented at this point. This condition is known as the

detachment criterion. Any further increase in �

i

results in the situation shown in

Figure 4.2(e) where the R-polar no longer intersects the p-axis so only MR is now

possible.

As noted above, the von Neumann condition is at present accepted as the lower

pressure limit to the dual solution domain. Recall that this condition is represented

in the (p; �) plane by Figure 4.2(b). If from this condition the incident shock angle
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is increased then RR is observed, see Figure 4.2(a). Hornung[90] discusses the

alternative of Inverted Mach Re
ection (IMR): if we consider that the 
ow may

be de
ected away from the wall by MR, i.e. �

m

in Figure 4.1(b) is negative, then

this would be represented in the (p; �) plane by the point IMR in Figure 4.2(f).

The curvature of m is then necessarily convex as seen from upstream in order to

achieve this de
ection. Note that an IMR always has the alternative of a RR. The

re
ection type observed in experiment is RR unless it is suppressed by raising the

downstream pressure, in which case the IMR occurs[90],[94]. This phenomenon has

yet to be fully explained, and will be returned to in Section 4.2.6.

4.2.4 Analytic Solutions in the Dual Solution Domain

Analytic solutions for RR, MR the von Neumann and detachment criteria will be

used in this study. They are readily obtained using the arguments of Section 4.2.3

and oblique shock theory, making certain simplifying assumptions for the MR calcu-

lations. Their calculation is straightforward and is outlined here for completeness.

Figure 4.3 indicates the location of the dual solution domain in the (M

0

,�

i

) plane.

The overlap region where both RR and MR are possible is clearly shown.
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Oblique Shocks

A result of oblique shock wave theory (see for example [95]) is that for any given

upstream Mach number M

0

the same 
ow de
ection � can be achieved via two

distinct straight shock solutions, provided that � is less than the maximum de
ection

possible �

max

. This result is demonstrated in Figure 4.4 where the curve is the locus

of all possible solutions in the (�,�) plane when a free-stream of Mach number M

0

is

de
ected through an angle � by an oblique shock wave at angle � to the free-stream.

The solution corresponding to the larger value of � is termed the `strong' solution

since the changes across the shock are more severe than for the `weak' solution at

the shallower angle. The density, pressure, Mach number and temperature changes

across an oblique shock are given by

�

1

�

0

=

(
 + 1)M

2

0

sin

2

�

(
 � 1)M

2

0

sin

2

� + 2

(4.3)

p

1

p

0

= 1 +

2



 + 1

�

M

2

0

sin

2

� � 1

�

(4.4)

M

2

1

sin

2

(� � �) =

M

2

0

sin

2

� + [2= (
 � 1)]

[2
= (
 � 1)]M

2

0

sin

2

� � 1

(4.5)

T

1

T

0

=

p

1

p

0

�

0

�

1

(4.6)

where (0) and (1) denote conditions before and after the shock respectively and 


is the ratio of speci�c heats. The 
ow de
ection � due to the oblique shock is given

by

tan � = 2 cot�

�

M

2

0

sin

2

� � 1

M

2

0

(
 + cos 2�) + 2

�

(4.7)

Thus given the upstream conditions and shock angle � the downstream conditions

can be calculated in a very straightforward manner.

Regular Re
ection

A regular re
ection solution involves two oblique shocks. Referring to Figure 4.1(a),

the conditions at (1) and the de
ection �

i

are calculated using the oblique shock
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Figure 4.4: Weak and strong solutions in the (�,�) plane

relations, see directly above. To calculate the conditions at (2), �

r

is obtained by

invoking the condition (4.1) and solving equation (4.7). It is not possible to solve for

�

r

directly so a simple iterative procedure (such as a bisection method) is required.

Note that the `weak' solution is assumed normally to be correct in the absence of

additional boundary conditions (see Section 4.2.6). Figure 4.5 includes the pressure

ratio p

2;RR

=p

0

for various M

0

within the dual solution domain, the subscript RR

referring to the regular re
ection type discussed here. Note that in the �gure each

curve extends from �

i

= �

N

i

on the left of each curve to �

i

= �

D

i

on the right.

The Detachment Criterion

For a given free-stream Mach numberM

0

the incident shock angle �

D

i

corresponding

to the detachment criterion (see Section 4.2.3) is obtained by gradually increasing

�

i

when calculating a RR until the solution for r can no longer be achieved. The

variation of �

D

i

with M

0

is shown in Figure 4.3.
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The von Neumann Criterion

For a given free-stream Mach numberM

0

the incident shock angle �

N

i

corresponding

to the von Neumann criterion (see Section 4.2.3) is obtained by �rst calculating the

pressure p

3;R

behind a normal shock. For some small value of �

i

a RR solution

is then calculated; the pressure p

2

behind r should be less than p

3;R

. �

i

is then

gradually increased until p

2

equals p

3;R

. The variation of �

N

i

with M

0

is shown in

Figure 4.3. Note that for M

0

� 2:20 the von Neumann criterion does not exist.

Mach Re
ection

Referring to Figure 4.1(b), a �rst guess for the conditions at (2) and (3,T), for

which the boundary conditions (4.2) apply, is obtained by calculating the pressure

behind T if m is locally normal to the 
ow, i.e. by taking p

3;R

as an initial guess

for p

3;T

. The de
ections �

m

and �

r

are then calculated for this pressure value using

equation (4.7) with equation (4.4), the conditions at (0) and (1) being known. The

pressure p

3;T

is gradually decreased until the conditions (4.2) are true. Note that

this analysis gives a `Mach re
ection solution' in that the gasdynamic conditions at

(0),(1),(2) and (3) are known. However, note that the length ofm and its inclination
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between R and T are not calculated. A more involved approach has been used[96] to

estimate the length ofm with some success. Regarding the conditions in region (3),

note that this analysis yields two sets of conditions here; conditions (3,T) behind T

which uphold the MR boundary conditions, and conditions (3,R) behind R where

m is normal to the free-stream. Figure 4.5 includes the pressure ratios p

2;MR

=p

0

and p

3

=p

0

for various M

0

within the dual solution domain. Note that p

2;MR

=p

0

and

p

3;T

=p

0

are equivalent due to condition (4.2). Note also that p

2;MR

=p

0

and p

3;R

=p

0

diverge by only a very small amount; in Figure 4.5 their respective curves are all

but identical.

4.2.5 The Hysteresis Phenomenon

Pressure-de
ection maps provide useful illustrations of how a dual solution domain

can occur. However, when more than one re
ection type is possible no clue is given

by these maps as to which mode actually occurs. The existence of a hysteresis ef-

fect in the shock re
ection type in the dual solution domain was �rst postulated by

Hornung[85]. A number of relatively recent experimental studies have contributed

to the understanding of this type of 
ow[85],[92],[94],[97] culminating in the �rst ex-

perimentally recorded shock re
ection hysteresis[86]. Figure 4.6 shows schematically

a typical experimental set up for examination of this problem. Wave diagrams for

(a) Regular Re
ection and (b) Mach Re
ection are also shown. Recent numerical

studies have also predicted the phenomenon[87],[88],[89],[98]. If the dual solution

domain is approached from a condition for which only RR may occur, then RR per-

sists until the detachment criterion is reached where the re
ection type 
ips to MR.

Likewise, if the dual solution domain is approached from a MR condition, then MR

persists until the von Neumann condition is reached where the re
ection type 
ips

to RR. Figure 4.7 shows a schematic representation in the (�

i

,l

m

=w) plane, l

m

being

the length of the Mach stem m, and w being the length of the wedge from leading

to trailing edge. Note that as the von Neumann condition is approached, l

m

be-

comes vanishingly small. The most complete explanation to date for the hysteresis

is provided by Hornung[90] and is summarised below.

A feature of MR not present in RR is the existence of a characteristic length,
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(b)

(a)

Figure 4.6: Use of a wedge shock generator for (a) regular re
ection and (b) Mach

re
ection experiments
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namely the length of the Mach stem. In the absence of mechanisms which may

provide a characteristic length scale such as viscous e�ects, heat dissipation and

relaxation, the length scale must be provided by the geometry of the boundary

conditions. The obvious candidate is the length w from the leading to trailing edge of

the wedge creating the incident shock. Such a wedge has been used in all experiments

to date. The information condition requires that for MR to occur an information

path must be open from the trailing edge of the wedge to the interaction area in

order to transmit the characteristic length information. This information path is

provided by an expansion from the trailing edge reaching the subsonic area behind

the Mach stem. The transition criteria are then explained using this condition. An

information path does not exist in the case of RR, thus when the dual solution

domain is approached from a RR condition, the RR persists until the detachment

criterion is reached. An information path is open in the case of MR, thus when the

dual solution domain is approached from a MR condition, there is no impediment

to MR occurring so it persists until the von Neumann criterion is reached.

This description of the mechanisms causing the hysteresis does not seem com-

plete. The explanation for the persistence of RR until the detachment condition is
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reasonable, and is the only one to be suggested as yet in the literature. Here a new

alternative explanation is proposed, based on upstream boundary conditions. Refer-

ring to Figure 4.1(b), a boundary condition for MR is that conditions immediately

upstream of the contour formed by the i,m shock front are freestream conditions.

The equivalent RR con�guration satis�es this condition, so RR can conceivably oc-

cur spontaneously from the MR con�guration (within the dual solution domain).

However, referring to Figure 4.1(a), a boundary condition for RR is that conditions

immediately upstream of the contour formed by the i shock front are freestream

conditions. The equivalent MR con�guration does not satisfy this condition, so MR

cannot occur spontaneously from the RR con�guration.

There is as yet no explanation for the persistence of MR, it has only been ex-

plained how there is no impediment to MR; it has not been explained why the MR

should persist in preference to RR. An explanation for the MR persistence symmet-

rical to the RR persistence arguments would require an identi�ed impediment to

the existence of RR when an MR condition exists within the dual solution domain.

An alternative approach is the possibility that when either RR or MR is possible,

MR may be the preferred solution. Note that such an argument would not contra-

dict the above explanations for the persistence of RR (where MR is impeded). An

explanation of why MR is preferred would then constitute an explanation for the

persistence of MR, i.e. for one half of the hysteresis loop. The principle of minimum

entropy production will be applied to this problem in Section 4.2.6 in an attempt

to contribute to the explanation of the hysteresis phenomenon.

4.2.6 The Principle of Minimum Entropy Production

The principle of minimum entropy production[99] states that if more than one steady

state solution is compatible with the problem boundary conditions then nature

prefers the solution of minimum dissipative structure i.e. the observed solution is

that with the minimum rate of entropy production. The principle has been applied

to the de
ection of supersonic 
ow by wedges to explain the prevalence of `weak'

over `strong' shock solutions[93],[100]. By extension, the prevalence of `weak' over

`strong' regular re
ections, a problem already mentioned in Section 4.2.3, has also
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been explained using this principle[93]. Pseudo-steady shock re
ection (as opposed

to the steady shock re
ections considered in this work) has also been examined

using the principle[101]. Thus a precedent clearly exists for using the principle to

help explain phenomena associated with shock wave re
ections. Encouraged by this,

the principle will be applied below to two shock re
ection phenomena which have

not yet been fully explained, namely why the von Neumann criterion is the lower

pressure limit on the dual solution domain and IMR is not normally observed (see

Section 4.2.3) and the persistence of MR in the hysteresis loop (see Section 4.2.5).

As a preliminary, the principle is �rst re-applied to supersonic 
ow de
ection and

regular shock re
ections.

Supersonic Flow De
ection

If a supersonic free-stream of Mach number M

0

is de
ected by a wedge at incidence

� to the free-stream (� being less than the shock detachment angle) then oblique

shock theory admits two solutions (see Section 4.2.4). For an ideal gas[102]

ds = C

p

d lnT � R d ln p (4.8)

where s denotes entropy. This can be integrated directly to yield

s

1

� s

0

= C

p

d ln

T

1

T

0

� R d ln

p

1

p

0

(4.9)

which is an expression for the increase in entropy when an ideal gas is changed from

state (0) to state (1) by some process. Here C

p

is the speci�c heat at constant

pressure and R is the speci�c gas constant. If the process is an oblique shock, then

equations (4.3) to (4.6) can be substituted into equation (4.9) to obtain

s
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� s
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2
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� �


 � 1
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(4.10)

where C

v

is the speci�c heat at constant volume. Figure 4.8 shows the entropy

increase across an oblique shock calculated using this expression for various free-

stream Mach numbers M

0

with air as the working gas. It is evident that the entropy

increase across the shock increases with shock angle, as might be expected. The
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`strong' oblique shock solution has a greater shock angle than the `weak' solution,

and hence has a greater associated entropy rise. This can be stated as

�s

strong

> �s

weak

(4.11)

If J is the shape of the re
ected shock wave front then the rate of entropy production

_

S across the shock is given by[93]

_

S =

Z

J

�

0

u

0

sin �(s

1

� s

0

)dw (4.12)

where dw is a di�erential line element along J . In this case the shock wave is straight

and the entropy increase across the shock does not change along J . Since the total

mass 
ow rate must remain constant (the upstream conditions (0) are not in
uenced

by the re
ected shock angle) an increasing entropy jump across the shock implies

increasing entropy production. Thus condition (4.11) implies

_

S

strong

>

_

S

weak

(4.13)

and by the principle of minimum entropy production the `weak' solution is the stable

i.e. physical solution.

As noted in Salas[100] the principle of minimum entropy production explains the

prevalence of `weak' over `strong' oblique shock solutions in the simple de
ection of

supersonic 
ow, but does not disprove the possibility of a `strong' shock solution

if the downstream pressure is given as a boundary condition. The principle of

minimum entropy production applies only when multiple steady states occur which

satisfy the same boundary conditions. Thus in this case for a �xed M

0

and � from

oblique shock theory both �

strong

and �

weak

could occur but the principle indicates

�

weak

. However if the downstream pressure is given as a boundary condition then

the boundary condition set has changed and the only possible solution is some �

which satis�es the pressure.

Regular Re
ection

As has been mentioned in Section 4.2.3, two possible RR solutions exist when �

i

<

�

D

i

. This situation is represented in the (p; �) plane in Figure 4.2(a). The two

possible solutions, at the points where the R polar intersects the p axis, arise because
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Figure 4.8: Increase in entropy across an oblique shock
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Figure 4.10: Entropy increase across RR and oblique part of MR in dual solution

domain

two values of re
ected shock angle �

r;weak

and �

r;strong

can achieve the �

r

necessary

to satisfy the RR boundary condition (4.1). This situation is clearly very similar

to supersonic 
ow de
ection (see directly above) and the result is the same; the

principle of minimum entropy production predicts that for a given M

0

and �

i

the

`weak' solution is observed since it entails a lower rate of entropy production. The

entropy increase �s = s

2

� s

0

variation with �

i

for various M

0

across an RR with

a `weak' re
ected shock is shown in Figure 4.9. That the entropy increase in each

case would be greater for a `strong' solution is evident from Figure 4.8 if �

r

and M

1

are substituted for � and M

0

. Note that the possibility of a `strong' RR has not

been disproved, see the end of Section 4.2.6.

Inverted Mach Re
ection

As has been discussed in Section 4.2.3, why the von Neumann condition should mark

the lower pressure end of the dual solution domain and IMR is not normally observed

has yet to be fully explained. In this and in subsequent sections the conditions in

region (3) behind R will be denoted with the subscript

3

rather than with

3;R

to

shorten the notation. Note that the conditions in region (3) behind T are equivalent
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Figure 4.11: Entropy increase across Mach stem part of MR in dual solution domain

to those in region (2) behind r in the cae of MR so the subscript notation

3;T

is now

discarded. Figures 4.10 and 4.11 show the calculated entropy increases across a

regular re
ection (s

2;RR

� s

0

) and the oblique (s

2;MR

� s

0

) and Mach stem (s

3

� s

0

)

parts of a Mach re
ection within the dual solution domain for a representative range

of Mach numbers M

0

. Each curve extends from the von Neumann (�

i

= �

N

i

) to the

detachment (�

i

= �

D

i

) condition. Note that for each M

0

, (s

3

� s

0

) is greater than

both (s

2;RR

� s

0

) and (s

2;MR

� s

0

). Note also that at the von Neumann condition

(s

2;RR

� s

0

) and (s

2;MR

� s

0

) are identical (because the Mach stem has vanished)

and that (s

2;RR

� s

0

) increases more sharply with incident shock angle i.e.

d (s

2;RR

� s

0

)

d�

i

>

d (s

2;MR

� s

0

)

d�

i

For �

i

< �

N

i

(i.e. where an IMR is theoretically possible) this trend continues since

�

r;MR

must be greater than the corresponding �

r;RR

in order to achieve the negative


ow de
ection. As a consequence for �

i

< �

N

i

the entropy increase across both parts

of the MR is greater than that across the corresponding RR. This can be written as

(s

3

� s

0

)

�

i

<�

N

i

> (s

2;RR

� s

0

)

�

i

<�

N

i

(s

2;MR

� s

0

)

�

i

<�

N

i

> (s

2;RR

� s

0

)

�

i

<�

N

i

(4.14)
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The expression (4.12) for the rate of entropy production for an oblique shock is

adapted here for the entropy production rates for regular and Mach re
ection

_

S

RR

=

Z

J

r;RR

�

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) (s

2;RR

� s

0

)dw

r;RR

(4.15)

_

S

MR

=

Z

J

r;MR

�

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) (s

2;MR

� s

0

)dw

r;MR

+

Z

J

m

�

0

u

0

(s

3

� s

0

)dw

m

(4.16)

where J

r;RR

, J

r;MR

, J

m

are the shapes of r (in RR and MR) and m respectively;

dw

r;RR

, dw

r;MR

and dw

m

are their respective di�erential line elements. Note that in

these expressions all sources of entropy production other than the incident shock,

re
ected shock and Mach stem are neglected. The total mass 
ow rate for a given

M

0

and �

i

must be equal for RR and MR. However, not all of the 
ow is processed by

the shock system (see Figure 4.6). We make the assumption that the same amount of


ow is processed by our simpli�ed models of the RR and MR systems. This is exactly

true at the von Neumann condition and appears to be a good approximation in

the vicinity of this condition from 
ow visualisations[85],[86],[92]. This assumption

provides a continuity equation

Z

J

r;RR

�

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) dw

r;RR

=

Z

J

r;MR

�

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) dw

r;MR

+

Z

J

m

�

0

u

0

dw

m

(4.17)

From equations (4.15) and (4.16) the entropy production rate is the product of

mass 
ow rate and entropy increase integrated across the shock system. Since the

entropy increase across both parts of the IMR is greater than across the RR (see the

inequalities (4.14)) and the total mass 
ow rate is the same in each case (see equation

(4.17)), then we can conclude that the IMR entropy production rate is greater than

the RR, regardless of the proportions of the total mass 
ow being processed by by

the MR components. This is stated as

�

_

S

MR

�

�

i

<�

N

i

>

�

_

S

RR

�

�

i

<�

N

i

Hence by the principle of minimum entropy production RR is the observed solution.
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The possibility of suppressing the RR to obtain the IMR does not violate this

result for the same reasons as discussed in Section 4.2.6. In the present case for a

�xed M

0

and �

i

both IMR and RR could occur from oblique shock theory but the

principle selects RR. However if the downstream pressure is given as a boundary

condition then the set of boundary conditions has changed and the principle does

not apply. According to Hornung[92], if RR is impeded by setting the downstream

pressure to a high value then IMR may occur, explaining the results of Henderson[94]

where IMR was observed.

Shock Re
ection Hysteresis

As discussed in Section 4.2.5, the persistence of MR in the dual solution domain

i.e. for one half of the hysteresis loop has yet to be fully explained. In this section

it will be argued that the MR may have a lower entropy production rate than the

RR, and hence by the principle of minimum entropy production MR is the observed

solution.

Figures 4.10 and 4.11 show the calculated entropy increases across a regular

re
ection (s

2;RR

� s

0

) and the oblique (s

2;MR

� s

0

) and Mach stem (s

3

� s

0

) parts of

a Mach re
ection within the dual solution domain. From these �gures it is evident

that within the dual solution domain the entropy increase across the oblique part of

the MR is less than that across the RR, but the entropy increase across the Mach

stem is greater. This can be written as

(s

3

� s

0

)

�

N

i

<�

i

<�

D

i

> (s

2;RR

� s

0

)

�

N

i

<�

i

<�

D

i

(s

2;MR

� s

0

)

�

N

i

<�

i

<�

D

i

< (s

2;RR

� s

0

)

�

N

i

<�

i

<�

D

i

(4.18)

We would like to compare RR and MR entropy production rates. In this case to do

this we must also examine the relative proportions of mass 
ow processed by each

MR component. Expressions for

_

S

RR

and

_

S

MR

, the rates of entropy production for

RR and MR respectively, are given by equations 4.15 and 4.16. If we make the

further assumption that these shocks are straight then the expressions simplify to

_

S

RR

= �

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) (s

2;RR

� s

0

) l

r;RR

(4.19)
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_

S

MR

= �

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) (s

2;MR

� s

0

) l

r;MR

+ �

0

u

0

(s

3

� s

0

) l

m

(4.20)

where l

r;RR

, l

r;MR

, and l

m

are the lengths of r (in RR and MR), and m respectively.

To help us examine this, we de�ne A, B and C as follows

A = �

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) (s

2;RR

� s

0

)

B = �

0

u

0

(s

3

� s

0

) (4.21)

C = �

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) (s

2;MR

� s

0

)

then equations (4.15) and (4.16) become respectively

_

S

RR

= Al

r;RR

_

S

MR

= Bl

m

+Cl

r;MR

(4.22)

Figure 4.12 shows the variation of the parameters A, B and C with �

i

within the

dual solution domain for a free-stream Mach number M

0

= 4.96 for which �

N

i

=

30:9

o

. The signi�cance of this particular condition is explained later. As illustrated

in Figure 4.7 a feature of the von Neumann condition is that the length of the Mach

stem m has become vanishingly small; the RR and MR are e�ectively identical

(l

m

= 0; �

r;RR

= �

r;MR

). This can be seen in Figure 4.12 where A(�

N

i

) = C(�

N

i

) as

a consequence. On increasing �

i

, A increases more quickly than C. Within the dual

solution domain the principle of minimum entropy production has the potential

for allowing selection of the prevailing re
ection type. However, as is clear from

equations (4.19) and (4.20), knowledge of the shock wave lengths as well as the

quantities A,B,C is required in order to make a direct comparison between

_

S

RR

and

_

S

MR

. Introducing a relationship between the total mass 
ow rates through the

RR and MR aids clari�cation. Assuming that the mass 
ow through the RR is the

same as that through the MR and that the shocks are straight, equations (4.19) and

(4.20) become

�

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) l

r;RR

= �

0

u

0

l

m

+ �

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) l

r;MR

(4.23)
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We want to show that MR is the observed solution by the principle of minimum

entropy production i.e.

_

S

RR

>

_

S

MR

(4.24)

Combining this condition with equations (4.21),(4.22) and (4.23) gives a geometric

condition for the prevalence of MR in the dual solution domain in terms of the

gasdynamic conditions

l

m

l

r;RR

<

�

2;RR

u

2;RR

sin (�

r;RR

� �

r;RR

) (s

2;RR

� s

2;MR

)

�

0

u

0

(s

3

� s

2;MR

)

(4.25)

It is not possible to evaluate the LHS of this expression using the present analysis.

Experimental results for shock re
ection hysteresis at M

0

= 4.96 have been presen-

ted in [86]. The same problem has also been studied numerically[87],[88],[98]. From

these results it is possible to extract a value for l

m

=l

r;RR

within the dual solution

domain and test the condition (4.25). However, it is useful to recap on how this

expression was obtained. In particular, two important simplifying assumptions have

been made:

The total mass 
ow rate through the RR and MR are equivalent. As shown

in Figure 4.6 the expansion around the trailing edge of the wedge interacts with the

re
ected shock wave. Some of the 
ow which is processed by the incident shock is

not processed by the re
ected shock. As the Mach stem grows the inclination and

length of the re
ected oblique shock changes. As a result, the proportion of the 
ow

processed by the re
ected oblique shock is di�erent for RR and MR.

Sources of entropy production other than shock waves are neglected. The

entropy production due to the interacton of the re
ected shock with the expansion

is assumed to be equivalent for RR and MR i.e. does not in
uence comparisons of

entropy production rates.

The errors associated with these assumptions increase on departing from the von

Neumann condition. They are di�cult to quantify; from 
ow visualisations[85],[86],[92]

the lengths of the re
ected shocks in the dual solution domain do not appear to di�er
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greatly for RR and MR but this does not provide su�cient justi�cation for identi-

fying some range of �

i

in the vicinity of �

N

i

for which condition (4.25) is valid,

even before taking into account errors associated with measuring l

m

and l

r;RR

. It

is therefore di�cult to investigate whether the condition (4.24) is true for even one

particular set of conditions.

Directly comparing

_

S

RR

and

_

S

MR

on a reliable basis using the present approach

is therefore not possible. However, it is still possible to make use of the fact that

our assumptions are exact at the von Neumann condition. If condition (4.24) is true

for the dual solution domain then the condition

 

d

_
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RR

d�

i

!

�

i

=�
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i

>

 

d
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S

MR

d�

i

!

�

i

=�

N

i

(4.26)

must also hold since

�

_

S

RR

�

�

i

=�

N

i

=

�

_

S

MR

�

�

i

=�

N

i

(4.27)

Noting that for MR any increase in the mass 
ow through the Mach stem due to

its growth entails a corresponding reduction in the mass 
ow through the re
ected

shock i.e.

d

d�

i

(�

2;MR

u

2;MR

sin (�

r;MR

� �

r;MR

) l

r;MR

) +

d

d�

i

(�

0

u

0

l

m

) = 0 (4.28)

then after some manipulation equations (4.19),(4.20) and (4.26) yield

d

d�

i

(s

2;RR

� s

0

) >

d

d�

i

(s

2;MR

� s

0

) +

�

0

u

0

(s

3

� s

2;MR

)

�

2;RR

u

2;RR

sin(�

r;MR

� �

r;MR

)l

r;RR

dl

m

d�

i

(4.29)

which is valid only at the von Neumann condition. If h

in

is the distance between

the leading edges of the two symmetric wedges (h

in

=2 is then the distance from the

wedge leading edge to the symmetric line/re
ecting surface in Figure 4.6) then we

have simply

dl

m

d�

i

=

h

in

2

d(

l

m

h

in

=2

)

d�

i

Equation (4.29) then becomes

d

d�

i

(s

2;RR

� s

0
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d

d�

i

(s

2;MR

� s

0

) +

�

0

u
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(s

3

� s

2;MR
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�
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u
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sin(�
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d(
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(4.30)
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The quantity �

0

u

0

(h

in

=2) is the total mass 
ow rate between the wedge and the

symmetric line. The quantity �

2;RR

u

2;RR

sin(�

r;MR

� �

r;MR

)l

r;RR

is the total mass


ow rate across the re
ected oblique shock. Their ratio, which we denote ratio

flow

,

can be estimated from experiment along with the quantity d(

l

m

h

in

=2

)=d�

i

. All other

quantities in this expression can be obtained from our simpli�ed analysis. The

quantities pertaining to condition (4.30) for the von Neumann conditionM

0

= 4:96,

�

N

i

= 30:9

o

are summarised in Table 4.1. Note that the necessary geometric values

extracted from experimental data are deliberately estimated on the side of a high

RHS to this condition in order to avoid uncertainty in this conclusion

1;2

. From this

analysis the condition (4.30) is demonstrated to be true, and therefore condition

(4.24) is true in the vicinity of the von Neumann condition for M

0

= 4.96.

Note that for the experiment referred to here the dual solution domain was found

to terminate a few degrees before the detachment condition. It is possible that at this

point the condition (4.24) is no longer true. An observation from [86] which supports

this is that d(

l

m

h

in

=2

)=d�

i

increases on departing from the von Neumann condition.

The present simpli�ed approach is not adequate to conclusively demonstrate whether

the principle of minimum entropy production can explain the persistence of MR as

part of the hysteresis loop. However, the above result can at least be regarded

as evidence which supports this idea. A conclusive analysis would require at least

accurate experimental measurement of shock wave lengths. An alternative approach

could be to directly measure the entropy production from numerical results.

1

This estimate is taken from the 
ow visualisations in [86]. From these images between 40%

and 50% of the total mass 
ow is processed by the re
ected oblique shock. Here a value of 30% is

assumed to ensure a valid conclusion.

2

Estimated from the straight line part of Figure 10(a) in [86]. Using the least-squares �t would

yield a smaller value.
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Figure 4.12: Variation of parameters A,B,C in dual solution domain for M

0

= 4:96

d

d�

i

(s

2;RR

� s

0

) 1.2478

d

d�

i

(s

2;MR

� s

0

) 0.6675

(s

3

� s

2;MR

) 0.5116

ratio

flow

3.3333

1

d

d�

i

(

l

m

h

in

=2

) 0.2843

2

LHS of (4.30) 1.248

RHS of (4.30) 1.152

Table 4.1: Values for condition (4.30) at M

0

= 4:96, �

N

i

= 30:9

o

4.2.7 Discussion

The principle of minimum entropy production has been applied to some shock wave

and shock re
ection phenomena in an attempt to explain experimental observations.
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First, the conclusions of other authors who examined supersonic 
ow de
ection and

regular shock re
ection were restated to establish that a precedent for this type of

approach exists. It was then demonstrated how the principle can be used to explain

why the well known von Neumann criterion marks one limit of the shock re
ection

dual solution domain and Inverted Mach Re
ection is not normally observed. It

is then suggested that the phenomenon of shock re
ection hysteresis has yet to be

fully explained; that the principle of minimum entropy production may provide an

explanation for the persistence of Mach re
ection when the dual solution domain is

approached from a Mach re
ection condition is proposed. The di�culties associated

with applying the principle to this problem are discussed. Some evidence supporting

this theory is presented for one particular hysteresis case for which experimental data

is available. Some recommendations are made for continued study of this problem.

4.3 Numerical Method

4.3.1 Flow Solver

In this section, it is described how an axisymmetric (laminar) Navier-Stokes 
ow

solver has been used to study the phenomenon of shock re
ection hysteresis in an

underexpanded jet. The results of this study will be examined in the light of the

understanding of the two-dimensional hysteresis phenomenon established in section

4.2. The 
ow solver used is described in Chapter 3.

For this study it is assumed throughout that the working gas is in the continuum

regime with no condensation and has constant speci�c heats. These assumptions are

veri�ed in a straightforward manner. The extremities of pressure, temperature etc.

experienced in the experiments can be obtained from [71]. The Knusden number

based on the shock cell length was calculated [103] [104] as being less than 0.15 at

all times. The continuum Navier-Stokes equations hold up to Knusden numbers of

0.2 [105] so we are just within the continuum regime. Based on the experiments re-

ported in [106] the present cases are also condensation free. Despite the high Mach

numbers and strong shock waves encountered in the experiments the gas temper-

ature remained relatively low at all times, well below the levels where molecular
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dissociation or vibrational excitation become important [105]. These assumptions

are con�rmed by the Hypersonic Aerodynamics Group at DERA Farnborough where

the experiments were carried out.

4.3.2 Boundary Conditions

Figure 4.13 shows a diagram of the computational domain with labelled boundary

condition types (the size of the nozzle is exaggerated for clarity). The boundaries

labelled A denote adiabatic wall boundaries with no slip and zero normal pressure

gradient. At B a symmetry condition was applied. To decide which boundary

conditions to apply at C we have the advantage that across all of this boundary

we know that we should have out
ow. In keeping with an inviscid characteristic

analysis, the 
ow variables are extrapolated from the interior of the domain except

for the case of locally subsonic out
ow where the pressure was imposed at the

background level. Two alternative treatments were tested and rejected. First, all of

the 
ow variables were extrapolated across all of the boundary. This signi�cantly

impaired convergence in regions of subsonic out
ow. Secondly, the background

pressure was imposed across all of the boundary. This did not impair convergence

but did result in signi�cant spurious oscillations in regions of supersonic out
ow.

The boundary condition treatment at the nozzle inlet D requires a somewhat more

involved treatment. We know the reservoir stagnation conditions (denoted here

by r) but require boundary conditions for the nozzle inlet i. This is achieved by

assuming that the total enthalpy and entropy are the same for the reservoir and

nozzle inlet, thus obtaining expressions for p

i

and �

i

which are imposed. The velocity

components are extrapolated from the interior of the domain. Note that assuming

constant entropy s implies a constant entropy measure S de�ned by

S =

p

�




For convenience the non-dimensionalisation is constructed such that

�

r

= 1; p

r

=

1




(4.31)
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are the values of density and pressure respectively in the reservoir. The reservoir

sound speed, total enthalpy and the entropy measure are then

a

r

= 1; H

r

=

1

(
 � 1)

; S

r

=

1




We now have two conditions to impose at the inlet i :

H

r

=


p

i

(
 � 1) �

i

+

(v

r

)

2

i

+ (v

z

)

2

i

2

; S

r

=

p

i

�




i

The velocity components u

i

and v

i

are extrapolated from the interior of the domain.

The inlet density and pressure are then

�

i

=

�

1�

(v

r

)

2

i

+ (v

z

)

2

i

2

(
 � 1))

�

; p

i

=

1




�




i

For the boundary condition treatment at E the background stagnation conditions

are known but the 
ow direction is not known a priori. This being similar to

the nozzle inlet boundary treament, the boundary conditions here are treated in

the same manner except that background conditions are used instead of reservoir

conditions in equation 4.31.

It is possible to construct a Riemann invariant based boundary condition treat-

ment for the boundaries at C and E analogous to that commonly used as a \far-�eld"

condition for aerofoil 
ow studies. However the present approach was found to be

adequate and its implementation straightforward in the framework of the existing


ow solver. One more boundary condition was used; as described below, calcula-

tions were also carried out concerning only the nozzle 
ow. At the nozzle outlet,

where the 
ow is supersonic except in the boundary layer, all 
ow variables were

extrapolated from the interior of the domain.



94 Shock Re
ection Hysteresis in an Underexpanded Jet

A

A

B

C

D

E

Figure 4.13: Boundary conditions

4.3.3 Initial Conditions and Quasi-Steady Approach

As a �rst step to studying the full problem a preliminary calculation for the nozzle

only was carried out. Using a linear variation from reservoir to Mach 3 conditions

along the axis from the inlet to the outlet as initial conditions was found to consid-

erably reduce the calculation time compared with using uniform reservoir or sonic

conditions. The solution from this calculation was used as the initial solution in

the nozzle for the main calculation, and the calculated nozzle exit conditions were

used as the initial conditions for the domain directly downstream of the nozzle exit.

For the remainder of the domain the background conditions were applied as initial

conditions. Calculations were performed over a range of pressure ratios from well

inside the regular re
ection range to well inside the Mach re
ection range including

the hysteresis loop. A quasi-steady approach was employed in order to account for

time history e�ects. First, converged solutions were obtained for the conditions at

the extremities of the range of interest. These were used as initial solutions for a

calculation with a small change in pressure ratio, thus beginning to traverse the
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range, this solution being used subsequently as the next initial solution etc. By

using a small step change in pressure ratio between calculations this approach is

very robust and converges quickly at each condition, as shown in Figure 4.14. Here

it should be noted that the scaling residual used in the �gure, the residual after the

�rst step, is already small. A reduction of just over two orders of magnitude in the

residual was found to be su�cient for the step size used. Further convergence did

not alter the solution. This usually required around 100 steps to achieve

1

but may

require up to 500 steps when a switch in shock re
ection type occurs. By contrast,

obtaining a converged solution (without the aid of a close initial solution) for the

end points of the pressure ratio range is far more demanding, requiring approxim-

ately 30 times the computational e�ort. The step change in pressure ratio used is

2.857, corresponding to a step change in reservoir stagnation pressure of 0.1 torr for

a background pressure of 35 mtorr in terms of the original experiments.

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 20 40 60 80 100

lo
g 

re
si

du
al

iterations

Figure 4.14: Convergence behaviour at each step

4.3.4 Grid

The grid generation for this case is straightforward due to the simple geometry. The

computational domain extends 70 nozzle throat diameters downstream in order to

1

corresponding to a CPU time of 950 seconds on a 200MHz Intel Pentium Pro processor
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capture at least two shock cells and 20 diameters radially from the symmetric line.

The grid within the nozzle consists of 58 and 21 points in the axial and radial dir-

ections respectively, this number having been determined from a grid convergence

study carried out independently of the plume calculations. The plume calculations

were also performed using a number of grids. The e�ect of the radial extent of

the computational domain was examined by comparing results for calculations with

grids extending 20 and 40 nozzle throat diameters from the symmetric line. The

results are identical, see for example Figure 4.15. It was also found that the grid

density in the radial direction can be surprisingly coarse compared to the axial dir-

ection, 65 points being su�cient. In order to obtain a grid converged solution, the

necessary axial grid density was much �ner. Results were obtained for three di�erent

levels of axial grid �neness, see Table 4.2. Using the grid convergence measure of

the calculated limits of the hysteresis loop, a grid converged solution was obtained

using 937 points in the axial direction. Centre-line values were also checked for grid

convergence, see Figure 4.16. For any given pressure ratio the grid is excessively �ne

in places, but since the location of the shock re
ections vary widely with pressure

ratio and the same grid was used in each case this was unavoidable.
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No: points Lower limit

1

Upper limit

2

along axis p

r

=p

b

X=D p

r

=p

b

X=D

469 200.0 || 202.9 14.10 || 13.14 434.3 || 437.1 21.02 || 18.81

937 214.3 || 217.1 14.55 || 13.41 334.3 || 337.1 18.32 || 16.50

1405 214.3 || 217.1 14.55 || 13.41 334.3 || 337.1 18.32 || 16.50

Table 4.2: Grid independence study for hysteresis loop

4.4 Results

4.4.1 Nozzle Calculations

Welsh[71] describes a series of experiments where the e�ect of varying the ratio of

reservoir stagnation pressure p

r

to background pressure p

b

on the plume of a highly

underexpanded nitrogen jet is examined. The reported shock re
ection hysteresis

phenomenon provided the motivation for this CFD study. In the experiments p

r

1

�rst value is highest pressure ratio not on MR curve, second is lowest ratio in loop

2

�rst value is highest pressure ratio in loop, second is lowest ratio not on RR curve



98 Shock Re
ection Hysteresis in an Underexpanded Jet

was varied and p

b

was kept constant. In this way the nozzle exit conditions as well

as the pressure ratio were varied. In addition, experiments were carried out for a

number of values of p

b

and for two di�erent nozzle sizes. It is di�cult then to isolate

the e�ect of the varying pressure ratio. For these reasons, as a preliminary to the

nozzle-plume study, it is useful to perform calculations for the nozzle alone in order

to examine the e�ect of the nozzle Reynolds number on the nozzle exit conditions.

This will help to put subsequent nozzle-plume calculations and comparison with

experiment in their proper context.

Calculations were performed for a range of reservoir stagnation pressures, from 2

torr to 70 torr, covering the range used in the experiments. The reservoir stagnation

temperature T

o

is constant at 288.0K and the two throat diameters used are 5.19

mm and 15.3mm. The Reynolds number based on throat conditions Re can then be

calculated for each p

r

, assuming sonic conditions at the throat, using the isentropic

relations and Sutherland's law for viscosity. The variation of Re with pressure ratio

for each nozzle is shown in Figure 4.17. The present CFD method was then used to

obtain results for the nozzle 
ow for a range of Re.

The calculated variation of the maximum nozzle exit Mach number M

exit

with

throat Reynolds number Re is shown in Figure 4.18. The crosses in the �gure,

which have been joined by straight lines, indicate the twenty calculation points.

Calculated pressure contours for Re = 800 are shown in Figure 4.19. As expected, as

Re decreases so does M

exit

, caused by the displacement e�ect of the boundary layer

decreasing the e�ective area of the divergent section of the nozzle. The thickness of

the boundary layer can be visualised from the Mach number plot Figure 4.20. The

magnitude of the trend con�rms that for each of the experiments the nozzle exit

conditions vary signi�cantly.
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Figure 4.19: Pressure contours, nozzle calculation, Re = 800.0

Figure 4.20: Mach number contours, nozzle calculation, Re = 800.0
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4.4.2 Hysteresis Loop

The calculated shock re
ection type and distance variation with pressure ratio is

shown in Figure 4.21. The Reynolds number was kept constant, as discussed below.

The shock re
ection distance is the axial distance (X

sr

) from the nozzle exit to the

centre of the �rst centre-line regular re
ection or Mach disc, non-dimensionalised

with respect to the nozzle throat diameter (D). The �gure shows how for a small

range of pressure ratios either regular re
ection (RR) or Mach re
ection (MR) may

occur. Which condition prevails depends on the time history of the plume devel-

opment, in accordance with experimental observation. Selecting, for example, the

pressure ratio value of 300 in Figure 4.21, the corresponding point on the RR(MR)

curve will be reached if the condition immediately prior was also on the RR(MR)

curve. The arrows on the �gure indicate the \
ip" in re
ection type which occurs

at the limits of the hysteresis loop. From this �gure it can be concluded that the

quasi-steady approach (section 4.3.3) has been successful, at least qualitatively, in

modelling the shock re
ection hysteresis phenomenon. A description of the plume

structures associated with RR and MR is included in section 4.4.3.

Figure 4.22 shows the extent of the calculated hysteresis loop compared with

the data from experiments[71]. The scatter in the experimental results should be

explained. Each experiment was carried out with a constant background pressure

and varying reservoir stagnation pressure, with the result that the nozzle Reynolds

number is not constant. This is illustrated in Figure 4.17 which shows the e�ect of

the varying stagnation pressure on the throat Reynolds number for the nozzles used

in the experiment. The e�ect of a varying nozzle Reynolds number on the maximum

exit Mach number for these nozzles is shown in Figure 4.18. Thus for each of the

experiments it is di�cult to examine the e�ect of a varying pressure ratio when the

Reynolds number and nozzle exit conditions are not constant.

With this is mind, the present calculations were performed with a constant throat

Reynolds number of 4000 and a varying pressure ratio, which in e�ect models varying

background pressure and constant nozzle conditions, thus enabling examination of

the pressure ratio in
uence independently. Although we cannot expect close agree-

ment with the experiments for this reason, we can at least conclude from Figure



102 Shock Re
ection Hysteresis in an Underexpanded Jet

6

8

10

12

14

16

18

20

22

24

0 100 200 300 400 500 600 700

R
ef

le
ct

io
n 

D
is

ta
nc

e 
( 

X
sr

 / 
D

 )

Pressure Ratio ( pr / pb )

Mach Reflection

Regular Reflection

Figure 4.21: Distance to re
ection for range of pressure ratios, Re = 4000

4.22 that our present calculation of the location of the hysteresis loop is reasonable

in terms of both pressure ratio and re
ection distance. Comparison will be made

in the remainder of this chapter with the experimental conditions where the value

of Re in the reported dual solution domain is closest to our constant value, namely

the case with D=15mm, p

b

=35mtorr where the value of Re varies between approx-

imately 3500 and 4500 in the dual solution domain. The calculated Mach number

on the axis immediately upstream of the �rst shock re
ection is plotted in Figure

4.23 for a number of representative points in the pressure ratio range. Within the

dual solution domain, a higher Mach number is reached before the shock re
ection

in the regular re
ection cases. This trend is discussed in section 4.4.3.

Across most of the pressure ratio range the predicted re
ection type matches

the experimentally observed type. Very good agreement between calculated and

experimental temperature pro�les was achieved in these cases. Figures 4.24 to 4.43

show several comparisons. Note that absolute temperatures are shown here, the

ambient temperature being 288K. The experimental data[71] was obtained using

a non-intrusive measurement technique, with expected accuracy of �5%. Figures

4.24 to 4.34 compare temperature results on the plume centre-line and across sev-

eral radial sections respectively for a regular re
ection at p

r

=p

b

= 228:6. Figure 4.24
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shows a good prediction of the regular re
ection location, indicated by the sharp rise

in temperature, and downstream of the re
ection agreement is also good although

temperature is slightly over-predicted. The radial temperature pro�le comparisons

for regular re
ection show good agreement. Figure 4.28 for example shows good

agreement in the temperature pro�les at an axial position downstream of the �rst

regular re
ection. At the centre-line the temperature is high since the gas has been

compressed by the incident and re
ected shock and has yet to re-expand. Moving

across the plume, there is a sharp decrease in temperature as the re
ected shock is

traversed. The fast moving gas in the shock layer behind the incident shock, which

has yet to be processed by the re
ected shock, is shown by the temperature trough.

The temperature recovers through the shock layer to the ambient value. The dif-

fering behaviour at the centre-line in Figure 4.25 is because X=D = 14:84 is just

upstream of the predicted shock re
ection distance, but is at the experimentally

observed shock re
ection distance. Figures 4.35 to 4.43 compare temperature res-

ults on the plume centre-line and across several radial sections for a Mach re
ection

at p

r

=p

b

= 328:6. Good agreement is also demonstrated here. The di�ering beha-

viour near the centre-line in Figure 4.36 is because X=D = 16:28 is just downstream

of the predicted shock re
ection distance, but just upstream of the experimentally

observed shock re
ection distance. Note that in Figure 4.37 the calculated temper-

ature reaches the stagnation value of 288K after the Mach disc, implying that the


ow has stagnated. This will be discussed in section 4.4.3.

In section 4.2.4 it is described how in the case of two dimensional shock re
ection

hysteresis the limits of the dual solution domain can be calculated from knowledge

of the Mach number upstream of the re
ection and the incident shock angle. In

principle a similar analysis is possible here; the Mach number and local shock angle

can be obtained from the CFD results, and the theoretical limits to the dual solution

domain calculated and compared with the numerical results. However, this approach

was not successful since the shock angles are di�cult to measure accurately from

�eld plots due to curvature of the shock and shock smearing. Other aspects of the

analysis of the computational results are also hampered by this problem, as discussed

in section 4.4.3.
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Figure 4.24: Centre-line temperature, regular re
ection
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Figure 4.26: Temperature pro�le at X=D = 15:17, regular re
ection
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Figure 4.27: Temperature pro�le at X=D = 15:49, regular re
ection
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Figure 4.28: Temperature pro�le at X=D = 15:82, regular re
ection
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Figure 4.29: Temperature pro�le at X=D = 16:47, regular re
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Figure 4.30: Temperature pro�le at X=D = 17:12, regular re
ection
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Figure 4.31: Temperature pro�le at X=D = 17:77, regular re
ection
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Figure 4.32: Temperature pro�le at X=D = 18:42, regular re
ection
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Figure 4.33: Temperature pro�le at X=D = 19:08, regular re
ection
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Figure 4.34: Temperature pro�le at X=D = 19:73, regular re
ection
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Figure 4.35: Centre-line temperature, Mach re
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Figure 4.36: Temperature pro�le at X=D = 16:28, Mach re
ection
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Figure 4.37: Temperature pro�le at X=D = 16:93, Mach re
ection
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Figure 4.38: Temperature pro�le at X=D = 17:58, Mach re
ection
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Figure 4.39: Temperature pro�le at X=D = 18:23, Mach re
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Figure 4.40: Temperature pro�le at X=D = 19:53, Mach re
ection
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Figure 4.42: Temperature pro�le at X=D = 22:14, Mach re
ection
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4.4.3 Plume Structure

Presentation of Results

It is useful here to include a note on the sequence in which the results are presented.

The �gures appear out of sequence when referenced from the text; this is because

all of the �eld plots (whether for RR or MR) are grouped together, followed by the

centre-line plots, in this way aiding comparison of �gures. It should be noted that the

�eld plots of the CFD results presented in this section agree well with the excellent


ow visualisation photographs included in the report on the experiments[71].

Regular Re
ection

Figure 4.44 shows calculated density contours for a pressure ratio p

r

=p

b

= 185.7

which lies in the regular re
ection range. The �gure clearly shows the repeated

shock cell pattern typical of this regime. Figures 4.45 to 4.47 show a detail of the

second shock cell including the incident shock from the �rst cell and re
ected shock

at the beginning of the third. Pressure contours, Mach contours, velocity vectors

and streamlines are shown. For clarity velocity vectors are shown for only every

�fth grid cell in the axial direction and every fourth in the radial direction. From

these �eld plots the important elements of the plume structure can be visualised.

On exiting from the nozzle (on the left hand side of Figure 4.44) the air is at a

higher pressure than the ambient air and expands sharply, increasing the cross-

sectional area of the plume. Expansion waves re
ect from the free jet boundary as

compression waves, and in so doing turn the jet boundary towards the axis. The

curved nature of the jet boundary causes the compression waves to coalesce and form

an oblique shock wave, the incident shock labelled. Air passing through this shock

is turned back towards the axis and collects in a shock layer of increasing density,

causing the shock itself to turn further towards the axis. This is also encouraged by

the increasing Mach number of the air before the shock in the still expanding core


ow, whose pressure now lies below the background pressure. The axisymmetric

shock intersects the axis and is re
ected as another oblique shock. This Regular

Re
ection is analogous to the Regular Re
ection in two dimensional uniform 
ow

discussed in Chapter 4.2. The shock re
ection is the mechanism through which the
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condition of axial 
ow on the centre-line is achieved; after the incident shock the


ow is converging on the axis and is then turned away by the re
ected shock. The


ow direction can be clearly seen from the streamlines in Figure 4.47. Immediately

downstream of the re
ection point the air being processed by the re
ected shock is

of increasing density due to the accumulated shock layer, turning the shock towards

the axis. This tendency is quickly overtaken by the rapidly re-expanding core 
ow

which causes the shock to turn outwards again towards the jet boundary. The

change in curvature of the re
ected shock is best seen in Figure 4.45. The shock

is re
ected as expansion waves by the free jet boundary which is turned back away

from the axis. This expansion reinforces the expansion of the under-expanded core


ow, and initiates another shock cell when the expansion waves again re
ect from

the jet boundary. The pattern is repeated, its strength gradually lessening, until

the structure is destroyed by diminishing pressure ratio and mixing.

Figures 4.55 to 4.58 show calculated centre-line distributions of pressure, density,

Mach number and axial velocity. Regular re
ections arising for three pressure ratios

are shown; p

r

=p

b

= 334.3 is the highest pressure ratio for which regular re
ection

occurs (a limit of the hysteresis loop), p

r

=p

b

= 57.1 was the lowest pressure ratio

considered and p

r

=p

b

= 185.7 was selected as an intermediate point. The ragged

peaks to the pressure and density curves for the lower pressure ratio cases are pos-

sibly explained by the interaction of the shock layer behind the incident shock with

the re
ected shock. It is interesting to note that upstream of the interactions all

of the curves are coincident. Despite the fact that the cross-sectional area of the

plume increases with pressure ratio, the core expansion along the axis appears to

be independent of pressure ratio until the re
ection occurs. From Figure 4.57 it can

be seen that the 
ow behind the �rst regular shock re
ection may become subsonic.

From the present calculations, the lowest pressure ratio at which this occurs is p

r

=p

b

= 171.4 and as the pressure ratio increases in the regular re
ection range the sub-

sonic region becomes larger and the minimum Mach number smaller. At the upper

limit of the RR range (p

r

=p

b

= 334.3) the subsonic region is 2.65 throat diameters in

length with a minimum Mach number of 0.26 . More will be said about the region

of subsonic 
ow in section 4.4.3.
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Mach Re
ection

As the ratio of nozzle exit to background pressure increases, the amount of expansion

at the nozzle exit increases and the shock cell grows in size. As the pressure ratio

increases, the angle at which the incident shock intersects the axis increases. This

is a trend which is evident from comparison of contour plots for various pressure

ratios, but the actual angle is di�cult to measure precisely due to the curvature of

the shock and its apparent thickness in the CFD results due to shock smearing. The

increasing angle has the result that the 
ow behind the incident shock is de
ected

more towards the centre-line. The stronger incident shock also results in a greater

decrease in Mach number across the shock, an e�ect which is countered by a greater

Mach number in the core 
ow upstream of the incident shock, as shown in Figure

4.23. The shock de
ection angle necessary for a re
ected shock to re-align the 
ow

is thus increasing, and at the same time the Mach number between shocks may be

decreasing. A point is reached where an oblique shock solution for the required

� given M

1

is not possible. The re-alignment is in this case achieved via a Mach

re
ection, which consists of a normal shock called a Mach disc and a curved oblique

shock, see Figures 4.48 to 4.51. The 
ow is subsonic behind the Mach disc, but is

supersonic behind the oblique shock. These areas are separated by a slip line which

emanates from the triple point where all three shocks meet. Downstream of the

Mach disc, the 
ow re-expands to become supersonic and initiates a second shock

cell in a similar fashion to the case of regular re
ection. As the pressure ratio is

increased further, the shock cell grows in size, and the incident shock angle upstream

of the triple point continues to steepen. This Mach Re
ection is analogous to the

Mach Re
ection in two dimensional uniform 
ow discussed in Chapter 4.2.

A recirculation zone was predicted behind the Mach disc, see for example Figures

4.51 and 4.52. This surprising result was �rst reported by Martin Gilmore at DERA

Farnborough for an as yet unpublished single calculation in the MR region. This

feature is predicted in the present results for all the pressure ratios examined in the

MR range. As can be seen from Figures 4.49 and 4.59, immediately downstream

of the Mach disc the pressure is still increasing; this pressure gradient appears to

be driving the recirculation. An explanation for the continuing increase in pressure
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is that immediately downstream of the Mach disc the gas being processed by the

re
ected oblique shock is of relatively high density due to the accumulation in the

incident shock layer.

The calculated Mach disc is curved, convex if viewed from upstream, for each of

the pressure ratio values examined. The amount of curvature increases slowly with

pressure ratio. The curvature is apparent in Figures 4.49 and 4.50. This curvature

implies that the 
ow is being turned away from the axis at the triple point. This

corresponds to an Inverted Mach Re
ection following Hornung's classi�cation [90].

However, due to the curvature of all three shocks and their apparent thickness in

the present results it is di�cult to precisely identify the location of the triple point

and verify the Mach Re
ection type. The 
ow direction changes signi�cantly in the

locality of the triple point, see Figure 4.52.

Figures 4.59 to 4.62 show calculated centre-line distributions of pressure, density,

Mach number and axial velocity. Mach re
ection results for three pressure ratios are

shown; p

r

=p

b

= 217.1 is the lowest pressure ratio for which Mach re
ection occurs

(the lower limit of the hysteresis loop), p

r

=p

b

= 685.7 was the highest pressure ratio

considered and p

r

=p

b

= 342.9 was selected as an intermediate point. As also shown

in the regular re
ection results, upstream of the interactions all of the curves are

coincident. From Figure 4.62 it can be seen that the 
ow behind the Mach disc

reverses. At the lower limit of the hysteresis loop (p

r

=p

b

= 217.1) the subsonic

region is 5.58 throat diameters in length. At the highest pressure ratio considered

(p

r

=p

b

= 685.7) the subsonic region is 8.82 throat diameters in length.

The shock re
ection type in the subsequent shock cells downstream of the �rst

was calculated to be regular in all cases, as shown in Figure 4.61 where the 
ow

is supersonic following the second (and third) sudden compressions. However, this

study has concentrated on the �rst shock cell and no grid independence study was

carried out for the other cells.

Dual Solution Domain

Figures 4.53 and 4.54 show calculated density contours for both MR and RR for

the same pressure ratio (p

r

=p

b

= 285.7), a condition which lies in the dual solu-

tion domain. Note that upstream of the �rst shock re
ection no di�erence in the
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ow behaviour can be detected. This point is supported by Figures 4.63 to 4.67

where centre-line distributions of pressure, density, Mach number, axial velocity

and temperature are compared for the same calculations. Upstream of the �rst

shock re
ection the curves are coincident. It is also clearly shown in these �gures

that the MR occurs slightly upstream of the corresponding RR, allowing a greater

initial expansion in the RR case.

Pseudo-Mach Re
ection

There is some evidence to suggest that the regular re
ections discussed above are

in fact Mach re
ections with a Mach disc of small diameter. In Figure 4.46 there

appears to be a slip line behind the `regular' re
ection; compare with the stream

line behind the Mach re
ection in Figure 4.50. As already noted in section 4.4.3

there is a signi�cant subsonic region behind the `regular' re
ections at the higher

pressure ratios. On close examination of the pressure contours in the region around

the re
ection (see Figure 4.45) there is an apparent Mach disc of approximately

three grid cells in radius. As discussed in section 4.3.4 the criterion used in the grid

independence study is the calculated hysteresis loop limits and not the resolution of

any particular 
ow feature. However, re�nement of the grid in this area by a factor

of ten had no impact on this feature. It appears that two di�erent levels of Mach

re
ection are occurring. Referring to the pressure-de
ection diagrams introduced

in section 4.2.3 the situation is complicated because the incident shocks are in this

case curved. The condition (1) on the I polar could be in several di�erent locations

for the same incident shock because the de
ection � varies along the shock and

conditions upstream of the shock are varying along its length. Consider an inverted

Mach re
ection, see Figure 4.2(f), in the underexpanded jet plume. As the pressure

ratio is decreased from this condition the re
ection type may suddenly change not

to regular re
ection but to an entirely di�erent Mach re
ection with a much smaller

Mach disc. A possible location for the point (1) relative to its IMR location is at a

greater � value, corresponding to a longer incident shock which is steeper at the triple

point and a smaller Mach disc. Such a re
ection is represented in the (p; �) plane

by Figure 4.2(c). As discussed in section 4.2.3, a dual solution domain can exist in

the simpler case of the re
ection of a straight, planar shock wave. Examination of
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the problem via (p; �) diagrams does not provide information about the Mach stem

length. Applied to the case of a curved incident shock this implies that multiple

Mach re
ection solutions are possible.

In the initial test programme it was assumed that a regular re
ection was oc-

curring, so the present results showing a `pseudo-Mach re
ection' were surprising.

However, subsequent tests[107] have indicated that what had been previously ac-

cepted as a regular re
ection is in fact a very small diameter Mach re
ection. In

addition, it has been argued that a true axisymmetric regular re
ection cannot ex-

ist, with the results of numerical experiments presented as evidence[108]. This very

small diameter Mach re
ection has been termed an apparent regular re
ection.

Figure 4.44: Density contours showing regular re
ection, p

r

=p

b

= 185.7
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Figure 4.45: Pressure contours showing regular re
ection, p

r

=p

b

= 185.7
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Figure 4.46: Mach number contours showing regular re
ection, p

r

=p

b

= 185.7
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Figure 4.47: Velocity vectors and streamlines showing regular re
ection, p

r

=p

b

=

185.7

Figure 4.48: Density contours showing Mach re
ection, p

r

=p

b

= 342.9
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Figure 4.49: Pressure contours showing Mach re
ection, p

r

=p

b

= 342.9
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Figure 4.50: Mach number contours showing Mach re
ection, p

r

=p

b

= 342.9
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Figure 4.51: Velocity vectors and streamlines showing Mach re
ection, p

r

=p

b

= 342.9

Figure 4.52: Detail of velocity vectors and streamlines showing Mach re
ection, p

r

=p

b

= 342.9
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Figure 4.53: Density contours showing regular re
ection, p

r

=p

b

= 285.7

Figure 4.54: Density contours showing Mach re
ection, p

r

=p

b

= 285.7
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Figure 4.55: Centre-line pressure distribution, regular re
ection

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60 70

D
en

si
ty

 (
  ρ

 / 
ρ r

 )

Axial Distance ( X / D )

pr/pb =   57.1
pr/pb = 185.7
pr/pb = 334.3

Figure 4.56: Centre-line density distribution, regular re
ection
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Figure 4.57: Centre-line Mach no. distribution, regular re
ection
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Figure 4.58: Centre-line axial velocity distribution, regular re
ection
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Figure 4.59: Centre-line pressure distribution, Mach re
ection
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Figure 4.60: Centre-line density distribution, Mach re
ection
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Figure 4.61: Centre-line Mach no. distribution, Mach re
ection

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 10 20 30 40 50 60 70

A
xi

al
 V

el
oc

ity
 (

 v
z 

/ a
r )

Axial Distance ( X / D )

pr/pb = 217.1
pr/pb = 342.9
pr/pb = 685.7

Figure 4.62: Centre-line axial velocity distribution, Mach re
ection
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Figure 4.63: Centre-line pressure comparison, regular and Mach re
ection

0

0.02

0.04

0.06

0.08

0.1

0 10 20 30 40 50 60 70

D
en

si
ty

 (
  ρ

 / 
ρ r

 )

Axial Distance ( X / D )

RR , pr/pb = 285.7
MR , pr/pb = 285.7

Figure 4.64: Centre-line density comparison, regular and Mach re
ection
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Figure 4.65: Centre-line Mach no. comparison, regular and Mach re
ection
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Figure 4.66: Centre-line axial velocity comparison, regular and Mach re
ection
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4.4.4 Discussion

A hysteresis e�ect has been predicted in the shock re
ection type of an axisymmet-

ric jet plume for a range of pressure ratios and a constant Reynolds number. The

predicted hysteresis loop agrees well with experimental results where the Reynolds

number was also varying. The predicted temperatures in the jet plume agree well

with experimentally recorded values. Field plots of the results which enable visual-

isation of the plume structure also agree well with the excellent 
ow visualisation

images included in the original report. Having gained con�dence in the accuracy of

the simulation, the detail obtained from the CFD analysis was used to examine a

number of 
ow features not recognised in the original experimental study. These fea-

tures are Mach disc curvature, recirculation and continuing compression behind the

Mach disc and the presence of a small diameter Mach disc in the apparent regular re-


ection. The possible existence of multiple Mach re
ection solutions agrees with the

shock re
ection theory discussed in section 4.2. Further use of shock re
ection the-

ory in comparing the present axisymmetric results with established two-dimensional

theory was hampered by di�culties measuring shock angles due to shock curvature
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and smearing. A study of the shock re
ection hysteresis in isolation rather than

in the context of a jet plume would be much simpler to perform and could lead to

a clearer understanding of the mechanisms involved, without the complications of

curved shocks, shear layers etc. A full analysis of the present computational res-

ults using the methods used for the problem of two dimensional shock re
ection

hysteresis in uniform 
ow would require more accurate shock wave resolution than

achieved in the present study. The success of the present study gives con�dence that

the same methods could be applied to promote the understanding of other shock

interaction phenomena in the same series of experimental studies[107].

4.5 Conclusion

In this chapter the application of a CFD method to examine shock re
ection hys-

teresis in an underexpanded jet plume has been described. Included in the study

is a review of two-dimensional shock re
ection hysteresis which has been useful in

establishing theoretical background and terminology, and has also highlighted some

remaining gaps in the understanding of this phenomenon. The interpretation of the

CFD results against this theoretical background and combined with experimental

data has contributed to the understanding of the plume structure and hysteresis

phenomenon. The value of CFD as a scienti�c investigation tool for this type of

problem has been clearly demonstrated, along with the wider potential of applying

CFD to other problems where the role of experiments is limited.
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Pre-Processing and Calculation

Issues





Chapter 5

Towards Automatic Multiblock

Topology Generation

5.1 The need for automation

5.1.1 Introduction

Multiblock or zonal structured grids remain a popular choice in CFD. This ap-

proach involves an unstructured arrangement of blocks with structured grids which

conform with the problem geometry. The alternatives of unstructured, Cartesian,

hybrid structured-unstructured and overset (Chimera) grids each have their own

advantages and disadvantages. The choice of which one to use is di�cult, an es-

sential element of which is a compromise between the relative complexity of grid

generation and 
ow solution. Multiblock grids a�ord the advantage of easier cal-

culation management and lower operation counts and memory requirements due to

their inherent structure, but grid generation for complex con�gurations is problem-

atic and time-consuming. The subject of which method to choose is not discussed

further here, for an introduction to the issue see [109],[24]. Here we are interested

in the multiblock grid generation procedure, and note that to address its particular

problems is relevant and useful since simulation using multiblock grids is popular.

For some recent examples of its application see [110],[111],[112],[113].
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5.1.2 Elements of the analysis process

Figure 5.1 shows a schematic diagram of the elements of a CFD analysis using

multiblock grids. With modern CAD and graphical plotting software, the geometry

de�nition and results analysis stages present few problems. Numerous satisfactory

commercial packages exist for these tasks, with present work concentrating on im-

proving speed and extending capability although the basic tools are well established.

The 
ow solution stage is the subject of much ongoing research, but with modern

computing power even large scale simulations can be achieved with reasonable turn-

around times. The primary obstacle to obtaining accurate 
ow solutions is the lack

of a practical, accurate and general turbulence model.

GEOMETRY DEFINITION

MULTIBLOCK TOPOLOGY DEFINITION

TOPOLOGY OPTIMISATION/
GRID GENERATION

FLOW SOLUTION

RESULTS ANALYSIS

Figure 5.1: A CFD analysis process using the multiblock method

The bottleneck in the process occurs at the second and third stages. Even for

fairly simple geometries in two dimensions, the task of designing a suitable arrange-

ment for the grid blocks can be a demanding one. Each part of the problem geometry

requires a body conforming local arrangement of the blocks, for example a `C'-shaped

arrangement around an aerofoil, but these local patterns are often di�cult to match

as a coherent whole. The task of de�ning an appropriate block pattern is known as
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`topology generation'. In three dimensions the task can be daunting and requires

considerable skill. Fine adjustments of the curves and block faces making up the

topology and actually generating the grid to satisfaction can take man-months of

e�ort for complicated con�gurations like full aircraft. The need to facilitate the to-

pology and grid generation process by providing interactive graphical environments

speci�cally designed for the task was recognised nearly ten years ago [114],[115]. A

few years later Thompson and Weatherill [24] were able to list several commercial

packages providing this capability and subsequent development has continued apace.

Although these tools undoubtedly accelerate the process, the amount of time and

e�ort required for grid generation still impedes routine analyses for multiple geomet-

ries, especially for complex con�gurations. Progress towards the alternative goal of

fully or mostly automatic grid generation for arbitrary geometries [24],[115] has not

been as impressive. In Thompson's recent review paper [25] the need for automation

is particularly stressed. Real progress has been made by several authors but all of

the diverse approaches suggested to date require a degree of skilled user input. The

main problem is the di�culty in encapsulating the `art' of topology generation in a

programmable method. The approach of Dannenho�er[116],[117], which is an integ-

ral part of the National Grid Project[118], is probably the most advanced method

to date in terms of automating as much of the grid generation process as possible.

An abstract \topology plane" is employed initially to interactively design the topo-

logy, and block faces are automatically set up by the code. A stochastic process is

then employed to reduce the number of blocks. The user then proceeds to edit the

topology and construct the grid using a state-of-the-art GUI. Stewart[119],[120] em-

ploys a search algorithm with a directional probe to build a two-dimensional block

decomposition. This promising approach has proven di�cult to apply generally, and

it is unclear how well it could extend to three dimensions. The SAUNA[121] system

employs a library of known topologies; to generate a new grid with a known topology

is therefore straightforward, but for a new topology considerable e�ort is required

to add to the library. The ICEM-CFD system[122] can automatically generate local

topologies around recognisable components, after which the user must create the

remainder of the topology. Unstructured quadrilateral and hexahedral mesh gener-

ation techniques have also been employed to create block topologies[123],[124]. Note
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that the methods used are not fully automatic and appear to su�er from generality

problems. However, this type of approach appears very promising since a number

of general, fully automatic methods have been established in the parallel �eld of

structural mechanics. In Section 5.1.3 it will be suggested that a particular method

for initial topology generation possessing the characteristics required already exists

and has been well developed. There is therefore the potential to fully automate

one of the troublesome elements of Figure 5.1. Section 5.2 is the main part of the

present study. Having de�ned an initial multiblock topology, the actual shape and

location of the blocks must be de�ned. A new, straightforward method is proposed

for automatically adjusting both the relative placement of blocks and the shape of

the curves making up their edges. In this way the subsequent generation of the

block interior grids can take place with little or no recourse to further manual block

placement or edge shape modi�cation. This process is here called `topology pro-

cessing'. Together with established algebraic grid generation and elliptic smoothing

techniques this provides the potential for automation of the third stage in Figure

5.1. After a topology of good quality has been obtained, the task of generating the

grid proper in the interior of the blocks becomes straightforward using conventional

algebraic grid generation tools. Any remaining grid smoothness problems across

block boundaries can be treated using elliptic smoothing.

5.1.3 Automatic topology generation

A multiblock grid consists of an unstructured arrangement of structured grid blocks.

Traditionally the de�nition of this block arrangement is conceived by the expert user

who views the domain in question and imagines the best way to �ll it with blocks.

This is a skilled task, especially in three dimensions. An attempt to replicate the

expert's thought processes in code to produce an automatic tool would necessar-

ily involve shape recognition and trial and error as well as an appreciation of the

target 
ow solver's requirements for the grid. Rather than starting from scratch in

an attempt to create such a tool, a simpler alternative is possible. Since the topo-

logy consists essentially of unstructured quadrilateral blocks in 2D or unstructured

hexahedral blocks in 3D, it is possible that one or more automatic mesh genera-
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tion procedures developed for structural analysis could be suitable for generating

initial multiblock topologies. In this way the expert task of generating multiblock

topologies for each individual case can potentially be reduced to the expert task of

choosing an existing automatic mesh generation method which produces multiblock

topology-like results. Several automatic unstructured quadrilateral and hexahedral

mesh generation methods exist, see for example [125], the resulting meshes each hav-

ing there own attributes. An approach which generates results consistently striking

in their similarity to good multiblock topologies is the Medial Axis approach of Arm-

strong et al., see [126]-[130]. The method is based on a skeletonization technique

(where for example a 2D shape is encoded in an essentially 1D manner) which is

well known for its high quality of shape description. Intriguingly, the method was

initially proposed as a model for human shape perception, which perhaps explains

its ability to generate domain decompositions which �t geometries well, the main

requirement of a multiblock topology. This speculation aside, in the Medial Axis

approach there is an established automatic domain decomposition technique which

results in good quality unstructured quadrilateral or hexahedral meshes which ap-

pear to meet the requirements of multiblock decompositions. Of course an initial

topology formed in this way would consist of blocks with straight-sided faces. The

initial topology may also have other unwanted features such as poor orthogonality

at block corners and poorly shaped blocks which do not conform well with other

blocks and the problem geometry. The re-shaping of the initial topology for our

purpose is the subject of the next section.

5.2 Automatic topology processing

5.2.1 Rationale

Once the initial topology has been constructed, it is necessary to form the detailed

shape of the curves making up the edges of the blocks and to decide on the placement

of important points such as where a number of block corners meet. This process is

referred to here as topology processing. There is no generally applicable de�nition

of an optimal multiblock grid or topology. Di�erent grids and di�erent topologies



142 Towards Automatic Multiblock Topology Generation

can be used to obtain good results, see for example [131] where various grids and

topologies were employed to good e�ect on the same two-element aerofoil problem.

In the absence of a de�nite objective in optimising the topology, to achieve our goal

of obtaining an automatic procedure we instead attempt to model the actions of an

experienced grid generation engineer. Topology processing is achieved with modern

grid generation packages using an interactive Graphical User Interface (GUI). The

GUI enables simultaneous design and assessment of the topology but is very labour

intensive. The skill involved is to shape the topology in a manner which will allow the

generation of a grid with good characteristics such as orthogonality and smoothness.

These qualities are in themselves di�cult to de�ne as well as to achieve, which is

one reason why grid generation is often referred to as an art as well as a science. An

engineer experienced in multiblock grid generation soon recognises certain simple

elements to this process however; in this section it is argued that these elements can

be formulated in a cost function which can be used to quantify the quality of the

topology. To simulate the interactive operations of an engineer the cost function

can then be minimised to achieve a topology of good quality. The cost function will

be constructed using geometric considerations only. In some cases another factor

in grid generation, including the topology design, is the expected behaviour of the


ow itself; notably grid lines can be deliberately aligned with streamlines and shock

waves. Topology design based purely on geometry will in many cases be su�cient,

and at the least will provide an advanced starting point for further modi�cation

based on the actual 
ow.

In Section 5.1.3 it was discussed how an unstructured mesh generation method

can provide an initial topology de�nition. An ideal initial topology generator would

produce topologies which would require no processing, this stage could be by-passed

and grid generation could proceed directly. Even if the topology generator produced

straight-sided blocks, elliptic smoothing could be su�cient to provide a smooth grid

especially if a large number of small blocks were used. However, although it is

di�cult to quantify how much poor quality in a block topology elliptic smoothing

can cure, there does not appear to be at present an automatic, unstructured quad-

rilateral/hexahedral mesh generation method which can deliver the ideal level of

topology quality. Even the most promising method available for this application,
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the Medial Axis approach discussed in Section 5.1.3, would require signi�cant addi-

tional re�nement of block edge shape and singular point location, which is too much

to demand of elliptic smoothing in the general case.

5.2.2 Curve de�nitions

In the present study each curve or block edge is de�ned simply as consisting of

straight line segments joining p equally spaced points with index j, see Figure 5.2.

To simplify programming, all curves have p points irrespective of the actual curve

length or shape. The initial location of the points is obtained by interpolation from

the initial topology de�nition. A straight line segment approach cannot provide a

high quality of shape description without using an excessive number of data points.

However, since these curves are used here only to de�ne internal block boundaries,

onto which a spline can be �tted for algebraic grid generation and across which

elliptic smoothing may be employed, such a de�nition is adequate. Note that al-

though the problem geometry is also represented by straight line segments during

the topology processing, the problem geometry is �xed and the original de�nition

can be recalled on proceeding to the grid generation stage.

5.2.3 Cost function

Figure 5.3 shows a multiblock grid for the NLR 7301 wing/
ap con�guration which

has been used in a CFD study where excellent agreement with experiment was

obtained[132]. Figure 5.4 shows the topology de�ned by the block edges, and Figure

5.5 shows a detail of this around the 
ap. Reference will be made to these �gures

to help illustrate the objectives of the cost function construction.

In Figure 5.5, there are two points in the vicinity of the 
ap leading edge where

�ve blocks corners meet. Here the designer must consider how best to set the block

corner angles. Structured grid 
ow solvers give most accurate results when the grid

cells are orthogonal since this minimises the truncation error associated with the

discretisation. When four blocks meet at a point, as shown in Figure 5.6(a), it is

therefore desirable to ensure that the angle � in the corner of each block is as close

as possible to a right-angle. Similarly when three, �ve or more blocks meet at a
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Figure 5.2: Curve de�ned as straight line segments

point, as shown in Figures 5.6(b) and 5.6(c), it is desirable to have the same value

for � in each of the block corners so that no one block corner has cells with a large

deviation from orthogonality. In our cost function we therefore penalise deviation

of the vertex angles �

i

for each block corner or vertex i. A simple way of achieving

this is to write the cost C

v

associated with block vertices

C

v

=

v

X

i=1

�

�

i

�

�

2

�

1:1

(5.1)

where v is the total number of vertices. In this way where four blocks meet at a point

the cost is zero if all of the block corners form right angles, and the cost increases

sharply on deviation from this. Since the exponent is greater than one, when a

number of blocks other than four meet at a point the minimum cost is incurred

when all the block corner angles are equal. A value of 2 was used initially for the

exponent, but the cost incurred when other than four blocks would meet at a point

rendered other costs insigni�cant.

Figure 5.3 shows a grid with good smoothness properties. On examining �gure

5.4, it is evident how the shape of the interior block edges follows the shape of the



5.2 Automatic topology processing 145

Figure 5.3: Multiblock grid for NLR 7301 wing/
ap con�guration

Figure 5.4: Block topology for NLR 7301 wing/
ap con�guration
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Figure 5.5: Detail of block topology around 
ap

θ
θ

(a) (b)

(c)

θ

Figure 5.6: Several block corners meeting at one point
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Figure 5.7: Measurement of shape-following cost element

aerofoil surfaces to contribute to this smoothness. Grid smoothness is possible only

if gradual changes in the curvature of adjacent grid lines are permitted. Consider

Figure 5.7 where two blocks are shown which share a common edge q. To encourage

grid smoothness between the block edges p and r the shape of q will ideally represent

a transition from the shape of p to r. The closer q is to p, the more closely the

shape of q should follow that of p, and the more the in
uence of r should diminish.

A cost element C

s

to penalise poor `shape-following' has been constructed as

C

s

=

c

X

i=1

p�1

X

j=2

(

b

i

a

i

+ b

i

�

A

i;j

a

i

�

2

+

a

i

a

i

+ b

i

�

B

i;j

b

i

�

2

)

(5.2)

A

i;j

= a

i;j+1

� 2a

i;j

+ a

i;j�1

B

i;j

= b

i;j+1

� 2b

i;j

+ b

i;j�1

where c is the total number of curves. On each curve i there are p equally spaced

points. The distance from the point j on the curve i to the corresponding point on

an opposing block face is labelled a

i;j

as indicated in Figure 5.7. The quantity A

i;j

is
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Figure 5.8: Measurement of block expansion cost element

therefore a measure of how well the local curvature of p is following that of q. This

is summed over the length of the curve. Each curve in the interior of the domain (i.e.

each curve that does not de�ne a �xed geometry) has two opposing counterparts;

a

i;j

and b

i;j

are the distance measures to each. To ensure greater in
uence of curves

in close proximity, the in
uence on curve i of each opposing curve is scaled by their

average separations a

i

and b

i

from i, de�ned as

a

i

=

1

p

p

X

j=1

a

i;j

(5.3)

b

i

=

1

p

p

X

j=1

b

i;j

(5.4)

The construction of a cost function element to model shape-following is not straight-

forward. The engineer with experience of multiblock grid generation can readily

recognise when blocks are well shaped, but how to de�ne what this means in terms

of gradients, curvatures etc. is not obvious. The cost element (5.2) tries to match

local curvature. The de�nition of the gradients at the curve ends is then important
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to the success of the method. A previous attempt at constructing a cost element

was based on local gradient rather than curvature. Referring to Figure 5.7, this

worked very well for cases where the curves p and r have approximately the same

orientation as q, but becomes a poor measure of shape-following otherwise.

In Figure 5.4 the blocks are fairly regularly shaped in that none of the blocks

expand in size very sharply. If a block expands too sharply, then cell orthogonality

and grid smoothness can be adversely a�ected in the block interior. Figure 5.8 shows

two blocks sharing a common edge of length l. The opposing edges have lengths l

a

and l

b

. A cost element C

e

to penalise sharp block expansions has been constructed

as

C

e

=

c

X

i=1

�

(l

i

� l

a

i

)

2

l

i

a

i

+

(l

i

� l

b

i

)

2

l

i

b

i

�

(5.5)

The total cost C

t

associated with the quality of the topology can then be written as

C

t

= k

v

C

v

+ k

s

C

s

+ k

e

C

e

(5.6)

where k

v

, k

s

, k

e

are positive constants which de�ne the relative importance of the

cost elements. Appropriate values for these constants were found by experimentation

using simple model cases and veri�cation on more complex cases, see Section 5.2.4.

5.2.4 Cost function minimisation

Equation (5.6) de�nes a cost function which measures the quality of a multiblock

topology. This cost function is minimised in order to obtain a topology of good

quality. The resulting topology is referred to as the `processed' topology. To do

this, a straightforward iterative improvement technique is employed. The number

of points p de�ning each curve is chosen as the minimum number which give a

suitable de�nition of the problem geometries, typically between 8 and 40. A point

on one of the c curves is chosen at random. Two random numbers between -1 and

1 are multiplied by the pre-de�ned maximum displacement distance d

max

, and the

selected point is displaced in the x and y directions by each result respectively,

remembering that a point may belong to more than one curve. Points on curves

de�ning the domain boundaries, i.e. on \exterior" edges, are not permitted to
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move. If the total cost of the modi�ed topology has been reduced then the move is

accepted. Otherwise the move is rejected and the former position of the displaced

point is recalled. A large number Nc of trial moves are attempted, N being some

large integer.

In the cost elements (5.2) and (5.5) the quantities a

i

and b

i

are used as scaling

factors. In implementing the cost function minimisation procedure, care must be

taken to ensure that the block shapes are not being inadvertently altered to maximise

these quantities in order to minimise the cost (they are on the denominator). To

achieve this they are evaluated infrequently, every 100 successful trial moves.

It is well known that simple iterative improvement does not provide a mechan-

ism for avoiding local minima. Careful selection of the trial moves can help avoid

this problem. Trial moves of curve sections as well as single points were employed.

Although this helps to avoid local minima to some extent, this simple approach to

cost function minimisation could be improved upon, as will be discussed in Section

5.3.1. It is considered su�cient however for the task of demonstrating the general

method. As will be demonstrated below for a number of test cases, iterative im-

provement has succeeded in �nding a good enough local minimum where the block

topology properties have clearly been improved in terms of preparation for the grid

generation stage.

5.2.5 Calibration test cases

A simple test case was constructed, consisting of two blocks sharing a common edge,

in order to �nd appropriate relative magnitudes of k

v

and k

s

in equation (5.6). For

these tests k

e

was set to zero. Figure 5.9 shows some representative results for a

number of cases where k

s

= 1:0 and the magnitude of k

v

was varied. The curve

de�nition p = 10 was used. With k

v

= 0:0 the shape-following cost is the only

non-zero part of the cost function. As expected the shape of the resulting curve lies

somewhere between the straight line of the left-hand opposing curve and the greater

curvature of the right-hand opposing curve. As k

v

is increased the tendency for the

ends of the curve to form right angles at the block corners increases, eventually to

the detriment of the overall shape. A good compromise is found at values around
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0.0
0.001

0.01

Figure 5.9: Test case to �nd value for k

v

Figure 5.10: Test case to check shape-following
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k

v

= 0:001 (with k

s

= 1:0), at which condition the e�ect of the cost associated with

corner angles becomes noticeable. For this case the �nal cost becomes converged

to three signi�cant �gures for N = 15000. A set of similar tests was carried out to

ensure that the proximity of opposing block edges has the desired in
uence on the

shape-following cost. Keeping k

v

= 0:001 and k

s

= 1:0, the location of the common

edge was varied; the results are shown in Figure 5.10. Note that the original result

with a central common edge is shown with the other results superimposed. There

is a smooth transition in curve shape as required.

An eight block grid for a single element aerofoil was used to determine a suitable

value for the block expansion cost coe�cient k

e

. Figure 5.11 shows the initial topo-

logy, taken from a grid known to be of good quality which has been used successfully

in a CFD study[33]. The �gure also shows a processed topology obtained by setting

k

s

= 1:0, k

v

= 0:001 and k

e

= 0:0. For this case the curve de�nition p = 20 was used

and the �nal cost becomes converged to three signi�cant �gures for N = 20000. The

result obtained using k

e

= 0:0 is satisfactory in this case since the initial topology

used does not contain blocks with an unacceptable block expansion rate. However,

following the same approach as for k

v

, gradually increasing the value of k

e

should

indicate a value where the block expansion cost element begins to have an e�ect

but is not yet dominating the other cost elements. Figure 5.12 shows the e�ect of

varying the value of k

e

. The block expansion cost element begins to take e�ect for

values of k

e

around 0.001; in the �gure for this value the block edge emanating from

the aerofoil leading edge has been stretched slightly to match the length of the block

edges emanating from the trailing edge. For lower values of k

e

there is no e�ect,

and for higher values the block expansion cost begins to swamp the other cost ele-

ments, as shown in the �gure where the processed topology for k

e

= 0:01 has poor

shape-following and block corner angle charactersistics. These two examples have

indicated appropriate values for the coe�cients in equation (5.6) and demonstrated

that the method works well for simple cases. Encouraged by this, the method will

now be applied to other existing multiblock topologies from real problems, in order

to examine how the method performs on topologies which are known to be already

of good quality and to check that no deleterious e�ects are experienced, before mov-

ing on to more realistic test cases. The same coe�cients will be used throughout as
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original
0.0

Figure 5.11: Block expansion test case, initial topology and processed topology with

k

e

= 0:0

0.0
0.0001
0.001

0.01

Figure 5.12: Processed topologies with various values of k

e
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were used for the example test cases (k

s

= 1:0, k

v

= 0:001, k

e

= 0:001) in the hope

that their values will be case independent.

5.2.6 Existing topologies

A simple and common multiblock topology is a three block grid around a single

element aerofoil. The same grid as used above for the calibration case was also

used in three-block form. Figures 5.13 and 5.14 show the original and processed

block outlines for this case. The curve de�nition p = 40 was used and the �nal

cost becomes converged to three signi�cant �gures for N = 10000. The topology

processing method has improved the block corner angles at the trailing edge and

maintained a satisfactory shape for the interior block edges.

Figures 5.15 shows the original and processed topology for a grid used in a

nozzle/plume study[48]. For this case the curve de�nition p = 10 was used and the

�nal cost becomes converged to three signi�cant �gures for N = 15000. Again the

topology processing method has improved the block corner angles, quite signi�cantly

changing the shape of one curve, but a satisfactory trade-o� between orthogonality

and curve smoothness/shape-following has been achieved.

Figures 5.16 shows the original and processed topology for a grid used in a

cavity 
ow study. The cavity has a right-angled leading edge and a radiused trailing

edge, the novel topology created for this con�guration is a good example of how

some imagination can be required to create a topology suitable for even simple

con�gurations. For this case the curve de�nition p = 10 was used and the �nal

cost becomes converged to three signi�cant �gures for N = 20000. The topology

processing method has again signi�cantly altered the shape of one of the curves in

order to improve block corner angles.

Figure 5.17 shows the multiblock topology for a multi-element aerofoil grid from

British Aerospace which has been used in a CFD study of a high-lift con�gura-

tion where good agreement with experiment was achieved[133]. The large number

of blocks required for even moderately complex con�gurations (81 in total for this

grid) is evident from the �gure. The result of the topology processing procedure is

shown in Figure 5.18. For this case the curve de�nition p = 30 was required and
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original
processed

Figure 5.13: Three block single element aerofoil grid, entire domain

original
processed

Figure 5.14: Three block single element aerofoil grid, detail
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original
processed

Figure 5.15: Nozzle/plume grid

original
processed

Figure 5.16: Cavity 
ow topology
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the �nal cost becomes converged to three signi�cant �gures for N = 20000. There

is very little room for improvement from the initial excellent con�guration, the only

real di�erence is an improvement of the block corner angles, most notably at the

point where �ve blocks meet below the forward part of the main element.

5.2.7 Marine application example

The topology processing method has been applied successfully to simple test cases

in Section 5.2.5 and to real problems where the topology is already of good quality in

Section 5.2.6. The main aim of this work is to produce a topology processing method

applicable to the inevitably unre�ned initial topologies which can be generated using

unstructured quadrilateral grid generation techniques, see section 5.1.3. A coarse,

straight-sided topology has been created manually for a model marine application.

This is a demonstration case in order to simulate the result of such an automatic

topology generation method, see Figure 5.19. The corresponding processed topology

is shown in Figure 5.20. For this case the curve de�nition p = 10 was used and the

�nal cost becomes converged to three signi�cant �gures for N = 40000. The initial

con�guration has been improved considerably; the blocks have good orthogonality

characteristics, do not expand rapidly and conform well with the geometry and each

other.

An unstructured quadrilateral grid for this geometry has been obtained from the

Finite Element Modelling Group at the Queen's University of Belfast. The Medial

Axis approach, described in section 5.1.3, was used to automatically generate the

initial topology shown in Figure 5.22. For this case the curve de�nition p = 10 was

also used, and the cost becomes converged to three signi�cant �gures for N = 50000.

Again the initial con�guration has been improved considerably. For this example,

the assertion that the automatic unstructured mesh generation technique produces

suitable initial multiblock topologies has been a�rmed.
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original

Figure 5.17: Original multi-element aerofoil topology

processed

Figure 5.18: Processed multi-element aerofoil topology
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Figure 5.19: Initial topology A, marine application example

Figure 5.20: Processed topology A, marine application example
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Figure 5.21: Initial topology B, marine application example

Figure 5.22: Processed topology B, marine application example
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5.2.8 Two-element aerofoil example

To investigate a further example using initially poor topologies, two coarse straight-

sided topologies have been created manually for a two-element aerofoil demonstra-

tion case in order to simulate the result of such an automatic topology generation

method, see Figures 5.23 and 5.24. The Williams B aerofoils[134] are used in both

cases. The corresponding processed topologies are shown in Figures 5.25 and 5.26.

The initial topology A (Figure 5.23) has the agreeable feature of well located block

corners. To modify this topology to obtain a form suitable as a basis for the actual

grid generation phase involves changing the shape of the block edges to a smoother,

more geometry conforming pattern. This has been achieved by the present topo-

logy processing method, see Figure 5.25. The initial topology B has the additional

problem of an irregularly shaped block at the leading edge of the `
ap'. The topo-

logy processing method has also coped with this well, see Figure 5.26, by drastically

reducing the lengths of the long sides of the block at the nose of the 
ap. Both

results from the topology processing method could be used as inputs to the grid

generation proper stage. The method has been successful in �nding a compromise

between smoothing the initial con�guration, maintaining reasonable orthogonality

and resizing blocks which expand too sharply. It is noted however that the �nal

con�gurations are di�erent, so the minimisation method has clearly not found a

global minimum. This issue will be discussed in Section 5.3.1.

5.3 Problems encountered and future work

5.3.1 Global Minimum

The present method does not �nd a global minimum for the multi-element aerofoil

case. This is not surprising given the very simple minimisation procedure employed.

The local minima obtained for the cases examined here are satisfactory, but there

is doubt whether this will be generally true. A straightforward extension of the

iterative improvement technique is simulated annealing[135] which is well known to

obtain near-optimal results for a broad range of minimisation problems. A drawback

to this method is that it necessitates additional computational e�ort; the present
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Figure 5.23: Initial topology A, two-element aerofoil

Figure 5.24: Initial topology B, two-element aerofoil
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Figure 5.25: Processed topology A, two-element aerofoil

Figure 5.26: Processed topology B, two-element aerofoil
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method already requires a substantial amount of computing time, the two-element

aerofoil example requiring approximately half an hour using a desktop PC. Ulti-

mately the most promising direction is likely to be to begin with a higher �delity

curve description (for example using B-splines) to reduce the number of data points

and hence operations, and using a more advanced minimisation procedure, perhaps

again borrowing from structural mechanics where there are established techniques

for shape optimisation in component design.

5.3.2 Curve de�nition re�nement

As noted directly above, a reduction of the computational time required for the

process is desirable. If a small number of points is used in the curve de�nition,

then the number of operations necessary to evaluate the cost function (and hence

computational time) is reduced. However, often a �ner de�nition of the curves is

required to adequately represent the problem geometry. With this in mind, a curve

re�nement approach was adopted. The initial curve de�nition could be fairly coarse,

and after a number of trial moves the curve de�nition would be successively re�ned.

This approach did reduce the overall time required to obtain a converged solution in

some cases, but was not successful generally. In Figure 5.11, the curves are de�ned

using 20 points connected by straight line segments. These segments are small

enough to represent the strong curvature at the leading edge. When the re�nement

approach was attempted for this case, a coarser curve de�nition misrepresents the

leading edge curvature, introducing unwanted features into the curves attempting

to follow the aerofoil surface. These features must then be removed by applying a

large number of trial moves in the later stages when the curve de�nition becomes

adequate.

5.3.3 Generality

The same cost function and cost function coe�cients were used to process all the

test cases presented. This provides some evidence that the method may be generally

applicable, but realistically a far larger number of test cases from a greater range of

problems should be examined before being able to state this con�dently. A particular



5.3 Problems encountered and future work 165

question is how the method will perform using large numbers of small blocks; all of

the test cases considered had a relatively small number of large blocks.

5.3.4 Automatically generated topologies

This report has concentrated on demonstrating the potential of an automatic topo-

logy processing method, which has been examined essentially in isolation from the

other elements of the multiblock grid generation process. The next step should be

to examine whether the method can ful�l its potential by linking with the other

elements, see section 5.1.2. There is little doubt that algebraic grid generation and

elliptic smoothing performs well when based on a sound topology. The main ques-

tion is how well the processing method would perform given automatically generated

initial topologies. Only one example has been presented here; although the results

are encouraging, the next step should be to use the Medial Axis unstructured mesh

generation method to create numerous initial topologies for the processing stage. In

this way, the assertion that the approach can produce multiblock topologies pos-

sessing the required characteristics can be veri�ed.

5.3.5 Extension to 3-D

In three dimensions the problem of multiblock grid generation is more demanding

and the need for automation is even greater. As an example, a computational aero-

dynamic analysis, using the multiblock method, of the 
ow around a wing with

high lift devices is feasible using present technology. Suitable 
ow solution methods

are available, and su�ciently powerful parallel computers are becoming available.

However, the enormous amount of time and e�ort that would be required to inter-

actively generate a multiblock grid precludes the use of CFD as a design tool for

problems with this level of geometric complexity. The present topology processing

method generalises to three-dimensions; the cost function is based on the shape of

block edges and the angles of block corners only. The method suggested in section

5.1.3 for the initial topology generation has already been extended successfully to

three dimensions. Thus there is a clear path to extending the overall approach to

three-dimensional problems, where an automatic grid generation method could not



166 Towards Automatic Multiblock Topology Generation

only accelerate the analysis process, but also allow problems to be tackled which

were previously considered as being prohibitively complex.

5.4 Conclusion

A new approach for automatic multiblock topology processing has been presented.

A cost function which evaluates the quality of a multiblock topology has been cre-

ated. The elements of the cost function are based on the objectives of the multiblock

grid generation software user when interactively constructing the topology. A simple

minimisation procedure is employed to obtain a topology of good quality. The po-

tential of the method has been demonstrated using a number of test problems. It

has been suggested that full automation of the entire multiblock grid generation

procedure is possible using in sequence an existing unstructured grid technique to

obtain an initial topology, the present processing method, then conventional algeb-

raic grid generation and elliptic smoothing. Problems encountered during the study

and future work have been discussed. The potential for extending the method to

three dimensional problems shows considerable promise.



Chapter 6

Parallel Aerodynamic Simulation

on Open Workstation Clusters

6.1 Introduction

Parallel computing in computational 
uid dynamics is a very broad area of current

research and development. Parallel computing software and hardware technology

is developing very rapidly, and the CFD community is at the forefront in exploit-

ing emerging technology to obtain the high performance computational resource

required to solve large CFD problems. The enthusiasm for parallel computing in

the CFD community is based on present cost e�ectiveness compared to conventional

computing, and future projections of enormous computing power. The exploitation

of parallel computing is considered to be a key to tackling the grand challenges in

CFD[22].

To e�ectively use a parallel computer an intelligent mapping of subsets of the

total computational work onto processors must be performed. There are several

di�erent levels of parallelism, ranging from job parallelism where processors ex-

ecute tasks with no interdependency, to arithmetic parallelism where the work of

the simplest operations is shared amongst processors. A coarse-grain data parallel

approach[29] is usually employed in parallel CFD, where sub-domains of the com-

putational grid are mapped onto the set of processors, with the objective of �nding

a mapping which results in the fastest overall execution of the parallel task. This
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approach is commonly referred to as domain decomposition in the literature. The

principal feature of an e�cient domain decomposition is that the load is evenly

distributed across the processors. A typical parallel CFD application involves a

communication phase where information must be passed between the processors.

Communication is necessary periodically, e.g. once every time step. If the load is

evenly distributed then the processors arrive at the communication phases simul-

taneously, minimising processor idle time. For many applications, attempting to

minimise the time spent in the communication phase is also necessary for e�cient

implementation. The problem of optimal domain decomposition is well known to be

NP-complete[136],[137], i.e. a deterministic solution procedure is impractical. The

task of achieving a parallel execution via domain decomposition can be viewed as a

two-stage process; mesh partitioning to form the sub-domains and allocation of sub-

domains to processors to achieve load balanced execution[136],[138]. A wide variety

of methods have been proposed, see for example the proceedings of the Parallel CFD

conferences[27],[139], re
ecting the variety of problems considered and architectures

used. For unstructured grid problems the prevalent approach is to use a mesh parti-

tioning heuristic to obtain equally sized sub-domains and at the same time attempt

to minimise the sub-domain interface length to keep down the amount of necessary

communication. The resulting partition then consists of the same number of sub-

domains as there are processors, and communication has already been considered

implicitly in the partitioning stage, so it is su�cient to allocate the sub-domains dir-

ectly onto the processors. An initially popular method was the `Greedy' algorithm

for mesh partitioning[140], so called because successive `bites' are taken from the

domain. The Greedy algorithm is very fast since it essentially involves only one

sweep across the mesh, but is unreliable since the last `bites' can leave sub-domains

of inappropriate size and shape. Most researchers now employ a recursive bisection

approach from graph theory, a good review of which is provided in [141]. In recent

years some speci�c methods have become established in the CFD and structural

�nite-element communities and are available in the public domain[142],[143],[144].

Alternative non-deterministic approaches such as simulated annealing and stochastic

evolution have been used for unstructured mesh partitioning, but have the disad-

vantage of being slow in comparison to recursive bisection methods[137],[138],[145].
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Applying the methods of unstructured grid partitioning to multiblock structured

grids is often quoted as being possible, but only one example has been found in the

literature[146]. This is for two reasons. First, partitioning a multiblock structured

grid is easier than an unstructured grid in that there are less possible boundary path

permutations, but harder in terms of programming in that 
ow solver constraints

(e.g. block interface matching) must be considered in the partitioning algorithm.

Secondly, often the number of grid blocks naturally arising from the grid generation

process is far greater than the number of processors, so this partition can be ac-

cepted as long as a heuristic is designed to arrange these blocks onto the processors

such that the load is balanced. If there are very large blocks which impede a good

load balance then it is a simple matter to split them `manually', unlike unstructured

grids. Hence for structured multiblock grids the emphasis in domain decomposition

is much more on the allocation stage. The heuristic techniques employed, often cost

function minimisation procedures, are similar to those attempted for unstructured

mesh partitioning, but are better suited for this problem due to the reduced size of

the state-space[136]; tens or hundreds of blocks are considered rather than tens or

hundreds of thousands of grid cells. See references [136],[138] for a summary of the

preferred methods.

The domain decomposition methods mentioned above have all considered the

static problem, where the decomposition is determined before run-time. Dynamic

re-allocation methods have not been discussed. It is necessary to reconsider the

decomposition during run-time to preserve load balance if the solution procedure is

adaptive, for example when adaptive grids are used. Also, some researchers seeking

the last percentages of parallel performance gains maintain that a static decomposi-

tion can never exactly account for actual processor speeds and communication costs,

so some degree of dynamic re-allocation is required. For an overview of this type

of dynamic problem see references [26],[27]. We are interested here in a di�erent

type of dynamic problem where the decomposition may have to respond to varying

processor loads; this point is returned to below.

Compared to a decade ago, parallel CFD technology is considerably more ad-

vanced. However, as noted by Knight[26], the huge amount of publications devoted

to parallel CFD research is not matched by the amount of CFD research conducted
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using parallel CFD as a tool. Based on contacts between the CFD group at Glasgow

University and the U.K. aerospace industry, this appears to be as much the case for

CFD use in industry as in academia. Knight suggests three reasons for this:

� parallel computers are perceived as lacking a decisive performance advantage

� parallel code has portability problems

� parallel code is di�cult to program e�ciently

Advances in hardware and software have now made the �rst two points an irrelev-

ancy. Numerous recent projects have demonstrated the enormous potential and cost

savings of using workstation clusters or modern commodity processors in parallel,

for example[147]. The development of standards in languages (eg. High Perform-

ance Fortran[148]) and message passing (eg. MPI[149], PVM[150]) have brought the

portability of parallel code almost to the same level as sequential code. The problem

lies in the third point; the practical di�culties in making parallel CFD work can be

discouraging[151]. To aerodynamicists, there has always been a trade-o� between

the amount of e�ort necessary to apply a prediction method and the accuracy of the

results that the method produces. In addition to the e�ort required for a sequential

CFD capability, parallel CFD requires the aerodynamicists to:

� obtain and install a message passing library or parallel compiler

� write the parallel code

� write a domain decomposition method or assimilate an `o� the shelf' method

� manage the execution of parallel tasks

The �rst two points are mitigated by the emergence of standards in parallel pro-

gramming, as mentioned above, where message passing libraries are in the public

domain, parallel compilers are available from vendors, advances have been made in

making parallel programming easier and help on all of these is freely available via the

internet. However, it is noted that large organisations are likely to employ specialist

programmers and information technologists; small and medium-sized organisations

are more likely to be discouraged by the �rst two points. Chien et al.[152] have
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made some important observations concerning the third and fourth points. Existing

domain decomposition methods are restricted to parallel systems consisting of a ho-

mogeneous processor set

1

and which are operated in single-user mode. This typi�es

a dedicated parallel machine possessed by a large organisation; smaller organisa-

tions are likely to make their �rst steps in parallel processing using a non-dedicated

heterogeneous network of workstations. Making use of spare capacity on existing

UNIX workstations, originally obtained for other purposes, was pioneered by Pratt

& Whitney[154] and McDonnell Douglas. However in these cases a policy of inter-

active/sequential and batch/parallel use segregation was enforced, the parallel jobs

being executed overnight, and all other jobs being suspended. This heavy-handed

restriction on activity is unwanted in any environment and practically impossible to

enforce in academia. To make parallel CFD more attractive on `open' networks of

workstations, the ideal parallelisation approach should

� include a domain decomposition method for a heterogeneous processor set

� be integrated seamlessly with existing sequential batch queueing

� take account of varying network load

Type 1 Type 2 Type 3 Type 4

No. of machines 3 2 4 7

Processor R5000 R4400 R4400 R4600

Speed (MHz) 150 150 150 133

Main memory (Mb) 96 160 64 64

Data cache (Kb) 32 16 16 16

Instruction cache (Kb) 32 16 16 16

CPU factor, k 1.9 1.6 1.6 1.2

Table 6.1: Speci�cations of the workstation cluster

1

this assertion is perhaps slightly too strong. Varying processor power is occasionally accoun-

ted for in a cost function approach, but without the method being actually demonstrated on a

heterogeneous network, for example in [136]. In addition, a successful, truly heterogeneous domain

decomposition has been demonstrated[153]; however the dynamic re-allocation method used to

achieve the load balance appears very communication-intensive and may only be suitable for very

compute-intensive problems of the type presented.



172 Parallel Aerodynamic Simulation on Open Workstation Clusters

In this chapter, the integration of a parallel multiblock structured aerodynamic

simulation code into an open, heterogeneous workstation cluster environment is

examined. The use of clusters of workstations for parallel CFD is of high interest to

industry[165]. The expected performance increase is limited but comes essentially

free since the workstations have usually already been purchased and installed for

either sequential CFD work or other tasks. The workstation cluster used is located in

the Department of Aerospace Engineering at the University of Glasgow. The cluster

consists of a number of Ethernet-connected Silicon Graphics Indy workstations of

four di�erent types, as described in Table 6.1. The cluster is typical of departmental

level computing facilities (albeit larger than usual) and the facilities at the disposal of

industry, where often the development of the computing resource over time results in

an inevitably heterogeneous computing environment[156]. The focus of the work is

to consider the needs of small and medium sized organisations who require a parallel

capability to scale up their computing resource but may at present be discouraged

by the perceived practical di�culty involved. This di�ers from the majority of

parallel CFD research where the principal or sole aim has been to achieve the high

parallel e�ciencies necessary for potential or actual massively-parallel applications

on dedicated machines. Network load management software services are exploited

to facilitate the application of the decomposition method, and assimilating parallel

tasks into the overall batch scheduling and queueing system for the workstation

cluster is considered.

The 
ow solver used is described in Chapter 2. Overlapping grids are employed

with two rows of `halo' cells associated with each internal block boundary. After each

time step the updated solution is copied to these halo cells from the corresponding

cells in the adjacent block, such that each block has the necessary information to

form the residual vectors and Jacobian matrices for the next time step. If blocks

sharing a common boundary reside on di�erent processors, then the copying of data

is enabled using message passing.
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6.2 Cost function minimisation

We wish to distribute structured data blocks amongst the processors of a paral-

lel machine. The primary consideration in determining an e�cient distribution is

that each processor should spend the same amount of time performing calculations

between the synchronous communication phases i.e. that the processors are not

idle. This is the load balancing problem. Restricting our discussion at present to

a homogeneous parallel machine (where all the processors are identical), for CFD

applications a balanced load can be obtained, to a good approximation, by assign-

ing an equal number of grid cells to each processor. Sub-domain shape, e.g. block

aspect ratio, and boundary conditions can also in
uence processor load[157] but

these are usually ignored as less important e�ects. The load balancing problem can

then be modelled as a minimisation problem for the `cost' H due to the time spent

performing calculations[145]:

H =

P

2

N

2

P

X

q=1

N

2

q

(6.1)

where P is the number of processors, N is the total number of grid cells and N

q

is the number of grid cells resident on the processor q. As noted in section 6.1,

non-deterministic procedures are used to solve this allocation problem. No clear

consensus on which method is best has appeared in the literature, although sim-

ulated annealing (S.A.) is most often cited as reliably producing near-optimal res-

ults, for example in [137],[145],[157], although there are some reservations about

the relatively long execution time of the S.A. algorithm. An iterative improvement

(I.I.) technique is said to often out-perform S.A. if tailored towards the particular

application[158]. For these reasons I.I. and S.A. will be evaluated as minimisation

procedures for the cost function (6.1). Their algorithms are described below.

Iterative Improvement

An algorithm based on iterative improvement[158],[159] is very straightforward to

program. Some initial con�guration of the state (which can be generated at random

if necessary) is required, along with a cost function de�nition. In an iterative man-

ner, a small change based on a random selection is made to the system and this `basic



174 Parallel Aerodynamic Simulation on Open Workstation Clusters

move' is either accepted or rejected. The acceptance criterion is as follows: if the

move causes the cost to decrease, the move is accepted, otherwise the move is rejec-

ted. The process is terminated when a large pre-determined number of consecutive

attempts are unsuccessful. Note that careful selection of the basic move is crucial

to the success of the method. The method is sometimes referred to as `hill-climbing'.

Simulated Annealing

The method of simulated annealing[158],[159],[160] is a relatively new method for

the minimization of objective functions. It is particularly suited to discrete, very

large con�guration spaces i.e. for combinatorial optimization problems. The title

of the method is due to an analogy with the slow cooling of metals. The simu-

lated annealing algorithm is straightforward to program, and has as its kernel the

iterative improvement algorithm. Again an initial con�guration of the state and

a cost function de�nition are required. The acceptance criterion is as follows: if

a proposed basic move reduces the cost, then the move is accepted. If the cost is

increased, then the move is only rejected with a certain probability, called the Met-

ropolis criterion[161]. Included in this criterion is an arti�cial system `temperature'

such that at high temperatures almost any basic move is accepted, however costly,

and at low temperatures e�ectively zero `bad' moves are accepted i.e. the algorithm

becomes one of iterative improvement. A high starting temperature is used, and

the temperature is periodically forced down by some factor after a large number of

basic moves have been proposed. The intention is to explore the entire state-space

with the Metropolis criterion providing a means of escape from local minima.

Two structured multiblock grids were considered to evaluate I.I. and S.A. for the

allocation problem. Details of grid dimensions are shown in Table 6.2. Note that

both grids consist of a large number of blocks with widely varying block sizes. To

evaluate the e�ectiveness of the cost minimisation procedures, an e�ciency measure

E

1

is de�ned as

E

1

=

N=P

N

max

q

(6.2)
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Grid 1 Grid 2

Total number of cells (N) 48,425 43,417

Number of blocks 81 21

Average block size 598 2067

Biggest block size 2349 6642

Smallest block size 104 319

Table 6.2: Details of multiblock grids used in allocation test problems

where N

max

q

is the greatest number of grid cells on any one processor in the �nal al-

location. Note that for an ideal allocationE

1

is unity. Two basic moves were used for

both I.I. and S.A.; a `simple' move where two randomly chosen processors swap ran-

domly chosen blocks, and a `complex' move where clusters rather than single blocks

are swapped. The clusters begin as randomly chosen blocks, then collect blocks on

the same processor with a probability of 0.2 for each possible collection[145]. The

values of E

1

obtained for each minimisation method and di�erent numbers of pro-

cessors are shown in Figures 6.1 and 6.2. In each case S.A. out-performs I.I. for the

`simple' move. S.A. provides a mechanism for avoiding local minima which can trap

the I.I. procedure. However, there is negligible di�erence in the �nal result for the

`complex' move. This basic move is designed to enable larger jumps in the state-

space of the type required to avoid local minima (for this problem), and has had the

desired e�ect. Note that the complex S.A. has also out-performed the simple S.A.

method. A very good discussion of the importance of choosing an appropriate basic

move is included in [145]. Note that for both test problems, the e�ciency of the �nal

allocation begins to decrease when an allocation over a large number of processors

is attempted. This occurs when the number of cells in the largest block becomes

larger than the ideal number of cells per processor N=P . If it were desired to use

a large number of processors, this problem could be avoided by manually splitting

the biggest grid block.

For the remainder of this work the complex I.I. minimisation procedure will

be used. More detailed cost functions will be employed, but the nature of the

minimisation problem will remain the same. It is preferred to the complex S.A.

procedure since it requires less execution time, less than one second compared to
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about four seconds, and provides equally high quality results.

6.3 Communication cost

The majority of parallel applications of structured multiblock codes which have

appeared in the literature consider only the criterion of load balancing to achieve

good parallel performance. A good example is [146] where impressive results are

demonstrated on a number of parallel machines, including a dedicated workstation

cluster. However, a number of researchers have also stressed the need to take into

account communication overhead. The simplest way to take into account the cost of

communication as well as computation is to introduce a communication cost element

into the cost function, and use a balance coe�cient � to scale the relative importance

of the cost elements. The cost function for the allocation problem then becomes

H =

P

2

N

2

P

X

q=1

N

2

q
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1� �

q(e);q(f)
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The �rst term in this equation is the load balancing term of equation (6.1). The

second term is the communication overhead term. For all the cells e on block edges

which must communicate with cells f in other blocks, a cost is incurred if e and

f do not reside on the same processor q. The choice of scaling constants for each

cost element is designed to keep their relative magnitudes constant regardless of

the problem size, as discussed in [145]. For codes with a great deal of calculation

compared to communication � should be small, and vice-versa. This explains why

communication cost may be disregarded for some 
ow solvers. According to De

Keyser and Roose[136], it is only important to determine approximately the relative

magnitude of computational and communication cost, rather than a precise value

for �. Hence we seek a value for � where the resulting �nal allocation may di�er

from that obtained with � = 0, indicating that `physical' adjacency of blocks is

being taken into account to a degree, but where the load balancing problem is

not being overwhelmed, i.e. E

1

does not become too small. Trial allocations with

varying values of balance coe�cient � and numbers of processors P for Grids 1

and 2 indicated the range 10

�7

< � < 10

�2

. To be more certain of obtaining an

appropriate value for �, trial runs of 50 implicit time steps using Grid 1 on two
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processors of Type 3 were performed for various �. The results are shown in Figure

6.3. The timings shown are averages of ten runs performed overnight when the

workstation cluster was very lightly loaded. The parallel e�ciency E

p

shown is

de�ned as

E

p

=

sequential execution time

(parallel execution time) � (no: of processors used; P )

(6.4)

The single processor run was perfomed on a processor of Type 2 which has the same

speed as Type 3 processors but enough memory for a sequential execution. From

the �gure the communication model has had a small e�ect on execution times. The

shortest execution times were obtained for 10

�5

< � < 10

�2

; note that for these

cases the allocations found by the minimisation procedure were identical. For high

values of � the communication cost begins to dominate, to the detriment of the

load balance. For � = 1:0 all of the blocks were allocated to one processor. The

maximum parallel e�ciency achieved was 82%. This indicates that communication

costs for the 
ow solver on the workstation cluster are high. That a greater parallel

e�ciency was not achieved is not an indication of a failure in the cost function al-

location method; regardless of which allocation is determined, communication must

always occur between processors. To achieve a higher parallel e�ciency without re-

sorting to changing the 
ow solver algorithm, the way in which the message passing

is programmed could be examined for possible improvement, or the communication

network upgraded. Far greater parallel e�ciency has been obtained for the same

code on a dedicated parallel machine[147]. However, in the present work the object-

ive is to achieve a scaling-up of computing power, accepting that performance gains

are limited. In this context the parallel e�ciencies obtained are acceptable. For

subsequent results presented in this chapter, a value of � = 10

�3

will be used where

a communication cost model is employed. The same problem was also calculated

using 3 to 6 processors (of Types 2 and 3), with and without the communication

overhead term in the cost function. The averaged execution times, parallel e�cien-

cies and parallel speedups are shown in Figures 6.4, 6.5 and 6.6 respectively. The

parallel speedup S is de�ned simply as

S = E

p

P (6.5)
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Note that for all cases the inclusion of the communication cost element has led to

improved parallel performance.

When communication overhead is taken into account, the most popular approach

is to approximately account for the relative importance of computational and com-

munication costs, as described above for the allocation problem, and also for the

mesh partitioning problem. For particular applications a direct mapping of the

computational domain onto processors can be visualised and exploited, as discussed

in [136]. A good example of this is included in [162] where a large single block prob-

lem is decomposed into a two-dimensional array of rectangular patches to exploit

the processor connectivity of a massively parallel machine where the processors are

arranged in a two-dimensional array. However, this type of approach lacks gener-

ality, few computational domains decompose easily to topologies which match the

target machine topology. The obvious next step in developing a communication

cost model is to explicitly predict or measure the communication time, rather than

approximately accounting for it. However, communication time is a function of

message size, message-passing method, processor type, processor loading, network

type and network loading which means creating a predictive model is prohibitively

complex[136],[163]. Some researchers have attempted to measure inter-processor

communication costs during run-time[163],[164] which removes some of the di�-

culties but the implementation of such an approach is still an order of magnitude

more di�cult than using the simpler method employed here, and a commensurate

improvement in performance has not been demonstrated.

6.4 Heterogeneous load balancing

The computational cost is a function of the processor speed as well as the number of

cells allocated to the processor. As discussed in Section 6.1, research in parallel CFD

has almost exclusively concentrated on homogeneous parallel computers consisting

of identical processors. However, if the parallel computer consists of a non-dedicated

workstation cluster, for example that considered in this work (see Table 6.1), then

the varying processor speeds of the heterogeneous computer must be included in

the cost function to e�ciently use the resource. Extending equation (6.3) to include
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di�erent processor speeds gives the new cost function
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where k

q

is a coe�cent which varies directly with the processing speed of processor q.

Hence if an allocation is attempted onto two processors, the �rst with twice the speed

of the second (i.e. k

1

=k

2

= 2), then to minimise the computational cost two thirds

of the cells would be allocated to the �rst processor and one third to the second.

The most reliable way to determine values for k is to compare execution times on

each of the processors for a standard sequential problem[156]. Vendor information

concerning processing speed is unreliable for this purpose, especially when processors

from more than one vendor are used. On the workstation cluster considered the

commercial management software LSF is used for job control and batch scheduling.

Use of such management software enables e�cient use of distributed computing

networks[166] and is becoming widespread in industry. LSF also provides numerous

functions for interrogation of processor con�guration and loading that can be simply

included in user programs. An LSF function for ascertaining directly the coe�cents

k

q

(termed `CPU factors' in LSF) was employed in the static allocation method.

Values for k from the workstation cluster used are included in Table 6.1. The

computational cost model could be further re�ned. The processor speed is in
uenced

by the proportion of accessed memory which resides in the memory cache rather than

the main memory[165], although most researchers ignore or disregard this e�ect as

insigni�cant.

In order to examine the e�ectiveness of the new cost function (6.6) in exploit-

ing a heterogeneous processor set, the trial problem of 50 time steps using Grid 1

was repeated using various heterogeneous workstation sets for the parallel machine.

Ideally the execution time will vary inversely with the sum k

total

of the CPU factors

k of the processors used. The execution times are plotted against 1=k

total

in Figure

6.7. The serial execution time is included in the �gure, and is joined by a straight

line through the origin to indicate optimal performance. The parallel timings are

presented in three groupings, results for 2, 4 and 6 processors. For each grouping,

the result with the largest 1=k

total

is the result for execution on a homogeneous

set of Type 4 processors (the slowest available grouping). For each group, if the
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results formed a straight line passing through this end point, with gradient equal

to the optimal gradient, then the usage of available processing power would be as

e�cient as the homogeneous case. We could expect the gradient to be slightly less

than optimal since the communication time remains approximately constant for in-

creasing processor speed. The results demonstrate a general trend of decreasing

execution time with increasing processor power as required, except at a few points

where the execution time has increased with increasing processor power. This is dis-

appointing since a heterogeneous execution should always be at least as quick as a

homogeneous execution using processors of the slowest type in the heterogeneous set.

However it is perhaps unrealistic to expect a non-deterministic allocation method

to always produce a near-optimal result; none of the timings are unacceptable and

the general trend clearly indicates that heterogeneity is being reasonably accounted

for. Examining some particular results helps to indicate the worth of employing

the heterogeneous allocation model. Using two processors of Type 3 (k

total

= 3:2,

1=k

total

= 0:3125) the execution time is 838 seconds. Replacing one of these pro-

cessors with the faster Type 1 processor (now k

total

= 3:5, 1=k

total

= 0:2857) would

not result in a faster execution if a homogeneous allocation method were employed,

the faster processor having to wait while the slower computes its half of the load.

With the heterogeneous allocation model the execution time was 761 seconds, a

reduction of 9.2% for a 9.4% increase in computing power.

Note that in Figure 6.7 results are again presented for allocations determined

both with and without communication cost modelling. In every case the executions

were faster when the communication cost element was included.

6.5 Dynamic load balancing

In Section 6.1 it was described how the available parallel computing resource often

takes the form of a non-dedicated heterogeneous network of workstations. Most

parallel CFD work is performed at present using dedicated, single-user parallel com-

puters. The presence of other users' tasks causes a serious problem for parallel

applications. Even if the subset of processors to be used for the parallel task is care-

fully selected before run-time, either manually or using management software, the
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load during run-time on these processors can vary dramatically and unpredictably.

A load histogram for the workstation cluster considered in this work is included in

[166]. One sequential task running interactively on a processor already being used

for a parallel task can double the execution time of the parallel task. Inexperienced

use of a workstation can lead to disk space/main memory `swapping' which can eas-

ily reduce the e�ective processing speed by an order of magnitude and have an even

worse e�ect on the parallel task. Even seemingly benign activities such as using

an internet browser or a graphical electronic mail tool can have a signi�cant e�ect.

This dynamic load balancing problem must be tackled if the objective of reliable,

robust parallel execution is to be achieved.

The recorded execution times for twenty trial runs of the test problem described

in Section 6.3 using four processors of Type 4 are shown in Figure 6.8 for various

network conditions. The timings denoted `quiet' are the results of overnight runs

when the cluster was lightly loaded. The variation in execution time from the fastest

possible is small. The timings denoted `busy' are the results of day-time runs when

the workstation cluster was moderately to heavily loaded. The timings are far less

predictable, some taking 30% longer than the fastest possible. From experience,

some of these timings could have been even greater. The longest execution times

shown are probably due to interactive use of internet browsers and mail tools on one

or more processors. Other common workstation cluster activities which would have

a greater impact are the use of graphical grid generation and solution visualisation

software. A `worst case' timing is also included in the �gure. After initialising

the parallel task, an interactive serial task was deliberately started on one of the

processors. This has increased the execution time by approximately 55%. The

present dynamic load balancing problem is then to bring the `busy' and `worst case'

timings down to the `quiet' level. The averaged parallel e�ciencies are 64%, 57%

and 42% for the `quiet', `busy' and `worst case' situations respectively.

Chien et al.[152],[155] present an advanced dynamic load balancing method. The

e�ective speed of each processor is continually monitored by measuring and compar-

ing the waiting time for the communication phase to complete on each processor,

adjusting coe�cients in the cost function if necessary, and re-allocating the mesh

partitions if necessary. The method is very e�cient for re-allocating a dynamically
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adapted grid, and enables eventual complete migration of the parallel task from a

heavily loaded processor if necessary. The approach of Chien et al. produces impress-

ive results but at the expense of considerable complexity and programming e�ort.

Furthermore, the group have themselves asserted

2

that the dynamic load balancing

problem has been over-elaborated in recent years, with very complex methods being

developed to achieve increasingly small performance gains, and that the only real

problem in dynamic load balancing on open workstation clusters can be presented

simply as

� recognise when processor A is being heavily used by another task

� identify a lightly loaded processor B

� migrate the work of processor A onto processor B

� do all of this as quickly and simply as possible

These are also the objectives of the present work. From Figure 6.8, some interference

of the parallel task can be tolerated (where the `busy' timings are only slightly longer

than the `quiet'), any performance gains in sending a subset of the blocks on the

`busy' processor to other processors are likely to be small and would not justify the

programming e�ort. The only real problem arises when a processor becomes heavily

loaded, and the entire load from that processor should be migrated. Note that this

also protects the interests of the interactive user, who then becomes the sole user of

the processor. A dynamic re-allocation method was implemented as follows, using

native LSF and PVM functions called from within the 
ow solver code for simplicitly

rather than creating custom software:

� periodically monitor processor loadings (LSF)

� if a processor is too heavily loaded, �nd a candidate alternative (LSF)

� initiate a new task on the new processor (PVM), pass all the necessary in-

formation including the solution and the grid to the new task (PVM)

� stop the old task and proceed with the calculation

2

during their ECCOMAS conference presentation[152]
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Note that the frequency of load monitoring and the threshold for deciding whether

a processor is overloaded are decided before run-time by the user. The major part

of the information passed to the new process consists of the solution and grid for

the partition allocated to that processor. For the present test problem this is ap-

proximately 500Kb for each migration, which is a manageable �gure for an Ethernet

network. It is not necessary to pass the Jacobian matrices (for the implicit scheme)

which form the major part of the total memory usage for the 
ow solver. The 20

trial runs in the `worst case' scenario were repeated, but this time using the dynamic

re-allocation method. The results are denoted `dynamic' in Figure 6.8. The load

monitoring frequency was set at every 10 time steps, recalling that 50 time steps are

executed in total. It was detected that one processor was over-loaded at the �rst

call of the load monitoring function (i.e. after 10 time steps) and the load from that

processor was transferred to a lightly loaded processor. There is therefore a clear

improvement over the `worst case' execution time. An average parallel e�ciency

of 57% was achieved in the `dynamic' case, as opposed to 42% for the `worst case'.

The `dynamic' execution times could be further reduced by increasing the load mon-

itoring frequency. Note that this model parallel CFD task has a lower associated

parallel e�ciency than would be the case for a real problem. It is unlikely that an

engineer would use four processors for a problem which comfortably executes on

two of the same processors, as in this case. It is well known that larger problems

have greater parallel e�ciencies (since the communication cost to computational

cost ratio decreases), so since the dynamic re-allocation method e�ectively reduces

the computational cost the performance gains for real problems would be larger. In

addition, dynamic re-allocation would be of greater use for typical CFD jobs with

longer execution times than the ten minutes in the current test problem.

In the event of no suitable alternative processor being available, the present

method proceeds with the calculation on the same processor. This could be improved

by �rst attempting to contract the problem onto one less processor, or if this is

not possible by automatically re-submitting the parallel task to the batch queue,

re-starting from the latest checkpoint �les. The present method includes periodic

checkpointing to local and main disks to enable re-starting in the event of a network

failure.
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Most organisations with a distributed computing network employ a batch schedul-

ing and queueing system, either developed in-house or proprietary, to enable trans-

parent load management and achieve high productivity. Users are becoming ac-

customed to the convenience of high performance environments, where the system

does the work of prioritizing batch jobs and selecting resources, and the user must

only submit the (sequential) job and can depend on the timely arrival of the results.

Ideally executing parallel tasks should be as simple and reliable. The dynamic re-

allocation method presented here coupled with management software such as LSF

which fully supports sequential and parallel applications alike makes this possible.

6.6 Discussion

A domain decomposition method for a parallel, structured multiblock 
ow solver has

been presented. The method is suitable for use on a non-dedicated parallel computer

consisting of a heterogeneous workstation cluster. It has been noted that the ma-

jority of work concerning parallel CFD considers dedicated, homogeneous parallel

computers. The additional di�culties encountered in a non-dedicated heterogen-

eous environment have been discussed. The parallel computing resource available

to many engineers in small and medium-sized enterprises is of this type, although

widespread use of parallel CFD to achieve a scaling-up in computational resource

appears to be hindered by the perceived complexity involved. With this in mind,

the domain decomposition strategy presented here attempts to deliver an e�ective

resource in as straightforward a manner as possible.

The method employs a cost function minimisation approach. It is assumed that

the multiblock grid consists of enough small blocks to enable a reasonably balanced

distribution. The cost function consists of computational and communication cost

elements. The time required for a processor to compute its share of the load is

assumed to vary directly with the number of grid cells assigned to that processor.

The time required for inter-processor communication is assumed to vary directly

with the number of cells on the block boundaries which must communicate with

blocks which reside on di�erent processors. The relative importance of the cost

elements is de�ned by a coe�cient, a value for which is determined from timing



6.6 Discussion 185

experiments. The various processor speeds are ascertained using the management

software LSF and are accounted for in the cost function. LSF is also used to mon-

itor interference of other users' tasks with parallel execution, and to select a lightly

loaded processor as a target for migration. The method enables e�ective paral-

lel execution in the demanding environment of an open heterogeneous workstation

cluster. Implementation is straightforward, facilitated by modern management soft-

ware and message-passing libraries, and does not require a specialist programming

or information technology e�ort.
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Chapter 7

Conclusion

The general aim of this work has been to promote computational aerodynamics as

a useable technology in engineering design and scienti�c enquiry. Several aspects of

applied CFD have been considered, each re
ecting current problems, concerns and

requirements of CFD users.

In Part I of this work the implementation of an axisymmetric 
ow solver was

described, and its use as a tool for engineering design and scienti�c enquiry was

examined. First, in Chapter 2 the adaption of an existing two-dimensional 
ow

solver for axisymmetric 
ow is described. The main points of the chapter are as

follows:

� the axisymmetric Euler and Navier-Stokes equations can be cast in a form

very similar to the two-dimensional equations

� for axisymmetric problems, the potential performance gains of an axisymmet-

ric 
ow solver over a fully three-dimensional method are considerable

� the inclusion of the axisymmetric source terms for the Navier-Stokes and k�!

turbulence model equations in the numerical scheme is described

� an exact, laminar test case is considered, for which very good agreement with

theory is demonstrated.

The axisymmetric 
ow solver was applied to high speed forebody and base 
ow

cases in Chapter 3. The motivation was to assess the capability of the method as
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an engineering tool; as well as evaluating the accuracy of the results, pre- and post-

processing e�ort, robustness and required computing power were also considered.

These issues can be grouped together as `cost', and as such are important to engineers

in an industrial/commercial environment. For the high speed forebody applications,

the results of the study can be summarised as:

� good agreement was obtained with experimental data and other calculations

� the 
ow solver is robust and fast, the run-times being measured in minutes

� an implicit treatment of the inviscid part of the axisymmetric source terms

improves the performance of the method

� the very signi�cant performance advantage over a three-dimensional method

was demonstrated

� the computing resource required is modest

� pre- and post-processing are straightforward.

The method therefore clearly satis�es the demanding requirements of an engineer

operating in an industrial/commercial environment. The design of forebody geo-

metries is not straightforward, involving compromise between several aerodynamic

e�ects which can be counter to intuition[62]. The present method enables solutions

to be obtained in minutes using modest computing power. This a�ords the possibil-

ity of employing automatic design techniques for forebody geometries which appear

at present to have been limited to inviscid aerofoil and wing calculations[17],[167].

This is a potentially fruitful avenue for future work.

Application of the method to base 
ow problems proved more problematic. The

results of the study can be summarised as follows:

� fairly poor agreement with experimental data was obtained, similarly to other

published calculations for the problem considered

� the method is not robust for this type of application. The numerical instability

is associated with the implementation of the k � ! turbulence model, and

originates in the vicinity of the free stagnation point
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� grid convergence is an important and demanding issue for this type of applic-

ation

� a method for including upstream boundary condition information in the sim-

ulation has been described

� the computing resource required is modest

� pre- and post-processing are straightforward.

In general, for turbulent base 
ow calculations with large scale separation the

method performs less well than for the forebody problems. Although it is still

possible to obtain solutions relatively quickly, the robustness should be improved

before the method can be considered practical for this problem. The de�ciencies

of a two equation turbulence model, employing the Boussinesq approximation, are

well known for highly separated 
ows, although in the context of available predic-

tion methods the balance between accuracy and complexity is reasonable. If in

future work the numerical instability problem could be solved, the method would

then become viable as an engineering tool. The form of the turbulent source term

Jacobian matrix appears to be a key to this problem. The next step would then

be to evaluate the inclusion of more advanced turbulence models, which have the

potential to improve the accuracy of the simulation, but may incur a large penalty

in computational cost and complexity.

Chapter 4 describes how a complex shock interaction phenomenon was success-

fully examined using a computational aerodynamics method. The main results of

the study are:

� the hysteresis in the shock re
ection type occurring in the plume of an under-

expanded jet has been successfully predicted, showing good agreement with

experiment

� nozzle calculations over a range of Reynolds number have helped explain the

scatter in the experimental results

� the detailed results from CFD have enabled identi�cation and examination of


ow features not initially recognised in the experiments:
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{ Mach disc curvature

{ recirculation and continuing compression behind the Mach disc

{ the presence of a small diameter Mach disc in the apparent regular re-


ection

� two-dimensional shock re
ection theory has been reviewed and employed to

aid interpretation of the results

� appropriate boundary conditions for this type of problem have been estab-

lished.

The numerical investigation, used in conjunction with experimental data and shock

re
ection theory, added signi�cantly to the understanding of the problem. Ex-

perimental investigation of shock interaction problems is hampered by practical

di�culties, thus the potential for numerical investigations is large. At the 1998 In-

ternational Mach Re
ection Symposium it was noted that more than 90% of the

presentations included numerical results, either as the sole analysis method or com-

plementing experiment and/or theory, underlining this point. Although the role

of theory in this study has been stressed, a comprehensive theory for the re
ec-

tion of conical shock waves does not exist at present. In a manner analogous to

the two-dimensional shock re
ection problem, the present method could be used

to study re
ection of conical shock waves outwith the context of a complex plume

structure. This would strengthen the theoretical framework available for analysis of

shock interaction problems, and would facilitate the investigation of more complex

axisymmetric problems. The success of the numerical method in the present work,

and the recent extension to a fully three-dimensional 
ow solver, points to another

area of future work. Numerical investigation of further shock interaction problems

from the same series[107] should now be possible, for which the necessary computing

power is now available[147].

Part II of this work concerns the issues of pre-processing and parallel computing,

both of which are important to the practicality of routine CFD analyses, and are

important sub-topics of CFD in their own right. Chapter 5 describes a new approach

to multiblock grid generation. The main conclusions of the study are:
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� an unstructured quadrilateral/hexahedral mesh generation method which has

the potential for use as an automatic multiblock topology generator has been

identi�ed

� a new approach for automatic topology processing has been presented

� a cost functon for multiblock topologies has been constructed, based on ex-

perience using interactive grid generation tools

� the approach has worked well for a number of test problems, using simple curve

de�nitions and a straightforward, non-deterministic minimisation method

� there is a clear route to extending the method to three-dimensional problems.

The large amount of human e�ort required for grid generation is increasingly be-

coming a frustration of CFD users. As solution methods improve and available

computing power continues to increase, the main obstacle to performing large, com-

plex simulations is now frequently grid generation, the technology for which has not

progressed at the same rate as other elements of the CFD analysis process. The

topology processing method described in this work provides the possibility, in con-

junction with an identi�ed unstructured quadrilateral/hexahedral grid generation

method and existing structured grid generation technology, for a fully automatic

grid generation capability for even complex con�gurations. The unstructured grid

generation method is well established in structural analysis. The potential of the

topology processing method has been demonstrated in this work. The capabilities

(and limitations) of existing structured grid generation technology are well known.

Assembling all of the elements together would undoubtedly be a signi�cant task,

but the technology does exist at present and the potential rewards surely justify

the e�ort. Immediate future work in this area should begin by improving the curve

de�nitions and minimisation algorithm. This should not be problematic since meth-

ods for both problems are well established. The topology processing method should

then be coupled with the initial topology generator and structured grid generation

routines to obtain a fully automatic grid generation tool. If this can be achieved

without unforeseen di�culties, which seems likely since all the elements of the pro-
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cess are well established, then the generalisation to an automatic three-dimensional

grid generation tool becomes a real prospect.

Chapter 6 concerns the implementaton of a parallel computing strategy for com-

putational aerodynamic simulation using a non-dedicated, heterogeneous network of

workstations. Some care was taken in assessing the current status of parallel CFD,

with the following conclusions:

� parallel computing is accepted at present as providing the most cost-e�ective

route to high performance computing, a requirement of the CFD community

� the perceived di�culty in achieving a parallel CFD capability is impeding

widespread adoption of the technology

� this is especially true of small and medium sized enterprises, who do not possess

dedicated parallel machines and therefore have the additional problems of

heterogeneity and dynamic load imbalance

� the vast majority of parallel CFD research has concerned homogeneous, ded-

icated parallel machines, compounding the point above.

Parallel computing has for some time been seen as the solution to CFD's continual

requirement for increasing computing power. The gradual maturing of the associ-

ated technology, parallel solution algorithms, message passing libraries and parallel

compilers, has encouraged the adoption of parallel computing by the CFD com-

munity. This work has addressed many of the issues which are discouraging more

widespread exploitation of parallel CFD. It has been demonstrated that it is now

possible to implement parallel CFD even in a demanding open workstation cluster

environment where heterogeneity and dynamic load imbalance must be considered.

The conclusions of the study are as follows:

� load-balanced allocations of grid blocks to processors can be achieved using a

cost function approach

� a tailored iterative improvement algorithm is an e�ective minimisationmethod,

out-performing simulated annealing in terms of execution time
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� the importance of communication time to parallel performance is application-

speci�c. For the present parallel 
ow solver, employing an arti�cial balance

coe�cient to scale the relative importance of computation and communication

cost is e�ective

� the heterogeneity of a parallel computer can be accounted for easily in the cost

function

� proprietary management software is useful for obtaining processor information

for static load balancing and dynamic load information

� dynamic load balancing is important for maintaining acceptable productivity

when using a non-dedicated parallel machine

� a dynamic re-allocation method has been described.

It is likely that parallel CFD will become commonplace if the perception that it is

a di�cult technology can be overcome, especially with continued improvements in

parallel computing technology, notably resource management software.
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Appendix A

The two-dimensional (planar)

Navier-Stokes equations

A.1 Introduction

In this appendix the two-dimensional Navier-Stokes equations are presented in vari-

ous forms for the sake of completeness and ease of reference to the axisymmetric

equations presented in the main body of the report.

A.2 Non-dimensional form

The derivation of the Navier-Stokes equations is included in most 
uid dynamics

texts, for example [53]. In a two-dimensional cartesian frame they can be written as
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where � is the density, V = (u; v) is the Cartesian velocity vector and E is the

total energy per unit mass. The 
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viscous di�usive parts. These are written in full as :
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The stress tensor and of the heat 
ux vector components are written as:
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Here 
 is the speci�c heat ratio, Pr is the laminar Prandtl number, T is the static

temperature and M

1

and Re are the freestream Mach number and Reynolds num-
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ber, respectively. The various 
ow quantities are related to each other by the perfect

gas relations:

H = E +

p
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(A.6)
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 � 1) �e
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Finally, the laminar viscosity � is evaluated using Sutherland's law:
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where �

0

is a reference viscosity at a reference temperature T

0

. These can be taken

as �

0

= 1.7894x10

�5

kg/(m.s) with T

0

= 288.16 K. It is stressed that the quantities

presented here have been non-dimensionalised. The procedure used is as follows:
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A.3 Reynolds-averaged form

The Reynolds-averaged form of the Navier-Stokes equations permits turbulent 
ow

to be considered. The development is not presented here. It is merely noted that

fundamental to this approach is the consideration of the 
ow variables as consist-

ing of two components, a time averaged component and a turbulent 
uctuation

component. For example, density and velocity components are decomposed as

u = �u+ u

0

; v = �v + v

0

; � = �� + �

0
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The quantities k (the turbulent kinetic energy), �

T

(the turbulent viscosity) and

Pr

T

(the turbulent Prandtl number) are introduced via the important Boussinesq

assumption in an attempt to model the 
uctuating-variable stress terms arising

from the Reynolds averaging. For a complete discussion of this subject see [53].

The Reynolds-averaged form of the Navier-Stokes equations are identical to those

presented in appendix A.2, except for the stress tensor and heat 
ux vector com-

ponents shown below. The variables should be considered as mean 
ow quantities

(superscripts are dropped for clarity). The turbulent nature of the 
ow is modelled

via �

T

and k and a closure hypothesis or turbulence model, for example the k � !

model, appendix B.
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A.4 Curvilinear form

The governing equations are written in curvilinear (�,�) form to facilitate use on

curvilinear grids of arbitrary local orientation and density. A space transformation

from the Cartesian coordinate system to the local coordinate system must then be

introduced:

� = � (x; y)

� = � (x; y)

t = t

The Jacobian determinant of the transformation is given by

J =

@(�; �)

@(x; y)
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The equations A.1 can then be written as
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The expressions for the inviscid 
uxes can be simpli�ed somewhat by de�ning
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The inviscid 
uxes can then be written as
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The derivative terms found in the viscous 
uxes are evaluated using the chain rule,

for example

@u
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= �

x

@u

@�

+ �

x

@u

@�

The evaluation of the metrics of the transformation is clearly important, and is

described in full in [53].



Appendix B

The two-equation k � ! turbulence

model

B.1 Non-dimensional form

The k � ! turbulence model of Wilcox[54] in non-dimensional form can be written

as follows:

Eddy Viscosity
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In the above relations,

P =

�

�

rV +rV

T

�

: rV �

2

3

(r:V)

2

�

S = r:V



B.2 Curvilinear form 205

The equations as shown above use the same non-dimensional quantities as in section

section A.2, with the addition of
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B.2 Curvilinear form

The equations for k and ! can be written in a curvilinear form analogous to that

used for the mean 
ow equations in section A.4 . Written in full, the two-dimensional

Cartesian form of equations B.1 and B.1 become
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where the vectors of conserved variables, convective and di�usive 
uxes are respect-

ively
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Finally, the source term is written as
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Again the velocity derivative terms are evaluated in (�,�) space via the chain rule,

as mentioned in section A.4, but remain unexpanded in the source term components

above for brevity.
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