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Abstract

Space-time data are of great interest in many fields of research, but they are inher-

ently complex in nature which leads to practical issues when formulating statistical

models to analyse them. In classical analysis of space-time data the temporal varia-

tion is modelled using traditional time-series analysis. This thesis focuses on build-

ing a comprehensive framework for analysing space-time data, where the temporal

component is considered to be a continuous function and modelled using functional

data analytic tools. There are several approaches for analysis spatially correlated

functional data, but most of them are designed for specific applications and there is

no easy way of comparing these methods. In summary, the challenge in modelling

space-time data using functional data analytic techniques is that there is no clear

rule regarding which method is most appropriate for analysing a new dataset. Ex-

isting methods have been developed for specific applications without giving a clear

indication for a practitioner regarding their appropriateness. This motivates us to

propose a clear flow chart of the analysis of space-time data using functional data

analysis methods and develop a framework under which different existing methods

can be compared.

In this research, we provide a clear comparison between two widely different

methods of modelling spatial dependence one using parametric and the other using

non-parametric spatial dependence. These techniques were developed for datasets

with different complexities. First, we had to generalize the methodologies and codes

of both of these methods to analyse data with features they were not originally

designed for. We then compared the performance of these two methods on two real

life datasets, the enhanced vegetation index (EVI) data and the electroencephalog-

raphy (EEG) data. Further we have generalized our framework to accommodate
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replicated data and used it to build classification tools that outperforms all existing

approaches.

One major contribution of this thesis is the development of the methodological

framework and computational tool for the analysis of spatially correlated functional

data. We have also clearly demonstrated, theoretically, and through simulations

that our approach outperforms exitsing methods. Finally, for the EEG data we have

demonstrated that classification tools built on representations from our models can

outperform classification tools using the raw data.
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6.5 Classification results using ĉ of one randomly chosen replication for

each subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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Chapter 1

Introduction

1.1 Introduction and Thesis Statement

Space-time data are one of the most common types of datasets owing the fact many

applications involve data observed over time and space. Space-time data occur in

many real world applications such as Meteorology, Biology, Medicine and Ecology.

These datasets typically include both spatial and temporal features. Often, these

data sets can be very large for example, data that consist of daily temperature mea-

surements of many different sites of a region over many years. The observations are

usually highly correlated either in time or space or both; for example, neighbouring

observations tend to have similar values similarly, on the time domain one obser-

vation can depend on the previous one. In order to model this type of data, it is

important to consider the spatial dependence as well as the temporal dependence.

Traditionally, space-time data are modelled using spatio-temporal methods

where the temporal axis is treated as discrete time points. As an example of spatio-

temporal methods, Sadeghi et al. (2010) analysed brain development data set where

the data consist of temporal and spatial aspects. The temporal part was modelled

using Gompertz function while the spatial part was modelled using three different

spatial localisation strategies. Another spatio-temporal approach was proposed by

Smith et al. (2003) to analyse PM2.5 data (particulate matter of aerodynamic diam-

eter 2.5 µm or less) from three locations. The variation was decomposed into four

1
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parts, the first part was time effect represented by non-parametric approaches that

model the mean of each week separately and time trend (weekly trend) for the year.

The second part was the spatial effect which was estimated using thin plate splines.

The last two parts are land use component modelled as dummy variable and random

errors which are spatially correlated. In these two approaches the temporal effect

and spatial effect were estimated separately.

However, the spatial and temporal effects can be modelled in a functional form

in the framework of functional data analysis where each observation is a function

in time over space. Before describing the full modelling framework we start with a

gentle introduction to functional data analysis.

1.2 Functional Data Analysis

Functional data analysis (FDA) is a field of statistics that models functional observa-

tions observed over some continuum. The functions contain repeated measurements

of the same process and can be viewed as smooth curves. Functional data analysis

(FDA) has many applications in different areas such as medicine, public health, bio-

logical sciences and environmental science. Ramsay and Silverman introduced func-

tional data analysis, providing many statistical techniques for analysing functional

data (Silverman and Ramsay, 2005) and they also provide practical applications

of FDA through several case studies (Ramsay and Silverman, 2002). Furthermore,

Ramsay et al. (2014) provide the R package "fda", to implement functional data

analysis methods.

Functional data are usually defined on one dimension usually time, however,

it can be extended to multi-dimensional spaces such as space-time data, image-

time data and can be observed on manifolds or other complex domains. “The basic

philosophy of functional data analysis is to think of observed data functions as single

entities, rather than merely as a sequence of individual observations” (Silverman and

Ramsay, 2005). This important feature can simplify the analysis of the complex

structure of the data and allow one to use derivatives or other properties of curves
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to analyse data. In the next chapter we provide a summary of data representation

and exploratory analysis techniques using FDA.

According to Silverman and Ramsay (2005) the primary aims of functional

data analysis (FDA) is to; display the data in a way that helps to present the

important features, explore the variation among the data, and compare between

different sets of the data.

FDA and multivariate analysis have many standard techniques in common.

One distinction is that FDA can successfully analyse infinite dimensional data. Gris-

wold et al. (2008), who studied the differences between multivariate and functional

methods, suggested that functional approaches provide better estimate than mul-

tivariate methods. One important advantage of FDA is continuity between data

points, which provides further information of the variation in the data. In particu-

lar, FDA is more accurate for change point detection. Horvath and Kokoszka (2012),

pointed out that functional methods can detect more change points than the mul-

tivariate methods. Another advantage is that FDA doesn’t assume equally spaced

time points and can present the time interval as a smooth continuous function. A

key feature of FDA is that it does not assume independent measurement error and

can efficiently accommodate these measurements. We will provide a more detailed

discussion of FDA in chapter 2. In the next section we introduce spatially correlated

functional data which is our main focus in this thesis.

1.3 Spatially Correlated Functional Data

Many recent researches has focused on modelling spatially correlated functional

data, which consist of curves observed in different locations of a region or over

a manifold where the neighbouring observations behave similarly. Modelling the

spatial dependence in functional data can be an important step in analysing these

datasets.

There are several challenges for modelling spatially correlated functional data.

The primary challenge is estimating the covariance function which is high dimen-
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sional and computationally intensive. Most of the studies assume separable covari-

ance to simplify the estimation. In separable covariance structure the covariance

is written as Kronecker product of the spatial and temporal covariance. However,

using a separable modelling approach might not always be appropriate. Another ap-

proach for introducing a simpler covariance structure is using a diagonal covariance

matrix instead of a full matrix.

On the other hand, if the spatial dimension is two dimensional, one might need

to model spatial correlation along several directions. For example, the isotropic

assumption assumes the same covariance for all directions and provides explicit

estimation of the covariance function.

There is an extensive literature on modelling spatially correlated functional

data. We review some existing techniques, which we implemented in this thesis, in

chapter 3.

1.4 Research Problem

To analyse any dataset, it is important to know the best technique that can de-

scribe and model the data. We have already seen that data observed over both

space and time can be modelled either as spatiotemporal data (when the domain

time is discrete) or functional data (when time is continuous). Currently, there is

no clear pathway for a practitioner when analysing spatio-temporal data. First, the

researcher needs to choose whether the dataset is in a discrete or continuous time

domain. Then, based on the researcher’s choice and knowledge of the existing meth-

ods, a parametric or non-parametric approach is used. Furthermore, when modelling

the dependence in space-time data most of the current methods assume separability

of the covariance operator. This simplifies the covariance estimation as the temporal

and spatial covariances are estimated separately but this assumption might not al-

ways be correct. Some researchers apply fully parametric or non-parametric methods

but in general these methods are used based on subjective choices. Similarly with

respect to isotropy, for simplicity most of the method assume isotropy while many

physical phenomenon are strongly anisotropic i.e. the covariance changes based on
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the direction.

We start by providing a diagram in figure 1.1 that illustrates the available

methods for analysing spatio-temporal data that a researcher can use to determine

the appropriate approach for the analysis.

Figure 1.1: Flow chart of the analysis of space-time data using functional data

analysis methods

The flow chart shows the process one should follow while analysing space-time

data. First the researcher determines if the time domain is discrete or continu-

ous. Then a test for parametric or non-parametric modelling is needed instead of

making arbitrary choices. Moreover, in the non-parametric framework the spatial

domain can be specified to be either regular or irregular. In both parametric and

non-parametric frameworks we need to explicitly examine the separability assump-

tion. When the assumption of separability is not valid a fully parametric or non-

parametric model can be used. But such models have not been explored extensively,

as the methods are computationally intensive. Similarly, with an isotropy test one

should test the assumption and if it is not satisfied one should use an anisotropic
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model.

In this thesis we use two datasets to develop our methodology and to test it

and compare it with existing methods. The two data sets are;

• The enhanced vegetation index data set which consists of measurements re-

flecting the level of greenness of a 25 by 25 pixels area. The data consists of

625 observations over 276 time points.

• The electroencephalography (EEG) data which is a new dataset consist of EEG

measurements for 18 subjects. Each subject was shown a stimulus, which is

series of 250 pictures, 125 cars images and 125 faces images. The EEG data

were recorded with 57 scalp electrodes and over 454 time points.

We use these datasets to go through this flow chart. We also generate our framework

to include modelling functional data with replications. Some real life applications

include replicated data where the data consists of replicated curves of the same

process such as the Electroencephalography (EEG) data.

The research focuses on the analysis of spatially correlated functional data and

aims to:

• Build a robust framework to determine which existing method is appropri-

ate for spatially correlated data, generating those methods to accommodate

datasets that do not fit into existing techniques.

• Develop a method to analyse replicated functional data, and apply it to the

EEG data

1.5 Outline of the Thesis

This thesis is divided into 7 chapters. A brief review of each chapter and a description

of the general structure of this thesis is now provided.

In Chapter 2 we provide the reader with an overview of functional data

analysis, covering its main techniques. Readers familiar with functional data analysis
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can skip this chapter. In the first part of Chapter 2, we illustrate how functional

data can be represented using basis expansions and discuss commonly used basis

systems. Then, we provide a description of exploratory analysis methods in FDA

and a functional principal components analysis approach which will be extensively

used to build our framework.

In Chapter 3 we discuss some existing techniques that are used to model

correlated functional data. We review two approaches of modelling correlated func-

tional data in detail. The first approach is spatial principal analysis of conditional

expectation (SPACE), proposed by Liu et al. (2017), which models spatially corre-

lated functional data. The second approach is called a spatio-temporal regression

model with partial differential equations regularisation (ST-PDE), which is proposed

by Bernardi et al. (2017), and concerns of data observed over an irregular manifold.

In Chapter 4 we introduce our main dataset in this thesis, the EEG data and

the problem of analysing replicated functional data. We provide a new framework

that generalise the ST-PDE method to accommodate replicated functional data.

We present a simulation study which investigates the performance of the replicated

ST-PDE approach and compares ST-PDE and RST-PDE.

Chapter 5, extends the existing framework of SPACE and ST-PDE ap-

proaches to accommodates more general data structures and provides an application

of the two approaches to the enhanced vegetation index data. In this chapter we

compare the results obtained by applying these approaches to the EVI data.

Chapter 6, illustrates the results obtained of applying SPACE and RST-PDE

approach to the EEG data and the comparison of the two approach. We review three

popular classification methods and show the results of applying them to the EEG

data.

In Chapter 7, we review and discuss the results obtained from the experi-

mental work. Possible future work is then discussed.



Chapter 2

Statistical Background of Functional

Data Analysis

In Chapter 1 we introduce FDA and show some examples of functional data. This

chapter provides a background of the field of functional data analysis and includes

an extensive literature review of existing techniques. Readers familiar with the lit-

erature on FDA can skip this chapter. The first section shows how functional data

can be represented using smoothing techniques such as basis expansion and spline

smoothing. Section 2 provides a description of the methods used for exploratory

functional data analysis. Section 3 introduces functional principal component anal-

ysis. We have used Silverman and Ramsay (2005) as the main reference in this

chapter. The plots and figures in this chapter are produced using the "fda" package

in R (Ramsay et al., 2014).

2.1 Functional Data Representation

The first step in applying FDA is to convert the raw discretely observed data to

functional data. Let yj be the raw data vector, corresponding to a single replication,

observed over some time points tj ∈ [T1, T2]. Then the observations yj can be written

as follows

yj = x(tj) + εj, (2.1)

8
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where x(ti) are smooth functional data and εj are the errors which are independent

and normally distributed εj ∼ N(0, σ2). Most of the current methods assume that

the errors εj are independent and normally distributed. However, this assumption is

not valid in the case of correlated observations and FDA can handle the correlated

errors.

The functional data x(t) are then represented as a linear combination of basis

functions.

x(t) =

Q∑
q=1

cqφq(t), (2.2)

where cq are the coefficients vector and φq(t) are a number Q of basis functions that

are independent of each other. The number of basis function Q determines the level

of smoothness. If the number of basis Q is small we might over-smooth the curve

resulting in losing the important features of the data. However, as the number of

basis functions increases the curves become more wiggly and might over-fit the data.

The use of an basis expansion approach allows the data to be presented with

reduced errors. Furthermore, the basis system can represent data with a large

number of time points t by a smaller number of coefficients. Another big advantage

is that FDA can naturally deal with irregular time points. The basis expansion sets

all curves to the same domain. There are many different kinds of basis functions

such as Fourier basis, B-spline, polynomial basis and wavelets, etc. The choice of the

basis is an important step and depends on the characteristics of the data. A brief

description of some of the most common basis functions and smoothing techniques

is given the following sections.

2.1.1 Fourier basis

Fourier basis is one of the most widely used basis functions. Typically, Fourier

basis functions are used to represent periodic curves, where these functions repeat

themselves over a period of time. The Fourier basis of size (2q + 1) is given by the

set
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φ1(t) = 1,

φ2(t) = sin(ωt),

φ3(t) = cos(ωt),

φ4(t) = sin(2ωt),

φ5(t) = cos(2ωt),
...

φ2q = sin(qωt),

φ2q+1 = cos(qωt),

where ω determines the period 2π/ω, the shortest time taken for x to repeat itself.

Then the smooth functions can be approximated by the sum of sine and cosine

functions given below.

x̂(t) = c0+c1 sinωt+c2 cosωt+c3 sin 2ωt+c4 cos 2ωt+...+c2q sin(qωt)+c2q+1 cos(qωt),

where c = (c1, · · · , c2q+1) is the coefficient vector of the basis function. Figure 2.1

shows the first seven Fourier basis functions defined over the interval [1,20]. The first

Fourier function is the constant function and represented by the black horizontal line.

The rest of the functions are three pairs of sines and cosines with different periods

for each pair.

The Fourier basis has the advantage that the calculation of the coefficients is

done in a fast and efficient way, by using the Fast Fourier transform (FFT) Algo-

rithm. Another advantage of Fourier basis is that the calculation of its derivatives

is straightforward. For example the first derivative denoted by D(.) of any pairs of

sine and cosine can be calculated using the following rule

D sin(rωt) = cos(rωt),

D cos(rωt) = − sin(rωt).

The same approach can be used to calculate higher order derivatives. Fourier

basis is a very popular basis function, however, it is primarly used to fit periodic

functions with no extreme changes or abrupt features (Silverman and Ramsay, 2005).
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Figure 2.1: The first seven Fourier basis functions

2.1.2 Spline basis

Instead of the Fourier basis one can use a spline basis to represent noisy measure-

ments. The spline method works by fitting piecewise polynomials to the data. A

spline function of order m is defined by a piecewise polynomial of degree m − 1.

Spline functions are usually defined over the interval of the approximated function.

The idea of the spline functions is to first decompose this interval into sub-intervals

separated by breaking points or knots. Then for each subinterval, the spline function

simply fit a polynomial which are joined together at the knots.

In contrast with Fourier basis, spline functions are commonly used for non-

periodic data and are computationally fast. For more information on spline basis

system see Hastie and Tibshirani (1990) and Green and Silverman (1993a).

Suppose x(t) is the approximated function over some interval [a, b]. In or-

der to usea spline basis system, the interval [a, b] is divided into sub-intervals
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[(a, s1), (s1, s2), · · · , (sm, b)] such that

x(t) =



x0(t) for a ≤ t ≤ s1

x1(t) for s1 ≤ t ≤ s2

...
...

...

xm(t) for sm ≤ t ≤ b,

where si are the interior breakpoints (knots). The spline system is determined by

the order of the polynomial and the location of the knots. Spline functions of order

four, known as cubic spline functions, are one of the most frequently used orders in

spline smoothing technique. In cubic splines, the first derivative x′(t) and second

derivative x′′(t) are equals at the knots si, which confirm the smoothness of the

corrsponding derivatives at the knots.

One of the most popular smoothing spline approach developed by De Boor

et al. (1978) is called the B-spline basis system. B-spline consists of a polynomials

on specific sub-intervals and zero elsewhere, which produce a sparse design matrix.

Due to this feature, the computation of the function is flexible and efficient. B-spline

functions are specified by the order of the spline and the number and position of

individual knots.

Suppose there are L subintervals which are connected by τl, (l = 1, · · · , L− 1)

knots. Then the number of basis functions is equal to the order plus the number of

knots Q = m+ L− 1. A spline function φ(t) is defined as

φq(t) =
∑Q

q=1 cqBq(t),

where Bq(t) is B-spline function and can be defined using Cox-De Boor formula

(De Boor et al., 1978) as follows

Bm
q (t) = t−tq

tq+m+1−tqB
m−1
q (t) + tq+1−t

tq+m+2−tq+1
Bm−1
q+1 (t),

where

B−1
q (t) =

1 tq ≤ t ≤ tq+1,

0 otherwise.
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The most widely used B-spline functions are the cubic B-splines with order 4.

Figure 2.2 illustrates the seven B-spline functions of order 4. and 3 interior knots.

Figure 2.2: The seven B-spline basis functions for a cubic B-spline with 3 interior

knots.

Fourier basis and B-spline basis are the most popular basis systems, However

there are other basis functions which we describe below briefly.

2.1.3 Other Basis Systems

There are many other important basis functions that have received much attention

such as Wavelets bases. Wavelets are multi-resolution basis functions that are mostly

used for signal processing. They are generated from a single mother wavelet function

as follows.

ψjq(t) = 2j/2ψ(2jt− q),

where j represents the scale (dilation) and q represents the shift (location). Wavelets

can be useful for data that might have some discontinuities and irregular functions
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with strong changes, as they have the frequency and time localization property. In

the wavelets approach, the basis coefficients are calculated and then a threshold is

applied to them to remove the small coefficients. The resulting estimator is frequency

and time localized, which should accommodate different smoothing degrees. For

more information on wavelets see (Chui and Quak, 1992).

Other basis functions such as the exponential basis functions considers a series

of exponential functions eλ1t, eλ2t, · · · , eλqt for the approximation. In contrast the

power basis uses basis functions tλ1 , tλ2 , · · · , tλq , which are easy to interpret, however,

the power basis functions grow quickly, which leads to inaccurate calculations.

After choosing the convenient basis function, the next step is to fit the data

using smoothing techniques. In the next two section we show a smoothing procedure

for a single curve using two approaches; smoothing by least squares and smoothing

with roughness penalty.

2.1.4 Smoothing by Least Square

In this approach the model parameters are estimated by minimizing the sum of

square of error between the observed data and the expected values, i.e. the smoothed

curve. The linear smoother of equation 2.1 using the expansion of x in model 2.2

can be written as

SSE =
m∑
j=1

[yj −
Q∑
q=1

cqφq(tj)]
2

= (y − Φc)T (y − Φc).

(2.3)

where y = [y1, · · · , ym]T is a vector of length m representing the observation in the

curve, c = [c1, · · · , cq]T indicates the vector of length Q of the basis coeifficents and

Φ is an m by Q matrix which contains the values of the Q basis functions at the

different time points t. Taking the derivatives of the equation (2.3) gives

2ΦΦTc− 2ΦTy = 0. (2.4)

Then, the estimate of ĉ can be gained by solving (2.4) for c,

ĉ = (ΦTΦ)−1ΦTy. (2.5)
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Finally, the data estimate (fitted values) ŷ can be derived by setting the value of ĉ

in equation (2.2)

ŷ = Φĉ = Φ(ΦΦT )−1ΦTy = Sy (2.6)

This simple linear smoother is the best estimator when the errors are indepen-

dently and normally distributed. However, this might not be true in all cases. To

tackle this problem we can add a weight matrix to the approximation, which will

give each observation its appropriate amount of influence over the estimation. As

a result, observations with small errors will have large weights while observations

with big errors will have small weight. The approximation can then be written as

SSE = (y − Φc)TW (y − Φc), (2.7)

where W is a symmetric positive weight matrix and can be defined by the variance-

covariance matrix of the errors W = Σ−1. Consequently, the vector ĉ is estimated

as follows

ĉ = (ΦTWΦ)−1ΦTWy. (2.8)

Thereafter, the estimated data values is written as

ŷ = Φ(ΦTWΦ)−1ΦTWy = Sy, (2.9)

where S = Φ(ΦTWΦ)−1ΦTW is the smoothing matrix known also as the hat matrix.

Furthermore, the effective degree of freedom can be defined as df = trace(S), where

the trace of a square matrix is the sum of its diagonal elements.

Furthermore, in this approach it is important to specify the appropriate order

of the expansion Q where a big Q can overestimate the data including the noise of

the data and small Q might lose important information from the data. Choosing the

number of basis is a trade-off between variance and bias, when Q is large the bias

would be close to zero while the sample variance would be very high. Conversely,

small Q reduces the sample variance and results in high bias. One way to obtain a

better estimate is to minimize the mean squared error which is estimate as follows

MSE[x̂(t)] = E[{x̂(t)− x(t)}2] = Bias2[x̂(t)] + V ar[x̂(t)].

This implies that allowing a small bias is acceptable in order to reduce the variance

which in turn might reduce the over all MSE.
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In practice, smoothing by least squares has some limitations such that it con-

trols the smoothness by the number of basis function which leads to discontinuous

control. However, smoothing with a roughness penalty approach allows continu-

ous control of the smoothness. The next section briefly describes smoothness with

roughness penalties.

2.1.5 Smoothing with Roughness Penalty

Unlike least square methods, roughness penalty methods uses differential equations

to fit the data. The roughness penalty approach control the smoothing using a

smoothing parameter λ and a penalty term. The penalized least square error is

then given by

PENSSE =
m∑
j=1

{
(yj −

Q∑
q=1

cqφq(t)dt
}2

+ λPENm(x), (2.10)

The penalty term is defined by the squared derivative

PENm(x) =

∫
[Dmx(s)]2ds

=

∫
[DmcTφ(s)]2ds

=

∫
cTDmφ(s)DmφT (s)cds

= cT
[ ∫

Dmφ(s)DmφT (s)ds
]
c

= cTRc,

(2.11)

where R =
∫
Dmφ(s)DmφT (s)ds, Then the penalized least square estimate can be

written as follows

PENSSE = (y − Φc)TW (y − Φc) + λcTRc, (2.12)

where λ is the smoothing parameter that controls the amount of roughness. Taking

the derivative and solving the equation for c gives

ĉ = (ΦTWΦ + λR)−1ΦTWy, (2.13)

Consequently, the data estimate ŷ is given by

ŷ = Φ(ΦTWΦ + λR)−1ΦTWy = Sλy. (2.14)
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In the roughness penalty approach we have λR added to the model which con-

trols the smoothness. Green and Silverman (1993b) provide a good description of

the roughness penalty approach and investigate situations that can be tackled by

this approach. Furthermore, choosing the smoothing parameter plays an important

role in the smoothing. Choosing the smoothing parameter is a trade-ff between bias

and variance; a small smoothing parameter uses less information which results in

small bias and large variance. In contrast, big smoothing parameter interpolates

the data which increases bias and decreases variance. Practically, as the smooth-

ing parameter increases the curves become more smooth while, as the smoothing

decreases the curve become more wiggly. There exist many approaches for select-

ing the smoothing parameter such as cross validation (CV), Akaike’s Information

Criterion (AIC) (Akaike, 1998) and Bayesian Information Criterion (BIC) (Schwarz

et al., 1978).

One of the most popular methods in selecting the smoothing parameter is

cross-validation (CV). The basic idea of CV is to fit the smooth function to the data

except for one data point, which is used as a validation sample. Then the fitted

smooth function is used to predict the fitted value for the omitted data point. This

is repeated for each data observation and the performance of these predictions is

measured. This procedure is computed for a range of different smoothing parameter

values, and we choose the λ values with the best performance.

Cross Validation can be applied to various cases, However, it has some lim-

itations. First, the method is clearly computationally intensive, especially for big

datasets. Second, the method may fit the noise of the data which can affect the

smoothing. To overcome these problem, Wahba and Craven (1978) introduced a

generalized cross validation (GCV) method which is basically a wighted version of

the cross-validation approach.

Generalized cross validation (GCV) is a very popular approach for choosing

smoothing parameters. GCV is defined as

GCV (λ) =
( n

n− df(λ)

)( SSE

n− df(λ)

)
, (2.15)

where df(λ) = trace(S) is the degree of freedom of the smoothing parameter. For
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more information of cross validation (CV) and generalized cross validation (GCV)

see (Gu, 2013).

Now, we will use the smoothed functions as the new random variables and

perform exploratory analysis on them.

2.2 Exploratory Functional Data Analysis

Exploratory analysis can be carried out with functional data analysis to summarise

the general structure of the data and explore the main features. This includes

estimating the mean, variance, covariance and correlation. Assuming a set of n

curves observed at different time points {xi(t), i = 1, · · · , n}, the point-wise mean

function is given by

x̄(t) = 1
n

n∑
i=1

xi(t),

where the mean is calculated from the curves at each time point and can be repre-

sented by one curve. Figure 2.3 illustrates the point-wise mean for an example data

consist of 50 curves vary over 20 time points. The data are simulated from a multi-

variate distribution and then are converted to functional data using the techniques

described previously.

In a similar way the point-wise variance function is given by:

V arx(t) = 1
n−1

n∑
i=1

[xi(t)− x̄(t)]2.

The variance function is computed by the sample variance function which explain the

variation between the curves at one time point say t. To investigate the dependence

of the curves between different time points such as s and t, it is important to estimate

the covariance function and the associated correlation function. The covariance

function across time points is given by:

covx(s, t) = 1
n−1

n∑
i=1

{xi(s)− x̄(s)}{xi(t)− x̄(t)}.
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Figure 2.3: Smooth functional data with the point-wise mean (red line).

Figure 2.4 shows the variance covariance surface of the example data. The corre-

sponding correlation function is given by:

corrx(s, t) = covx(s,t)√
varx(s)varx(t)

.

In some cases it is required to explore the variability between pairs of functions

(x, y) and that can be done by calculating cross-covariance function which is given

by

covx,y(s, t) = 1
n−1

n∑
i=1

{xi(s)− x̄(s)}{yi(t)− ȳ(t)},

and the corresponding cross-correlation function is given by:

corrx,y(s, t) = covx,y(s,t)√
varx(s)vary(t)

.

These functions are comparable to the classical multivariate measurements and

can be computed to explain the general characteristics of the data.
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Figure 2.4: The variance-covariance function of the functional data.

One of the most useful and commonly used approaches to explore the variabil-

ity in functional data is functional principal component analysis (FPCA). Functional

principal components is one of the methods that was considered as an exploratory

method by Silverman and Ramsay (2005). Functional principal component analy-

sis (FPCA) is commonly used to determine the amount of variation and illustrate

the trend in functional data. In the next section we describe the theory behind

functional principal component analysis and illustrate how these components can

be estimated. We also show how fPCA has been developed over time. We will make

use of FPCA in developing many methodologies in Chapter 5.

2.3 Functional Principal Component Analysis

Functional principal component analysis (FPCA) is one of the most popular dimen-

sion reduction and modelling techniques in functional data analysis. As functional

data can be interpreted as infinite dimensional multivariate data, FPCA can per-

formed by generalising multivariate principal component techniques to infinite di-

mensions (Dauxois et al., 1982). FPCA is commonly used as dimension reduction

approach where it computes a small number of components that represents most of

the variation of the full functional data. Furthermore, FPCA can be used to inves-
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tigate the modes of variation in the functional data where each component explains

some amount of variation. The data then can be written as a linear combination of

these components and can thus be used as new basis system. It is also considered as

a rotation of the axes coordinates where the new axes coincide with the maximum

variation of the data and are orthogonal to each other. We will make extensive use

of this approach to analyse spatially correlated functional data in Chapter 5.

Many features of classical principal component analysis extend from vector

space to the square integrable functional space. Computationally, FPCA differs

from PCA as it replaces the vectors by functions, matrices by linear operators and

summations by integrations. Note that the standard PCA can not be directly applied

to high dimensional data where the number of observation is less than the number

of variables n < p. A comparison between classical PCA and the functional PCA

by Viviani et al. (2005), in the context of modeling fMRI data, clearly showed

that FPCA was more effective in recovering the signals generated from different

experimental conditions compared to the multivariate version.

2.3.1 The FPCA Methodology

In this section we show the details of how FPCA is calculated. Let xi(t) be a set of

continuous functions defined over a bounded continuous time interval τ with mean

µ = E(x(t)). The covariance operator of x(t) can be written as

G(s, t) = cov((x(s), x(t)).

The basic idea of FPCA is to find a weight function ξk that maximises the variation

so that the majority of the variation in the data can be attributed to the linear com-

bination given by the weight. The covariance function has a spectral decomposition

to eigenvalues and eigenfunctions which is given by

G(s, t) =
∞∑
k=1

λkξk(s)ξk(t), s, t ∈ τ. (2.16)

Where {ξk(t)}∞k=1 are the eigenfunctions of FPC and λ∞k=1 are non-increasing eigen-

values that indicate the proportion of variation explained by the components.
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The eigenfunctions can be determined by solving the following eigen-equation∫
G(s, t)ξ(t)dt = λξ(s), (2.17)

subject to the constraints
∫
ξ1(t)2dt = 1 which is a normalisation constraint and∫

ξk(t)ξl(t)dt = 0 to ensure that the components are orthogonal.

According to the Karhunen-Loeve decomposition each realisation xi(t) has the

following expansion,

xi(t) = µ(t) +
∞∑
k=1

αikξi(t), i = 1, 2, ......, n, (2.18)

where αik are independent functional principal component scores with expectation

E(αik) and variance λk. Usually, a finite number of components K is chosen to

provide a good approximation of xi(t),

xi(t) ≈ µ(t) +
K∑
k=1

αikξi(t), i = 1, 2, ......, n (2.19)

The number of principal component K is determined by the amount of varia-

tion explained by these components. The optimal K is not too large but provide a

good approximation that are very close to the original data. The number of FPCs

can be specified empirically based on the data by plotting the number of princi-

pal components with their corresponding eigenvalues known as (scree plot). The

number of components is chosen to be the number where the curve starts to be flat

line.

The functional principal component scores can now be defined as the integra-

tion of function values xi(t) with weight functions ξk(t). For example, the first FPC

scores are given by:

αi1 =
∫
ξ1(t)xi(t), for i = 1, · · · , n.

2.3.2 The FPCA Estimation

The equation to obtain the eigen-values and eigen-functions given in 2.17 is difficult

to be solved. A standard approach to change the equation similar to the multivariate



Chapter 2. Statistical Background of Functional Data Analysis 23

PCA can be done by discretizing the observed functions into a fine grid (Rao, 1958).

Another method is to approximate FPCA using quadrature formula (Castro et al.,

1986). The most widely used technique is to use basis expansion to represents both

the observed functions xi(t) and the eigenfunctions ξ(t) which we describe below.

Suppose that the observed functions xi has the following basis expansion

xi(t) =
∑K

k=1 cikφk(t).

This expansion can be written in a matrices form by defining a vector of the observed

functions x and and a vector of basis functions Φ. Then the expansion can be written

as follows

x = CΦ ,

where C is a matrix that contain the coefficients of the basis functions with number

of rows equal to the number of observations and the number of columns equal to the

number of basis functions and Φ is a vector of basis functions φq(t), q = 1, · · · , Q.

Then the covariance can be written in the matrix form as follows

N−1ΦT (s)CTCΦ(t).

Furthermore, suppose that the eigenfunction ξk(t) has the following basis expansion

ξ(t) =
∑K

k=1 φk(t)
T bk = Φ(t)Tb,

where b are the basis coefficients of the eigenfunction ξ(t). Then, the eigen-equation

(2.17) can be written as

∫
N−1Φ(t)TCTCΦ(t)Φ(t)Tbdt = λΦ(t)Tb. (2.20)

Let W be a Q×Q matrix such that W =
∫
φ(t)φ(t)T Then (2.20) can be written as

N−1φ(s)TCTCWb = λφ(t)Tb. (2.21)

Since the equation is true for all arguments t, then it can be written as
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N−1CTCWb = λb, (2.22)

subject to the normalization constraint ‖ξ‖2 = bTWb = 1. Define u = W 1/2b then,

we have the symmetric equation

N−1W 1/2CTCW 1/2u = λu. (2.23)

The coefficient vector of the eigenfunctions C can be estimated as b = W−1/2u

and thus the principal component scores αik can be obtained by

αik =

∫
ξk(t)xi(t) = CWb. (2.24)

These K scores represent the variation in the functional data and can be used

to approximate the functions xi(t).

2.3.3 FPCA Extension

Standard functional principal analysis approach is designed to analyse functional

data with non-missing values, dense and uncorrelated functional data. There ex-

ist some modifications which have been applied to FPCA regarding to different

situations with many practical problems such as outliers, sparsity and correlated

functional data.

When the FPCA’s obtained from functional objects are very rough they be-

come difficult to interpret. In those cases one may choose to smooth the FPCA’s.

Rice and Silverman (1991) proposed a method that incorporate the smoothness

in the estimation of functional principal component by using a roughness penalty.

This is done by applying a different smoothing parameter for each component. Their

approach is computationally intensive as the eigen-equation is solved for each com-

ponent separately. Silverman et al. (1996) introduced a method the overcome this

limitation by estimating the smoothed principal components using a single smooth-

ing parameter.
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Another challenge is the presence of outliers. The functional principal com-

ponent approach is mainly based on the covariance function which can be affected

by outliers. Locantore et al. (1999) presented a robust method that deals with the

problem. To generalize the functional principal component to data with multiple

groups, Benko et al. (2009) introduced common functional principal components

and presented a bootstrap test to test wheather the eigenvalues, eigenfunctions,

and mean functions of two functional data samples are the same, while Boente

et al. (2010) provide estimators of the common functional principal components and

studied inference of these estimators.

The modifications also considered functional data with sparse observations,

where FPC scores are not well approximated by the integration. Yao and Lee (2006)

proposed a non-parametric method that deals with sparse data, by estimating the

functional principal component via the conditional expectations (PACE) of the data.

However, PACE assumed that the observations are uncorrelated. Liu et al. (2017)

proposed a technique to model the spatial correlation in functional data by corre-

lating functional principal component scores using their conditional expectations.

The method is designed to accommodate data with missing values. More details

of SPACE is provided in chapter 3. Another approach for the analysis of depen-

dent functional data was proposed by Hörmann et al. (2015). This approach takes

into account the correlation between the observations and the correlation within the

the observations. It extended the dynamic PCA approach developed by Brillinger

(1981) which is designed for vector time series, to the dynamic functional principal

component analysis. The components obtained by this method accounts for the

majority of the dynamics and variability in the data.

Another approach for obtaining FPCA is modeling functional data with mul-

tiple levels. Di et al. (2009) provided a multilevel FPCA which is designed for

multilevel functional data by using multilevel mixed model. However, The multi-

level FPCA is not applicable for high dimensional data where the covariance can

not be calculated and stored. Zipunnikov et al. (2011) developed a high dimensional

multilevel functional principal component analysis method which accommodates the

high-dimensional data. THe method provide an algorithm that calculates the eigen-
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values and eigen-function without the need to calculate the covariance operators.

In summary, FPCA has been considered as an important tool in functional

data analysis and can be applied to various applications.



Chapter 3

Modelling Dependent Functional

Data

3.1 Introduction

In this chapter, we review some existing techniques of modelling dependent func-

tional data. Then we discuss two approaches that we apply to model spatially

dependent functional data. The first approach, by Liu et al. (2017), focuses on

modelling the spatial dependence of gridded data parametrically. The spatial cor-

relation is modelled by correlating the functional principal component scores which

are estimated using conditional expectation. The approach is called spatial principal

analysis of conditional expectation and is described in details in section 3.3. The

second approach, by Bernardi et al. (2017), called spatio-temporal regression model

with partial differential equations regularisation (ST-PDE), models data sampled

over complex boundaries non-parametrically. ST-PDE handles the complex bound-

ary problem by using partial differential equations and the finite element method.

The ST-PDE approach is described in detail in Section 3.4. For simplicity, we have

used the same notation as in Liu et al. (2017) in Section 3.3 and the notation from

Bernardi et al. (2017) in section 3.4.

27
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3.2 Existing techniques for modelling spatially cor-

related functional data

Though dependence can arise from sources other than space, we will focus our dis-

cussion on spatially correlated functional data. In this section we will present some

existing techniques that have been proposed in the last few years for analysing spa-

tially correlated functional data. In the parametric framework, Liu et al. (2017)

proposed the first comprehensive study to analyse spatially correlated data. They

developed a new approach called the spatial principal analysis of conditional expec-

tation (SPACE) which calculates spatial correlation assuming separable spatial and

temporal covariance. Using the anisotropic Matérn family a parametric model was

fitted to empirical spatial correlations at a sequence of spatial separations. Though

their approach works for data that do not strictly follow separability, Liu et al.

(2017) showed that the estimates are better for the separable covariance than non-

separable covariance with finite samples. Moreover, this approach can calculate the

spatial correlation for each spatial separation vector which can be used to reconstruct

sparsely sampled curves. We review the SPACE approach in detail in 3.3. Liu et al.

(2017) also provide a bootstrap test to test the separability of the covariance.

Around the same time, using a strictly non-parametric approach, Aston et al.

(2015) presented an alternative test to investigate the separability assumption for

the covariance. In their approach the difference between the sample covariance

operator and its separable approximation is projected onto the first eigen-function

of the covariance of the data. Furthermore, the distribution of the test statistic is

approximated using bootstrap methods.

Considering functional data that are observed on a spatially irregularly shaped

manifold, Sangalli et al. (2013) provided a spatial spline regression model that deals

with data observed over a complex spatial domain. The proposed model is designed

to accommodate complex boundary conditions and gaps and holes in regions. The

method uses penalised bivariate spline smoothing with a roughness penalty that

consists of Laplace operators. The spatial domain is modelled by a finite element

method. While their method is designed only for univariate spatial data and thus
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can not be applied to data observed over different time points. Bernardi et al.

(2017) extended their method to accommodate space-time data, where two rough-

ness penalties are included in the model, one for time and another for space. This

approach in reviewed in 3.4. Later in Chapter 4, we extend this approach to accom-

modate replicated functional data, one of the major contribution of this thesis.

Marra et al. (2012) proposed a generalised additive model which includes a

smoothing approach for spatio-temporal data. The smoothing procedure combines

a cubic spline basis functions and a soap film basis function for time and space,

respectively. Alternatively, Ignaccolo et al. (2014) developed a kriging approach for

functional data varying over time. The approach models the spatial and temporal

trends and can also include covariate estimation.

3.3 Spatial Principal Analysis of Conditional Ex-

pectation

This section describes in detail the method proposed by Liu et al. (2017) called

spatial principal analysis of conditional expectation (SPACE). We demonstrate this

approach by analysing a remotely sensed vegetation index dataset in Chapter 5.

Their approach relies on two crucial steps. First, the spatial correlation of the

functional data is modelled by building correlated functional principal component

scores. Then, the empirical correlation is estimated using Matérn model. Let us

now discuss the method starting with the real life data example that was used to

motivate their approach.

3.3.1 Correlated Gridded Functional Data

Functional data observed over units distributed within a physical domain are likely

to be spatially correlated in many applications. An example of correlated functional

data is the enhanced vegetation index (EVI) data used in Liu et al. (2017). The EVI

data was obtained from surface spectral reflectance satellite measurements over a
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period of time. This dataset covers an area of 25x25 pixel located in Harvard Forest

Long Term Experimental Research site in Petersham, Massachusetts, USA. The EVI

measurements take values between -1 and 1 reflecting the level of greenness. The

EVI data used in the paper are obtained at 8-day intervals (46 data points per year)

for the period from January 1, 2001 to December 31, 2006 (Liu et al., 2012). The

complete data consist of 625 replicated curves over 276 time series, where each curve

corresponds to one pixel. Figure 3.1 gives an overview of the data structure where

the bottom panel of the graph shows the data for all 6 years, while the top panel

zooms in on the data for the first year year.

Figure 3.1: EVI data for 625 pixels over time. Each curve represents the data for

one pixel. The bottom panel of the graph shows the whole data while the top panel

shows the data for a single year.

The individual pixels seem to be high correlated and a seasonal effect is one of

the dominant source of variation. The plot also reveals some variation from year to

year and a close inspection shows gaps or missing observations for some locations.

3.3.2 Dependent Functional Data Model

In chapter 2 we reviewed the classical functional data model designed to analyse

observations that are independent i.e. with no spatial correlation. We showed

how the functional data can be represented by functional principal components.
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For location i we have noisy measurements yi(tj) at time tj sampled from smooth

functions xi(t) which have mean function µ = EX(t) and covariance function

G(s, t) = cov(x(s), x(t)). For location i, these smooth functions can be represented

by the functional principal components as follows

Yi(t) = xi(t) + εi(t)

= µ(t) +
∞∑
k=1

αikξk(t) + εi(t),
(3.1)

where {ξk(t)}∞k=1 are the functional principal component FPC functions and αik

are the FPC scores with corresponding variance λk. In the uncorrelated case, the

FPC scores are assumed to be independent, and a previous method by Yao and Lee

(2006) for the principal components analysis can even be used for the analysis of

sparsely and irregularly spaced observations. The approach called principal com-

ponents analysis through conditional expectation (PACE), computes the principal

component scores by their expectation conditioning on all observations, which allows

one to analyse sparsely observed data. However, PACE is not designed to handle

correlated functional data. The SPACE approach builds on the PACE approach to

model dependent functional data.

In particular, in SPACE the FPC scores αik are assumed to be correlated

across each location i for each component k. The covariance function between two

eigenfunctions is given by

cov(αip, αjq) =

ρij(k)λk if p = q = k,

0, otherwise.
(3.2)

Here ρij(k) estimates the correlation between the kth FPC scores for the curve i

and j. We assume that when p = q = k we have a correlation otherwise there

is no correlation. This assumption gives the separability wich makes the model

simpler and the computation easier. When we choose to retain only the first K

eigenfunctions, the covariance between two realisation xi(s) and xj(t) can be written

as

cov(xi(s), xj(t)) = ξ(s)T cov(αiα
T
j )ξ(t)

= ξ(s)Tdiag(ρij(1)λ1, ρij(2)λ2, ..., ρij(K)λK)ξ(t).
(3.3)
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In the above model the covariance is still not separable. Once we impose the

condition that the between-curve correlation does not depend on k so ρij(k) =

ρij then the covariance between the FPC scores can be written as Cov(αi, αj) =

ρijdiag(λ1, ...., λk) and the covariance between xi(s) and xj(t) can be simplified as

cov(xi(s), xj(t)) = ρijξ(s)
Tdiag(λ1, ...., λk)ξ(t) = ρijCov(x(s), x(t)). (3.4)

The covariance in this equation is separable, which assumes that the correlation

across curves is independent of the correlation across time. We now focus on the

spatial correlation. One of the popular methods to estimate the spatial correlation

is the Matérn covariance. More details of the Matérn model are given in the next

section.

3.3.3 Matérn covariance

Matérn covariance is a parametric model that is used to model the spatial correla-

tion between two measurements observed at two locations. Denoting the distance

between observations i and j by d the Matérn correlation is given by

ρij = ρ(d; ζ, ν) =
1

2ν−1Γ(ν)

(
d

ζ

)ν
Kν

(
d

ζ

)
, (3.5)

where d is the distance between the locations of the two observations, Kν is the

modified Bessel function of the third kind of order ν > 0 (description of Bessel

function can be found in (Abramowitz and Stegun, 1965)). This model is indexed

by two parameters, a range parameter ζ which rescales the distance and a smoothing

parameter ν which controls the degree of smoothness. The range parameter ζ is also

known as a decay parameter because it controls how fast the correlation drops with

the distance d. Figure 3.2 shows how these parameters can affect the correlation

function where higher ζ produces higher correlation over longer distances while

higher ν leads to higher correlation at shorter distances.

The exponential class is a special case of the Matérn class when the smoothing

parameter ν is equal to 0.5. It is known as the autoregressive model of order one

AR(1) model in time series literature. On the other hand, when the smoothing

parameter ν goes to ∞ the model converges to the squared exponential covariance
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Figure 3.2: The correlation estimation using the Matérn function. The left panel

shows the correlation estimation with fixed smoothing parameter ν and varying

range parameter ζ. The right panel shows the correlation estimation with fixed

range parameter ζ and varying smoothing parameter ν.

function in the Gaussian process. The Matérn function is more flexible in modelling

the spatial correlation than other functions due to the smoothing parameter in the

model.

The Matérn covariance function by default assumes isotropic covariance func-

tion which indicates that the covariance is the same for all directions. This is a strong

assumption that should be checked before using the model. If the assumption is not

valid for the application then, a transformation of the spatial coordinates is needed.

This can be achieved by adding two parameters, θ which is an anisotropy angle

specifies how much the axes are rotated and δ, which is the anisotropy ratio and de-

fines how much the axes are stretched or shrunk. Furthermore, the distance d in the

isotropic Matérn is estimated by the Euclidean distance ρ(d; ζ, ν) = ρ(
√

∆T∆; ζ, ν).

While, in the anisotropic case we need to implement a transformation to new coor-

dinates. Let ∆∗ be the new separation vector between two locations defined by

∆∗ =

∆∗x

∆∗y

 =

√δ 0

0 1/
√
δ

 cos θ sin θ

− sin θ cos θ

∆x

∆y

 = SR∆,

where S is the scaling matrix, R is the rotation matrix and The spatial separation
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vector ∆ between two locations is defined by ∆x which is the difference between

the two locations along the x-axis and ∆y which is the difference between the two

locations along the y-axis. Subsequently, the new distance function is defined as

d∗(∆, θ, δ) =
√

∆∗T∆ =
√

∆TRTS2R∆. Thereafter, the anisotropy correlation func-

tion is given by

ρ∗(∆; θ, δ, ζ, ν) = ρ(d∗(∆, θ, δ); ζ, ν) = ρ(
√

∆TRTS2R∆; ζ, ν). (3.6)

Then, the covariance function in equation (3.2) can be written as;

cov(αip, αjq) =

ρ
∗
k(∆ij)λk if p = q = k,

0, otherwise.
(3.7)

this equation represent the estimation of the covariance between functional principal

component scores. Sequentially, the cross-covariance between the curves in (3.3) can

be written as

G∆(s, t) = ξ(s)T


ρ∗(∆)λ1 · · · 0

... . . . ...

0 · · · ρ∗k(∆)λk

 ξ(t). (3.8)

It is assumed that ρ∗1(∆)λ1 > ρ∗2(∆)λ2 > · · · > ρ∗k(∆)λk > 0 at that point {ρ∗k(∆)λk}Kk=1

are the eigenvalues of the cross-covariance G∆(s, t). However, ρ∗k(∆) is evaluated as

the ratio of the eigenvalues of the cross-covariance G∆(s, t) and the cross-covariance

G(0,0)(s, t) when ∆ = (0, 0). Then we can write

ρ∗k(∆) =
λ̂k(∆)

λ̂k(0, 0)
. (3.9)

Once we obtain ρ∗k(∆) for all ∆ values then the Matérn model parameters can be

estimated by using these values to fit (3.6).

3.3.4 Mean and covariance estimation

In functional data analysis the mean and covariance are assumed to be smooth

functions and can be estimated using a local linear smoother. The weight of the

smoother is defined by a kernel density function and the bandwidth is defined using

cross-validation. In this section we illustrate the estimation of mean and covariance

functions and the variance of measurement errors.
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Mean estimation

First, we estimate the mean function over pooled observations, as it can easily

accommodate missing values. Following Yao and Lee (2006), we estimate the mean

function µ̂(t) by a local linear smoother. The mean function can be estimated by

minimising the following with respect to β0 and β1

mi∑
i=1

mj∑
j=1

k1

(tij − t
hµ

)
(yij − β0 − β1(t− tij))2, (3.10)

where k1 is one dimensional kernel function and h is the bandwidth that controls the

smoothing by specifying the size of the neighbourhood around tij. Then µ̂(t) = β̂0.

Cross-covariance surface

The cross-covariance surface is the covariance between any two curves over all dif-

ferent time points. Suppose we have xi(s), xj(t) observations for two curves i and

j at time points s and t. Then, the cross covariance function between the two

locations is given by Gij(s, t) = cov(xi(s), xj(t)). Varying over s and t this repre-

sents a surface. However, the cross-covariance can be estimated by smoothing the

raw cross-covariance Dij(tik, tjl) = (Yi(tik − µ̂(tik))(Yj(tjl − µ̂(tjl)) using local linear

smoothing.

In modelling the correlation, second order spatial stationarity of the fPC score

process is assumed. This indicates that the covariance of the underlying process

depends only on the separation vector between two points. However, this applies

the stationarity to the observation space as well.

Consider a collection of location pairs n(∆) = {(i, j),∆ij = (∆x,∆y) or ∆ij =

(−∆x,−∆y)} with the same covariance function G∆(s, t). However, when ∆ = −∆

then all raw covariances constructed based on locations in n(∆) could be used to

estimate G∆(s, t)

E(Dij(tik, tjl)) = Gij(tik, tjl) + δ(i = j, s = t)σ2, (3.11)

where δ(i = j, s = t) is equal to 1 if i = j and s = t, and 0 otherwise while σ is the

variance of measurements errors which is estimated in the next section.
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The covariance estimation fall under two situations, one when i = j the covari-

ance of the curve with itself and i 6= j when we consider two different curves. First

in the case of i 6= j the cross covariance surface G∆(s, t) is estimated by minimizing

the following

∑
(i,j)∈n(∆)

mi∑
i=1

mj∑
j=1

k2

(tik − s
hG

,
tjl − t
hG

)(
Dij(tik, tjl)− β0 − β1(s− tik)− β2(t− tjl)

)2

.

(3.12)

k2 is the two-dimensional Gaussian kernel, h is the step size between two time points

and β̂0, β̂1 , β̂2 are the minimizer of (3.12), while Ĝ∆(s, t) = β̂0.

Secondly, in the case of i = j, we only need to estimate the covariance surface

and this can be computed directly by the PACE method (Yao and Lee, 2006).

The G(0,0)(s, t) is estimated by minimising the following

n∑
i=1

∑
1≤j 6=k≤m

k2

(tik − s
hG

,
til − t
hG

)(
Dii(tik, til)− β0 − β1(s− tik)− β2(t− til)

)2

,

(3.13)

with respect to β̂0, β̂1 and β̂2 . Then Ĝ(0,0)(s, t) = β̂0.

Then the eigenfunctions ξk(t) and eigenvalues λk of the cross-covariance can

be given by solving the following∫
τ

Ĝ∆(s, t)ξ̂k(t)dt = λkξ̂k(s)∫
τ

ξ̂2
j (t) = 1 and

∫
τ

ξ̂j(t)ξ̂k(t) = 0.

(3.14)

Variance estimation

The measurement error variance is estimated from (3.11) as the difference between

E(Dii(tik, tik)) and the cross covariance when (i = j), G(0,0)(tik, tik). First, we need

to smooth the empirical covariance Dii(tik, tik) to be in the same smooth form as

G(0,0)(tik, tik). The smooth estimate of the empirical covariance can be calculated

by minimising the following

n∑
i=1

m∑
k=1

k1

(tik − t
hv

)(
Dii(tik, tik)− β0 − β1(t− tik)

)2

, (3.15)
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with respect to β̂0 and β̂1. Then the smoother of the empirical covariance is V̂ (t̃) =

β0.

Then σ2 is given by

σ2 = max
(

0,
1

|τe|

∫
τe

(
V̂ (t)− Ĝ(0,0)(t, t)

)
dt
)
, (3.16)

where V̂ (t) is the smoother of Dii(tik, tik) and τe is the effective range which takes

only a middle part of the closed interval τ in order to lower the boundary effect.

Bandwidth smoothing parameter

The choice of the bandwidth is critical for some approaches such as the local linear

regression smoother. There are multiple approaches that can be used to select

optimal bandwidth such as plug-in methods which are based on minimising mean

integrated squared error (see (Woodroofe, 1970) and (Sheather and Jones, 1991)). A

common approach of parameters selections is cross validation (CV) (see (Rudemo,

1982) and (Bowman, 1984)). In addition, there are many papers which discuss

the choice of bandwidth and compare existing techniques see Jones et al. (1996),

Sheather (2004) and Scott (2015).

In this chapter the bandwidth h is chosen by cross validation method specifi-

cally leave one point out (LOPO) cross validation with data binning. This is done

using (sm) package (Bowman and Azzalini, 2014) in R (R Core Team, 2013) .

For a large dataset, binned data are used to increase the computational speed.

The binning procedure constructs a frequency table associated with an appropriate

interval covering the range of independent variables. Then, the binned data replace

the independent variable by the midpoints of the bins and each observation of the

dependent variables by the mean of its values across the the corresponding bin. The

binned data then are used to implement cross validation which leaves one point (bin)

out in turn.
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3.3.5 FPC scores estimation and curve reconstruction

SPACE has the advantages that it can be used to reconstruct the curves and that

it can also work when the data include missing values. Equation (3.1) is used to

reconstruct the curve xi(t), where

xi(t) = µ(t) +
K∑
k=1

αikξi(t).

{ξ̂k}Kk=1 estimation is given in (3.14) and µ̂(t) is estimated in (3.10). However, we

need to find a way to estimate the functional principal component scores αik. The

best linear unbiased predictors (BLUP) (Henderson, 1950) of the FPC scores are

give by

αik = E[αik|yij] where i = (1, · · · , n) and j = (1, · · · ,m), (3.17)

which is the conditional expectation under Gaussian assumptions. Suppose yi =

(yi(ti1), · · · , yi(tim))T , ỹi = (y1, · · · ,yn)T , µi = (µi(ti1), · · · , µi(tim)T , µ̃ = (µi, · · · ,µn)T ,

αi = (ξi1, · · · , αiK)T , α̃ = (α1, · · · ,αn)T , Λ = diag(λ1, · · · , λK), ξik = (ξk(ti1), · · · , ξk(tim)),

ξi = (ξi1, · · · , ξiK) and ξ̃ = diag(ξ1, · · · , ξn). Then, the functional principal scores

can be given as follows

ˇ̃α = Σ(α̃, α̃)ξ̃T
(
ξ̃Σ(α̃, α̃)ξ̃T + σ21

)−1

(ỹ − µ̃),

=
(
σ2Σ(α̃, α̃)−1 + ξ̃T ξ̃

)−1

ξ̃T (ỹ − µ̃),
(3.18)

where Σ(α̃, α̃) is the covariance of FPC scores. Using (3.2) this is given by,

Σ(α̃, α̃) =

ρ̃(1n×n ⊗ Λ), non-separable,

ρ⊗ Λ separable,
(3.19)

where ρ̃ = [ρij] and ρij = diag(ρ∗ij1, · · · , ρ∗ijK). Then using (3.18) and (3.19) the

FPC scores can be estimated as follows

̂̃α =


α̂1

...

α̂n

 =


(
σ̂2̂̃ρ.(1n×n ⊗ Λ̂) +

̂̃
ξ
T ̂̃
ξ
)−1̂̃

ξ
T

(ỹ − ̂̃µ) non-separable(
σ̂2ρ̂⊗ Λ̂ +

̂̃
ξ
T ̂̃
ξ
)−1̂̃

ξ
T

(ỹ − ̂̃µ) separable
(3.20)

Finally, it is possible to reconstruct the curves as

x̂i(t
eval) = µ̂i(t

eval) + ξ̂i(t
eval)α̂i. (3.21)
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3.3.6 Consistency of estimates

SPACE approach is an extension of the method PACE proposed by Yao and Lee

(2006), However, PACE assume that there is no spatial correlation in the data

which is not the case in SPACE. To overcome this limitation, two conditions were

introduced in SPACE and then theorem 3.1 is extended to the spatial correlation

case.

Theorem 3.1. The uniform convergence rate of the cross covariance estimator is

stated as

supt,s∈τ |Ĝ∆(s, t)−G∆(s, t)| = Op

( 1√
(|n(∆)h2

G

)
,

where Ĝ∆(s, t) is the smooth cross covariance estimates ofG(s, t) = Cov(xi(s), xj(t)),

n(∆) represents the collection of the location pairs of the observations and h is the

bandwidth. For more details regrading the prof and other theorems see the appendix

in (Liu et al., 2017).

3.4 Spatio-temporal regression model with partial

differential equations regularisation

This section describes the spatio-temporal regression model with partial differential

equations regularisation (ST-PDE) approach, which was introduced by Bernardi

et al. (2017). ST-PDE is a non-parametric method that deals with space-time data

observed over non-planer spatial domains. The method focuses on surface estima-

tion, considering the shape of the spatial domain combined with time evaluation.

One of the major contributions of this thesis (see Chapter 4) is to develop a new

framework, generalising the ST-PDE method, which will be capable of analysing

replicated functional data obtained over non-planer spatial domains.
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3.4.1 Functional data over complex domains

Functional data can be observed on irregularly shaped manifolds. These datasets

might have complex boundaries and or interior gaps like the Montreal census data

given in figure 3.3. The Montreal census data consist of 493 data points where each

data point represents the average income for one area (Ramsay, 2002).

Figure 3.3 shows Montreal island with the data points, where the two internal

gaps are the airport and factories and not included in the domain, as no people

live there. When modelling this type of dataset, along with the complex external

boundary shape of the island, we should also take into account the internal gaps

where no data are collected for the variable of interest. It is quite challenging to

model irregularly shaped data accommodating the complex domain.

Figure 3.3: Montreal island with the data points (Ramsay, 2002)

Most of the existing classical approaches such as thin-plate splines, kernel

smoothing, wavelet-based smoothing and kriging do not consider the shape of the

spatial domain. For example, thin plate splines use roughness penalties that are

based on integrated squared partial derivatives over the whole plane R2 and are not

restricted to the domain of interest. One the other hand, kernel smoothing mostly

uses Euclidean distance to measure the distance between data points, and it is well-

known that Euclidean distance treats domains as connected, ignoring the holes and

concave boundaries.
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However, some recent methods for the analysis of space-time data have been

designed to include the information of the domain of interest. For instance, Finite

Element L-splines proposed by Ramsay (2002) present a penalised bivariate spline

smoother. In this smoother, the roughness penalty consists of a partial differen-

tial operator and is integrated only over the region of interest using finite element

analysis. Later, Wood et al. (2008) introduced a group of smoothers that consist

of a low rank basis and a quadratic penalty. This approach can also accommodate

irregularly shaped domain, as it does not smooth across boundaries.

The more recent approach of spatial spline regression (SSR) model, proposed

by Sangalli et al. (2013), extends the finite element L-splines methods (Ramsay,

2002). The same smoother and penalty are used, however; the computational and

modelling aspects were improved by Sangalli et al. (2013) method. Furthermore,

this approach includes covariate estimation and more flexible boundary conditions.

The SSR approach only models the spatial domain and do not include any temporal

aspects in the model. Bernardi et al. (2017) extended the SSR to include the time

component in the model by including two roughness penalties, one for space and

another for time. The approach is named a spatio-temporal regression model with

partial differential equations regularisation (ST-PDE) approach and is described in

details in the next section.

3.4.2 The penalized model with partial differential regulari-

sation

The smoothing function L-spline is a technique that was designed to smooth data

observed in one dimensional space. Suppose yi are set of observations represented

by the smooth function f(xi) as follows;

yi = f(xi) + εi,

Then, the L-spline function is the real-valued f that minimises the penalised sum

of squares functional
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n∑
i=1

[yi − f(xi)]
2 + λ

∫ a

b

[Lf ]2dx, (3.22)

Where λ is the smoothing parameter, L is the linear differential operator and the

integral is evaluated over the interval [a, b] that includes all of xi’s. For more infor-

mation of L-splines see (Wahba, 1990) and (Heckman and Ramsay, 2000).

Definition 3.4.1. The linear differential operator is a polynomial constructed from

the differential operators D1, D2, · · · . A differential operator of degree m can be

written as:

L = Dm + ωm−1D
m−1 + ...+ ω1D + ω0I,

where I is the identity operator and ωi are the coefficients.

The L-spline smoothing requires finding a solution that minimise (3.22). This

problem can be solved by using Green’s function (Green and Silverman, 1993b). A

Green’s function is the kernel of the integral operator inverse to the linear differential

operator. In other words, the inverse of the linear differential operator L is an

integral operator whose kernel function is the Green’s function. We show later in

this chapter how Green’s theorem is used to find a function that minimises the

penalised sum of square.

The L-spline smoothing function was generalised to the two dimensions case

by Ramsay (2002) by introducing a penalised bivariate spline smoother . Let pi =

(xi, yi), i = 1, ..., n be a set of points on some domain Ω ∈ R2 and zi be the data

points that are observed at location pi.

zi = f(pi) + εi,

The smooth estimate f of R2 will be in this case a surface rather than a

curve, and have to be estimated over a domain Ω ∈ R2 that consists of all the data

location pi. The bivariate L-spline is approximated by the function f that minimises

the quantity
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n∑
i=1

[zi − f(pi)]
2 + λ

∫
Ω

(Lpf)2dΩ, (3.23)

where Lp is a linear partial differential operator of order m.

Unlike the univariate L-spline, the bivariate L-spline is difficult to implement.

The Green’s functions that are used to solve the differential equations can not be

defined easily in the two-dimensional case. Furthermore, the bivariate smoothing

should not depend on the choice of the coordinate system. The roughness penalty

in (3.23) should be invariant to rotation and translation. In this case, Lp should

be defined by the Laplacian operator ∆. The Laplace operator is a second order

differential operator that measure the curvature of some field. The Laplacian of

function f ∈ R2 is defined by the sum of the partial derivatives of the function f

∆f = ∂2f
∂x2

+ ∂2f
∂y2

.

Thus, the linear differential operator Lp can be written as:

Lp = ∆p + cp−1∆p−1 + ...+ c1∆ + c0I,

for non-negative integer p and constant c. Then, the bivariate L-spline smoothing

is approximated by the function f that minimises

n∑
i=1

[zi − f(pi)]
2 + λ

∫
Ω

(∆f)2dΩ. (3.24)

The minimisation problem in (3.24) includes only spatial aspects.

Bernardi et al. (2017) extended this smoother to space-time dependent data

where both space and time components are included in the model. Suppose zij

are data observed at a set of n spatial locations {pi = (xi, yi); i = 1, ..., n} on a

bounded domain Ω, and over a set of m time points {tj; j = 1, ...,m} in time interval

[T1, T2] ⊂ R. Bernardi et al. (2017) assumed that zij are noisy measurements of an

underlying spatio-temporal smooth function f(p, t) and thus can be written as,

zij = f(pi, tj) + εij i = 1, · · · , n, j = 1, · · · ,m,
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where εij are the error and independently distributed with mean zero and constant

variance σ2. Consequently, the minimiser considers two roughness penalties that

allows one to impose regularity conditions on f separately in space and time. The

temporal penalty is the classical penalty, the integral of the square of derivative

dr (Silverman and Ramsay, 2005). For any arbitrary function h(t) The penalty is

calculated as

JT (h(t)) =

∫ T2

T1

(drh(t)

dtr

)2

dt,

whereas the spatial penalty follows the penalty term in (3.24). Each penalty is

applied to the function f and then integrated over the complementary domain.

Then the minimiser can be written as;

J(f) =
n∑
i=1

m∑
j=1

[zij − f(pi, tj)]
2 + λS

∫ T2

T1

∫
Ω

(∆f(p, t))2dpdt

+λT

∫
Ω

∫ T2

T1

(
∂rf(p, t)

∂tr
)2dtdp,

(3.25)

where λS and λT are the smoothing parameters that control the roughness in space

and time respectively. The model (3.25) is the final model that is used to describe

the data. However, in the next section we will show how the parameters of this

model are estimated from the data.

3.4.3 Representing the spatio-temporal field

The model consists of three parts; the least square estimate, the spatial penalty

and the temporal penalty. First, the least square part includes the data points zij

and the spatio-temporal field f which is represented by the space and time basis

functions. Suppose {φk(t); k = 1, · · · ,M} be a set ofM basis functions defined over

the time interval [T1, T2] and {Ψl(p); l = 1, · · · , N} be a set of N basis functions

defined on the space domain Ω. Then, under the assumption of separability the

spatio-temporal field f can be written as;

f(p, t) =
N∑
l=1

M∑
k=1

clkΨl(p)φk(t),
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where clk are the coefficients of the spatio-temporal basis functions. The separability

assumption can be implemented using a separable basis system, which in turn sim-

plifies the estimation steps. Previous work on separating the spatial and temporal

variation using the separability assumption can be found in Liu et al. (2017) and

Aston et al. (2015). The previous authors have also provided tests of the separability

assumption using parametric and non-parametric methods, respectively.

In the ST-PDE approach, a cubic B-spline basis is used as the temporal basis

and the penalty is represented by the second derivative of the basis functions. For

the spatial part, the most appropriate basis for the irregular domain is the finite

element basis used in (Sangalli et al., 2013). The idea of finite element analysis is

to choose a number of piece-wise polynomials defined over sub-regions and the sum

of the solutions of these sub-regions provides an approximate solution to the entire

domain. More information of finite element methods will be provided in the next

section.

Finite element analysis

Finite elements analysis is a numerical method that appeared first in the later part

of 1950 where the goal was to solve complex equations that were difficult to solve

analytically, such as partial differential equations. The idea of finite element analysis

(FEA) is to divide the given domain into small sub-domains referred to as the finite

elements. Then each sub-domain (finite element) is modelled by a polynomial and

the sum of the solutions of these sub-domains provides an approximate solution to

the entire problem. The domain can be divided using triangular or quadrilateral

mesh. Sangalli et al. (2013) and Bernardi et al. (2017) used the triangular mesh

τ , to represent the spatial domain Ω. The approximated domain is denoted by Ωτ .

The process of dividing the domain into triangles is called triangulation.

Definition 3.4.2. The triangulation τ of the domain Ω is a partition Ω into a finite

number of non-overlapping triangles Ki such that

• Ki ∩Kj = φ if i 6= j.

• ∪Ki = Ω.
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where Ki’s are called finite elements.

There are different methods of triangulations, one of the most popular methods

is called Delaunay triangulation. In this methods, the data points are used as vertices

of the triangle. In other words, the circumcircle of every triangle is empty, that is,

there is no point from the data in its interior. This can be achieved by maximising

the smallest angle over all triangulations of a given point set. Then, the triangulation

will be finer in the area where there are more data points and coarser in the area

with sparse data points. The Delanuay triangulation will be used in this approach,

however, the triangulation can be done using existing triangulation software. Figure

3.4 shows a triangular mesh for the Montreal dataset where the triangle’s vertices

are the data points.

Figure 3.4: Example of triangulation mesh of the Montreal island (Ramsay, 2002)

Once the triangulation is done the domain will be divided into sub-domains

(finite elements). Each finite element consists of a triangular domain, a set of nodes

and an associated set of nodal basis functions. The basis functions are chosen to

be polynomials of low degree. However, the polynomial can be either linear or

quadratic. In the linear case, only the triangle vertices are used as nodes, and the

polynomial is defined by three basis functions. On the other hand, the quadratic

polynomial uses six basis functions which are associated with six nodes, the vertices

and the midpoints on the edges of the triangle. In both cases, the basis function

take the value 1 at a single node and zero on the others. Let ψk be the basis function
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for a triangle at node k then the basis functions are defined as:

ψk(nl) =

1 k = l

0 k 6= l.

Then any function f in the domain Ω can be defined as follow:

f(x, y) =
K∑
k=1

ckψk(x, y) =
K∑
k=1

f(nk)ψk(x, y) = fTψ(x, y),

where f = (f(n1), · · · , f(nk))
T which indicates that f is defined by its value at the

K nodes in the finite element space. For more information of finite element methods

see (Brenner and Scott, 2007) and (Braess, 2007).

The estimation in variational form

In order to use finite element analysis, it is required to define a variational formula-

tion of the partial differential equation.

Suppose Hm(Ω) consists of all continuous functions of the domain Ω in L2(Ω)

having mth order partial derivatives. The normal derivatives of Hm(Ω) are equal to

zero on the boundary of the domain and indicated by Hm
0 (Ω). The spatial penalty

function in (3.25) is uniquely defined in H2(Ω).

Sangalli et al. (2013) proved that the minimiser has a unique solution which

satisfies the boundary condition f ∈ H2
n0(Ω); which assumes zero flow on the bound-

aries of the domain. Then, the minimiser problem can be defined for f ∈ H2
n0(Ω)

and the estimator f that minimise the model is given by:

uTnQf̂n + λ

∫
Ω

∆u∆f̂ = uTnQz, (3.26)

for every u ∈ H2
n0(Ω).

The formulation (3.26) can only be defined in H2(Ω). We need to transform

this equation to be well defined in H1(Ω) and thus can be solved using the finite

element method.
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3.4.4 Finite Element Solution

The problem of finding f̂ ∈ H2
n0(Ω) in equation (3.26) can be solved by introducing

an auxiliary function g = ∆f . Then the model can be written as the problem of

finding (f, g) ∈ H2
n0(Ω)× L2(Ω) that satisfies;

uTnQf̂n + λ

∫
Ω

g(∆u) = uTnQz∫
Ω

gv −
∫

Ω

(∆f̂)v = 0,

(3.27)

for all (u, v) ∈ H2
n0(Ω) × L2(Ω). Over a region Ω in the plane with boundary ∂Ω,

Green’s theorem states ∫
Ω

u∂iv =

∫
∂Ω

uνvi −
∫

Ω

ν∂iu.

Based on this definition one can write∫
Ω

g(∆u) = −
∫

Ω

(∇g.∇u) +

∫
∂Ω

g(∂νu)∫
Ω

(∆f̂)v = −
∫

Ω

(∇v.∇f̂) +

∫
∂Ω

v(∂ν f̂),

where
∫
∂Ω
g(∂νu) = 0 and

∫
∂Ω
v(∂ν f̂) = 0 due to the boundary conditions, i.e. the

normal derivatives of f and u equal to zero.

Then equation (3.27) can be written as a problem of finding (f̂ , g) ∈ {H1
n0(Ω)×

C0(Ω)} ×H1(Ω) that satisfies

uTnQf̂n − λ
∫

Ω

(∇u.∇g) = uTnQz,∫
Ω

vg +

∫
Ω

(∇v.∇f̂) = 0.

(3.28)

The system in (3.28) is the finite element solution to the estimation problem for

the model with the spatial penalty only. Since the equations are represented in

H1(Ω) and the function can be estimated for each triangle by the polynomial on the

nodes. Then, the entire problem can be solved as a linear system of equations and

be represented in a simple matrix equation.

As we mentioned in Section 3.4.3 every function in the finite element space is

defined by its value at the nodes for example f(x, y) = fTψ(x, y). Then the system
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of equations in (3.28) can be written as follows;

uTnQf̂n − λ
∫

Ω

uT (ψxψ
T
x + ψyψ

T
y )g = uTnQz,∫

Ω

vT (ψψT )g +

∫
Ω

vT (ψxψ
T
x + ψyψ

T
y )f̂ = 0,

where ψ is a vector of space basis function and ψx and ψy are the vectors of first

order partial derivatives of ψ. The problem now is reformulated to be a problem in

Rn ×Rn.

By linearity, the coefficient vectors u and v can be taken out of the integral;

uTnQf̂n − λuT
∫

Ω

(ψxψ
T
x + ψyψ

T
y )g = uTnQz,

vT
∫

Ω

(ψψT )g + vT
∫

Ω

(ψxψ
T
x + ψyψ

T
y )f̂ = 0.

Moreover, let L be a block matrix and D be a K × n block matrix defined by;

L :=

 Q On×(K−n)

On×(K−n) O(K−n)×(K−n)

 ,

D :=

 In

O(K−n)×n

 ,
where O is a m1 ×m2 with all entries equal to zero. Let set two matrices R0 and

R1 which are given by

R0 =

∫
Ω

ψψT ,

R1 =

∫
Ω

(ψxψ
T
x + ψyψ

T
y ).

By plugging these matrices to the linear system it can be written as follows;

uTnLf̂n − λuTR1g = uTnLDz,

vTR0g + vTR1f̂ = 0.
(3.29)

from the system of equations in 3.29 we can obtain g = −R−1
0 R1f and f̂ = (L +

λR1R
−1
0 R1)−1LDz. However, the two quantities R0 and L+λR1R

−1
0 R1 are invertible

and positive definite

−Lf + λR1g = −LDz,

R0g +R1f = 0,
(3.30)
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and then we can write

L(Dz − f) + λR1R
−1
0 R1f = 0.

Denoting PS = R1R
−1
0 R1 we can see that the penalty term is equivalent to the

spatial penalty matrix (Azzimonti et al., 2015).

3.4.5 Defining the penalised sum of squares

The penalised sum of square error functional in model (3.25) can be described nu-

merically by the data and the basis functions with their penalties. Let z be the

observations represented as vector of length nm with n spatial locations and m time

points, f the evaluation of the spatio-temporal function f(pn, tm), and c the basis

coefficients vector of length NM .

z =



z11

...

z1m

z21

...

z2m

...

znm



, f =



f(p1, t1)
...

f(p1, tm)

f(p2, t1)
...

f(p2, tm)
...

f(pn, tm)



, c =



c11

...

c1M

c21

...

c2M

...

cNM



.

Let ψ be vector of spatial basis functions with length N and their first partial

derivatives ψx and ψy are given by

ψ =


ψ1(p)

ψ2(p)
...

ψN(p)

 , ψx =


∂ψ1(p)/∂x

∂ψ2(p)/∂x
...

∂ψN(p)/∂x

 , ψy =


∂ψ1(p)/∂y

∂ψ2(p)/∂y
...

∂ψN(p)/∂y

 .
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Then, the evaluation of the N basis functions at the n spatial points can be organised

into the matrix

Ψn×N =


ψ1(p1) ψ2(p1) · · · ψN(p1)

ψ1(p2) ψ2(p2) · · · ψN(p2)
...

... · · · ...

ψ1(pn) ψ2(pn) · · · ψN(pn)

 .

For temporal dimension, let φ be vector of temporal basis functions of length

M and their second derivatives ϕtt, which are given by

ϕ =


ϕ1(t)

ϕ2(t)
...

ϕM(t)

 ,ϕtt =


d2ϕ1(t)/dt2

d2ϕ2(t)/dt2

...

d2ϕM(t)/dt2

 .

Then the evaluation of the M basis functions at the m time points can be organised

as

Φm×M =


ϕ1(t1) ϕ2(t1) · · · ϕM(t1)

ϕ1(t2) ϕ2(t2) · · · ϕM(t2)
...

... · · · ...

ϕ1(tm) ϕ2(tm) · · · ϕM(tm)

 .
Then, K0 is M × M matrix defined by the integral of the cross products of the

temporal basis.

K0 =

∫ T2

T1

ϕϕT

The penalised sum of squares can now be denoted using the matrices defined in the

previous sub-sections. let B = Ψ ⊗ Φ where ⊗ is the Kronecker product which is

the direct product of Ψ and Φ resulting in an nm×NM matrix B. Then f can be

written as f = Bc and the sum of square error functional can be defined as follows,

(z−Bc)T (z−Bc).

The spatial penalty term is given by

λScT (PS ⊗K0)c,

where PS is the spatial penalty and is defined by the discretisation PS = R1R
−1
0 R1.

While the temporal penalty term is given by
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λTcT (R0 ⊗ PT )c,

where PT is the time penalty which is the second derivative of the temporal basis

functions PT =
∫ T2
T1
φttφ

T
tt. Putting these terms together we get

J = (z−Bc)T (z−Bc) + λsc
T (PS ⊗K0)c + λTcT (R0 ⊗ PT )c

= (z−Bc)T (z−Bc) + cTPc,
(3.31)

where P represent the overall penalty P = λS(PS ⊗K0) + λT (R0 ⊗ PT ).

Once we have the matrix representation of the optimisation problem, the co-

efficients vector c can be obtained from model (3.31) as a solution of the penalised

least square and is given by

ĉ = (BTB + P )−1BTz.

3.4.6 Properties of the estimator

The mean and the variance of the coefficients vector are given by

E[ĉ] = (BTB + P )−1BTf

V ar[ĉ] = σ2(BTB + P )−1BTB(BTB + P )−1

where σ2 is the constant variance of the error term. The evaluation of the separable

basis function at the spatio-temporal points (p, t) is given by the vector B(p, t) =

ψ(p)T ⊗ φ(t)T . Furthermore, the estimated value of the spatio-temporal field f at

any spatio-temporal location is given by

f̂(p, t) = B(p, t)ĉ = B(p, t)(BTB + P )−1BTz.

Then, we can obtain the mean and the variance as follows

E[f̂(p, t)] = B(p, t)(BTB + P )−1BT f

V ar[f̂(p, t)] = σ2B(p, t)(BTB + P )−1BTB(BTB + P )−1B(p, t)T



Chapter 3. Modelling Dependent Functional Data 53

Furthermore, the covariance between two spatio-temporal locations is given by

Cov[f̂(p1, t1), f̂(p2, t2)] = σ2B(p1, t1)(BTB + P )−1BTB(BTB + P )−1B(p2, t2)T

.

Note that σ2 is unknown and can be estimated from the data. Consider the

vector ẑ of the fitted values at the space-time points ẑ = Sz where S is the smoothing

matrix S = B(BTB + P )−1BT .

σ2 can be estimated by

σ̂2 =
1

nm− tr(S)
(z− ẑ)T (z− ẑ)

3.5 Summary

In this chapter we have reviewed two existing methods, SPACE and ST-PDE which

can model specific types of spatio-temporal data. We have also clearly identified the

limitations of each of these methods and pointed out that none of these methods are

designed to analyse replicated spatio-temporal data such as the EEG data described

in Chapter 6. So, in the next chapter we propose to extend the ST-PDE approach to

analyse replicated functional data, and provide the corresponding theoretical results

and computational tools for the new framework. We will then use the new method

to analyse the EEG data in Chapter 6.
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Modeling Replicated Functional Data

4.1 Introduction

The functional data analysis approaches introduced in Chapter 3 are primarily de-

signed to model space-time data, where we have only one curve for each location.

However, in many applications we need to analyse replicated space-time data, which

involve repeated measurements of the same process at the same location. In this

chapter, we extend the ST-PDE approach introduced in Chapter 3 to accommodate

replicated functional data. The first part of the chapter presents a motivational

application which deal with the analysis of replicated brain EEG measurements on

18 subjects. The rest of the chapter focuses on developing the new framework of

analysing replicated spatio-temporal data by extending the ST-PDE methodology.

Note: This chapter is adopted from: Alghamdi,S. and S.Ray. Analysis of replicated

spatially correlated functional data (2019). (Under preparation)

4.2 Motivating Application

Our motivating application concerns brain data that measure and record the electri-

cal activity of the brain, over time and across several electrodes. There are different

noninvasive techniques that are used to record brain activities such as functional

Magnetic Resonance Imaging (fMRI), magnetoencephalography (MEG) and elec-

54
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troencephalography (EEG). Our data records the EEG. First we provide a brief

discussion of the structure of the human brain and the function of each part of the

brain. Then we provide more information of electroencephalography (EEG) and

introduce our data set.

4.2.1 Human Brain

The brain is the command centre of the human body and the main organ in the

nervous system. It controls most of the body tasks and activities by sending the

instructions to the body and receiving the information from the sense organs. The

brain consists of three parts: cerebrum, cerebellum and brain-stem. However, the

cerebrum is the largest and most important part of the brain. It consists of two

hemispheres, right and left and each of them is divided into four lobes: the frontal,

temporal, occipital and parietal. Figure 4.1 shows how the these lobes are distributed

in the brain.

Figure 4.1: Lobes locations in the brain

• Frontal Lobe: It is positioned at the front of the brain and is associated

with functions such as self-controlling, problem solving, planning, and social

behaviour.
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• Temporal Lobe: is located at the side of the head above the ears and it is

responsible for functions include auditory perception, long-term memory and

speech understanding.

• Occipital Lobe: is located at the back of the brain and responsible for visual

perception system.

• Parietal Lobe: is located at the top and the back of the head. It is involved

in sensation such as touch, pain, etc.

The brain is composed of billions of nerves cell which receive, process and send

information via electrical signals. These electrical activities can be measured using

different noninvasive techniques such as functional Magnetic Resonance Imaging

(fMRI), magnetoencephalography (MEG) and electroencephalography (EEG). EEG

is a monitoring approach that records brain waves. As our dataset consists of EEG

measurements we provide more information on EEG in the next section.

4.2.2 Electroencephalography (EEG)

Electroencephalography is a monitoring technique that is used to measure and record

the electrical activity of the brain. EEG measures voltage variation, which arises

from ionic flow within the neural activity in the brain (Niedermeyer and da Silva,

2005). The technique of EEG was first used in 1875, when Richard Carton succeed

in recording the electrical signals from the brains of monkeys and rabbits. In 1924,

Hans Berger succeed in applying the technique to recording signals from human

brains using a device called an electroencephalograph (Haas, 2003). Berger gath-

ered hundreds of EEG measurements from different people and he suggested that

these measurements changed with the psychological state of the subject. Apart from

monitoring brain activities, EEG is used in the diagnosis of several types of neuro-

logical disorders such as epilepsy, Parkinson’s disease and brain tumours. EEG has

many advantages compared to other techniques as it is fast and can record the brain

signals in milliseconds. Also it is very safe as it is only records the activities that the

brain already produces. But one clear drawback is that EEG provides poor spatial
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resolution which indicates that it might be less informative about active areas of the

brain if the nodes are not placed in those regions.

EEG can be measured directly from the head surface by applying electrodes

(small discs) on the surface of the scalp. These electrodes are connected to amplifiers

and the amplified signals are converted to digital via an anti-aliasing filter. These

signals represent the EEG readings. The locations of the electrodes are determined

by the international 10-20 or 10-10 placement system, which contain 21 and 64

electrodes placement, respectively (Klem et al., 1999) . The "10" and "20" indicates

the distances between the neighbouring electrodes which are either 10 % or 20 % of

the total front-back or right-left distance of the skull.

This system is used internationally and was adopted by the International Fed-

eration in Electroencephalography and Clinical Neurophysiology. Figure 4.2, which

is reproduced from Smolka et al. (2015), shows the electrodes locations specified by

the 10-10 placement system.

Figure 4.2: Electrodes locations on the surface of the brain with the 10-10 Interna-

tional Electrode Placement System

The head is divided into five main areas F, T, C, P and O which refer to frontal,
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temporal, central, partial and occipital, respectively. The even numbers indicate the

electrodes distributed over the right side of the head and the odd numbers denote

the left side.

4.2.3 Data Description

Now we describe the data we will analyse later in Chapter 6. The data consist of

EEG measurements from 18 subjects. Each subject was shown a stimulus, which is

a series of 250 pictures, 125 of them being image of cars and the other being image

of faces. Subjects performed a categorisation task, which is classifying the presented

image. The EEG data were recorded with 57 scalp electrodes located according to

the international 10-10 placement system and each record consists of 454 time points.

The EEG signals were recorded 200 milliseconds before the subject was shown the

stimulus and 500 milliseconds after the stimulus was presented. Figure 4.3 shows

the data from one subject observed at one electrode for both stimuli images of car

and face where the individual curves represent the replications. The data set is

described in more details in Chapter 6. The data is time synchronised so we do not

perform any additional egistration steps.

Figure 4.3: EEG measurements of one electrode for one subject seeing images of car

and face

This data can’t be analysed using the existing techniques of SPACE or ST-

PDE due to the structure of the data. This motivates us to extend the ST-PDE
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to the new framework replicated ST-PDE. Our approach naturally accommodates

replicated data observed over space and time. In the next section we describe the

details and mathematical derivations of the replicated ST-PDE model.

4.3 Replicated ST-PDE Model

Suppose zijk are data observed at a set of n spatial locations {pi = (x1, y1), · · · , (xn, yn)}

on a bounded domain Ω, and over a set of m time points {tj; j = 1, ...,m} in the

time interval [T1, T2] ⊂ R where each of these observations is repeated {k = 1, · · · , l}

times. Then, these data are assumed to be noisy measurements that are sampled

from the smooth function f(p, t) and can be written as,

zijk = f(pi, tj) + εijk i = 1, · · · , n, j = 1, · · · ,m, k = 1, · · · , l (4.1)

where εijk are the errors which are independently distributed with mean zero and

constant variance.

Similar to the ST-PDE framework, the spatio-temporal function f(s, t) is es-

timated by minimising the sum of squared errors. Recall that, the minimiser is

controlled using two separate roughness penalties that allow the regularity of f in

space and time. The penalties used in this approach are the same as the ones in

(Bernardi et al., 2017). The main change from (Bernardi et al., 2017) is in estimat-

ing the penalised sum of square error function that was presented in (3.31). The

difficulties and challenges of extending this method is discussed later in Section 4.5.

Remark. The replications in this extension are included as independent replications

which might not be true as they correspond to the same subject. However, if we

ignore within subject dependence, the expected value of the estimated regression

coefficients will remain same. But ignoring the dependence might give us wrong

estimation for the standard errors. But as we are mainly dealing with the means of

the processes rather than the variances we continue with the independence assump-

tion. If one wishes to account for the within-subject dependence then a mixed model

might be more appropriate as it can build the correlation over different layers, but

a mixed model on functional data is very complex and computationally intensive.



Chapter 4. Modeling Replicated Functional Data 60

In the next section we will introduce the estimation steps for the RST-PDE

model.

4.3.1 Notational details

We will first represent the model in (4.1) in vector matrix notation using Kronecker

products.

z∗
(nml) = f∗(nml) + ε∗(nml) (4.2)

z∗ =



z111

...

z1m1

z211

...

znm1

z112

...

znm2

...

z11l

...

znml




replcation 1


replcation 2


replcation l

f∗ =



f(p1, t1)
...

f(p1, tm)

f(p2, t1)
...

f(pn, tm)

f(p1, t1)
...

f(pn, tm)

...

f(p1, t1)
...

f(pn, tm)



.


replcation 1


replcation 2


replcation l

ε∗ =



ε111

...

ε1m1

ε211

...

εnm1

ε112

...

εnm2

...

ε11l

...

εnml




replcation 1


replcation 2


replcation l

Where ε∗ is the error vector and f∗ has the entries of f repeated l times.
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Let us now define r = {1, 1, · · · , 1} to be the vector of ones with length equal

to the number of replications. We can use the Kronecker product of r and f (nm) to

represent the vector f∗.

Corollary 4.1. Using the vector of l ones denoted by rl, equation (4.2) can be

re-stated as

z∗
(nml) = r(l) ⊗ f (nm) + ε∗(nml) (4.3)

Proof. It is easy to show that by the Kroncker product rules

rl ⊗ f (nm) =


f (nm)

f (nm)

...

f (nm)

 = f∗(nml)

Corollary 4.2. Re-introducing the basis expansion f as f = B ⊗ c we can rewrite

the model in (4.3) as

z∗
(nml) = r(l) ⊗B(nm×NM)c(NM) + ε∗(nml), (4.4)

where B = Ψ⊗Φ and c is the vector of coefficients and with basis function expansion

following Section 3.4.5. The evaluation of the N basis functions at the n spatial

points is given by

Ψ(n×N) =


ψ1(p1) ψ2(p1) · · · ψN(p1)

ψ1(p2) ψ2(p2) · · · ψN(p2)
...

... · · · ...

ψ1(pn) ψ2(pn) · · · ψN(pn)

 .
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For the temporal dimension, the evaluation of the M basis functions at the m

time points is given by

Φ(m×M) =


ϕ1(t1) ϕ2(t1) · · · ϕM(t1)

ϕ1(t2) ϕ2(t2) · · · ϕM(t2)
...

... · · · ...

ϕ1(tm) ϕ2(tm) · · · ϕM(tm)

 .

Proof. As f (nm) can be written as Bc, replacing f in corollary 4.1 gives us

z∗
(nml) = r(l) ⊗B(nm×NM)c(NM) + ε(nml)

we can also check that the dimension of the left hand side and right hand side both

equal nml.

Before solving the penalised estimator, we will first work out the least square

estimator (unpenalised) for the coefficient vector cu

Theorem 4.1. The sum of square for the estimation of cu in

z∗
(nml) = r(l) ⊗B(nm×NM)cu(NM)

+ ε∗(nml)

can be written as

(z∗ − r ⊗Bc)T (z∗ − r ⊗Bc)

and the least squares solution of the model can be compactly written as

ĉu(NM)
=

1

l
(BTB)−1(rT ⊗BT )z∗

Proof. Define a new matrix A that contains evaluation of the basis functions for all

replications which is given by

A(nml×NM) = r(l) ⊗B(nm×NM)
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Equation (4.4) can be restricted as z∗ = Ac + ε∗. Then the sum of squares is now

given by

(z∗ − Acu)
T (z∗ − Acu)

Now re-introducing A = r⊗B in terms of B matrix the least square can be written

as,

(z∗ − r ⊗Bcu)
T (z∗ − r ⊗Bcu)

Solving the least square problem in A we get

(z∗ − Acu)
T (z∗ − Acu) = z∗Tz∗ − z∗T (Acu)− (Acu)

Tz∗ + (Acu)
TAcu

= z∗Tz∗ − 2z∗cTuA
T + cTuA

TAcu

To determine the vector, ĉu, we minimize the sum of squared with respect to the cu

and set it equal to zero we get

−2ATz∗ + 2ATAĉu = 0

z∗AT = ATAĉu

ĉu = (ATA)−1ATz∗

We wish to express the estimate in terms of B as follows

ĉu = ((r ⊗B)T (r ⊗B))−1(r ⊗B)Tz∗

ĉu = (rTr ⊗BTB)−1(rT ⊗BT )z∗,

ĉu(NM)
=

1

l
(BTB)−1(rT ⊗BT )z∗

where rTr is a scalar and B is a matrix of dimension nm which give us a huge

computational advantage.

Note that, if we work directly with the A matrix we need to calculate ATA

which has a huge computational cost multiplying two matrices of dimension (nml).

For example, in our brain data nml = 454 × 57 × 125 = (3, 234, 750) for a single

individual seeing one type of images. So we express the estimate in terms of B,

which is of dimension nm, to overcome this issue.
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Corollary 4.3. The sum of squares for the estimation of cu which is given by

ĉu = (rTr ⊗BTB)−1rT ⊗BTz∗, (4.5)

can written as

ĉu = (BTB)−1BT z̄, (4.6)

where z̄ is given by

z̄ =



z̄11

...

z̄1m

z̄21

...

z̄2m

...

z̄nm


where z̄ij = 1

l

∑l
k=1 zijk are the average over the replications and zij are the obser-

vations at the ith location and the jth time point.
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Proof. Using Kronecker product rules used in Seshadri (2017), one can write (rT ⊗

BT )z∗ = BTmat(z∗)r. The matrix mat(z∗) can be written as

mat(z∗)(nm×l) =



z111 z112 · · · z11l

...
... · · · ...

z1m1 z1m2 · · · z1ml

z211 z212 · · · z21l

...
... · · · ...

z2m1 z2m2 · · · z2ml

...
... · · · ...

znm1 znm2 · · · znml



.

Now, mat(z∗) · r can be simplified as

mat(z∗)(nm×l) · r(l) =



z111 z112 · · · z11l

...
... · · ·

...

z1m1 z1m2 · · · z1ml

z211 z212 · · · z21l

...
... · · ·

...

z2m1 z2m2 · · · z2ml

...
... · · ·

...

znm1 znm2 · · · znml



·



1

1

1

1

1

1
...

1l



=



z111 + z112 + · · ·+ z11l

...

z1m1 + z1m2 + · · ·+ z1ml

z211 + z212 + · · ·+ z21l

...

z2m1 + z2m2 + · · ·+ z2ml

...

znm1 + znm2 + · · ·+ znml



= l·



z̄11

...

z̄1m

z̄21

...

z̄2m

...

z̄nm



= l·z̄(nm)

Then ĉu can be written as,

ĉu = (BTB)−1BT z̄(nm)

Now we move on to the penalised estimator and we will use similar analytical

results to benefit our computation.

4.3.2 RST-PDE with penalty

Using the same basis functions and the temporal and spatial penalties as in (Bernardi

et al., 2017). We now show the steps for obtaining the penalised estimator for the

penalised sum of square error.
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Corollary 4.4. The penalised sum of square errors of the replicated model in (4.1)

can be stated as

J = (z∗ − Ac)T (z∗ − Ac) + λsc
T (PS ⊗K0)c + λTcT (R0 ⊗ PT )c,

= (z∗ − Ac)T (z∗ − Ac) + cTPc,
(4.7)

and the coefficients vector ĉ can be obtained by least square approximation as follows

ĉ =
(
BTB +

P

l

)−1

BT z̄. (4.8)

Proof. using the fact that A = r⊗B, the penalised least square in (4.7) is given by

(z∗ − Ac)T (z∗ − Ac) + cTPc

Expanding the sum of squares in A we get

(z∗ − Ac)T (z∗ − Ac) + cTPc = z∗Tz∗ − z∗T (Ac)− (Ac)Tz∗ + (Ac)TAc + cTPc

= z∗Tz∗ − 2z∗cTAT + cTATAc + cTPc

To determine the vector, ĉ, we differentiate the sum of squared with respect to the

c and set it equal to zero we get

−2ATz∗ + 2ATAĉ + 2P ĉ = 0

z∗AT = ATAĉ + P ĉ

z∗AT = ĉ(ATA+ P )

ĉ = (ATA+ P )−1ATz∗

using A = r ⊗B, we can write ĉ as follows

ĉ = ((r ⊗B)T r ⊗B + P )−1(r ⊗B)Tz∗

ĉ = (rT r ⊗BTB + P )−1(rT ⊗BT )z∗

ĉ = (rT r ⊗BTB + P )−1BTmat(z∗)r

Set z̄ = mat(z∗)rT then we get

ĉ =
(
BTB +

P

l

)−1

BT z̄
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4.4 Properties of the estimator

First we introduce the properties of the standard least square estimator ĉu. The

coefficients vector ĉu can be obtained by least square approximation and then the

mean and variance of ĉu can be defined.

Theorem 4.2.

E[ĉu] = (BTB)−1BT f ,

V ar[ĉu] =
σ2

l
(BTB)−1.

Proof. The mean of ĉu in term of A matrix is given by

E[ĉu] = (ATA)−1ATE(z∗),

Using the fact that the mean of z∗ is given by E(z∗) = f∗, Then we can write

E[ĉu] = (ATA)−1AT f∗.

Using A = r ⊗B we get

E[ĉu] = ((r ⊗B)T (r ⊗B))−1(r ⊗B)T f∗.

Using corollary (4.1), we write

E[ĉu] = (rTr ⊗BTB)−1(rT ⊗BT )(r ⊗ f).

E[ĉu] = (rTr ⊗BTB)−1rTr ⊗BT f .

Then, the mean of the estimator is written as

E[ĉu] = (BTB)−1BT f ,

Similar to the mean, the variance of ĉu in terms of A matrix is given by

V ar[ĉu] = (ATA)−1ATV ar(z∗)A(ATA)−1,

Using the fact that V ar[z∗] = σ2I, then variance of the coefficient vector is given by
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V ar[ĉu] = σ2(ATA)−1.

We write it in terms of B matrix as follows

V ar[ĉu] = σ2(rTr ⊗BTB)−1 =
σ2

l
(BTB)−1.

Note that the mean of the replicated estimator is same as the estimator of the

individual replicates, but the variance is 1
l
times the variance of the estimator of the

individual.

We defined the estimation of ĉu for the standard least square now similarly we

define them for the penalised least square estimator ĉ.

Theorem 4.3.

E[ĉ] =
(
BTB +

P

l

)−1

BT f ,

V ar[ĉ] =
σ2

l

(
BTB +

P

l

)−1

BTB
(
BTB +

P

l

)−1

Proof. The mean of ĉ is given by

E[ĉ] = (ATA+ P )−1ATE(z∗),

Using the fact that the mean of z∗ is given by E(z∗) = f∗, Then we can write

E[ĉ] = (ATA+ P )−1AT f∗,

Using A = r ⊗B and the simplification of f∗ we get

E[ĉ] = ((r ⊗B)Tr ⊗B + P )−1(r ⊗B)T (r ⊗ f),

E[ĉ] =
(
BTB +

P

l

)−1

BT f ,
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The variance of ĉ is given by

V ar[ĉ] = (ATA+ P )−1ATV ar(z∗)A(ATA+ P )−1,

Using the fact that the variance of z∗ is given by V ar[z∗] = σ2I, then variance of ĉ

is given by

V ar[ĉ] = σ2(ATA+ P )−1ATA(ATA+ P )−1.

we write it in terms of B matrix as follows

V ar[ĉ] = σ2(rTr ⊗BTB + P )−1(rTr ⊗BTB)(rTr ⊗BTB + P )−1

V ar[ĉ] = σ2
(
l(BTB +

P

l
)
)−1(

l(BTB)
)(
l(BTB +

P

l
)
)−1

V ar[ĉ] =
σ2

l

(
BTB +

P

l

)−1

BTB
(
BTB +

P

l

)−1

Now we need to define the estimation of the spatio-temporal surface f̂ .

Theorem 4.4. suppose B(p, t) = ψ(p)T ⊗ φ(t)T is a vector of the evaluation of

the basis functions at the spatio-temporal points (p, t). Then, the estimated spatio-

temporal field f̂ at (p, t) is given by

f̂(p, t) = B(p, t)
(
BTB +

P

l

)−1

BT z̄.

Proof. We know that f is defined by the basis system as f = Bc. Then the estimation

of the surface f̂ at (p,t) can be given as

f̂(p, t) = B(p, t)ĉ = B(p, t)(ATA+ P )−1ATz∗.

f̂(p, t) = B(p, t)ĉ = B(p, t)
(
BTB +

P

l

)−1

BT z̄.

Then, it is possible to define the mean and the variance of the spatio-temporal

field.
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Theorem 4.5. The mean and the variance of the spatio-temporal surface f̂ are

given by

E[f̂(p, t)] = B(p, t)
(
BTB +

P

l

)−1

BT f ,

V ar[f̂(p, t)] =
σ2

l
B(p, t)

(
BTB +

P

l

)−1

BTB
(
BTB +

P

l

)−1

B(p, t)T .

Proof. The mean of f̂ is given by

E[f̂(p, t)] = B(p, t)(ATA+ P )−1ATE(z∗),

Using the fact that the mean of Z is giben by E(z∗) = f∗, Then we can write

E[f̂(p, t)] = B(p, t)(ATA+ P )−1AT f∗,

Using A = r ⊗B and f∗ = r ⊗ f we get,

E[f̂(p, t)] = B(p, t)
(
BTB +

P

l

)−1

BT f ,

Similar to the variance, the variance of f̂ is given by

V ar[f̂(p, t)] = B(p, t)(ATA+ P )−1ATV ar(z∗)A(ATA+ P )−1B(p, t)T ,

We know that the variance of z∗ is given by V ar[z∗] = σ2I, then variance of f̂ is

given by

V ar[f̂(p, t)] = σ2B(p, t)(ATA+ P )−1ATA(ATA+ P )−1B(p, t)T .

V ar[f̂(p, t)] =
σ2

l
B(p, t)

(
BTB +

P

l

)−1

BTB
(
BTB +

P

l

)−1

B(p, t)T .

Furthermore, the covariance between two spatio-temporal locations (p1, t1) and

(p2, t2) can be given by

cov[f̂(p1, t1), f̂(p2, t2)] = σ2B(p1, t1)(ATA+ P )−1ATA(ATA+ P )−1B(p2, t2)T .

cov[f̂(p1, t1), f̂(p2, t2)] =
σ2

l
B(p1, t1)

(
BTB +

P

l

)−1

BTB
(
BTB +

P

l

)−1

B(p2, t2)T .
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Consider the vector ẑ∗ of the fitted values at the space-time points over l

replications ẑ∗ = Sz∗ where S is the smoothing matrix S = A(ATA+P )−1AT . The

smoothing matrix can be written as

S =
r ⊗B
l

(
BTB +

P

l

)−1

(r ⊗B)T .

Theorem 4.6. The vector of the fitted values ẑ∗ can be obtained as,

ẑ∗ = r ⊗ ẑ,

where ẑ is the vector of length nm represents the fitted values at space-time points

avaerging over replications.

Proof. We know that

ẑ∗ = Sz∗,

ẑ∗ = r ⊗B
(
BTB +

P

l

)−1

BTmat(z∗)r,

ẑ∗ = r ⊗B
(
BTB +

P

l

)−1

BT z̄.

Set B(BTB + P
l
)−1BT z̄ = ẑ Then, ẑ∗ can be written as,

ẑ∗ = r ⊗ ẑ

ẑ∗ though is a vector of dimension nml. It is the same as ẑ repeated l times,

which implies we have the same fitted surface for all replications.

We can also estimate σ2 by

σ̂2 =
1

nml − tr(S)
(z∗ − ẑ∗)T (z∗ − ẑ∗)

The smoothing parameters for both the spatial penalty and temporal penalty

are chosen using generalised cross validation (GCV) which is defined as follows,

GCV (λS, λT ) =
nml

(nml − tr(S))2
(z∗ − ẑ∗)T (z∗ − ẑ∗).

The smoothing parameters are chosen to minimise GCV.
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4.5 Simplification of the estimator for increasing

computation speed

The estimation of the model motivates a huge computational cost due to the large

dimension of the A matrix. The challenges in estimating the model components

include

• Storage; as the calculation of the matrix multiplication (ATA) is very large we

had to use external server to perform the computation.

• Computational speed.

The estimation of (ATA + P )−1 is complex as it require the multiplication

of large matrices ATA. We simplify the estimation using transpose and Kronecker

product properties as follows,

Remark.

(ATA+ P )−1 = [(r ⊗B)T (r ⊗B) + P ]
−1

= [(rT ⊗BT )(r ⊗B) + P ]
−1

= [(rTr ⊗BTB) + P ]
−1

= [(l ⊗BTB) + P ]
−1

=
1

l

(
BTB +

P

l

)−1

.

The inverse now become simpler as we avoid large matrices in the estimation.

In the next section, we provide a simulation study to investigate the performance of

our new framework RST-PDE and compare it with existing techniques.
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4.6 Simulation study

We perform a simulation study to compare the ST-PDE approach proposed by

Bernardi et al. (2017) with our extend approach replicated ST-PDE which accom-

modates data with replications. First we should compare ST-PDE with other spatio-

temoral estimation methods to examine ST-PDE performance.

The first approach is spatio-temporal kriging with a separable variogram and

the other two models are similar to (3.25), with the penalty term consisting of a

spatial penalty applied to a spatially varying coefficient on the temporal basis and

a temporal penalty applied to a temporally varying coefficient on the space basis.

The first approach is presented by Augustin et al. (2013) and uses cubic splines

as temporal basis and thin-plate splines as space basis and the spatial penalty is

also represented by thin-plate splines. The other approach presented by (Marra

et al., 2012) uses cubic splines as temporal basis and soap film smoothing in space.

Bernardi et al. (2017) shows that the ST-PDE approach outperforms the other three

spatio-temporal approaches. We will illustrate the RMSE of these approaches later

in this section.

In this simulation study, we sample 200 spatial points randomly generated on a

c-shaped manifold using the "spsample" function which is provided by "sp" package

in R (Pebesma and Bivand, 2005). The time component is defined to be equally

spaced in the interval [0, π]. We simulate the data from model 4.1, where the spatio-

temporal function is estimated from two functions in a combined way. The spatial

part is estimated by a spatial test function which is proposed by (Ramsay, 2002),

while the temporal part is added by multiplying the test function by a cosine function

of time, cos(t). The errors are generated from a normal distribution with mean 0

and standard deviation 0.5. Figure 4.4 shows the simulated data of one replication

at one time point and the line illustrates the borders of the spatial domain.
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Figure 4.4: A plot of simulated data

We apply both standard ST-PDE and newly developed replicated ST-PDE

approach to simulated data with 200 spatial points, 9 time points and 10 replica-

tions. Replicated ST-PDE is applied to the data directly. However, as there is no

research on the application of the ST-PDE on replicates data, one way of pool-

ing the results obtained from 10 replicates is to average over the results obtained

from the individuals replications. Figure 4.5 shows the results of applying the two

methods. The first column shows the spatio-temporal true function over different

time points. while the second column shows the average of 10 replicated spatio-

temporal estimates using ST-PDE and the third column shows the spatio-temporal

estimates using replicated ST-PDE. Both ST-PDE and replicated ST-PDE provide

good spatio-temporal estimation of the data.
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Figure 4.5: Spatio-temporal surface of true function (test function) in the first col-

umn, Spatio-temporal surface estimates using ST-PDE and RST-PDE models in

the second and third column, respectively. Each row represent the spatio-temporal

surface at fixed time point
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To illustrate the approaches performances numerically, we calculate the RSME

of both approaches applied to 50 iterations. Figure 4.6 shows box plots of the RMSE

of the estimates of the spatio-temporal field produced by different methods. The

right panel shows box plots of RMSE for ST-PDE and the other three approaches

produced by (Bernardi et al., 2017), while the left panel shows the RMSE values of

applying ST-PDE and RST-PDE to the simulated data.

Figure 4.6: Left panel:Box plots of the RMSE of the estimates of the spatio-temporal

field obtained by the four methods: spatio-temporal kriging (KRIG), space-time

model using thin plate spline (TPS), space-time model using soap film smoothing

(SOAP) and ST-PDE. (Bernardi et al., 2017). Right panel: Box plots of RMSE of

both ST-PDE and RST-PDE approaches. Note that the ranges of y axis in the two

plots are different

The left panel shows that ST-PDE outperforms the other three approaches and

provides a lower RMSE. The right panel of Figure 4.6 indicates that the RST-PDE

approach outperforms the ST-PDE. The median of RMSE of RST-PDE is lower

than the RMSE median of all other approaches in the left panel. The box plots do

not overlap indicating a significant difference. The maximum RMSE value in the

RST-PDE is lower than the minimum values of RMSE of the ST-PDE. We believe

that RST-PDE can effectively pool information from all replicates and thus performs

better than 50 individuals ST-PDE estimates of the surface. We also compute the
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computational time of ST-PDE and RST-PDE and found that ST-PDE takes more

than two times the computational time of RST-PDE (see appendix A)

4.7 Summary

In this chapter we have developed a new framework by extending the ST-PDE ap-

proach which is designed to model space-time data to the RST-PDE approach which

accommodates the replicated space-time data. We use the properties of Kronecker

products to simplify high dimensional computations. Additionally we have investi-

gated the performance of our new framework through a full-scale simulation study.

The simulation shows that the the new approach perform well compared to existing

approaches that are designed to analyse nonreplicated data.



Chapter 5

Harvard forest vegetation index data

In this chapter we will analyse the Harvard forest vegetation index data, introduced

earlier in Chapter 3, using the two main approaches SPACE and ST-DPE. The main

goal of this chapter is to extend the existing framework of SPACE and ST-DPE to

accommodate more general data-structures than they were originally developed for.

Note that SPACE was designed to analyse data which were obtained from a regular

spatial grid, although it allows for temporal irregularity or sparseness. On the

other hand, ST-DPE was built to analyse data with temporal regularity, but could

analyse spatially sampled data over a pre-defined region. In particular, this chapter

will investigate whether the SPACE approach can be applied to non-gridded data

such as sampled data. Note that the original data on a 25x25 grid was analysed

in Liu et al. (2017). In this chapter we will use a spatially sparse sample on the

spatial domain and create a non-gridded sparse version on the 25x25 grid to test

how SPACE perform on spatially non-gridded data. We develop a new framework by

extending the distance measure used to calculate the spatial correlation and extend

SPACE to handle non-gridded data. Coming back to ST-PDE approach which was

originally designed for spatially sparse sampled data, in this chapter we extend it to

accommodated spatially dense and gridded data.

The first part of the chapter provides exploratory analysis of the EVI dataset

to highlight the main features of the data. Section 4 illustrates the new framework

of implementing SPACE to non-gridded samples of the EVI data and compares

78



Chapter 5. Harvard forest vegetation index data 79

the reconstruction output of non-gridded EVI data using two different distance

measures. Section 5 demonstrates the use of an ST-PDE approach to EVI data

with a different spatial structure. Finally, we provide a detailed comparison of the

performance of SPACE and ST-PDE approaches when analysing EVI data.

5.1 Data description

The EVI data consists of satellites images of 25x25 pixel area located in Harvard

Forest. The data represent the surrogate measure of greenness, which takes values

between -1 and 1, and is temporally observed over six years . However for simplicity,

in this chapter we only use the data observed over one year and thresholded the

data at 0.1 which corresponds to the historical minimum EVI values under snow-

free conditions at this site. Any pixels with any EVI values below this threshold

are treated as missing values. Then, the data observations are given by {yij, 1 ≤

i ≤ 625, 1 ≤ j ≤ 46}, 625 replicated curves over 46 time points where each curve

corresponds to one pixel.
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Figure 5.1: EVI data over one year time where each curves represents the data for

one location.

Figure 5.1 shows the EVI data over a single year where the level of greenness
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is low at the beginning and the end of the year and reaches the highest level in the

middle of the year during summer months. Due to the nature of the dataset, it can

be considered as functional data analysis. In the next section we represent the data

in functional form.

5.2 Functional EVI data

The first step in functional data techniques is to convert the data from discrete points

to continuous functions. Suppose yij is the observation at location i(i = 1, · · · , 625)

and time point j(j = 1, · · · , 46), then following the notations in Chapter 2 the model

can be written as functions in time and space as follows,

yij = xi(tj) + εij,

where xi are continuous smooth functions and εij represent the error term. The

continuous curves xi(t) are estimated using a regularisation approach based on basis

functions. There are several types of basis functions; the most common ones are

Fourier basis functions and b-spline basis functions. A Fourier basis would be more

appropriate when we use the whole data set because it is periodic data. However,

we are using data for a single year with no repeating cycle, so for this reason we

choose to use b-spline basis functions. We represent our functional data using 46

b-spline basis functions of order 4. The smoothing level is controlled by a roughness

penalty which is defined by the second derivative, while the smoothing parameter is

chosen by generalised cross validation (GCV). Figure 5.2 illustrates that GCV has

a minimum value at a smoothing parameter equal to 1 (log10 λ = 0). Using larger

or smaller smoothing parameters lead to larger GCV.

To verify smoothing parameter selection, we also examine the effect of using

different smoothing parameters on the estimated smoothing curves by visual inspec-

tion. This suggests that a smoothing parameter with value 1 provides the best fit

of the data. Therefore, it has been decided to smooth the EVI data using penalized

cubic b-splines basis with smoothing parameter equal to 1, where the penalty is

defined by the integrated squared second derivative.
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Figure 5.2: Plot of the GCV criterion against the corresponding smoothing param-

eter λ (in log10 scale) used to fit the EVI smooth curves

The smoothed EVI data are shown in Figure 5.3, where the red lines represent

the mean of the data. The mean here is the sample mean which is defined in this

case by

x(t) =
1

625

625∑
i=1

xi(t).

The curves in 5.3, which represent the locations, behave similarly which indicate

high spatial correlation among the data. In order to gain better understanding

of the data structure we estimate the variance and correlation of the data using

functional data techniques.
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Figure 5.3: Smoothed EVI data over time using b-spline basis system. The red line

represent the mean of the data.

The correlation function is calculated to investigate the dependence in the EVI

dataset. Figure 5.4 shows the correlation function of the EVI data, both as a surface

over the plane of all possible pairs of time points (t1, t2) and also as a contour plot.

The correlation function calculates the correlation of the EVI values at every pair

of time points along the curves. The diagonal running from the lower left corner to

the upper right corner equals one. Naturally, the diagonal values in the two plots

represents the correlation of the time points with themselves. The perspective plot

in the left panel of 5.4 shows the correlation surface of the EVI values where red

colour indicates high correlation values, while blue colour refer to low correlation

values. As expected, the EVI values of winter and summer months have very low

correlation of about 0.2, which is also clear from the mean plot where the level of

greenness in summer months is higher than the level of greenness in winter months.
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Figure 5.4: Correlation estimation of smoothed EVI data. The left panel is a per-

spective plot of the correlation function, while the right panel shows the same surface

by contour plotting.

The correlation plots 5.4 only show the correlation of the EVI values in the

temporal aspect. Thus, in the next section we apply principal component analysis

to the EVI data to investigate the spatial correlation among the data and extract

the major mode of variation among curves.

5.3 Functional principal component analysis

Functional principal components analysis (FPCA) is a common approach to explore

variability in functional data. FPCA approach aims to reduce the dimensionality

of functional data by determining uncorrelated components that capture the main

modes of variation of the data. In this section, we apply functional principal com-

ponent analysis, described previously in Chapter 2, to the EVI data. In particular,

we determine a number of functional principal components ξj(t) that provide a sat-

isfactory approximation of the EVI data. Let xi(t) be the EVI observations with

mean µ̂(t) = 1
N

∑N
i=1 xi(t). The data is first centred by subtracting the mean for

each variable, and the centred curves are obtained as x̃i(t) = xi(t) − µ̂(t). This

step is done to ensure that the principal components describe the direction of the

maximum variation.
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As described in Section 2.3, given the estimated covariance G(tk, tl), the eigen-

functions ξj(t) are estimated by solving the equation G(tk, tl)ξj(tl)dt = λjξj(tk),

where λj represent the eigenvalues. The FPCA approach is carried out on the EVI

data "fda" package in R. The estimated principal components of the EVI data are

presented in figure 5.5. The first four principal component curves are displayed in

the left panel of figure 5.5, where each component accounts for some amount of vari-

ation in the data. The components describe 40.8%, 28%, 12.3% and 7.6% for the

first four components, respectively. The right panel represents the total variation

accounted for by 46 principal components and it is clear that the first 7 principal

components explain nearly 96% of the total variation. The eigenvalues of the first

seven functional principal components are summarised in Table 5.1.

var. explained cum. var. explained

λ1 0.408 0.408

λ2 0.280 0.688

λ3 0.123 0.811

λ4 0.076 0.887

λ5 0.033 0.920

λ6 0.023 0.943

λ7 0.017 0.960

Table 5.1: Variance explained by the eigenfunctions of EVI data. First column are

the variances explained by each eigenfunction and the second column the cumulative

sum of explained variances

The first functional principal component of the EVI data is positive throughout

the year, while the values of this component in the winter months are about two

times the values in summer months. This indicates that more variability between

observations (pixel locations) is found to be during winter months.

The second principal component of the data accounts for 28% of the varia-

tion. It consists of positive values for the summer period and negative values for

winter period. The second functional principal component can be interpreted as the
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difference in the enhanced vegetation index between winter and summer months.

Figure 5.5: Left panel: the first four principal component curves of the EVI data.

The percentages denote the variation explained by each component. Right panel:

the scree plot of the functional principal components represent the total variation

accounted by 46 principal components. The first 7 principal components explain

96% of the total variation.

The third and fourth components are hard to interpret. These components

account for small proportions of the variation in the data.

As the first principal component represents the largest amount of variation,

we plot the first component scores to explore the spatial variation, which provides

a good indicator of whether the EVI data curves themselves are spatially similar to

their neighbours. Figure 5.6 shows the first principal component scores for 25x25

pixels where different colours represent different vegetation index. White pixels

are pixels with missing values and similar colours represent high correlation among

neighbouring. The graph illustrates some amount of spatial correlation in the EVI

data.
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Figure 5.6: The first principal component scores (white boxes indicates pixels with

missing EVI values)

The rest of the chapter shows the results obtained by applying SPACE and

ST-PDE approaches to the EVI data and compare their performances in analysing

and predicting the EVI data set.

5.4 Application of SPACE on EVI data

In this section, we apply the newly developed SPACE method using radius distance

on a sparsely sampled set of locations in the EVI data and the full EVI data. The

full EVI data was previously analysed using the SPACE method with neighbourhood

selection method described in (Liu et al., 2017). We show that the new approach is

comparable to SPACE method with neighbourhood selection method when applied

on the full dataset, where both methods work. Additionally, we demonstrate that the

new framework can incorporate non-gridded data sets, which the previous method

was unable to work.
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In the original SPACE method, the first four neighbours groups of an original

point were counted as 1-unit distance from this point. The first neighbours group

consists of 1-unit distance in the vertical line which are the points in the left and

right of the original point. The second neighbours group consists of the 1-unit

distance points in the right diagonal and this continues in an anticlockwise direction

until the fourth group. The fifth neighbours group start from the next layer which is

2-unit distance and so on. The right panel of Figure 5.7 shows how the neighbours

are selected in SPACE where each number represents a neighbours group. We

generalised the distance concept by defining a radius around the original observation.

This radius can be chosen by the user. Suppose we choose the radius to be 2, then

the neighbours included for some locations are the ones that are located within 2-

units of this location. The radius concept is illustrated in the left panel of Figure

5.7, when the radius equals 1, where the numbers indicates the group of neighbours.

Suppose we want to select the neighbourhood observation for point x (shown

in red in the both plots). Figure 5.7 represents the neighbourhood selection of point

x using the two selection methods.
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Figure 5.7: Neighbourhood selection for the two selection methods where radius

methods is illustrated in the left panel and neighbouring method is shown in the

right panel.
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The left panel of figure 5.7 shows the neighbours using radius of one to four

units and the right panel shows the neighbours using the method described in Liu

et al. (2017). The selection using radius is more intuitive than the neighbour idea and

is mathematically simpler to define. The other advantage is that it can accommodate

non-gridded data.

The estimated curve of applying SPACE to the data is displayed in Figure 5.8,

where points represent the raw data of a single observation and the red curve is the

model fitted line for this observation. It is clear that the model successfully captures

the trend of the data.
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Figure 5.8: The points represent the raw EVI data while the red curves represent

SPACE model estimates using radius distance

The root mean squared error (RMSE) of SPACE using radius is equal to

0.0160 while the (RSME) of the estimated values of the EVI data using SPACE

with neighbouring distance is equal to 0.0161. There is no difference in errors of the

estimated values between the two distance calculation methods.

Now we focus on the spatial correlation. The spatial correlation is estimated

using the SPACE method and Figure 5.9 shows the spatial correlation values for
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different radius values. As expected the correlation is higher when the radius is

small, when the locations are very close to each either, and decreases as we go

further a way.
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Figure 5.9: Correlation Estimation of the first 5 principal components as a function

of distance from the original observations.

5.4.1 Comparison of reconstruction between two neighbour-

hood selection methods

In this section, we compare the curve reconstruction for the two neighbourhood se-

lection radius and neighbouring locations. We previously showed how the neighbours

of an observation are chosen using the two selection methods.

In order to investigate the difference in their performance, we apply SPACE

to temporally sparse data, where the input consists of 10 points per curve instead of

46 points. SPACE performs a gap filling task on the missing points and returns the

curves with all 46 points by using both the specified neighbour pixels values at these

missing points and the values of the other points from the same curve. Figure 5.10
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shows the fitted line for a single observation when using different neighbourhood

selections, where the red and green fitted lines illustrate the reconstructed curves

from only 10 points using radius and neighbouring measures, respectively.
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Figure 5.10: Reconstructed curve using the two neighbourhood selection

We also examine our method in the case of small size samples, where the

number of the neighbours for each pixel is small. Table 5.2 shows the RSME values

of different samples size using the two neighbourhood selections.
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Data RSME

All data observations (radius) 0.0207

All data observations (neighbours) 0.0213

Sample of 200 observations (radius) 0.0215

Sample of 200 observations (neighbours) 0.0216

Sample of 50 observations (radius) 0.0311

Sample of 50 observations (neighbours) 0.0277

Table 5.2: RSME values of different reconstructed data sets

RSME values are very similar even when the data size is small, which indicates

that our new method to select the locations used in the calculations gives very similar

curve reconstruction. However, the radius idea is simpler to use as an algorithm and

can be easily generalised to other applications, even to datasets with non-gridded

spatial observations.

5.5 Application of ST-PDE on EVI Data

ST-PDE approach has already been applied to sampled data with few spatial points

over a complex boundary. However it is not well understood how ST-PDE will

perform on gridded data set with high number of spatial points. Additionally, we

examine the computation challenges and the method’s ability to accommodate ir-

regular boundaries domain on gridded data sets.

We apply ST-PDE to two different spatial domain sets of the EVI data. One

using the data observed over a grid (all locations) and the other one using an irregular

spatial domain of the data. First, we build a triangular mesh from the observation

coordinates for the two cases. Figure 5.11 shows the mesh for data observed over

regular domain in the left panel and data observed over irregular shaped domain in

the right panel.
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The mesh consists of triangles, where each vertex of these triangles is an orig-

inal data point location, and some segments that define the domain boundary. In

our case the domain boundaries are contained in the triangular mesh.

Figure 5.11: Right panel: a triangular mesh of the EVI data observed over regular

spatial domain. Left panel: a triangular mesh of the EVI data observed over irregular

spatial domain. Each vertex of the triangles represent an original data point location.

Then we estimate the space and time basis functions. Finite element basis,

which is described in Section 3.4, represents the space basis. We use an order 1 finite

element basis which indicates that each triangle is modelled using linear polynomial

function. On the other hand, cubic b-spline basis functions are used as temporal

basis functions. The ST-PDE approach is applied to the data using the package

"fdaPDE" in R (Lila et al., 2016).

Figure 5.12 and 5.13 show the estimated spatio-temporal surface of the EVI

data at fixed time points for the two cases regular and irregular spatial domain. As

expected, the level of the EVI is higher in the middle of the year and less in other

time points. Furthermore, the estimated surfaces show that the data are strongly

correlated in space. Visually there is no clear difference in the spatio-temporal

surface estimation between the regular and irregular spatial domain, which might

indicate the ST-PDE approach succeed to accommodate the irregular boundaries of

the domain and the relative density of the grid.
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Figure 5.12: Spatio-Temporal surface of regular spatial domain EVI data giving

different time points
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Figure 5.13: Spatio-Temporal surface of irregular spatial domain of EVI data giving

different time points
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Figure 5.14 displays the time evaluation of the EVI data at different locations

where the red points represents the raw data while the line represents the time

estimation. The approach succeeded to capture the temporal trend in the data.
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Figure 5.14: Time evaluation curves where the red points represents the raw data

while the line represents the time estimation

5.6 Comparison of SPACE and ST-PDE

In this section, we compare the SPACE and ST-PDE performance to analysis the

EVI data. We compare the two approaches in term of curves fitted values and root

squared mean errors (RSME). Figure 5.15 compares between the fitted lines of one
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observation using the two approaches.
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Figure 5.15: SPACE and ST-PDE fitted values for a single curve.

Both of the methods succeeded in fitting the EVI data. However, the Figure

shows that the ST-PDE approach underestimate the values in both right and left

tails. The root mean squares error (RSME) for SPACE is 0.0207 while RSME for ST-

PDE is equal to 0.0224 which is not a large difference between the two approaches.

We found that SPACE can be applied to data observed at irregular time points.

However, the current codes of ST-PDE can only work for equally spaced time points.

In addition, we apply SPACE using R program while, ST-PDE was applied to the

data using cluster computing due to issues of computer memory.

5.7 Summary

In this chapter, we have extended the SPACE methodology to accommodate irreg-

ular and sparse spatial points through the introduction of the radius based based



Chapter 5. Harvard forest vegetation index data 97

distance. We have also applied the ST-PDE approach to dense and regularly grid-

ded data, which posed the challenge of need of large amount of computer memory.

These two extensions will now allow us to analyse any spatially correlated functional

data by the two competing methods and provide an relative comparison of which

method work well in the particular application. We have readily available codes for

both extensions which we will provide as an R-package.



Chapter 6

Application to EEG data

6.1 Introduction

One of the most popular applications of functional data analysis is brain data which

study the brain activity and provide better understanding of the brain functions. In

this chapter, we analyse electroencephalography (EEG) data, introduced in Chapter

4, using our new frameworks of SPACE and RST-PDE approaches and use them

to classify images. First we provide some exploratory analysis to explore the data

set. Then we show the result of applying our developed SPACE approach in section

3. Section 4 illustrates how RST-PDE can be applied to analyse and classify the

data. The final part of this chapter reviews some classification techniques and

illustrate the results of applying these techniques to the EEG data set. Note:

This chapter is adopted from: Alghamdi,S. and S.Ray. Classifying replicated spatially

correlated functional data (2019). (Under preparation)

6.2 Exploratory analysis

First, we provide an exploratory analysis to highlight the main features of the dataset

and to obtain primary knowledge of the data structure. The data consist of EEG

measurements for 18 subjects recorded from 57 scalp electrodes (location) over 454

time points. The measurements for each subject are recorded 250 times, while the

98
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overall data dimension is given by (18×57×454×250). As the data set is very large

and complex, it is difficult to explore the data visually. We provide Figure 6.1 to

show the complexity of the data. The plot shows the EEG measurements of a single

subject viewing a set of 125 car images recorded from 4 locations of the brain. Each

colour corresponds to one location (electrode), while the four dark lines represent

the means of the replications of each location. The data are difficult to interpret

visually from the plot due to the large number of observations.

Figure 6.1: EEG measurements of one subject viewing a set of 125 car images

recorded from 4 locations. Each colour corresponds to one location while the four

dark line represent the mean of the replication of each location.

Another way to summarise the data is the following. We calculate the means

over the replications of each location for one subject, once when the subject is seeing

car images and the other time when the subject is seeing face images. Figure 6.2

shows the means of the EEG measurements for each location, the variation looks

higher when the subject is seeing face images. However, taking the average over the

replication might lead to ignoring some variability in the data and provide inaccurate

information for future analysis.
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Figure 6.2: EEG measurements of one subject where each curves represents the

mean over the 125 replications for all 57 locations. Left panel is for subject seeing

car images while right panel is for the subject seeing face images

6.3 Application of SPACE on EEG Data

In this section, we show the results of applying SPACE approach to the EEG,

which is non-gridded data, so we use our newly developed radius neighbourhood

selection approach introduced in Chapter 5. As the SPACE method is not designed

for replicated data, we only use one replication for each location. Then, we apply

SPACE to two sets of the EEG data separately, one set for subject seeing one image

of car and the other set for the same subject seeing one image of face. Each of the

two data set consists of 57 spatial location measurements observed over 454 time

points {xij, 1 ≤ i ≤ 57, 1 ≤ j ≤ 454}.

Figure 6.3 shows the smooth fit after applying SPACE approach to the EEG

data on one location from one subject when seeing car image (left panel) and face

image (right panel). The plot indicates that the fitted line captures the data pattern.
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Figure 6.3: EEG measurements and its functional smooth fit from one location from

one subject when seeing car image in the left panel and when seeing face image in

the right panel. The red line represent the fitted line using SPACE.

For comparison purpose, we apply the ST-PDE approach to the same data set.

Figure 6.4 shows the difference between SPACE and ST-PDE in fitting the EEG for

different locations

Figure 6.4: EEG measurements from 4 different locations from one subject. Red

line represents the fitted line for these location using SPACE approach while the

blue line represents the fitted line using ST-PDE approach
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In general, both of the estimates are consistent and seem to capture the pat-

tern of the data closely. SPACE over-smooths the data at some time points. How-

ever, ST-PDE seem to be more wiggly in general. Note that, one can use cross-

validation to choose the smoothing parameter in SPACE and ST-PDE to choose

optimal smoothing parameter. We also compared the mean absolute error of the

two approaches and they are comparable. The mean absolute error of SPACE equals

to 0.367 and the mean absolute error of ST-PDE equals to 0.413.

6.4 Application of replicated ST-PDE on EEG Data

EEG data consist of space-time data for multiple replications for each subject. In

RST-PDE, the observations are represented as a vector of length nml where n = 57

represents the number of locations, m = 454 represents the number of time points

and k = 125 represents the number of replications. First, we build a triangular mesh

using the electrodes locations, where each triangle vertex is a data point location.

The triangular mesh is represented in Figure 6.5, where the red line illustrates the

spatial domain boundaries.

Figure 6.5: A triangulation mesh of the brain electrodes locations
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We then estimated the spatial and temporal basis system using a cubic b-

splines basis as the time basis function. In contrast, for the spatial part, we use a

finite element basis with order one (linear polynomial).

Remark. We apply the RST-PDE codes to the EEG data for one subject seeing

car and face images, separately. The process includes big matrices multiplications,

Where we faced some problems related to the size and speed to run the program.

As a result of that, we modified some codes to reduce the size of the process and

increase the speed as it is explained in Chapter 4.

We also use the cluster computing to run the codes. The results for one

subject seeing car and face images are summarised separately in Figures 6.6 and

6.7, respectively. The two figures show the spatio-temporal surface of the EEG data

across different time points. It can be noted that variability is observed when the

subject see face image.

Our next task will be to use the RST-PDE representation of the images for

classification. We will compare them with the classification using the raw EEG data

in Section 6.6. First we summarise a few classification techniques.
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Function in time 1 Function in time 10 Function in time 23 Function in time 25 Function in time 29

Function in time 51 Function in time 56 Function in time 66 Function in time 68 Function in time 72

Function in time 77 Function in time 80 Function in time 104 Function in time 115 Function in time 121

Function in time 164 Function in time 168 Function in time 172 Function in time 178 Function in time 187

Function in time 188 Function in time 195 Function in time 201 Function in time 208 Function in time 211

Function in time 213 Function in time 248 Function in time 260 Function in time 270 Function in time 295

Function in time 296 Function in time 301 Function in time 308 Function in time 314 Function in time 323

Function in time 344 Function in time 359 Function in time 366 Function in time 370 Function in time 388

Function in time 399 Function in time 412 Function in time 414 Function in time 419 Function in time 438

Function in time 442 Function in time 443 Function in time 444 Function in time 447 Function in time 453

Figure 6.6: Spatio-temporal surface for one subject summarising the 125 replicates

of the subject seeing car images
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Function in time 1 Function in time 10 Function in time 23 Function in time 25 Function in time 29

Function in time 51 Function in time 56 Function in time 66 Function in time 68 Function in time 72

Function in time 77 Function in time 80 Function in time 104 Function in time 115 Function in time 121

Function in time 164 Function in time 168 Function in time 172 Function in time 178 Function in time 187

Function in time 188 Function in time 195 Function in time 201 Function in time 208 Function in time 211

Function in time 213 Function in time 248 Function in time 260 Function in time 270 Function in time 295

Function in time 296 Function in time 301 Function in time 308 Function in time 314 Function in time 323

Function in time 344 Function in time 359 Function in time 366 Function in time 370 Function in time 388

Function in time 399 Function in time 412 Function in time 414 Function in time 419 Function in time 438

Function in time 442 Function in time 443 Function in time 444 Function in time 447 Function in time 453

Figure 6.7: Spatio-Temporal surface for one subject summarising the 125 replicates

of the subject seeing face images
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6.5 Classifications

Statistical classification is an approach that builds predictive models to categorise

new objects. First, the data is divided into a training set, which is used to train the

models, and a test set which is used to test the accuracy of the models. The training

set is used to extract the main features of the observations associated with known

groups. Then, the models that include these features are tested in the test set. Once

we have models with high accuracy rate then it is possible to predict class labels

for new data. This process is also known as supervised learning, where the data

teaches the algorithm to categorise future observations. Good references related to

classification can be found in Friedman et al. (2001) and Duda et al. (2012).

One of the aims of analysing brain data is to predict from the data if the

subject is seeing a car or a face image, which is an example of binary classifica-

tion. Using the output of the replicated ST-PDE, we apply different classification

approaches to the coefficients ĉ vector obtained from RST-PDE. Since we are using

the coefficients as our new representation of the data, we can use multivariate clas-

sification methods rather than functional classification methods to classify the two

classes. In particular, our input vector for each subject observing a specific image

is of length 2850 (the number of coefficients from RST-PDE approach) and we have

36 instances, 2 from each of the 18 subjects. The response vector y, taking values

0 or 1, is a vector of length 36, represents the two categories car and face, respec-

tively. In contrast, the raw data for individual replicates has 36 × 125 observations

with a feature vector of 57 × 454. Instead of summarising over the replicates using

RST-PDE one can also consider the ST-PDE representation in which case we will

have 36 × 125 observations of length 2850. In this research, we use some popular

classification methods to build a classification model for the EEG data and we use

the "caret" package in R to implement these methods (Kuhn, 2008).

Many classification approaches are proposed to study the relationship between

the observations features and the given classes. However, this section covers three

of these methods; support vector mechanism (SVM), K-nearest neighbours (KNN)

and random forest (RF).
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6.5.1 Support Vector Mechanism (SVM)

Support vector machine is a supervised learning method that is widely used for

classification purpose. SVM builds a hyperplane to separate the training data into

two classes with maximum margin, which means that the hyperplane should have

the largest distance to the nearest input point of each class. In order to understand

the idea of SVM, we consider a simple example where there are two classes with a

small number of covariates.

Figure 6.8 shows how SVM separate the data into two classes red and green,

the classification will then assigns any new point to class blue when the point located

above the hyperplane and to the class red when the point fall below the hyperplane.

Figure 6.8: An example of SVM for two classes of linear separable data

Although choosing the hyperplane is a key element in performing SVM ap-

proach, the problem becomes more difficult in higher dimensions. SVM can be

linear or non-linear. However, in our analysis we use linear SVM. The Linear SVM

for binary classification seeks a hyperplane, also known as a decision function, to

divide the data to two groups. Suppose xi is the training input and yi is the class

vector, then, the decision function f(x) is given by

f(x) = wTxi + b (6.1)
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where w is a weight vector and b is a constant bias term, such that

yi =

1 if f(x) > 0,

−1 if f(x) < 0.

(6.2)

Then the optimal hyperplane is chosen by maximising the marginal distance which

is the distance between the hyperplane and the closest points from each class. In

order to maximise the distance between the margins we need to minimise ||w||2/2.

However, a constraint is needed to ensure that the input points do not fall into the

margins. Using (6.2) The constraint can be written as follows

1− yi(wTxi + b) ≥ 0. (6.3)

In some situations, the data are not linearly separable in which case the above

approach fails. A simple solution to tackle this problem is allowing a small number

of points which are close to the boundary to be misclassified. A cost function is

added for each misclassified point, depending on how far it is from meeting the

margin restriction in (6.3). In order to apply this cost function, first we need to

introduce positive slack variables ξi. The constraint with slack variables is written

as follows

1− yi(wTxi + b)− ξi ≤ 0, (6.4)

when ξi = 0 the point is classified. Then we need a penalty term that controls the

trade-off of misclassification, where the problem turns into a problem of minimising

the following:
||w||2

2
+ λ

∑
ξi,

where λ is a regularisation parameter that controls the trade-off between data good-

ness of fit and over-fitting. In this case the assumption of linearly separable data

points is no longer as strict, which is known as a soft-margin support vector machine.

To solve the minimisation problem, the Lagrange multipliers technique is used.

The Lagrange multipliers is a way to find the maximum or minimum of a function

when there are some constraints. Let αi > 0 to be the Lagrange multiplier, then

the Lagrange is given by

L =
||w||2

2
+ λ

∑
i

ξi + αi(1− yi(wTxi + b)− ξi). (6.5)
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To solve (6.5), we need to find the gradient of the Lagrange, we differentiate the

Lagrange with respect to w, b and ξ.

w +
∑
i

αi(−yi)xi = 0 ⇒ w =
∑

αiyixi∑
αiyi = 0

λ−
∑

αi = 0 ⇒ λ =
∑

αi

(6.6)

by substituting 6.6 into the Lagrange in 6.7 we have

max
∑
i

αi −
1

2

∑
i,j

αiαjyiyjx
T
i xj (6.7)

subject to λ ≥ αi ≥ 0 and
∑

i αiyi = 0. points xi with non-zero αi are known as

support vectors that are used to determine the hyperplane. The decision function

f(x) is given by

f(x) = wTxi + b =
∑
i

αiyix
T
i x+ b (6.8)

Let tj be the indices of the support vectors the n we have w =
∑

j αtjytjxtj . Then,

for testing a future point z we compute the following

f(x) = wT z + b =
∑
i

αtjytjx
T
tj
z + b (6.9)

we classify the new point z to class 1 if the (6.9) gives positive value and class -1 if

the value is negative. More information on support vector machines (SVM) can be

found in (Gunn et al., 1998).

6.5.2 K-Nearest Neighbours

K-Nearest neighbours (KNN) is a non-parametric method which is widely used in

classifications. KKN technique is considered as one of the simplest classification

algorithms as there is no training and it does not compute decision boundaries. It is

an instance-based learning technique, it chooses to memorise the training instances

which is used as a prior information for the predication instead teaching the algo-

rithm the model. The data point in KNN is classified depending on the majority

vote of its k nearest neighbours points.
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In the KNN approach, two main factors need to be chosen before performing

the algorithm. First, the number k of neighbours to be used, to controls the volume

of the neighbourhood has to be determined. However, k can be determined by using

cross-validation (CV), which calculates the misclassification rate for different k and

chooses the one with the lowest misclassification rate. The second factor is the

distance measure that determine the distance between the observations. There are

multiple measures of the distances between the points such as Euclidean distance,

Manhattan distance and Minkowski distance. Among all these distance measures

Euclidean distance is the mostly common choice to measure the distance between

the points. The Euclidean distance between two points (x1, y1) and (x2, y2) is given

by

d =

√
(x2 − x1)2 + (y2 − y1)2

The Euclidean distance between these two point equals to the length of the line

between them.

Basically, given a positive value k and a new observation x to be classified, the

k-nearest neighbor algorithm works as follows

• Compute the distance between x and each training point.

• Locate the k training points which are close to the observation x let us call

the set with these points A.

• obtain the most frequent class of A.

• Assign the new observation x to the class we obtain. However, in the case of

tie, x is assigned randomly to one of the classes

The k-nearest neighbour approach has many advantages such as; no assump-

tion of the data characteristics is required and it is simple to implement and under-

stand. However, some drawbacks do exist, it is computationally intensive especially

when the dataset is very large. Furthermore, in the case of high dimension data it

can be less effective because it relies on the closeness between the points.
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6.5.3 Random Forest

Random forest approach is another important supervised learning method that is

used for data classification (Breiman, 2001). The idea of a random forest is to

build multiple decision trees and combine them to make the forest and obtain the

predictions. First, we begin by introducing decision trees which the random forest

consists of. Decision trees technique is a classifier that breaks down the data into

groups based on some features. It provides a graphical representation of the decision,

where each node in the tree represents a feature and each branch represents a one

of the possible values of the group. Figure 6.9 shows an example of a decision tree

taken from (Mitchell, 1997).

Figure 6.9: An example of decision tree

The example in Figure 6.9, classifies the weather expectation for Saturdays to

determine whether these days can be suitable for playing tennis. A data point is

classified by starting from the root node of the tree, testing the feature specified by

this node, then moving to the branch associated with the value of the feature and this

is then repeated with the next node. However, decision trees have some drawbacks.

It tends to over-fit the training data which can lead to inaccurate prediction of the

outcomes of the unseen data. The over-fitting happen when the model memorises

its training data. Random forest overcome this limitation by choosing the root node

and the features nodes randomly.

Basically, a random forest consists of a collection of these trees. However it
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differs from a decision tree in that it does not include all the dataset in one tree. A

subset of both observations features is chosen randomly and then is used to train the

model and build the tree. Similarly, a number of different decision trees are grown

and each tree will vote for a particular class. Then, these trees are merged together

to get the best predication of the class, where the class with maximum number of

votes is the predicted class.

The random forest algorithm works as follows;

• Randomly select a subset m variables (features) from the total M variables

(features). such that m < M .

• Among the m chosen features, calculate the node d using the best split point.

• Split the node d into child nodes using the best split.

• Repeat the previous three steps until a number of nodes has been reached.

• Repeat steps 1 to 4 for n number times to build a forest by creating n number

of trees.

While, to classify a new observation we pass the relevant feature of the ob-

servation through the rules of each randomly created decision tree to predict the

outcome. Then, we calculate the votes for each predicted outcome, where, the high

voted predicted class is the final prediction.

Random forests have many advantages. One advantage is that it can handle

missing values, and large datasets with high dimensions. another advantage is the

classifier can avoid over fitting problem that appear in decision tree method. How-

ever, random forests have a major disadvantage that it is time consuming as it takes

time to create the decision trees and also to predict the class.
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6.6 Comparison of classification results among three

representations

In this section we discuss the results obtained by demonstrating the three described

classification approaches to three representation sets of the EEG data. The three

representation sets are the raw EEG data, the ĉ coefficients of the ST-PDE applied

to each replication separately and the ĉ coefficient vector of the RST-PDE approach.

We assigned the class of subject seeing a car image by 0 and the subject seeing a

face image by 1. We use the "caret" package in r to implement the three classifica-

tion approaches, support vector machine (SVM), random forest (RF) and k-nearest

neighbours (KNN) described in Section 6.5.

The first step is to train an SVM model using the whole data set and calculate

the model performance. In this step we just want to determine the most important

variables in the data that will be used in the final model instead of using all vari-

ables. We use a k-fold cross validation approach which involves splitting the data to

k-subset where the model is trained using all the k−1 subsets and the trained model

is then applied to the remaining subset to test its performance. The process is per-

formed for all subsets and for each time the accuracy of the predication is calculated

and an overall accuracy vector is determined. We use variable selection to determine

the most important features that should be included in the model. The "caret"

package includes a feature selection method which evaluates the contribution of each

feature to the model. We applied the variable selection to the SVM train model,

where a loess smoother is fitted between the observations and the variables. Then

the R-squared statistic is estimated for each model with the variables against the

model with only intercept. Figure 6.10 shows the top 30 variables with the highest

values.
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Figure 6.10: Variable importance plot

We use the most important variables in the predictive model. In the previous

step we show how we determine the important variables then we apply the three

classification methods to the data after variable selection. However, this time we

split the data into training and test sets to make sure that the model is tested on data

that have never been seen. The models are controlled using two different approaches;

repeated k-fold cross-validation and bootstrap. Repeated k-fold cross-validation is

performed with the number of folds equal to 5 and repeated 3 times. The process

of dividing the data k-fold is repeated 3 times where the model to be used in the

predication is the model with highest accuracy. The bootstrap approach is carried

out with the number of iteration set to 100 and then we use the model with the

highest accuracy. The bootstrap method selects samples randomly to fit the data for

each iteration. The modelling process is then repeated 100 times where the test and

train sets differ each time. Now we introduce the three data representations that we

used in the classification and then show the results of the these representation later

on this section.
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6.6.1 Three different representations of the original data

We will be using three classification methods support vector machine, random forest

and k-nearest neighbours but our main focus is to compare three data representations

which are,

• Raw data: we use the raw data of all subjects with all replicates. The

observations in this set consist of the 18 subjects for the two classes with all

replications (18 × 2 ×125= 4500). The raw data is very large and might

include some noise.

• ST-PDE: we use the coefficient vector ĉ of the applying ST-PDE approach

to the EEG data to each replication separately. The observations consist of

the ĉ vector for 18 subject for the two classes with all 125 replications (18 ×

2 ×125=4500). The observations of this set are very large.

• RST-PDE: we use ĉ coefficients as our data after applying RST-PDE ap-

proach to all subjects. The RST-PDE approach summarises the data over

replications so the observations consist of the data for 18 subjects with two

classes for each, so the observations length is (18 × 2=36). However, we be-

lieve that RST-PDE method provides a good summary of the data and retains

the important features of the data.

In the next section we show the results of applying classification methods to the

three data representations. We also provide classification results of randomly chosen

replications for each subject from both raw data and ST-PDE output. This is done

to compare the raw data and the ST-PDE output with the RST-PDE output where

the sample size is 36.

6.6.2 Classification results of raw data

We apply the classification methods on the raw EEG data and the results are il-

lustrated in Table 6.1. Bold numbers indicate the best performing classification

tool.
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Control method classification method Accuracy mean Accuracy SD

K-fold cross SVM 0.575 0.016

validation RF 0.567 0.013

Knn 0.541 0.009

SVM 0.567 0.011

Bootstrap RF 0.558 0.008

Knn 0.530 0.010

Table 6.1: Classification results using raw data all replications for 18 subjects

The accuracy mean is around 0.55 which indicates that the number of correct

predications is quiet the same as the number of incorrect predications.

6.6.3 Classification results of ST-PDE output

In this section we show the result of applying classification methods using ĉ obtaine

dfrom ST-PDE. Table 6.2 shows the result of using ĉ vector from the ST-PDE

approach, the results are similar to raw data results. All three approaches gives

accuracy mean around 0.55. Some shows a slight higher accuracy mean than the

one in table 6.1, while overall the accuracy mean is low.
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Control method classification method Accuracy mean Accuracy SD

K-fold cross SVM 0.588 0.020

validation RF 0.567 0.141

Knn 0.545 0.017

SVM 0.581 0.010

Bootstrap RF 0.563 0.009

Knn 0.536 0.011

Table 6.2: Classification results using ĉ of individual replications for 18 subjects

Using the replications as our observations, we ignore the fact that each 250

replications set comes from one subject and we build the train model from all repli-

cations which include large noise.

6.6.4 Classification results of RST-PDE output

The results of applying the three classification approaches to ĉ obtained of RST-PDE

approach is given in table 6.3

Control method classification method Accuracy mean Accuracy SD

K-fold cross SVM 0.667 0.158

validation RF 0.888 0.065

Knn 0.727 0.177

SVM 0.642 0.108

Bootstrap RF 0.834 0.119

Knn 0.605 0.131

Table 6.3: Classification results using ĉ sumarising all replications for 18 subjects
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Table 6.3 shows that all three approach gives high accuracy mean, while, ran-

dom forest gives the highest accuracy mean at 0.89.

6.6.5 Classification results of randomly chosen samples

In order to comapre between RST-PDE data and the other data represntations raw

data and ST-PDE data, we choose random replication from each subject. Then,

the data will be same size as RST-PDE data. Table 6.4 shows that results of one

randomly chosen replicate raw data, where the accuracy mean are high where all

above 0.65. Random forest gives the highest accuracy mean at 0.87 comparing to

support vector machine and k-nearest neighbour.

Control method classification method Accuracy mean Accuracy SD

K-fold cross SVM 0.664 0.084

validation RF 0.864 0.032

Knn 0.727 0.090

SVM 0.654 0.079

Bootstrap RF 0.817 0.030

Knn 0.672 0.078

Table 6.4: Classification results using raw data of one randomly chosen replication

for each subject

Table 6.5 indicate that using ĉ provide similar results , where all three ap-

proaches gives accuracy mean above 0.65. Random forest also provides the higher

accuracy mean.
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Control method classification method Accuracy mean Accuracy SD

K-fold cross SVM 0.657 0.067

validation RF 0.853 0.045

Knn 0.699 0.083

SVM 0.639 0.067

Bootstrap RF 0.828 0.028

Knn 0.645 0.075

Table 6.5: Classification results using ĉ of one randomly chosen replication for each

subject

Generally, using one replication provides better results than using the whole

data with large noise. However, it is inefficient to through all data and use just

one replication from each class across all subject as this can lose some important

information in the data.

6.6.6 Comparison of classification results

Using all replications provides low accuracy rate as the data include large noise.

Using one replication and ignoring other replications provides better accuracy rate.

However, it cannot be a good representation of the data as we lose some information.

As a result, we introduced the replicated ST-PDE approach which summarises and

pools the information in the data.

Table 6.6 compares the accuracy rate for all three data represenations using

different classification methods. Classification using ĉ, sumarising all replications,

provides the best accuracy rate among the five cases and includes all the data ob-

servation in the classification process. Furthermore, the random forest approach

performs better than the support vector machine and k-nearest neighbours methos,

which can be due the nature of the data. We also compare the compuational time



Chapter 6. Application to EEG data 120

of the three data representations for each of the classification methods and found

that RST-PDE data are much faster to train the model and classify new data (see

appendix A).
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6.7 Summary

In this chapter we show the results of applying the SPACE and ST-PDE approaches

to one replication of the EEG data set. The two approaches perform very similarly on

the data and provide a comprehensive picture of the brain functions. Additionally,

we apply the RST-PDE approach to the EEG data which pools informational across

several replications. Furthermore, we compare classification based on the RST-PDE

approach with standard multivariate approaches and found the RST-PDE based

classification outperforms existing approaches.
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Conclusion

In this thesis, we have developed a comprehensive framework for analysing spatially

correlated functional data. We started by providing a flow chart that can be read-

ily used by a researcher faced with the decision of choosing the most appropriate

method for analysing a dataset which can be generally modelled as spatially cor-

related functional data. Furthermore, we provide case-studies of two datasets: one

previously analysed datasets on modelling remote sensing observation on vegeta-

tion index (EVI data) and another new dataset on brain imaging (EEG data) and

show how the flow chart can be used to decide on the most appropriate method for

analysing each of these datasets.

The first approach is spatial principal analysis of conditional expectation (SPACE)

which was designed to analyse spatially correlated functional datasets that are ob-

served over a rectangular spatial grid, e.g. a rectangular region on the surface of

the earth with observations on regular interval taken by remote sensing satellites.

Often points are distributed at irregular intervals over the region of interest and

the sampled spatial points are often opportunistic. To accommodate spatial points

which do not fall under a regular grid, we have extended the SPACE methodology

by generalizing the concept of neighbours by the radius distance. The new neigh-

bour selection method provides comparable results to the original one for the EVI

dataset. This modification also makes it possible to apply SPACE to the EEG data

which are sampled data and do not fall under a regular grid. The extended SPACE
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succeeded in capturing the important features of the brain imaging data.

The second approach is the spatio-temporal regression model with partial dif-

ferential equations (ST-PDE), which primarily designed to model spatially non-

gridded functional data observed over irregular spatial domain. First, we apply the

ST-PDE approach to gridded data sets (EVI data), for both regular and irregular

spatial domain. ST-PDE provides good results and is very comparable to SPACE

even when the spatial domain is irregular.

Though we could compare ST-PDE and SPACE for the EVI data and for each

replicate of the braing imaging data, we were unable to combine the information over

the replicates using either of these existing approaches. So we developed the new

framework of modelling replicated spatially correlated functional data which allowed

us to accommodate the 125 replicates of each person for the EEG data set. The

main change from ST-PDE is that replicated ST-PDE consists of replicated basis

functions that allow us to accommodate the replicates of each sample. We apply

replicated ST-PDE to the EEG data and the approach provides a good estimation

of both the spatio-temporal surface and the time evaluation curves for each location.

The primary goal of the analysis of the EEG data was to design a classifier

that will enable us to predict if a subject is seeing the image of a car or face.

However, the original EEG data is very high dimensional and thereby it is difficult

for any classifiers to extract the appropriate information needed to build a good

classifier. The replicated ST-PDE approach provides an excellent representation

of an individuals EEG observations summarized over available replications, which

can then be used to build good classifiers. We applied three popular multivariate

classification methods to the coefficient vector of replicated ST-PDE model. Among

the three classification methods based on the coefficient vector. Random forests

provide the highest accuracy rate in predicting a new data set. Moreover, all three

classification methods performed better when using the coefficient vector from the

RST-PDE fit compared to using the high-dimensional raw EEG data.
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7.1 Future work

Though we have provided a broad framework for analysing spatially correlated func-

tional data, not all datasets can be analysed using the SPACE, ST-PDE or RST-PDE

framework.

Recall that one of the initial goals of the thesis was to provide a flow chart that

determines the processes of analysing an arbitrary spatially correlated functional

data. In this thesis, we have mostly generalized methodologies for analysing data

that have a separable spatial and temporal components. However, there are some

other nodes in the flow chart, focusing on non-separable covariance matrix which

we could not explore in this thesis. We conjecture that the methodology used to

accommodate replicates to extend the ST-PDE model can be used to accommodate

replicates in other separable and non-separable models.

For the classification task, in this thesis we have used a two step classification

approach, first computing the coefficient vector of the spatio-temporal model and

then using these coefficients to build the classifier. One alternative approach is to

build a model based classification tool extending the mixed model framework for

functional data analysis similar to Antoniadis and Sapatinas (2007), who provide

a functional mixed effect model by modelling both fixed effect and random effect

using wavelet decomposition approach.

We will provide the codes used in the thesis as a github repository in the near

future.
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Appendix A

A.1 Computational times of simulation study

The analysis of our simulation study was carried on using cluster computing. The

data consists of 20 replications. 200 spatial points and 9 time points, and the process

repeated 50 times. The computational times of the simulated data analysis are given

in table A.1

Method Elapsed time

RST-PDE 1478

ST-PDE 5227

Table A.1: Computational times of modelling simulated data using RST-PDE and

ST-PDE

The modelling process in RST-PDE approach is faster than the ST-PDE .
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A.2 Computational times of classification methods

given three data representations

We estimated the computational time of applying classification methods to three

data representations, raw data, coefficient vector of ST-PDE approach and coef-

ficient vector of RST-PDE approach. Table A.2 shows the elapsed time for each

case.

Control method classification method Raw data ST-PDE RST-PDE

K-fold cross SVM 16.58 15.53 1.122

validation RF 131.5 164.1 1.575

Knn 4.068 3.598 0.957

SVM 152.8 143.6 2.092

Bootstrap RF 1340 1321 6.445

Knn 33.43 33.28 2.278

Table A.2: Computational times of classification methods using three data repre-

sentations

From the table it is clear that RST-PDE data is faster to classify, which is due

to the size of the data. Conversely, raw data and ST-PDE data are very large which

result in high computational time
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