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Abstract 

Cattle have undergone significant gene expansion within two of the major NK 

receptor encoding complexes, the leukocyte receptor complex (LRC) and natural 

killer complex (NKC). This expansion has resulted in a number of highly similar 

genes densely packed within each complex. The genes can be highly polymorphic 

and encode for fundamentally important receptors for controlling the functional 

response of NK cells. Understanding the nature of transcription of the LRC and 

NKC genes is required to confirm existing gene models, predicted functional 

status and also their distribution in cell and tissue types. RNA-Seq offers the 

potential for high-resolution analysis of LRC/NKC gene transcription. For this to 

occur, an analysis pipeline needed to be developed to account for the high 

sequence similarity and resulting multi-mapping of reads. 

In this project an analysis pipeline, UniMMap, has been created that utilises the 

concept of mappability to weight the contribution of multi-mapping reads to the 

total read count. UniMMap was utilised to assess transcription of LRC/NKC genes 

in a number of RNA-Seq datasets. Transcription in peripheral blood mononuclear 

cells (PBMCs) and NK cells from two cattle was compared. Genes predicted to be 

non-functional based on the reference assembly were found to be consistently 

transcribed. Transcription was also compared between multiple immune cell 

types. CD8+ T cells were shown to transcribe killer-cell immunoglobulin-like 

receptor (KIR) at an equivalent level to NK cells. RNA-Seq data from multiple 

cattle tissues was analysed to produce an LRC/NKC gene atlas. Transcription of 

at least one LRC and NKC gene was observed in every tested tissue. Total 

transcription of the LRC/NKC genes was found to be highest in the lymph node, 

mammary gland and lung tissue. To assess the utility of UniMMap in a controlled 

study, as well as in a different species, the transcription of LRC/NKC genes were 

investigated in goats from a peste des petits ruminants virus (PPRV) vaccination 

study. A subset of the genes were found to respond differently in PBMCs 

between unvaccinated and vaccinated animals. This supports a role for these 

genes during PPRV infection. 

UniMMap has facilitated analysis of transcription of LRC/NKC genes from 

multiple species, cell/tissue types and RNA-Seq library types. The consistently 

observed transcription of predicted non-functional genes suggests the presence 

of functional alleles or possibly a role in regulating transcription of other genes 



3 
 
within each complex. The changes observed in their transcription during 

infection, coupled with a similar distribution among tissues and immune cell 

types, suggests a functional similarity with their human counterparts. 
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1 Chapter 1. Introduction 

1.1 Natural killer cells 

Natural killer (NK) cells are cytotoxic lymphocytes, derived from the same 

progenitor as B and T cells. The cytotoxic nature of NK cells is tightly controlled 

by a diverse array of germline-encoded activating and inhibitory receptors. 

Unlike B and T cells, these receptors do not undergo rearrangement to become 

antigen-specific. Consequently, NK cells are components of the innate immune 

system. As well as their cytotoxic abilities, NK cells are able to produce a 

number of cytokines and chemokines (Cooper, Fehniger, and Caligiuri 2001; 

Dorner et al. 2004). The release of cytokines and other immunomodulators, 

which influence other immune cells, allows them to serve as a bridge between 

the innate and adaptive immune system. NK cells also play a critical role in 

controlling viral infections, tumour surveillance and placentation. 

1.1.2 Cell surface phenotype of NK cells 

Human NK cells are typically defined as CD3-/CD56+ as the absence of CD3 

excludes T cells and CD56 is found only on NK cells and a minority of T cells. 

Expression levels of CD56 allow the division of NK cells into functional subsets. 

CD56bright NK cells are more predominant cytokine producers and CD56dim are 

better at killing (Cooper, Fehniger, and Caligiuri 2001). Expression of CD16 is an 

additional marker of NK cells, although a small fraction of CD56bright cells are 

CD16- (Lanier et al. 1986). However, this definition of an NK cell does not apply 

across other species. In the rhesus macaque (Macaca mulatta), which diverged 

from the ancestors of humans 25 million years ago (Gibbs et al. 2007)CD56+ cells 

are a marker for monocytes and not NK cells (Carter et al. 1999), expression of 

CD56 is absent in mice (Hayakawa et al. 2006). Cattle NK cells have been 

commonly described as CD3-/CD2+ lymphocytes. More recently, use of the 

activating receptor NKp46/NCR1 as the defining marker of NK cells across 

species, including humans, mice and cattle has emerged (Walzer et al. 2007; 

Westgaard et al. 2004). Use of NKp46/NCR1 as an NK marker is not perfect 

however. In humans, NKp46/NCR1 is also found on a small subset of cytotoxic T 

lymphocytes and CD3-CD56+ cells have been observed with low or absent 

expression (Meresse et al. 2006; Caligiuri 2008). It is however currently the best 

known NK marker and has enabled the characterisation of NK cells in multiple 
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species. In cattle, both NKp46+/CD2+ and NKp46+/CD2- NK cells have been 

reported (Storset et al. 2004). Both cattle NK types possess a full range of NK 

activity, NKp46+/CD2- NK cells are more proliferative and possess higher 

interferon-gamma (IFN-γ) activity (Boysen et al. 2006). 

1.1.3 Major histocompatibility complex class I  

The major histocompatibility complex (MHC) class I molecule is found on the cell 

surface of all nucleated cells in the jawed vertebrates (Kulski et al. 2002). 

Cytosolic proteins are degraded by the proteasome and then bound and 

presented by MHC class I, which is then transported to the cell surface. In 

humans, the MHC proteins are encoded  by the human leukocyte antigen (HLA) 

gene complex. There are six different functional HLA class I genes (A-C and E-G) 

in total and an individual possesses at least three. These genes (particularly A-C) 

are highly polymorphic, the latest release (2018-07) of the IPD-IMGT/HLA 

database contains sequences of 13,680 HLA class I alleles (Robinson et al. 2015). 

Due to the large number of alleles, the vast majority of individuals are 

heterozygous, typically expressing six different MHC class I molecules.  

CD8 expressed by cytotoxic T cells binds MHC class I in a manner that also allows 

binding of the T-cell receptor, which can sense antigenicity. This allows killing 

of cells presenting non-self-peptide, such as those of viral origin, by CD8+ T 

cells. Polymorphism of HLA class I introduces differences in the peptide binding 

of the encoded MHC class I molecules. This results in different binding 

specificities and efficacies to individual peptides as well as altering the contact 

between the molecule and T-cell receptors.  MHC class I is also recognised by 

many of the receptors that inhibit NK cytotoxicity. Binding of an inhibitory 

receptor to MHC class I serves to prevent the NK cell from killing host cells. Many 

pathological conditions result in down-modulation of MHC class I molecules, 

removing the inhibitory effect and enabling NK cell activation. The process by 

which NK cells are ‘taught’ to recognise MHC class I is known as NK cell 

education. The influence of the MHC class I diversity upon the inhibitory NK 

receptors is not well understood. The HLA class I alleles present in an individual 

have been shown to increase the frequency of NK cells expressing cognate 

inhibitory receptors (Yawata et al. 2006). Variation in the strength of the 

inhibitory signal produced by the inhibitory receptors means that driving 

expression of a certain receptor can influence the ability of NK cells to respond. 
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1.1.4 Mechanisms of NK cell killing 

NK cell cytotoxicity is tightly controlled by the balance of activating and 

inhibitory receptors on their cell surface. Activation of NK killing occurs through 

either a decrease in inhibitory signalling or an increase of ligand binding of the 

activating receptors. The presence of a large number of activating and inhibitory 

receptors on the surface of NK cells enables them to be controlled by a variety 

of external stimuli. A decrease in inhibitory signalling typically occurs through 

down-modulation of MHC class I on the target cell, as is the case in many tumour 

cells. Activating signals can be generated by engagement of activating receptors 

to their ligand, as happens in antibody-dependent cell-mediated cytotoxicity 

(ADCC). ADCC involves recognition of the Fc portion of an antibody bound to the 

surface of an infected cell by an Fc receptor such as CD16. Upon activation, NK 

cells employ one of two major mechanisms of killing, both of which require 

direct contact with the target cell. The first mechanism involves the release of 

cytotoxic granule proteins into the intracellular space. The two major granule 

proteins are perforin and granzyme. Perforin forms a pore in the target cell 

surface which enables entry of granzyme into the target cell (Catalfamo and 

Henkart 2003). Once inside the target cell cytosol, granzyme induces caspase-

dependent apoptosis (Trapani and Sutton 2003). The second mechanism involves 

engagement of death receptor pathways. TNF-related apoptosis-inducing ligand 

(TRAIL) is a transmembrane protein able to transduce an apoptotic signal (Degli-

Esposti 1999). FAS ligand (FasL) is also a transmembrane protein, belonging to 

the same family as TRAIL and induces apoptosis after binding to its receptor. 

Engagement of these death receptor pathways provides a perforin-independent 

method of cytotoxicity to NK cells (Wallin et al. 2003). NK cells have been shown 

to prime CD8+ T cells to kill M. tuberculosis infected monocytes. This occurs via 

interactions between CD40 expressed on antigen presenting cells and CD40 

ligand on the surface of NK cells. Secretion of IFN-γ by NK cells also results in 

expansion of cytotoxic CD8+ T cells (Vankayalapati et al. 2004). 

1.1.5 Protection against tumour cells by NK cells 

Depletion of NK cells has been used to demonstrate their crucial role in defence 

against tumour cells (Ljunggren and Kärre 1985; Seaman et al. 1987). The 

presence of NK cells in tumour biopsies is linked to a favourable prognoses in 

patients diagnosed with cancer (Coca et al. 1997; Ishigami et al. 2000). NK cells 
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are a major producer of IFN-γ which has been shown to possess a number of 

anti-tumour functions. Tumour cells generated to be insensitive to IFN-γ have 

been shown to display enhanced tumourigenicity (Dighe et al. 1994). 

1.1.6 Pregnancy and NK cells 

Uterine NK (uNK) cells possess a unique cell surface phenotype and play a role in 

menstruation and pregnancy (Moffett-King 2002; Gaynor and Colucci 2017). 

Interactions between the foetal trophoblast and maternal NK cells help to form 

the placenta after implantation of the embryo into the uterine wall. Invasion of 

extravillious trophoblast cells (EVTs) occurs soon after, EVTs begin enlarging 

spiral arteries to provide adequate blood flow to the placenta for the foetus. 

Adequate EVT invasion is required to prevent pre-eclampsia in humans. The 

extent of placental invasion is thought to be controlled by uNK cells (Moffett-

King 2002).  

1.1.7 NK cells as immune regulators 

NK cells have a multitude of regulatory roles within both the innate and adaptive 

immune systems (figure 1-1). NK cells have a synergistic relationship with 

dendritic cells (DC). Dendritic cells have been shown to promote cytolytic 

activity and IFN-γ production in resting NK cells (Fernandez et al. 1999). NK cells 

regulate both the maturation and functional activity of DCs in an IFN-γ-

dependent manner (Pollok et al. 1993). NK cells also kill immature DCs in a 

perforin-dependent manner. Removal of immature DCs results in selection for a 

more immunogenic population of DCs with an improved ability to induce T cell 

proliferation (Morandi et al. 2012).  

As with DCs, macrophages also have a synergistic relationship with NK cells. 

Macrophages have been shown to prime NK cells for cytotoxicity, activate 

proliferation and cytokine secretion and increase expression of activating NK 

receptors (Nedvetzki et al. 2007). Bacterial lipopolysaccharide (LPS) activates 

macrophages leading to the production of a range of inflammatory cytokines. 

However at high doses of LPS they become unable to respond to further 

stimulation. Too much cytokine produced in response to stimulation by LPS is 

thought to be the cause of septic shock (Fujihara et al. 2003). Macrophages 

stimulated by high doses of LPS upregulate stress-inducible class I MHC-like 
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ligands. These ligands are recognised by the activating receptor NKG2D on NK 

cells, resulting in killing of the macrophages (Nedvetzki et al. 2007). 

NK cells prime and promote differentiation of T cells via the secretion of 

cytokines (Morandi et al. 2006; Wehner et al. 2009). NK cells are also capable of 

directly killing T cells. Killing of T regulatory cells expanded in response to 

infection with Mycobacterium tuberculosis has been shown (Roy et al. 2008). 

Killing of antigen-activated T cells by NK cells via NKG2D has also been observed 

(Cerboni et al. 2007). CD4+ T cells mediate chronic inflammation in the colon 

(colitis), transferring CD4+ T cells into recombination-activating gene (Rag) 1 

and 2 knockout mouse recipients causes colitis in an NK-depleted recipient. 

However, colitis was not observed in the non-depleted recipients, demonstrating 

that NK cells control the responses of T cells to the gut microbiota (Fort, Leach, 

and Rennick 1998).  

1.2 NK cell education 

Due to the highly cytotoxic nature of NK cells, they must be educated so that 

they do not respond inappropriately towards host cells, they must acquire self-

tolerance (Raulet and Vance 2006). Multiple models have been proposed to 

explain how this process occurs. The arming model suggests the ability of an NK 

cell to recognise self-major histocompatibility complex (MHC) class I is vital for 

it to become a functional effector cell (Kadri, Luu Thanh, and Höglund 2015; 

Yokoyama and Kim 2006). Recognition of MHC class I typically occurs via killer 

cell immunoglobulin-like receptors (KIR) in humans and the killer cell lectin-like 

receptor (KLR) Ly49 in mice. The disarming model is based on the observation 

that a lack of inhibitory receptors to balance the chronic activating stimulations 

results in hypo-responsive NK cells. NK cells from Ly49 or MHC class I deficient 

mice are unable to kill MHC class I deficient cells (Belanger et al. 2012). 

Subsequently, they are unable to carry out surveillance for downregulation of 

MHC class I, often occurring in tumour cells (Bubeník 2003). The rheostat model 

includes facets of both the arming and disarming models. This model suggests 

that the responsiveness of NK cells is controlled quantitatively by the strength of 

the inhibitory signal (Brodin et al. 2009). The most recently described model for 

NK cell education is the confining model. The name is derived from the 

observation that the activating receptors of educated NK cells are confined in 

nanodomains at the cell surface. In hypo-responsive NKs, receptors are dispersed  
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Figure 1-1. The influence of NK cells on immune responses. Blue arrows indicate killing of 

the cell by NK cells. After priming by other cell types (green arrows), NK cells regulate other 

immune cells via release of cytokines/chemokines. Taken from (Vivier et al. 2008). 
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into the actin meshwork (He and Tian 2017; Guia et al. 2011). Regardless of the 

correctness of the various models, it is clear that NK cell function is dependent 

on the process of NK cell education. 

1.3 NK receptors in model organisms 

The receptors responsible for recognition of MHC class I have been extensively 

studied in both humans and mice. These MHC class I specific receptors are 

typically encoded within either the leukocyte receptor complex (LRC) or the 

natural killer complex (NKC). The LRC, NKC and MHC genes are located on three 

separate chromosomes in all studied species. Convergent evolution has given rise 

to NK receptors of different structural families that recognise or are predicted 

to recognise MHC class I in multiple evolutionary distant species. This suggests 

that they have been subject to rapid evolution and highlights their vital 

importance. 

1.3.1 The killer cell immunoglobulin-like receptors 

Humans have undergone significant gene expansion within the LRC. Encoded 

within the LRC are the leukocyte immunoglobulin-like receptors (LILR), a subset 

of which recognise MHC class I (Jones et al. 2011). The LILR are primarily 

expressed on the surface of macrophages and dendritic cells as well as B cells 

and subsets of NK and T cells (Porwit, McCullough, and Erber 2011). 

Subsequently they are not considered NK specific receptors. Also encoded within 

the LRC are killer cell immunoglobulin-like receptors (KIRs), type I 

transmembrane glycoproteins that belong to the immunoglobulin (Ig) 

superfamily. KIR typically contain two or three Ig domains named D0, D1 and D2 

based on their location from n-terminus to c-terminus. KIR receptors come in 

two forms, activating or inhibitory. Inhibitory KIR possess a cytoplasmic tail 

containing two immunoreceptor tyrosine-based inhibition motifs (ITIMs), which 

produce an inhibitory signal to the cell after receptor engagement. The 

activating KIR possess a shorter cytoplasmic tail and contain either a positively 

charged arginine or lysine in their transmembrane domain. The positively 

charged arginine/lysine aids with binding of a transmembrane accessory protein 

such as DAP10, DAP12, FcRγ and TCRζ which contain immunoreceptor tyrosine-

based activation motifs (ITAMs) or YxxM motifs (Lanier et al. 1998; Lanier 2003). 

The number of domains (2D or 3D), signalling ability (L for long tail inhibitory, S  
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Figure 1-2. Variation of gene content within the two human haplotype groups (A and 

B). Black stars indicate the framework genes. Taken from (Middleton and Gonzelez 

2010). 
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for short tail activating and P for pseudogene) and order of discovery give rise to 

the name of the receptor. For example, the two domain inhibitory KIR receptor 

which was first discovered, is named 2DL1. Mice and rats have not expanded the 

LRC to the same extent as humans, mice possess just two KIR genes, and rats 

only one (Hoelsbrekken et al. 2003) that also have a completely different 

function.  

In humans, the KIR are a highly polymorphic gene family, rivalling the 

polymorphism of the HLA complex which encodes the MHC. The nature of their 

polymorphism is multi-faceted. Variation in the presence/absence of a subset or 

the KIR genes occurs between individuals. Four of the KIR, termed framework 

genes, are present in all currently genotyped individuals with very few 

exceptions.  

There are two broadly defined KIR haplotype groups, A and B, which are based 

on gene content (figure 1-2). The A haplotype is largely non-variable in terms of 

gene content and is considered more inhibitory than B as it contains just one 

activating KIR. The B haplotype is much more variable in gene content and can 

contain genes for up to five activating KIR receptors. Homozygosity for the group 

A haplotypes in pregnant women carrying a foetus expressing HLA-C2 are at a 

high risk for pre-eclampsia. This is due to inhibitory signals generated by 2DL1 

after recognition of HLA-C2 expressed by trophoblasts (Hiby et al. 2004). The 

risk is reduced if a group B haplotype is present when carrying a foetus 

expressing HLA-C2. The reduction in risk correlates with the number of 

activating KIR genes. Homozygosity for the group A haplotypes is beneficial in 

the context of viral infection however. Group A homozygosity provides 

resistance to acute Ebola virus infection and is associated with a favourable 

outcome when treated for chronic HCV infection when paired with HLA-C1 

homozygosity (Wauquier et al. 2010; De Re et al. 2015). A model for 

maintenance of the two haplotype groups in human populations has been 

proposed. An epidemic infection will select for KIR A haplotypes that are more 

protective and provide a higher chance of survival. By the end of the epidemic, 

the percentage of the population possessing the A haplotype will be significantly 

increased. Once the epidemic has ended, survival of the population becomes 
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dependent on reproduction, resulting in selection for the B KIR haplotype 

(Parham and Moffett 2013). 

Variation at the allelic level is a major contributor to the polymorphism of the 

KIR. Alleles of KIR can vary by orders of magnitude in the strength of their 

response and amount of expression on the cell surface. Alleles of 3DL1 vary in 

their NK cell expression pattern and inhibitory capacity, significantly influencing 

AIDS progression (Martin et al. 2007). A common allele of 3DL1(3DL1*004) is 

poorly expressed at the cell surface due to substitutions in the D0 and D1 

domains (Pando et al. 2003). In the latest release of the IPD-KIR database (July, 

2017) there are 907 listed KIR alleles (Robinson et al. 2010).  

1.3.2 The killer cell lectin-like receptors 

The killer cell lectin-like receptors (KLR) are type II TM C-type lectin proteins, 

encoded by genes within NKC. Like the KIR, they are able to recognise MHC class 

I as well as MHC class I-like molecules. The NKC genes have two commonly 

assigned names based on different nomenclature systems. As both are often 

used, the alternate name is also listed here in brackets. The human NKC 

contains a single non-functional KLRA (Ly49) gene, four KLRC (NKG2A, C, E and 

F) genes, a KLRK (NKG2D) gene and a KLRD (CD94) gene. In contrast, mice and 

rats have undergone a much more significant expansion (figure 1-3). Mice and 

rats possess 23 and 34 KLRA genes respectively and a unique KLRH gene that has 

been lost in primates (Higuchi et al. 2010; Naper et al. 2002).  

As with the KIR, KLRA receptors can either be inhibitory through ITIM, or 

activating by association with adapter molecules to a charged transmembrane 

domain containing ITAM. They exists as homodimers on the cell surface and 

interact with ligands via a natural killer receptor domain (NKD). Mice of 

different strains have varying numbers of KLRA and there are strain specific 

alleles. Variation in the presence/absence of KLRA has been implicated in 

resistance to murine cytomegalovirus (MCMV). The MCMV-encoded protein m157 

has a strong interaction with an inhibitory KLRA in 129/J mice. C57BL/6 mice 

encode an activating KLRA, not present in 129/J mice. This activating KLRA also 

has a strong affinity to m157 and is thought to have arisen as a direct response 

to the immune pressure generated by the production of MHC-I decoys produced 

by MCMV (Smith et al. 2002; Sun and Lanier 2009).  



26 
 
The KLRC form disulphide bonded heterodimers with KLRD and KLRK forms 

homodimers. KLRC/KLRD heterodimers and KRLK homodimers are expressed on 

the cell surface. They are largely monomorphic and recognise non-classical MHC 

class I receptors HLA-E and Qa1 in humans and mice respectively. In the case of 

the KLRC/KLRD heterodimers, signalling is mediated by KLRC. KLRC cannot be 

expressed on the cell surface without KLRD acting as a chaperone (Carretero et 

al. 1997; O’Callaghan 2000; Phillips et al. 1996). Infection by human 

cytomegalovirus (HCMV) of fibroblasts results in the expression of the ligands of 

KLRK. HCMV is able to evade activation of KLRK by producing the glycoprotein 

UL16. UL16 captures a number of the expressed ligands, retaining them in the 

endoplasmic reticulum, resulting in diminished NK cytotoxicity (Welte et al. 

2003).  

1.4 Cattle NK cells 

As in humans, cattle NK cells are defined by presence of NCR1 on their surface 

(Storset et al. 2004). Cattle NK cells can be differentiated into phenotypic 

subsets based on their level of CD2 expression. Approximately 80% of NK cells in 

peripheral blood are CD2high. In comparison to CD2low NK cells, they are poorer 

producers of IFN-γ and do not respond as strongly to IL-2 stimulation (Boysen et 

al. 2006). CD2-/CD2low NK cells are the main subset present within the skin-

draining afferent lymphatic vessels and lymph nodes. The small number of NK 

cells found in the efferent lymph are also predominantly CD2-/CD2low. This 

suggests that NK cells can move from lymph nodes back into circulation and may 

be important during the immune response to infection (Hamilton et al. 2017). 

1.4.1 NK cell receptors in cattle 

Recent advancements in sequencing technologies, coupled with the falling cost 

of whole genome sequencing, have precipitated the sequencing and assembly of 

the genomes of multiple non-model species. The sequencing of livestock species 

is a vital component of genome-enabled breeding, which has been a particular 

priority due to concerns over food security. This has facilitated comparisons of 

the LRC and NKC across species. Expansion of the LRC appeared to be limited to 

the simian primates, with other species possessing either no or one KIR gene 

(Hammond et al. 2009; Futas and Horin 2013; Sambrook et al. 2006). 

Characterisation of cattle revealed an expansion of the LRC to an extent even  
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Figure 1-3. The structure of the NKC in the genomes of various species. Arrows indicate 

individual genes and arrow colour indicates KLR group according to the figure key. Filled 

arrows are putatively functional and empty are putatively non-functional (also indicated by 

a psi symbol to the right of the gene). Direction of transcription is shown by the orientation 

of the arrow. Taken and modified from (Schwartz et al. 2017). 
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greater than humans (McQueen et al. 2002; Storset et al. 2003; Sanderson et al. 

2014). Expansion of the NKC has also occurred outside of the model organisms 

(figure 1-3) (Schwartz et al. 2017). Cattle are the only studied species to have 

significantly expanded genes within both the LRC and the NKC. 

1.4.2 KIR in cattle and goats 

The presence of KIR in cattle was first described after the detection of the cDNA 

of multiple KIR-like genes (McQueen et al. 2002). Since then, two cattle LRC 

haplotypes have been characterised (Sanderson et al. 2014). Cattle have 

expanded two lineages of KIR, KIR3DL and KIR3DX. In comparison humans have 

only expanded the 3DL lineage. The divergence of the two lineages is estimated 

to have occurred ~135 million years ago (mya), occurring before the radiation of 

placental mammals. The nomenclature of the cattle KIR follows the same rules 

as the human KIR, with the exception of the addition of an X to denote if the 

gene is of the 3DX lineage (e.g. 3DXL1).  

Due to the repetitive nature of the LRC, the quality of its assembly in the 

reference genome UMD3.1 is poor, lacking the majority of the known KIR.  

Sequencing of BAC clones gave rise to the first two characterised haplotypes. 

The cattle LRC has arisen through a series of block duplications, each block 

contains 3DX and 3DL genes. The genes within these blocks have been assigned 

groups based on their phylogeny (figure 1-4). The most recent duplication 

appears to have given rise to blocks A and B, which are ~66 kb length. These 

blocks have high sequence identity, 191 nucleotide substitutions occur between 

them. Duplication of the 3DX lineage gene has generated diversity of KIR in 

cattle, the 3DL lineage has given rise to just one functional KIR (Guethlein et al. 

2007). There are twelve 3DX lineage genes, of which seven are predicted to 

produce a functional protein. Six of these encode for three Ig domains and an 

inhibitory long cytoplasmic tail. The exception to this is 3DXS1, which encodes 

for three Ig domains and an activating short cytoplasmic tail. The five remaining 

3DX lineage genes are all predicted to be activating but non-functional. They 

have been inactivated in a consistent manner, deleterious mutations within the 

extracellular domains are identical between genes. This suggests that a single 

activating gene acquired these mutations before their duplication, but after the 

duplication event that gave rise to 3DXS1. 
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Haplotype 1 (H1) represents a complete KIR haplotype of length 263 kb. 

Haplotype 2 (H2) from the same individual as H1 is incomplete although 

contiguous, and is subsequently shorter at 203 kb. Within H1 are 18 KIR genes 

and fragments and within H2 are 14 KIR genes and fragments (figure 1-5). Within 

the overlapping region between the two haplotypes, there are 1008 SNPs. 

Despite the number of SNPs, the two haplotypes are identical in gene content in 

the overlapping region. However, the genes present on both H1 and H2 are 

allelically different on each haplotype. The nucleotide sequence of the alleles is 

highly similar. There are just 13 and 12 SNPs in the exons between haplotypes in 

block A and B respectively. Comparing block C alleles between the two 

haplotypes reveals 537 nucleotide substitutions, suggesting block C is 

significantly older than A and B.  

There appears to be significant diversity in the cattle KIR system, as 

demonstrated by the allelic differences between the two known haplotypes. The 

nucleotide polymorphisms of the KIR are primarily nonsynonymous substitutions 

concentrated in the Ig-like domains, which in humans interact with MHC class I.  
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Figure 1-4. Phylogenetic analysis and subsequent grouping of the alleles present in KIR 

haplotype 1 and 2. Taken from (Sanderson et al. 2014). 



31 
 
  

Figure 1-5. Comparison of the gene and allelic content of KIR haplotype 1 and 2. Black boxes 

indicate predicted functional KIR and white boxes predicted non-function KIR. Flanking 

genes are indicated by grey boxes. Taken from (Sanderson et al. 2014). 
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The most divergent of the cattle KIR is 3DXL6, which is non-functional in H1 and 

H2. Based on cDNA evidence, 3DXL6 appears to have several functional and non-

functional alleles. Further cDNA evidence supports the existence of 2DXS1, not 

present on either haplotype (Sanderson et al. 2014). The Ig domains of 2DXS1 

appear to be allelic to 3DXL6, whereas the 2DXS1 transmembrane domain and 

cytoplasmic domain share more similarity with the other activating KIR. This 

suggests that 2DXS1 is an allele of 3DXL6, albeit with an activating tail rather 

than inhibitory (Sanderson et al. 2014). A similar situation is observed in 

humans, where 3DL1 and 3DS1 segregate as alleles of the same 3DL1/S1 locus 

(Kelley, Walter, and Trowsdale 2005; Parham 2005). 

Expansion of the KIR has also occurred in goats, independently from other 

species. Located within the goat LRC are 15 KIR genes, seven of which are 

putatively functional. The functional KIR either clade with the group 4 cattle 

KIR, or clade into two novel groups defined as 6 and 7. Unlike cattle, goats do 

not possess a functional 3DL lineage KIR gene. They do however encode for a 

novel functional four-domain inhibitory KIR, possessing two D1 domains 

(Schwartz, Sanderson, and Hammond, unpublished data). 

1.4.3 KLR in cattle and goats 

Unlike humans, cattle have also undergone a significant expansion of the NKC. 

Goats, another ruminant species, have undergone a similar expansion to cattle, 

although to a more limited extent (figure 1-3). The organisation of the NKC is 

largely conserved between the ruminants, rats and humans. The ruminants 

possess KLRJ, a gene lacking either an activating or inhibitory component, 

rendering its function unknown. The ruminants have also independently evolved 

a second KLRC locus and possess a novel KLRH-like gene with an activating tail. 

Duplication of this gene has occurred multiple times in cattle. The region 

located between KLRA and KLRJ contains the region of expanded KLRC-like and 

KLRH-like genes. In cattle, there are 9 KLRC-like and 7 KLRH-like genes. The 

KLRH-like genes are most closely related to KLRH1 in rats based on phylogenetic 

analysis of the extracellular C-type lectin domain. Of the 7, 5 possess activating 

KLRC2-like cytoplasmic and transmembrane domains. This region consists of four 

KLRC genes and two KLRH-like genes. One of the KLRH-like genes in goats 

possesses exons 1 and 3 of a KLRC2-like cytoplasmic tail (Schwartz et al. 2017). 

This is evidence that both the KLRC expansion as well as KLRH recombination 
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occurred before the divergence of cattle and goats ~30 Mya (Hiendleder et al. 

1998). The KLRC in this region are split into two groups, KLRC1 and KLRC2. The 

six KLRC1 genes are inhibitory and the three KLRC2 are activating - all are 

putatively functional.  

The second cluster of KLRC between KLRK and KLRI is much more conserved 

between the ruminants, humans and rats. Located in this region in both cattle 

and goats is an inhibitory KLRC1 gene and a KLRC2 pseudogene. The KLRC2 

pseudogene is rendered non-functional by the same mutations in both cattle and 

goats, suggesting the loss of function occurred before they two species diverged. 

Cattle also possess an additional putatively functional KLRC2. In humans, KLRC 

and KLRD form heterodimers at the cell surface. That cattle and goats have 

duplicated KLRD, suggests that this is also the case in cattle. 

Allelic discovery for the KLRC/H region is made extremely difficult by the 

repetitive and highly similar nature of the genes within the region and its effect 

on the mapping of short reads. Outside of this region, mapping is much easier 

and subsequently the allelic variation of the rest of the NKC has begun to be 

elucidated. Sequencing of 20 Bos taurus and 3 Bos indicus genomic DNA samples 

revealed substantial allelic variation. The coding regions of KLRA, KLRJ, KLRI2, 

KLRI1, KLRK, KLRD1, KLRD2, and KLRE were shown to contain 77 SNPs, 55 of 

which resulted in a change at the amino acid level. This variation predominantly 

occurs within extracellular and ligand binding domains. In contrast KLRK was 

found to be highly conserved – no variation in the nucleotide sequence was 

observed in the KLRK across the sequenced animals. Within B. taurus, KLRD2 and 

KLRE are monomorphic. Variation between the KLRE of B. taurus and B. indicus 

was observed however (Schwartz et al. 2017). 

1.5 Transcription and expression of NK receptors 

The entirety of the KIR genes present in a human individual are transcribed in 

their polyclonal NK cell population (Uhrberg et al. 1997). However, the KIR 

repertoire of an individual NK cell is limited to a subset of the total KIR encoded 

for in the individual’s genome. The combinations of KIR expressed in an 

individual cell appear to be random and regulation appears to occur mainly at 

the transcriptional level. Examination of 100 NK clones from two donors, 

revealed 33 distinct receptor (KIR and KLRC/KLRD) phenotypes in one donor and 
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64 in the other. Every NK clone possessed either an inhibitory KLR or KIR 

(Valiante et al. 1997). The KIR and KLR gene families both have a pattern of 

variegated expression, 80% of NK cells express between one and three receptors 

out of the total KIR gene repertoire present in the genome (Valiante et al. 1997; 

Held and Kunz 1998; Kubota et al. 1999). The product of the frequencies of NK 

cells expressing each receptor can be used to estimate the frequency of NK cells 

co-expressing a given receptor combination. This is known as the “product rule” 

and applies to both KIR and KLRA (Ly49) (Raulet et al. 1997; Valiante et al. 1997; 

Kubota et al. 1999). Deviation from this occurs with NK cells co-expressing 

KLRC/KLRD and inhibitory KIR, the frequencies of cells expressing both is lower 

than expected (Valiante et al. 1997). The frequency of cells expressing a given 

KIR is highly dependent on the gene copy number of that KIR. The frequency of 

cells expressing 3DL1 is higher in individuals with two copies compared to those 

with one copy (Li et al. 2008; Beziat et al. 2013). 

1.5.1 Transcriptional regulation of KIR and KLR 

Transcriptional regulation of the KIR occurs via promoters, the KIR distal 

promoter and the KIR proximal promoter. The distal promoter has been 

identified upstream of all human KIR. It is not tissue specific, the distal 

promoter is active in NK cell and T cell lines (Stulberg et al. 2007). Stimulation 

with the cytokine IL-15 induces c-Myc binding to the distal promoter, driving 

distal transcription (Cichocki et al. 2009). This is thought to be a key stage of NK 

development as the IL-15 receptor is present only on CD56bright and mature 

CD56dim NK cells (Freud et al. 2006). Unlike the distal promoter, the proximal 

promoter is only active in NK cells. A strong correlation between stable 

transcriptional silencing of individual genes and DNA methylation within the 

genes proximal promoter has been demonstrated (Santourlidis et al. 2002; Chan 

et al. 2003). Both the distal and proximal promoter are located upstream of 

each gene and are bi-directional. The relative affinity of transcription factors 

required for sense antisense promoter activity determines the probability of 

producing the sense transcript required for gene activation. 

More recently, transcription from an additional intermediate promoter (Pro-I) 

has been shown to be required for expression of KIR2DL1 (Wright et al. 2014). A 

correlation between Pro-I transcripts and protein expression was observed. In 

contrast, no correlation was observed between proximal transcripts and protein 
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expression. Decreased Pro-I activity was associated with the presence of non-

translatable splice variants of the proximal transcript. Four distinct classes of 

the Pro-I promoter have been identified. These classes correspond with four 

expression phenotypes of KIR sub-groups: 2DL4 which is expressed by CD56bright 

cells in a non-variegated manner, 2DL3 which is not expressed on circulating NK 

cells, 2DL2/S2/L3 of which expression is observed early in reconstituting NK cells 

after transplant, as well as the remaining KIR that are expressed by CD56dim 

subsets (Wright et al. 2014).  

Methylation of the KIR promoters suppresses expression of the KIR and is 

responsible for the maintenance of allele-specific expression. The NK cell line 

NK-92 only expresses 2DL4, treatment with the demethylating agent 5-aza-2’-

deoxycytidine results in expression of multiple KIR (Chan et al. 2003). 

Bi-directional promoters (Pro1) are also utilised by the KLRA gene family. Pro1 is 

located upstream of the core Pro2 and Pro3 promoters responsible for 

production of KLRA transcripts. Forward transcription of Pro1 is thought to a 

produce a splice sense transcript that plays a role in opening the chromatin of 

the Pro2 and Pro3 promoters, enabling gene transcription. Regulation of KLRA by 

DNA methylation is thought to be unlikely, regulation is thought to occur at the 

histone level (Wilhelm et al. 2001; Gosselin et al. 2000). Pro1 has been shown to 

play a role in the gene activation of developing NK cells but a role in mature NK 

cells is less likely (McCullen et al. 2016).  

1.5.2 Stability of the NK receptor repertoire 

The life-span of an NK cell is relatively short, they have a turnover time of 

approximately two weeks (Jamieson et al. 2004). Despite this, the NK receptor 

repertoire remains remarkably stable over time – very low variability was 

observed over a period of 6 months. It can however undergo rapid modification 

in response to stimulation. Stimulation with either IL-2 or IL-15 results in a 

change of expression up to eightfold greater than observed in the same serial 

sampling of untreated NK cells. This stability is also observed at the individual 

NK level, the different combinatorial receptor phenotypes show low variability 

over time. Over the lifetime of an individual the diversity increases. This 

increase in diversity correlates with an increase in the NK terminal 

differentiation marker CD57 (Strauss-Albee et al. 2015). Expression of CD57 is 
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induced by cell or cytokine stimulation, resulting in an increase with age (Lopez-

Verges et al. 2010; Le Garff-Tavernier et al. 2010). The increase in NK diversity 

is not simply a direct result of aging, but rather the NK response history of an 

individual. Higher NK diversity is associated with an increase likelihood of HIV-1 

infection. CD57+ terminally differentiated NK cells produce significantly more 

IFN-γ than CD57- NK cells. They also degranulate and divide less than CD57- NK 

cells. Short-term exposure of NK cells to cells infected with West Nile virus 

(WNV) and HIV-1 has been shown to result NK cell diversification. This results in 

a repertoire that becomes more individualised with each NK response (Strauss-

Albee et al. 2015). 

1.5.3 Expression of NK receptors on other immune cells 

Expression of KIR has also been observed on CD8+ T cells (Mingari et al. 1996), 

gamma delta (γδ) T cells (Battistini et al. 1997), and to a lesser extent CD4+ T 

cells (Namekawa et al. 1998; van Bergen et al. 2004). T cells express the entire 

repertoire of KIR in an individual, expression of none of the KIR is limited to NK 

cells. A study comparing two donors of NK cells and NK receptor positive (NKR+) 

T cells revealed that expression of KIR2DL1 is much higher in NK cells. 

Contrastingly, expression of KIR2DL2 and KIR3DL1 was more frequent in NKR+ T 

cells. Low frequency expression of KIR2DL1 separates both γδ T cells and αβ T 

cells from NK cells (Uhrberg et al. 2001). In healthy adult donors an average of 

0.2% of CD4+ T cells express KIR, increasing with age to 1.0% in the elderly. The 

majority of CD4+KIR+ cells are HLA class II-restricted effector memory Th1 cells 

and do not always possess an inhibitory KIR (van Bergen et al. 2004). 

Expression of KLRC/KLRD has also been observed in γδ T cells and at a lower 

level in αβ T cells. Although the KIR repertoire of NK cells and NKR+ T cells is 

mostly similar, KLRC/KLRD expression is less frequent in NKR+ T cells than in NK 

cells. KLRC1 is much more frequently expressed on γδ T cell clones than αβ T 

cell clones. The expression of KLRC/KLRD is similar between NK cells and γδ T 

cells (Uhrberg et al. 2001). The NKR expressed by T cells have been shown to be 

functional. Inhibitory signals generated by inhibitory KIR or KLR can override the 

stimulatory signal of the T cell receptor (TCR), inhibiting the T cells cytolytic 

and cytokine release response (Nakajima, Tomiyama, and Takiguchi 1995; 

D’Andrea et al. 1996). 
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1.5.4 Tissue specific NK cells 

A number of tissue and organ specific NK phenotypes and functions have been 

identified in humans and mice. These phenotypes are generated by cellular 

interactions and the local microenvironment unique to a specific tissue/organ. 

In the liver, NK cells make up 30-50% of the lymphocyte population. Hepatic NK 

cells are hyporesponsive compared to NK cells in other tissues such as the 

spleen. They have a dampened response to both IFN-γ and IL-12/IL-18 

stimulation (Lassen et al. 2010). This hyporesponsiveness is due to high 

expression of the inhibitory receptor KLRC1 (NKG2A) and decreased expression 

of the activating receptor KLRA. This alteration of expression is thought to 

promote liver tolerance but may also contribute to persistent infection within 

the liver. Tolerance is required as the exposure to gut-derived foreign antigens 

that occurs within the liver would otherwise lead to inflammation (Crispe 2003). 

NK cells are also found in the lung, approximately 10% of the lymphocyte 

population in a healthy mouse lung is made up of NK cells (Grégoire et al. 2007). 

Bronchial epithelial cells are thought to contribute to the survival of NK cells in 

the lung through production of IL-15 (Ge et al. 2004). Large numbers of NK cells 

are recruited to the lung within days of infection and begin secreting cytokines 

(Stein-Streilein et al. 1983). As with liver NK cells, lung specific NK cells are less 

functionally active. Lung NK cells expresses higher levels of inhibitory receptors 

and lower levels of activating receptors. This implies the environment of the 

lung tightly regulates NK function, limiting functionality to periods of respiratory 

infection (Wang et al. 2012).  

NK cells have been implicated in playing a role in a number of skin diseases 

including psoriasis. NK cells present in psoriasis lesions had reduced expression 

of CD57 and KLRC1 compared to controls (Batista et al. 2013). They also exhibit 

reduced degranulation and production of pro-inflammatory cytokines such as 

IFN-γ (Dunphy et al. 2017). 

Gut NK cells are predominately of the CD56brightCD16- phenotype (León et al. 

2003). NK cells present in the gut-associated lymphoid tissues are a unique 

subtype, specialising in production of IL-22 (Colonna 2009). IL-22 has multiple 
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roles including cell proliferation and tissue regeneration, pathogen defence and 

protection of the intestinal barrier (Parks et al. 2015). 

1.6 RNA sequencing  

The ability to understand the identity of each RNA molecule in a cell along with 

the abundance of each RNA is widely considered the ultimate goal of RNA 

research. Research into this has been ongoing since the discovery of the role of 

RNA in gene expression. The first relatively high throughput method was the 

expressed sequence tag (EST). ESTs are short (200-800 nucleotide bases), 

randomly selected single-pass sequence reads from cDNA libraries. ESTs have 

been used extensively and have been used to identify a number of new genes in 

multiple species (Putney, Herlihy, and Schimmel 1983; Adams et al. 1991). 

However, ESTs provide limited information regarding expression levels, due to 

the high sequencing cost and the semi-quantitative nature of the data. Serial 

Analysis of Gene Expression (SAGE) was developed which reduced sequencing 

cost by only sequencing up to 21bp per cDNA (Velculescu et al. 1995). SAGE was 

superseded by microarray technology as it was much more affordable for large 

scale analysis. DNA microarrays utilises probes attached to a solid surface which 

hybridise with fluorescently labelled targets derived from transcripts. Whilst this 

method is large scale, enabling genome-wide analysis, it requires prior 

knowledge of the target transcripts to design the probes. This makes it 

unsuitable for discovery of novel genes/transcripts as well as for use with 

uncharacterised species (Schena et al. 1995; Lockhart et al. 1996). The invention 

of massive parallel sequencing (often referred to as Next Generation Sequencing 

(NGS)), has provided the next major advancement in the field of RNA research. 

1.6.1 Illumina RNA sequencing 

Illumina RNA sequencing (RNA-Seq) has quickly become a highly popular method 

to interrogate multiple aspects of RNA. RNA-Seq generates huge volumes of data 

in a short period of time. Its major advantage over microarray analysis is that it 

requires no prior knowledge of the underlying genome or transcriptome. 

However many applications of RNA-Seq are aided by the presence of a high 

quality reference genome. 

The general principal of preparing RNA for RNA-Seq involves generating a cDNA 

library from RNA, fragmenting the cDNA to a certain size, and attaching 
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sequencing adapters to either side of the fragment which are required for 

subsequent amplification and sequencing.  

Total RNA from a cell is dominated by ribosomal RNAs (rRNAs) which are 

typically of little interest (Rosenow et al. 2001). Two main approaches have 

been developed to attempt to eliminate rRNA from total RNA before sequencing. 

Poly(A) selection uses beads coated with oligo-dT molecules to select for the 

poly(A) tail present on most messenger RNA (mRNA) but not on rRNA. An 

alternative method is rRNA depletion. Depletion of rRNA is done by hybridizing 

sequence-specific probes to rRNA, after which depletion occurs using 

streptavidin beads (Cui et al. 2010). An alternative method of rRNA depletion 

uses targeted antisense DNA oligonucleotides and subsequent digestion by RNase 

H (Herbert et al. 2018).  

Fragmentation is required due to limitations on read length of current Illumina 

sequencers. Fragmentation is carried out using either physical, enzymatic or 

chemical approaches and can be done on either RNA or cDNA in RNA-Seq 

protocols. The choice of fragmentation method introduces various biases into 

the RNA-Seq data, due to their non-random nature (Nicholson 2014; Poptsova et 

al. 2014). Dependent on the fragmentation method used, either before or after 

fragmentation, RNA is converted to cDNA. This conversion is an additional source 

of bias, as the random hexamers used introduces biases affecting both the 

nucleotide content of RNA sequencing reads as well as the uniformity of the 

locations of the reads along the transcript (Hansen, Brenner, and Dudoit 2010).  

Adapters are then ligated to the cDNA, this process has the unfortunate side 

effect of losing information about which strand the RNA originated from. A 

number of strand-specific protocols have been developed to address this. 

Typically, cDNA synthesis is separated into two stages, first and second strand 

synthesis. First strand synthesis occurs in the normal manner using reverse 

transcriptase and random primers. After first strand synthesis, dTTP (thymidine) 

is swapped for dUTP (uracil) for second strand synthesis. The second strand 

containing uracils is then degraded using uracil-n-glycosylase. In the subsequent 

PCR to generate enough material for sequencing, only the first strand is then 

amplified, retaining the strand information of the libraries (Parkhomchuk et al. 

2009). 
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1.6.2 Long read RNA-Seq 

Further advancements in the field of DNA/RNA sequencing have primarily sought 

to improve on read length. Longer reads are beneficial to a variety of 

applications including genome assembly, mapping of reads to complex or 

repetitive regions, and transcript isoform discovery. The two major long read 

technologies for RNA-Seq are Pacific Biosciences (PacBio) Iso-Seq and Oxford 

Nanopore (Weirather et al. 2017). Both of these technologies offer the ability to 

sequence full length transcripts. This reduces or eliminates a number of 

technical challenges associated with RNA-Seq data analysis such as transcript 

assembly and mapping of short reads. Both PacBio and Nanopore sequencing are 

less mature platforms than Illumina RNA-Seq. The major problems associated 

with both platforms are a much higher error rate and a smaller total base 

output. The error rate of raw PacBio data is between 13-15% (Rhoads and Au 

2015) and between 5-15% for Nanopore data (Jain et al. 2017; Jain et al. 2018). 

Error correction is available via bioinformatics methods for both platforms, 

resulting in accuracy of >99.9% and 95% for PacBio and Nanopore respectively. 

This increase in accuracy also results in a substantial decrease in sequence 

length (Mahmoud et al. 2017). The error rate of Illumina RNA-Seq is dependent 

on a number of factors such as sequencing platform, chemistry and read length, 

but is typically between 0.1-1% (Glenn 2011). Illumina platforms also provide 

much more data at a lower cost than PacBio or Nanopore. An Illumina HiSeq 

NovaSeq 6000 can output  2.4 Tb to 3 Tb per run at a cost of 10.26 USD per 

Gb(Daniel Johnson, Illumina Cambridge, personal communication). In comparison 

a PacBio Sequel outputs 5-10 Gb  bases (85 USD per Gb) and a Nanopore MinION 

can output up to 20 Gb (24 USD per Gb)(van Dijk et al. 2018). This makes these 

platforms less useful and more expensive for quantification of transcripts that 

are not highly expressed within the global transcriptome. 

1.6.3 RNA-Seq read mapping 

An important step for many RNA-Seq analyses is the mapping/alignment of reads 

to a reference genome or transcriptome. A number of algorithms have been 

developed for the mapping of short sequencing reads. Mapping algorithms must 
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be ‘splice-aware’ and capable of handling strand-specific data in order to 

correctly map RNA-Seq data, consequently a good DNA-Seq aligner is not always 

suitable for RNA-Seq analysis. The accuracy at the mapping stage has a 

significant impact on the accuracy of downstream analyses. Accuracy is 

impacted by a large array of factors such as polymorphisms, intron-sized gaps, 

sequencing error, low-complexity sequences and alternative splicing. Poor 

quality annotations also negatively impact mapping accuracy, requiring aligners 

be able to align reads across unannotated splice junctions (Baruzzo et al. 2017).  

Analysis of simulated data is commonly used as a benchmarking tool for RNA-Seq 

data as the precise nature of the data is known. The large number of RNA-Seq 

aligners available and the number of impacting factors that can be present in 

real RNA-Seq data makes comprehensive and accurate comparisons difficult 

however. Comparisons of RNA-Seq aligners often place particular emphasis on 

run time and resource usage. Depending on the computing resources available to 

the end-user and nature of analyses being carried out, small increases in 

accuracy may be worth the trade-off of longer run time. A benchmark of 14 

mapping algorithms reveals that performance of the tools varies based on 

genome complexity (Baruzzo et al. 2017). They also found a poor correlation 

between accuracy and popularity of the tools, with the most widely cited tool 

(TopHat2) underperforming for most metrics using default parameters. These 

alignment algorithms require careful optimisation for the data being analysed. 

TopHat2 varied from 3% of total bases mapped correctly using default 

parameters to over 70% after optimisation.  

Most RNA-Seq aligners work on a seed-and-extend basis, where a read is aligned 

by finding a seed (a short token of the sequence that also exists in the 

reference) and then the alignment is extended to the rest of the sequence. This 

approach allows few mismatches in the alignment and provides good 

performance at the cost of not being able to return all existing matches. 

Alternatively, the Genome Multitool (GEM) mapper uses a filtration-based 

approach to approximate string matching. This means that GEM always carries 

out an exhaustive search, finding all matches. This also occurs at a speed 

comparable to or faster than other aligners, whilst also being more accurate 

than many other mappers (Marco-Sola et al. 2012). 
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1.6.4 Multi-mapping reads 

Each RNA-Seq aligner will typically produce different results from the same 

dataset, due to the variety of algorithms and scoring schemes that they utilise. 

One of the major problems RNA-Seq aligners face is how to account for reads 

that map multiple times (multi-mapping). This issue is particularly problematic 

when carrying out analyses into differential gene expression. Multi-mapping 

reads occur most often when genes have duplicated, resulting in multiple 

locations within the genome sharing high sequence similarity. Multiple methods 

for accounting with multi-mapping reads have been developed. Bowtie 

(Langmead et al. 2009) and Burrows-Wheeler Aligner (BWA) (Li and Durbin 2009) 

both report a random match in their unique alignment mode if a read maps 

multiple times. Other tools uniformly distribute across all matches, sometimes 

weighting them based on the number of matches. All of these approaches result 

in significant bias in the results however (Zytnicki 2017). 

1.6.5 RNA-Seq of NK cell receptor genes 

RNA-Seq analysis has the potential to provide enormous insight into NK cell 

receptors of the lesser studied species such as cattle and goats. The extent and 

location of their transcription is currently unknown. Non-functional/functional 

status of genes is assigned often based on the gene structure in a single animal. 

Analysis of the regions of the genome encoding these receptors is complicated 

by gene duplication giving rise to genes with highly similar sequences (Sanderson 

et al. 2014). This makes any analysis utilising Illumina short reads extremely 

problematic. RNA-Seq in particular is made difficult due to multi-mapping, 

which can result in non-transcribed genes reported as transcribed (Mortazavi et 

al. 2008). Very little is known about the extent of their polymorphism or 

haplotypic variation in non-model species. This is because the majority of the 

current information originates from a very small number of animals. This further 

complicates RNA-Seq analysis as read mapping requires a suitable reference 

sequence. Reference free (de novo) RNA-Seq analysis typically involves assembly 

of transcript sequences, which is impractical due to the sequence similarity of 

the genes (Migalska et al. 2017).  

Antibody-mediated analysis of cell surface expression of NK receptors is the 

commonly used tool in the human and mouse fields. NK receptors in these 
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species have been a subject of interest for decades. Subsequently a large panel 

of antibodies have been created over this time. These antibodies are not 

perfect, they are often cross reactive between individual receptors and some do 

not bind to all of a genes alleles (Huhn et al. 2018). For the non-model species 

there are no or very few NK receptor specific antibodies available. Their 

production is highly complicated by the lack of information on polymorphism and 

haplotypic variation. Expression analysis data is also fixed once generated. New 

antibodies must be designed should it be discovered that the current selection 

are unable to bind newly discovered genes or alleles. Subsequently expression 

analysis experiments must be repeated every time new antibodies arise. They 

also must be generated per species due to the species specific evolution of the 

NK receptor genes. RNA-Seq of total mRNA does not require a complete 

characterisation of the genes of interest prior to experimentation as it is not 

targeted. Rather it captures information about the total transcriptome. This 

means that datasets generated from RNA-Seq experiments can easily be 

reanalysed should new genes be discovered. RNA-Seq is also not species-specific, 

most RNA-Seq protocols do not required adapting to a particular species. 

Although transcription and expression are not the same, understanding 

transcription of NK receptors can answer numerous questions whilst also 

informing future expression experiments. 

Development of a pipeline to accurately and confidently analyse transcription of 

NK receptors from RNA-Seq data would provide insight into their function, 

relative usage and distribution. This would have the additional advantage of not 

being specific to a particular species. As long as a reference genome containing 

a good quality assembly of the NK receptor gene complexes exists, an RNA-Seq 

pipeline could be utilised on any species of interest. 

1.7 Aims of the project 

Development of a pipeline to accurately quantify transcription of NK cell 

receptors in important livestock species from short-read RNA-Seq data is 

essential to further our understanding. The role of certain KIR in combination 

with HLA haplotypes in favourable disease outcomes in humans suggests that the 

same may be true for other species. Identifying these haplotypes in livestock 

species is one of the ultimate goals of the field as protective haplotypes could 

be preferentially selected through breeding programmes. The ability to 
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accurately investigate the transcription of NK receptors, particularly in response 

to infection, will provide information towards this ultimate aim. Before 

transcriptional analysis can be carried out, a method of accurately mapping RNA-

Seq data to the NK receptor genes must be created. The current limitations of 

long read sequencing, coupled with the availability of a large number of short-

read RNA-Seq datasets, necessitate the pipeline primarily be able to handle 

Illumina data. Therefore, the first aim of this project is to develop a pipeline 

that can accurately map short reads to the LRC and NKC genes, with high 

confidence. The pipeline will be developed using cattle genes as they are the 

focus of much of this work, but will be designed in such a way that is can be 

utilised on any chosen species. 

The second aim of the project is to utilise this pipeline to characterise the 

transcription of NK cell receptors in ex vivo NK cells from multiple cattle. This 

will allow the determination of which genes are transcribed. It will also provide 

insight into the extent to which they are transcribed in the context of the global 

transcriptome. Understanding this is vital to informing the depth of coverage 

required for future RNA-Seq experiments as well as providing an indication of 

their stability. 

The third aim is to characterise the transcription of NK receptors in multiple 

tissues types as well as immune cell types isolated from cattle. Understanding 

their distribution on immune cells will allow us to determine which, if any, of 

these receptors are specific to NK cells. Analysing their transcription in various 

tissue types can then provide insight into the distribution of NK cells and tissue 

specific phenotypes. 

The fourth aim is demonstrate the use of the developed pipeline in another 

important livestock species, the goat. Tissue distribution of the NK receptors will 

be investigated in goats, which will at the same time provide information on 

which of their genes are transcribed. This will also confirm the ability of the 

pipeline to be utilised in other species.  

The fifth and final aim of the project is to characterise the transcription of NK 

receptors during a viral infection as part of a vaccination study. This will provide 

insight into their role during infection, the variability of their transcription levels 

and the impact of vaccination on their transcription. 
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2 Chapter 2. Overcoming multi-map problems for RNA-

Seq data 

 

2.1 Introduction 

The aim of almost all RNA-Seq experiments is to quantify gene transcription 

through gene counts and compare transcription levels of genes between 

samples. The most ubiquitous method of obtaining read counts is to align RNA-

Seq reads to a reference genome or transcriptome. RNA-Seq reads mapped by 

alignment software can be placed into two different categories. Reads that map 

to a single location (uniquely mapping) and those that map to multiple locations 

(multi-mapping reads). Regions of the genome that contain duplicated genes or 

genes that contain a number of repeats have a high number of multi-mapping 

reads as the aligner is unable to determine the origin of the read. Multi-mapping 

is also directly related to the read length used in sequencing. Longer reads are 

more likely to contain a unique sequence allowing them to be correctly mapped. 

A number of methods have been developed to account for the presence of multi-

mapping reads in RNA-Seq experiments. One method is to simply discard multi-

mapping reads (Liao, Smyth, and Shi 2014), this removes any ambiguity but can 

heavily skew downstream applications such as differential expression analysis as 

read counts to repetitive genes will be drastically reduced. Other aligners 

weight read counts based on the number of alignments each read generates or 

randomly pick one alignment (Li and Durbin 2009; Langmead et al. 2009). This 

approach prevents read counts massively outnumbering the number of reads 

mapped. It can however result in non-transcribed genes appearing to be 

transcribed if reads from a closely related gene multi-map to them and is not 

accurate for gene-complexes. 

Mappability of the underlying genome/transcriptome can be used to identify 

regions that are likely to generate a high proportion of multi-mapping reads 

(Derrien et al. 2012). The first step of mappability calculations requires splitting 

the reference sequence into k-mers, unique subsequences of the reference of a 

specified length. Mappability is the inverse of the frequency with which a k-mer 

of read length n, originating at a position x, occurs within the two strands of the 

reference. If the sequence corresponding to the k-mer occurs nowhere else 
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within the reference, then the mappability at the position x is 1. If the k-mer 

occurs twice within the reference, then the mappability of the position is 0.5. If 

three times, then the mappability of the position would be 0.333. and so on.  

The cattle LRC and NKC have both arisen through a series of gene conversion and 

duplication events (Schwartz et. al, 2017; Sanderson et. al, 2014) which results 

in a series of highly repetitive and polymorphic genes within each locus (figure 

2-1, 2-2). Haplotypic variation of the LRC has also been observed, currently two 

full length haplotypes have been published that differ in both gene and allele 

content. Evidence from cDNA and genomic sequencing data suggest additional 

LRC haplotypes exist containing alleles not observed in either published 

haplotype (Sanderson et al. 2014). Consequently it is impossible to accurately 

determine the gene of origin for RNA-Seq reads from this region with current 

analysis methods. Using mappability calculations of a modified build of the 

cattle genome assembly (ARSv14) and later a modified cattle transcriptome 

(UMD 3.1), a custom analysis pipeline was developed. The pipeline uses reads 

that map to regions that are unique (mappability score of 1) to determine if a 

gene is transcribed. Reads mapping to non-unique regions are weighted based on 

their average mappability which is more biologically relevant as well as a more 

accurate representation of transcription levels compared to weighting on 

number of times mapped.  

We validated our approach with simulations, which consistently show that our 

analysis pipeline produces better results than a simple mapping-based approach. 

The results are presented in the next sections.   
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Figure 2-1. Overview of the UniMMap pipeline. Green boxes indicate pipeline input 

files. Pre-existing analysis tools used as part of the pipeline are indicated by blue 

boxes. Orange boxes represent novel steps downstream of mapping to generate 

UniMMap read counts. 
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Figure 2-2. Dot plot of the cattle LRC against itself. The dot plot was generated 

using Gepard v1.40 (Krumsiek, Arnold, and Rattei 2007) with a word length of 10. 

The LRC sequence was generated from a BAC clone by (Sanderson et al. 2014). 

Orange arrows indicate LILR genes, blue arrows indicate KIR genes and green 

arrows indicate other genes. Open arrows are genes predicted to be non-functional 

and filled arrows are predicted to be functional. 
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Figure 2-3. Dot plot of the cattle NKC against itself. The dot plot was generated using 

Gepard v1.40 (Krumsiek, Arnold, and Rattei 2007) with a word length of 10. The NKC 

sequence was extracted from UCD-ARSv0.1. Orange arrows indicate KLRA genes, 

green arrows indicate KLRC/D genes, purple arrows indicate KLRH genes, blue arrows 

indicate KLRI/E and red arrows indicate KLRK. Open arrows are genes predicted to be 

non-functional and filled arrows are predicted to be functional. 
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2.2 Methods 

2.2.1 Custom genome construction 

A pre-release of the Bos taurus genome assembly (ARS-UCD1.0.14), the first 

cattle assembly to utilise PacBio sequencing was obtained from the USDA-ARS-

(Ben Rosen and Tim Smith). The region of ARSv14 containing the LRC (chr18: 

62393497-63519120) was masked using bedtools maskfasta (Quinlan and Hall 

2010). The haplotype 1 LRC sequence (Sanderson et. al, 2014) was inserted as an 

additional chromosome (chrLRC). This custom genome will be referred to as 

ARSv14Hap1. 

Variations of ARSv14Hap1 were created by using bedtools maskfasta to mask 

selected KIR. ARSv14Hap1_nonfunc had predicted non-functional genes masked 

and ARSv14Hap1_genefamiles had both non-functional genes and all but one 

member of each of the KIR gene families removed, with the exception of 3DXL6 

which remained as its own gene family. ARSv14Hap1_genefamiles_3DXL6 is 

identical to ARSv14Hap1_genefamiles except for the masking of 3DXL6 in 

ARSv14Hap1_genefamiles_3DXL6. 

2.2.2 Custom transcriptome construction 

The genome sequence and annotation for the UMD3.1 cattle genome assembly 

was obtained from Ensembl and transcript sequences generated using gem-

retriever. A combination of BLAST (Altschul et al. 1990) and an annotation 

search was used to identify and remove NKC and LRC sequences and NKC 

transcripts from ARS-UCD1.0.14 and LRC transcripts from haplotype 1 were 

added. 

2.2.3 RNA-Seq read simulation 

Transcript sequences were generated from ARSv14Hap1 using gem-retriever 

(Marco-Sola et al. 2012) and an in-house annotation of the LRC and NKC. 

Transcript sequences were merged into a pool and separated by a known 

character. The pool was split into reads of specified length with 0 error in 

respect to the reference transcript and reads containing the known character 

discarded. Reads were converted into fastq format and each base given the 

maximium score in the Illumina Q33 quality encoding format. The exact location 

on the transcript that the simulated read originates from was written into the 
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fastq header for each read. The awk script used for read simulation is available 

in the appendix (7.1.1). 

2.2.4 Mappability calculations 

An index of the ARSv14Hap1 custom genome was generated using the GEM 

indexer (Marco-Sola et al. 2012). GEM-Mappability (Derrien et al. 2012) was run 

on the index with the approximation-threshold set to 23. The output from GEM-

Mappability was converted to bed format using gem-2-bed mappability. Per exon 

mappability was calculated with awk and bash in a bespoke script (appendix – 

7.1.2). 

2.2.5 RNA-Seq read mapping 

Reads were mapped to the ARSv14Hap1 with the GEMTools rna-pipeline 

(Lappalainen et al. 2013) using the GEM index generated previously for 

mappability calculations and the annotation used during RNA-Seq read 

simulation or the custom transcriptome. Default parameters were used with the 

exception of mismatches allowed set to 0.02 (2%). Weighted read counts 

generated from the GEMtools rna-pipeline were used as a standard in pipeline 

development. Mapping to the custom transcriptome described previously was 

carried out using GEM-mapper version 3 in sensitive mapping mode. 

2.2.6 UniMMap read counts 

When mapping to the genome, alignments passing the quality filter (GEM score ≥ 

15360) were extracted from the map file created by GEMTools rna-pipeline. 

Reads mapped to the transcriptome were extracted if they had a score greater 

than 0 (equivalent to ≥15360 in the GEMTools pipeline). The mappability scores 

of k = read-length were converted to bed format and intersected with the 

extracted alignments to determine the mappability of each alignment. Using 

awk the geometric mean of reads with multiple alignments was calculated. 

Reads mapped to a chromosome containing a regions of interest were extracted 

and placed in separate files to reduce later file size and analysis time. These 

files were intersected with the annotation of the regions of interest to identify 

reads mapping to the exons of each gene. The sum of the average mappability of 

reads as well as the sum of reads with an average mappability of 1 (unique) 

mapping to each gene was calculated. Genes that did not have any reads 
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mapping with an average mappability of 1 were removed from the gene counts. 

This pipeline is subsequently referred to as ‘UniMMap’. Read counts for this 

chapter are available at: https://github.com/richard-borne/PhD_thesis_data 

2.2.7 Length analysis of datasets on the Sequence Read Archive (SRA) 

The SRA database (Leinonen et al. 2011) was queried on 25/04/2018 to include 

only RNA-Seq data sets originating from RNA that also contained the Bos taurus 

species identifier and the run table downloaded. Runs were filtered with awk to 

only include RNA-Seq experiments. Average spot length was divided by 2 if the 

run contained paired ends. Runs were binned on read length and the number of 

runs belonging to each bin calculated in awk. 
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2.3 Results 

2.3.1 Multi-mapping is highly prevalent in the LRC and NKC 

Due to the presence of multi-mapping reads, mapping simulated 150bp single-

end reads to ARSv14Hap1 results in an average of 3.2× alignments generated to 

the LRC for each read simulated, if each alignment is given a weight 1 (figure 2-

4). All genes in the LRC have more reported alignments than number of reads 

simulated. Most of the predicted functional KIR genes show a large discrepancy 

between the number of reads simulated and the number of alignments 

generated. The functional genes that are particularly problematic are 3DXL7 

(6.8×), 3DXL4 (4.9×), 3DXL6 (4.4×), 3DXL5 (3.9×) and 3DXS1 (3.2×). The lowest 

difference of the functional KIR is KIR2DL1 (1.27×) which is close to FCAR (1.3×) 

and NCR1 (1.2×), the non-repetitive genes of the LRC. Despite reads not being 

simulated from the non-functional KIR, alignments were observed to almost all 

with the exception of 1DP1 and 1DP2. 

Mapping of simulated reads to the NKC of ARSv14Hap1 (figure 2-5) results in less 

erroneous alignments on average (2.8×) compared to the 3.2× observed in the 

LRC. However KLRC1-6 (10.4×) and KLRC2-5 (8.5×) have more multi-mappers 

than any of the genes of the LRC. KLRH2 (0.84×) and KLRC1-2 (0.4×) are the only 

genes of either complex to generate less alignments than there were reads 

simulated. Of the non-functional KLR of which no reads were simulated, only 

KLRH7 and KLRH1 did not have any reads aligning to them. The non-functional 

KLRH3 had 15710 alignments despite 0 KLRH3 reads simulated. 
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Figure 2-4. Total number of simulated reads generated and subsequently 

mapped to each gene of the LRC. The number of reads simulated for each gene 

is shown as blue bars. Orange bars indicate the total number of alignments 

generated when the simulated reads were mapped to ARSv14Hap1. Predicted 

non-functional genes are denoted with ‘_N’ after the gene name. 
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Figure 2-5. Total number of simulated reads generated and subsequently 

mapped to each gene of the NKC. The number of reads simulated for each 

gene is shown as blue bars. Orange bars indicate the total number of 

alignments generated when the simulated reads were mapped to ARSv14Hap1. 

Predicted non-functional genes are denoted with ‘_N’ after the gene name. 
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2.3.2 Maximum Illumina sequence length does not resolve mappability 

To understand how the repetitive nature of the LRC and NKC was impacting 

multi-mapping, the mappability of the genome was calculated. Mappability is a 

score describing quantitatively how many times a k-mer of length n bp occurs 

within the genome. Calculating mappability allows an accurate estimation of 

how many alignments a sequencing read from that location will generate. With 

the exception of 2DL1, none of the KIR are completely uniquely mappable at a k-

mer length of 150bp (figure 2-6). Until recently, 150bp was the maximum read 

length of an Illumina NextSeq, HiSeq or NovaSeq, the only Illumina machines 

capable of whole transcriptome sequencing of a large mammalian genome. The 

Illumina NovaSeq 6000 is however capable of generating 250bp, paired end reads 

at a depth suitable for large mammalian transcriptome sequencing. At 150bp, 

3DXL5 and 3DXL7 do not have any exons that are uniquely mappable. 200bp is 

the first k-mer length tested where every KIR has at least one uniquely 

mappable exon. At 300bp 60% of total exons have a mappability of 1 and 

3DXL5/7 are the only KIR not to have the majority of exons uniquely mappable. 

By 600bp, all of the exons of the KIR with the exception of 3DXL5 and 3DXL7 

have a mappability score of 1. At the longest tested k-mer length 3DXL5/7 still 

has the same mappability score as at a k-mer length of 600bp.  

Figure 2-7 shows the mappability of the NKC at 16 different k-mer lengths 

between 50-1000bp. The genes between and including KLRC2-5 and KLRH1 are 

almost entirely non-unique between 50-100bp with 2.5% exons unique at 50bp 

and 13.6% at 100bp. At a k-mer length of 150bp mappability improves with 39.5% 

of the exons in this region uniquely mappable and 50% of the total exons have a 

mappability score of 1. 90.4% of exons with the NKC are uniquely mappable at a 

k-mer length of 300bp. At 600bp only two exons are not completely uniquely 

mappable, KLRC2-5 and KLRC2-3 each have an exon with an average mappability 

of 0.92. The first tested k-mer length where all exons have an average 

mappability of 1 is 700bp. 

On average the LRC is more mappable than the NKC. However at the short read 

lengths typically used in RNA-Seq experiments, the highly repetitive region of 

the NKC is particularly problematic. 
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2.3.3 The Sequence Read Archive (SRA) contains a large number of Bos 

taurus RNA-Seq datasets 

The run information of the Bos taurus RNA-Seq datasets available on the 

Sequence Read Archive (SRA) as of the 25/04/2018 was investigated to 

determine how many would be suitable for transcriptional analysis of the LRC 

and NKC. Of the 6974 Bos taurus RNA-Seq projects available on the SRA, 25.5% 

are ~50bp or less and 74.8% are ~100bp or less (figure 2-8). The 5 largest out of 

the 191 total bioprojects contain 33.6% of the total runs and the largest 10 

contain 46.4%. Within the 5 largest bioprojects, 49% are ~100bp, 15.2% are 

~75bp and 35.8% are ~50bp. 29.9% of the runs contain single end reads and 70.1% 

contain paired end reads. 98.9% of the Bos taurus RNA-Seq datasets were 

generated using an Illumina machine, 79.4% of the total runs were sequenced on 

an Illumina HiSeq and 4.7% on a NextSeq. The remainder of the runs were 

generated on an Applied Biosciences (0.5%), 454 Life Sciences (0.6%), Ion Torrent 

(0.27%) or PacBio machine (0.33%). Our mappability data suggests that any 

transcriptional analysis of the LRC and NKC genes that was carried out on these 

samples will most likely not have been accurate. Analysis of LRC transcription 

within these samples would also have been inaccurate due to the very poor 

quality of the LRC assembly in the reference genome.  
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A 

Figure 2-9. Number of reads simulated and weighted counts for each gene of the 

LRC. Reads of either even coverage (A) or mixed coverage (B) were simulated and 

mapped to ARSv14Hap1. The number of reads simulated for each gene are shown as 

blue bars and the weighted counts generated by GEMTools rna-pipeline as orange 

bars. 

B 
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A 

Figure 2-10. Number of reads simulated and weighted counts for each gene of the 

NKC. Reads of either even coverage (A) or mixed coverage (B) were simulated and 

mapped to ARSv14Hap1. The number of reads simulated for each gene are shown as 

blue bars and the weighted counts generated by GEMTools rna-pipeline as orange 

bars. 

B 
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2.3.4 Accuracy of weighted counts is impacted by uneven read coverage 

Weighted read counts are counts where each sequencing read has been weighted 

based on the number of different alignments it generates. For example a read 

mapping to two genes will add 0.5 to the read count of both genes. Weighted 

counts perform well when the number of sequencing reads simulated is even for 

all functional genes in the LRC (figure 2-9A). It should be noted that in this and 

the following sections we are performing the simulations without introducing 

errors, as they might also impact the accuracy of the weighted counts. Of the 

functional KIR, only 3DXL4 (1.14×), 3DXL7 (1.07×) and 3DXS1 (1.04×) had a read 

count higher than the number of reads simulated. The average difference 

between simulated and weighted counts for the functional KIR was low (0.99×). 

With the exception of 1DP1 and IDP2 all of the predicted KIR pseudogenes were 

reported to have reads mapping to them. 2DS1 (287.5 reads) and 2DS2 (328.7 

reads) were the two predicted non-functional with the highest read count and 

3DXS3 was the lowest with a read count of 4.67.  

To determine how weighted counts would perform in a more biologically 

relevant dataset, a mixed coverage dataset was created with 100× the number 

of reads originating from 3DXL6 and 3DXL1 compared to any other gene (figure 

2-9B). For this dataset weighted counts perform poorly compared to the even 

coverage dataset, due to a larger number of reads leaking from one gene to 

another due to the presence of repetitive regions. The mixed coverage resulted 

in a 20.34× higher average of the weighted counts than the number of reads 

simulated for the functional KIR. This average is heavily skewed by 3DXS1 

(107.9×) and 3DXL4 (54.5×) and without them the average drops to 2.93×, 

although this is still much higher than the 0.99x average of the even coverage 

dataset. Once again read counts are reported to all of the predicted non-

functional KIR that reads were not simulated for, with the exception of 1DP1 and 

IDP2. A total of 5324.67 reads were counted as mapping to the non-functional 

genes, 3653.83 (68.62%) of which map to 2DS1.  

Unlike the LRC, weighted counts do not perform well for the genes of the NKC 

when reads of even coverage are simulated (figure 2-10A). In contrast to the LRC 

the reported read counts for the NKC are much lower than the number of reads 

simulated. The average difference between number of reads simulated and read 

counts for the functional KLR is 0.48×. None of the reported read counts were 
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higher than the number of reads simulated. The region of the NKC shown as 

having poor mappability scores (figure 2-7) were significantly underreported in 

the read counts. The average difference of the mixed coverage dataset (figure 

2-9B) is again higher (6.16×) than the even coverage dataset (0.48×). KLRD1 was 

the most problematic with a difference of 76.82× and KLRC1-4 (12.48×), KLRC1-3 

(7.73×) and KLRC2-5 (4.06×) were also massively over represented. The 

pseudogenes KLRI2 and KLRC2-1 had reported read counts despite no reads 

simulated. 
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2.3.5 Masking of non-functional KIR in the genome has little impact on 

functional KIR multi-mapping 

Masking of the predicted non-functional KIR in ARSv14Hap1 was carried out to 

create ARSv14Hap1_nonfunc. The same simulated mixed coverage dataset as 

used in figure 2-9 was mapped to ARSv14Hap1_nonfunc and GEMTools rna-

pipeline used to create weighted counts (figure 2-11). The difference between 

numbers of reads simulated and read counts for the functional KIR unsurprisingly 

slightly increases from 20.34× to 21.19× after the masking of non-functional 

genes. 3DXS1 changes from 107.9× to 116.2× after masking and 3DXL4 from 54.5× 

to 54.72×. As expected the number of reads mapping to the predicted non-

functional KIR drops from 5324.76 to 0. 

2.3.6 Grouping the functional KIR into gene families reduces total multi-

mapping 

Merging the KIR into their established gene families (Sanderson et al, 2014) was 

undertaken in an attempt to reduce multi-mapping as it was assumed most 

multi-mapping would occur within these families as some alleles share very high 

sequence identity. The sequence similarity between 3DXL6 and the other two 

members of its gene family, 3DXL2 and 3DXL4, is lower than within other gene 

families. For this reason two variations of the ARSv14Hap1 genome were 

created, one with a gene family consisting of 3DXL2/4/6 (figure 2-12A) and 

another with 3DXL2/4 grouped together and 3DXL6 separated on its own (figure 

2-12B).  

Merging 3DXL6 into a gene family with 3DXL2/4 increases multi-mapping for 

every gene family with the exception of the newly created 3DXL2/4/6 gene 

family for this mixed coverage dataset. Before merging, 3DXL6 is fairly 

accurately quantified with a difference of 0.91x between 3DXL6 reads simulated 

and subsequently mapped to it. Multi-mapping to the 3DXL3/5/7 gene family 

increases from 2.58× to 31.2× after masking of 3DXL6 in the genome. These 

increases are likely due to the fact that 3DXL6 is one of the genes with a high 

number of reads simulated and subsequent masking means they generate poorer 

alignments to multiple other KIR. Although multi-mapping is ultimately reduced, 

a large degree of gene transcriptional information is lost by grouping into gene 

families. 
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Figure 2-12. Number of reads simulated and weighted counts for gene families of the 

LRC. The mixed coverage simulated dataset was mapped to ARSv14Hap1_genefamilies 

(A) and ARSv14Hap1_genefamilies_3DXL6 (B) as described in the methods. The number 

of reads simulated for each gene family are shown as blue bars and the weighted 

counts generated by GEMTools rna-pipeline as orange bars. 

A 

B 



67 
 
 

2.3.7 Filtering alignments on alignment score or mappability reduces multi-

mapping 

Two alignment filtering strategies were implemented to reduce the number of 

erroneous alignments generated to the LRC and NKC. One method involved 

filtering alignments based on their GEMTools RNA pipeline score, which denotes 

the confidence of the pipeline in the uniqueness of the alignment. Alignments 

with a GEM score of 15360 or greater were selected so that only the highest 

quality alignments were carried forward. The other method examined was to 

filter for reads that aligned to a region with a mappability score of 1 at a k-mer 

length the same as read length. These two filtering techniques were also 

combined and compared to the individual filters. 

Multi-mapping to the functional KIR of the LRC is substantially reduced between 

weighted counts and the GEM and combined filtering strategies (figure 2-13A, 

14B). The average difference between simulated reads and read counts 

decreases from 20.4× in the case of weighted counts to 3.12× when filtering on 

GEM score and to 1.44× when the filters are combined. In contrast, the average 

difference in the case of the mappability filter was 34.3×, larger than the 

weighted counts. However, whilst the average difference reduces for the GEM 

filtering and combined strategies, the individual filters actually increases the 

number of reported reads by 1.2× for GEM and 1.7× for unique regions when 

compared to weighted counts. The 1.01× increase when applying both filters is 

negligible. These averages are also heavily skewed by a large amount of multi-

mapping occurring to 3DXS1. Removing 3DXS1 from the average results in a 9.4× 

difference for weighted counts, 6.4× for the mappability filter, 1.23× for the 

alignment filter and 0.60× when combining the filters. The large amount of 

multi-mapping to 3DXS1 is most likely due to the majority of 3DXL1 and 3DXS1 

being almost identical, with the exception of the sequence encoding the 

intracellular tail, as well as the mismatches allowed during RNA-Seq mapping.  

As with the LRC, when no filtering is applied to the generated alignments, a very 

large percentage of the alignments are generated from a different gene of origin 

for the majority of the genes of the NKC (figure 2-13B). Applying the GEM filter 

results in an average difference between numbers of reads simulated and read  
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A 

B 

Figure 2-14. Percentage of reads mapping to each gene that originate from a different 

gene. Reads of mixed coverage were simulated and mapped to ARSv14Hap1 separately 

for each the LRC (A) and the NKC (B). The origin of the reads mapping to each gene was 

determined and the percentage originating from a different gene calculated when no 

filter was used and for each of the two alignment filters as well as the filters combined. 
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counts of 3.67×, the mappability filter results in a 4.33× difference and when 

applying both a 1.69× difference is observed (figure 2-13B). None of the filters 

eliminate the large number of incorrectly mapped reads to the non-simulated 

KLRH3. 

2.3.8 UniMMap performs better than standard weighted counts for the LRC 

but is inaccurate for the NKC 

We created a pipeline named UniMMap that filters reads based on their 

alignment score and weights counts on the average mappability of the regions 

they map to. It also discounts read counts for genes that do not generate any 

alignments to regions of unique mappability results. An absence of any such 

alignments means transcription cannot be accurately determined. Figure 2-15A 

shows that UniMMap is much more accurate than standard weighted counts for 

the LRC. As shown initially in figure 2-9B, standard weighted counts results in 

20.4× the number of reads reported to functional KIR compared to the number 

actually simulated. In comparison UniMMap results in a 2.29× difference, which 

again is heavily skewed by multi-mappings between the almost identical 3DXL1 

and 3DXS1. If 3DXS1 is removed from the average, standard weighted counts 

drop to 9.4× and UniMMap drops to 0.92×.  

The average difference between reads simulated and counts of functional KLR 

genes of the NKC is 6.16× when using weighted counts and 16.9× for the counts 

generated by UniMMap. Notably UniMMap is problematic for KRH5, KLRC2-3 and 

KLRC2-5 with 157.64×, 64.50× and 52.38× reported read counts compared to 

number simulated respectively. UniMMap also reports read counts of 1.6x106 and 

2.1x104 for KLRH3 and KLRH4 respectively, two genes that did not have any 

reads simulated. We determined that the issue with the pipeline was caused by 

discrepancies in mappability due to the splicing that occurs during transcription 

and sought to alter the pipeline to account for this. 
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Figure 2-15. Number of reads simulated, standard weighted counts and UniMMap counts for 

each gene of the LRC (A) and NKC (B). Reads of mixed coverage were simulated and 

mapped using GEMTools to ARSv14Hap1. The number of reads simulated for each gene are 

shown as blue bars, weighted counts generated by GEMTools rna-pipeline as orange bars 

and UniMMap read counts as grey bars. 

A 

B 
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2.3.9 A precise annotation is crucial to the accuracy of UniMMap 

During development of the pipeline using a rough draft LRC annotation there 

were missing read counts to 2DL1 which should be comparatively easy to map, 

an example of which can be seen on figure 2-16. With the draft annotation, 7 of 

the genes that had reads simulated had their read counts discarded by UniMMap 

as they did not contain any reads mapping to unique regions. This indicated 

there was a fundamental issue as included within these 7 were NCR1 and FCAR, 

both of which have been accurately quantified at all stages. After creation of a 

precise annotation, UniMMap was tested again and generated read counts for the 

LRC in line with what was expected. 

2.3.10 Mapping to the transcriptome results in a substantial accuracy 

increase for UniMMap counts 

Due to the poor performance of UniMMap for the most repetitive genes of the 

NKC as well as 3DXL1/S1 of the LRC, a revised version of the analysis pipeline 

was created. Instead of the cattle genome for mapping and mappability 

calculations, the cattle transcriptome was used. Using the transcriptome instead 

of the genome provides a more accurate representation of the mappability of 

RNA-Seq reads that cross splice boundaries. The resulting UniMMap counts were 

compared to determine if transcriptome mapping resulted in an increase in 

accuracy (figure 2-17A). The average difference between reads simulated and 

UniMMap counts for the LRC drops from 2.29× to 0.76× and 3DXS1 decreases from 

13.2× to 0.82×. The number of read counts caused by reads originating from a 

different gene is reduced to 0 for all genes of the LRC (figure 2-18A) when 

analysing reads that map to a location of unique mappability.  

The difference between total number of reads simulated and total read count 

generated by UniMMap for the mixed coverage dataset is lower when mapping to 

the transcriptome (0.85×) than to the genome (2.47×) for the NKC (figure 2-17B). 

A large improvement can be seen for KLRH5 (157.64× to 0.95×), KLRC2-3 (64.50× 

to 0.70×) and KLRC2-5 (52.38x to 0.71×) which were the most problematic NKC 

genes when mapping to the genome. In contrast to mapping to the genome, 

when mapping to the transcriptome none of the genes that did not have reads 

simulated have reported read counts. None of the genes are overrepresented in 
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the transcriptome mapping UniMMap counts. As with the LRC, there are no genes 

that have reported reads mapping to mappability unique regions originating from 

a different gene. This allows complete confidence in determining whether or not 

a gene is transcribed. These improvements in count accuracy, paired with 

confidence in determining if a gene is transcribed or not meant that 

transcriptome mapping was used for all subsequent analyses. 

2.3.11 UniMMap can accurately quantify transcription of KIR gene families  

Grouping the KIR had been previously shown as a method of reducing multi-

mapping (figure 2-11) and was revisited and combined with UniMMap as a 

potential method of accurately quantifying transcription when unknown alleles 

are present in the RNA-Seq data. As before the merging of 3DXL6 with 3DXL2/4 

decreases the accuracy of the UniMMap counts (figure 2-18B). The 3DXL2/4/6 

gene family results in underreporting of the total counts (91.3%) whereas when 

3DXL6 is separate the UniMMap counts account for 99.9% of the number of reads 

simulated (figure 2-18A). Gene family read counts are accurate for the gene 

families when 3DXL6 is separated, the average difference between reads 

simulated and read count is 4.4%, the highest is 15% (3DXL3/5/7) and the lowest 

0.01% (3DXL6). When 3DXL6 is included with 3DXL2/4, the average difference is 

650%, the highest is 3DXL3/5/7 (2631%) and lowest is 2DL1 (0.34%). 
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Figure 2-17. Number of reads simulated, standard weighted counts, UniMMap 

genome and UniMMap transcriptome counts for each gene of the LRC (A) and 

NKC (B). Reads of mixed coverage were simulated and mapped using GEMTools 

to ARSv14Hap1 or GEM-mapper to the UMD3.1 transcriptome.  

B 

A

B 
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Figure 2-18. Number of reads simulated and UniMMap counts for gene families 

of the LRC. The mixed coverage simulated dataset was mapped to 

ARSv14Hap1_genefamilies (A) and ARSv14Hap1_genefamilies_3DXL6 (B) as 

described in the methods. The number of reads simulated for each gene 

family are shown as blue bars and the weighted counts generated by UniMMap 

as orange bars. 

A 

B 
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2.3.12 Characterisation of KIR transcription in humans with UniMMap 

To confirm the effectiveness of UniMMap on real RNA-Seq data, as well as its 

adaptability to other species, it was used to generate read counts from 

publically available RNA-Seq datasets (Küçük et al. 2016). The datasets were 

produced from resting and 48 hour IL-2 stimulated NK cells from a single human 

donor. Read counts were generated only for the LRC genes as the human NKC 

has not expanded to the same extent as in cattle. Subsequently, it would not 

provide an accurate representation of mapping to the cattle NKC.  

Of the 18 human KIR, we observed transcription of 9 (figure 2-19). As this data 

was generated by Küçük et al 2016, we compared the results of our analysis with 

theirs. However a complete comparison is not possible as they did not analyse 

the full repertoire of human KIR genes (14/18 KIR). The two analyses vary in the 

presence/absence of transcription of a number of genes; UniMMap does not 

report transcription of 2DL2, 2DS1, 2DS2, 2DS5 and 3DS1. Of the four genes not 

analysed by Küçük et al, we observed transcription of all (3DL2, 3DP1, 3DL3 and 

2DP1). Two of the four are pseudogenes (3DP1 and 2DP1), transcription of 3DP1 

is very low with an average of 0.09 reads per million reads mapped (RPM). For 

the genes contained in both sets of analyses, we observe similar results. 

Particularly with regards to the increase of 2DL4 and decrease of 2DS4 

transcription in the cytokine stimulated population. 
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Figure 2-19. UniMMap results from two human NK RNA-Seq datasets. Reference 

sequences were generated by clustering all alleles present on the IPD-KIR database for 

each gene and generating a consensus sequence. RNA-Seq data from resting and 48-hour 

IL-2 activated NK cells was acquired from the SRA using accession number SRA200820. 

UniMMap was used to determine read counts from the RNA-Seq data. Read counts were 

normalised based on the number of reads mapped for each sample. Purple bars indicate 

the normalised read count for resting NK cells and black bars indicate 48-hour IL-2 

activated NK cells. 
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2.4 Discussion 

The handling of multi-mapping reads between regions of high sequence similarity 

is a common problem in RNA-Seq analysis. Multi-mapping reads can cause over-

reporting of gene read counts as well as non-transcribed genes appearing to be 

transcribed. Due to the highly repetitive nature of the bovine LRC and NKC, 

generating accurate read counts to the genes of these complexes is not possible 

with current methods. The mapping of simulated 150bp RNA-Seq reads was used 

to compare and develop multiple methods of generating read counts to 

accurately measure gene transcription within the LRC and NKC. The ability to 

accurately determine transcriptional status (whether or not a gene was 

transcribed) was also assessed. Using these results, a custom pipeline named 

UniMMap was created that generates accurate read counts for the genes of the 

LRC and NKC, as well as increased accuracy in determining transcriptional 

status. Grouping the genes of the cattle LRC into pre-established gene families 

before applying the pipeline will enable greater accuracy when encountering 

haplotype variation as well as helping to account for the polymorphic nature of 

genes within the LRC. UniMMap will enable the analysis of existing and newly 

generated short-read RNA-Seq datasets at a level of accuracy not previously 

possible. 

 

2.4.1 LRC and NKC sequences in Illumina RNA-Seq datasets cannot be 

accurately mapped using current methods 

Mappability calculations for the LRC and NKC pinpoints the highly repetitive 

regions of these gene complexes and provides an explanation for the large scale 

multi-mapping observed. Longer reads solve most of the multi-mapping issues 

but currently no sequencing technology is available that provides both long reads 

and the high-read coverage needed to accurately measure global gene 

transcription. Also motivating the development of a new analysis pipeline, was 

the availability of a large number of publically available Bos taurus RNA-Seq 

datasets generated using Illumina short reads (≤150bp). Although none of these 

datasets originate from an enriched NK population, the retroactive analysis of 

these datasets with UniMMap will allow the creation of an atlas of NK receptor 

transcription in cattle (discussed in chapter 4). Use of these datasets is also 

important as part of the principles of the 3Rs (Replacement, Reduction and 
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Refinement) as it greatly reduces the need to generate a large amount of new 

datasets to analyse tissue-specific transcription of genes within the LRC and 

NKC. 

 
2.4.2 Filtering strategies are vital to reduce erroneous alignments 

Mismatches must be allowed when aligning RNA-Seq reads to a genome to 

account for sequencing error and differences between the genome of the 

individual/s used to produce the reference assembly and the individual the RNA-

Seq data originated from. Allowing mismatches also has the undesired effect of 

increasing the number of alignments to the wrong genomic location, particularly 

when the sequencing reads originate from repetitive gene complexes. As these 

alignments are often (but not always) of lower quality, stringent filtering on 

alignment quality is vital to reducing the number of multi-map alignments. As 

multi-map alignments are not always of lesser quality, a second alignment filter 

is needed based on the underlying mappability. Filtering on mappability allows 

the isolation of reads mapping to a region known to be unique to an individual 

gene and consequently creates high-confidence in the accuracy of the 

alignment.  

 

2.4.3 RNA splicing requires mappability to be calculated on the 

transcriptome rather than genome 

Mappability of the genome at any given position does not always directly 

correlate to that of an RNA-Seq read alignment originating at the same position. 

Splicing means that an RNA-Seq read may not span the same region as the k-mer 

used to calculate mappability at that position. This issue was particularly 

noticeable in the NKC as the average exon length is shorter and so the likelihood 

of a read covering a splice event is increased. Calculating the mappability and 

subsequent mapping to the transcriptome eliminates this issue as the 

mappability is calculated on sequence that has already undergone splicing. 

Mapping to the transcriptome resulted in subtle changes to the final UniMMap 

read counts in the LRC with the exception of 3DXS1, the accuracy of which was 

substantially improved. Improvements to read count accuracy are much more 

immediately noticeable in the NKC, in particular the highly repetitive region 

between KLRC2-5 and KLRH1. In contrast to genome mapping, determination of 

transcriptional status was completely correct when mapping to the 
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transcriptome. Calculating mappability of the transcriptome instead of the 

genome has the added benefit of increasing the number and size of unique 

regions as the impact of non-transcribed sequence on mappability is removed. If 

reads map to the unique regions of a transcript we can be confident the gene is 

transcribed as reads originating from that region should map only to that region. 

Increasing the size and number of unique regions allows a greater number of 

reads to be used and increases overall accuracy, especially in low coverage 

datasets. The downside of using the transcriptome for mapping in general is that 

it relies on a very accurate reference sequence and annotation to generate the 

transcripts, however both of these elements are already required by UniMMap 

regardless of if the genome or the transcriptome are used for calculating 

mappability. 

 
2.4.4 Gene families are a pre-emptive method of dealing with haplotype 

variation 

As well as accurate quantification of individual genes, UniMMap is accurate when 

grouping the KIR genes into their established gene families. This can be critical 

due to the haplotypic variation of the LRC, the extent of which is currently 

unknown. The genes of the LRC are also highly polymorphic. This polymorphism 

can be observed when comparing haplotype 1 and haplotype 2, the two known 

haplotypes. Although not full length, haplotype 2 is identical in gene content 

whilst allelically completely different over the length of the overlapping region. 

The most striking example of polymorphism within the LRC is KIR3DXL6, for 

which both functional/non-functional and activating/inhibitory variants have 

been discovered. Gene families will allow the capture of reads from KIR that are 

divergent from those present in the known haplotypes in the event that the 

current method does not, although at the cost of individual gene resolution. 

Until new finalised haplotype assemblies are available, it is not possible to 

determine the necessity of the gene family methodology as haplotype 2 does not 

contain any genes not present in haplotype 1, on which the pipeline was 

developed.  

2.4.5 UniMMap reports a valid KIR haplotype in human RNA-Seq data  

Analysing real RNA-Seq datasets, allows us to determine the accuracy of 

UniMMap with the addition of various errors and biases present in RNA-Seq data. 

Using human data allows us to utilise the large amount of information regarding 



83 
 
haplotypes and individual gene transcription/expression to determine accuracy. 

The genes reported as transcribed by UniMMap are of a valid human KIR 

genotype (Hsu et al. 2002; Pyo et al. 2010), indicating the individual sequenced 

is homozygous for haplotype A. Transcription of 3DS1 was reported by Küçük et 

al (2016) but not by UniMMap. It is most likely a result of multi-mapping, 3DS1 is 

a B haplotype specific KIR and is always present with 2DL5A, which was not 

observed. Interestingly, they did not include 3DL3 or 3DL2 in their analysis, two 

KIR that are present in all sequenced humans. UniMMap reports 3DL2 as the 

highest transcribed gene in the resting population and second highest in the 

stimulated. Potentially the 3DL2 reads were mapped to other non-transcribed 

KIR by Küçük et al (2016). Transcription of both pseudogenes (3DP1 and 2DP1) 

was reported by UniMMap. The mRNA of the pseudogenes 2DP1 and 3DP1, is 

frequently observed in NK cells (Professor Paul Norman, University of Colorado 

Denver, personal communication). The results of the analysis provide high 

confidence in the ability of UniMMap to accurately resolve read counts for 

complex regions of a genome, particularly as it reports a valid genotype.  

2.4.6 UniMMap conclusions 

Current RNA-Seq methodologies are not sufficient for the analysis of 

transcription of the LRC and NKC. UniMMap is able to provide accurate read 

counts and more importantly, provides confidence in determining the 

transcriptional status of the genes of the LRC and NKC. We have prepared a 

modified pipeline that utilises UniMMap to provide accurate read counts for KIR 

gene families in the event that haplotype variation increases the complexity of 

mapping to individual genes. As the poor mappability and resulting multi-

mapping is due to the gene duplication and conversion events that gave rise to 

the NKC and LRC, many other gene complexes that evolved through similar 

mechanisms are likely to share the difficulty of mapping short RNA-Seq reads. It 

is therefore possible to use UniMMap to accurately assess transcription of other 

gene complexes of Bos taurus as well as other species, providing the gene 

complex in question has been accurately assembled and annotated. 
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Chapter 3. Transcriptional analysis of cattle LRC and NKC 

genes 

 

3.1 Introduction 

 

Natural killer cells are tightly controlled by the balance of activating and 

inhibitory receptors on their cell surface. The most important receptors for 

control of the NK functional response are encoded by genes in either the LRC or 

the NKC. These receptors are highly polymorphic and the majority recognise 

MHC class I (Lanier and Phillips 1996). Genotypic, and allelic variation within 

these loci has been shown to contribute to differential outcomes for various viral 

infections, pregnancy and autoimmune diseases (Kim et al. 2008; Alter et al. 

2007; Colucci 2017; Liang, Ma, and Tan 2017). The level of KIR expression on the 

cell surface can also influence disease outcome. KIR expression levels vary 

between alleles, some are not expressed on the cell surface but are detectable 

intracellularly (Pando et al. 2003). Individual NK cells also differ in their 

receptor repertoires; Yawata et al (2006) examined expression of six KIR in NK 

cells from 58 humans and observed 64 subsets expressing all possible receptor 

combinations in all individuals. This variegated expression between individual NK 

cells creates cell populations that are differentially responsive, which is more 

difficult for a pathogen to overcome.  

In comparison to the more extensively studied human and mouse models, little is 

known about genotypic or allelic diversity in cattle. However, it has been shown 

that cattle have undergone an expansion of these loci to an extent not observed 

in other species. This significant expansion could potentially lead to even 

greater diversity in the NK receptor repertoire of individual NK cells and 

subsequently NK populations. We can predict which of the genes within these 

loci are likely to be transcribed based on their nucleotide sequence in the 

relatively few well-characterised haplotypes (Sanderson et al. 2014). However, 

it is possible functional alleles of predicted non-functional genes exist in 

uncharacterised haplotypes as some alleles are considered null based on very 

few mutations. Also unknown is how many of these receptors are specific to NK 
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cells, rather than more general leukocyte receptors, or are transcribed only in 

specialised NK populations such as liver NK cells. 

As a first step in understanding the extent to which the genetic diversity in 

cattle results in a diverse NK cell population, Allan et al (2015) compared NK cell 

receptor transcription between MHC homozygous cattle of two contrasting 

genotypes. Although they were able to examine only a subset of the total 

receptors, they used PCR to show variable transcription of five receptor genes 

including 3DXL6, independent of MHC class I genotype. Additionally they 

investigated transcription in individual NK cells and found four KLR genes were 

consistently observed in the population data but varied at the individual animal 

level. They also observed variable transcription of 3DXL1, 3DXL6 as well as the 

3DXL3/5/7 KIR group between the individual NK cells. 

To further examine this differential transcription, UniMMap was used in 

combination with four high coverage RNA-Seq datasets from two animals to 

compare the transcription profiles of the LRC and NKC between peripheral blood 

mononuclear cells (PBMCs) and NK cells. Whole transcriptome sequencing 

enabled the first analysis of transcription of the entire LRC and NKC and the 

investigation of transcription of these genes in the context of global 

transcription. 
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3.2 Methods 

3.2.1 Preparation of samples for RNA-Seq 

All animal experiments were approved by The Pirbright Institute Ethics 

Committee and carried out in accordance with the U.K. Animal (Scientific 

Procedures) Act 1986. This work was carried out under home office license 

number P7A651E99 ‘Supply of ruminant and porcine blood for virus infection 

research and diagnostic’. Two overtly healthy animals were selected from the 

Pirbright MHC homozygous herd and 200ml of blood taken from each animal on 

two separate days. PBMCs were isolated from blood by underlaying histopaque-

1083. PBMCs were mixed with GR13.1, an antibody for NCR1, and then incubated 

with MACS IgG beads. NCR1+ cells were then isolated using an autoMACS Pro 

Separator running the positive selection protocol. The population purity was 

then assessed using a MACSQuant Analyzer 10 (supplementary figure 3-1). The 

isolated cells were resuspended in Trizol and stored at -80°C. Total RNA was 

extracted from the cells using an Invitrogen PureLink RNA Mini Kit and quantified 

using an Agilent TapeStation. Samples with an RNA intergrity number (RIN) of 8.0 

or above were taken forward. RNA from NK cells originating from the same 

animal but isolated on different days was pooled to generate enough material 

for sequencing as well as to minimise day-to-day variation. 

3.2.2 RNA-Seq library preparation and sequencing 

Total RNA was sent to the University of Liverpool Centre for Genomic Research 

for sequencing. Dual-indexed, strand-specific libraries were generated using 

NEBNext polyA selection and the Ultra Directional RNA library preparation kit. 

Libraries were sequenced on a lane of an Illumina HiSeq 4000 generating paired-

end, 150bp from >280M clusters. 

3.2.3 UniMMap analysis of samples 

The UniMMap pipeline is described fully in chapter 2. Briefly, GEM-Mappability 

was run on the custom UMD3.1 transcriptome with a k-mer length of 150bp and 

the approximation threshold disabled. RNA-Seq reads from each sample were 

mapped to the UMD3.1 custom transcriptome using GEM-Mapper. The resulting 

alignments were intersected with the mappability of the transcriptome and the 

average mappability of each read determined. Read counts of each gene were 

weighted on the average mappability of the reads aligning to them. The read 
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counts for genes that have no alignments to a region of mappability=1 were set 

to 0. Read counts were normalised based on the number of reads mapped in 

each sample to produce a reads per million reads mapped (RPM) value for each 

gene. Read counts for this chapter are available at: https://github.com/richard-

borne/PhD_thesis_data 

3.2.4 RNA-Seq aligner comparison 

Salmon (Patro et al. 2017) was run using the UMD3.1 transcriptome, as used with 

UniMMap. The custom ARSv14hap1 genome created and used previously (chapter 

2) was the reference for both STAR (Dobin et al. 2013) and Tophat2 (D. Kim et 

al. 2013). Salmon was run in quant mode with default parameters except for 

defining library type and read counts output automatically. STAR was also ran 

using default parameters and read counts obtained by setting the quantMode 

parameter to GeneCounts. Tophat2 was again run using default parameters 

except to define library type, read counts were obtained by running 

featureCounts (Liao, Smyth, and Shi 2014) from the Subread package on the 

output alignment file. Genes were ranked in order of highest to lowest read 

count for each of the analysis methods. 

3.2.5 Whole transcriptome analysis 

RNA-Seq reads from each sample were mapped to the UMD3.1 genome in 

combination with the UMD3.1.92 annotation using the GEMTools-rna pipeline 

with default settings. Weighted read counts were generated by the pipeline for 

each of the genes in the annotation. Gene names were obtained for genes of 

interest by converting the Gene IDs using Ensembl BioMart (Kinsella et al. 2011). 

Read counts were normalised to reads per million reads mapped (RPM) for 

comparison between samples. Gene IDs of the genes for which read counts were 

at least one fold higher in the NK dataset were extracted using awk, imported 

into Reactome (Fabregat et al. 2018) and mapped to known Bos taurus 

identifiers. 
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3.3 Results 

3.3.1 UniMMap read counts for a majority of NKC and LRC genes are higher 

after positive selection for NCR1+ cells 

NCR1 expression is currently the best marker of cattle NK cells, and facilitates 

cell enrichment using positive selection with NCR1 specific antibodies. To 

understand whether LRC/NKC gene transcription is specific to NK cells, PBMC 

and subsequently NK cells were isolated as described in the methods of this 

chapter from two animals belonging to an MHC homozygous cattle herd.  The 

population of cells isolated from PBMCs was found to be consistently between 

60-65% NCR1+. 

Transcription of NCR1 was assessed to confirm selection of an NCR1+ population 

(supplementary figure 3-2) and a 16.5x increase was observed in the NK 

population compared to PBMCs. For the LRC genes, transcription of genes 

considered to encode null alleles based on the annotation of haplotype 1 

(Sanderson et al. 2014) was detected in both the PBMC and NK populations, 

accounting for 53.86% of the observed transcription in the average PBMC 

population and 58.85% in the average NK cell population (figure 3-1). Read 

counts across the LRC are higher in all cases for the NK population compared to 

PBMCs. The average read count of the two PBMC populations across the LRC is 

5.43 RPM and increases to 23.39 RPM in the NK population. The smallest 

difference in transcription between PBMCs and NK cells is for 3DXL7 where the 

normalised read count is 1.80x higher in the NK population. The largest 

difference is observed for 2DL1 which has a read count 12.85x higher in the NK 

population. The average difference between the two populations is 5.15x.  

NKC gene transcription between the two cell populations illustrated that like the 

LRC, transcription of genes previously found to encode null alleles was observed 

in the averaged PBMC population (figure 3-2). The gene with the largest increase 

in the average NK population was KLRC2-2, which was 16.80x higher. The 

smallest difference for a gene with a higher read count in the NK population was 

KLRC2-5 (1.31x) and the average difference was 2.57x. KLRH6 and KLRC2-3 were 

only detected in the average NK population and KLRH3 was only detected in the 
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Figure 3-1. Normalised average UniMMap read counts for genes of the LRC from PBMC 

and NK RNA-Seq. UniMMap was run on two cattle PBMC and two cattle NK 150bp, 

paired-end RNA-Seq datasets and the resulting read counts normalised to RPM. Read 

counts across each cell type were averaged. Green bars indicate the average read 

count from PBMCs and the blue bars the average from NK cells. 
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Figure 3-2. Normalised average UniMMap read counts for genes of the entire NKC (A) and 

the region between KLRA and KLRJ (B) from PBMC and NK RNA-Seq. UniMMap was run on 

two cattle PBMC and two cattle NK 150bp, paired-end RNA-Seq datasets and the resulting 

read counts normalised to RPM. Read counts across each cell type were averaged. Green 

bars indicate the average read count from PBMCs and the blue bars the average from NK 

cells. 
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average PBMC population. Read counts were very low for many of the genes of 

the NKC, 17 out of the 24 detected genes have a read count lower than 1 RPM in 

either of the populations. It is therefore possible that the genes that were not 

observed were transcribed at a level we were unable to detect. 

3.3.2 There is large variation in LRC/NKC gene read counts between the two 

NK populations but not in transcriptional status 

The two NK populations were compared to determine the level of variation in 

read counts for each of the genes of the LRC and NKC between the two animals 

as to determine if any genes were differentially transcribed. To enable 

comparison between the animals 1020 and 1021, the read counts generated by 

UniMMap were normalised to RPM based on the number of reads mapped for 

each animal. 

In the LRC, only 2DS1, 3DXL7, 3DXL3 and 2DL1 are transcribed more highly in 

animal 1021 than 1020 (figure 3-3). The read counts of 3DXL5 (0.47 RPM and 0.48 

RPM) and 3DXL2 (0.20 RPM in both) are almost identical in the two animals. The 

normalised read count to the entire LRC is 30.01 RPM for animal 1020 compared 

to 16.77 RPM in animal 1021. The largest difference occurs when comparing 

3DXL3 between animals where there are 9.72x more reads per million in animal 

1021. Transcription of null alleles accounts for 64.79 % of the total transcription 

of the LRC in 1020 and 48.23 % in animal 1021. 

The difference in total reads per million mapped between the two animals is 

much greater for the NKC than the LRC, transcription in animal 1020 (100.30 

RPM) is double that of animal 1021 (47.8 RPM) (figure 3-4). Of the additional 

52.5 RPM mapped to the NKC in animal 1020, 37.8 RPM are from just three genes 

(KLRI2, KLRK and KLRE).  In animal 1020, these three genes account for 67.13% 

of the total transcription observed for the 27 genes of the NKC. The same three 

genes represent 58.14% of the total NKC transcription observed for animal 1021. 

The majority of transcripts identified from the NKC were from genes located 

between KLRI2 and KLRE, 96.13% in animal 1020 and 91.57% in 1021. 
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Figure 3-3. Average UniMMap read counts for genes of the LRC from NK cells isolated 

from two animals of different MHC class I haplotypes. UniMMap was run on two cattle 

NK 150bp, paired-end RNA-Seq datasets and read counts across each cell type 

averaged. Read counts were normalised to RPM. Orange bars indicate the UniMMap 

RPM from animal 1020 and the yellow bars from animal 1021. 
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Figure 3-4. Average UniMMap read counts for genes of the NKC (A) and the region 

of the NKC between KLRA and KLRJ (B) from NK cells isolated from two animals of 

different MHC class I haplotypes. UniMMap was run on two cattle NK 150bp, paired-

end RNA-Seq datasets and read counts across each cell type averaged. Read counts 

were normalised to RPM. Orange bars indicate the UniMMap RPM from animal 1020 

and the yellow bars from animal 1021. 
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In the region of much lower transcription, between KLRA and KLRJ, 10 of the 18 

genes are more highly transcribed in animal 1021. The only gene in the NKC in 

which transcription does not differ between the samples is KLRC2-5, although 

the transcription of KLRA is only 1.03x higher in 1021 than 1020. Comparing 

transcriptional status of the genes of the NKC between the samples shows that 

KLRC2-3 and KLRH5 are observed in only animal 1021. However, the pre-

normalised read count for KLRC2-3 in animal 1021 was just six and so it is 

difficult to say with certainty if it is not transcribed in animal 1020 or if it is not 

detected due to low coverage.  

We demonstrate a clear transcriptional bias to one end of the NKC, with the 

majority of the reads originating from just three genes in both of the animals. 

Although double the reads mapped to the NKC in one animal compared to the 

other, there is little difference in read counts for most of the NKC genes, 71% of 

the extra reads originate from the three most transcriptionally active genes. 

3.3.3 There is a large variation in read counts generated to the LRC/NKC 

genes between analysis methods 

As discussed in the previous chapter, standard analysis methods are unable to 

provide accurate read counts for transcripts originating from many genes located 

within the LRC and NKC. UniMMap was developed using simulated data and has 

been shown to provide accurate read counts even when the number of reads 

originating from different genes vary by an order of magnitude. To gauge the 

impact UniMMap has on read counts from RNA-Seq datasets, the read counts 

obtained from UniMMap were compared to three commonly used RNA-Seq 

analysis tools. 

Read counts were generated by each RNA-Seq analysis tool for both of the NK 

populations (animals 1020 and 1021) and compared for the LRC (figure 3-5). For 

animal 1020, Salmon and Tophat2 produce similar read counts for many of the 

KIR. When generating read counts from animal 1021 however, Salmon often 

produced read counts much higher than Tophat2. Tophat2 produced the highest 

total read count to the LRC for animal 1020 (2884 total reads), Salmon produced 

2602.74 and STAR and UniMMap produced 1516.49 and 1335.17 respectively. 

UniMMap reported the lowest total read count for the LRC for animal 1021  
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Figure 3-5. LRC gene read counts from cattle NK RNA-Seq from animal 1020 (A) and 

1021 (B) generated by four RNA-Seq analysis methods. The same sample was 

analysed using UniMMap (light green bars), Salmon (blue bars), STAR (yellow bars) 

and Tophat2 (dark green bars). Salmon, STAR and Tophat2 were all run using 

default parameters. 
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Animal 1020 UniMMap Salmon STAR Tophat2 Largest Difference

3DXL6 2 3 3 3 1

2DS3 1 2 2 2 1

3DXS3 7 9 6 5 4

3DXL7 9 7 7 6 3

1DP2 15 15 15 15 0

3DXL4 13 12 10 10 3

2DS2 3 1 1 1 2

3DXS2 5 8 13 13 8

3DXL5 11 5 9 8 6

1DP1 16 16 16 16 0

3DXL2 14 14 14 14 0

2DS1 10 13 11 12 3

3DXL3 6 6 5 7 2

3DXS1 8 10 8 9 2

3DXL1 12 11 12 11 1

2DL1 4 4 4 4 0

Animal 1021 UniMMap Salmon STAR Tophat2 Largest Difference

3DXL6 2 3 3 3 1

2DS3 1 2 2 2 1

3DXS3 5 4 9 4 5

3DXL7 9 6 7 8 3

1DP2 15 15 15 15 0

3DXL4 10 11 12 11 1

2DS2 3 1 1 1 2

3DXS2 4 5 8 5 4

3DXL5 11 8 5 9 6

1DP1 16 16 16 16 0

3DXL2 13 12 14 13 2

2DS1 12 13 13 14 2

3DXL3 14 14 6 12 6

3DXS1 6 7 10 6 4

3DXL1 8 10 11 10 3

2DL1 7 9 4 7 5

Figure 3-6. Comparison of transcriptional rank of the genes of the LRC generated from 

multiple analysis methods from animal 1020 (A) and 1021 (B). The 150bp paired-end RNA-

Seq dataset of an NK population (animal 1020) was used to compare transcriptional rank 

of the genes of the LRC from read counts generated from UniMMap as well as three 

commonly used RNA-Seq analysis tools. Colours indicate a heat map of green (highest) to 

red (lowest) based on the ranking. 
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Figure 3-7. NKC gene read counts from cattle NK RNA-Seq from animal 1020 (A) and 

1021 (B) generated by four RNA-Seq analysis methods. The same sample was 

analysed using UniMMap (light green bars), Salmon (blue bars), STAR (yellow bars) 

and Tophat2 (dark green bars). Salmon, STAR and Tophat2 were all run using 

default parameters. 
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  Animal 1020 UniMMap Salmon STAR Tophat2 Largest Difference

KLRA 10 10 10 9 1

KLRC1-7 13 12 11 14 3

KLRH7 21 26 27 27 6

KLRC2-5 14 18 14 22 8

KLRC1-6 22 23 13 18 10

KLRH6 16 25 26 26 10

KLRC2-4 23 27 22 25 5

KLRH5 24 24 17 24 7

KLRC1-5 15 20 9 23 14

KLRH4 20 22 20 21 2

KLRC1-4 25 21 25 19 6

KLRH3 26 17 19 17 9

KLRC2-3 27 19 23 20 8

KLRC1-3 18 13 21 15 8

KLRH2 12 11 18 16 7

KLRC1-2 11 7 7 7 4

KLRH1 19 15 16 13 6

KLRJ 9 9 12 8 4

KLRI2 1 2 3 3 2

KLRI1 5 6 6 4 2

KLRC1-1 6 5 5 5 1

KLRC2-2 7 8 15 10 8

KLRC2-1 8 14 24 11 16

KLRK 3 1 1 2 2

KLRD1 4 4 4 6 2

KLRD2 17 16 8 12 9

KLRE 2 3 2 1 2

Animal 1021 UniMMap Salmon STAR Tophat2 Largest Difference

KLRA 8 10 10 9 2

KLRC1-7 15 11 12 10 5

KLRH7 24 26 27 27 3

KLRC2-5 13 14 23 21 10

KLRC1-6 14 13 11 12 3

KLRH6 16 25 26 26 10

KLRC2-4 25 22 25 25 3

KLRH5 21 17 15 13 8

KLRC1-5 10 9 9 19 10

KLRH4 20 20 19 18 2

KLRC1-4 26 27 24 23 4

KLRH3 27 19 21 15 12

KLRC2-3 19 23 20 20 4

KLRC1-3 17 21 14 22 8

KLRH2 18 18 22 24 6

KLRC1-2 7 7 6 7 1

KLRH1 23 16 18 17 7

KLRJ 12 12 16 11 5

KLRI2 2 3 3 3 1

KLRI1 6 6 5 5 1

KLRC1-1 5 5 7 6 2

KLRC2-2 11 15 13 14 4

KLRC2-1 22 24 17 16 8

KLRK 3 1 2 2 2

KLRD1 4 4 4 4 0

KLRD2 9 8 8 8 1

KLRE 1 2 1 1 1

Figure 3-8. Comparison of transcriptional rank of the genes of the LRC generated from 

multiple analysis methods from animal 1020 (A) and 1021 (B). The 150bp paired-end RNA-

Seq dataset of an NK population (animal 1020) was used to compare transcriptional rank 

of the genes of the LRC from read counts generated from UniMMap as well as three 

commonly used RNA-Seq analysis tools. Colours indicate a heat map of green (highest) to 

red (lowest) based on the ranking. 
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(813.83) compared to Salmon (1516.50), STAR (1355) and Tophat2 (1483). Null 

alleles account for 64.79% of the total counts generated by UniMMap compared 

to 73.87% by Salmon, 58.98% by STAR and 67.41% by Tophat2. Ranking the order 

of the genes based on read count for each of the analysis tools (figure 3-6), 

shows which genes are the most variable between the analysis tools. For animal 

1020, the only genes that have the same ranking in all methods are 1DP1 and 

1DP2, which have read counts of 0 in all cases. Animal 1021 has two additional 

genes that have identical rankings, 3DXL2 is ranked 14th and 2DL1 is 4th for each 

analysis method. For animal 1020, 3DXL6, 2DS3 and 3DXL1 and for animal 1021, 

3DXL6, 2DS3 and 3DXL4 had a maximum difference of one in the rankings. Most 

difficult to rank for animal 1020 was 3DXL5, which differed six places in the 

rankings between UniMMap and STAR, and 3DXL3, which differed six places 

between STAR and UniMMap/Salmon. In animal 1021, 3DXS2 differed eight places 

between UniMMap and STAR/Tophat2. As with animal 1020, 3DXL5 differed by 

six places for animal 1021, in this case however the largest difference was 

observed between UniMMap and Salmon. UniMMap agreed with the ranking of 

another analysis method 13 times out of the 32 total rankings of each sample 

combined. 

Comparing the read counts generated by the various analysis tools to the NKC 

genes reveals just how variable the reported read counts can be (figure 3-6). 

The total read count for the NKC in animal 1020 generated by UniMMap was 

4467.90, Salmon reported 7114.78 total reads, STAR reported 3513.31 reads and 

Tophat2 reported 10,348 reads, a read count more than double two of the other 

tools examined. When analysing animal 1021, Tophat2 produces a total read 

count of 5041 to the NKC, again higher than UniMMap (2317.27), Salmon 

(3513.31) and STAR (4143). The percentage of read counts to null alleles in the 

NKC is variable in animal 1020, the highest percentage is UniMMap (25.29%) and 

lowest is STAR (17.72%). Less variability is seen in the percentage of reads 

counts to null alleles in animal 1021, the highest is again UniMMap (19.53%) and 

lowest is Tophat2 (15.55%). As with the LRC, the transcription rankings of the 

NKC generated by each analysis tool were calculated (figure 3-8). The larger 

number of genes in the NKC allows for greater variation in the rankings and this 

can be observed with KLRC2-1 which is ranked 16 positions higher by UniMMap 

than STAR in animal 1020 and eight places higher in animal 1021 by Tophat2 
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than Salmon. The positional ranking for KLRC1-5 is also inconsistent in both 

samples, a difference of 14 between STAR and Tophat 2 in animal 1020 and a 

difference of 10 between Salmon/STAR and Tophat2 in animal 1021. The only 

gene ranked identically by all aligners was KLRD1 in animal 1021 which was 

ranked as the 4th highest transcribed gene of the NKC. In animal 1020 and 1021, 

eight and 10 of the samples had a maximum difference of two or less 

respectively. We show that there is large variation in both the total and relative 

read counts produced by each tested analysis method. The variation in relative 

read counts leads to inconsistent rankings of gene transcription between the 

methods. UniMMap also provides confidence that that the haplotype 1 null-

alleles are transcribed, rather than a result of multi-mapping. 

3.3.4 There is little variation in the top 100 genes transcribed in each cell 

population from either animal 

To understand which genes are the most transcriptionally active in both PBMCs 

and the NK cell subset, the top 100 transcribed genes from each sample were 

compared. Despite polyA selection during library preparation, on average 18 of 

the top 100 genes for each sample were ribosomal related genes, these genes 

were removed from subsequent analyses. The top 100 non-ribosomal related 

genes were identified for each cell population and combined, producing 138 

unique genes IDs. The read counts for these 138 genes were then extracted for 

each population of cells, normalised to reads per million and transformed to 

their square root values to reduce the size of the range of values (figure 3-9). 

Out of the 138 genes compared, 35 were not identified by Ensembl BioMart and 

were labelled as ‘Uncharacterised’. Further investigation into 

Uncharacterised_19, of which transcription was much higher in PBMCs and NK 

cells from animal 1021 than 1020, reveals it is major histocompatibility complex 

class II, DQ beta (BOLA-DQB). Uncharacterised_38 and Uncharacterised_3 have 

higher transcription in the two NK samples and are located on chromosome 21 

and 8 in UMD3.1 respectively, and each produced a transcript coding for multiple 

immunoglobulin C1-set domains. As the majority of the top 100 genes from each 

sample are shared between all of the samples, global transcription was next 

analysed to identify transcription patterns unique to either population. 
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Figure 3-9. Comparison of the top 100 transcriptionally active genes in each sample. The 

100 non-ribosomal related genes with the highest read count generated by GEMTools 

were identified for each sample and collated to produce a list of 138 unique genes IDs. 

Gene IDs were imported into Biomart (Kinsella et al. 2011) to produce gene names and 

descriptions for each ID. Read counts for each of the 138 genes were extracted for each 

sample and normalised to RPM and transformed to their square root values to reduce the 

scale of the range of read counts. A heatmap was generated using the superheat package 

in R. Hierarchical clustering was applied during heatmap generation to order the rows. 
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3.3.5 Whole transcriptome variation exists between cattle PBMC and NK 

populations 

As general gene transcription in cattle NK cells is poorly understood, we 

compared global transcription between our PBMC and NK cell populations to 

identify genes transcribed more highly in the NK cell population.  

After normalising the read counts for each sample to reads per million and 

averaging the normalised read counts of both animals for each cell population, 

they were converted to log2 values to determine the fold change between the 

populations. Of the 13,533 genes detected in both populations, 1872 (13.83%) 

were at least one fold higher in the PBMC population than the NK population 

(figure 3-10). Comparatively, 750 (5.54%) of the total genes were transcribed at 

a level at least one fold higher in the NK population than the PBMC population. A 

search of genes transcribed only in the NK population reveals 417 genes. Of 

these 417 genes, 98.08% have a read count of 20 or lower and are potentially NK 

specific transcripts too lowly transcribed in the PBMC population to be detected. 

The top five transcribed genes only detected in the NK population are a gastric 

inhibitory polypeptide receptor (GIPR-201), interleukin 34 (IL-34), interleukin 7 

(IL-7), connector enhancer of kinase suppressor of ras 1 (CNKSR1) and an 

unknown pseudogene located on chromosome 26.  

As individual analysis of the 750 genes transcribed at least one fold higher in the 

NK population is not practical, pathway analysis was carried out using Reactome 

(Fabregat et al. 2018) to determine which pathways the genes belonged to 

(figure 3-11). Reactome was able to find matches for 267/750 identifiers 

imported and from those, identified 77401 interactions. Signal Transduction, 

Immune System and Metabolism were the largest pathways, encompassing 64.2% 

of the interactions. Innate Immune System, Adaptive Immune System and 

Cytokine Signaling in Immune system pathways were ranked 8th, 15th and 16th 

respectively. The highest ranked pathway within Signal Transduction was 

Signaling by GPCR and the highest within metabolism was Metabolism of lipids.  
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3.3.6 Genes of the LRC and NKC do not rank highly in global transcription in 

resting PBMCs or NK cells 

To understand how transcription of LRC and NKC genes compares with the rest of 

the transcriptome, their positions were calculated using the read counts 

obtained from UniMMap. The highest ranked of the NKC in PBMCs is KLRK, ranked 

at 9530 and 9497 in animal 1020 and 1021 respectively (figure 3-12). The LRC 

gene with the highest ranking in PBMCs is KIR2DS1, ranked at 11013 and 11597 

respectively. Of the NKC and LRC genes with recorded read counts, KLRH5 

(15927) and 3DXL3 (15806) in animal 1020 PBMCs and KLRH1 (15257) and 3DXL2 

(15255) in animal 1021 PBMCs are ranked lowest for each of the respective gene 

complexes. There is a difference of 6397 positions for the highest and lowest 

transcribed gene of the NKC in animal 1020 PBMCs and a difference of 5760 

positions in animal 1021 PBMCs. The difference for the LRC is smaller, 4793 

positions in animal 1020 PBMCs and 3658 positions in animal 1021 PBMCs.   

Within the NK population, KLRI2 (5083) and KLRE (7414) are the highest ranked 

NKC genes and 2DS3 is the highest ranked LRC gene (8128 and 9710) in animal 

1020 and 1021 respectively. The lowest ranked NKC and LRC gene in animal 1020 

is KLRC1-6 (14379) and 3DXL3 (13343) respectively. For animal 1021 the lowest 

ranked NKC and LRC gene is KLRH1 (13912) and 3DXL2 (12903). The NKC genes of 

animal 1020 span a range of 5215 positions and the LRC genes 9296 positions. In 

animal 1021 the highest and lowest NKC genes are 6498 positions apart and the 

LRC genes are 3193 positions apart.  
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3.4 Discussion 

Illumina RNA-Seq was carried out on PBMCs and NK cells isolated from two MHC 

homozygous animals. Our custom pipeline UniMMap (discussed in chapter 2) was 

used to accurately quantify and compare transcription of the LRC and NKC in 

these cell populations. We carried out an aligner comparison using our data to 

highlight the issue of inconsistent read counts between analysis methods. Genes 

that were transcribed at a higher level in NK cells were analysed using Reactome 

to determine to which functional pathways they belonged. Transcription of these 

loci was also compared to the global transcriptome of each of the populations to 

determine to what extent they were transcribed in relation to the rest of the 

transcriptome.  

3.4.1 Transcription of the NKC and LRC genes is most likely not exclusive to 

NK cells 

Isolation of NCR1+ cells resulted in a 16.5x increase in observed NCR1 

transcription and FACS of both populations showed a ~30x increase in NCR1+ 

cells after enrichment. Despite this, the maximum increase in transcription in 

the NK population compared to PBMCs in the LRC and NKC was 12.9x and 10.1x 

respectively. This suggests that these genes are transcribed in other cell types 

within the PBMC population. If expression were limited to NK cells, a higher 

difference in transcription between the two cell populations would have been 

observed. In humans, expression of KIR can be detected in up to 5% of peripheral 

blood T cells, including CD4+, CD8+ and gamma delta T cells (Phillips 1995). KLR 

expression has also been observed in CD8+ T cells (Coles 2000). As CD3+ T cells 

make up 45-70% of PBMCs, the presence of KIR and KLR on a subpopulation of T 

cells would explain the observed difference in transcription between PBMCs and 

NK cells. Higher transcription of KLRC1-6, KLC1-5 and KLRH1 was observed in the 

PBMC population, suggesting that these receptors may be preferentially 

expressed on a different immune cell subtype. 

In humans, both inhibitory KIR and KLR are able to inhibit T cell function, even 

in the presence of a stimulatory signal from the T cell receptor (D’Andrea et al. 

1996; Nakajima, Tomiyama, and Takiguchi 1995). Expression of KIR by T cells 

also mediates T cell tolerance to self-antigens (Huard and Karlsson 2000). The 

transcription here of KIR and KLR in immune cell types other than NK cells, 
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suggests they have similar functionality in cattle. Further analysis on pure 

immune cell populations (chapter 4), coupled with the disproportionally low 

NCR1 transcription in the PBMC populations, shows that this transcription is not 

simply due to the presence of NK cells in the PBMC populations. 

3.4.2 Non-functional status in the reference genome does not correlate with 

an absence of transcription 

Most of the transcription observed in the NKC occurs between KLRI2 and KLRE. 

Located within this region of comparatively high transcription is KLRI2, which 

encodes an activating receptor, which is a null allele in the cattle reference 

genome. The gene is however not heavily disrupted, a single nucleotide 

substitution in the initiation codon is predicted to prevent transcription, and a 

potential alternative start site is present. As high KLRI2 transcription is observed 

in our samples it suggests that it is either functional, or that a functional allele 

exists. The only genes predicted to be non-functional for which transcription was 

not observed were KLRH7 and KLRH3. However, some of the KLR are lowly 

transcribed with read counts for some less than 0.1 RPM. It is therefore possible 

that these two genes are transcribed, but not at a detectable level. These genes 

could be tightly regulated and only expressed under certain conditions, such as 

cytokine stimulation. 

Transcription of all the genes predicted to encode null alleles in haplotype 1 was 

observed in both our samples, with the exception of 1DP2 and 1DLP1, which 

cannot be accurately quantified by UniMMap as they lack any unique regions. 

Both of these genes however are highly disrupted and are considered gene 

fragments, rather than full-length genes, and are highly unlikely to produce a 

functional receptor even if transcribed. The gene 3DXL6, which is inactivated in 

haplotype 1 by a small number of mutations, was observed in both the samples. 

3DXL6 is considered the most divergent KIR in cattle; both intact inhibitory and 

activating, as well as non-functional alleles have been discovered (Sanderson et 

al. 2014).  Transcription of the 3DL lineage genes, 2DS3, 2DS2 and 2DS1, the 

known alleles of which are all non-functional, was also observed and 2DS3 was 

the highest transcribed KIR in either animal. A stop codon in domain 0 and two 

stop codons in domain 2 in all of the 2DS2/3 alleles, as well as an additional stop 

codon in the transmembrane domain of some of the alleles cause the genes to 

be predicted as non-functional. Of the two known alleles of 2DS1, one is 
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rendered non-functional by two stop codons in both domain 0 and 2, as well as a 

stop codon in the transmembrane domain. The other 2DS1 allele is non-

functional due to a stop codon in the transmembrane domain; it also has a 

missense mutation in domain 0. Due to the multiple mutations present in each 

allele, it is unlikely these null alleles produce a functional protein. As mentioned 

previously for KLRI2 in the NKC, it is possible that functional alleles of these 

genes exist. For human KIR, multiple mechanisms of transcriptional silencing, 

such as DNA-methylation (Santourlidis 2002) and dsRNA-mediated silencing of 

the proximal promoter (Pascal 2006) are employed. If these genes do not have 

functional alleles, that they remain transcriptionally active may suggest an 

alternate function of the mRNA, such as transcriptional regulation of other KIR. 

The truncated human KIR3DP1 is predicted to encode for a protein that is 

secreted into the extracellular medium, highlighting the existence of KIR that do 

not encode the prototypical cell surface receptor.  

3.4.3 Some NKC/LRC genes vary in amount of transcription between animals 

but not in presence/absence 

Within the LRC, a portion of the genes including 3DXL7, 3DXL4, 3DXL2 and 3DXS1 

vary very little with regards to the level of transcription occurring in either 

animal. The same is seen in the NKC with the genes between KLRA and KLRJ. 

Whereas others are transcribed at a level at least twice as high in one animal. 

That the most variable genes between animals also tend to be the most 

transcriptionally active could suggest some receptors are always present in the 

repertoire at a constant level whereas others are conditional or variable. The 

observed differences could also be due to the nature of RNA-Seq, it only 

captures a ‘snapshot’ of the transcription occurring in the population. Whilst the 

multiple day sampling strategy employed here would likely reduce this effect, it 

may not be eliminated. 

Comparisons to the transcriptional analysis by Allan et al (2015) is made difficult 

by the different methods used (qPCR of groups of genes vs. RNA-Seq of individual 

genes) and experimental design (individual NK clones vs. large population). 

However, it is clear that the percentage of clones transcribing a gene does not 

always correlate well with transcription levels of that gene in a large population 

of cells. Despite their observation of transcription of KLRC2 on over 80% of NK 

clones, KLRC2 genes are transcribed at a relatively low level. Depending on the 
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animal, between ~40-50% of NK clones transcribe 3DXL6 and between ~50-100% 

transcribe 3DXL1. We observe 3DXL6 transcription at an average 8.88x higher 

than 3DXL1 transcription. This suggests that genes vary in transcriptional level, 

not just in the proportion of cells transcribing them. However, for some genes 

such as KLRD1 and KLRD2, there does appear to be a correlation between 

percentage of clones transcribing each and their relative transcription levels. 

This could potentially mean that within the cells that transcribe them, their 

transcription is regulated in a similar manner.  

Isolation was carried out using an antibody that binds the activating receptor 

NCR1; it is possible the differences observed here are due to differential 

responses to this activation. Alternatively, the genes that appear to be 

transcribed more highly in one animal than the other are may be due to the 

allele of that gene having higher sequence identity in that animal to the 

reference allele. This higher sequence identity would allow a greater number of 

reads to be mapped. 

It is also possible that if animals from another herd or of a different breed were 

added to the analysis, the variation between the two animals would appear to 

be relatively minor. Two individuals from the same herd are likely to have 

similar exposures to pathogen, which has been shown to be a significant factor 

in the NK cell receptor repertoire (Lappalainen et al. 2013). The herd from 

which the animals were selected is also highly inbred. Consequently, the 

variation of KIR haplotypes is most likely limited. To build a robust picture of 

individual variation, future work would need to be done to increase sample size 

and the variety of individuals. Future work would also benefit from genotyping 

of NKC, LRC and MHC genes as this would enable determination of which 

differences were due to haplotypic variation, copy number variation, and also 

potentially linking transcription levels of receptor and ligand. Utilising animals 

from a pedigree herd with a known breeding structure would also allow more 

accurate comparisons of transcriptional variation. 

3.4.4 The analysis method used influences the result 

Three commonly used methods of generating RNA-Seq read counts, Tophat2, 

STAR and Salmon, were compared with each other and UniMMap. Tophat2 was 

selected as it is an extremely popular tool for the generation of RNA-Seq 
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alignments. According to Web of Science, the Tophat2 paper has been cited 3454 

times as of 01/07/2018. Another popular RNA-Seq aligner is STAR, which was 

compared to Tophat2 by Teng (2016) and was shown to marginally better. Also 

included in the comparison was Salmon. Salmon differs from Tophat2 and STAR 

in that it uses the reference transcriptome rather than the genome and that it 

uses quasi-mapping instead of full alignments. Comparing the rankings of the 

LRC and NKC genes between the animals shows the scale of the disagreement 

between the analysis methods, 6/32 and 1/54 rankings are the same between 

methods respectively. Also problematic in the NKC was the variability on 

whether or not a gene generated read counts between the methods. Depending 

on which analysis method is chosen, the resulting read counts and determination 

of whether a gene is transcribed can vary greatly. The analysis tools compared 

here with UniMMap were all run using their default parameters. It is highly 

probable that by tweaking these parameters, more accurate results could be 

obtained. However, none of these tools would provide the same confidence in 

the determination of transcriptional status of the NKC/LRC genes as UniMMap. It 

is also likely that optimisation of these tools would have to be redone if 

analysing a different species, genetic region or read length/library type. 

3.4.5 There are a large number of genes upregulated in NK cells but little 

difference within the top 100 genes 

A total of 750 genes were found to be transcribed at a level at least 1 fold higher 

in NK cells than in PBMCs. Functional pathway analysis of these genes is 

problematic as cattle are a much less extensively studied species compared to 

humans. Approximately 66 % of the genes analysed were of unknown function. 

Unsurprisingly, the majority of the genes that did have a known function were 

within the immune system and signal transduction pathways. Within the signal 

transduction pathway, the pathways with the most hits was signalling by G 

protein-coupled receptors (GCPR). It has been shown GCPRs control the 

migration of NK cells from the bone marrow to activated lymph nodes, their 

extravasation into sites of inflammation as well as movement within lymph 

nodes and tumours (Walzer and Vivier 2011). A small number of the genes 

upregulated in NK cells compared to PBMCs are present in the top 100 NK genes. 

Within these upregulated genes, the majority are predominantly general 

leukocyte specific genes (leukocytes make up 70-90% of PBMCs in humans). Also 
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upregulated and present in the top 100 NK genes is lysozyme, which is expressed 

at a high level in NK cells and neutrophils.   

3.4.6 Transcription of genes of the LRC and NKC is relatively low in ex vivo 

NK cells 

Comparing the transcriptional ranking of the LRC/NKC genes in the context of 

global transcription reveals that they are transcribed relatively lowly compared 

to the rest of the transcriptome. This suggests than in immediately ex vivo NK 

cells; these genes are not particularly active. In humans, the NK receptor 

repertoire is very stable in vivo, unchanging over a period of six months, but is 

also capable of rapidly changing in response to external factors (Strauss-Albee 

2015). The receptor repertoire also varies between individual NK cells, meaning 

that not all receptors are expressed on each NK cell. This would also result in 

lower overall transcription within the population. Stimulation with cytokines 

post-isolation may have the effect of increasing LRC/NKC genes transcription. 
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Chapter 4. Gene expression atlas for LRC and NKC genes 

in cattle 

4.1 Introduction 

Cattle have undergone a larger gene expansion within both the LRC and NKC 

than any other species studied to date (Sanderson, 2014; Schwartz, 2017). In 

contrast to the human and other simian primate LRC, in which the 3DL lineage of 

KIR has expanded, cattle have also expanded the 3DX lineage (Guethlein, 2007). 

The divergence of the 3DL and 3DX lineages is estimated to have occurred ~135 

million years ago (mya) (Guethlein et al. 2007). The divergence of the KIR 

lineages from a common ancestor predates the radiation of placental mammals, 

which occurred 95.3-113 mya (Benton, 2007). The function of the 3DX KIR is 

unknown, although they are predicted to encode receptors that bind MHC class I. 

Within the NKC, cattle and goats have evolved a second KLRC locus 

independently from other species, located between KLRA and KLRJ, and also 

possess a novel KLRH-like gene. Duplication of this novel gene has occurred 

several times in cattle (Schwartz, 2017). In summary, cattle possess a variety of 

genes within the LRC/NKC either not present, or not expanded, to the same 

extent in other species. The function of these genes in cattle has yet to be 

elucidated and very little is known about in which cell or tissue types they are 

transcribed/expressed.  

In humans, expression of a majority of the genes within the LRC and NKC was 

first observed on NK cells. Expression has also been observed on CD8+ T cells, 

gamma delta T cells and to a lesser extent, CD4+ T cells (Ferrini, 1994; 

Nakajima, 1995; Phillips, 1995). KIR play a similar role in T cells as they do in NK 

cells, although they do not govern tolerance in T cells. Activating KIR in T cells 

also have a co-stimulatory effect with the T-cell receptor, rather than an 

independent effect (van Bergen and Koning 2010). Understanding where 

transcription of these receptors occurs in cattle is therefore an important step 

towards determining their function. UniMMap analysis of the LRC/NKC in 

multiple immune cell types provides an indication of the distribution of these 

receptors in the immune system. RNA-Seq datasets from L1 Dominette 01449, 

the animal from which DNA was used as part of the cattle UMD3.1 reference 

assembly, are available on the sequence read archive (SRA). The L1 Dominette 
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01449 datasets were used to create a gene atlas of LRC/NKC transcription across 

24 tissue types.  

NK cells have been shown to respond to infection by Mycobacterium bovis in 

humans and cattle (Esin, 2004; Denis, 2007). RNA-Seq datasets from 16 cattle in 

a study investigating gene expression in peripheral blood leukocytes during M. 

bovis infection were also downloaded from the SRA. Analysis of these datasets 

with our custom pipeline UniMMap allows the impact of M. bovis infection on the 

transcriptional profile on the LRC/NKC to be accurately assessed.  

The influence of age on KIR expression in humans is still unclear (Lutz, 2005; 

Garff-Tarvernier, 2010; Almeida-Oliveira, 2011). NK cells from newborns have 

poor KIR expression (Garff-Tarvernier, 2010). A significant decrease in 

expression of KLRD, a molecule which associates with several receptors encoded 

by the NKC, has been observed in the elderly (Almeida-Oliveira, 2011). Although 

equivalent studies have yet to be carried out in cattle, expression of the NK 

markers NCR1 and CD2 have been shown to decline by day 1 post-birth, 

subsequently increasing into adulthood albeit never reaching the level observed 

at day 0 (Graham, 2009). Analysis of PBMC RNA-Seq datasets from three calves 

at multiple time points, up to 28 days post-birth, enabled a study of LRC/NKC 

transcription over this time period. Comparing transcription between the calves 

and their respective dams provides the first insight into the effect of age on 

LRC/NKC gene transcription in cattle. 

 

 

 

 

 

 

 

 

 

 



115 
 

 

4.2 Methods 

4.2.1 UniMMap analysis of samples 

The UniMMap analysis pipeline has been described and examined in detail in 

chapter 2. The pipeline was run on various RNA-Seq datasets to generate read 

counts for both the LRC and NKC. For each different RNA-Seq experiment, 

mappability calculations were carried out with GEM-mappability on the custom 

UMD3.1 transcriptome described in chapter 2. When calculating mappability, a 

kmer length matching the read length of the RNA-Seq reads used to ensure 

accuracy. 

4.2.2 RNA-Seq data acquisition 

RNA-Seq datasets from fluorescence-activated cell sorting (FACS) enriched PBMC 

subsets were kindly provided by Jessica Powell and Dr Liam Morrison at the 

Roslin Institute. Antibody usage for magnetic-activating cell sorting (MACS)/FACS 

is detailed in Table 4-1. B cells, monocytes and CD4+ T cells were isolated using 

FACS. A negative MACS sort to remove monocytes, CD4+ T cells and B cells was 

carried out before FACS sorting to isolate NK cells, gamma delta T cells or CD8+ 

T cells. Gamma delta T cells were sorted from this population on CD8-/NCR1-, 

CD8+ T cells were sorted on CD8+/NCR1- and NK cells on CD8-/NCR1+. Multiple 

NK cell RNA samples were combined per animal to generate enough material for 

sequencing. 

Target cell Antibody  Antigen 

B cell ILA58 Antibody light chain 

CD4+ T cells ILA12 CD4 

CD8+ T cells ILA51 CD8 

Gamma delta T cells GB21A TCR1-N24 (δ chain) 

Monocytes ILA24 MyD-1 

NK cells AKS8 NCR1 

Table 4-1. Antibody usage for FACS sorting of PBMCs to select for individual 

immune cell types. 
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RNA-Seq data from cattle infected with M. bovis (McLoughlin, 2014) was 

downloaded from the SRA – accession number: PRJNA257841. The study used 16 

age-matched Holstein-Friesians - eight control and eight M. bovis infected. RNA 

was extracted from peripheral blood leukocytes. Sequencing was carried out 

using an Illumina Genome Analyzer IIx to generate single-end reads of length 

84bp. 

Azad K. Kaushik at the University of Guelph provided us with RNA-Seq data from 

six individuals (three dams and three calves – Table 4-2). PBMCs were isolated 

from blood collected from three calves at day 0, 7, 14 and 28 post-birth and 

from the three dams at day 0 and day 7 post-parturition. Samples were 

sequenced using an Illumina HiSeq 2500, generating 151bp paired-end reads.  

Dam ID no. Date of birth Calf ID no. Date of birth 

3761 18/11/2007 4324 12/06/2013 

3731 18/08/2007 4327 11/07/2013 

4045 09/11/2010 4355 10/10/2013 

Table 4-2. Date of birth and ID no. of dams and their respective calves (adapted from 

Pasman, 2017) 

SRA project PRJNA379574 was downloaded to create a LRC/NKC expression 

atlas. RNA-Seq was carried out on 23 tissues from L1 Dominette 01449 and the 

testis from SuperBull 99375 (sire of Dominette). Sequencing was carried out 

using an Illumina NextSeq500 and paired-end reads of length 75bp generated. 

4.2.3 Correspondence analysis 

UniMMap read counts were used in conjunction with the ca R library (Nenadic, 

2007) and ggplot2 (Wickham 2009) to produce correspondence analysis plots. 
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4.3 Results 

4.3.1 LRC/NKC gene transcription between animals 

Three RNA-Seq datasets from an enriched NK cell population isolated from three 

different Holstein Friesian (HF) animals (HF3457, HF3458 and HF3471) (Jessica 

Powell and Liam Morrison; Roslin Institute) were compared with the NK RNA-Seq 

data discussed in chapter 2. The method of isolation used by the Roslin Institute 

involved a negative FACS sort to remove gamma delta T cells, CD4+ T cells, 

monocytes and B cells and then a positive FACS sort for NCR1+ cells. In 

comparison, we positively selected for NCR1+ cells using antibody tagged MACS 

beads.  

As was done for animals 1020 and 1021, UniMMap was run on samples HF3457, 

HF3458 and HF3471; read counts were normalised based on the number of reads 

mapped. NCR1 transcription was compared between the samples as a basic 

comparison of purity of the populations. The average NCR1 read counts of the 

three Roslin samples was 219.2; the average for 1020/1021 was 17.2 

(supplementary figure 4-1). This suggests that a round of negative selection 

before positive selection of NCR1+ cells results in a purer population of NK cells.  

Comparing the transcription of the LRC genes between the samples reveals a 

large difference between the Roslin samples and 1020/1021 from 3DXL2 at the 3’ 

end to 2DL1 at the 5’, all of which are transcribed much more highly in the 

Roslin samples (figure 4-1). The KIR located between 3DXL6 and 3DXL5 are 

however much more comparable between all of the samples. Transcription in 

either 1020 or 1021 is higher for 3DXL6, 2DS3, 3DXS3, 2DS2 and 3DXS2 than at 

least one of the Roslin samples. Notably all of these genes are activating 

receptors in haplotype 1 with the exception of 3DXL6, which while inhibitory in 

haplotype 1, has activating alleles on other haplotypes. The other activating 

receptors present in haplotype 1, 3DXS1 and 2DS1, are transcribed at a much 

higher rate in the Roslin samples. Transcription of all of the detectable genes in 

haplotype 1 was observed in all five samples. 

The pattern of transcription when comparing transcription of the NKC genes in 

the Roslin samples to 1020/1021 is similar to the LRC (figure 4-2).  Many of the 

genes are transcribed at a rate much higher in the Roslin samples. However, 

KLRC1-7, KLRC1-5, KLRH2 and KLRHJ, are transcribed more highly in at least one  
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Figure 4-1. Comparison of LRC gene transcription in NK cells from five animals. 
UniMMap was run on RNA-Seq data from NK cells isolated from five cattle. NK cells 
from HF347, HF3458 and HF3471 were isolated using a combination of negative 
and positive sorting by FACS. MACS beads were used to positively select for NK 
cells from animals 1020 and 1021. Read counts from UniMMap were normalised 

based on the number of reads mapped. 
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Figure 4-2. Comparison of NKC gene transcription (A) and the region of the NKC 
between KLRA and KLRJ (B) in NK cells from five animals. UniMMap was run on 
RNA-Seq data from NK cells isolated from five cattle. NK cells from HF347, HF3458 
and HF3471 were isolated using a combination of negative and positive sorting by 
FACS. MACS beads were used to positively select for NK cells from animals 1020 
and 1021. Read counts from UniMMap were normalised based on the number of 

reads mapped. 
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of 1020/1021. The region of comparatively high transcription between KLRI2 and 

KLRE observed in 1020/1021 is also distinctly more active in the Roslin samples. 

Despite an average of 36.5 RPM mapped to the NKC, compared to the 2.7 RPM 

observed for 1020/1021, transcription of the region between KLRA and KLRJ 

remains similarly low. Some of the genes in this region of low transcription are 

not detected in all of the samples, including KLR1-6, KLRH5, KLRC1-4, KLRC2-3 

and KLRJ. No transcription was observed in any of the samples for either KLRH7 

or KLRC2-4.  

We show that the method of NK cell isolation affects the amount of transcription 

observed for the genes of both the LRC and NKC. The difference is not limited 

simply to higher transcription in one method over another and varies on a gene-

by-gene basis.  

4.3.2 Transcription of the LRC and NKC genes is not exclusive to NK cells 

In addition to the three NK cell datasets, the Roslin Institute also provided us 

with B cell, CD4+ T cell, CD8+ T cell, gamma delta T cell and monocyte datasets 

from the same animals. These samples were analysed with UniMMap to 

understand the extent to which LRC/NKC transcription occurred in these cell 

types. 

Analysis of these immune cell types with UniMMap reveals that LRC gene 

transcription occurs in CD8+ T cells at an equivalent level to NK cells (figure 4-

3). Transcription of 3DXS1 (5.86x), 3DXL1 (5.27x) and 2DL1 (3.62x) occurs at a 

much higher level in NK cells than CD8+ T cells. The only KIR transcribed highest 

in a cell type other than NK cells is 3DXL6, occurring at a level 2.27x higher in 

CD8+ T cells. Gamma Delta T cells also appear to transcribe LRC genes, although 

to a lower extent than either NK cells or CD8+ T cells. All of the detectable KIR 

appear to be transcribed in NK cells, CD8+ T cells and Gamma Delta T cells. 

Transcription of LRC genes was observed at a very low level in the other cell 

types. The total RPM observed for the LRC genes in B cells was 0.24 RPM, in 

CD4+ T cells it was 1.21 RPM and for monocytes the total observed read counts 

was 0.20 RPM. These total read counts are all much lower than NK cells (79.30 

RPM), CD8+ T cells (43.44 RPM) or Gamma Delta T cells (11.25 RPM). 

Transcription of LRC genes is not limited solely to NK cells, transcription is 

observed in all cell types, albeit at varying levels. 
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Figure 4-3. Comparison of average LRC gene transcription from six immune 
cell types from three animals. UniMMap was run on RNA-Seq data from each 
cell type from the three cattle. Read counts from UniMMap were normalised 
based on the number of reads mapped and then averaged for each cell type 
across the three animals. 
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Figure 4-4. Comparison of average NKC gene transcription (A) and the region 
of the NKC between KLRA and KLRJ (B) from six immune cell types from three 
animals. UniMMap was run on RNA-Seq data from each cell type from the 
three cattle. Read counts from UniMMap were normalised based on the 
number of reads mapped and then averaged for each cell type across the 
three animals. 
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  Figure 4-5. Correspondence analysis of LRC/NKC gene transcription from six 
immune cell types from three animals. UniMMap was run on RNA-Seq data from 
each cell type from the three cattle. Read counts from UniMMap were 
normalised based on the number of reads mapped. Correspondence analysis 
was carried out in R using the ca library and plotted with ggplot2. 
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The region of high transcription observed between KLRI2 and KLRE in all 

analysed NK datasets is not transcribed to the same extent in any of the other 

examined cell types (figure 4-4A). The exception to this is KLRK, which is 

transcribed at a similar level in CD8+ T cells compared to NK cells.  There is 

little transcriptional activity between KLRA and KLRJ in all of the examined cell 

types, with the exception of Gamma Delta T cells (figure 4-4B). Relatively high 

levels of KLRJ transcription is observed in Gamma Delta T cells. Transcription of 

KLRJ is 94.51x higher than in B cells (the cell type with 2nd highest KLRJ 

transcription) and 945.91x higher than in NK cells. Only 11/27 of the NKC genes 

are transcribed in all the cell types and transcription of the entire collection of 

NKC genes was only observed in NK cells and CD8+ T cells.  

Correspondence analysis of the individual datasets shows the relationship 

between the cell populations as well as individual animals (figure 4-5). Cell 

types group together on both axis, indicating that there is a different pattern of 

transcription specific to each cell type. Both B cells and gamma delta T cells are 

separated to a higher extent across both axis than the other cell types. This 

suggests that for these cell types there is more variance in LRC/NKC gene 

transcription between animals. 

Described here is the first known investigation of LRC/NKC transcription in 

multiple cattle immune cell populations. We show that transcription of these 

two loci is not exclusive to NK cells, particularly the LRC genes which is 

transcribed at a similar level in CD8+ T cells. We also show that transcription of 

NKC genes while much more prevalent in NK cells, does occur at a lower level in 

other cell types.  

4.3.3 Variation exists in LRC/NKC transcription between non-infected and M. 

bovis infected animals 

Natural killer cells have been show to play a role in restricting the replication of 

Mycobacterium bovis in infected macrophages (Denis et al 2007). We used data 

from a study by McLoughlin et al (2014) in which they carried out Illumina RNA-

Seq on peripheral blood leukocytes from 16 Holstein-Friesian cattle. Eight of the 

cattle were animals naturally infected with M. bovis and the other eight were 

age and sex matched control animals. We used these datasets in combination  
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Figure 4-6. Comparison of average LRC gene transcription between control 
cattle and cattle infected with M. bovis. RNA-Seq data was obtained from the 
sequence read archive (Accession: PRJNA257841). The eight control and eight 
infected animal datasets were combined to produce two datasets, one control 
and one infected. UniMMap was run on the merged datasets. Read counts from 
UniMMap were normalised based on the number of reads mapped.  
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Figure 4-7. Comparison of average NKC gene transcription (A) and the region of the NKC 
between KLRA and KLRJ (B) between control cattle and cattle infected with M. bovis. 
RNA-Seq data was obtained from the sequence read archive (Accession: PRJNA257841). 
The eight control and eight infected animal datasets were combined to produce two 
datasets, one control and one infected. UniMMap was run on the merged datasets. Read 
counts from UniMMap were normalised based on the number of reads mapped.  
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with our pipeline UniMMap to attempt to understand if the genes of the LRC/NKC 

may play a role in infection by M. bovis. 

As these datasets contained a comparatively low number of reads compared to 

the PBMC RNA-Seq we previously generated and analysed, combining the 

datasets was necessary. Subsequently we compared the transcription of the 

combined control animals to that of the combined infected animals. Merging of 

the datasets resulted in read counts similar to those observed for the PBMC 

dataset we generated and discussed in chapter 3.  

Transcription of almost all of the LRC genes is higher in the control animals 

(figure 4-6).  The exceptions to this are 3DXL7 and 2DL1. Transcription of 3DXL7 

was only observed in the infected animals and 3DXL5 only in the control animals. 

Transcription of 2DL1 was 1.28x higher in the infected animals than the control 

animals. The largest difference in read count for a gene transcribed in both 

datasets was 3DXS1, which was 2.58x higher in the control animals. The total 

read count of the LRC in the control animals was 8.05 RPM, compared to 4.49 

RPM for the infected animals. 

Comparing the total number of reads mapped to the NKC shows little difference 

between control (26.28 RPM) and infected animals (23.15 RPM) (figure 4-7A). 

Transcription of several genes however was observed only in the control animals, 

albeit at a very low level (figure 4-7B). Transcription of KLRC2-1 (5.34x), KLRC1-

4 (4.1x), KLRC1-6 (3.13x) and KLRC2-2 (3.06x) was considerably higher in the 

control population. The only gene transcribed higher in the infected population 

at an equivalent difference is KLRH4 (3.45x).   

Despite the low coverage of the available datasets, we show there is a 

difference in transcription levels between the non-infected and infected 

populations. Transcription of several genes was identified in only one of the 

populations and multiple genes have substantial differences in read count. 

4.3.4 Analysis of multiple dams and calves reveals genotypic variation 

RNA-Seq data from PBMCs isolated from three calves and their respective dam 

was provided to us by the University of Guelph (Pasman and Kaushik). PBMCs 

were isolated from the calves on their day of birth as well as 7, 14 and 28 days 

post birth. The datasets from the dams were generated from PBMCs isolated on   
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Figure 4-8. Comparison of LRC gene transcription of PBMCs from six cattle. 
PBMCs were isolated and sequenced from three dams and three calves, birthed 
by each of the dams, at multiple time points by the University of Guelph. Time 
points for each animal were merged to increase coverage and UniMMap was run 
on the merged datasets. Read counts from UniMMap were normalised based on 
the number of reads mapped. Bars of the same colour indicate dam (filled bar) 
and respective calf (striped bar). 
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  Figure 4-9. Transcriptional status of the LRC genes in the eleven cattle 
currently characterised. A red bar indicates that transcription of that gene 
was not detected in the animal, a black bar indicates transcription was 
observed.  
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the day of parturition and 7 days post parturition. Reads from the multiple time 

points were combined for each animal in an effort to increase coverage of the 

LRC/NKC. UniMMap was run on the combined datasets to obtain accurate read 

counts. 

Comparing read counts between these animals reveals for the first time, 

variation in transcriptional status of the cattle LRC genes in an RNA-Seq 

experiment (figure 4-8, 4-9). Absence of transcription of one or more LRC gene 

occurs in four of the six animals (B3731, B4327, B3761 and B4324). Between the 

four animals, six KIR that have been consistently observed in all PBMC and NK 

datasets are undetected. Transcription of 3DXL7 was not observed in any of the 

four, three did not transcribe 3DXL4 or 3DXL5, and one also did not transcribe 

either 3DXL2 or 3DXL1. The two animals that are identical in KIR transcriptional 

status to the previously studied datasets are a dam (B4045) and its respective 

calf (B4355).  

The number of KIR genes correlates well with total transcription of the LRC. 

Animals B4045 and B4355 transcribe the full repertoire of known KIR and have 

the highest total read count to the LRC (8.21 and 8.16 RPM respectively). The 

two animals (B4327 and B4324) which both do not appear to transcribe 3DXL7, 

3DXL4 and 3DXL5, have similar read counts – 5.52 and 5.22 RPM respectively. 

B3731, which does not appear to transcribe six of the KIR, is the least 

transcriptionally active (4.16 RPM). The only outlier is B3761, despite only not 

transcribing 3DXL7, its total read count is the second lowest (4.42 RPM). 

As with all animals analysed so far, there is a region of relatively high 

transcription between KLRI2 and KLRE compared to the rest of the NKC observed 

in the six animals (figure 4-10). The genes within this region are transcribed in 

all of the six animals. The remainder of the loci however is highly variable in 

transcriptional status, as in all previously studied animals (figure 4-11). Just two 

genes located between KLRA and KLRJ in the 11 individual cattle examined so 

far are identical in transcriptional status in all animals. KLRC1-3 was observed in 

all animals and KLRC2-4 was absent in every animal. Both KLRA and KLRJ were 

absent only once, in two separate animals.  

Correspondence analysis of LRC/NKC transcription of the six animals shows a 

relationship between calf and dam (figure 4-12. Dams and calves also appear to  
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Figure 4-10. Comparison of NKC gene transcription (A) and the region of the NKC 
between KLRA and KLRJ (B) of PBMCs from six cattle. PBMCs were isolated and 
sequenced from three dams and three calves, birthed by each of the dams, at 
multiple time points by the University of Guelph. Time points for each animal were 
merged to increase coverage and UniMMap was run on the merged datasets. Read 
counts from UniMMap were normalised based on the number of reads mapped. Bars 
of the same colour indicate dam (filled bar) and respective calf (striped bar). 
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Figure 4-11. Transcriptional status of region of the NKC between KLRA and KLRJ in 
the eleven cattle currently characterised. A red bar indicates that transcription of 
that gene was not detected in the animal, a black bar indicates transcription was 
observed.  
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Figure 4-12. Correspondence analysis of LRC/NKC gene transcription from six cattle. 
PBMCs were isolated and sequenced from three dams and three calves, birthed by 
each of the dams, at multiple time points by the University of Guelph. Time points 
for each animal were merged to increase coverage and UniMMap was run on the 
merged datasets. Read counts from UniMMap were normalised based on the number 
of reads mapped. Correspondence analysis was carried out in R using the ca library 
and plotted with ggplot2. Points of the same colour indicate the dam/calf 
relationship.  

Dimension 1 

D
im

e
n

si
o

n
 2

 



134 
 
separate on the Y axis suggesting a difference in the transcriptional pattern of 

the LRC/NKC between young and older animals. 

There appears to be large and consistent variation in transcriptional status of 

genes of both the LRC and NKC. Analysis of the LRC across multiple animals 

reveals that there may be a number of KIR that are framework genes, present 

and functional in all cattle. Within the NKC there is a region of genes that are 

relatively highly transcribed in all animals. Also present in the NKC is a region of 

much lower relative transcription that appears to be highly variable in 

transcriptional status between animals. 

4.3.5 Level of NKC and LRC transcription varies over 28 days post birth 

The RNA-Seq data from the three calves was combined at each of the four time 

points (Day 0, Day 7, Day 14 and Day 28 post-parturition) and analysed with 

UniMMap to understand what changes the NK receptor repertoire undergoes 

after birth. 

Comparing the total transcription of the LRC/NKC over the four time points 

shows that transcription decreases between day 0 and day 14 post birth (figure 

4-13). This decrease in transcription is followed by an increase to a total larger 

than the day 0 value by day 28. Transcription of the NKC is 4.23x higher at day 

28 than day 0. The total read count observed to the LRC is 2.55x higher at day 

28 compared to day 0. Analysing the transcription of both the LRC and NKC 

across the time points shows that the proportional transcription of each genes 

remains relatively similar, despite the variable total read count (figure 4-14, 4-

15). Minor variation can however be observed across the time points. 

Transcription of 3DXL7 and 2DS2 appears is not detected at day 7 but is observed 

at all other time points. The proportion of 3DXS1 transcription increases from 

15.6% of the total at day 0 to 26.7% at day 7, before decreasing to 13.4% at day 

14 and 16.1% at day 28. Despite the 4.23x increase in NKC transcription, as with 

the LRC there is little variation of the proportion each gene contributes to the 

total. Minor variation also exists in the NK, transcription of KLRC1-4 and KLRC2-4 

is only observed at day 28. Transcription of KLRH2, KLRH6 and KLRC2-3 was 

observed at all time points except day 14. The amount of transcription observed 

for the currently used cattle NK marker NCR1 follows the same pattern of  
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Figure 4-13. Average read count across the LRC and NKC at multiple time points 
post-birth. PBMCs were isolated and sequenced from three calves at day 0, day 7, 
day 14 and day 28 post-birth by the University of Guelph. Sequencing data from 
the three calves was merged at each time points to increase coverage. Read 
counts from UniMMap were normalised based on the number of reads mapped.  
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Figure 4-16. Average NCR1 read count at multiple time points post-birth. PBMCs were 
isolated and sequenced from three calves at day 0, day 7, day 14 and day 28 post-
birth by the University of Guelph. Sequencing data from the three calves was merged 
at each time points to increase coverage. Read counts from UniMMap were normalised 
based on the number of reads mapped.  
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variability as the NKC (figure 4-16). The total read count of NCR1 at day 28 is 

3.99x higher than day 0. 

The results of this analysis suggest there is an expansion of transcription of NK 

receptors between day 14 and 28 post birth. This expansion however is evenly 

distributed across the entire receptor repertoire, with some minor variation 

observed. 

4.3.6 LRC/NKC gene transcription varies between tissue types 

RNA-Seq data generated for the generation of a cattle gene atlas was accessed 

and analysed to compare LRC/NKC gene transcription in multiple tissue types. A 

total of 24 tissue types were sequenced as part of the gene atlas and all 24 were 

assessed for LRC/NKC gene transcription. With the exception of the testis 

sample which originated from SuperBull 99375, tissue samples originate from the 

animal L1 Dominette 01449, which was used in the UMD3.1 reference assembly. 

There is large variation of LRC/NKC gene transcription between the examined 

tissue types (figure 4-17). No gene appears to be ubiquitously transcribed, 

despite all tissues transcribing at least one KIR and one KLR gene. Transcription 

of KLRE is observed in all of the tissues with the exception of the hypothalamus. 

Within the KIR, 2DL1 is the most ubiquitously transcribed, absent in six tissues. 

Transcription of 2DS3 and 3DXL6 is absent in seven tissues, four of which are the 

same tissue type. Neither 3DXL7, 3DXL4, KLRC2-4, KLRH6 or KLRH3 were 

observed in any sequenced tissue. 

Comparing total read counts for each gene complex across the multiple tissues 

shows that NKC and LRC gene transcription follows a similar pattern across the 

tissue types (figure 4-18). LRC gene transcription is higher than NKC 

transcription in 14 out of the 24 tested tissue types. However total NKC gene 

transcription of all tissues combined is 1.73x higher than the LRC. The three 

most transcriptionally active tissues for both the NKC and LRC genes were lymph 

node, mammary gland, and lung. The duodenum is the fourth most 

transcriptionally active tissue when examining NKC transcription, but the 7th 

most active for LRC gene transcription. LRC gene transcription was higher in 

bone marrow, atrium and ventricle than duodenum tissue. Regression analysis of 

total NKC and LRC gene transcription in each tissue type suggests that 



140 
 
transcription of the genes of the two loci is correlated, with an R2 value of 

0.9219 (figure 4-19). 

Transcription of genes of the LRC and NKC appears to be variable between tissue 

types. Transcription of at least one KIR and KLR gene could be detected in every 

tissue type examined. Despite higher transcription of the NKC than LRC in all 

examined PBMC and NK datasets, 14/24 of the tested tissue types had higher 

total LRC transcription. Transcription of NCR1 is comparatively high in bone 

marrow, lung and lymph node (supplementary figure 4-2).  
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Figure 4-19. Scatterplot of total LRC/NKC gene transcription in 24 tissue 
types. RNA-Seq data was downloaded from the SRA (Accession: PRJNA379574). 
The BioProject contains RNA-Seq from 23 Dominette tissues as well as the 
testis of SuperBull 99375. Read counts from UniMMap were normalised based 

on the number of reads mapped.  



144 
 

4.4 Discussion 

Additional NK RNA-Seq datasets generated using a different NK isolation method 

were analysed and compared with the two NK populations previously examined. 

The extent to which the LRC/NKC genes are transcribed on multiple different 

immune cell population was determined using UniMMap. Publically available 

datasets were utilised to attempt to understand the role of LRC/NKC genes in M. 

bovis infection, as well as for the generation of an expression atlas across 

multiple tissue types. RNA-Seq data from PBMCs isolated from dam and calf was 

used to assess the relationship of LRC/NKC transcription and age. The 

development of the repertoire over the month post-birth was also characterised. 

These additional datasets enabled identification of genes that are consistently 

transcribed in all individuals.  

4.4.1 Variation in LRC/NKC gene transcription correlates with the method of 

isolation 

The method used to isolate NK cells appears to correlate with the pattern of 

transcription of both the NKC and LRC genes. The first method compared was a 

positive selection of NCR1+ cells using MACS beads. The second method was a 

FACS protocol involving negative sorting of CD4+ T cells, monocytes and B cells, 

followed by a positive sort for NCR1+ cells. The FACS method would likely have 

yielded a purer final population due to the removal of multiple potentially 

contaminating cell types. The downside to the FACS method is that the cells will 

likely have spent longer with an antibody bound to the cattle NK cell marker 

NCR1. As NCR1 is an activating receptor, the longer period of time taken for 

isolation when using a combination of MACS/FACS will most likely have resulted 

in a larger shift in transcription from in vivo cells. 

Within the LRC genes, the longer period of activation appears to result in an 

increase in transcription of all of the inhibitory KIR. The majority of the 

activating KIR are transcribed at a comparable level in all animals, with the 

exception of 2DS1 and 3DXS1. This increase in inhibitory KIR transcription could 

be part of a mechanism controlling NK cell activation. Although a different 

activation method, exposure of humans NK cells to IL-2 has been shown to 

reduce transcription of the activating receptor 2DS4 and increase transcription 

of the inhibitory 2DL4 (Küçük et al. 2016).  
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Higher transcription of the entire region of the NKC between KLRI2 and KLRE is 

observed in the FACS isolated samples. This is most likely caused by the purer 

population of NK cells obtained through FACS or activation via NCR1. Analysis of 

transcription of this region on other immune cell types supports this, with the 

exception of KLRK, these genes are transcribed at a much higher rate on NK cells 

than any other cell type. Direct comparisons between the two isolation methods 

are complicated by variation between animals. A number of environmental 

factors differ between the animals from either herd, all of which could 

contribute to variation in transcriptional level, such as housing conditions, diet 

and level of activity. Experimental conditions also differed, potentially further 

contributing to the observed variation, Different methodologies for RNA-Seq 

isolation, library preparation and sequencing will have introduced unique biases 

to the data from either set of animals. However, comparisons between the two 

sets of animals provides information towards designing future experiments, as 

well as on the frequency of presence/absence of these genes. A comparison of 

NK cells from the same animal, isolated by the two methods, is required to fully 

understand the impact of isolation method. 

4.4.2 Transcription of the LRC/NKC genes is not limited to NK cells 

Transcription of KIR occurs at a similar level in CD8+ T cells to NK cells. Lower 

level transcription of all KIR was also observed in gamma delta T cells. CD4+ T 

cells appear to transcribe a limited repertoire of KIR at a level lower than 

observed in gamma delta T cells. Work in humans has shown that there is a 

subset of CD8+ T cells that also express KIR. However the pattern of KIR 

expression in CD8+ T cells is different to that of NK cells (Bjorkstrom et al. 

2012). Almost 90% of CD8+ T cells that express KIR, express just one inhibitory 

KIR. KIR expression is also dominated by a single KIR in human CD8+ T cells, on 

average 68% of total expression originated from a single KIR in each individual, 

higher than observed in NK cells. They also found no correlation between 

expression of KIR on NK cells and expression on CD8+ T cells in the same 

individual. When analysing expression of activating KIR on CD8+ T cells, they 

found that over 50% of KIR2DS4+ cells did no co-express an inhibitory KIR. No 

correlation is seen between transcription of the KIR in NK cells and CD8+ T cells 

in our cattle datasets (R2 value 0.2127).  
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With a few exceptions, transcription of the NKC genes is much higher in NK cells 

than the other immune cell types examined. However, a small amount of 

transcription of the majority of the NKC was observed in all cell types. The 

region between KLRI2 and KLRE for which high transcription is consistently 

observed, is largely only highly active in NK cells. The exception to this is KLRK 

which is transcribed at a similar level in CD8+ T cells. Expression of KLRK has 

been observed cattle CD8+ T cells (Guzman, Birch, and Ellis 2010). Transcription 

of KLRJ in gamma delta T cells occurs at a level higher than any other tested 

cell type. KLRJ is typically regarded to be an NK receptor, however a study by 

Boysen, et al. (2006) found that transcription was low in NK cells, requiring 30 

PCR cycles to detect. We show KLRJ to be transcribed at a similar level in NK 

cells to all other cell types with the exception of gamma delta T cells, where 

transcription is much higher. This suggests KLRJ should be considered a gamma 

delta T cell receptor rather than a NK receptor. Lacking either an activating or 

inhibitory component, KLRJ potentially forms a heterodimer with an unknown 

partner, as is observed with KLRD and KLRE (Schwartz et al. 2017). The only 

other KLR gene to be transcribed higher in gamma delta T cells than CD4+ T 

cells, B cells or monocytes is KLRK. This allows us to hypothesis that if KLRJ 

indeed does form a heterodimer, then KLRK is the partner. 

4.4.3 Transcription of activating KIR is lower in M. bovis infected animals 

Natural killer cells have been shown to respond to infection with Mycobacterium 

bovis in humans and cattle (Vankayalapati et al. 2002; Denis et al. 2007). The 

KIR haplotype of an individual has been shown to play an important role in the 

level of response to mycobacteria in humans (Portevin et al. 2012). They show 

that the presence of the activating KIR, 2DS3 and 2DS5, was significantly over-

represented in the high responder group. Transcription of KIR was much lower in 

the infected population compared to the control. However, two inhibitory 

receptors, 3DXL7 and 2DL1, were transcribed more highly in the infected group. 

The activating KIR are all transcribed at a lower rate in the infected population. 

In humans, the inhibitory genes KIR3DL1 and KIR2DL3, as well as the activating 

genes KIR2DS1 and KIR2DS5 confer susceptibility towards Mycobacterium 

tuberculosis (Pydi et al. 2013). This highlights the role of KIR in mycobacterium 

infections. As the control and infected animals are not related and the KIR 

genotypes of the animals are unknown, it is not possible to determine if 
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infection with M. bovis causes a downregulation of KIR. However the level of 

activating KIR transcription may correlate with infection status. As the data is 

from PBMCs and multiple animals, it is not possible to infer information on clonal 

expansion of NK cells. However a future experiment with pure NK cell 

populations would allow investigation of KIR transcription during M. bovis 

infection in greater resolution. 

4.4.4 LRC genes are variable in transcriptional status 

RNA-Seq analysis of PBMCs from six cattle shows variation in transcriptional 

status of multiple KIR. Variability of KIR transcription in cattle has been 

previously demonstrated (Allan et al. 2015). They observed absence of 

transcription of 3DXL6 as well as the 3DXL3/5/7 gene family. In comparison, we 

observed the absence of 3DXL5 and 3DXL7, as well as 3DXL1, 3DXL2 and 3DXL4. 

Transcription of 3DXL6 was consistently seen in our analysed data. Notably, they 

showed transcription of cattle KIR can be rescued with cytokine stimulation. This 

suggests that the absence of KIR in an ex vivo dataset is not an accurate 

indicator of the functionality of a KIR in an individual. Accurate determination of 

transcriptional status is further confused by the low number of KIR reads present 

in PBMC RNA-Seq datasets. With the very low read counts observed in these six 

animals (most often less than one read per million), it becomes difficult to 

distinguish between absence of transcription and a read count too low to detect. 

Cytokine stimulation of PBMCs may provide a method of increasing transcription 

and subsequently read counts in RNA-Seq data. Although with the downside of 

shifting the transcriptional profile of the cells further away from their in vivo 

status. However, haplotypic variation is expected and absence of transcription 

may be caused by variability in gene content between haplotypes. The repeated 

detection of transcription of the genes encoding null-alleles in the reference 

haplotype is particularly interesting. Only one of these genes (2DS2) is absent in 

one of the six cattle. This finding reinforces the possibility that these genes 

either have functional alleles or produce an alternate protein.  

4.4.5 LRC/NKC genes undergo a large increase in transcription post-birth 

Transcription of the LRC, and to a larger extent the NKC, is much higher at 28 

days post-birth than any other previous time point. An approximately 5x higher 

amount of transcription observed in the NKC at day 28 compared to day 14. 
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Despite this, the proportion of transcription of each gene remains highly similar. 

The frequency of NCR1+ NK cells has been shown to be at its highest at day 0 

post-birth before dropping drastically at day 1. The frequency then rises until 

day 14 where it remains relatively constant into adulthood, but does not return 

to the day 0 level (Graham et al. 2009). A reason for this phenomenon has not 

been discovered. Graham et al. (2009) propose that it may be due to distribution 

of NK cells to tissues and organs. Massively increased transcription of NK 

receptors, including NCR1, at day 28 suggests that NK cells may undergo a period 

of altered phenotype for a period of time post-birth. This is then followed by a 

return to a more typical NK receptor phenotype.  

4.4.6 Transcription of KLR/KIR is ubiquitous but varies in amount 

Unsurprisingly, transcription of both the NKC and LRC is relatively high in the 

bone marrow, the site of NK development, and the lymph node, a major immune 

tissue. Relatively high transcription was also observed in lung tissue. The lungs 

are a major site for pathogens to enter the body and subsequently, NK cells 

make up 10% of the lymphocyte population in humans (Grégoire et al. 2007). 

Particularly high transcription of the LRC/NKC was observed in the mammary 

gland tissue. NK cells have recently shown to be present in the mammary gland 

of cattle and have been implicated in mastitis pathogenesis (Sipka et al. 2016).  

The LRC/NKC genes were also heavily transcribed in various heart tissue, 

including the atrium, ventricle and to a lesser extent the aorta. NK cells have 

been implicated in a number of protective roles in the heart of both humans and 

mice. They are required for protection against both Coxsackie B virus (CBV) and 

Mouse cytomegalovirus (MCMV) induced myocarditis (Kanda et al. 2000) (Barin et 

al. 2013). NK cells have also been shown to restrict the accumulation of 

eosinophils, limiting the pathogenesis of myocarditis (Ong et al. 2015).  

Cattle major histocompatibility complex class I chain-related (MIC) is 

constitutively expressed on cattle intestinal epithelium and is the ligand for 

KLRK (NKG2D) (Guzman, Birch, and Ellis 2010). Transcription of KLRK was higher 

than any other gene in either the NKC or LRC in the duodenum. KLRK has been 

shown to be expressed on NK cells, CD8+ T cells and to a lesser extent gamma 

delta T cells. This highlights its importance as an activating receptor.  
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4.4.7 Conclusions 

Through UniMMap analysis of various cattle RNA-Seq datasets, a number of 

important questions have been addressed. Transcription of LRC and NKC genes is 

not confined to NK cells, an equivalent level of transcription is observed in CD8+ 

T cells. Transcription of KLRI2 is limited almost entirely to NK cells and if 

expressed on the cell surface, represents a potential additional NK marker. 

UniMMap analysis of publically available datasets from a study of M. bovis 

infection was used to provide insight into the impact of infection on 

transcription. The transcription of KIR appear to be influenced by M. bovis 

infection, particularly 3DXL7 and 2DL1 which are transcribed at a higher level in 

the infected group. Analysis of three dams reveals that the transcription of 

LRC/NKC genes undergoes a large increase in the 28 days post-birth. This 

includes the entire repertoire of genes and is not limited to a subset. 

Transcription was also assessed in a number of tissue types, revealing that at 

least one LRC and NKC gene is transcribed in all examined cell types. This 

provides evidence as to the distribution of NK cells throughout cattle tissue. 
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Chapter 5. Gene expression atlas for LRC and NKC genes 

in goats 

5.1 Introduction 

Goats (Capra hircus) are an important livestock species farmed for their meat, 

milk and skin. Able to subsist on a diet of poor quality vegetation, they are often 

famed on land unsuitable for other livestock species. Subsequently, goat farming 

is particularly prevalent in Africa, Asia and the Middle East and they are the 

most important livestock species in many areas of these regions (Gutierrez-A 

2018). The recent release of a high quality reference assembly of the goat 

genome, coupled with the characterisation of the goat LRC and NKC (Bickhart et 

al. 2017; Schwartz et al. 2017; Schwartz, Sanderson, and Hammond, unpublished 

data) and our analysis pipeline UniMMap, allowed us to analyse transcription of 

these immune-related regions. 

The NKC of the goat has expanded in a similar manner to cattle (figure 5-1B). 

Both cattle and goats have expanded a novel region of KLRC-like and KLRH-like 

genes between KLRA and KLRJ. This expansion has occurred to a lesser extent in 

goats compared to cattle, cattle possess 16 of these genes whilst goats possess 

6. Within this region in both cattle and goats, there is at least one KLRH-like 

gene possessing a KLRC2-like activating tail. The presence of this expansion and 

KLRH/KLRC2 recombination in both species suggests that it occurred before the 

two species diverged ~30 million years ago (mya) (Hiendleder et al. 1998; 

Schwartz et al. 2017).  Also like cattle, goats have expanded the 3DX-lineage of 

KIR (figure 5-1A). This expansion differs from cattle however as many of the goat 

genes do not clade with the cattle KIR groups, rather forming their own distinct 

groups, and they not possess a functional 3DL lineage gene. Of the 15 KIR 

located within the goat LRC, 7 are putatively functional (Schwartz, Sanderson, 

and Hammond, unpublished data). Analysis of goat gene expression data 

deposited in the sequence read archive (SRA) with UniMMap allowed the first 

insight into transcription of genes within these regions.  

Peste des petits ruminants virus (PPRV) causes severe disease in goats and 

sheep. The mortality rate of the virus can reach 70% or higher dependent on 

both the virus strain and health of the infected animals. It is distributed across 



151 
 
much of Africa, Asia and the Middle East where it consequently has a significant 

economic impact (Diallo et al. 2007). PPRV has two cellular receptors, the first 

of which is signalling lymphocyte activation molecule (SLAM). Expression of SLAM 

is exclusive to immune cells and is present on leukocytes, macrophages and 

dendritic cells. The second is Nectin-4, expression of which occurs on epithelial 

cells but not lymphocytes or dendritic cells (Kumar et al. 2014).  PPRV has been 

shown to inhibit proliferation of peripheral blood leukocytes in both goats and 

cattle (Heaney, Barrett, and Cosby 2002). PBMCs infected with PPRV produce 

higher levels of interferon gamma (IFNγ) than non-infected PBMCs. Along with 

CD8 T cells and gamma delta T cells, NK cells are a major producer of IFNγ, 

suggesting they may respond to PPRV infection (Dhanasekaran et al. 2014). 

Although the role of NK cells in PPRV infection is poorly understood, these three 

cell types are now known to transcribe NK cell receptors in cattle (chapter 3). 

RNA-Seq data generated from PBMCs isolated from goats involved in a PPRV 

vaccination study was used to characterise LRC and NKC genes in response to 

PPRV as part of the wider immune response. It also provided the opportunity to 

demonstrate the utility of UniMMap in a different ruminant species. 
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A 

B 

Figure 5-1. The gene structure of the cattle and goat LRC (A) and NKC (B). Arrows 

indicate individual genes. Open arrows represent predicted non-functional and filled 

represent predicted functional genes. The orientation of the arrow indicates the 

direction of transcription. Figure A is adapted from Schwartz et al. (manuscript in 

preparation) and figure B is taken and modified from (Schwartz et al. 2017). 
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5.2 Methods 

5.2.1 Goat LRC/NKC gene atlas data acquisition 

RNA-Seq datasets from BioProject accession number PRJEB23196 (Bush et al. 

2019) were downloaded from the sequence read archive (SRA). Sequencing was 

carried out on an Illumina HiSeq 4000, generating 75bp paired-end reads. The 

datasets consist of 17 different goat tissues and 3 goat immune cell populations. 

The tissues and cell types were obtained from varying numbers of individuals, 

resulting in 54 total datasets.  

5.2.2 Goat LRC/NKC gene atlas analysis 

The coding sequences of all of the NKC and LRC genes were extracted from the 

goat genome assembly ARS1 (Bickhart et al. 2017). The 54 RNA-Seq datasets 

were individually mapped to the coding sequences using the UniMMap pipeline 

(as described in chapter 2). UniMMap read counts were normalised based on the 

number of reads mapped for each sample. Normalised reads counts were 

averaged to generate a single count for each gene of the NKC and LRC in each of 

the 17 tissue types and 3 cell types. A heatmap was then generated from the 

log10 values of the counts using the superheat package in R (Barter and Yu 2017). 

Kendall rank correlation was carried out using the cor function from the stats 

package in R. 

5.2.3 PPRV vaccination study sample preparation 

Three animals were taken from a PPRV vaccination study being carried out at 

the Pirbright Institute (Karin Darpel, Orbivirus Research). All animal experiments 

were approved by The Pirbright Institute Ethics Committee and carried out in 

accordance with the U.K. Animal (Scientific Procedures) Act 1986. This work was 

carried out under home office license number PPL70/8833 ‘PPRV pathogenesis 

and immune response to PPR vaccines’. With the exception of the control 

(unvaccinated) animals, goats were inoculated with an experimental PPRV 

vaccine. After 28 days post-vaccination, all goats (including unvaccinated 

controls) were challenged with PPRV. Whole blood was taken from three of the 

vaccinated animals and two of the unvaccinated animals 14 days post-

vaccination, 2 days post-challenge (28 days post-vaccination) and 8 days post-

challenge. Due to the severity of infection that developed in one of the control 
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animals, it had to be euthanised before the final time point. PBMCs were 

isolated from whole blood using a histopaque-1083 gradient and suspended in 

Trizol. Total RNA was extracted using an Invitrogen PureLink RNA Mini Kit and 

quantified using a Qubit Fluorometer. RNA integrity was checked with an Agilent 

Bioanalyser 2100 and samples with a RIN score equal to or greater than 9.0 taken 

forward for sequencing. Sequencing was carried out on an Illumina NextSeq 550, 

producing ~50 million 150bp single-end reads per sample.  

5.2.4 PPRV vaccination study analysis 

LRC/NKC cDNA sequences were extracted from the Capra hircus ARS1 genome 

assembly based on an in-house annotation. Read counts for the LRC/NKC genes 

were generated using the UniMMap pipeline, which is extensively described in 

chapter 2. Read counts were normalised based on the number of reads mapped 

for each sample. Streamgraphs of gene proportion at each time point in each 

animal were generated using the streamgraph R package (Rudis 2015). Read 

counts for whole transcriptome analysis were generated by mapping the RNA-Seq 

datasets to the goat ARS1 genome and ARS1.93 annotation using the Gemtools 

RNA-pipeline. Differential expression between unvaccinated and vaccinated 

animals was carried out using edgeR (Robinson, McCarthy, and Smyth 2010). For 

analysis with edgeR, genes expressed in 2 or more samples were selected. 

Differentially expressed genes with an FDR-adjusted (Benjamini-Hochberg) p-

value equal to or less than 0.05 were carried forward for further analysis. GO 

term analysis was carried out by importing selected gene identifiers into 

Ensembl BioMart (Kinsella et al. 2011) and filtered using awk.  
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5.3 Results 

5.3.1 Large variance of transcription within the LRC/NKC genes occurs 

between goat tissue types 

RNA-Seq datasets used to generate a goat gene expression atlas were accessed 

to enable a comparison of transcription of LRC/NKC genes between different 

tissue types. Within the gene atlas, 17 tissue types and 3 immune cell types 

were sequenced and all were subsequently analysed with UniMMap.  

The transcriptional patterns of the LRC/NKC genes are highly variable between 

tissue/cell types (figure 5-2). Within the LRC, 1_KIR3DXL and 3_KIR3DXL are 

transcribed in all of the analysed datasets. Of the NKC genes, only KLRE1 is 

transcribed ubiquitously. Transcription of all examined LRC/NKC genes occurs in 

both the ileum and the spleen. Almost all of the genes are transcribed in the 

testis, with the exception of KLRJ1. Transcription of KLRJ1 is observed 

elsewhere however, present in 5 of the 20 total tissue/cell types. Transcription 

of 1_KIR3DXL is higher in alveolar macrophages than any other LRC/NKC gene in 

any of the tissue/cell types. Bone marrow (BM) macrophages exhibited the 

second-highest level of transcription of 1_KIR3DXL, both when unstimulated and 

stimulated with lipopolysaccharide (LPS) for 7 days. There is a small amount of 

variation between stimulated and unstimulated bone marrow macrophages. 

Transcription of 3_KIR3DXL is only observed in the stimulated population and 

KLRC1-1, KLRK1 and KLRD2 are transcribed only in the unstimulated population.  

Despite transcribing only 8 of the 15 KIR, alveolar macrophages have the highest 

total KIR transcription (figure 5-3A). The spleen, in which the second highest  

level of KIR transcription occurs and which transcribes all 15 KIR genes, has a 

total KIR read count almost half that of alveolar macrophages. Total KIR 

transcription is also noticeably elevated in both BM macrophage populations as 

well as the testis. Comparatively, the spleen (53.75 RPM) is the highest total 

transcriber of NKC genes and the testis (19.84 RPM) in the second highest (figure 

5-3B). Transcription of the NK marker NCR1 is highest in the spleen (3.22 RPM) 

(figure 5-3C), which is 11.41x higher than the average across all tissue/cell types 

(0.28 RPM). Comparing the ratio of KIR transcription to NCR1 transcription  
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Figure 5-3. Total LRC gene (A) NKC gene (B) NCR1 (C) transcription in each tissue. Read 
counts for each gene in each tissue were generated by UniMMap. Read counts were 
normalised per million reads mapped and total transcription calculated. 
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transcription in each tissue. Read counts for each gene in each tissue were generated 
by UniMMap. Read counts were normalised per million reads mapped and total 
transcription calculated. Total read counts for each tissue were divided by the NCR1 
read count of that tissue. 
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provides an estimate of the contribution of NK cells to the total KIR transcription 

(figure 5-4A). The higher the value, the less likely it is that the KIR transcription 

is occurring in NK cells. As a reference point, the ratio observed in cattle NK 

cells is 18.83 KIR reads/NCR1 read. Both BM macrophage populations have the 

highest ratio (~500 KIR reads/NCR1 read) and alveolar macrophages are also 

elevated (136.92 KIR reads/NCR1 read). High values are also observed for the 

testis (142.55 RPM) and cerebellum (52.26 KIR reads/NCR1 read). The same 

comparison for total NKC gene transcription again shows an elevated ratio for 

testis tissue (296.34 NKC gene reads/NCR1 read) (figure 5-4B) which is much 

higher than the value for cattle NK cells (4.88 NKC gene reads/NCR1 read). The 

value for fallopian tube tissue was also elevated (72.50 NKC reads/NCR1 read). 

The Kendall rank correlation is used to measure the association between two 

quantities. The Kendall rank correlation coefficient for total NKC and NCR1 

transcription is 0.478 (p-value = 7.231x10-7) and for total KIR gene and NCR1 is 

0.347 (p-value = 3.264x10-4). This supports the hypothesis that NK cells account 

for more NKC gene transcription than KIR transcription. This supports that these 

genes are transcribed in cell types other than NK cells, as observed in cattle 

(chapter 4).  

Transcription of all the of the LRC/NKC genes is observed in at least one 

tissue/cell type. However, the pattern of transcription is highly variable 

between the tissue/cell types, transcription of just three of the 31 genes was 

consistently observed. The high level of transcription of LRC/NKC genes relative 

to NCR1 transcription in testis tissue is particularly striking. Combined with the 

comparatively high transcription of the genes of both the LRC and NKC, hints at 

a previously unseen NCR1/LRC/NKC cell phenotype. 

5.3.2 Variation in LRC/NKC gene transcription occurs primarily between 

individuals rather than vaccination status 

To investigate changes in transcription of the LRC/NKC genes in response to viral 

infection, samples were collected from a PPRV vaccination study carried out in 

goats. RNA was extracted and sequenced from PBMCs isolated from five 

individuals (three PPRV vaccinated and two unvaccinated controls) at three 

separate time points. The first time point (-14) is 14 days post-vaccination and 

14 days pre-PPRV challenge, the second (+2) is 2 days post-challenge with PPRV, 

and the third (+8) is 8 days post-challenge with PPRV. 
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Figure 5-5. Total LRC gene (A) NKC gene (B) NCR1 (C) transcription over the 
course of a PPRV vaccination study. Read counts were generated by UniMMap, 
normalised per million reads mapped and total transcription calculated. Animals 
676 and 216 are unvaccinated controls and 677, 214 and 211 were inoculated 
with an experimental PPRV vaccine. The first time point (-14) is 14 days post-
vaccination and 14 days pre-PPRV challenge, the second time point (+2) is 2 
days post-PPRV challenge, and the third time point (+8) is 8 days post-PPRV 
challenge. 

A 

B 
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  Figure 5-6. Total LRC gene (A) NKC gene (B) transcription over the course of a PPRV 
vaccination study. Read counts were generated by UniMMap, normalised per million 
reads mapped and total transcription calculated. Animals 676 and 216 are 
unvaccinated controls and 677, 214 and 211 were inoculated with an experimental 
PPRV vaccine. The first time point (-14) is 14 days post-vaccination and 14 days pre-
PPRV challenge, the second time point (+2) is 2 days post-PPRV challenge, and the 
third time point (+8) is 8 days post-PPRV challenge. 

A 

B 
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Total transcription of LRC/NKC genes was calculated to compare changes across 

the three time points (figures 5-5, 5-6). Although comparisons between the two 

unvaccinated animals (676 and 216) are not possible at the final time point due 

to the euthanization of 216 prior to the time point, comparisons can be made 

between the first two time points. The two unvaccinated animals have an 

identical change in LRC gene transcription between -14 and +2 (figure 5-5A, 5-

6A). Both animals again have similar transcription at -14 (3.60 and 4.02 RPM for 

676 and 216 respectively). Transcription of LRC gene increases in both animals 

by the +2 time point (increasing by 2.17 and 2.27 RPM in 676 and 216 

respectively). Transcription of LRC genes increases an additional 2.38 RPM by +8 

days post-challenge in 676. Both animals have similar total transcription of NKC 

genes (27.47 RPM and 24.71 RPM for 676 and 216 respectively) at the initial time 

point, pre-PPRV challenge (figure 5-5B, 5-6B). At the first time point post-

challenge, total transcription for 676 remains almost identical (27.47 to 28.43 

RPM), whereas 216 increases from 24.71 to 41.05 RPM. A highly similar increase 

occurs at the next time point for 676, from 28.43 RPM at +2 to 40.40 RPM at +8.  

There is much more variability in the response of LRC/NKC gene transcription 

within the three vaccinated animals (677, 214 and 211). Animals 214 and 211 

have almost identical total NKC gene transcription at the first time point (38.62 

and 39.66 RPM respectively) (figure 5-5B, 5-6B). At the final time point, the 

total NKC gene count for 214 has increased slightly (38.62 to 39.45 RPM) and has 

dropped considerably for animal 211 (39.66 to 15.82 RPM). The starting point for 

animal 677 is the lowest of the vaccinated animals, and while it has decreased 

by the final time point, it is still higher than for animal 211 (21.30 compared to 

15.82 RPM). The overall trend for total LRC gene transcription within the 

vaccinated animals is similar to that of the NKC genes (figure 5-5A, 5-6A). At the 

initial time point, 214 and 211 have higher total LRC gene transcription (12.85 

and 9.26 RPM respectively) than the other three animals. The vaccinated animal 

677 (4.40 RPM) and the two unvaccinated animals, 676 (3.60 RPM) and 216 (4.02 

RPM) group closely together. The response to challenge with PPRV again differs 

considerably between 214 and 211. Total LRC gene transcription for 214 drops 

slightly the three time points, decreasing by 1.36 RPM by the second time point 

and by 0.64 RPM by the third. The decrease is much higher for 211, dropping by 

7.14 RPM between the first and second time points, and increasing by 0.065 RPM 
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by the third time point. The trend for animal 677 closely matches the 

unvaccinated animals across the first two time points, before decreasing below 

the starting value by the final time point. 

Transcription of the NK marker NCR1 was also compared between the five 

animals (figure 5-5C). The changes to NCR1 transcription within each animal are 

similar to those observed for total NKC gene transcription. The major exception 

to this is animal 216 in which NCR1 transcription decreases between the first two 

time points, total NKC gene transcription undergoes a large increase over this 

same time period.  

More variability is observed between the individual animals, particularly within 

the vaccinated group, rather than based on vaccination status. The overall 

trends for total LRC/NKC gene transcription as well as NCR1 transcription are 

relatively consistent within each individual.  

5.3.3 Average counts reveal variability between unvaccinated and 

vaccinated animals 

To reduce the effects of individual variability when trying to compare the 

unvaccinated and vaccinated groups, read counts within the groups were 

averaged (figure 5-7). Two distinct trends can be seen between the groups. 

Total KIR transcription is at its lowest at the first time point in the unvaccinated 

animals and increases up to the final time point (figure 5-7A). In the vaccinated 

animals, the opposite occurs and total KIR transcription decreases over the three 

time points. Grouping the KIR based on their activating or inhibitory status 

highlights the inverse response between unvaccinated and vaccinated animals 

(figure 5-7C). The same trend is observed when comparing total transcription of 

the NKC genes between unvaccinated and vaccinated animals (figure 5-7B).  

5.3.4 Changes in total transcription are driven by the entire repertoire of 

genes 

To understand what changes in transcription were occurring at the individual 

gene level, the proportion of the total transcription that each gene represents 

was plotted over the three time points for each individual. Despite the large 

changes in total KIR transcription observed in multiple animals over time, there 

is only minor variation in the proportion of each KIR (figure 5-8). Transcription of   
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  Figure 5-7. Average total LRC gene (A) NKC gene (B) activating and inhibitory KIR (C) 
transcription in unvaccinated and vaccinated animals. Read counts were generated by 
UniMMap, normalised per million reads mapped and total transcription calculated. 
Animals 676 and 216 are unvaccinated controls and 677, 214 and 211 were inoculated 
with an experimental PPRV vaccine. The first time point (-14) is 14 days post-
vaccination and 14 days pre-PPRV challenge, the second time point (+2) is 2 days post-
PPRV challenge, and the third time point (+8) is 8 days post-PPRV challenge. 
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  Figure 5-8. Proportional KIR transcription in each individual across the three time 
points. Read counts were generated by UniMMap and normalised per million reads. 
Animals 676 and 216 are unvaccinated controls and 677, 214 and 211 were inoculated 
with an experimental PPRV vaccine. The first time point (-14) is 14 days post-
vaccination and 14 days pre-PPRV challenge, the second time point (+2) is 2 days post-
PPRV challenge, and the third time point (+8) is 8 days post-PPRV challenge. 
Streamgraphs were generated using the streamgraph package in R. 
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Figure 5-9. Proportional KLR transcription in each individual across the three time 
points. Read counts were generated by UniMMap and normalised per million reads. 
Animals 676 and 216 are unvaccinated controls and 677, 214 and 211 were inoculated 
with an experimental PPRV vaccine. The first time point (-14) is 14 days post-
vaccination and 14 days pre-PPRV challenge, the second time point (+2) is 2 days 
post-PPRV challenge, and the third time point (+8) is 8 days post-PPRV challenge. 
Streamgraphs were generated using the streamgraph package in R. 
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3_KIR3DXL is the highest in all animals at all time points. The lowest transcribed 

gene at each time point is consistently one of the six predicted non-functional 

genes. Of the NKC genes, KLRK1 is the highest transcribed gene within each 

animal at each time point (figure 5-9). As was observed in the cattle datasets 

(chapter 3 and 4), the novel KLRC-like and KLRH-like genes located in the 

expanded region between KLRA and KLRJ are consistently the lowest transcribed 

in goats. 

5.3.5 Variability in transcription of individual LRC/NKC genes occurs between 

unvaccinated and vaccinated animals 

The difference in read count between the first time point and the second/third 

time point was used to compare the transcriptional response of each of the 

individual LRC/NKC genes between vaccination status. Transcription of many 

LRC genes is similar between unvaccinated and vaccinated animals (figure 5-10). 

However there are clearly differences in the response between multiple genes. 

There is a large divergence in 3_KIR3DXL transcription between the two groups, 

transcription increases in the unvaccinated group and decreases by a similar 

amount in the vaccinated group. Similar but less extreme divergences also occur 

for 5_KIR3DXL and 7_KIR3DXS. The difference in NCR1 transcription between the 

two groups is also particularly noticeable. Transcription of NCR1 decreases in 

both groups between the first and second time point, the decrease in the 

vaccinated group is twice that of the unvaccinated group. Within the 

unvaccinated group, NCR1 transcription increases above the level at the initial 

time point whilst in the vaccinated group it increases only slightly and remains 

below the initial level. 

A very similar pattern to NCR1 transcription is seen with KLRI1 in the NKC, 

although the magnitude of the change is greater (figure 5-10). The same 

diverging pattern observed in 3_KIR3DXL, 5_KIR3DXL and 7_KIR3DXS, is also seen 

with KLRJ1, KLRD1 and KLRE1 in the NKC. Transcription of KLRK1 increases in 

the unvaccinated group and decreases within the unvaccinated group at the 

second time point. By the third time point, transcription of KLRK1 has dropped 

to almost the same level in both groups. 

Transcriptional levels of only a subset of LRC and NKC genes change over the 

course of the study. The only gene to show a large response over time and have  
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Figure 5-10. Average deviation in read count from the initial time point for 
individual KIR (A) and KLR (B) at the second and third time points. Read counts 
were generated by UniMMap and normalised per million reads. The first time point 
(-14) is 14 days post-vaccination and 14 days pre-PPRV challenge, the second time 
point (+2) is 2 days post-PPRV challenge, and the third time point (+8) is 8 days 
post-PPRV challenge.  
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a similar level in both groups is KLRK1. The majority of the changes in total LRC 

gene transcription appear to be driven by 3_3DXL.  

5.3.6 LRC/NKC genes are not well represented in the global PBMC 

transcriptome 

To compare the transcription of the LRC/NKC genes with the rest if the 

transcriptome, a comparison was carried out between values at the first time 

point in the unvaccinated group. PBMCs from this group and time point most 

closely resemble in vivo PBMCs. The highest transcribed gene in the 

unvaccinated population at the first time point is 3_KIR3DXL, which is ranked 

10597 out of 19283 detected genes (figure 5-11A). The lowest transcribed 

(8_KIR2DSP) is ranked 16888. Of the 19283 goat genes for which transcription 

was detected, 54% are transcribed at a higher level than the most transcribed 

LRC gene. When comparing the average position of the LRC genes (13505), 70% 

of the total transcriptome is transcribed at a higher level. 

Within the NKC genes, KLRK1 is the highest transcribed and is ranked 

4618/19283 and KLRH2 is the lowest at 16515/19283 (figure 5-11B). 

Transcription of KLRK1 is higher than 76% of the total detected genes. The 

average position of the NKC genes is 12079, meaning that 63% of the total 

transcriptome is transcribed at a higher level. 

5.3.7 A large number of genes are differentially expressed between 

unvaccinated and vaccinated animals 

Differential expression analysis was carried out to understand the extent to 

which the global transcriptome (25144 genes) changes in response to vaccination 

as well as subsequent challenge with PPRV. The total number of genes exhibiting 

increased or decreased expression in the vaccine group compared to the 

unvaccinated group was determined at each of the three time points (figure 5-

12). At the first time point (14 days post-vaccination and 14 days pre-PPRV 

challenge), a total of 984 genes are significantly differentially expressed. Of the 

984 differentially expressed genes, 430 and 554 are down and upregulated in the 

vaccine group respectively. There is little change in differential expression 

between the first two time points. The total number increases from 984 to 1021, 

404 of the 1021 are downregulated and 617 are upregulated. Of the 404  
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  Figure 5-11. Transcription of LRC genes (A) and NKC genes (B) in comparison 
with the global transcriptome of unvaccinated and vaccinated animals. Average 
read counts from unvaccinated and unvaccinated at the initial time point (-14) 
were transformed to log

2
 values and plotted against each other using the plot 

function in R. Purple dots represent the global transcriptome and yellow dots 
represent either LRC (A) or NKC (B) genes. 

KLRK1 
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Figure 5-12. Number of statistically significant genes differentially expressed at each 
time point. Read counts were imported into the edgeR R package to calculate the 
number of genes exhibiting decreased and increased expression in the vaccinated 
group at each time point. Differentially expressed genes with a p-value of <0.05 were 
carried forward. Blue and orange bars indicate the number of downregulated and 
upregulated genes in the vaccine group at each time point. The diagonal lines of the 
same colour indicate how many of those genes were also differentially expressed at 
the first time point (-14).  
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downregulated genes at the second time point, 400 were also downregulated at 

the first time point. Within the 617 upregulated genes at the second time point, 

550 were also upregulated at the first time point. The number of differentially 

expressed genes is much higher at the third and final time point compared to the 

previous time points. A total of 2473 genes are significantly differentially 

expressed, 970 of those are upregulated and 1503 are downregulated in the 

vaccine group. Despite the much higher number of differentially expressed 

genes, there is little overlap in the genes between the third time point and the 

first and second time points. Only 37 of the 1503 downregulated genes and 54 of 

the 970 upregulated genes were also differentially expressed at the first time 

point.  

5.3.8 The top GO terms are largely identical between downregulated and 

upregulated genes 

GO term analysis was carried out on the differentially expressed genes at each 

time points to understand which biological pathways were influenced. Across the 

three time points, the differentially expressed genes corresponded with 136 GO 

terms. The top 25 represented GO terms were compared between time points 

and vaccination status to identify differences (figure 5-13). Present in the top 25 

upregulated terms but not downregulated are cell cycle, cell proliferation, 

chromosome and cytoskeleton. Contained in the top 25 downregulated terms but 

not upregulated are catabolic process, endoplasmic reticulum, ion binding and 

locomotion. Minimal variation occurs between the order of GO terms between 

time points. The immune system process is present in the top 25 downregulated 

(13/25) and upregulated (18/25) GO terms. 

5.3.9 T cell related GO terms represent the majority of the total immune 

system process related genes 

The GO terms that are contained within the immune system process GO term 

were compared between time points. This provided insight into differences in 

the immune system response between unvaccinated and vaccinated animals 

(figure 5-14a). Differential expression of a high number of T cell related genes 

occurs at all three time points. This number is highest at the third time point 

where 156 T cell related genes are differentially expressed, 5 and 3 of which are 

CD8 T cell and gamma delta T cell specific respectively. B cell related terms are  
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   Figure 5-13. Top 25 GO terms downregulated (A) and upregulated (B) in the vaccinated 
group at all time points. Differentially expressed genes were imported into Ensembl 
BioMart to assign GO terms to each gene. The number of genes matching each GO 
term was calculated using awk. 
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  Figure 5-14. Number (A) and percentage (B) of occurrences of GO terms related to 
various immune cell types. GO terms was obtained by importing differentially 
expressed genes into Ensembl BioMart. GO terms related to each cell type were 
identified using awk. Upregulated or downregulated indicates genes that were 
upregulated or downregulated in the vaccine group compared to the unvaccinated 
group. The number in brackets next to each cell type indicates how many GO terms 
occur when analysing the entire genome.  



175 
 

  Figure 5-15. Log2 fold change of SLAMF1 transcription between unvaccinated and 
vaccinated animals. Fold change was calculated using the edgeR package in R. A 
positive fold change indicates an increase in the vaccinated group. 



176 
 
predominantly downregulated at the first two time points in vaccinated animals. 

At the third time point, 30 genes with B cell related GO terms are 

downregulated and 20 are upregulated. A small number of NK cell and NK T cell 

related genes are also differentially expressed at all three time points.  

The number of T cell related terms associated with the goat genome is much 

higher than any other individual immune cell type. To reduce bias towards cell 

types with more GO term annotations, the percentage of the total GO terms of 

each cell type differentially expressed was calculated (figure 5-14B). This does 

not change the overall pattern of differential expression within cell types, but 

does alter the comparison between cell types. A higher percentage of B cell 

related genes are downregulated at all three time points compared to T cells. 

The percentage of NK cell related genes upregulated is higher at the first two 

time points than the corresponding T cell values.  

5.3.10  The PPRV receptor SLAMF1 is significantly upregulated after 

vaccination 

Contained within the differentially expressed genes at the first two time points 

was the gene encoding for the PPRV receptor SLAMF1 (figure 5-15). Transcription 

of SLAMF1 occurs at a level approximately twice as high in the vaccinated 

animals at the first and second time points. SLAMF1 is not significantly 

differentially expressed at the final time point.  
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5.4 Discussion 

Using RNA-Seq data from a publically available goat gene atlas, the pattern of 

LRC/NKC gene transcription in various gene tissues was established. Total 

LRC/NKC gene transcription was correlated with NCR1 transcription to provide 

an approximation of the contribution of NK cells. RNA-Seq data was generated 

from unvaccinated and vaccinated goats during a PPRV vaccination study. 

UniMMap was run on these samples to characterise differences of LRC/NKC gene 

transcription between the unvaccinated and vaccinated animals. The impact of 

PPRV infection on LRC/NKC transcription was also assessed. The global 

transcriptome of these animals was also analysed to determine the relative 

transcription level of the LRC/NKC genes as well as to understand differences in 

the wider immune system. 

5.4.1 Goat macrophages transcribe KIR 

Both bone marrow (BM) and alveolar macrophages transcribe numerous KIR 

genes. Macrophages transcribe 1_KIR3DXL at a higher level than any other tissue, 

although it would be expected a pure cell type would have higher transcription 

of a cell specific gene than a more general tissue type would. 

Transcription/expression of KIR has not been shown to be associated with 

macrophages in any published data to date. Much higher transcription of NCR1 in 

the spleen than any of the other tissue types would suggest NCR1 is transcribed 

by goat NK cells. The low levels of NCR1 transcription observed in the 

macrophage populations, particularly BM macrophages, suggests it is unlikely 

that KIR transcription is due to contamination with NK cells. This is further 

supported by the pattern of NKC gene transcription in the macrophage 

populations. Cattle NK cells typically transcribe the majority of NKC genes, 

particularly those between KLRI2 and KLRE1 which are transcribed at a higher 

level than any of the KIR (chapter 3 and 4). Goat macrophages only appear to 

transcribe a small subset of the NKC genes, at a level below any of the KIR genes 

they transcribe. This suggests goat macrophages utilise KIR in some manner, 

particularly 1_KIR3DXL which may serve to inhibit macrophage function. 
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5.4.2 The testis contain a unique LRC/NKC receptor phenotype 

Testis tissue possesses the fifth highest level of total LRC gene transcription of 

the 20 examined tissue/cell types. The total NKC gene transcription of testis 

tissue is second only to spleen tissue, a tissue know to contain a high proportion 

of NK cells (Grégoire et al. 2007). Despite this, transcription of the NK marker 

NCR1 is particularly low in testis tissue. The amount of total LRC gene 

transcription relative to NCR1 transcription is higher only in BM macrophages and 

is almost identical to alveolar macrophages. The amount of total NKC gene 

transcription per NCR1 transcription is much higher in testis tissue than any 

other tested tissue/cell type. The pattern of NKC gene transcription in testis 

tissues closely resembles splenic tissue, with the exception of the absence of 

KLRJ1 in testis tissue. We have shown that cattle NK cells transcribe KLRJ only 

at a very low level, KLRJ transcription predominantly occurs in gamma delta T 

cells (chapter 4). Despite the transcription pattern of LRC/NKC genes in testis 

tissue closely resembling that of cattle NK cells, NCR1 transcription is far below 

the expected value of NK cells. This suggests that either a non-NK cell type 

exists in goat testis that transcribe LRC/NKC genes similarly to cattle NK cells, or 

that NK cells in the testis heavily downregulate NCR1 transcription. 

5.4.3 Changes in LRC/NKC gene transcription vary between individuals after 

PPRV-challenge 

The response of LRC/NKC gene transcription to both PPRV-vaccination and PPRV-

challenge is highly variable between animals. This could be due to 

haplotypic/allelic variation between animals, which has been implicated in 

differential outcomes to numerous viral infections in humans (Martin et al. 2007; 

Khakoo et al. 2004; Jost et al. 2011; Warfield et al. 2004). The infection history 

of an individual can also result in NK populations with different abilities to 

respond, due to terminal differentiation of NK cells (Strauss-Albee et al. 2015).  

Averaging the read counts of the individuals within the unvaccinated and 

vaccinated groups serves to reduce the individual variation. Comparing average 

total read counts for both the LRC and NKC genes shows that both vaccination 

and PPRV-infection alter the total transcription of the genes of both complexes. 

Over the course of PPRV infection in unvaccinated animals, transcription of 

LRC/NKC genes increases. Changes in total NKC gene transcription in individuals 
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closely mirrors changes in NCR1 transcription. This could be due to either NCR1 

responding in the same manner as the NKC genes or changes in NKC gene 

transcription occur because of changes in the number of circulating NK cells. 

Infection with PPRV is associated with leukopenia (Kumar et al. 2014) and so a 

decrease in NK cell number in infected animals is expected. 

5.4.4 There are distinct differences in LRC/NKC gene transcription based on 

infection and vaccination status 

Total LRC and NKC gene transcription increases in the unvaccinated group after 

infection. The increase is driven by a subset of genes (3_3DXL, KLRI1 and 

KLRE1). This suggests they play a role in the response of the host to PPRV 

infection. In all three vaccinated animals, total LRC gene transcription is lower 

than prior to PPRV challenge. This is due predominantly to a decrease in 3_3DXL 

transcription. This difference in 3_3DXL transcription between unvaccinated and 

vaccinated animals could be explained by a subpopulation of 3_3DXL+ cells 

responding to PPRV infection. In the unvaccinated animals this population could 

be in the process of expansion. Whereas in the vaccinated animals expansion has 

already occurred, the population has reached exhaustion due to cytokine 

production and is in decline. This could also be occurring with a KLRK+ 

population, KLRK is transcribed at a higher and lower level post challenge in the 

unvaccinated group and vaccinated group respectively. In both groups KLRK 

transcription is greatly reduced by the final time point. However, NK cell 

exhaustion is typically associated with an increase in inhibitory receptor 

expression (Bi and Tian, 2017). Therefore, an alternate explanation could be 

that the increase in transcription is occurring in CD8+ T cells, which upregulate 

inhibitory receptors after encountering antigen (Anfossi et al. 2004). The initial 

time point in the vaccinated animals could represent this and would explain why 

transcription of 3_3DXL is highest at this time point.  

It is also interesting to note the difference in total transcription between the 

two unvaccinated animals. Animal 216 had to be euthanised early after the 

second time point due to the severity of infection. This correlated with a much 

greater increase in total NKC gene transcription and lower NCR1 transcription in 

animal 216, whereas total LRC gene transcription was almost identical between 

the two animals. This could suggest an NCR1- population underwent expansion.  
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The total transcription of LRC/NKC genes is remarkably similar between the 

vaccinated group at the initial time point (pre-PPRV challenge) and the 

unvaccinated group at the final time point (8 days post-PPRV challenge). This 

suggests that the vaccine drives a similar LRC/NKC gene response to the virus. 

By the third time point, the total transcription in vaccinated animals falls to a 

similar level as the unvaccinated group at the initial time point. This reduction 

could be caused by NK turnover - in humans labelled NK cells disappear from 

circulation with a half-life of <10 days (Zhang et al. 2007).   

Further experiments with larger sample numbers are required to test these 

hypotheses. Sorting PBMCs by immune cell type prior to sequencing would 

provide information as to the contribution of each cell type to significant 

changes in transcription.  

5.4.5 A subset of LRC/NKC genes respond differently to PPRV-challenge 

between unvaccinated and unvaccinated animals 

Comparing the average response of individual receptors to PPRV-challenge 

between the unvaccinated and vaccinated groups shows that there is variation in 

the response of only a subset of the genes. The difference in total transcription 

of LRC genes between the two groups is almost entirely driven by 3_KIR3DXL. 

The correlation between 3_KIR3DXL and NCR1 was the highest of all the KIR, 

suggesting NK cells account for more of its transcription than they do any other 

KIR. Subsequently this suggests that this response may be occurring in NK cells, 

rather than CD8+ T cells. The response of KLRI1, which in cattle has been shown 

to be primarily transcribed on NK cells (chapter 4), mirrors that of NCR1. This 

suggests that the change in KLRI1 transcription is due to differences in the 

number of circulating NK cells. Future experiments would benefit from FACS 

analysis to determine the percentage of NK cells present in each PBMC sample. 

5.4.6 The largest differential expression occurs 8 days post PPRV-challenge 

Vaccination results in statistically significant (p-value <0.05) differential 

expression of 984 genes. Of the 984 genes, 950 remain differentially expressed 2 

days post-PPRV challenge. Only 71 additional genes are differentially expressed 

2 days post-PPRV challenge. The differential expression of genes changes 

drastically between 2 and 8 days post-challenge. The number of differentially 

expressed genes almost triples between the first and third time points. However 
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only a small fraction of the differentially expressed genes at the final time point 

were also differentially expressed at the first. This correlates with the timeline 

of PPRV infection where fever usually develops 3-7 days post infection (dpi) and 

additional clinical signs develop within 3-5 days after fever establishes (Kumar et 

al. 2004). At the final time point a large number of T cell and B cell genes are 

differentially expressed between the unvaccinated and vaccinated group. The 

proportion of CD4+ T cells has been shown to decrease 4 days post-challenge in 

unvaccinated but not vaccinated animals. The proportion of CD8+ T cells slightly 

increases 7 days post-challenge in both unvaccinated and vaccinated animals 

(Herbert et al. 2014). The passive transfer of immunity to PPRV via colostrum 

suggests a role for B cells in infection (Ata et al. 1989).  

Also contributing to the large number of differentially expressed genes at the 

final time point was a gender imbalance occurring between the unvaccinated 

and vaccinated groups. This occurred due to the euthanisation of a control 

animal prior to the final time point. Prior to euthanisation, the unvaccinated 

group consisted of one female and one male and the vaccinated group of two 

males and a female. As the unvaccinated group only contained a female at the 

final time point, and the vaccinated group contained males, a large number of 

the differentially expressed genes would have been sex-linked genes. Many of 

these genes would likely have not been differentially expressed at previous time 

points.  

While outside the scope of this work, further detailed analysis of the immune 

response using these RNA-Seq datasets could provide valuable information into 

how the vaccine induces protection. In future experiments, coupling 

transcriptomics with FACS analysis to determine immune cell percentages would 

provide valuable insight.  
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Chapter 6. Discussion 

6.1 Summary of findings 

The primary aim of the project was the creation of a pipeline to accurately 

quantify RNA-Seq reads mapping to complex regions of the genome. With a 

particular focus on the cattle LRC and NKC. These gene complexes have 

undergone significant expansion in cattle resulting in a large number of 

highly similar genes. Subsequently, short RNA-Seq reads map to multiple 

locations within the complexes. Due the high sequence similarity of the 

genes within each complex, previous attempts to characterise transcription 

of these regions using qPCR required grouping the most similar genes 

together - individual gene resolution was not possible. Information 

regarding transcription of individual genes is important to confirm existing 

gene models. This necessitates an understanding of which genes are 

transcribed and the extent to which transcription occurs in various tissues 

and cell types.  

The analysis pipeline UniMMap was created, utilising the concept of 

mappability to calculate the ‘uniqueness’ of LRC/NKC coding sequences. 

After mapping, a score is assigned to each read based on the average 

mappability of the locations it maps to. Only genes that have reads 

mapping to regions that are unique are considered to be transcribed. This 

enables high confidence when determining whether a gene is transcribed. 

In humans, the receptors encoded by the LRC and NKC genes are primarily 

NK cell receptors this is also thought to be the case for cattle. In order to 

characterise the transcription of LRC and NKC genes in cattle, UniMMap 

was run on RNA-Seq data generated from paired PBMC and NK cell samples 

from two animals. This provided the first information on the transcriptional 

status for the highly similar genes that could not be resolved by previous 

methods, as well as novel genes only recently characterised. It also gave 

insight into the variation of their transcriptional levels between individuals. 

The read counts obtained informed future sequencing experiments by 

indicating the read coverage required to detect LRC/NKC gene transcripts. 

UniMMap was also used to assess transcription of LRC/NKC genes in 
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multiple immune cell types, compare transcription between dams and 

calves and to create an LRC/NKC gene atlas across various tissue types. 

The utility of UniMMap in analysis of other species was demonstrated 

through the generation of RNA-Seq data from goats involved in a PPRV 

vaccination study.  

6.1.1 LRC/NKC gene transcription is variable between animals 

Transcriptional analysis of the full repertoire of known cattle LRC/NKC 

genes has been carried out in multiple animals. The amount of total 

transcription of the genes of each complex is highly variable between 

individuals. However, higher total transcription does not equate with 

higher transcription of each individual gene. This could be due to 

haplotypic variation, particularly with the LRC. There is considerable 

haplotypic variation of the LRC within humans where two major haplotype 

groups exist, A and B. The B haplotype can contain up to five KIR not found 

in the A haplotype. Therefore, the total transcription in an individual 

heterozygous for haplotype A and B would be expected to be lower than an 

individual homozygous for the group B haplotype. Transcription could also 

be variable between individuals due to allelic differences. Alleles more 

divergent from the reference sequence may be represented less in the data 

due to a higher number of mismatches. Across the NK RNA-Seq datasets 

from 5 individual cattle analysed here, transcription of all of the genes 

were consistently observed. Although this is a small sample size, these five 

animals can be assumed to possess at least one copy of each known KIR. 

Variation in the amount of transcription between individual genes may 

suggest that haplotypes exist that do not contain all of the KIR. This also 

highlights one of the weaknesses of UniMMap, it is only able to quantify 

transcription of genes present in the reference. 

The genes of the NKC can be divided into two distinct groups based on the 

amount of transcription occurring. The genes between and including KLRI2 

and KLRE are consistently transcribed at a much higher rate than the genes 

located between and including KLRA and KLRJ. As with the LRC genes, the 

highly transcribed genes are transcribed consistently in the five NK 
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datasets. There is variation however in the genes that are transcribed at a 

low level. Transcription of KLRH7, KLRC1-6, KLRC2-4, KLRH5, KLRC1-4, 

KLRH3, KLRC2-3 and KLRJ is absent in at least one of the five animals. This 

suggests that haplotypic variation may also occur within the cattle NKC. 

Alternatively, the low transcription of these genes could make them 

undetectable in RNA-Seq datasets. This may signify that the receptors they 

encode are not transcribed for under normal conditions, occurring only in 

response to particular stimuli. Further evidence for the influence of read 

depth comes from the analysis of PBMC RNA-Seq datasets from an 

additional six cattle, where variation in presence/absence of gene 

transcription emerges. Transcription of 3DXL7, 3DXL4, 2DS2, 3DXS2, 3DXL5, 

3DXL2 and 3DXL1 is absent in at least one animal. It is difficult to 

determine whether any of these genes are absent/non-transcribed, or 

simply undetectable due to the low read depth.  

6.1.2 Genes predicted to be non-functional are transcribed in multiple 

species 

Transcription of KIR pseudogenes/putatively non-functional genes/alleles is 

reported by UniMMap in humans, cattle and goats. In humans, mRNA of 

both KIR pseudogenes has been observed in multiple individuals. Coupled 

with confidence in the accuracy of UniMMap, this suggests that the 

observed transcription of predicted non-functional genes in cattle and 

goats is accurate. It is unlikely to be a result of unaccounted multi-

mapping. In the case of the human pseudogene 3DP1, it can encode for a 

secreted receptor in a minority of individuals (Gómez-Lozano et al. 2005). 

It could therefore be possible that one or more of the cattle/goat KIR gene 

products are secreted, and that encoding for a truncated transcript is not 

necessarily an indicator of non-functional status. Putatively non-functional 

KLR genes are also reported in cattle and goats. Transcription of human 

KLR was not analysed as the human KLR have not expanded to the same 

extent as cattle, making any comparisons inaccurate. As non-functional 

status in cattle and goats is based off the individual used for either 

respective genome, it is possible that there are functional alleles of these 
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genes. Transcription does not always result in translation, it could be that 

transcription of non-functional genes is a mechanism of regulating the 

transcription of other genes, rather than encoding a protein. Another 

possibility is that the non-functional status is derived from errors in the 

genome assembly. The genes of the LRC/NKC are highly repetitive and pose 

enormous difficult for assembly algorithms, even with the use of long-read 

PacBio sequencing. 

6.1.3 Transcription of LRC/NKC genes is not exclusive to NK cells  

Transcription of LRC/NKC genes is present to a varying extent in all tested 

cattle immune cell types. Transcription of KIR occurs predominantly in 

cattle NK cells and CD8+ T cells and to a lesser extent, gamma delta T 

cells. Low level transcription of some, but not all KIR, was observed in 

CD4+ T cells, B cells and monocytes. Subsets of human CD8+ T cells express 

KIR, but the pattern of expression is different to NK cells. Just one 

inhibitory KIR is expressed by ~90% of KIR expressing CD8+ T cells. In 

comparison ~75% of NK cells express one inhibitory KIR, the remainder 

express 2 or more (Bjorkstrom et al. 2012). Although inhibitory KIR can 

independently inhibit CD8+ T cell functions, activating KIR have a co-

stimulatory role in conjunction with the T-cell receptor. In cattle, 

transcription of KIR at a level comparable to NK cells suggests that they 

could play a role in the functional control of CD8+ T cells. Human gamma 

delta T cells expressing KIR have also been observed in humans. Expression 

of 2DL1 by gamma delta T cells is associated with non-responsiveness to 

malaria. In contrast, KLRA is more frequently expressed on gamma delta T 

cells that respond to malaria. Transcription of KLRA is not particularly high 

in cattle gamma delta T cells. They do however transcribe KLRJ at a level 

much higher than any other tested cell type, including NK cells. 

Transcription of KLRJ has previously been demonstrated to be lowly 

transcribed in NK cells (Boysen et al. 2006). As KLRJ lacks either an 

inhibitory or activating signalling component, Schwartz et al (2017) suggest 

it could form a heterodimer with an unknown partner. Elevated 

transcription of KLRK in cattle gamma delta T cells, could suggest KLRK is 
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the partner. Alternatively, as KLRJ lacks the classical signalling component, 

it could mean it is a secreted receptor.  

Although transcribed at low levels in the various cell types, the majority of 

NKC gene transcription occurs in NK cells. With the exception of the 

aforementioned KLRJ and KLRK. Transcription of KLRK is also observed in 

CD8+ T cells at a comparable level to NK cells. In humans KLRK is 

constitutively expressed on CD8+ T cells (Bauer et al. 1999), in mice it is 

only expressed on activated CD8+ T cells (Ho et al. 1998). Whilst in NK cells 

activation of KLRK alone is sufficient to induce killing, in CD8+ T cells the 

T-cell receptor must also be activated (Maasho et al. 2005). The 

observation of transcription of KLRK at a similar level to NK cells in cattle 

suggests that KLRK may also be involved in activation of their CD8+ T cells. 

Although thought to be non-functional based on the sequence in the 

reference, KLRI2 is transcribed at a consistently high level in cattle 

PBMC/NK datasets and goat PBMC datasets. It is transcribed at a very low 

level or is absent in all other examined immune cell types, including goat 

macrophages. Depending on whether or not it is expressed on the cell 

surface, KLRI2 could potentially be used as an additional NK cell marker in 

cattle. Individual immune cell types would need to be interrogated before 

the same could be said of goats. However the high KLRI2 transcription in 

PBMC data suggests it could be a possibility.  

In goats, the transcription of LRC and NKC genes in bone marrow 

macrophages and alveolar macrophages was characterised. They were 

found to transcribe a number of KIR, particularly 1_3DXL. Transcription or 

expression of KIR in macrophages has yet to be  shown in any other species. 

This suggests a unique function for KIR in goats, potentially 1_3DXL could 

be used to inhibit macrophage functions. RNA-Seq analysis of cattle 

macrophages populations, as well as of other goat immune cell types would 

provide insight into similarities and differences in gene usage between the 

two species. 
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6.1.4 LRC/NKC gene transcription is observed in every analysed tissue 

type 

Comparisons of LRC/NKC gene transcription between the cattle and goat 

atlases is complicated by the differences in tissue types selected. However, 

transcription of at least one LRC and NKC gene was observed in every tissue 

type in both species. Tissues isolated from the brain transcribe at the 

lowest level, which is not surprising given its immune-privileged status. NK 

cells have been observed in the brains of healthy mice (Poli et al. 2013). 

The CNS is also patrolled by T cells where they carry out immune 

surveillance (Ferretti et al. 2016). This could provide the explanation for 

transcription of LRC/NKC genes in brain tissue of cattle/goats. 

Alternatively, tissue samples could have been contaminated with blood 

during isolation.  

Relatively high transcription of LRC/NKC genes in cattle lymph node, lung 

and bone marrow as well as goat spleen is unsurprising. In other species 

these tissues contain a high proportion of NK cells as well as other KIR 

expressing immune cells. Surprisingly, transcription was also high in cattle 

mammary gland tissue. Bacterial infection in mammary gland tissue of 

cattle has been shown to induce NK cell migration (Sipka et al. 2016). This 

also highlights some of the difficulties in using pre-generated data for 

comparisons of this nature. A number of tissues that contain unique NK 

phenotypes in humans, such as spleen, lung, liver and spleen, are absent 

from one of the gene atlases. 

The pattern of LRC/NKC gene transcription is particularly interesting in the 

goat. An approximation of LRC/NKC gene transcription by NK cells was 

provided by comparing with transcription of the NK marker NCR1. With the 

exception of the macrophages, testis tissue has the highest ratio of total 

LRC gene transcription per NCR1 read. It also has the highest ratio of total 

NKC gene transcription per NCR1 read. In comparison, cattle testis tissue 

does not transcribe the genes of either complex particularly highly. The 

high level of NKC gene transcription suggests NK cells are a major 

contributor to the total transcription. However the low amount of NCR1 
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transcription suggests that either testis NK cells downregulate NCR1 or that 

there is non-NK cell type that expresses NKC genes in a similar manner to 

NK cells. Characterisation of immune cell types in goats, as has been done 

in cattle, would allow a more thorough understanding of LRC/NKC gene 

phenotypes. Additionally, expanding UniMMap to analyse more than just 

LRC/NKC genes would be highly beneficial for this analysis. Including 

CD8/CD4 as well as markers for other cell types would allow a more robust 

interrogation of the cell types contributing to total LRC/NKC transcription.  

6.1.5 UniMMap provides utility in interrogating the response to infection 

UniMMap was used to characterise differences in LRC/NKC gene 

transcription between uninfected and animals infected with M. bovis. As 

this was publically available data and not created for the purpose of 

analysis of LRC/NKC gene transcription, there are a number of limiting 

factors. Firstly the data is not of suitable read depth for analysis of the 

relatively poorly transcribed LRC/NKC genes. This meant datasets from 

multiple animals had to be combined prior to analysis. Secondly, the 

LRC/NKC gene content of the animals is not characterised and the 

uninfected and infected groups are made up of separate animals. This 

makes comparisons difficult as the extent to which haplotypic variation 

contributes is unknown. Nonetheless, analysis of these datasets can be 

used to infer either differences in transcription between 

uninfected/infected animals or further evidence of haplotypic variation. 

Although transcription of the NKC genes is highly similar between the two 

groups, there is variation in LRC gene transcription. Notably, transcription 

of 3DXL7 is absent in the control group and 3DXL5 is absent in the infected. 

Absence of 3DXL7 was observed in four out of six PBMC RNA-Seq datasets, 

in three of those four individuals transcription of 3DXL5 was also absent. 

This suggests that 3DXL5/3DXL7 are either frequently absent/non-

transcribed, or that they are often transcribed at an undetectable level in 

PBMCs. The latter could be investigated by resequencing at a much higher 

read depth. Transcription of all KIR is higher with the exception of 3DXL7 

and 2DL1 is higher in the control population. This suggests that M. bovis 
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infection could induce an increase in KIR transcription. Alternatively, M. 

bovis infection may induce NK cells/CD8+ T cells to migrate from the 

blood, reducing their cell count in the blood, and subsequently overall 

observed transcription. Further work into changes to LRC/NKC gene 

transcription in response to infection would benefit from FACS profiling of 

the cell populations present in each individual.   

UniMMap was also used to investigate changes to LRC/NKC gene 

transcription in goats from a PPRV vaccination study. The response of the 

LRC/NKC genes seems to be limited to a subset when comparing average 

read counts from unvaccinated and vaccinated animals. Within the LRC, 

the major driver of the difference in total transcription observed between 

the two groups is 3_3DXL, involved to a lesser extent are 5_3DXL, 7_3DXS, 

9_4DXL1 and 10_3DXL. Interestingly, with the exception of 7_3DXS, these 

are all inhibitory receptors. They decrease post-challenge in the vaccinated 

and increase in the unvaccinated. This could hint that decrease 

transcription of inhibitory receptors in the vaccinated animals could 

contribute to the favourable outcome by enabling more NK cell activation. 

This is far from conclusive however. A larger scale study would be required 

to provide statistical support. As mentioned previously, FACS data would 

increase the power of RNA-Seq analysis. Quantifying the percentage of 

various immune cells within the PBMCs at each time point would enable the 

contribution of the various cell types to be assessed. 

6.1.6 Conclusions 

UniMMap, the pipeline for the quantification of RNA-Seq short reads from 

complex regions of the genome, enables confidence in analysis results. This 

is clearly demonstrated through the accuracy of read counts from cattle 

simulated reads and from human NK cell RNA-Seq data mapped to their 

respective LRC/NKC genes (chapter 2). The utility of UniMMap was 

examined in various analysis scenarios and used to provide valuable 

information on transcription of individual LRC/NKC genes in multiple 

individuals, cell types, tissue types, infection statuses and species. 
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The amount of total transcription of the genes of both complexes is highly 

variable between individuals. This is most likely due to one of two 

mechanisms. Haplotypic variation may result in differences in gene content 

between individuals, subsequently transcription levels will vary. 

Alternately, or perhaps additionally, varying amounts of divergence of an 

individual’s alleles from the reference may result in differences in the 

percentage of reads successfully mapped.  

Genes predicted to be non-functional based on the reference sequence are 

consistently transcribed in both cattle and goats. This raises multiple 

possibilities. Functional alleles of some of these genes may exist in the 

population. Some may encode for secreted or otherwise non-prototypical 

receptors. Transcripts from non-functional genes may also provide a 

mechanism of regulation transcription of the functional genes. 

Cattle/LRC genes are transcribed in immune cell types other than NK cells. 

LRC gene transcription occurs at a very similar level in CD8+ T cells to NK 

cells, and at a lower level in gamma delta T cells. The majority of the NKC 

genes are transcribed only at a low level in other immune cell types. The 

exception to this are KLRK and KLRJ. Transcription of KLRK is observed at 

an elevated level in CD8+ T cell and gamma delta T cells. Gamma delta T 

cells also transcribe KLRK at an elevated level. Of all of the LRC/NKC genes 

analysed here, KLRI2 is the only gene essentially exclusive to NK cells that 

is transcribed at relatively high level.  

UniMMap is demonstrated as viable for the analysis of RNA-Seq data from 

infection or vaccination studies. Early insight into the transcriptional 

response of individual LRC/NKC genes in both M. bovis infection in cattle 

and PPRV infection in goats is provided. The utility of UniMMap as part of a 

larger collection of analysis tools to deconstruct the immune response is 

indicated. 

6.2 Future work 

Achieving the main aim of this project enables further characterisation of 

LRC/NKC genes in more individuals as well as species. Due to the design of 

UniMMap, it can be quickly and simply adapted to new species and gene 
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complexes. Many of the results generated with UniMMap open up a number 

of new avenues for interrogation that would previously not have been 

possible. 

6.2.1 Expansion of the UniMMap pipeline 

The accuracy and usefulness of the information provided by UniMMap 

indicates that expansion of its functions would provide additional value. 

Expansion of the genes analysed by UniMMap simply requires the addition 

of their coding sequences to the input reference. As the ligands of the 

majority of inhibitory KIR/KLR are the MHC class I, their addition to the 

pipeline would allow the interrogation of receptor and ligand under various 

conditions. The addition of other important gene complexes, such as the T-

cell receptor complex, would enable the parallel analysis of multiple 

immune cell types. UniMMap coupled with FACS analysis of proportions of 

cell types would be a powerful tool for investigating future vaccination or 

infection studies. This would be of particular importance in a vaccination 

study, where the exact nature of the immune response is often poorly 

understood.  

In addition to expanding the repertoire of genes included in a typical 

UniMMap analysis, there is potential further use of the unique regions that 

are identified as part of the pipeline. Extracting these reads would 

facilitate assembly of the transcripts of each gene, without contamination 

of reads from other genes. Although this would be complicated by the 

likely presence of two copies of each gene, information on alleles could be 

elucidated. It would also provide valuable information on the potential 

proteins encoded for by the genes that are non-functional in the reference 

genome. 

6.2.2 UniMMap analysis of other data types 

It would also be possible to analyse DNA-Seq data, particularly with a 

previous version of UniMMap that was described in chapter 2. This could 

facilitate accurate high-throughput genotyping of a large number of 

genomes. Additional genotype/haplotype information is crucial to 
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understanding these regions, as well as improving the accuracy of 

UniMMap. As with RNA-Seq data, it could be used to improve the assembly 

of individual genes. It could also be used to extract reads mapping to a 

certain location of each gene, facilitating a comparison of a particular exon 

such as an individual immunoglobulin domain. This could provide an early 

indication of the scale of diversity. 

Single cell RNA-Seq is an obvious next step of the work presented here, 

especially given the nature of variegated expression of NK receptors. 

Understanding the nature of NK receptor transcription in individual NK cells 

would provide additional resolution whilst also improving the interpretation 

of RNA-Seq from a large population of cells.  
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7. Appendices 

7.1 Chapter 2 Appendix 

7.1.1 Awk script for read simulation 

# Pool creation 

cat annotation.gtf | awk -F '\t' 'function output_seq(){if (!first) {if (str=="-") 
{print seq |& rc; rc |& getline seq} print seq} return} BEGIN{rc="rev|com"; 
retr="gem-retriever genome_index.gem"; first=1} {if (state==1) {if 
($3=="exon") {print $1"\t"$7"\t"$4"\t"$5 |& retr; retr |& getline exon; 
seq=seq exon} else {state=0}} if ($3=="transcript") {output_seq(); first=0; 
split($0,s,"\";|\""); print ">"s[length(s)-1]; str=$7; seq=""; state=1}} 
END{output_seq()}' > transcripts.fa && cat transcripts.fa | awk '{nr=(NR-
1)%2; if (nr==0) {name=substr($0,2)} else {if (pool!="") pool=pool" "; 
pool=pool $0}} END{print ">pool\n"pool}' > pool.fa && gem-indexer --
complement-size-threshold 0 -i pool.fa -o pool 

# Read creation 

for READ_LENGTH in 150; do READ_NUMBER=200000; cat pool.fa | awk '{if 
(NR==2) pool_len=length($0)} END{nr=-1; tb=0; while (getline line < 
"transcripts.fa") {if ((++nr)%2==0) {name=substr(line,2); if (nr>0) ++tb} else 
{len=length(line); for (off=1;off<=len;++off) {je[tb+off]=name"."off} 
tb+=len}} if (tb!=pool_len) {print "ERROR" > "/dev/stderr"; exit 1} for 
(i=1;i<='$READ_LENGTH';++i) qua=qua"I"; retr="gem-retriever pool.gem"; 
while (cntr<'$READ_NUMBER') {idx=int(rand()*pool_len)+1; 
str=rand()>=0.5?"-":"+"; print "pool\t"str"\t"idx"\t"(idx+'$READ_LENGTH'-1) |& 
retr; retr |& getline seq; if (seq!=""&&seq!~" ") {print 
"@"je[idx]"."str"."++cntr"\n"seq"\n+\n"qua}}}' > $READ_LENGTH.fastq; done 

7.1.2 Per exon mappability 

bedtools intersect -wb -a mappability.bg -b unique_regions.bed | grep 
'chrLRC' | awk '{OFS = "\t"} ; {print $1, $2, $3, $4, $3-$2, $8}' > 
exon_mappability 
cat exon_mappability | awk '{OFS = "\t"} ; {print $1, $2, $3, $4, $5, $4*$5, 
$6}' > temp; mv temp exon_mappability 
awk 'NR==FNR { total[$7] += $5; total2[$7] += $6; ++n[$7] } NR>FNR { print 
$0, total2[$7]/total[$7]}' exon_mappability exon_mappability | awk '{print 
$7"\t"$8}' | uniq > exon_mappability.txt 
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7.2 Chapter 3 Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure 3-1. FACS plots showing percentage of NCR1+ cells in the 

PBMC population (left) and enriched cell population (right) for 1020 sample 1 

(A), 1020 sample 2 (B), 1021 sample 1 (C) and 1021 sample 2 (D). 
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Supplementary figure 3-2. Normalised average UniMMap read count of NCR1 

from PBMC and NK RNA-Seq. UniMMap was run on two cattle PBMC and two 

cattle NK 150bp, paired-end RNA-Seq datasets and the resulting read counts 

normalised to RPM. Read counts across each cell type were averaged.  
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7.3 Chapter 4 Appendix 

 

 

 

 

 

 

  

Supplementary figure 4-1. Comparison of NCR1 transcription in five animals. 
UniMMap was run on RNA-Seq data from NK cells isolated from five cattle. NK 
cells from HF347, HF3458 and HF3471 were isolated using a combination of 
negative and positive sorting by FACS. MACS beads were used to positively select 
for NK cells from animals 1020 and 1021. Read counts from UniMMap were 
normalised based on the number of reads mapped. 
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Supplementary figure 4-2. Comparison of NCR1 transcription in 24 tissue 
types. RNA-Seq data was downloaded from the sequence read archive 
(Accession: PRJNA379574). The BioProject contains RNA-Seq from 23 
Dominette tissues as well as the testis of SuperBull 99375. Read counts from 
UniMMap were normalised based on the number of reads mapped.  
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