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ABSTRACT

Grooved, rough, and porous surfaces are in use clinically to stabilise the bone/implant 

interface and encourage osseointegration for hip and knee replacements and dental 

implants. To date, there is no one topographical surface that is considered superior. No 

one has ever directly observed the process of bone formation by cells in tliree dimensional 

spaces. Also, little work on the response of cells to curved surfaces exists.

The aim of this work was two-fold: to isolate and characterise primary osteoblasts from 

rat and human sources, and to study the response of those cells to different topographies. 

Fused silica grooved surfaces (width -  2 - 100 \im, depth ==10 nm - 6.0 pm), polyurethane 

replicas, and fine quartz tubes (diameter = 150-700 pm, length = 5 mm - 2.5 cm) provided 

an aiTay of topographical enviromnents. Besides conventional techniques like video time 

lapse scanning cinemicrography. scanning electron microscopy, immunofluorescent 

(confocal scanning laser microscopy) and histological staining, two new teclmiques were 

used to assess osteoblast extracellular matrix production and orientation; polarised light 

microscopy and atomic force microscopy.

Findings included rat and human osteoblast sensitivity to grooved features greater than 

80 and 100 nm in depth respectively. Furthermore, preliminary results suggested that 

grooved surfaces (width: 5 pm, depth: 6 pm) influence extracellular matrix production, i.e. 

the alignment o f collagen and mineral with the groove long axis. The ability to influence 

and control the orientation of new bone via topography is the first step towards tissue 

engineering organised bone. In addition, the ability to control new bone growth could have 

an impact in the acceleration and enhancement of the wound healing and repair process.



Video time lapse cinemicrography revealed that within an hour of seeding, osteoblasts in 

tubes had extended towards each other and formed dynamic cord-like structures that 

spanned the tube diameter and along its length. Furthermore, after a few days, cells had 

formed nodule-like structures usually associated with two dimensional tissue culture 

despite the lack of ascorbic acid and h-glycerophosphate. Examination of these tubular 

environments with polaiised light revealed biréfringent particles present in some of these 

nodules. Osteocalcin staining showed brightly stained globules produced along cell cords 

and suggested the inner wall of the tube was coated by small mineralised particles.

In summary, the findings presented in this work demonstrate the ability of both 

material surfaces modified in a regular manner (grooves) and extended concave surfaces of 

small diameter (tubes) to influence osteoblast behavioui’ and mineralisation in vitro. There 

is some evidence to suggest that grooved smfaces influence extracellular matrix orientation, 

i.e. collagen and mineral alignment. Also, cells seeded into a three dimensional tubular 

environment behaved differently than similar’ cells on flat surfaces in terms of overall 

activity, and extracellular matrix production. In conclusion, this work imparts new 

information on the response of osteoblasts to topographical surfaces and environments 

that could lead to the tissue engineering of bone and redesign of implant sui'faces.
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Chapter 1: Introduction

BONE PHYSIOLOGY

Tissue Level Morphology

Macroscopic Structure

All of the long bones in the human body have similar global features. Each bone consists 

o f two regions, the epiphyses or bone ends, and the dlaphysis or midshaft of the bone. 

The diaphysis is a long, hollow cylinder of bone with the medullary canal located in its 

centre. The epiphyses are comprised of cortical bone along the outer perimeter and 

cancellous bone in their interior (please see next section for description of cancellous and 

cortical bone). The surrounding “skin” of the long bone, referred to as the periosteum, 

consists of an outer layer of dense tissue, wliile osteoblasts (bone making cells) and 

osteoclasts (bone eating cells) are found in the osteogenic inner layer. Tendons and 

ligaments attach to the bone along this tissue. A similar tissue, also rich in osteoblasts and 

osteoclasts, the endosteum, lines the canals in bone, including both the medullary canal, 

and the trabeculae in cancellous bone that contact marrow (Marieb, 1995).

Microscopic Structure

Bone tissue can be classified into two types: cortical (compact), and cancellous 

(trabeculai'). Cortical bone is comprised of unit structures of oriented collagen and mineral. 

Cancellous bone, on the other hand, is mainly distinguishable by trabecular struts amidst a 

sea o f marrow.

Cortical bone is teeming with channels and passages that provide pathways for nerves, 

blood vessels and lymphatic vessels. The structural unit of compact bone, the osteon, 

(Figure 1) is also known as a haversian system. These “tiny weight-bearing pillars” are
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Chapter 1: Introduction

oriented parallel to the long axis of the cortical bone, and each is a hollow tube o f bone 

matrix. Structurally, they are comprised of 3-7 |im thick concentric sheets of oriented 

collagen known as lamellae. Each sheet of collagen is oriented in the opposite direction 

(90°) from the one on either side of it. This structure allows bone to withstand torsional 

stresses - each lamellae reinforces the other. Each osteon is comprised of 4-20 lamellae and 

has an average diameter between 150 and 250 |im (Marieb, 1995, & Park and Lakes, 1992).

CENTRAL CANAL
Arteries

Veins'
Nerves

CONCENTRIC
LAMELLAE

4-20 lamellae/osteon^ 
3-7 |im  thick

Parallel collagen 
fibres, apatite crystals 

& osteocytes

Total Diameter:
150-250 pm

Figure 1: Schematic depicting the gross structure of the osteon.

There are two type of canals in cortical bone. Haversian canals are found in the direct 

centre of the osteon and contain small blood vessels and nerve fibres. Volkmann’s canals, 

orientated perpendicular to the Haversian system, serve to connect the vascular and nerve

13



Chapter 1: Introduction

supplies of the periosteum to the central canals of various osteons and ultimately the 

medullary cavity (Webster, 1988).

At lamellae junctions, spider-shaped bone cells occupy lacunae. As the matrix hardens 

during bone formation, osteoblasts become trapped and mature into osteocytes in these 

tiny cavities. These trapped cells maintain eonnections with one another via long tentacle­

like projections and gap junctions thi’ough tiny canals or canaliculi which also serve to 

connect the cells to the central canal in the osteon and enable nutrients and wastes to be 

delivered and removed. This network of cells and canaliculi established in the osteon is 

also known as the osteocytic-osteoblastic bone membrane, and separates the mineralised 

matrix from the plasma in the eential canal (Sherwood, 1993).

Cancellous bone consists of trabeculae organised along directions of stress that act 

similarly to struts to support the bone. No osteons are present, instead cells aie randomly 

arranged and interconnected via canaliculi like those eanals found in eortieal bone. 

Cancellous bone is best visualised as a sponge, with the interconnected interstices filled 

with bone marrow (Marieb, 1995).

Biochemical Composition:

Bone consists of both organic and inorganic parts, each contributing to its unique 

mechanical properties. Wet bone eontains approximately 22 wt% organic matrix, of which 

90-96 wt% is collagen. This organie matrix also consists of cells including osteoblasts, 

osteoclasts, and osteocytes, and osteoid. The mechanical properties conferred by this 

organic matrix include the gi'eat tensile strength of bone, its flexibility and its ability to 

resist stretching and twisting (Park & Lakes, 1992). The osteoid secreted by the
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Chapter 1: Introduction

osteoblasts comprises about one third of the bone mati'ix and includes proteoglycans, 

glycoproteins, and collagen.

Recent reseai'ch has involved the identification of glycoproteins located within bone 

matrix and the integrins involved in mediating cell attachment to these proteins (Tables 1 

& 2). Skeletal development, bone mati'ix produetion, and pathological processes like 

fractures, osteogenic tumours, and metabolic bone diseases are influenced by the 

interactions of bone cells and their extracellular environment (Saito, et al, 1994).

15



Chapter 1: Introduction

Glycoprotein in Bone 
(*contains RGD sequence)

Location in Human Bone Suggested Function

Fibronectin*
Mature & immature bone mati’ix, 

appears early in osteogenesis''
Cell adhesion’®

Multiple cell attachment mitogen’ 
Differentiation’

Thrombospondin*

Mature bone matrix - osteoid layer 
(osteoblasts & osteocytes), 
cambial layer of periosteum, 

primitive woven bone, appears 
early in osteogenesis''

Multifunctional cell adhesion 
modulator®

Binds to calcium’ 
Binds to osteonectin’ ’ 

Binds to hydroxyapatite’’
Fibrillin Bone matrix® Assembly of elastic fibre®

Osteopontin* (SPPl, 
BSP I)

Bone mati’ix (secreted mostly by 
osteoblasts), appears later in 

osteogenesis'*

Regulates & nucleates 
mineralisation’, involved in cell 

attachment’’’ & tissue remodeling’, 
binds to hydroxyapatite'

Type I collagen* Bone matrix'' Principal (>90%) ECM®
Type HI, V, X, XI, XIII 

coJiagens
Bone matrix' Minor collagens®

Osteonectin (SPARC) Soft and hard tissues^’̂ Modulates cell-matrix interactions’ 
Links mineral to mati’ix®

Vitronectin* Matui’e bone matrix'' Cell attachment®
Bone sialoprotein* (BSP II) Localised to osteoblasts primarily 

but has been found in platelets and 
cancer cells’

Nucleator for mineralisation’® 
Matrix organisation’
Cell attachment’ ’ ’

Bone-associated glycoprotein- 
75

Bone mati’ix® Binds calcium® and 
hydroxyapatite’

Osteocalcin (bone Gla 
protein, BGP)

Mineralised tissues^ but mRNA 
has been found in platelets’

Role in mineralisation’
Role in remodeling® 

Calcium binding protein’ 
Calcium homeostasis’ 

Binds strongly to hydroxyapatite'
Matrix Gla Protein Soft and hard tissues^ ’ Regulates mineralisation’ ’ 

Calcium homeostasis’
Bone morphogenetic proteins 

(BMPs)
Bone matrix* Role in differentiation’, 

morphogenesis’
CS-PG I (biglycan) Chondroitin sulphate form is 

unique to bone, but core protein 
same as dermatan sulphate PG 
biglycan in many soft tissues’

Tissue remodelling & wound 
healmg’

Binds to collagen®

CS-PG II (decorin) Same as above Regulates fibrilogenesis’ 
Binds to TGF-B®

CS-PG III Restricted to bone (?)’ Regulates mineralisation’
alpha-2HS-glycoprotein Synthesised in liveri & found 

everywhere’
Bone remodelling & resorption’ ’

Osteoadherin Bone matrix® Cell attachment®
Osteoglycin Bone mati’ix® TGFB/BMP binding®

Table 1: The location of glycoproteins in bone tissue and their possible function in bone 
formation (Marks & Popoffl, 1988; Boskey2, 1989; Stanford & KellerS, 1991; Grzesik & 
Robey4, 1994; DaviesS, 1996; Reddi6, 1997; Robey7, 1989; Boden8, et al, 1996; 
Mundy9, 1993).
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Chapter 1: Introduction

Glycoproteiii(s) Integrin receptor(s)

type I or IV collagen, gelatin, laminin cfjjSj and
fibronectin and poss. a^Py,a^Py,a^p^

osteopontin, bone sialoprotein oCyPs
viti’onectin p3 Ps
fibrinogen «vÆ

vitronectin, fibronectin, fibrinogen, 
thrombospondin, von Willebrand factor, bone 

sialoprotein & osteopontin
^sPz

Table 2: The integrin receptors thought to bind to specific glycoproteins (Stanford & 
Keller, 1991; Saito, et al, 1994).

The inorganic portion of bone is responsible for 69 wt % of the bone mass and is 

comprised mostly of hydroxyapatite (Caio(P0 4 )6(OH)2) with a few other ions including 

citrate (C^HgO/"), carbonate (COg^ ), fluoride (F‘), and hydroxyl ions (OH ). Tiny 

calcium phosphate salt ciystals on the order of 20-40 nm in length and 1.5-3 nm in width 

are interspersed among the collagen in the extracellulai’ matrix. The inorganic portion of 

bone is responsible for conferring the mechanical property of hardness and the ability of 

bone to resist compression (Park & Lakes, 1992).

Osteogenesis

In the developing human embryo, the fibrous and cartilaginous skeleton starts to be 

replaced by bone around week six. This ossification occurs by two processes: 

intramembranous and endochondral bone formation. In the former type, flat bones like 

those of the skull and clavicles are formed while in the ease of the latter, the long bones of 

the skeleton are made.

At week 8, mesenchymal cells cluster together in the fibrous framework of a central 

ossification centre in the membrane, differentiate into osteoblasts and secrete osteoid, thus
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beginning the intramembranous ossification process. After a few days, the osteoid 

becomes mineralised and is identical to true bone matrix. During this process some 

osteoblasts become trapped in the lacunae of the developing bone and mature into 

osteocytes. This process occurs simultaneously at multiple ossification centres until an 

interconnected network of trabeculae are formed. This type of bone is called woven bone 

beeause the blood vessels and collagen are arranged randomly in an overlapping fashion 

throughout the structure. Concomitantly, the periosteal sheet is formed at the suiTace of 

the woven bone. Eventually the woven bone around the perimeter of the bone organises 

itself into lamellar bone, but the interior of the bone retains its trabeculai’ structure 

permanently with spaces filled with marrow (Marieb, 1995).

The second type of developmental bone formation is endochondial ossification and 

begins late in the second month of development. This type of bone formation involves the 

transformation of an existing hyaline cartilage “skeleton” into bone, and begins at a primary 

ossification centre. The first step is the vascularisation of the perichondrium, the outer 

layer eovering the hyaline cartilage. This change in nutrition results is the transformation 

of the osteoprogenitor cells just below the perichondrium to osteoblasts. The osteoblasts 

secrete osteoid that encases the hyaline cartilage. Dui’ing the formation of this “bone 

eollar,” the underlying cai’tilage cells hypertrophy and signal the surrounding matrix to 

calcify. The calcification of the matrix prevents nutrients from diffusing to the interior 

cartilage cells who subsequently die. Despite the deterioration of the interior o f the 

forming bone, its overall structural integrity is maintained by the outer collar of bone 

(Marieb, 1995).
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During the third month of development, the interior deteriorated matrix is invaded by a 

periosteal bud whieh includes a nutrient artery and vein, lymphaties, nerve fibres, red 

maiTOW elements, osteoblasts, and osteoclasts. The osteoblasts secrete osteoid around the 

hyaline cartilage remnants forming a cancellous bone structure. The region of this structure 

in the centre of the developing bone is broken down by osteoclasts to form the medullary 

canal. The bone grows distally and proximally along the epiphyseal lines by the division 

o f cartilage cells. At birth or shortly thereafter, the epiphyses ossify via secondary 

ossification centres. This process differs fiom formation of the diaphysis m that the 

trabecular interior structure is retained. At the end of the entire process, cartilage cells are 

only found at the epiphyseal plates and the articular surfaces (Marieb, 1995).

Dynamic nature of bone/ bone remodelling

In most tissues, tissue is regenerated cell by cell. In bone however, the tissue as a whole 

including extracellulai' matrix is renewed and revitalised continuously. Between 5-7% of 

human bone mass is regenerated each week and the influx and outflux of calcium per day 

can be as much as one half a gram. Amazingly, the distal portion of the human femur is 

completely replaced every 5-6 months (Marieb, 1995). Thus, bone is an exhemely 

dynamic and complex tissue that is continuously modified throughout development and 

life.

During the process of bone remodelling, new bone is laid down on the surface of old 

bone. Factors that promote bone deposition include ascorbic acid necessary for collagen 

synthesis, vitamin A, and minerals including calcium, phosphorus, magnesium, and 

manganese. These junctions of new and old bone are sometimes referred to as cement lines 

in the literatur e. The deposition of bone in vivo is delineated by the presence of an osteoid
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seam, a 0.2-12 |im wide “gauzy-looking” band of unmineralised bone matrix. There is 

evidence that this region is morphologically distinct from normal mineralised bone tissue 

because these areas do not contain collagen, but instead consist o f ground substances rich 

in sulphur (Marieb, 1995; Davies, 1996) Davies quotes work by Frasca (1981) that 

suggests these regions are sulphated protein polysaccharide complexes.

Because the transition between unmineralised and mineralised areas is quite sudden, it is 

speculated that some unknown factor triggers mineralisation after the 10-12 day 

maturation of the matrix. Known information regarding mineralisation includes the fact 

that specific local concentrations of calcium and phosphate ions are necessary in order for 

hydroxyapatite crystallised nuclei to form spontaneously. These precursor nuclei catalyse 

the crystallisation of calcium salts. Other factors that contribute to the matrix calcification 

process include the secretion of extracellular matrix proteins like osteonectin and 

osteocalcin which bind and concentrate calcium and high levels of alkaline phosphatase. 

Even though it always precedes mineralisation, the exact function of alkaline phosphatase 

in the mineralisation process remains a mystery.

Therefore, not only are the specifics of mineralisation not well understood, the exact 

mechanism by which bone responds to mechanical stress remains unknown as well. 

Known facts include increases in mechanical stress are directly proportional to bone 

deposition as evidenced by more bone mass in athletes and decreases in bedridden patients 

(Sherwood, 1993). Also, the deposition of bone occurs in regions of negative charge, while 

resorption occurs in regions of positive charge. Information obtained experimentally 

includes tlie facts that electrical current produced by bone deformation is proportional to 

the applied force, and compressed and stretched regions are oppositely charged.
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Furthermore, electrical stimulation of fracture sites has led to the theory that these fields 

prevent parathyroid hormone from stimulating osteoclasts at the fracture site thereby 

promoting bone formation (Marieb, 1995).

Thus, bone is a dynamic tissue that is continuously undergoing the process of 

remodelling. It is responsible for controlling the availability of ionic calcium, a cmcial 

player in numerous biological processes. The exact mechanisms by which mineralisation 

occurs in vivo or in vitro and how bone responds to mechanical influences are not well 

understood to date.

Wound repair - human

The healing time for a fracture in human bone is 8-12 weeks, but can last much longer for 

larger, weight bearing bones and older people (Marieb, 1995). Twenty-four horns from the 

time of fracture, a blood clot or hematoma forms at the fracture site. Osteocytes closest to 

the fracture are resorbed, osteoblasts deprived of nutrition die, the periosteum becomes 

swollen with oedema and proliferating fibroblasts. However, there is little ehange in the 

endosteum. After two days, the clot is invaded by capillaries, phagocytic cells that clean 

up debris, and fibroblasts that begin to lay down new osteoid. At four days, the blood clot 

has been mostly replaced by vasculaiised fibroblastic tissue (soft granulation tissue) 

containing nests of cartilage cells that extends down the medullary canal from the fracture 

line in both directions.

The next stage, callus formation, is crucial to the expeditious and successful repair of the 

fracture site. By the fifth day of repair, a callus produced by fibroblasts making collagen, 

has formed smoothly connecting the bone sides externally. The success of this stage and 

the next, depend on a mostly intact periosteum as a source of osteogenic, reparative cells.
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Some osteogenic cells migrate from the endosteal surface and the marrow, but if the 

periosteum has been severely disrupted, callus bridging will not occur, an essential 

component of proper fr'actur’e healing. Other notes regarding callus formation include the 

fact that flat bones like the ribs that form via interrnembrous ossification do not progress 

thr'ough a callus cartilaginous stage like most long bones do (Webster, 1988).

The successful and timely replacement of the callus scaffold with bone depends on 

immobilisation (rigid fixation favours bone formation), age, and nutrition. Bone formation 

at fracture sites can be stimulated with electrical fields and bone morphogenetic proteins 

(Webster, 1988). At the end of the week during repair, the central cartilage nests have 

started to calcify and osteogenic cells appear underneath the periosteum, increasing its 

thickness. By the tenth day, the process of replacing the fibroblastic tissue with immature 

woven bone has begun. At two weeks, remodelling events have created a medullary canal 

and endochondral bone formation is well progressed. By the eighteenth day, the 

periosteum is back to a normal size and a new cortical bone collar surrounds the callus 

remnants which include the newly formed woven bone and in the centre, the remains o f the 

original cortex. At the end of the fourth week, the outer cortical bone collar is the same 

thickness as the original cortex and a red marrow medullary canal exists between the old 

and new cortex. Along the fracture line, the old and new cortexes are bridged by foci of 

cartilage or fibrous tissue. By the seventh week, the fractured bone is basically back to 

normal (Byers, et al, 1981; Marieb, 1995). Thus, the time for wound healing to occur 

depends directly on the mechanical stability of the site and on the existence of an intact 

souree of osteogenic cells.
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OSTEOBLAST DIFFERENTIATION AND PHENOTYPE 
EXPRESSION DURING CELL CULTURE

Differentiation

ECMprotein temporal markers:

Characteristics of osteoblasts include their ability to synthesise type I collagen, 

SPARC/osteonectin, osteopontin, bone sialoprotein and osteocalcin, in addition to high 

alkaline phosphatase (AlP) activity. These factors appear to be properties of cells at 

different maturation levels. For instance, AlP levels increase initially, but drop off as 

mineralisation progresses. Other observations include; osteopontin appears prior to bone 

sialoprotein and osteocalcin, bone sialoprotein is first detected in differentiated osteoblasts 

forming bone, and osteocalcin appears concomitant with mineralisation.

Gene expression:

Numerous studies reviewed recently by Stein, et al, (1996) used analytical techniques 

including northern blot analysis, in situ hybridisation, nuclear run-on transcription and 

histochemistry to paint a picture of the genes expressed during the development of 

osteoblasts in vitro. Essentially, there are four stages on route to a mature, mineralised 

matrix (Table 3).

During the initial proliferative stage, requisite genes like c-myc, c-fos, and c-jun along 

with hi stones and cyclins are expressed. In addition, genes associated with the regulation 

o f extracellular matrix biosynthesis like TGF-B and type I collagen, integrin expression and 

cell adhesion markers like frbronectin can be detected. Genes for alkaline phosphatase 

appear during the second phase as the matrix begins to mature and prepare itself for 

mineralisation. Osteocalcin and osteopontin genes are expressed at maximal levels during
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the third stage which is denoted by hydroxyapatite deposition. The fourth and final stage 

of bone matrix synthesis is hypothesised to have a editing or remodelling role. Genes for 

collagenase and type I collagen are expressed, and apotosis and proliferative compensation 

are characteristic of this stage.

Stages of mineralised 
matrix formation in vitro

Genes expressed and 
matrix characteristics

Stage 1 : Proliferation
• Expression of proliferation genes
• Integrin expression
• Adhesion mediators, i.e. fibronectin

Stage 2: Preparation for mineralisation • Alkaline phosphatase

Stage 3: Matrix maturation • Hydroxyapatite deposition
• Osteocalcin & osteopontin genes @ maximal levels

Stage 4: Mati'ix Maintenance • Type I collagen & collagenase
• Apotosis & proliferation

Table 3: Four stages o f the in vitro development of a mineralised matrix (Stein, et al, 
1996).

External factors:

Once cell attachment to an in vivo surface occurs, growth factors present in the bone like 

acidic and basic fibroblast growth factor, insulin-like grovrth factors I and II, platelet- 

derived growth factor, transforming growth factor B, and bone morphogenetic proteins 

influence osteoblastic functions. These factors and proteins may effect proliferation, 

maturation and / or differentiation of progenitor cell lines, and the formation or 

composition of the extracellular matrix (Stanford & Keller, 1991).

An exciting family of proteins that is the most promising in the clinical realm in terms of 

inducing new bone formation is the bone morphogenetic proteins (BMPs). This class of
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proteins are members of the transforming growth factor-B (TGF-B) superfamily. Wang, et 

al, in (Boden, et al, 1996) report that these proteins have the capability to induce “full 

osteoblast differentiation” in vivo. Studies of bone development have revealed that BMP- 

2, BMP-4, and BMP-7 are important in eai’lier stages (endochondral ossification), whereas 

later events (membranous bone formation) are mediated by BMP-6 and BMP-7. 

Furthermore, BMPs are able to diive uncommitted mesenchymal or bone marrow stromal 

cells down the osteoblast lineage in culture (Boden, et al, 1996). Another member of the 

bone morphogenetic family, osteogenic protein-1, has been demonstrated to initiate and/or 

promote bone formation both in vitro and in vivo (Dee, et al, 1996).

Phenotype expression

Morphological appearance and mineralisation:

Osteoblasts are anchorage-dependent cells meaning they must first adhere to a surface in 

order for cellular functions to occui' like proliferation and mineralised matrix deposition 

(Dee, et al, 1996). Furtliermore, these cells can be defined morphologically as early 

(polygonal cells with refractile matrix), intermediate (polygonal cells, reffactile matrix, 

multilayered cellulai' system) and mature (siimlar to intermediate, but with matrix visibly 

mineralised) (Aubin, et al, 1995).

In general, osteoblast development has tlrree steps: proliferation, matrix synthesis and 

matui'ation, and mineralisation. The enzyme alkaline phosphatase located in mahix 

vesicles of chondrocytes and osteoblasts is a calcium-binding glycoprotein. In cartilage, 

these vesicles serve as focal points for mineralisation. During mineralisation, alkaline 

phosphate actually provides phosphates for immediate mineralisation in the vesicle 

membrane. One theory of mineralisation in bone proposes that the activation of alkaline
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phosphatase and the localisation of calcium cause the first mineral crystals to be produced 

inside matrix vesicles. Subsequent mineralisation occurs between and along collagen fibrils 

(Marks & Popoff, 1988).

THE BIOMATERIAL/BONE CELL INTERFACE

When an implant is placed in the body its surface chemistry, charge density and 

topography immediately determine which macromolecules, i.e. proteins, sugar’s, ions and 

lipids, adsorb to its surface during the first few minutes and even seconds of implantation. 

Boy an, et al, (1996) suggest initial cell recruitment is determined by chemotactic factors 

provided by the newly conditioned implant surface, whereas recently bound proteins 

determine cell attachment. Martin, et al, (1995) propose that this initial cellular 

attachment leads to the production of cytokines and chemotactic and growth factors, 

thereby influencing the overall tissue response to the implant.

The surface chemistry or topography of an implant are not the only factors determining 

implant success in vivo. For example, a local factor like high oxygen tension which favours 

osteogenesis over chondrogenesis can be important as well. In addition, if micromotion 

occurs after implant placement, frbrocartilage could form. Thus, while surface

characteristics may dominate the body’s initial response to the implant, environmental or 

outer mechanical factors may play a significant role in determining overall implant success 

(Boyan, et al, 1996).

Besides implant surface design and external factors, it is also important to consider the 

site of implantation and the cell populations that could come in contact with the implant. 

Every surgical site will contain blood, an instant source of mesenchymal and 

osteoprogenitor cells. The first cells to see an implant are most likely to be
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undifferentiated mesenchymal cells instead o f fully mature and secretory osteoblasts. 

These stem cells can differentiate into osteoblasts, chondrocytes, muscle cells and 

adipocytes (Boyan, et al, 1996).

How accurately does in vitro cell culture mimic the real situation? There is some 

evidence that the interface constructed by osteoblasts (rat bone marrow cells) in vitro is 

similar' to the one foimd in vivo. In vitro studies have revealed the presence of a 0.5 p.m 

tliick layer similar to the cementing line found in vivo. This continuous layer o f globular 

accretions is rich in calcium, phosphorous, osteopontin and bone sialoprotein (Davies, 

1996).

Despite more detailed information regarding the interface itself, Davies (1996) asserts there 

is a dearth of information regarding a mechanistic explanation of how materials elicit a 

specific bone cell response and how this interface is fonned. He argues the following 

questions remain unsatisfactorily answered:

•How do cells make bone on foreign surfaces?

•What is the differentiation state of the osteogenic cells that colonise an implant?

•How do these cells adhere to the implant surface in a manner that permits maturation 
o f the osteoblastic phenotype?

•Is there an identifiable sequence of matrix formation events that characterises this bone 
formation at an interface?

•Can the sequence of matrix formation events on implant surfaces be affected in either 
subtle or overt ways by the surface properties of the material?

Thus, there remains a gap in frmdamental information about the biomaterial / bone cell 

interface and its formation.
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OSTEOBLAST RESPONSE TO SURFACES

Cells are exquisitely sensitive to material surfaces. Previous studies have shown that 

surfaces sputter coated with various implant materials effect metabolism and phenotypic 

expression of osteoblasts and chondrocytes (Cooley, et al, 1992; Hambleton, et al, 1994). 

There is even evidence to suggest that cells are sensitive to surfaces of varying 

crystallinities. A study performed by Boy an, et al, (1995) indicated that alkaline 

phosphatase, [^H] uridine incorporation and collagen production differed significantly for 

chondrocytes cultured on highly ordered Ti0 2  (rutile) versus amorphous Ti0 2 . 

Furthermore, Boyan, et al, quotes the work of Hanein, et al, (1994), stating that cells can 

differentiate between the two {011} faces (R,R) and (S,S) of calcium tartrate hemihydrate 

crystals. The authors suggest that protein adsorption may be different for each surface, 

and that this might have been the dominating factor influencing the cell response to the 

different suifaces.

Surface energy and chemistry

The surface energy of a material is defined as positive/negative hydrophilic or neutral 

hydrophobic. The surface charge creates a local environment with a specific surface 

tension, surface energy and adhesion energy (Boyan, et al, 1996), Hydrophilic or 

“wettable” surfaces are higli in energy, and encourage more cell attachment and spreading 

than hydrophobic surfaces. One suggested reason for this ability to induce a favourable 

cell response is the high amount of proteins that become adsorbed to the surface over time. 

For example, Chesmel and Black (1995) believe their polymeric biomaterial srufaces adsorb 

as much as 10-20 molecular* layers of protein from media supplemented with 10% serum.
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The two popular methods of altering the surface chemistry and energy of implants for 

orthopaedic applications with the goal of encouraging or enhancing mineralisation have 

been hydroxyapatite coatings and bioactive glasses. Both of these surfaces have showed 

increases in bone deposition but their mechanical integrity and dissolution properties are 

suspect (Chehroudi, et al, 1997). Thus, osteoblasts aie sensitive to changes to general 

surface chemistry and energy. How is this response related to or similar to their response 

to different topographical surfaces?

Topography

Bowers, et al, (1992) report that studies involving dental implant surfaces suggest that 

topography plays a crucial role in implant success, rather than surface chemistry alone. A 

reason why surface topography may be a critical factor in determining cell response to the 

siu'face is the undeniable link between surface energy and topography. Hence, by altering 

the topography, and thus surface energy, one could change the proteins and other 

molecules that become adsorbed to the implant surface and control cell attachment later 

(Boyan, et al, 1996).

Clinical Implications/Motivation:

The long-term stability of orthopaedic implants for younger patients and those with active 

lifestyles remains an elusive goal. Polymethylmethacrylate (PMMA) cement and porous- 

coated structures designed to promote bone ingrowth aie used clinically to stabilise the 

implant/bone interface (Thomas, et al, 1987). Researchers continue to search for 

innovative methods to improve stability and enhance bone ingrowth. In the 1980s and 

1990s, researchers attempted numerous surface macro and micro textures including sintered 

beads, fibre meshes, plasma-spray coatings, and sand blasted or acid etched surfaces to
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fiuther stabilise the implant-bone interface (Raslimir-Raven, et al, 1995; Chae, et al, 1992; 

Tisdel, et al, 1994; Hayashi, et al, 1989; Wong, et al, 1995; Nimb, et al, 1995; Friedman, et 

al, 1995).

In each of these studies, researchers tried to improve the osseointegration of the implant 

and bone. Osseointegration is the attachment of bone directly to the implant surface via 

chemical or biochemical means (Wong, et al, 1995). It ought to be noted that other groups 

have defined it as the contact between bone and the implant on a light microscope level 

(Keller, et al, 1987). The primary goal of osseointegration is to produce a mechanically 

stable and long-lasting interface between the implant surface and bone. Well- 

osseointegrated implants will transfer the load directly to bone, potentially reducing stress 

shielding and bone resorption. In addition, less reaming may be necessary for fixation, 

leaving more of the patient’s viable bone stock available for future operations. The chief 

factors affecting osseointegration in addition to overall implant design include the vigour of 

the bone remodellmg response or the quality of the implant bed, the sur'gical skill in 

insertion, the physical activity level of the patient after surgery, and the overall 

bio compatibility of the implant materials (Wong, et al, 1995).

Surface topography also plays a role in the design of dental implants. A recent analysis 

o f thirteen commercially available dental implants revealed large variability in terms of 

surface roughness/ topography, indicating that there is no consensus for the best 

topographical surface at this time (Wennerberg, et al, 1993). Thus, topography is an 

important variable in device design, and may significantly effect long term clinical success.
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General discussion:

Interest in cell response to topography has spanned most of the 20th century. As early as 

1911, Harrison described cell orientation and guided movement in reaction to spider web 

threads. In the 1940s and 50s, it was discovered that cells ahgn to fibres and grooves 

(Weiss, 1945,1956). Cell sensitivity to curvature was demonstrated through experiments 

with cells and glass fibres by Curtis and Varde (1964), In the 1980s and 1990s, 

developments within the microelectronics field have enabled researchers to study cell 

sensitivity to the precisely defined features of multiple grooved substrata, in some cases 

with topographical dimensions on the order of nanometers (Clark, et al, 1987,1990; 

Wojciak & Crossan, 1994; Wojciak-Stothard, et al, 1995, 1996; Wojciak, et al, 1995). 

These developments have facilitated new bioengineering approaches to problems in the 

areas of tendon repair, signalling in neural networks, dental implant stability and bone 

formation (Wilkinson & Curtis, 1996; Chehroudi & Brunette, 1995).

Influence on cell shape:

Chehroudi, et al, (1997) suggest that one explanation for altered cell behaviour on 

topography may be due to the change in cell shape. Thus, the ability to control cell 

polarity and shape could enhance or favour osteogenesis in vivo.

It is believed that one of the primary regulators of the proliferative rate in anchorage 

dependent cells is cell shape. Rounded cells tend to divide at a lower rate compared to 

those that are flattened and well spread on the substrate (Boyan, et al, 1995). 

Furthermore, cell shape may influence protein production. Changes in cell shape are 

sensed tlrrough integrlns on the cell membrane. These changes are then translated to the

31



Chapter 1: Introduction

cytoskeleton and eventually relayed to the nucleus, potentially altering phenotypic 

expression.

If osteoblasts display a fibroblastic morphology in culture, they secrete matrix products 

into the medium. However, bone-like matrices occur* if the cells are rounded and 

multilayered at a high density (Hunter, et al, 1995). In v/vo, osteoblasts exist in a 3-D 

matrix multilayered structure that is essential for terminal osteoblastic differentiation and 

matrix calcification (Bellows, et al, 1986). "For this reason it may be of use if an 

orthopaedic biomaterial does not allow spreading to a degree which may favour a change in 

phenotype from osteoblastic to fibroblastic at the implant-bone interface" (Ricci, et al, 

1994). Thus, the ability to directly control cell shape via topography may enhance bone 

formation along the interface.

Rough surfaces:

Acid etching, sandblasting, sanding and polishing are non-specific methods used to alter the 

topography of implant surfaces. Initial studies of the osteoblast response to rough 

surfaces focused on cell attachment as indicative of a positive overall cell reaction to the 

surface. Some in vitro studies have demonstrated that osteoblasts prefer rough surfaces 

over smooth ones (Michaels, et al, 1989; Bowers, et al, 1992). Recent research, however, 

has suggested that cell shape may be a more important factor than attachment in terms of 

enhanced extracellular matrix production. Furthermore, more groups are examining the long 

term response of osteoblasts to the surfaces, i.e. mineralisation, as more indicative of 

implant success.

Martin, et al, (1995) considered the effect of roughening titanium on osteoblast 

proliferation, differentiation, and matrix production. Cell replication and alkaline
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phosphatase activity (nonconfluent cells) were inversely related to roughness. However, 

osteoblasts preferred rough over smooth titanium surfaces as demonstrated by the 

inhibition of protein production and matrix synthesis on the smooth surfaces, and higher 

collagen synthesis and better matrix production on the rougher surfaces. A reason why 

cells preferred this rougher surface could be the increased adsorption of a cell mediator of 

attachment like fibronectin.

Boyan, et al, (1995) also found a decrease in cell proliferation on rough titanium 

surfaces and argue that this indicates an acceleration of cell differentiation. The formation 

of multilayered aggregates supported this theory. Furthermore, Bowers, et al, (1992) 

found mineralisation and alkaline phosphatase activity of confluent osteoblasts to increase 

proportionally to increasing rougliness.

One interesting finding of Martin, et al, (1995) was that the most “regular” rough 

sui'face, i.e., a surface with 1 p,m pits and 10 |im craters, seemed to stimulate calcification 

and matrix production and/or cell differentiation. Cell number, proliferation and cell layer 

alkaline phosphatase results were similar’ to those of osteoblasts plated on smooth 

surfaces. However, matrix production and cellular alkaline phosphatase results were 

similar to results from osteoblasts seeded onto rough surfaces. This finding offers support 

to the idea of using of grooved substrata with rigidly defined topography to control cell 

shape and influence mineralisation (discussed in the next section).

Finally, by roughening the surface unidirectionally, one is able to influence the 

orientation o f mineralisation macroscopically. Gomiand Davies (1993) demonstrated that 

polystyrene dishes roughened in one direction with 600 or 320 grit sandpaper which had 

grain sizes of 26 |rm and 46 p,m respectively, produced oriented bone in vitro after 2 weeks
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ascertained via the von Kossa staining method. Thus, roughening the surface can affect cell 

attachment, proliferation, protein synthesis, and may be able to orient extracellular matrix 

production in vitro and in vivo..

Microfabricated surfaces:

It was not until the 1990s that a few groups began to publish papers on the response of 

osteoblasts both in vivo and in vitro to grooved, microfabricated surfaces. In 1991, 

Brunette, et al, first reported the ability of these surfaces to orient osteoblasts derived 

from foetal rat calvaria. Epoxy resin surfaces with v-shaped grooves 18 or 30 jxm deep 

were sputter coated with a 50 nm layer of titanium. Time lapse cinemicrography revealed 

that cells oriented with their long axis parallel to the grooves and moved along the long axis. 

In vivo experiments with a percutaneous/skull rat model were also conducted. No bone 

was present next to the smooth surfaces (12 total), and only 6 out of the 26 grooved 

surfaces studied exhibited bone-like tissue. Also, the authors noted oblique or 

perpendicular orientation of collagen to the grooves.

This work was continued by Chehroudi, et al, in 1992. Implants were identical to those 

used by Brunette, et al, 1991. Both rat calvarial cells (passages II & III) and calvarial 

explants were seeded onto microfabricated surfaces. Using compressed air to remove the 

outer cell layer, the authors discovered mineralised globules greater than 10 p.m on the 

grooved surfaces, whereas smaller globules (0.5 - 3 |im) were found only on smooth 

surfaces after four weeks of culture. Mineralised globules 5 |im in diameter appeared only 

on the grooved explant surface system and not on the smooth control. No bone-like tissue 

was found next to smooth surfaces after implantation in vivo. Although this has not been 

rigorously confirmed, the authors found differences in the collagen fibril alignment next to
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grooved surfaces versus smooth in vivo, and suggest that the enlianced mineralisation seen 

next to grooved surfaces in vivo may be a result o f this orientation of collagen.

Qu, et al, (1996), continuing work in Brunette and Chehroudi’s laboratory with cells 

derived from foetal rat calvaria looked at the effect of v-shaped grooved surfaces 3 |Lim 

deep (pitch ranging from 6-8 jJtm) on cell adhesion, cytoskeleton arrangement, and bone 

nodule formation in vitro. Significantly more osteoblast-like cells attached to the grooved 

surfaces and after 6 hours cells had aligned to the grooved surface. The authors report 

tissue orientation in the form of bone-like tissue nodules in vitro, and by using digital 

radiography methods showed tissue alignment with the groove long axis in vivo.

Chehroudi, et al, (1997) describe a successful in vivo model to quantify the amount of 

bone produced on grooved and pitted surfaces. The region of implantation was again, the 

parietal portion of male Sprague Dawley rat skulls. A total of 316 implant surfaces were 

analysed for bone formation after 8 weeks. Findings included the decrease of bone-like foci 

as groove depth increased, and the orientation of these foci with the groove long axis. In 

summary, grooved surfaces have demonstrated the ability to influence the production of 

more bone-like tissue and may influence the orientation of the tissue formed as well.

Two other groups in the 1990s have demonstrated the influence of grooved surfaces on 

bone cells. Gray, et al, (1996) cut 350 |xm wide grooves of depths up to 200 |im into thick 

slabs of dental tissues with a diamond wheel. Rat calvarial osteoblasts were seeded onto 

the surface and examined over 2-4 weeks. The researchers found that bone formation 

occurred in places of "cellular condensation,” i.e. within the grooves, at the junction 

between the slab and the culture dish, the dish periphery, and in cracks where dissimilar 

tissues separated. Bone formation occurred fastest in the deeper grooves.
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The authors felt the results of this study demonsti'ated “unequivocally that the 

topography of the substratum affects the siting, timing and extent of new bone formation.” 

Furthermore, surface topography effected differentiation and cell activity in the absence of 

mechanical stress, a stimulus for bone formation in vivo. The authors also viewed that the 

fact the amount o f new bone was proportional to increasing depth highly significant, 

indicating that there may be an optimum depth for bone formation.

Chesruel, et al, (1995a,b), used solvent-cast polystyrene to produce a topography of 5 

|Lim wide grooves with depths of either 0.5 or 5 |tm arranged radially around a central cell 

source. The surface chemistry of these structures was altered by varying the amount of 

styrene monomer introduced during the casting.

Various combinations of surface chemistry and topography did not significantly effect 

the growth rates of cells dining the experiment. Surprisingly, there was no increase in the 

number of cells that migrated to the 0.5 and 5 |Lim deep grooves compared to a smooth 

surface. A significant difference in the amount of collagenous and noncollagenous protein 

produced by the cells was found between the surfaces with 0 and 1% of the styrene 

monomer versus the surface with 2% of the monomer, indicating cell sensitivity to the 

surface chemistry. There were no striking differences m protein production between the 

controls and the 0.5 and 5 |xm deep grooves.

No qualitative differences were observed between the amount of contact guidance of 

cells on the 0.5 |im deep grooves versus cells on the 5 jxm deep grooves. Cells in both 

cases were aligned along the long axis of the grooves. Grooves enhanced the radial 

movement of cells as measured by the radial outgrowth area, as well as the overall 

migration rate. This observation is supported by other studies that have shown increased
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cell migration in the direction of the grooves (Ricci, et al, 1990; Ricci, et al, 1994). The fact 

that migration speed and orientation, and extracellular matrix production varied on different 

surface chemistries and topographies but were not correlated with each other suggests 

sepai’ate cell controls for each of these responses. In conclusion, the authors found that 

grooved surfaces caused confluent regions of cells and extracellular matrix to form in an 

“orderly” manner and that expressions of extracellular matrix proteins varied jflom surface 

to surface. Further work is necessary to clarify exactly which extracellular matrix proteins 

are affected.

Thus, previous work regarding the osteoblast response to grooved surfaces has 

determined that (1) osteoblasts are sensitive to grooved surfaces as shallow as 0.5 |Xm, (2) 

osteoblasts are responsive to grooves and surface chemistry but neither clearly dominates 

the other, (3) grooved surfaces promote bone formation in vivo and in vitro but the 

mechanism by which this occurs remains unknown, and (4) grooved surfaces influence 

alignment of cells and bone-like nodules and tissue in culture.

Mechanical Stretching of osteoblasts

Proto-oncogene mRNA like c-fos, c-jun and zif/268 are actively synthesised during 

mechanical stretching of substrates seeded with osteoblasts (Dolce, et al, 1995). These 

results suggest these genes are involved in the initial signal transduction during mechanical 

stimulus. Further support for this hypothesis is found in the work of Copley, et al, 

(1994) who discovered osteoblasts cultured on poly-1-lysine versus fibronectin and 

subjected to biaxial mechanical strain displayed significantly different proliferation rates. 

The reader is refeiTed to the work of Brighton, et al, (1991, 1992, 1996); Hasegawa, et al.
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(1985); Somjen, et al, (1980); Duncan, et al, (1995); and Buckley, et al, (1988) for more 

information regarding the influence of mechanical phenomena on osteoblast behaviour.

PROJECT AIMS

General goals

The ability to influence and control the orientation and growth of new bone via 

topography two and thi'ee dimensionally is the first step toward the tissue engineering of 

organised bone. In addition, the ability to guide new bone growth could have an impact in 

the acceleration and enhancement of the wound healing and repair process. This work 

examines the influence of micron and nanometric grooved features on cell behaviour and 

extracellular matrix production - namely collagen and mineral orientation.

Furthermore, this work addresses the behavioural differences of osteoblasts to flat 

versus extended concave surfaces (tubes). Osteoblast mineralisation has never been 

observed continuously in a thi'ee dimensional environment before. The diameter of these 

tubes is similar to that of porous surfaces used clinically, and it is hoped new, more 

specific information regarding mineralisation in these tubular structures can be learned that 

will help to optimise future prostheses.

Specific goals

Successful isolation o f  primary osteoblasts:

The initial aim of this project was to establish a repeatable, dependable protocol for the 

isolation o f primary osteoblasts from human and rat sources.
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Osteoblast response to grooved topography:

With a few exceptions, the majority of published literature on osteoblasts and grooved 

surfaces has focused on grooved dimensions on the order of tens or hundreds of microns. 

This work focused on smaller grooves as a method of influencing cell behaviour' and matrix 

production. Dimensions of grooves assessed in this work are similar' to those being 

analysed in industry (Harold Alexander, personal communication). In addition, most 

analysis of tissue orientation has been macroscopic in nature. This work attempted to 

answer the following questions that have been hitherto unsatisfactorily or unaddressed in 

the literature:

• How sensitive are osteoblasts to grooved topography, i.e. features as shallow as 80 
nanometers?

• What is the effect on osteoblasts of var'ying the width of the grooves - specifically of 
those smaller than the average width of a bone cell, 2 and 5 jim, those the same size as 
the width of a bone cell, 10 |im, and those 2x the width of a bone cell?

• How is the osteoblast response different in terms of alignment or mineral production 
on polyurethane (a flexible surface of higher biocompatibility) versus fused silica 
grooved surfaces?

• How do grooved surfaces effect the extracellular matrix production of osteoblasts, i.e. 
do oriented osteoblasts produce oriented collagen or hydroxyapatite?

Osteoblast response to curved surfaces/tubes:

There have been few reports in the literature regai'ding cell behaviour in extended concave 

surfaces (tubes), and no one has monitored cell behaviour continuously m tubes before. 

This work addressed the following questions:

• What is the effect of small diameter (150-700 |Ltm) tubes on osteoblast behaviour?
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• Does the tubular enviromuent effect the osteoblasts’ extracellular matrix production 
over time?

• Does varying the diameter or length of the tube have an effect on cell behaviour or 
extracellular matrix production?
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INTRODUCTION

A review of published protocols in the literature about the isolation of human and rat bone 

cells was conducted, and modified methods were developed for this work. The primary 

objective was to develop a repeatable isolation method that resulted in the maximum 

number of viable osteoblasts. Once these cells were obtained, their phenotype was 

examined using published criteria as a standard, i.e. alkaline phosphatase activity, 

osteocalcin staining, and of course, their mineralisation capability. A variety of techniques, 

including a spectrophotometric assay (alkaline phosphatase), polarised light microscopy, 

scanning electron microscopy, liistological staining (von Kossa and Alizarin Red S 

methods) and immunofluorescence (osteocalcin and type I collagen) were used.

MATERIALS AND METHODS

Human Cell Isolation Protocol

The following isolation method was adapted from protocols discussed by Gallagher, et al, 

(1996). Cells were isolated from bone obtained from the iliac crest of a 27 yeai' old male. 

Bone fragments were placed into a solution of Dulbecco’s Modified Eagle Medium 

(DMEM, Sigma, UK) supplemented with 5% antibiotics, and cut into 1-3 mm pieces with 

sterile scissors after periosteum and soft tissue were removed. The fi'agments, suspended 

in fresh DMEM/antibiotic solution, were vortexed successively with fresh solutions until 

they appeared white and no blood remained.

These bone fragments were separated into two groups with approximately 1.25g of 

bone per group. Group A was immediately suspended in 8 ml of DMEM supplemented 

with 10% new-born calf serum, 2.5% glutamine/ penicillin/ streptomycin/ amphotenicin B
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and 10 iiM dexamethasone (Sigma, UK) and plated into 10 cm petri dishes. Group B was 

exposed to 2 mg/ml collagenase (Type VIII, Sigma, UK) for 1 hour at 37°C. The 

supernatant was discarded and the fragments were suspended in 8 ml of media and placed 

into 10 cm petri dishes. 50 jim/ml of L-ascorbic acid (Sigma, UK) was added fresh every 

2-3 days of culture after 10 initial days of undisturbed culture. After 14 days, cells were 

fed as needed, usually every 2-4 days. On Day 20, fragments were resuspended manually 

into 10 cm petri dishes for further culture.

Rat Calvarial Cell Isolation Protocol

Isolation of calvaria from neonate (between 2-7 days old) Sprague Dawley rat pups was 

performed using a modified version of a protocol found in Hung, et al, (1995). The 

endosteum and periosteum were scraped from the frontal, parietal and occipital bones 

which were chopped into 1-2 mm fragments and vortexed in a DMEM/ 10 % antibiotics 

solution until fragments appeared white. Five 20 minute digestions at 37°C using 

collagenase 2 mg/ml (Type Vlll or Type lA, Sigma, UK) followed. The first population 

released after 20 minutes was discarded. After each digestion, the supernatant was 

collected, media added, the solution centi’ifuged and cells collected in a pellet. Cells were 

plated into 75 cm^ culture flasks in DMEM supplemented with 10% calf semm and 5% 

glutamine/ penicillin/ streptomycin/ amphotenicin B. Media was changed on Day 1 after 

plating and eveiy 48-72 hours afterwai'ds, and at each media changing fresh 50 p,g/ml 

ascorbic acid was added. Either primary cells or cells no greater than passage III were used 

for reported experiments.
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Adult Rat Bone marrow Cell Isolation Protocol

Heterogeneous cell populations were isolated from adult 125-150 g Sprague Dawley rats 

using a modified version of a protocol found in Herbertson and Aubin (1995). Briefly, the 

femurs were dissected out and placed into a solution of 10% glutamine/ penicillin/ 

streptomycin/ amphotenicin in Hepes saline. The proximal and distal ends were removed 

and the interior flushed out with the Hepes solution. This cell suspension was collected 

and centrifriged at 2000 rpm, and 4“C for 2 minutes. The cells from both femurs were 

resuspended in a T-75 tissue culture flask into DMEM supplemented with 10% calf 

serum and 5% glutamine/ penicillin/ streptomycin/ amphotenicin B, 50 pg/ml L-ascorbic 

acid (Sigma, UK) and 10 mM of B-glycerophosphate (Sigma, UK). The ascorbic acid and 

B-glycerophosphate were added fresh to the media at each changing (eveiy 48-72 hours). 

Cells from passages I-IIl were used for all experiments discussed.

Immunofluorescence

The detection of osteocalcin and type 1 collagen of confluent rat osteoblast layers was 

conducted using immunofluorescent techniques. Structures and tubes were rinsed in 

phosphate buffered saline (PBS), and fixed in buffered formalin for 15 minutes (structures) 

to 1 hour' (tubes). Cells were rinsed in PBS and allowed to remain in PBS at 4°C overnight. 

Cells were incubated in a 0.5% PBS solution of bovine albumin (Sigma, UK) for 20 

minutes, followed by an incubation with anti-human osteocalcin antibody (Biogenesis) 

1:25 for 1 hour, washed 2-3x with the 0.5% bovine albumin solution and incubated 1-2 

hours with FITC anti-rabbit or FITC anti-mouse secondary antibody 1:50 (Sapu, Law 

Hospital Carluk-Lanarkshire, Scotland) 1:50.
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Confocal Laser Scanning Microscopy

Cells were examined for the presence of osteocalcin and type I collagen using the Odyssey 

Real Time Laser Scanning Microscope Model No. VSM-LSM (Noran Instruments, Inc., 

Milton Keynes, UK) equipped with an argon-ion laser, and the MetaMorph Imaging 

System (Universal Imaging Corporation). Cells were examined under a 488 nm excitation 

wavelength, a 0.5 |im aperture, a 15 |Lim slit and a 40x objective. Proper controls for 

second antibody and immunofluorescence were tested with each new antibody 

combination.

Scanning Electron Microscopy

Cells layers were washed 3-6x in warm PBS and fixed in 1% glutaraldehyde / PBS for 1 

hour at 37°C. Cells were rinsed in PBS and fixed with a 1% osmium tetroxide solution in 

PBS for 15 minutes. Osmic acid was rinsed off with deionized water lOx. Then cells were 

dehydrated in the following solutions: 50% ethanol/deionized water for 10 minutes, and 2 

times 100% ethanol for 10 minutes. The cells were placed in hexamethyldisilazane 

(HMDS, Sigma, UK) for 5 minutes followed by a final rinse in HMDS. The remaining 

HMDS was poured off and the samples were allowed to dry overnight and then coated 

with a 200 Â layer of gold/palladium using a sputter coater (SC500, Emscope). Samples 

were viewed with a scanning electron microscope (S-800, Hitachi).

Spectrophotometric alkaline phosphatase assay

Confluent cultures of primary human bone cells and rat calvarial osteoblasts were tested 

for alkaline phosphatase activity. Cultures of mouse 3T3 fibroblast cells served as an
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initial control. The principle behind the alkaline phosphatase assay is to determine the 

amount of p-nitrophenol produced during the reaction:

p  — nitrophenyl p h o s p h a t e p  _  nitrophenol+phosphate 

[colorless) [yellow)

The rate of increase in absorbance at 405-410 nm is directly proportional to the alkaline 

phosphate activity in the sample.

Cell layers were lysed just after confluency was reached using a 0.1% Triton X-100 

solution of 0.1 M 2-amino-2-methyl-l-propanol. 200 |xl of cell extract was added to 800 

|im of a 7 mM solution of p-nitrophenyl phosphate (Sigma, UK) and 500 |im of 0.1 M 2- 

amino-2-methyl-l-propanol. The reaction was carried out for group I (human cells) at 

37“C for 15 minutes and for group II (human cells) for 30 minutes at 37°C. The reaction 

was quenched on ice and 1 ml of 0.2 N NaOH was added to halt the reaction. The 

production of p-nitrophenol was measured at 410 nm using a UV-visible recording 

spectrophotometer (Shimadzu, UV-160). Standard cui-ves were obtained using p- 

nitrophenol solutions (Sigma, UK). All values were normalised with respect to the amount 

of protein present in each sample as determined by measuring the absorbance of cell 

extracts at 280 nm.

H istological Staining

von Kossa method

The objective of the von Kossa method is to identify calcium phosphate mineralisation in 

osteoblast culture. This method depends on a salt substitution reaction between silver
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nitrate and calcium phosphate. The silver phosphate is reduced to black metallic silver by 

the action of light (Culling, et al, 1985; Lillie, et al, 1976; Kiernan, 1981).

Briefly, after cell layer confluency, "mineralising media" including 50 lag/ml ascorbic acid 

and 10 mM b-glycerol phosphate was added. When mineralised nodules appeared, the 

cells were prepared for von Kossa staining. The cell layer was rinsed 2x in Hepes saline or 

PBS, fixed in 95% ethanol at 4°C for 5 minutes and rinsed in distilled water 3x. A 5% 

solution o f silver nitrate was added to the cell layer, and the reaction was carried out in 

sunlight and/or bench top light for approximately 1 hour. The layer was washed well with 

distilled water and counter stained with neutral red (0.5%) for 60 seconds.

Alizarin Red S

The objective of the Alizarin Red S method is also the detection of calcium deposits. The 

following protocol was adapted from methods by Drury & Wallington (1967) and Kieman 

(1981). After fixation, cell layers were rinsed in distilled water. A 2% alizarin red S 

(Sigma, UK) solution (pH 4.2) was added for 1-5 minutes and the reaction monitored 

under a microscope until completion. The layers were differentiated in a 0.05% 

hydrochloric acid/95% ethanol solution for 15 seconds. The layer was rinsed in 100% 

ethanol two times and rinsed in histoclear twice for 5 minutes.

RESULTS

Phenotype confirmation

Cell phenotype was confiimed by typical osteoblast morphology, the high activity of 

alkaline phosphatase, positive staining for osteocalcin, and the ability of these cells to form
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mineralised nodules in cultui’e as ascertained by von Kossa and Alizarin Red S staining, and 

polarised light microscopy (see sections below).

General morphology:

Isolated rat and human osteoblasts displayed osteoblastic morphology in culture. Typical 

characteristics included a polygonal shape (Figure 2), and the tendency to form 

multilayered tissue (Figure 3). Furthermore, osteoblasts formed nodules several days 

after reaching confluency in culture (Figure 4).
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a.

b.

Figure 2: a. Phase contrast picture of human osteoblasts migrating from a fragment of 
bone. b. Human osteoblasts on tissue culture polystyrene early in culture. Morphological 
characteristics of osteoblasts include a polygonal shape and the tendency to form 
multilayered cultures. [Original magnification, 20x]
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Figure 3: Phase contrast picture of a multilayered culture of rat osteoblasts plated on 
tissue culture polystyrene. [Original magnification, lOx]

ĵ H
HH

Figure 4: Phase contrast picture of an unmineralised nodule found the day after reseeding 
human osteoblasts into a tissue culture flask. [Original magnification, 1 Ox]

Alkaline phosphatase assay:

Alkaline phosphatase activity was confirmed for both human and rat cells using a 

spectrophotometric assay and mouse 3T3 fibroblasts as negative controls. The following
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results compare human versus 3T3 mouse fibroblast alkaline phosphatase activity. A 

standard curve was obtained using p-nitrophenol solutions (Figure 5).

40

y = 0.11664 + 58.880X R^2 = 0.998

30 -

20 -I
I
9Oi

0.60.1 0.2 0.3 0.4 0.50.0

Absorbance

Figure 5: Standard curve of the absorbance of p-nitrophenol solutions.

The linear region of the absorbance curve for protein measured at 280 nm was determmed 

based on the following curve (Figure 6).

2.0

1.5-

I
-eo

Linear region o f dilution curve
0 .5-

1.0 1.20.4 0.6 0.80.2

Sample concentration (ml)

Figure 6: Protein absorbance at 280 nm at various dilutions o f human bone cell sample I.
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Thus, 0.05 ml of sample was used for each protein measurement.

The spectrophotometric measurements of individual cell layer extracts represented in 

the following tables as HB x or 3T3 x clearly showed a higher alkaline phosphatase activity 

for human bone cell cultures compared to mouse 3T3 fibroblast cultures (Tables 4-5, 

Figure 7).

Sample
HBI

[p-nitrophenol] 
(nmol/mg protein)

Sample
HBH

[p-nitrophenol] 
(nmol/mg protein)

H B a 0.51 H B e 1.32
H B b 0.45 H B f 0.78
H B c 0.46 HBg 0.92
H B d 0.69 H B h 1.66
Average 0.53 Average 1.17

SD 0.11 SD 0.40

Table 4: Concentration (nmol/mg protein) of p-nitrophenol produced by human bone cells 
exposed to the p-nitrophenyl phosphate for either 15 minutes (Sample HB I) or 30 
minutes (Sample HB II). The sample designations, HB a-d or HB e-h, represent cell layers 
from individual petri dishes.

Sample
3T3I

[p-nitrophenol] 
(nmol/mg protein)

Sample
3T3II

[p-nitrophenol] 
(nmol/mg protein)

3T3 a 0.07 3T3 d 0.04
3T3 b 0.09 3T3e 0.03
3T3c 0.09 3T3 f 0.06
Average 0.08 Average 0.04

SD 0.01 SD 0.01

Table 5: Concentration (nmol/mg protein) of p-nitrophenol produced by mouse 3T3 
cells exposed to the p-nitrophenyl phosphate substrate for either 15 minutes (Sample 3T3 
I) or 30 minutes (Sample 3T3 II). The sample designations, 3T3 a-c or 3T3 d-f represent 
cell layers from individual petri dishes.
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Alkaline Phosphatase Results

HBI HBH 3T3I 3T3II

Figure 7: Group I was incubated with p-nitrophenyl phosphate for 15 minutes while 
Group II had a 30 minute incubation time. Clearly, there was more alkaline phosphatase 
activity in human bone cell layers compared to mouse 3T3 cells. The bar above each block 
represents one standard deviation within that group.

As expected, when the incubation time of the human bone cell sample and the p- 

nitrophenyl phosphate substrate was doubled, the production of p-nitrophenol also 

doubled. The average production of p-nitrophenol for both groups of human bone cells 

was greater than the mouse 3T3 cells, and the production of p-nitrophenol by the HB II's 

was significantly (P < 0.001) greater than either 3T3 I or 3T3 II. There was no statistical 

difference between the I and II groups of the mouse 3T3s.

von Kossa staining:

Confluent cultures of human and rat osteoblasts on fused silica stained positively for the 

presence of calcium salts using von Kossa histological staining (Figure 8).
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Figure 8: von Kossa staining of human osteoblasts plated on fused silica after seven days 
in culture. [Original magnification: 20x]

Alizarin Red S staining:

Confluent cultures of rat osteoblasts stained positively for calcium deposits using the 

Alizarin Red S staining method (not shown).

Immunofl uorescence :

Cells on fused silica surfaces and inside quartz tubes were stained for osteocalcin and type 

I collagen. Autofluorescent and secondary antibody controls for reported results were 

negative. Type I collagen staining was considered too weak to prove conclusive. Layers 

of rat osteoblasts and matrix stained heavily for osteocalcin however (Figure 9). Refer to 

tube results section (Chapter 5) for more osteocalcin staining.
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Figure 9: Osteocalcin staining of cells plated on fused silica [Original magnification: 40x]

DISCUSSION

Cell Isolation Protocol & Media

In vitro studies of osteoblasts over the last ten-odd years have concluded that specific 

supplements must be added to the media in order to promote mineralisation in culture. 

Even the standard use of serum is important. Schmidt and Kulbe (1993) reported loss of 

osteoblastic phenotype when cell were cultured with foetal calf serum. Thus, calf serum 

was used to supplement media throughout this work. Another culture supplement, the 

glucocorticoid dexamethasone, has been reported to increase bone nodule formation 

(discussed below) by bone marrow stromal cells (Herbertson and Aubin, 1995). The use 

of this additive remains controversial, however. Majeska, et al, (1981) report 

glucocorticoids inhibit the biosynthesis of alkaline phosphatase. All human bone cells in 

this work were cultured in the presence of 10 nM dexamethasone. Because o f the 

unknown effect o f this supplement, its use was discontinued for all rat bone marrow and 

calvarial cell cultures discussed.
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Two other culture supplements, ascorbic acid and B-glycerophosphate are widely 

accepted as necessary additives to promote in vitro mineralisation (Owen, et al, 1990; 

Aronow, et al, 1990; Bellows, et al, 1986). L-ascorbic acid (Vitamin C) is a necessary 

supplement to the media, because it is required during the synthesis of collagen. 

Specifically, it acts as a cofactor durhig the hydroxylation of lysine and proline residues 

(Gallagher, et al, 1996; Chehroudi, et al, 1992). L-ascorbic acid has also been reported to 

increase proliferation, a, (I)-procollagen mRNA, and noncollagenous protein (osteocalcin 

and bone sialoprotein synthesis) production in human osteoblasts (Gallagher, et al, 1996). 

For these reasons, ascorbic acid was added fresh to the media throughout cell culture.

It should be noted that the addition of 6-glycerophosphate in order to promote in vitro 

mineralisation does not necessarily mimic the in vivo mineralisation situation. This 

phosphate is not available physiologically, and it has not been unequivocally demonstrated 

that it acts similarly to phosphates during in vivo mineralisation (Gallagher, et al, 1996). 

Experimental work (Owen, et al, 1990) has determined the concentrations of 50 p.g/ml 

ascorbic acid and 10 mM 6-glycerophosphate as the most effective in promoting 

mineralisation. Thus, these concentrations were used thi'oughout this work.

Human Cells:

The decision to use primary human bone cells is not a new one (Begley, et al, 1993; 

Schmidt and Kulbe, 1993) There are several reasons why this is a difficult system to work 

with, however. First of all, the isolation and culture of these cells is not trivial. Bone 

fragments from a patient are placed into media and cells migrate out weeks later, making 

the culture of these cells time consuming. In addition, there is a limited amount o f genetic 

variability when using cells derived from only one patient. Also, other factors like age and
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sex effect the cell pool isolated. Serum levels of osteocalcin are higher in men than women 

and decrease as the patient ages (Schmidt and Kulbe, 1993). Despite these difficulties, 

however, the use of human cells is more appealing in terms of species specificity and 

clinical relevance.

Rat Calvarial Cells:

The rat calvarial model, both foetal and neonatal, is a well established, widely used method 

for the isolation of osteoblasts enzymatically released with collagenase and/or trypsin 

(McCabe, et al, 1994; Bizios, 1994; Harris, et al, 1994; Bellows, et al, 1986). In fact, it has 

been used successfully for several decades (Stein, et al, 1996). When using this isolation 

method, it is important to consider the osteogenic potential of the various populations of 

cells released and the effects of passaging those cells. Bellows, et al, (1986) report that cell 

populations released after ten minutes of collagenase digestion were unable to fonn 

mineralised bone nodules due to the high proportion of fibroblasts. Secondly, groups 

report loss of phenotype after more than thr'ee passages (Valentini, personal 

communication) in culture. Thus, hr order to maximise the osteogenic potential o f cells 

used in this work, cells released from the first twenty minutes of the enzymatic isolation 

were discarded and cell populations were only used for experiments until passage III.

There is published evidence that cells released from rat calvaria accurately mimic their in 

vivo properties. Cells obtained from osteopetrotic rats retained in vivo pathological 

characteristics of precocious and intensified mineralisation when studied in vitro (Stein, et 

al, 1996). Thus, the rat calvarial model is a reasonable, relatively straight forward isolation 

method for the initial assessment of various topographical surfaces.
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Adult Rat Bone Marrow cells:

In an effort to more accurately imitate in vivo reality, researchers have begun to use adult 

rat bone marrow as a som'ce of undifferentiated and partially differentiated osteogenic cells 

(Davies, 1996; Herbertson & Aubin, 1995; Benayahu, et al, 1995; Bruder, et al, 1994). 

Although this cell source is heterogeneous, mcluding mesenchymal stem cells, fibroblasts, 

endothelial cells and adipocytes, the mesenchymal stem cells present can be driven down 

several lineages, namely the osteoblast, chondroblast or adipocyte paths (Benayahu, et al, 

1995).

Herbertson and Aubin (1995) report that by altering culture conditions, one is able to 

promote the differentiation of a specific cell type from those cells that adhere to the tissue 

culture flask after isolation from the maiTow. Specifically, 1/300th (Aubin, et al, 1990) of 

the cells from rat bone marrow stroma cultured in conditions favouring bone formation 

were found to be osteoprogenitor cells. When ascorbic acid and 6-glycerophosphate were 

included in the media, these authors reported the ability of these cells to form mineralised 

nodules. Fui'thermore, Davies (1996) has demonstrated that the interface formed by these 

cells on biomaterials is identical to the interface found on retrieved implants and in cement 

lines.

In an effort to encourage these cells down the osteoblast line, ascorbic acid and 6- 

glycerophosphate were added to the media from day 1 of culture and to each media change 

during experiments discussed in this work. It is believed that this isolation method more 

accurately reflects the in vivo situation of wound repair and response to implant 

placement.
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Phenotype confirmation

By tailoring cell isolation methods reported in the literature and only using primary cells or 

at most passage III cells, a cell population of both human and rat osteoblasts was isolated 

in a reproducible manner. Analysis of cells using standai'd techniques like an alkaline 

phosphatase spectrophotometric assay, histological staining including von Kossa and 

Alizarin Red S methods, immunofluorescent staining for osteocalcin and scanning electron 

microscopy, polarised light microscopy, and atomic force microscopy to detect 

extracellular matrix production produced revealed osteoblastic characteristics similai' to 

those reported in the literature.

Alkaline phosphatase assay:

The relative levels of alkaline phosphatase produced by human or rat osteoblasts 

compared to mouse fibroblasts were different as expected. Mouse 3T3 cells did not 

produce significant levels of alkaline phosphatase, and human and rat cells produced more 

levels of the enzyme overall.

The high standard deviations seen in groups I and II of the human osteoblasts may be 

due to slightly different stages of confluency reached by each dish. As osteoblasts become 

more multilayered their levels of alkaline phosphatase reach a peak and then tend to drop 

off as mineralisation occurs (Robey, 1989). Thus, alkaline phosphatase production is 

directly related to tissue maturity and culture time conditions. In conclusion, cells isolated 

from a 27 year old male human and rat calvaria displayed significantly higher levels of 

alkaline phosphatase than mouse fibroblast controls as predicted.
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Culture mineralisation characteristics:

It is well documented that cellular condensation precedes bone formation both in vitro and 

in vivo (Gray, et al, 1996). The name given to these dense, three dimensional regions of 

cells, mineral and matrix is nodule. Numerous groups have reported that this phenomenon 

can only be produced in in vitro cell culture conditions if the media is supplemented with 

ascorbic acid and 6-glycerophosphate (Bellows, et al, 1986; Aronow, et al, 1990; Harris, et 

al, 1994; Owen, et al, 1990; Ecarot-Charrier, et al, 1988; Pockinwise, et al, 1992). For 

example. Bellows, et al, (1986) observed 75 |im thick, thiee-dimensional nodules three 

days after the confluency of osteoblasts derived from foetal calvaria grown in media 

supplemented with ascorbic acid, and 6-glycerophosphate. Ai'onow, et al, (1990) and 

HaiTis, et al, (1994) reported similar findings. Mineralised bone nodules in cell culture can 

form as early as 24 hours in after the addition of 6-glycerophosphate to confluent cell 

layers (Ecarot-Charrier, et al, 1988). These nodules resemble woven bone, and stain 

heavily for alkaline phosphatase, type I collagen and mineral (von Kossa technique).

Other analytical techniques have been employed to study nodules formed in vitro. 

Pockinwise, et al, (1992) demonstrated cellular’ orientation towards the nodule apex and a 

rough crystalline surface appearance due to deposited mineral and matrix using scanning 

electron microscopy (SEM). Ultrastructural analysis has revealed that mineralised nodules 

constructed by foetal or neonatal rat cell populations closely resemble sections of rat 

calvaria (Owen, et al, 1990) in terms of an ordered deposition o f apatite crystals in a matrix 

of orlhogonally organised collagen bundles (Pueleo, et al, 1991).

Thus, various groups have reported that cells isolated from rats and mice form bone 

nodules under specific in vitro culture conditions. These nodules have been examined
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histochemically using von Kossa and alkaline phosphatase staining methods, 

ultrastructurally via TEM analysis, and morphologically with phase contrast tecliniques 

and SEM analysis. Most of these techniques in addition to 2 new ones: polarised light 

microscopy and atomic force microscopy, were used to assess osteoblast mineralisation in 

vitro in this work.

Histological staining:

The von Kossa staining method is a widely used protocol to detect in vitro mineralisation 

by osteoblasts (Dee, et al, 1996; Stein, et al, 1990). In addition to using this method to 

detect mineralised regions in culture, reseai’chers have used it to determine overall 

mineralised tissue organisation (Gomi and Davies, 1993) It should be noted, however, that 

the von Kossa method simply displaces the calcium in any calcium salt, meaning it is not 

strictly specific for calcium phosphate or hydroxy apatite.

In an effort to confirm von Kossa results, the Alizarin Red S staining method was 

employed. This stain forms an orange-red chelate complex with calcium, and only stains 

lai'ge deposits of calcium well (Bancroft, et al, 1994). A comparison of cultures stained 

using each of these staining protocols revealed that similar regions stained with Alizaiin 

Red S were much more diffuse in nature. Thus, the author feels the Alizarin Red S staining 

method is even more non-specific than the von Kossa staining method.

CONCLUSION

Populations of viable osteoblasts were derived from human and rat sources using 

repeatable cell isolation methods. Analytical techniques revealed the ability of cell 

populations to produce alkaline phosphatase and mineralised nodules m culture. Thus, it
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was concluded that the majority of cells used to study cell response and mineralisation to 

topographical surfaces were indeed osteoblasts.
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INTRODUCTION

A protocol for the isolation of human bone cells was developed and carried out. Cell 

phenotype was assessed by morphological characteristics, alkaline phosphatase activity, 

and mineralisation (von Kossa staining). This chapter focuses on the reaction of these cells 

to grooved topography in terms of sensitivity to nanometric size features and the effect 

these surfaces have, if  any, on mineralisation. The results reported below are preliminary 

in natuie. Unfortunately, a lack of cells from one source prevented the author from 

conducting further experiments.

MATERIALS AND METHODS

*Note

Please refer to Chapter 2 for the cell isolation method and analytical techniques not 

reported below but used in this chapter.

Topographic Surfaces

Fused silica surfaces patterned using photolithographic techniques were used for the 

experiments discussed in this section. One mm fused silica samples (Multilab, Newcastle, 

UK) were cleaned prior to patterning with a 3:1 solution of sulphuric acid:hydrogen 

peroxide for 5-10 minutes at 60°C, rinsed in R.O. water and blown dry. A layer of 

photoresist (AZ 1400-31) was spun on in 30 seconds at 4000 rpm, and the entire sample 

placed in the oven for 30 minutes at 90“C. A chrome mask with the necessary pattern 

allowed irradiation with UV light of specific portions of the photoresist. These areas were 

developed and removed in a 1:1 solution of Shipley developer: R.O. water. Samples were
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then dry etched in a Reactive Ion Etching Unit. Acetone was used to remove residual 

resist and the entire sample was etched for one more minute to ensui*e even sm'face 

chemistiy. Before repeat experiments, structures were cleaned again using a 3:1 solution of 

sulphuric acid:hydrogen peroxide for 15 minutes and rinsed in deionized water. Structures 

were stored in 100% ethanol, and before use flame sterilised and placed into individual 

petri dishes or wells.

Experiments

All structures were comprised of fused silica and had vaiying dimensions (Table 6). Some 

structures had regions of 2, 5, 10, 20 p.m grooves separated by control flat surfaces 

(Figure 10). Structures df003, df006, and df009 were seeded with first passage human 

cells at a concentration of approximately 2.6 x 10"̂  cells/structure. Structures df004, df005, 

dfOOV, df008, dfOlO, AGO 18 were seeded with second passage human cells at a 

concentration of approximately 7.5 x 10  ̂ cells/structure. Structures dfOOl, df002 were 

seeded with second passage cells at a concentration of 1.5 x 10"̂  cells/structure. The cell 

response to these surfaces was monitored over several weeks. 6-glycerophosphate was 

added fresh to the media at each changing after cell layer confluency. Mineralised nodule 

formation was assessed with the von Kossa method.
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Structure Depth (nm) Groove Widths (jim)

AC018 5000 5&  10
dmol 600 12.5
dfD02 1100 12.5
df003 10 2, 5, 10& 20
df004 60 2,5 , 10& 20
df005 80 2,5 , 10&20
df006 100 2,5 , 10& 20
df007 280 2,5 , 10& 20
dm08 670 2, 5, 10& 20
dfl)09 1230 2 ,5 , 10&20
dfOlO 2000 2,5,  10&20

Table 6: Groove dimensions of fused silica structures used for experiments with human 
bone cells.

2 urn 5 ura 10 Lim 20 am

Figure 10: Structure design for df003-dfD10.

RESULTS

Several experiments were conducted to ascertain the response of human osteoblasts to 

various grooved surfaces. In general, when grooved features were equal to or greater than 

100 nanometers, osteoblasts aligned parallel to the groove long axis. This alignment 

usually occurred within the first day of seeding. However, during the course of one
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experiment, cells did not align until day 11 on the 2 |xm and 5 |im wide grooves o f structure 

dfD05 (depth = 80 mn).

Another observation included the tendency of sheets of osteoblasts to detach from the 

structure after a certain period of time in culture. Usually nodules lined the leading edge of 

the sheet and the sheet generally lifted off fr om the 20 jim end of the structure first.

Nodules appeared on flat surfaces and grooves as early as the day after the addition of 

6-glycerophosphate to the culture. In one experiment, five days after adding 6- 

glycerophosphate to the media, six mineralised nodules were found on structure dfOOl 

(width = 12.5 jam, depth = 0.6 pm) while tlnee were found on df002 (width = 12.5 pm, 

depth =1.1 pm).

DISCUSSION/CONCLUSIONS

Two intriguing results emerged from preliminary studies of the human osteoblast response 

to grooved surfaces. The first result was the time-dependent response in terms of ceU 

aligmnent linked to features smaller than the average width of a bone cell, 10 pm, i.e. 2 pm 

and 5 pm and as shallow as 80 nanometers over a period of eleven days. There is evidence 

for time dependent migration of osteoblasts to carboxyl terminated regions from methyl 

terminated ones on self assembled monolayers of gold thiol groups (Colin Scotchford, 

personal communication). Thus, these cells have the capacity to react preferentially over 

time to biomaterial surfaces in culture.

The second interesting, result included the retained aligmnent of cell sheets. Other cells, 

i.e. MDCK cells, form attachments with each other and do not remain aligned after 

confluency is reached (Clark, et al, 1990). This retention of alignment follows published 

results by Gomi and Davies (1993), Qu, et al, (1996) and Chehroudi, et al, (1997) who
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report overall tissue organisation along the direction parallel to grooves or surface scratches 

in both in vitro and in vivo cases. The ability of aligned bone cells to produce oriented 

tissue is the first step towards the tissue engineering of bone.

The tendency of cell sheets to peel off after significant time in culture implies that the 

focal attacliments of osteoblasts for each are stronger and more appealing than those of the 

inflexible fused silica surface. This result suggests that the modulus of elasticity of the 

substrate is crucial, i.e., bone cells might prefer a more flexible surface closer to the material 

properties of bone. Another interpretation of these results is that this is a simple matter 

o f cell adhesion. If the surface was chemically modified to be more “adhesive,” i.e. a more 

hydrophilic surface, maybe cell attachment could be sustained.

Did the topography presented to the human bone cells influence mineralisation? Twice 

as many nodules formed when the structuie depth was 0.6 pm as on 1.1 pm depth (width 

= 12.5 pm), suggesting there may be an optimum topography for mineralisation. More 

work is necessary to confirm this result.
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Chapter 4: Rat Osteoblast Response to Grooved Surfaces

INTRODUCTION

The focus of this chapter is to provide fresh information regarding the osteoblast response 

to grooved surfaces by applying new analytical techniques like polarised light microscopy 

and atomic force microscopy in order to gain more knowledge regarding extracellulai' matrix 

production by osteoblasts in vitro. In addition, this work investigates how sensitive rat 

osteoblasts are to nanometric size features.

MATERIALS AND METHODS

*Note

Please refer to Chapter 2 for the cell isolation method and analytical techniques not 

reported below but used in this chapter.

Grooved Substrates

Fused silica surfaces patterned using photolithographic techniques (see below) and solvent 

castings of these surfaces with polyurethane (see below) were used for the experiments 

discussed in this work.

Photolithographic techniques:

Please refer to Chapter 3 for photolithography fabrication process details. “M ini­

structures” 7 mm X  7 mm were designed for extracellular matrix production analysis 

experiments such that half of the structure contained equivalent grooves and ridges and the 

other half was flat (Figure 11). All structur es were cut fr om the same slide of fused silica 

and had depths ranging from 130 nm to 6.0 [tm, and groove widths o f 5, 20, or 100 pm 

(Table 7).
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7 min

7 mm

grooved
reg ion

flat
reg ion

Figure 11: Schematic depicting fused silica “mini-structures” used in mineralisation 
experiments (top view).

Sample Name Pattern Size Etch depth

A1 5 |im line/space 130 nm
A2 “ 700 nm
A3 “ 1.5 pm
A4 3.6 pm
AS 5.6 pm
A6 6.0 pm

B1 20 |im line/space 130 nm
B2 700 nm
B3 1.5 pm
B4 “ 3.6 pm
B5 5,6 pm
B6 6.0 pm

C l 100 pm line/space 130 nm
C2 1,5 pm
C3 “ 3.6 pm
C4 6.0 pm

Table 7: Grooved dimensions for “mini-structures."

Solvent Casting:

Polyurethane replicas of structures were cast by pouring dissolved polyurethane monomer 

and solvent over fused silica structures in a glass petri dish. The glass dish containing the
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polyurethane solvent solution was baked at 80 “C for 24-48 hours. Upon removal and 

cooling, the dish was left to soak in a Decon solution for 24-48 hours. Structures were 

removed with a scalpel, rinsed in deionized water, followed by rinsing several times in 70 

% ethanol and allowed to air dry in sterile petri dishes. Cloning rings were flame sterilised 

and placed on top of structures to prevent them from floating during cell seeding and 

culture.

Quantitative Cell Response to Topography

Primary rat calvaria osteoblasts were seeded multiple times onto structures of fused silica 

at a concentration of 2.5 x 10  ̂ cells/ml. Cells aligned over a 48 hour period, were stained 

with Brilliant Coomasie blue and analysed using an image analysis program (NIH Image 

Analysis 1.61). An average of 53 cells were analysed per groove depth/width. Parameters 

measured included cell ai'ea, cell perimeter, the deviation in degrees o f the cell major axis 

from the long axis of the groove, and the length of the cell’s major and minor axis. Data 

was analysed statistically using the nonparametric Mami-Whitney test (Instat 2.0, 

GraphPad Software).

Extracellular Matrix Production

Three analytical tecliniques were used to assess extracellular mati’ix production on gi'ooved 

suifaces; scanning electron microscopy (SEM), polarised light microscopy (PLM), and 

atomic force microscopy (AFM).

SEM  Analysis:

Rat calvarial osteoblasts and bone marrow cells were seeded onto structures at a density of

1.0-2.4 X  10  ̂ cells/ml for mineralisation experiments on fused silica. B-glycerophosphate
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(10 inM) was added once rat calvarial cultures became confluent. (Bone marrow cells were 

cultured continuously in the presence of B-glycerophosphate and ascorbic acid. Rat 

calvarial cells were cultured continuously in the presence of ascorbic acid.) Rat calvarial 

cells (Day 11) and bone marrow cells (Day 3) were fixed for SEM analysis (See Chapter 2 

for method.).

Rat calvarial osteoblasts were also seeded onto polyuiethane replicas of structures 

df006-10 (see Chapter 3) at a concentration of 10 x 10  ̂ cells/ml. The entire experiment 

with newly cast polyurethane structures was repeated three separate times in order to 

confirm results.

PLM  Analysis:

Exti'acellulai' matrix production was also assessed with polarised light microscopy. After 

fixation in buffered formalin, various samples were suspended in PBS on glass slides and 

examined under polarised light. In addition to the microscope analyser and the polariser, 

samples were viewed under a red I plate compensator. Samples were rotated tlu'ough 360“ 

and addition and subtraction colour changes noted.

AFM  Analysis:

Passage 2 rat osteoblasts were plated at a concentration of 2.5 x 10  ̂ onto small coverslip 

structmes (Figure 12, Table 8). B-glycerophosphate (10 inM) was added to media the 

day after plating. After fixation (Day 7) in buffered fonnalin the underlying suiface (the 

confluent cell layer had been removed manually) was examined using contact mode atomic 

force microscopy.
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Sample Name Pattern Size Etch depth

C 2 & 5 |im line/space 800 nm
D 10 & 20 gm line/space 800 nm
F 2 & 5 gm line/space 3.3 gm
G 10 & 20 gm line/space 3.3 gm

Table 8: Grooved dimensions for thin (150 |im) structures.

7 mm

2 or 10 gm 
region

5 or 20 gm 
region

7 mm

Figure 12: Schematic depicting fused silica thin (150 jam) structures used in
mineralisation experiments (top view).

RESULTS

Quantitative response to topography

Rat osteoblasts were sensitive to grooved surfaces as demonstrated by their alignment to 

the gi'oove long axis (Table 9, Figures 13 & 14). They were guided by features as 

shallow as 80 nm. As grooves increased in depth by 200 nm, cell alignment increased 

significantly (P<0.0002) and cells were more sensitive to 2 jim and 5 |im features versus 

10 jam and 20 jxm ones (Figures 15 & 16). As the grooves became deeper, depth became 

the controlling factor and groove width ceased to have a significant effect in terms of
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alignment, although the mean angle for cell alignment was always lower on the 2 and 5 gm 

wide grooves versus the 10 and 20 gm ones.

. •  ̂ 5 p.m

CONTROL

/lO am

20 am, *

Figure 13: Computerised image of primary rat calvarial osteoblasts stained with
Coomasie blue and plated onto a structure with a groove depth of 1.23 gm and groove 
widths of 2, 5, 10, & 20 gm. Note cell elongation in a direction parallel to the long axis of 
the grooves (long axis for all groove widths is horizontal with respect to the page).
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structure
Groove 

width (gin)/ 
depth (nm)

Cell
number

examined

Angle
mean

(degrees)

95% Confidence 
Limit

Minimum | Maximum

Flat Control 124.00 49.58 45.11 54.09

2 / 8 0 62.00 15.48 11.49 20.23
df005 5 / 8 0 39.00 17.55 13.47 21.64

10 / 80 49.00 36.62 29.56 43.69
2 0 / 8 0 43.00 37.21 29.57 44.85

2 / 2 8 0 24.00 3.76 2.03 5.49
df007 5 / 28 0 30.00 8.76 3.79 13.74

10/280 36.00 11.38 6.27 16.48
20 / 280 60.00 14.77 10.13 19.40

2 / 67 0 42.00 5.70 3.22 8.18
dfOOS 5 / 6 7 0 37.00 6.75 3.83 9.68

10 / 670 56.00 7.81 5.05 10.57
20 / 670 46.00 11.97 7.29 16.66

2 / 1230 49.00 3.98 1.33 6.62
df009 5/1230 87.00 4.84 2.97 6.72

10/ 1230 67.00 7.55 4.36 10.75
20 / 1230 56.00 7.94 3.94 11.941

dfOOl 12.5 / 600 59.00 5.99 4.20 7.78

df002 12.5 / 1100 36.00 5.42 3.51 7.34

Table 9: Deviation in degrees from groove long axis, 
perfectly aligned cell.

A measurement of 0° would be a
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Control - flat surface 
angle = 49.58

Groove depth
80 nm 
280 nm 

□  670 nm 
Bi 1230 nm

5 ) 20

2gm 5 gm 10 gm
Groove width

20 gm

Figure 14: Deviation in degrees of primary rat osteoblasts from the groove long axis of 
various structures.
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Figure 15: These graphs depict the number of rat calvaiia osteoblasts that aligned within 
a range of degrees (i.e. bars @ 9° denote cells aligned 0-9° to the groove long axis) on 
grooved areas that are 80 nm deep and 2, 5, 10, or 20 gm wide. Note that more cells are 
aligned on 2 and 5 gm wide grooves, and that as the grooves become wider there is an 
increase in alignment variability.
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Figure 16: Osteoblast alignment on a structure with grooves 200 nm deeper than the 
structure results showed in grooved features. The alignment variability increased 
proportionally to groove width, but compared to Figure 15, the overall variability 
decreased significantly.

With the exception of cells on 80 nm deep/20 gm wide grooves, the cell length increased 

between 10 and 30 gm on grooved surfaces (Table 10, Figure 17). The minor axis of the 

cells decreased by rouglily 10 gm or 50 % on all 2 gm wide grooves. As the grooves 

became deeper, the minor axis tended to decrease for all groove widths (Table 10, Figure 

18). Influences on cell area did not become significant until grooves were deeper than 600 

nm. Cell area was significantly (P < 0.01) decreased on structures dfOOl, df002, and df009 

(Table 11). Upon comparison to controls, differences in the major and minor axes of cells 

plated on grooved surfaces became apparent as well. All differences were significant (P < 

0.05, most P < 0.0001) on any structure with a depth greater than or equal to 280 nm.
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Groove Cell Standard Cell Standard
Structure width (gm)/ Major deviation Minor deviation

depth (nm) Axis (gm) Axis (gm)

Flat Control 59.93 23.22 21.82 9.14

2 / 8 0 80.91 42.31 12.62 6.83
dfOOS 5 / 8 0 72.61 29.45 13.48 6.30

10 / 80 71.81 26.49 20.88 9.53
20 / 80 62.50 27.07 21.50 8.17

2 / 2 8 0 75.15 32.75 11.66 4.60
df007 5 / 2 8 0 82.98 34.28 15.12 7.18

10/280 76.59 40.28 15.70 8.40
20 / 280 77.15 29.04 16.19 7.87

2 / 6 7 0 90.84 35.12 11.93 5.12
df008 5 / 67 0 85.52 32.10 14.04 7.78

10/670 80.04 37.56 14.83 7.63
20 / 670 78.05 33.41 17.74 10.58

2 / 670 85.08 35.44 10.54 4.24
df009 5 / 6 7 0 85.82 32.48 11.51 4.83

10 / 670 76.92 30.74 11.77 5.35
20 / 670 89.82 37.27 12.99 6.61

dfOOl 12.5 / 600 88.95 35.17 11.65 5.58

df002 12.5 / 1100 83.43 39.45 12.22 4.39

Table 10: Cell major and minor axis lengths.

80



Chapter 4: Rat Osteoblast Response to Grooved Surfaces

Groove Cell Area Standard Cell S tandard
Structure width (gm)/ (gm*) deviation Perimeter deviation

depth (nm) (gm)

Flat Control 1068.76 574.43 223.09 107.86

2 / 80 712.87 379.79 267.02 143.79
dfOOS 5 / 8 0 706.89 323.61 241.61 95.34

10 / 80 1150.23 658.24 277.95 127.90
20 / 80 1024.59 565.86 245.96 98.70

2 / 28 0 617.44 243.36 243.76 121.28
df007 5 / 2 8 0 919.27 467.39 297.56 144.06

10/280 887.23 501.68 255.78 123.37
20 / 280 926.00 467.47 278.90 120.03

2 / 6 7 0 806.35 381.49 291.54 118.10
df008 5 / 6 7 0 866.52 422.11 297.56 128.91

10 / 670 851.66 493.45 269.75 144.15
20 / 670 977.32 641.24 272.79 116.53

2 / 6 7 0 669.94 333.72 248.98 117.02
df009 5 / 6 7 0 761.88 433.40 266.34 121.11

10 / 670 670.09 378.46 250.57 113.70
20 / 670 830.01 401.43 302.00 136.73

dfOOl 12.5 / 600 755.86 362.21 270.68 135.78

df002 12.5 / 1100 760.71 394.57 286.76 114.05

Table 11: Cell ai'ea and perimeter on various grooved features.
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Figure 17: Osteoblast cell length on a range of groove widths and depths. Cell length 
tended to increase on most grooves.
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Figure 18: Osteoblast cell width generally decreased compai'ed to the control.
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Structure
name

Groove
(nm)

Groove
W idth
(gm)

Cell Area M ajor Axis Minor Axis Angle

dfOOS 80 2 P<0.0001 P=0.0014 P<0.0001 P<0.0001
80 5 P<0.0002 P=0.0147 P<0.0001 P<0.0001
80 10 NS P=0.0074 NS P-0.0029
80 20 NS NS NS P-0.0065

df007 280 2 P<0.0001 P=0.0273 P<0.0001 P<0.0001
280 5 NS P=0.0007 P<0.0001 P<0.0001
280 10 NS P=0.0409 P<0.0001 P<0.0001
280 20 NS P<0.0001 P<0.0001 P<0.0001

dfOOS 670 2 P=0.0167 P<0.0001 P<0.0001 P<0.0001
670 5 NS P<0.0001 P<0.0001 P<0.0001
670 10 P-0.0062 P=0.0003 P<0.0001 P<0.0001
670 20 NS P<0.0001 P=0.0002 P<0.0001

df009 1230 2 P<0.0001 P<0.0001 P<0.0001 P<0.0001
1230 5 P<0.0001 P<0.0001 P<0.0001 P<0.0001
1230 10 P<0.0001 P<0.0001 P<0.0001 P<0.0001
1230 20 P=0.0101 P<0.0001 P<0.0001 P<0.0001

dfOOl 600 12.5 P=0.0004 P<0.0001 P<0.0001 P<0.0001
df002 1100 12.5 P=0.0025 P<0.0001 P<0.0001 P<0.0001

Table 12: Statistical results for quantitative response of osteoblasts to grooved surfaces of 
varying dimensions.

Extracellular matrix production

Grooved surfaces - polyurethane:

By Day 1, cells plated onto polyurethane structures had fomied contacts with each other 

and the substrate. Cells formed numerous “islands” about 100-120 gm in diameter 

(Figure 19). The underlying cell-free surface was examined using SEM. Small mineralised 

globules ranging in size from 0.5 gm to 2.0 gm covered the polyurethane grooved smTace 

(Figure 20) and were especially prevalent on the 2 gm grooved region (Figure 21).
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%

w z m

Figure 19: Phase contrast picture of live cells on a polyurethane surface (grooves 10 gm 
wide and 2 gm deep).

Figure 20: SEM photograph of a polyurethane surface (grooves 10 gm wide and 100 nm 
deep) after aggregates of cells were washed off during the fixing process. Numerous, 
mineral-like globules ranged in size from 0.5 - 2.0 gm.
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Figure 21: SEM photograph of a polyurethane surface (grooves 2 gm wide and 1.23 gm 
deep) after aggregates of cells were washed off during the fixing process. Mineral-like 
globules ranged in size from 0.5 - 3.0 gm.

Grooved surfaces -fused silica:

In preliminary SEM studies, cells on grooves appeared to secrete more extracellular 

material. Both calvarial and bone marrow derived cells secreted mineral-like material 

(Figures 22-26). Orientation of extracellular material was influenced by groove width. 

Bone marrow cells plated on line spacings of 20 gm (Figures 23-24) produced material 

including collagen and calcium phosphate randomly oriented along groove and ridges. The 

same cells plated onto 5 gm wide grooves, however, aligned to the groove long axis and 

produced collagen also oriented along the groove axis (Figures 25-26). Cells examined on 

flat surfaces did not produce oriented extracellular material.
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Figure 22: Rat calvarial osteoblasts after 11 days in culture aligned along a 5 gm wide, 6.0 
gm deep grooved area. Cells are secreting mineral-like extracellular matrix. Inset close-up 
is at xl2.5K magnification.

Figure 23: Bone marrow cells and some extracellular matrix found in a groove and across 
ridges of a 20gm wide, 5.6 gm deep patterned mini-structure. Note no overall order of 
extracellular matrix or cells. Inset close-up is x6.0K magnification.
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Figure 24: Bone marrow cells and mineral-like deposits on a 20 gm wide, 5.6 gm deep 
structure of fused silica.
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Figure 25: Bone marrow cells on grooved surface (5.0 gm wide, 5.6 gm deep) after 3 
days in culture. Cells aligned and formed a nodule which was manually disrupted in order 
to view the grooved interface. There was evidence of extracellular matrix production that 
looked like calcium phosphate and collagen (see close up at x2.5K).
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Figure 26: Along the periphery of the nodule (Figure 25), cells were highly aligned to the 
grooves (5.0 gm wide, 5.6 gm deep). Collagen-like fibrils (see inset for close-up at 
xll.OK) were found along cells and grooves. The overall direction of the fibrils was 
parallel to the grooves.

Atomic Force Microscopy & Polarised Microscopy Analysis:

Cells plated onto structures C, D, F, and G were examined for the presence of biréfringent 

material using polarised light. Small strands of biréfringent material was found along the 2
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gm and 5 gm line spacing regions on structure F (depth = 3.3 gm) (Figure 27). 

Birefringence was confirmed by rotation of the specimen through 360°. At 90° intervals 

the specimen alternated successively between a yellow colour complete extinction. This 

biréfringent materials was not found on structures C, D, or G. AFM analysis o f this 

structure revealed a crystalline material attached to the grooved surface (Figures 28-30). 

The ceramic nature of this material was confirmed after heating the specimen to 

approximately 900°C and re-examination under polarised light. The biréfringent strands 

remained intact.

Figure 27: Grooved surface (5 gm wide, 3.3 gm deep) exposed to polarised light after cell 
sheet removal. Biréfringent material along grooves appeared yellow at 90° intervals. 
[Original magnification = 20x]
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Figure 28: AFM overview scan of area along a groove or ridge on a 2 gm wide, 3.3 gm 
deep grooved region (Field area = 7.5 gm x 7.5 gm).

Figure 29: Close up scan of area explored in Figure 28 (Field area = 40 nm x 40 nm).
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Figure 30: Fine view scan of the same region (Field area = 10 nm x 10 nm).

DISCUSSION

Quantitative response to topography

Various groups (Bellows, et al, 1986; Ricci, et al, 1994, Hunter, et al, 1995; Boy an, et al, 

1995) have speculated on the interplay between cell shape, the biomaterial surface, and cell 

function. Most agree osteoblast shape helps determine cell phenotype and differentiation 

and ultimately their ability to build bone matrix and mineral.

Review of the literature revealed little information regarding quantitative analysis of 

osteoblast shape changes in response to grooved topography with the exception of a paper 

by Qu, et al, (1996). These authors only examined the effects o f two surfaces with V- 

shaped grooves: 30 gm pitch/ 3 gm depth or 6-8 gm pitch / 3 gm depth. A wider array of 

grooved surfaces was analysed in this work ranging from depths of just 80 nm to 1.23 gm

92



Chapter 4: Rat Osteoblast Response to Grooved Surfaces

and line spacings varying from 2 to 20 gm. These surfaces helped elucidate the effect of 

vaiying groove dimensions on cell alignment, area, length and width.

Although it was not surprising to discover rat primaiy calvarial cells reacted to giooved 

topography, details hitherto unknown regarding the sensitivity (defined here as significant 

changes in cell morphology compared to fiat control cells) of that response were revealed 

in this work. When the groove is less wide than the average width of a bone cell (10 gm) 

cell sensitivity to very thin grooves (depth -  80 nm) is enhanced considerably compared to 

their response to 10 and 20 gm wide grooves. These results suggest that when designing 

an implant that will come in contact with bone cells, it may be advantageous to include 

features on that surface that the cells are most sensitive to in order to control cell function. 

What does this control of sensitivity mean in terms of the ability of these surfaces to 

influence extracellular matrix production?

Extracellular matrix production

Several groups have studied the influence of grooved substrata on osteoblast extracellular 

matrix (ECM) production (See Introduction, Chapter 1) both in vitro and in vivo. All 

groups, (Brunette, et al, 1991; Chehroudi, et al, 1992; Gray, et al, 1996; Qu, et al, 1996; 

Chehroudi, et al, 1997), reported the enhancement of mineralisation and ECM production 

of osteoblast cells seeded onto grooved topographical surfaces. Other than attempts to use 

digital radiography (Qu, et al. 1996; Cheliroudi, et al, 1997) to assess “bone-like foci” 

orientation, and the suggestion by Chehroudi, et al (1992) that collagen was “probably 

oriented along the long axis o f the grooves,” no one has explicitly commented on the ability 

of grooved topography to influence ECM orientation.
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This work presents evidence gained through SEM, PLM and AFM analysis that 

tantalisingly suggests that specific grooved surfaces do indeed influence ECM production. 

Fascinating evidence published by Martin, et al (1995) showed that osteoblasts cultured 

on “régulai’” rough surfaces produced more matrix than cells on randomly rough surfaces. 

Even more interesting is the dimensions of these “régulai” sui’faces were craters 

approximately 1 gm by 10 gm. These dimensions ai’e similar in size to gi’ooved 

dimensions reported in the next few sections that influence ECM production and 

mineralisation.

SEM  Analysis:

What effect does altering the overall bulk material of the giooved surface have on ECM 

production? In this study, the flexibility of the suiface changed dramatically, as did the 

surface chemistry with the production of polyurethane replicas of frised silica structures. 

Would osteoblasts favour the more biocompatible polyurethane surface?

The answers to these questions is not immediately cleai' from the results. SEM analysis 

of polyurethane grooved sui’faces revealed the presence of small (0.5 - 3.0 gm) mineral-like 

globules similar to those reported in Chehroudi, et al (1992), who also found globulai’ 

accretions on grooved and flat substrata either > 10 gm or 0.5 - 3.0 gm in diameter. 

Furthermore, Davies (1996) showed that the initial layer along a bone/biomaterial interface 

is comprised of small, globular accretions.

Thus, there is evidence in the literature to support the production of mineralised 

globules by osteoblasts on grooved sui’faces in vitro. However, the time frame (a few 

days) in which these accretions were made is much faster than those reported by 

Chehroudi, et al, (1992) whose cells took up to 30 days to lay down a mineralised matrix.
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Did the polyurethane surface influence mineralisation? These numerous accretions were 

not found on fused silica surfaces after similar time in culture, thus, perhaps the grooved 

polyurethane surface positively influenced mineralisation.

Why did these cells form “islands” on the polyurethane surfaces and not on the fused 

silica ones? The most likely answer to this question is the slightly Ingher density these 

cells were plated out at onto structures. An environment was created where cells could 

spread out and adhere to each other just before or as they were coming in contact with the 

substrate. Because it is more natural for osteoblasts to adhere to other osteoblasts 

compared to an artificial biomaterial surface like polyurethane, it is hardly unsurprising 

that these cells acted in this manner. Another possible reason for “island” formation is 

that the inherent flexibility of these thin polyurethane replica surfaces caused the cells to 

behave differently. More experiments ai'e necessary to confirm these hypotheses.

SEM analysis of rat calvarial derived osteoblasts and adult rat bone manow cells 

unveiled the ability of some fused silica grooved surfaces of specific dimensions to 

influence ECM production. A few studies have hinted that collagen might be aligned to the 

grooves but no one has shown it explicitly. The fibrils pictured in Figure 26 are similar in 

size to fibrils scattered throughout SEM photographs published by Davies and Mastuda 

(1988) and Davies (1996).

The fact that bone marrow cells formed nodules and produced ECM material on a 

grooved surface three days after plating is amazing. Normally, much longer times aie 

needed in culture before mineralisation occui’S in vitro. There are reported instances, 

however (Ecarot-Charrier, et al, 1988) where bone nodules have formed within 24 hours of 

the addition of B-glycerophosphate (B-GP) to confluent cell layers. The bone marrow cells
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used in this work were cultured continuously in fresh ascorbic acid and B-GP. Taking into 

consideration the effect of ascorbic acid on osteoblasts in terms of an acceleration of 

differentiation, the availability of B-GP and the reasonably high density these cells were 

plated out at, it is not surprising that nodule formation and ECM production and alignment 

occurred so quickly.

The fact that these fibrils were only found on one structure suggests there is an 

optimum topography that influences ECM production. It is also fascinating to note that 

the dimensions of the structure that influenced cells to produce oriented collagen had a 

diameter (5 gm) that these cells were quite responsive to in the quantitative topography 

study. This ability to control ECM orientation in vitro could lead to tissue engineering of 

organised bone and enhanced osseointegration of various implants.

Principle Behind PLM & the Detection O f Birefringence:

The property of bhefiingence has been used in biological optical microscopy to detect 

such structures as collagen, striated muscle fibres and chloroplasts. Furthermore, this 

material property can be used to determine the crystallinity of a sample with the use of a 

polarising microscope. Approximately 95% of all ciystals are bhefringent (Slayter, 1970). 

An important indicator of bone cell phenotype is their ability to produce extracellular 

matrix including a crystalline calcium phosphate, hydroxyapatite (Caio(P0 4 )6(OH)2) 

(Webster, 1988). Cells on grooved structures and tubes (Chapter 5 for tube results) were 

examined under polarised light for the production of hydroxyapatite.

Birefringence is a property of materials that posses patterned regions of varying 

refractive indices, i.e., an anisotropic material. It can also be defined as a property 

originating fi’om the inlierent asymmetry of the polarisability of chemical bonds. For
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example, the ability to disrupt a cai-bon-carbon bond depends directly on the direction of 

disruption, i.e. it is easier to separate the bond between two carbons in a cham. This 

direction is defined as being more “polarisable,” and it follows that it has a higher index of 

refraction meaning light will travel more slowly in this direction.

Due to the differences in refractive indices in a biréfringent material, light resolves into 

two mutually perpendicular vibration components the extraordinary ray (E ray) and the 

ordinary ray (O ray). These two beams are distinct physically because they travel at 

different velocities due to the difference in refructive indices. The velocity of the O ray 

remains constant with direction, while the velocity of the R ray vaiies. The bhefringence 

of a material can be quantified as the difference between the refractive index for the 

ordinary ray and the refractive index for the extraordinary ray. It is important to note that 

upon viewing a biréfr ingent material in a specific orientation, i.e. along its optical axis, the 

material itself appears isotropic.

The polarising microscope operates on the principle that by orientating light in a 

specific direction or plane through a sample, one can then detect the effect the light has on 

the sample in terms of absoiption, reflection, etc. The polariser is responsible for filtering 

out all light oriented at right angles to one specific plane of light. The analyser is orientated 

in the polarising microscope such that when there is no specimen between the polariser 

and the analyser no light is transmitted, i.e. the polaiiser and analyser are “mutually 

oriented in a position of extinction.” Thus, when a biréfringent specimen is placed in the 

microscope it shifts the light fr'om the polariser such that the light is transmitted by the 

analyser.
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The variation in overall colour seen in a biréfringent sample results from the retardation 

of light through the sample which is directly related to the phase difference between the O 

and E rays and the thickness of the sample. When the sample is rotated thi’ough 360°, 

there are four positions of extinction and four positions of maximum brightness offset 

within each group by 90°.

Because biological samples do not retard light much more than lOOmp a red I plate is 

often used to detect interference colours. In this case, alternate addition and subtraction 

colours are observed at 90° rotation intervals depending on the retardation by the specimen 

and its orientation in relation to the plate. For example, if the slow direction of the 

specimen is perpendicular to the red I plate, a yellow coloui’ is observed, whereas if the 

slow direction is parallel to the plate a blue colour can be seen.

All coverslip grooved samples were examined under polarised light and a red I plate. 

Analysis of the 2 and 5 pm wide regions on structui*e F revealed the presence of small, 

yellow strands of material. It is assumed that this biréfringent material is indeed a fonn of 

hydroxyapatite of calcium phosphate because it survived 900°C temperatures. Strands 

alternated as either all yellow or completely extinct upon 360 ° rotation which suggests all 

material was oriented in a similar manner and that grooved surfaces, once again, have the 

ability to hifluence ECM production and mineralisation. That fact that this material was 

only found on the 2 and 5 pm gi'ooves implies once again, that these groove widths are 

more influential than for example, 10 or 20 pm wide ones.

AFM  Analysis:

There are only a few reports in the literature regarding the detection and identification of 

biological crystalline material using atomic force microscopy (Blair, et al, 1995; Schaad, et
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al, 1993). Schaad, et al, (1993) conclude that AFM is a “relevant tool” for the study of 

biological hydroxyapatite. Blair, et al, (1995) successfully used AFM as a tool for 

preliminary identification of microciystals in patient synovial fluid, including 

hydroxyapatite.

In this work, we report nanometric resolution of what we believe to be a 

hydroxyapatite surface. Bres, et al, (1990) reported that hydroxyapatite has a 

dipyramidial hexagonal prismatic morphology with the follow spacings: â  = a2 = a] = 

0.9432 nm and c = 0.6881. The spacing between the 3 <100> planes = 0.82 nm (Lees, 

1979). Also, in bone, the actual apatite crystals are 20 - 40 nm long and 1 . 5 - 3  nm wide. 

According to our AFM images, the crystalline material scanned has a spacing ranging from 

0.3 nm to 6 nm, well within the range of parameters of hydroxyapatite. Furthermore, 

Voegel and Frank (1979) found some hydroxyapatite crystallites to be curved in an arc 

with a radius of 150-350 nm. The curved lines seen in Figure 29 could be part o f a larger 

arced structure.

CONCLUSIONS

The osteoblast response to grooved surfaces was elucidated further in this work. Rat 

osteoblasts were sensitive to features as tiny as 80 nm, and reacted more strongly in terms 

of ECM production and mineralisation to features with widths around 2 or 5 pm and 

similar depths. Preliminary studies using analytical teclmiques like SEM, PLM and AFM  

showed that grooves influenced ECM material alignment.

99



C hapter 5: The Behaviour o f Osteoblasts in Quartz Tubes

INTRODUCTION........................................................................................................................................... 101

B a c k g r o u n d ..................................................................................................................................................................................................101

E x p e r i m e n t s ..................................................................................................................................................................................................103

MATERIALS AND METHODS...............................................................................................................104

E x p e r im e n t s ..................................................................................................................................................................................................104

V id e o  T im e  L a p s e  Ph a s e  C o n t r a s t  M i c r o g r a p h y .............................................................................................................105

R E S U L T S .........................................................................................................................................................105

M o r p h o l o g ic a l  B e h a v io u r  a n d  V id e o  T im e  L a p s e  P h a s e  C o n t r a s t  M ic r o g r a p h y  O b s e r v a t io n s

.................................................................................................................................................................................................................................105

O s t e o c a l c in  s t a i n i n g ............................................................................................................................................................................112

P o l a r is e d  l ig h t  a n d  q u a n t it a t iv e  a n a l y s is  o f  u n s u p p l e m e n t e d  c u l t u r e s ................................................ 113

P o l a r is e d  l ig h t  a n d  q u a n t it a t iv e  a n a l y s is  o f  s u p p l e m e n t e d  c u l t u r e s .......................................................116

D ISC U SSIO N .................................................................................................................................................. 118

CO NCLUSIO NS............................................................................................................................................. 120



Chapter 5: Osteoblast Behaviour in Quartz Tubes

INTRODUCTION

Background

The specific pore sizes that influence the migration of bone cells and enhance 

osseointegration of dental and orthopaedic implants continues to be debated. Because of 

fabrication conditions, a range of pores sizes is usually used, making it difficult to attribute 

implant results to a specific pore size or geometiy. The well defined geometiy and 

controlled culture conditions of small glass capillaries, however, circumvent these 

problems. The quartz tube is an ideal system to study the behaviour of osteoblasts for 

several reasons.

First of all, cells can be continuously monitored using basic phase contrast microscopy 

and video time lapse recording techniques. One has the unique opportunity to directly 

observe the cell’s response to the curved, tubular environment, its interaction with other 

cells, and the formation of extracellular matrix. Secondly, the geometry is rigidly defined 

making it possible to differentiate differences in terms of extracellular matrix production 

and cell behaviour produced by varying the diameters and/or lengths of tubes. Thus, the 

study of osteoblasts in small diameter glass tubes provides more specific fundamental 

information regarding cell response to curved surfaces and microenvironments.

Interest in the area of porous surface coatings began with the advent of the cementless 

hip replacement in the early 1970s with researchers looking for surface geometries to 

encourage bone ingrowth and ideally osseointegration (Hungerford & Jones, 1988). 

Investigators believe there is an optimum pore size between 250 and 600 pm that provides 

enough space for preosteoblasts/osteoprogenitors to proliferate and form a dense mass of
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cells, differentiate, and make bone (Gray, et al, 1996). Boyan, et al, (1996) hypothesise 

that the curvature o f these pores may provide the optimum tension and compression for 

the cell’s mechanoreceptors. There have been reports m the literature, however, of bone 

growhig into pores as small m diameter as 40 pm (Brunette, 1988). In fact, one study 

determined that bone ingrowth stabilised the implant mechanically at earlier time points if 

the pore diameters ranging from either 45 - 150 pm or 150 - 300 pm.

In another study evaluating the effect of pore size, Eggli, et al, (1987) looked at bone 

formation over six months into hydroxyapatite (HA) and tricalcium phosphate (TCP) 

porous coated cylinders implanted into the metaphysis of the distal femui' and proximal 

tibia o f rabbits. Two ranges of pore sizes, either 50 - 100 pm or 200 - 400 pm were 

studied for each type of ceramic cylinder. After four weeks, the amount o f bone ingrowth 

into the TCP 50 - 100 pm cylinder was 40%, whereas ingrowth into the small pore range 

HA cylinder was 24%. However, ingrowth into the 200 - 400 pm pore size implants was 

19% and 17% for the HA and TCP cylinders respectively. Thus, there was significantly 

more bone ingrowth into the smaller pore range implants for both TCP and HA. The 

authors feel the larger amount of bone ingrowth into the 50-100 pm pore size TCP 

implants was enhanced by the presence of 20 pm wide interconnections, which created a 

favourable microenvironment for vascular and cellular invasion. However, the theory that 

bone ingrowth was enhanced by these interconnections is contradicted by the findings of 

Dennis, et al (1992). These authors found ceramics with pores 200-400 pm in diameter 

retained more cells and had more bone ingrowth than a coral-like continuous pore structure 

with an average diameter of 200 pm. Thus, there are conflicting reports in the literature 

regaining the best pore size for bone ingrowth and the effect o f interconnectivity between
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pores. Furthermore, none of these studies has the capability to visualise osteoblast 

behaviour and mineralisation continuously.

Finally, the last impetus for the study of bone formation in glass tubes in vitro stems 

from a report in the literatuie of ectopic bone formation in wide diameter tubes in vivo. 

Almost four decades ago, Seyle, et al, (1960) implanted pyrex glass tubes, 2 cm long and 3 

cm wide subcutaneously into Sprague Dawley rats. Previous experiments established 

these cylinder dimensions to be the most favourable for bone formation in this situation. 

The von Kossa and van Gieson histological staining methods were used to ascertain the 

presence of calcium salts and collagen fibres respectively. These authors found that bone­

like structures developed in the cylinders, complete with a marrow-like cavity and junction 

cartilage plates.

Experim ents

Initially, two fundamental questions were addressed with the following experiments:

• How does cell behaviour differ in tubes compared to flat suiTaces?

• Does the tubular environment effect extracellular matrix production in the absence of 

ascorbic acid and B-glycerophosphate, normal "mineralising supplements."?

Analytical techniques included time lapse video cinemicrography wlrich enabled us to 

directly view in a continuous fasliion the cell response to the tliree dimensional, tubular 

environment. Immunofluorescent and polarised light techniques enabled us to assess 

extracellular production. Findings included the tendency of cells in tubes greater than 150 

pm to fomi dynamic contacts with each other and the walls of the tube, and to form dark, 

nodule-like structures similar to those found in normal confluent cell cultme.
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Whether or not the addition of 5-glycerophosphate (B-GP) and ascorbic acid enhanced 

and/or mfluenced the extracellular matrix production and/or cell behaviour of osteoblasts 

was also investigated.

MATERIALS AND METHODS

*Note

Please refer to Chapters 2 and 4 for the cell isolation method and analytical techniques not 

mentioned but used in this chapter.

Experiments

Unsupplemented cultures

Rat calvarial osteoblasts were suspended in DMEM with 10% CS and 5% antibiotics and 

seeded at high density (approximately 3x10^ cells/ml) by capillary action into 2 types of 

quartz tubes (Table 13). Cells in tubes and flat surfaces were videotaped after seeding and 

later analysed with immunofluorescent and polarised light microscopy techniques.

Tubes Inner
Diameter

Length

Group A 150 - 300 pm 2 - 5  mm

Group B 700 pm 0.5 - 2.3 cm

Table 13: Tube dimensions.

Supplemented cultures:

A 12 day experiment was conducted using 700 pm wide tubes of varying lengths. B-GP 

(10 mM) and ascorbic acid (50 pg/ml) were added to the media of half of the tubes on Day
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7 and at every media change thereafter. Upon fixation in buffered formalin, tubes were 

examined under polaiised light and the size and number of nodules were evaluated.

Video Time Lapse Phase Contrast Micrography

Osteoblasts were videotaped just after seeding for periods up to 12 days 37°C. Videos 

were recorded at 20X phase contrast objective magnification using a Cohu CCD camera or 

a Panasonic Neuvicon video camera under the lowest light level which would produce a 

good image. Images were stored on a Panasonic Model AG-6730 time-lapse video-recorder 

at one frame per minute.

RESULTS

Morphological Behaviour and Video Time Lapse Phase Contrast Micrography 
Observations

The behaviour of rat osteoblasts in tubular structures differed markedly from their 

behaviour on flat surfaces during similar time periods. Within a few hours of plating, cells 

stretched out and made contact with each other. The attachments formed spanned across 

the tube and along its length (Figure 35). Cells formed clumps or cords of cells which 

behaved as a dynamic system, detaching and reattaching along the tube wall constantly as a 

unit. Individual cells joined and detached from cords periodically.

Video time lapse phase contrast micrography revealed a higher level of activity of these 

cells compared to other cell types like endothelia, epitenon, and macrophages. (Figures 

31-34). The period of activity of osteoblasts in tubes versus flat surfaces differed as well 

(data not shown). Cells on flat suiTaces eventually spread out and formed a confluent, 

nondynamic mass of cells after 24 hours. In tubes, nodule-like structui es formed after the
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first 24 hours of seeding that resembled those found in confluent cell cultures on flat 

surfaces (Figures 31, 36, & 37).
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Figure 31: Time lapse cinemicrography of osteoblasts seeded into a 300 |xm diameter 
tube. [Original magnification = 20x]. Frames shown are approximately 30 minutes apart. 
Frame 1 represents the time just after seeding. Note, cells do not spread out individually. 
By 1 hour after seeding (frame 3) cells had begun to reach out to each other and formed 
dynamic sheets/clusters of cells. Note the dynamic detachment from the tube of one side 
of the bottom clump of cells from frame 7 to Ifame 8. By frame 9 the bottom cluster had 
detached from the top cluster of cells as well.
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gf

Tube
Walls

Figure 32: Time lapse video frames of osteoblasts after four days in culture in a 300 |xm 
diameter quartz tube. Frames 1-12 are 1 hour apart with the exception o f frames 1-2 (42 
minutes apart). Note tendency of cells to form aggregate/nodule-like structures (frame 1) 
that move as a unit through out the tube and interact with other similar structures (frame 
12). [Original magnification = 20x]
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Figure 33: Continuation of frames in Figure 32. Frame 13 is 1 hour after frame 12 in 
time. Note dynamic movement of cells and cell clusters from frame 13 to frame 24. The 
two clusters actually merge by frame 14 and begin to move as a unit after frame 16. 
[Original magnification = 20x]
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Figure 34: Time lapse cinemicrography of osteoblasts seeded into a 700 pm diameter tube 
after 72 hours in culture. [Original magnification = 20x]. Frames shown are approximately 
1 hour apart. Note formation of cell clusters/ nodule-like structures similar to those found 
in 300 pm diameter tubes (Figures 31-33).

Viable cells filled the length of the tube, and the diffusion of nutrients was adequate for 

all of the tubes tested with the exception of long (2+ cm) 300 pm diameter tubes tested. 

The reaction of the cells to the tubular environment was governed by the diameter and 

length of the tube. In the smaller diameter tubes, i.e. 150 pm or less, cells formed cords 

that attached to each other and ran along the entire length o f the tube, sometimes as long as 

5 mm. Nodule-like structures were more likely to be formed in 250-280 pm diameter tubes 

in addition to cords spanning the tube diameter.

In the case of 700 pm wide tubes, the amount of nodule formation appeared to be 

directly correlated with the length of the tube. The longer the tube and the longer the
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culture time, the more nodule-like formation seen. Also, some of the 700 pm tubes 

contained flared ends (diameter = 1.5 cm). In these regions with a larger radius of 

curvature, cells formed small cell aggregates or flattened against the surface of the wall. 

Cells have remained viable in these tubes for as long as 30 days and in some cases, filled 

the tube with more cells and extracellular matrix (Figure 38).

Figure 35: Phase contrast picture of cells in tube fixed after 18 days. Tube diameter = 270 
pm. [Original magnification = 20x].
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Figure 36: Nodule formation - phase contrast picture of live cells on Day 7 in a 700 pm 
diameter tube (tube length = 2.3 cm) [Original magnification = lOx].

Figure 37: Nodule formation - phase contrast picture of live cells spanning the tube 
diameter (700pm) on Day 7 (tube length = 1.7 cm) [Original magnification = lOx].
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Figure 38: Tube (diameter = 220 pm) full of cells and extracellular material at Day 18. 
[Original magnification = 40x].

Osteocalcin staining

Cells and extracellular matrix in tubes stained positively for osteocalcin and were viewed 

by confocal laser scanning microscopy. Second antibody and autofluorescent controls 

were negative. Small globules along some cords of cells and particles lining the tube inner 

wall stained heavily for osteocalcin (Figure 39 & 40).

Figure 39: Cord of cells in a tube with an inner diameter of 280 pm fixed after 18 days in 
culture. Confocal laser scanning image [Original magnification: 40x]. Note the globules that 
formed along the cord and the highly stained particles along the inner wall of the tube (see 
bottom of picture).
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Figure 40: Composite picture of osteocalcin staining of a cell cord (delineated by three 
white arrows) spanning across a 700 pm diameter tube. Cells were fixed at 12 days of 
culture after 5 days of exposure to supplemented media. Confocal laser scanning image 
[Original magnification: 40x].

Polarised light and quantitative analysis of unsupplemented cultures

The extracellular matrix production was enhanced by the tubular environment. 

Examination under polarised light revealed that some nodule-like groups of cells contained 

biréfringent particles and regions (Figures 41 & 42). In 700 pm diameter tubes, cells 

formed nodules containing biréfringent particles with an average area of 2.6 x 10  ̂ pm^ 

(Table 14 & 15).
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Figure 41: Photograph of nodule found in tube after 16 days of unsupplemented culture 
under polarised light [Original magnification = 20x]. Note yellow biréfringent material in 
centre of nodule.
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Figure 42: Photograph of the same nodule in Figure 41 under polarised light and after 90° 
of rotation [Original magnification = 20x]. Note blue biréfringent material in centre of 
nodule.

Tube
Length

(cm)

Nodule
Number

Length
(pm)

SD Width
(pm)

SD

0.7 0 - - - -

0.7 7 121.63 62.01 69.30 25.56
2.0* 7 76.73 16.91 76.73 16.91
2.0* 7 100.98 32.38 87.12 12.91

Table 14: Nodule size and number in tubes with cells cultured in the absence of fr- 
glycerophosphate and ascorbic acid. Note denotes tube with flared end approximately 
1.5 mm wide. All nodules presented were found in 700 pm wide end.

Tube length (cm) Biréfringent areas/ No. of nodules examined
1.5 4.5/6

Table 15: Polarised light analysis of tubes cultured in the absence of B-glycerophosphate 
and ascorbic acid.
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Polarised light and quantitative analysis of supplemented cultures

The effect of tube length (diameter = constant) on nodule formation in terms of size and 

number is clear upon comparison of tubes (no flared end) in Table 16. Tubes twice as 

long had eight times as many nodules and an average nodule area almost three times greater. 

Furthermore, an overall comparison of nodule area (nonparametric) between supplemented 

and unsupplemented cultures reveals five times greater nodule area in supplemented 

cultures (P < 0.0023). In terms of biréfringent areas per nodules examined, there is not a 

significant difference in number between supplemented and unsupplemented cultures 

among tubes of similar dimensions (Table 15, Table 17). In terms of biréfringent area per 

nodule, however, some cells exposed to culture supplements had larger regions of 

birefringence (Figure 44).

Figure 43: Nodule found in 700 pm diameter tube (length = 1 . 4  cm) after 12 days of 
culture and exposure to polarised light (ascorbic acid and B-glycerophosphate added at Day 
5) [Original magnification = 20x]
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Figure 44: Photograph of large nodule found after 12 days of culture (ascorbic acid and 6- 
glycerophosphate added at Day 5). After exposure to polarised light, most o f nodule 
contained regions of biréfringent material. Tube diameter = 700 pm, length = 1.5 cm. 
[Original magnification = lOx]

Tube
Length

(cm)
Nodule

Number
Length

(pm)
SD Width

(pm)
SD

0.6 1 158.4 - 74.25 -

1.2 3 280.5 57.16 135.3 82.43
1.2 5 198 166.84 85.14 23.84

2.5* 12 124.58 58.87 95.7 31.68

Table 16: Nodule size and number in tubes with cells cultured in the presence of 6- 
glycerophosphate and ascorbic acid. Note denotes tube with flared end approximately 
1 mm wide. All nodules presented were found in 700 pm wide end.
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Tube length (cm) Biréfringent areas/ No. of nodules examined
1.5 1/3
1.4 3/3
1.4 4/7

Table 17: Polarised light analysis of tubes exposed to B-glycerophosphate and ascorbic 
acid.

DISCUSSION

There are three mechanisms suggested hi the literature by which surface topography may 

influence the osteoblast response to surfaces (Brunette, et al, 1992; Chehroudi, et al, 

1997). It is hypothesised that control over cell polarity and shape could favour 

osteogenesis in vivo. Secondly, a “bone-inductive microenvironment” created by 

topography might promote bone formation. Finally, ceilain surface topography may 

favour the attacliment of a particularly osteogenic cell population.

The behavioural differences of osteoblasts in tubes versus flat surfaces can be partially 

explained by the cellular condensation/microenvironment mechanism proposed in several 

papers by Chehroudi and Brunette (Brunette, et al, 1991; Chehroudi, et al, 1992; Qu, et al, 

1996; Chehroudi, et al, 1997). These authors performed several studies to look at the 

influence of pitted surfaces on bone formation. Brunette, et al, (1991) studied pits with 

outer surface dimensions of 100 pm x 100 pm with walls tapering to an angle o f 55° to the 

surface and an overall depth of 120 pm. Although they were unable to draw definite 

conclusions, preliminary work suggested that smaller, mineralised nodules appeared more 

frequently inside the pits. Chelrroudi, et al, (1992), examined laiger pits with an outer 

square with 270 pm sides. The results of in vivo experiments with implants placed in the
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parietal region of rats revealed mineralization on some pitted surfaces after 8 weeks 

whereas no mineralization was observed next to smooth surfaces. In vitro experiments 

revealed the presence of some large (>10 pm) globules on pitted surfaces. Only small (0.5 

- 3 pm) globules were found on smooth culture surfaces. The authors concluded that the 

enviromnent created by the topography of their implants positively influenced bone 

formation both in vivo and in vitro.

Qu, et al, (1996), looked at pits with dimensions of 175 pm x 175 pm tapered at 125° to 

100 pm in depth. The authors suggest that the restricted environment created by the pits 

may enhance bone formation by establishing a localised region of cytokines and 

extracellular mahix factors. Chehroudi, et al, (1997) suggest that the geometry of their 

pits, ranging from 3 to 120 pm deep and tapered at an angle of 125 ° to the surface, created 

an environment of increased cell density with little diffusion of regulatory molecules and 

limited proliferation. The constraint on growth felt by cells in high density environments 

has been linked to differentiation of various cell types (Boyan, et al, 1996). Thus, there is 

evidence in the literature for the osteoinductive potential of a localised environment similar 

to the one created inside tubes.

Further support for a bone inductive microenvironment created by topography like pits 

and cylinders in these experiments lies in the immunofluorescent results of osteocalcin. 

Osteocalcin is a late differentiation marker, appears concomitantly with mineralization, and 

has a role in mineral deposition and crystal growth (Robey, 1989; Gundberg, et al, 1984; 

Aubin, et al, 1995). When cells in tubes were examined for osteocalcin using confocal 

scanning laser microscopy, small globules lining the cords and tiny particles lining the tube 

interior stained heavily, and suggests that there is extracellular matrix production by these
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cells ill the tubes. Furthermore, given the fact that osteocalcin binds strongly to 

hydroxyapatite (Marks and Popoff, 1988), it seems to implies that the cells are producing 

small particles of hydroxyapatite.

CONCLUSIONS

The microenvironment created by small quartz tubes in vitro, influenced cell behaviour and 

extracellulai- matrix production. Cells exhibited an overall higher rate o f activity and 

dynamic behaviour in all tube sizes examined. Tube diameter influenced whether cords or 

nodules were more likely to form and a combination of tube length and diameter 

determined the number of nodules that formed. Cells were able to form nodule-like 

structures with some regions of birefringence without media supplements, and displayed 

positively enhanced ECM production in supplemented cultures. This work examines for 

the first time osteoblast behaviour in a thi'ee dimensional space and the direct effects of 

varying that space.
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SUMMARY

Numerous analytical approaches were used to evaluate the behaviour and functional 

changes of osteoblasts in response to well-defined régulai* rough (grooved) surfaces and 

extended concave sui'faces (tubes). For example, for the first time in this kind of 

application, techniques like polarised light and atomic force microscopy were used to 

assess osteoblast extracellular matrix production. Fmthermore, scanning electron 

microscopy allowed the close assessment of collagen orientation and matrix production, 

and time lapse video cinemicrography offered the unique opportunity to view firsthand the 

dynamic response and matrix formation by osteoblasts in a thi’ee dimensional environment. 

Thus, an aii’ay of techniques provided a new, more in depth look at osteoblast behaviour 

and function.

Aldiough more knowledge was gained through this work, improvements could be made 

in a few areas and new experiments designed to learn more about the initial findings 

presented here in this work. For example, the grooved fused silica surface could be sputter 

coated with a thin (50 nm) layer of titanium to assess osteoblasts on a more adhesive and 

implant-like surface. Furthermore, the quartz tube could be used to screen other factors 

and modifications like flbronectin coatings, collagen matiices, growth factors or cytokines 

like BMPs, on osteoblasts in a confined, three dimensional environment.
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In conclusion, this work demonstrated the ability of small, regular features and/or 

spaces to influence osteoblast behavior, moiphology, and ECM production. The 

knowledge gained here could shed light on the parameters important in creating organised 

tissue leading to a new generation of more successful implants and repair constructs in 

dentistry and orthopaedics.
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