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Summary

A complete fabrication process has been developed for the realisation of Si/SiGe 

microwave integrated circuits (SIMICs). Using the process, a number of active and 

passive elements for microwave circuits have been demonstrated including

1. Metal gate p-SiGe MOSFETs [ 1 ].

2. Low loss transmission lines on CMOS grade silicon [2].

3. High quality spiral inductors on CMOS grade silicon [2].

4. High performance metal gate strained silicon n-MOSFETs [3].

Single stage amplifiers have been designed based on the technology developed in this 

work [3].

The MOSFETs have good DC performance. Strained SiGe p-channel MOSFETs 

with 1 pm gate length have an extrinsic transconductance of 36 mS/mm. Strained silicon 

n-channel MOSFETs with 0.3 pm gate length have extrinsic transconductance of 230 

mS/mm. The RF performance of a metal gate 0.3 pm gate length strained silicon 

MOSFET is measured, with cut off frequency and maximum frequency of oscillation of 

20 GHz and 21 GHz respectively. Coplanar waveguide transmission lines of 50 Ohm 

characteristic impedance, fabricated using spin on dielectrics on a CMOS grade silicon 

substrate, have losses less than 0.5 dB/mm up to 60 GHz. Spiral inductors fabricated on 

the low loss dielectric have Q > 15. Using the passive and active element library 

developed, single stage amplifiers were designed with gain of 12 dB at 3 GHz or 7.5 dB 

at 6 GHz.

The device layer structures were designed using a simple ID Poisson solver. The p- 

channel device used a concentration graded SiGe channel to obtain high mobility and 

carrier concentration. The n-channel RF device with a strained silicon channel 

incorporates a metal gate technology that is' directly responsible for the high values of 

fmax achieved.



The spiral inductors and coplanar waveguides are fabricated using a spin on dielectric 

process to separate them from the lossy silicon substrate. The same technology is used to 

reduce the parasitic capacitance of device contact pads.

The engineering conclusion of this work is that SIMICs, for applications in the 

frequency range 1 to 10 GHz, can be made with the current passive and active element 

library at the University of Glasgow. Further improvement in both passive and active 

element performance to increase the frequency is set out in future work.

From a practical viewpoint a process is now in place that will underpin the University 

of Glasgow’s Si /  SiGe SIMIC projects in the future.
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1-Introduction

Chapter 1

Introduction

1.1 Semiconductor Technology

Field effect transistors are used in high-speed digital and analogue circuit 

applications. The silicon metal oxide semiconductor field effect transistor (MOSFET) 

has been at the heart of the digital revolution of the past 20 years. The MOSFET is the 

key device in microprocessors and is used in memory chips. Complementary MOS 

(CMOS) logic has low power consumption which is a major advantage in large digital 

systems.

GaAs based high electron mobility transistors (HEMTs) or modulation doped 

transistors (MODFETs), as they will be called here, are widely used in microwave 

frequency applications such as mobile phones, and for military use. The carrier 

transport properties compared to silicon and the possibility of a semi insulating 

substrate make GaAs based devices and circuits more suitable for microwave 

frequency applications. However GaAs based device and circuit fabrication is very 

immature compared to those on silicon substrates.

The mobile phone has brought microwave technology to the masses but there 

is so much more potential if  silicon based microwave devices and circuits could 

become possible. Currently an RF circuit on a GaAs chip is connected to a digital 

signal processing (DSP) circuit on a silicon chip via a bonding process. Integration of 

the RF front end with the DSP on a single silicon chip will provide lower cost, power, 

size and easier manufacturability.

Silicon devices can now be fabricated with cut off frequencies in excess of 100 

GHz. The use of the silicon-germanium alloy is expected to further improve the high 

speed performance of silicon based devices. With the advantages of a mature 

fabrication technology, silicon is a serious option for microwave designers.

page 1



1 “Introduction

1.2 Aims of the Work

The aim of this work is to draw upon the experience and expertise of one of the 

world’s most successful III-V device fabrication centres in order to develop 

fabrication processes to investigate the possibility of making microwave circuits on 

silicon substrates.

Since SiGe layer structures on silicon substrates can lead to improved device 

performance, the devices designed and fabricated in this work are SiGe devices. Both 

p and n-channel devices are fabricated incorporating strained Si and SiGe layers for 

improved carrier transport properties. In the case of a standard silicon MOSFET 

process flow, useful RF performance can be achieved by

(a) Incorporating metal gates for optimal RF gain and noise performance.

(b) Producing low-loss, high Q passive elements for transmission lines and lumped 

element matching.

In this work, metal gate Si / SiGe MOSFET technologies, low loss transmission 

lines and high Q passive elements have been developed on 1-10 Q-cm CMOS grade 

silicon substrates to enable the design of single stage monolithic amplifiers.
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1-Introduction

1.3 Synopsis of the Thesis

In chapter 2, field effect transistors are considered. The operation of the 

MOSFET is described and the important DC figure of merit transconductance is 

derived. Carrier transport phenomena and parasitic resistances which effect 

transconductance are considered. The use of epitaxially grown semiconductor layers 

of III-V material to produce a device with high transconductance is considered, A 

comparison is made between the DC and RF performance of Si and III-V based FETs. 

The chapter concludes with a description of the typical fabrication processes used to 

make Si and GaAs FETs.

In chapter 3 the alloy silicon / germanium is introduced along with some basic 

epitaxial growth considerations. The carrier transport properties associated with 

strained layers are discussed. Simple SiGe / Si heterostructures are described showing 

how they can improve the performance of silicon based MOSFETs. State of the art 

results for SiGe FETs are discussed.

In chapter 4 a ID Poisson solver is discussed and is used to simulate the layer 

structures used in this work. Ion implantation conditions for the source and drain 

contacts are simulated using a simple approximation. The choice of gate metals is 

discussed.

In chapter 5 the fabrication processes developed in this work for p and n- 

channel metal gate Si / SiGe MOSFETs are described. The processes are described in 

turn and following each process description, the measured DC results are presented.

In chapter 6 the system used to measure the RF properties of devices is shown. 

The measured RF performance of the n-channel strained Si MOSFETs fabricated in 

this work is presented.

Chapter 7 begins with some theory on microwave transmission lines and 

passive elements. The process developed in this work to produce low loss 

transmission lines and high Q inductors on CMOS grade silicon substrates is 

described. The system used to measure the RF properties of the transmission lines and 

inductors is shown. Results obtained from the measurements are presented and 

compared with other works.

page 3



l-Introduction

The thesis is concluded by chapter 8, which considers ongoing and fiiture work 

including the design and fabrication of a single stage amplifier.

Appendix 1 lists the publications resulting from this work.
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2-Microwave FETs

Chapter 2

Microwave Field Effect Transistors

2.1 Introduction and List of Symbols
Since this work is concerned with the application of silicon based field 

effect transistors (FETs) at microwave frequencies, the field effect transistor and 

its electrical performance is described. The important figures of merit that apply to 

both DC and RF applications are introduced and discussed. The important 

transport properties of semiconductor materials are discussed and compared. 

Recently reported figures of merit on the RF performance of the metal oxide 

semiconductor field effect transistor (MOSFET) and the modulation doped field 

effect transistor (MODFET) are compared. Finally a typical MOSFET fabrication 

process is compared with that of a typical GaAs MODFET process.
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2-Microwave FETs

List of Symbols

Cgd gate-drain capacitance 

Cgs gate-source capacitance 

Co gate oxide capacitance 

Cgp gate pad parasitic capacitance 

Cdp drain pad parasitic capacitance 

Cgd source drain capacitance 

d Dielectric thickness 

E Electric field

Sr Relative Dielectric Constant

Go Permittivity of free space 

f  frequency

frunity gain cut off frequency 

fmax max.freq. of oscillation 

gd output conductance 

gtn intrinsic transconductance 

gm’ extrinsic transconductance 

(gm)satsaturation transconductance 

h.21 short circuit current gain 

Id drain current 

(Id)sat saturated drain current 

L gate length 

Lg source inductance 

Ld drain Inductance 

Lg gate inductance

MAG maximum available gain

mo electron rest mass

m effective mass

q magnitude of electron charge

Q(x) charge density profile

Rg total source resistance

Rsh sheet resistance

Rc contact resistance

Rd total drain resistance

Rg gate resistance

Rgp spreading resistance

Rds drain -  source resistance

r  mean free time between collisions

T transit time

[i mobility

Peff effective mobility

V velocity

Vave average velocity

Vg gate voltage

V, threshold voltage

V(x) voltage in channel

Vd drain voltage

Vgat saturation velocity

Xj junction depth

Z channel width
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2-Microwave FETs

2.2 The MOSFET

2.2 (a) Qualitative Description

A FET is a three terminal device whose schematic diagram is shown in 

figure 2.1. The current flow between the two terminals called the source and drain 

is modulated by applying a voltage to the third terminal called the gate.

D r a i n

G a te  B____

S o u r c e

Figure 2.1 Schematic diagram of a FET.

The ability to control current flow between two terminals by applying a 

voltage to a third terminal allows the device to be used as a switch in digital 

applications or as an amplifier in analogue applications. The MOSFET has been 

the workhorse for semiconductor electronics to date. Figure 2.2 (a) shows the 

cross section of a MOSFET.

rvCha

(a) (b)
Figure 2.2 The metal oxide semiconductor field effect transistor (MOSFET) (a) 

with no applied voltage, (b) with the gate and drain positively biased with respect 

to the source.
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2-Microwave FETs

The source and drain are shown as n^-doped regions on either side of the 

gate. Fabrication techniques are considered at the end of this chapter. The 

junction depth of the source and drain regions (xj), the dielectric thickness (d) and 

the gate length (L) are important dimension.

If a potential difference is applied between the source and drain (the source 

is usually set to zero volts), there will be negligible current flow because of the n- 

p-n junction. It is possible however to create a channel for current flow between 

the source and drain by applying a gate voltage, figure 2.2 (b). In the case of an n- 

channel device, a positive voltage on the gate will attract electrons from the source 

towards the gate. The electrons will then be trapped at the Si / S1O2 interface by 

the insurmountable energy barrier between the conduction bands of silicon and 

Si02, forming a channel of electrons between the source and drain, figure 2.3.

Si02 Silicon 
M ► -------------- ►

Channel
Conduction
Band

Figure 2.3 A channel confined at the Si / Si02 interface by the energy band 

discontinuity.

The channel is sometimes called the inversion layer because its carrier type 

is the inverse to that of the substrate. The voltage applied to the gate when a 

channel begins to form is called the threshold voltage (VJ. The threshold voltage 

is a critical parameter for digital applications. Reducing the gate length of the 

MOSFET has been a major factor in increasing the speed and packing density of 

digital circuit’s [2.1]. This requires a reduction in the oxide thickness and source 

and drain junction depths in order to minimise undesirable short channel effects 

[2 .2].
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2-Microwave FETs

2.2 (b) Quantitative Analysis

For the following analysis it is assumed that the substrate is p-type and that 

there are no electrons in the channel at zero gate voltage and that the source and 

drain are both n-type. Since the gate, oxide and semiconductor form a capacitor, 

the charge profile along the channel is given by

Q(x) = Co(Vg-Vt-V(x)). (2.1)

The source drain current is given by

Id = ja Z Q(x) E or = Z Q(x) v where v=]a E (2.2)

Then

Co Z (Yg-Vt-V(x)) (2.3)
dx

Integrate (2.3) from 0 -  L to get 

|a CoZ
Id = (V 8-V t)V d-^ (2.4)

Equation 2.4 describes Id in the region when Vd < Vg - Vt, this is known as 

the linear region. When Vd -  Vg - Vt no charge is attracted to that part of the 

channel, this is called pinch off. The variation in channel depth across the channel 

because of the channel voltage is shown by the triangular profile in figure 2.2 (b). 

Beyond pinch off Id is constant, this is known as the saturation region. Putting Vd 

= Vg - Vt into (2.4) then

(Id)sa.= (2.5)
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2-Microwave FETs

The typical IV characteristics of a MOSFET are shown in figure 2.4.

Linear Region Saturation Region

Vd(V)

Figure 2.4 Typical IV characteristics of a MOSFET.

An enhancement mode n-channel device has just been described. Other 

modes of operation could similarly be described such as, a p-channel enhancement 

mode device, p and n-channel depletion mode device [2.3].

The transconductance gm is an important figure of merit and is defined as

Sm
d(Vg)

(2.6)

It will be shown that the high fi:equency performance of a FET can be estimated 

firom the transconductance and gate capacitance. Since transconductance is easily 

measured at DC, it is often used to describe potential high frequency operation. 

The transconductance in the saturation region (gm)sat, can be found by 

differentiating equation (2.5) to give

(2.7)
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Figure 2.5 shows the typical transfer characteristics of a MOSFET, the 

transconductance and drain current are shown as a function of gate voltage.

(mA/mm)

Figure 2,5 Typical transfer characteristics of a MOSFET operating in the saturation 

region.

The above analysis is true for long channel devices where the equation v = 

p E is valid but at high drain-source field the carrier velocity saturates in which 

case

(Id) sat — Z Q Vsat — Z Cq (Vg-Vt) Vgat C2 8)

and

(§m) sat Z Co Vsat (2.9)

The above analysis shows that the transconductance is proportional to the 

saturation velocity and mobility in the channel. It will be shown that the 

transconductance must be maximised to achieve good high frequency performance. 

So material transport properties of the semiconductor channel are important in 

determining the high frequency capability of the device.
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2.3 Material Transport Properties

2.3 (a) Mobility

The transport of carriers in a bulk semiconductor is governed by scattering 

events as the carrier drifts through the semiconductor. Scattering sites include 

defects in the crystal, donor atoms (ionised impurities) and phonons (lattice 

vibrations) [2.4]. The periodic nature of the crystal potential leads to an energy 

band structure, and an effective mass accounts for effect of the crystal potential 

[2.5]. There are 6 degenerate conduction bands in silicon. Electrons in silicon 

have an effective mass of 0.28mo. In GaAs electrons with low energy have 

effective mass O.llnio but because of the polar nature of the crystal there is a 

satellite band with effective mass 0.19mo that high-energy electrons scatter into. 

Scattering events are accounted for by a mean free path time, which is the mean 

time between collisions t. The mobility is given by

p = —  (2.10)
m

For bulk undoped silicon and GaAs the electron mobilities are 1450 cm^/V-s and 

8500 cm^/V-s respectively [2.6].

The electrons which form the channel of a MOSFET are trapped at the Si / 

SiOz interface by the energy band discontinuity between the Si and SiOz layers, 

figure 2.3. Charge impurities in the oxide and interface roughness will scatter 

carriers [2.7], so the mobility in the channel of a MOSFET is somewhat lower than 

the bulk material mobility. The mobility of carriers in a device are generally 

different than that of bulk material and are described as having an effective 

mobility (peff). The effective mobility in a MOSFET is approximately half of the 

bulk mobility [2.8]. An effective mobility of 750 cm^ / V-s in an n-type inversion 

layer is typical, for a p-type inversion layer 100 cm^ / V-s is typical.
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2.3 (b) 2DEGs and MODFETs

m -V semiconductors do not have a suitable native oxide such as SiOa and 

so use a schottky gate to control the charge density in the channel [2.9]. The 

channel is trapped by the band discontinuity between two different semiconductor 

layers, figure 2.6. The band discontinuity between two semiconductors is much 

smaller than that at a Si / SiO] interface. At large gate bias carriers may overcome 

this barrier and leak into layers with lower mobility, this is known as parallel 

conduction. The semiconductor layers are epitaxially grown and are crystalline, 

unlike the amorphous SiO] layer, so they do not have unwanted charges or surface 

roughness as in the Si / SiOz interface.

GaAs Cap

n-AlGaAs supply

AlGaAs spacer

GaAs channel

GaAs n-AlGaAs AlGaAs GaAs

Figure 2.6 Epitaxial layer structure and band diagram of a GaAs / AlGaAs 

MODFET.

Figure 2.6 shows a typical layer structure of a GaAs / AlGaAs MODFET. 

The carriers in the channel are supplied by a doped layer called the supply layer. 

The channel in a MODFET is often referred to as a two dimensional electron gas 

(2DEG) or a two dimensional hole gas (2DHG). Unlike at a Si / Si02 interface, the 

mobility in a 2DEG can be higher than in the bulk. This is because the carriers in 

the channel are remote firom the donor atoms located in the supply layer, thereby 

reducing scattering due to ionised impurities. In an GaAs 2DEG where there is 

already increased bulk mobility and reduced ionised impurity scattering and an 

epitaxialy grown interface, room temperature electron mobility as high as 12300 

cm^ / V-s has been reported [2.10]. For Ill-V devices, depletion mode operation is 

often preferred, the layer structure is designed so that a channel exists at zero gate 

voltage.
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2.3 (c) High Field Effects

Figure 2.7 shows the velocity field characteristics of electrons and holes in 

silicon and GaAs [2.11]. At low field, v = |li E. At high fields the velocity 

saturates. The saturation velocities for electrons in silicon and GaAs are similar 

indeed for silicon it is slightly higher. In GaAs and other III-V compounds, 

intervalley transfer causes a peak in the velocity field curve.

G a A s
V (c m /s )

Electr ic  Fie ld  ( V / c m )

Figure 2.7 Velocity field characteristics of electrons in GaAs and Si.

When an electric field is first applied to a channel, carriers can reach a 

velocity that is greater than the saturation velocity. This is called velocity 

overshoot, the effect only lasts for a time period of the order of a few tenths of 

pico-seconds before steady state is resumed [2.12]. For very short gate length 

devices a few tenths pico-seconds of overshoot can have significant effect on the 

high firequency performance [2.13]. In a FET the electric field and carrier 

concentration are both dependent on position in the channel, so the velocity and 

mobility will also vary along the channel length. The transient effect of velocity 

overshoot also leads to a non-uniform carrier velocity along the channel. The 

average carrier velocity in the channel is the gate length divided by the time that it 

takes a carrier to travel firom the source end to the drain end of the gate (the transit 

time T) [2.13].

Vflve —
L

(2 .11)

A high average velocity (or low transit time) is required for high-speed devices.
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2.4 Parasitic Resistance

The transconductance calculated in equations (2.7) and (2.9) is known as 

the intrinsic transconductance, and neglects the contribution of the series resistance 

of the source and drain. Figure 2.8 shows the location of the contact resistance 

(Rc), sheet resistance (Rsh) and channel spreading resistance (Rgp) [2.12].

Source Gate

lannel

Rsh

Figure 2.8 Physical location of access resistance in a FET.

The source resistance Rg is sum of three resistances Rc, Rsh, Rsp.

• Rc is the contact resistance between metal and semiconductor.

• Rsh is the sheet resistance of the semiconductor between the metal contacts and 

the channel.

• Rsp is the spreading resistance resulting from the transition from the narrow

channel to the deep source / drain regions.

As a result of the total series resistance the effective gate voltage Vg is reduced by

the volt drop across the source resistance such that

Vg’ =Vg + (Rs+Rd)Xd

Therefore the measured (extrinsic) transconductance is

(2 .12)

gm
gm

(1 + (Rs + Rd)gm)
C2T3)
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Contact Resistance (R )̂

Rc X Z has units of Q-mm and is of the order of 0.1 Q-rom for alloyed 

contacts that are used for GaAs MODFETs [2.14]. The use of silicides provides a 

contact resistance of 0.1 Q-mm in MOSFETs [2.15]. A 100 pm wide MODFET or 

MOSFET will have a contact resistance of approximately 1 O.

Sheet resistance (Rsh)

The sheet resistance of a silicide in silicon technology is about 2 Q / sq

[2.16] which effectively eliminates Rsh as a limiting resistance. In a GaAs 

MODFET, the sheet resistance is about 200 Q / sq [2.17]. Present ni-V  

technology allows for a 0.5 pm gap between the source and gate giving Rsh = 1 O 

for a 100 pm wide device.

Spreading resistance (Rsp)

The region of transition between the deep source and drain junctions to the 

very thin channel leads to the spreading resistance. It has been shown that the 

spreading resistance reduces as the gate length is increased because of the 

increased electric field. [2.18]. For short channel devices the contact resistance is 

the largest of the three elements of resistance.

2.5 Transconductance

By considering equation (2.6) and that the mobility in GaAs based 

MODFETs is at least a factor of 10 greater than in MOSFETs we would expect a 

similar mismatch in transconductance. However for short channel devices it has 

been shown that velocity saturation and parasitic resistance can play a major role. 

Figure 2.9 shows transconductance versus gate length for recently reported 

MOSFETs and GaAs based MODFETs [2.19][2.20] [2.21][2.22].
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gm 120(T
(mS/mm) 1000- 

800  
600  
400- 
200- 

n

MODFET ♦

■  ̂ MOSFET ,
■ ♦

■ ♦■ ♦
■

\J
0 0.2 0.4 0.6

Gate Length (gm)

Figure 2.9 Reported maximum transconductance for Si MOSFETs and III-V 

MODFETs.

2.6 High Frequency Performance

When analysing the high frequency capabilities of a FET, it is customary to 

consider small signal equivalent circuits. The small signal equivalent circuit of the 

intrinsic device is shown in figure 2.10, note that the transconductance is the 

extrinsic value.

DrainGate

&i’V,

Source

Figure 2.10 Small signal intrinsic equivalent circuit of a FET.

The cut off frequency fr is defined as the frequency at which the magnitude 

of the short circuit current gain (h2 i) is unity. From figure 2.10 it can be shown 

that

fr —
(2  7t Cgs)

(2.14)
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Where Cgs is the gate-source capacitance and is given by

Cgs-
SrSoP̂ (2.15)

Consider a hypothetical example of a 0.1 pm x 100 pm device using 6 nm 

of SiOz as an insulator, Cgs = 50 fF. fj is obtained by plotting the magnitude of h2 i 

in dB versus frequency on a log scale (figure 2.11). The slope of the curve is 20

dB / decade and fr occurs when |hz:| = 0 dB.
70

50
(dB) Slope = 20 dB/decade

30

10

-10

100 10001000

Frequency (GHz)

Figure 2.11 |hu| versus frequency, showing fr.

Figure 2.11 shows that an fr of 300 GHz is theoretically possible for a 

device with gm of 600 mS/mm and Cgs of 50 fF. Such transconductance and gate- 

source capacitance is possible for both Si and GaAs devices of 0.1 pm gate length 

(figure 2.6). The average carrier velocity and transit time can be obtained from

T =
1

2 ; r f r
(2.16)

In this hypothetical example the transit time would be approximately 0.5 

ps. Giving an average carrier velocity of 2 x 10  ̂ cm/s, which would suggest 

velocity overshoot in the channel.
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The addition of parasitic elements has a significant effect on the RJF 

performance of a device. The equivalent circuit and the physical origin of parasitic 

lumped elements are shown in figure 2.12 and 2.13 [2.23].

Cgp

Cdp

Figure 2.12 Small signal extrinsic equivalent circuit of a FET.

Source
DrainGate

H

êmVj

Rds

Cds

Figure 2.13 Physical origin of parasitic resistance and capacitance.

page 19



2-Microwave FETs

Typical values of the parasitic elements introduced above are shown in table 2.1 

assuming a 100 nm gate length.

R g ( Q ) Rs,Rd

(Q)

Cgs

(fF)

Cgd

m

Cgp,Cdp

(fF)
§m

(mS/mm)
Rds

(Q)

Lg,Ld,Ls

(pH)

Cds

(fF)

Si 50-100 2-5 10-50 4-6 100-1000 500 400 1-5 5-7

GaAs 10-30 2-5 10-50 4-6 10-100 700 400 1-5 5-7

Table 2.1 Typical equivalent circuit elements for 100 nm gate length FETs. 

From the equivalent circuit of figure 2.12, fr can be shown to be [2.24]

fr =
gn,

2 f r  (C g s-F  C g d ) ( l  +  ( R s +  R d )  /R d s )
C2T7)

In a well-designed device, Rds » >  Rg + Rd and Cgs > Cgd so equation 2.14 

is a very good approximation. Transconductance and gate source capacitance are 

then the limiting parameters for high fj.

Another important RF figure of merit is the available power gain of the device or 

maximum available gain (MAG). The maximum frequency of oscillation fmax is 

defined when MAG is unity and can be shown to be [2.24]

fnax —
fr

It can be simplified to be approximately [2.25]

frnax
R ^

2 ^ R g

(2T8)

(2T9)

So to obtain a high fmax from a device with high fx, Rds / Rg must be maximised.
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Discussion of Equivalent Circuit Elements

Cgs The gate capacitance Cgs of a 0.1 pm x 100 pm gate is about 50 fF. However 

in order to measure the device or to make contact to the rest of a circuit, contact 

pads are required. Since GaAs is a semi insulating substrate, contact pad 

capacitance (Cgp and Cdp) can be as low as 10 fF. In present silicon technology 

probe pad capacitance is typically much greater than 100 fF and is currently a 

limiting factor for high fr and fmax for devices fabricated on a silicon substrate.

Cgd is the gate-drain capacitance and is normally of the order of 5 fF.

Rds is the inverse of channel conductance gds which is defined as d(Id) / d(Vd).

The device gain is given by gm / gd and must be maximised for high fmax- A high 

Rds in the saturation region is desirable, equation 2.19.

Rg includes the probing pad resistance, the gate resistance and any gate 

discontinuity between pads and gate. Assuming that there is no discontinuity, Rg is 

dominated by the gate itself. For GaAs MODFETs gold is preferred as the gate 

metal because of its low sheet resistance which is typically 0.2 Q / sq. A T  shaped 

gate is used to further reduce the DC gate resistance to about 0.02 D / sq [2.26]. 

Standard silicon technology currently uses a polycide gate material. The sheet 

resistance of polycide is 3 Q / sq for line widths greater than 0.15 pm. A sharp 

increase in sheet resistivity of polycide gates is expected for linewidths below 0.15 

pm [2.27]. Using current MOSFET fabrication technology, Rg is a major limiting 

factor for the fmax of Si devices. In addition to the serious effect gate resistance has 

on fmax, it has also been shown that the gate resistance is a dominant factor in the 

noise figure of a FET and should be minimised [2.28].

Rs and Rd have been considered previously, there is a small additional resistance of 

the probing pads. Cds is the drain -  source capacitance and has limited effect on 

microwave figures of merit. Ls,Ld and Eg are the parasitic pad inductance's and 

may arise from unusually long probing contacts, but in the modelling of devices in 

this work they are not critical.
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Cut off Frequency

Figure 2.14 shows recently published results of fr versus gate length for Si 

n-MOSFETs [2.29] [2.30] [2.31] and GaAs based MODFETs [2.32] [2.33] [2.34]. 

The highest fr for a GaAs based 0.1 pm gate length device is 200 GHz. Not 

shown on the graph are the highest fr ever produced of 300 GHz and 350 GHz for 

MODFETs fabricated on InP substrates [2,35][2.36]. The maximum cut off 

frequency reported for a Si MOSFET is 150 GHz.

.  . 250-,
fx (G H z) G aA s based

200- ♦  H E M T s ^

150- ■ ♦  M O S F E T s ■

100- ■ %
■ ■ ■  »50- ■ ♦

0 ■

(
1 1 1 

0.2 0.4 0.6

G ate L e n g th  (n m )

Figure 2.14 Reported cut off frequency versus gate length for Si MOSFETs and 

GaAs based MODFETs.

Figure 2.14 shows that the performance of Si MOSFETs in terras of cut-off 

frequency can be compared with that of GaAs based MODFETs. However whilst 

the maximum frequency of oscillation (fmax) of most reported III-V based devices 

is larger than fr, it is rare for fmax to even be mentioned in a report on a MOSFET. 

This is because it is so low, a typical fmax reported for a MOSFET with 0.18 pm 

gate length is 30 GHz [2.37].
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Summary

In summary there are a number of areas requiring optimisation to produce 

an RF FET,

1. Intrinsic material transport properties leading to high gm and fr.

2. Low parasitic source and drain resistance leading to high gm and fr.

3. Low gate resistance leading to high fmax and better noise performance.

4. Low parasitic gate capacitance for high If and fmax-

5. Low output conductance for higher gain and fmax.

Criteria 1 and 2 have been met in the MOSFET, criteria 3 and 4 are currently the 

major limiting factors in MOSFET performance at high frequency.
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2.7 Fabrication of MOSFETs and HEMTs

The fabrication processes used are common to both types of device 

however they can be used in very different ways. Silicon very large scale 

integration (VLSI) fabrication is dominated by chip layout and circuit 

requirements. In memory chips, threshold voltage control is more critical than 

maximising gm or ff. In GaAs monolithic microwave integrated circuit (MMIC) 

technology where there is a much lower level of integration, devices are more 

important and are designed for maximum RF performance. The following sections 

are intended as a comparison between MOS and MODFET fabrication 

technologies so the unit processes are only very briefly described. Details of 

processes used in this work are contained in chapter 5. The comparison between 

process flows is made by diagrams of typical fabrication processes for a MOSFET 

then a MODFET.

2.7 (a) Lithography

Lithography is the technique used to define the physical geometry of 

devices. A polymer called resist that is sensitive to either light or electrons is spin 

coated onto the sample. Parts of the sample are then exposed to light through a 

mask or an electron beam is scanned across the sample. Subsequent developing 

will remove the resist where exposed if positive resist is used. It is also possible to 

use negative resist, which removes where not exposed. Optical photolithography is 

preferred in industry because of its capability for large throughput. Advances in 

optical techniques and resists have maintained its domination in industry. DUV 

(Deep Ultra Violet) lithography is capable of 100 nm resolution [2,38][2.39]. 

Although advances are still being made in optical techniques, electron beam 

lithography is used in research facilities, where high throughput is not necessary, to 

define patterns smaller than 100 nm [2.40]. The remaining patterned resist can then 

be used to lift off deposited material or as an etch mask. To give an undercut 

profile of the resist that is necessary for reliable lift-off, two layers of resist of 

different sensitivity are used [2.41] (see Figure 2.15)
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T H

Resist deposition 
and exposure

Metalisation

c

Development

Liftoff

Figure 2.15 The lift off process.

2.7 (b) Dielectric Growth/Deposition

The growth of the insulating gate oxide in a MOSFET is one of the most 

important processes for VLSI. The charge trapped in the oxide and at the interface 

must be minimised to avoid variations in threshold voltage [2.42]. Rapid thermal 

oxidation using a dry oxygen source is regarded by industry as the optimum process 

for growing the thin gate oxide of MOSFETs. The typical oxide thickness of a 250 

nm gate length device is 6 nm. VLSI requires thick (200 -  lOOOnm) spacer and 

inter layer dielectrics (ILD) between layers of metalisation. ILD’s can be deposited 

by Plasma Enhanced Chemical Vapour Deposition (PECVD) [2.43][2.44]. Spin on 

glass is also used as an ILD [2.45].
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2.7 (c) Ion implantation

Ion implantation is used extensively in silicon device fabrication and is 

used to place the doped regions accurately in the substrate. Ions of a given species 

are accelerated inside the implanter and then penetrate into the device. The most 

common use for this is in the formation of the source and drain contact regions. 

Source drain junction depth of sub 500 nm gate length devices must be less than 

200 nm. This requires implant ions with energy of less than 20 keV [2.46] (chapter 

4). BF2 is used for p-type implants and P or As for n-type implants. Excellent 

control of dose and profile can be achieved using ion implantation rather than 

diffusion.

2.7 (d) Metalisation

There are several methods of metalisation employed in device 

manufacturing, including thermal evaporation, sputtering, CVD and electroplating

[2.47]. Sputtering is the method most commonly used in silicon device mass 

production and is described in chapter 4. The metals used in silicon VLSI are Al,

W and Ti. Au, Cu and Silver are also being investigated since gate resistance and 

interconnect delays are becoming limiting factors in device and circuit 

performance [2.48][2.49][2.50]. Au is the preferred metal in GaAs devices and 

circuits, however, the VLSI silicon industry is very reluctant to use gold as it 

diffuses readily into silicon and acts as a deep trap [2,51] [2.52].

2.7 (e) Rapid Thermal Annealing (RTA)

Contacts and implants need to be annealed at high temperature to allow the 

donors to be activated and so lowering resistance and reducing implant damage. 

Implants can be annealed at temperatures up to 1300 for a few seconds with fast 

ramp up and down profiles [2.53].
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2.7 (f) Etching

The lift off process previously described is used extensively in the fabrication 

of GaAs devices. In silicon manufacturing high levels of integration and yield are 

required and etching is the preferred pattern transfer technique. Wet chemical 

etching or dry plasma etching are used depending on the requirements. It is often 

important to be able to etch one material while not etching another. This is 

referred to as the selectivity of the etch process. Wet etching is normally a quicker 

and cheaper method of producing an isotropic etch. In dry etching a more vertical 

etch profile is produced [2.54],

2.8 Typical MOSFET Fabrication Process

This section describes a typical fabrication flow using the above techniques to 

make a MOSFET. The process shown in figure 2,16 is a simple method compared 

with a typical industrial process that will have over 20 lithography levels.

fig 2.16 a : An active area is formed by shallow dry etching, only the active

area is shown here. The p type silicon substrate is ion implanted 

with an n type dopant to form a deep n-well, not shown. Thermal 

gate oxidation is then performed at 1100 °C this will also activate 

the n-well implant. Immediately, the polysilicon / tungsten gate 

stack is deposited by sputtering.

fig 2.16 b: The gate is then patterned using photolithography and dry etched.

The first source and drain implant called the lightly doped drain 

(LDD) implant is performed, at low energy and dose to create a 

very shallow junction.

fig 2.16 c ; The next steps form the sidewall spacer, a blanket CVD coverage of 

oxide is deposited then etched off leaving the vertical spacer on the 

sides of the gate as shown. A second source drain implant is now 

performed at higher energy and dose to decrease contact and access 

resistance of the source and drain. A rapid thermal anneal will be 

performed at this stage to activate the source and drain implants.
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fig 2.16 d : A blanket coverage of Ti is applied. A two stage anneal and etch

process is used to form TiSi where the Ti comes into contact with Si 

or polysilicon. Ti in other areas is removed by a wet etch.

fig 2.16 e : A thick interlayer dielectric (ILD) is then deposited and planarised

using chemical mechanical polishing (CMP). Contact windows are 

then opened up in the ILD, into which tungsten plugs are deposited 

by sputtering. The first layer of metal is evaporated Aluminium or 

sputtered W. Up to 6 layers of metal are possible.

fig 2 . 1 6  ( a ) fig 2 . 1 6  (b )

fig 2 . 1 6  (c) fig 2 . 1 6  (d )

fig 2 . 1 6  (e )

Figure 2.16 Typical MOSFET process flow.
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2.9Typical GaAs HEMT Fabrication Process

fig 2.17 (a)

fig 2.17 (c)

fig 2.17 (b)

fig 2.17 (d)

Figure 2.17 Typical MODFET fabrication process flow.

Fig 2.17 (a) An active area is created by dry etching the substrate creating a 

MESA. The etch is just deep enough to be below the channel which 

is about 50 nm.

Fig 2.17 (b) Ohmic contacts are formed by evaporating alloys of Ge / Ti / Au 

which are known to produce low contact resistance. The contacts 

are annealed at approx. 300 °C.

Fig 2.17 (c) The top 20 nm or so of highly doped layers are etched where the 

gate will be formed. The gold T shaped gate is the deposited by 

thermal evaporation using 3 levels of e-beam resist [2.52].
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Fig 2.17 (d) Probing pads normally thick layers of gold can then be deposited 

directly on the semi insulating substrate. The existence of the semi 

insulating substrate creates lower pad capacitance.
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2.10 Conclusion

GaAs MODFETs as a result of high electron mobility, velocity peak and a 

semi insulating substrate, have dominated electronic applications in the range 1- 

200 GHz over the past decade or so. Silicon MOSFETs as a result of cost, safety, 

easy fabrication, integration, high yield and low power consumption have 

dominated electronic applications at any frequency that they can operate.

A FET operating at microwave frequencies requires material with high 

mobility and high average carrier velocity. As the gate length is shrunk, parasitic 

elements such as source drain and gate resistance and capacitance begin to 

dominate device performance. Silicon technology has optimised parasitic series 

resistances to the channel allowing the fabrication of sub 100 nm devices with ff of 

150 GHz. However as yet the fmax of these devices is yet to break 50 GHz. fmax 

and noise figure are two of the most important figures of merit for microwave 

transistors. FETs must have low gate resistance for high fmax and low noise figure.

As yet silicon process designers have essentially ignored the high gate resistance of 

polysilicon gates in favour of high yield and low series resistance. Another 

limiting factor for RF performance of MOSFETs is the parasitic gate capacitance 

associated with the contact pads on a low resistance silicon substrate.
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Chapter 3

Silicon/Silicon-Germanium

3.1 Introduction
Silicon-Germanium (SiGe) epitaxial layer structures offer a possibility to 

improve on the transport characteristics of silicon based devices. Since Si / SiGe 

layer structures were to be used in this work to fabricate MOSFETs, this chapter 

discusses the properties and use of SiGe layer structures. A brief historical 

perspective from the introduction of SiGe epitaxial layer growth in the 1980’s is 

followed by a discussion of some basic growth properties of the alloy. The basic 

data required for heterostructure formation is presented followed by a simple 

example. Low field transport properties of electrons in strained silicon and holes 

in strained SiGe are reviewed. The results of Monte Carlo simulation of high field 

electron transport in short channel devices is reviewed. The reported performance 

of SiGe FETs are compared to silicon FETs and discussed.

page 38



3-Silicon / Silicon-Germanium

3.2 Historical Perspective

There was little interest in the SiGe alloy for use in electronic circuit 

devices until the advent of epitaxial growth techniques, which were developed in 

the 1970’s for III-V semiconductor’s [3.1] [3.2] [3.3]. Serious work on epitaxial Si 

/ SiGe layer structures began in the early 1980’s. Two-dimensional hole 

confinement in Si / SiGe alloy layers [3.4] was observed. Increased electron 

mobility in strained silicon was reported [3.5]. In 1985 the first p-type SiGe 

channel FET was made by Pearsal and Bean [3.6]. This was closely followed by 

the announcement of an n-channel FET from Deambkes in 1986 [3.7]. Details of 

subsequent demonstration devices both n and p-channel, using silicon germanium 

epitaxial layers on a silicon substrate have been published [3.8-3.13], with all 

devices showing better performance than silicon devices. The silicon germanium 

bipolar transistor first introduced in 1988 [3.14] has made the most use of silicon 

germanium technology to date and is already in commercial production [3.15]. 

There has been intense interest in SiGe in recent years and there are a number of 

good review papers on the subject, covering growth, transport theory, optical, 

bipolar, FET andRF applications [3.16][3.17][3.18][3.19]. The following sections 

summarise the areas relevant to this work.
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3.3 The Alloy and epitaxial Growth Considerations

It is customary to represent the alloy of Si and Ge as Sii-xGe x where x is 

the fraction of Ge atoms in the alloy. The lattice constant slq for silicon is 0.543 nm 

and for germanium is 0.566 nm. The lattice constant of the SiGe alloy lies 

between that of Si and Ge, it depends linearly on the Ge content. Figure 3.1 shows 

the lattice constant of SiGe as a function of Ge content as determined by Dismukes

[3.20] showing only slight variations from the fitted linear equation.

ao (nm) 
0.566

0.561

0.556 - 

0.551 

0.546 

0.541

ao(x)=0.543 H-0.0227X

A',

A -A

A

1 0.8 0.6 0.4 0.2
Germanium content x

Figure 3.1 Lattice constant of SiGe as function of Ge content as measured by 

Dismukes fitted to a straight line.

Epitaxial layers of SiGe can be grown on a Si substrate using either 

Molecular Beam Epitaxy (MBE) [3.21] or Ultra High Vacuum Chemical Vapour 

Deposition (UHVCVD) [3.22]. Using these methods, very thin layers of a given 

species can be deposited and grown to a given thickness and doping concentration. 

Epitaxial processes involve many complex physical and chemical steps. The 

following is a summary of some useful information for the consideration of SiGe 

epitaxial layer structures. A 2D representation of separate Si and SiGe lattices are 

shown in figure 3.2 (not to scale). The diagram emphasizes the relatively large 

lattice constant mismatch between the two.
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Figure 3.2 Two-dimensional representation of Silicon and SiGe lattice structures.

The difference in lattice constant between the SiGe and the Si substrate 

implies that there must be some means to accommodate the difference. There are 

several known mechanisms that can accommodate the strain as shown in figure 

3.3.

3 . 3(a)  ELASTIC DISTORTION 3.3 (b) PLASTIC ACCOMODATION

3.3(C) INTERDIFFUSION
3.3(d)  SURFACE ROUGHENING

Figure 3,3 Possible consequences of growing mismatched epitaxial layers.
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Elastic Distortion (figure 3.3 a)

Here the lattice spacing of the epitaxial layer distorts to fit the lattice of the 

substrate layer, in which case the epitaxial layer is strained. Si grown on a SiGe 

substrate has tensile strain. SiGe grown on Si is compressively strained. Strain can 

be advantageous for carrier transport (section 3.5). The thickness of the strained 

epitaxial layer must be less than a critical thickness known as the Mathew 

Blacklees limit [3.23]. If the layer is thicker than the critical thickness the strain 

begins to relax and plastic accommodation occurs. The critical thickness for Si on 

SiGe and SiGe on Si is of the order of 20 nm for a Ge concentration of 0.3. 

Increasing the Ge concentration reduces the critical thickness. Buried layers of 

strained Si and strained SiGe thinner than the critical thickness can be used as the 

channel for high mobility FET’s.

Plastic Accommodation (figure 3.3 b)

The generation of misfit dislocation arrays for layers thicker than the 

critical thickness allows the epitaxial layer to relax. Thick relaxed SiGe layers 

typically > 1 pm thick are grown on silicon substrates to provide a ‘virtual’ SiGe 

substrate. A silicon layer can then be grown on top of the SiGe, the epitaxial 

silicon layer will then be strained. Plastic accommodation of strain produces misfit 

dislocations. Misfit dislocation lines allow relaxation of atomic bonds and create a 

wavy surface causing surface roughness (figure 3.3 d) [3.24] [3.25].

Interdiffusion (figure 3.3 c)

At high processing temperatures and in layers with high Ge content, Ge 

will diffuse through a silicon lattice. The diffusion coefficient will depend on 

temperature. For the present work, such interdiffiision is not desired. Fortunately 

early studies [3.26] have established that after annealing at 800 for 2 hours no 

detectable difference is detected in the Ge spectrum.
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3.4 Simple Initial Analysis of SiGe material in this work

An optical plan view of a Si / SiGe structure containing a virtual SiGe 

substrate is interesting. Figure 3.4 shows an optical micrograph of two Si / SiGe 

samples grown by CVD. The top sample was grown at 750 while the lower one 

at 600 ®C. The characteristic lines on the sample are caused by the strain 

relaxation and are sometimes called strain lines. The spacing between the lines is 

proportional to the number of misfit dislocations. In the sample grown at low 

temperature, the pitting effect is often observed and is attributed to threading 

dislocations that grow up to the surface. Both samples have a very thick >1 pm 

‘virtual substrate’ of SiGe grown on a silicon substrate. In addition a simple low- 

resolution surface profile of a silicon sample and a Si / SiGe sample shown in 

figure 3.5 can show the surface roughness of a relaxed SiGe layer.

-  r ' -5

PL': ' v J r -  ?. i  : r -,r

; :-r

Figure 3.4 Optical micrograph of the top surface of two Si / SiGe samples.
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Figure 3.5 Typical surface profile trace of Si and SiGe.

3.5 Heterostructures of Si / SiGe

The minimum data required for a simple example of heterostructure 

formation are the band gap of the semiconductors and their conduction band (CB) 

or valence band (VB) discontinuity. The band gaps of Si and Ge at room 

temperature are 1.11 eV and 0.65 eV respectively. The band gap of unstrained 

SiGe, strained SiGe and strained Si [3.27] as a function of x is shown in figure 3.6. 

Valence band offset of SixGei.x on a SiyGei.y substrate is shown in figure 3.7

[3.28].

Energy
Gap
eV

(c)Relaxed SiGe
0.9

(b) Strained Si0.8

0.7
(a)Strained SiGe

0.6
0.60.2

Germanium content x
0.4

Figure 3.6 Band gap of (a) A SiGe layer on silicon (b) A Si layer on SiGe (c) A 

relaxed SiGe layer, R.People [3.27].
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Figure 3.7 Valence band offset of strained SiGe.

A Simple Example

Consider the layer structure shown in figure 3.8, an undoped Sio.gGeo,̂  

layer 20 nm thick is grown on a lightly doped n-Si substrate and is capped by a 10 

run thick undoped Si layer.

2 0 nm S i G e  u n d o p e d

Si l icon s ubs trate

Figure 3.8 Simple Si/SiGe layer structure.

From figure 3.7 the valence band offset of Sio.gGeo.i on Si is 0.15 eV and figure 3.6 

shows that the band gap of strained Sio.gGeo.z is 1.0 eV. The band diagram is 

drawn from right to left on figure 3.9a. First the silicon substrate band gap is 

drawn as straight lines separated by 1.1 eV representing the conduction and 

valence bands separated by the band gap. To add the Sio.gGeo.i layer, we know the 

valence band offset to be 0.15 eV so the Sio.gGeo.! valence band is drawn to the left 

of the Si valence band but 0.15 eV higher, the Sio.gGeo.2 conduction band is then
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drawn 1.0 eV above the valence band. The cap layer is the same as the substrate 

since the SiGe layer is less than the critical thickness and is not relaxed. The 

resulting band structure is shown in figure 3.9a, showing the narrow band gap 

SiGe layer that will confine the carriers and form the channel when a gate voltage 

is applied. Figure 3.9b shows the band diagram when the gate voltage forms a 

channel

leV 1.15eV Channel

Si substrateSi SiGe
Si SiGe

(b) V g » V T

Figure 3.9 Resulting band diagram of simple example.

The above simple structure forms the basis of a buried channel 

enhancement mode p-SiGe channel MOSFET. The holes attracted by the gate 

potential are confined to the SiGe layer by the band discontinuity. Complete 

solutions for layer structures used in this work are given in chapter 4.

3.6 Transport Properties of Strained Layers of Si and SiGe

Strain can lift band degeneracy reducing the effective mass and intervalley 

scattering thereby increasing carrier mobility and effecting velocity field 

characteristics [3.28]. In the following two sections, only electron transport in 

strained silicon and hole transport in strained SiGe is considered as they are 

currently the most important for device considerations

3.6 (a) Strained Silicon

Silicon grown on a relaxed SiGe virtual substrate has tensile biaxial strain 

along the interface, resulting in the original six fold degenerate CB (E6) being split 

into two, the split bands are called (E2) and (E4) [3.29]. The (E2) band goes 

down in energy and the (E4) band goes up. E2 has an in plane light electron mass
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of 0.19mo, and has lowest energy thus forming the quantum well. The electron 

mobility is enhanced because of the lower effective mass and the reduced 

intervalley scattering. Fischetti [3.30] recently predicted that electron mobility as 

high as 2300 cm^/V-s is possible in strained silicon. The predicted values for 

electron mobility in strained silicon range from 900 cm^/V-s [3.31] to 4000 cm^/V- 

s [3.32] in the literature. The highest reported measured mobility’s to date are 

2830 cm^/V-s [3.33], and 1840 cm^/V-s [3.34]. Monte Carlo [3.35] simulation of 

the electron drift velocity show that no increase in electron saturation velocity is 

expected. However reasonable reduction in the onset field of velocity saturation is 

predicted [3.36]. Figure 3.10 shows calculated velocity field characteristics of 

electrons in strained silicon.

Drift 7
Velocity
cm/s

Electric Field V/cm

Figure 3.10 Velocity field characteristics of strained Si on relaxed SiGe.

3.6 (b) Strained Silicon-Germanium

The hole mobility is increased in strained SiGe by lifting the degeneracy of 

the valence bands, whereby the heavy hole band moves up and the light hole band 

moves down [3.37]. The mobility depends on the Ge content, in general more Ge 

means higher mobility. Hole mobility as high as 1100 cm^/V-s [3.38] has been 

predicted. This is compared to the values of 500 cm^/V-s and 100 cm^/V-s for 

bulk silicon and a silicon inversion layer respectively. In 1994 an effective 

mobility of 220 cm^/V-s was measured in a Sio.7 5Geo.25 MOSFET [3.39], a factor 

of two greater than that in a similarly doped Si inversion layer. Very recently an
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effective mobility in a Sio.17Geo.83 channel MOSFET of 760 cm^/V-s was reported

[3.40]. For a MODFET, mobility as high as 1665 cm^/V-s [3.41] for a pure Ge 

channel and 700 cm^/V-s [3.42] for a Sio.sGeo.? channel, have been reported, which 

are close to the maximum theoretical values. Figure 3.11 shows the velocity field 

characteristic of holes in strained SiGe for different Ge content calculated by 

Hinckley and Sing [3.43]. It can be seen that for a given electric field, the drift 

velocity is greater for increased Ge content.

Drift 
Velocity 
10^ cm/s

8

6

4

0,4
2

0
205 1510

Electric Field kV/cm

Figure 3.11 Hole velocity field characteristics in strained SiGe for various Ge 

content.

On the down side, there have been numerous publications citing the perils 

of surface roughness and alloy scattering [3.30][3.44]. In some cases totally 

cancelling mobility enhancement in both p and n channel devices. However the 

fact remains that increased mobility has been measured in real structures.

3.6 (c) Velocity Overshoot in Strained Silicon

As a result of the lower effective mass and reduced intervalley scattering 

previously discussed, velocity overshoot of electrons is expected to be stronger in 

strained silicon than in unstrained silicon [3.29]. Enhanced velocity overshoot has 

lead to predictions of better high-firequency performance [3.45] [3.46]. The 

simulation of high field effects in short gate length devices is carried out using 

Monte Carlo simulation techniques [3.35]. Early simulations by Miyata 

investigating velocity overshoot in strained silicon layers predict an overshoot peak 

of 4.1 X 10  ̂cm/s [3.32].

page 48



3-Silicon / Silicon-Germanium

3.7 Si / SiGe Devices

3.7 (a) Simulation

In 1994 device simulations using the same transport model of Miyata [3.32] 

show that for a 0.18 pm gate length device, the peak velocity in the channel is 2.6 

X 10  ̂cm/s [3.45]. Using a different transport model that results in a mobility of 

3250 cm^/V-s, Dollfuss simulates a peak electron velocity of 2.74 x 10  ̂ cm/s 

compared with 1.75 x 10  ̂cm/s for unstrained silicon [3.46]. Resulting in a 0.08 

pm gate length device with gm of 405 mS/mm and fr of 135 GHz. Other results 

such as that of Formicone [3.31], O’Neill [3.47] [3.48] and Roldan [3.49] show 

similar improvement for strained silicon over unstrained silicon.

A recent monte carlo study of an RF FET has been made by Roy [3.50] 

using the parameters of Yamada. This study attempts to describe the performance 

of a strained silicon MODFET optimised for RF properties and includes the effect 

of parasitic resistances. The resulting 120 nm gate RF FET has peak channel 

velocity approaching 2 x 10  ̂ cm/s with fr of 77 GHz and f^ax of 161 GHz. 

However by introducing an optimistic gate and source resistance of only 5 Cl the 

fmax is reduced to 68 GHz.

The high field performance of a strained silicon germanium p-channel 

device is somewhat inferior to that of electrons in strained silicon. Monte carlo 

studies of the high field hole transport in strained SiGe indicate that the velocity 

overshoot is evident, but considerably lower than that of electrons in strained 

silicon [3.51][3.52].

It is clear that there are still issues to be resolved in terms of the model used 

to predict transport parameters of strained Si and SiGe. In addition they may also 

be effected by local growth conditions in terms of surface roughnesss and alloy 

scattering. Results for device simulation must also include the effect of parasitic 

resistance and capacitance. Nevertheless the use of Si / SiGe layer structures to 

improve on the performance of sub lOOnm silicon based FETs is the focus of much 

work. The next section reviews on the current state of the art results in actual 

device measurement
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3.7 (b) State of the Art Devices

The following is a summary of figures of merit of the recent outstanding Si 

/ SiGe field effect devices, beginning with n-channel devices.

3.7 (b) n-channel

The first strained Si n-channel FET reported by Deambkes in 1986 was a 

MODFET with a TiSiz schottky gate [3.7]. Since then the focus of n-channel 

devices has concentrated on fabricating FETs capable of operating at microwave 

frequencies. A schottky gate device is currently preferred because it can be 

fabricated directly onto a SiGe layer. It has been shown that the oxide formed 

directly on a SiGe layer is not suitable so a silicon cap layer is required [3.53]. The 

Si cap layer required for oxide growth reduces device performance (chapter 4). 

Depletion mode schottky gate MODFETs are mostly employed. Recently n- 

channel Si / SiGe MODFETs with very good microwave performance were 

reported. Table 3.1 summarises published results of recent n-channel Si / SiGe 

MODFETs and data from IBM on MOSFETs is shown for comparison.

L (pm) gm (mS/mm) f r  (GHz) fm ax  (GHz)

Silicon IBM *[3.54] 0.1 650 150 30

Silicon IBM *[3.55] 0.18 350 50 30

O’Neill SiGe *[3.56] 0.15 220

Konig SiGe[3.57] 0.18 476 46 92

Ismail SiGe[3.58] 0.4 40 56

Koester SiGe[3.59] 0.2 190 47 55

Table 3.1 n-channel MODFET performance * indicates MOSFET.

In comparing the above results it can be noted that in terms of 

transconductance and cut off frequency, the strained silicon devices are no better 

than the standard silicon devices. This is because of the use of the self-aligned 

silicide process to reduce parasitic source resistances in the standard devices of 

IBM. The demonstration strained silicon devices cited above are all fabricated
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without a silicide, so it is difficult to make a direct comparison. Equally the SiGe 

devices with high fmax all have metal gates where the silicon standard device has 

polysilicon gate which is a reason for the difference in fmax- In all cases where a 

strained silicon demonstration device was fabricated with a silicon control device, 

significant improvement was shown to be the case.

3.7 ( c) Strained SiGe p-channel Devices

The first SiGe p-channel MOSFET produced by Pearsal and Bean 1985

[3.5] was also a schottky gate device. In silicon CMOS circuits, the p-channel 

devices are made with twice the width of an n-channel device to compensate for 

the lower hole mobility. A key application for SiGe p-channel devices is to provide 

high transconductance MOSFET enhancement mode devices for symmetric 

operation of CMOS circuits thereby reducing packing density. As a result most of 

the effort on p-channel devices are MOSFETs. A number of centres have done 

work on implementing SiGe devices in a standard CMOS process [3.60][3.61].

Recently a cut off firequency of If of 70 GHz has been obtained by a p- 

channel SiGe MODFET with a schottky gate [3.62]. For a SiGe MOSFET, the 

best high fi-equency performance to date provided a cut off firequency of 23 GHz 

from a 0.2 pm gate length device [3.63]. Table 3,2 summarises recent SiGe p- 

channel device performance.

L(pm ) g m  (mS/mm) f r  (GHz) F m a x  (GHz)

Silicon IBM * [3.54] 0.1 320 40 25

Silicon IBM [3.55] 0.18 200 20 20

Arafa [3.62] 0.25 258 70 55

Bhaumik * [3.63] 0.2 83 23 35

Ismail [3.64] 0.25 230 24 37

Table 3,2 p-channel device performance * indicates MOSFET.
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3.8 Conclusion

By using epitaxial growth techniques, 2 DEGs and 2 DHGs can be grown, 

improving the carrier transport properties of silicon based devices. In addition the 

strain on silicon and silicon germanium layers leads to higher mobility and 

improves high field effects. High carrier mobility and lower onset for velocity 

saturation of holes in strained silicon germanium and electrons in strained silicon 

can be achieved. In addition velocity overshoot may be enhanced in sub 0.1 pm Si 

/ SiGe devices. Excellent high-speed n-channel devices have been made 

employing a schottky gate on modulation doped structures operating in depletion 

mode. Some improvements over silicon devices have been shown for 

enhancement mode SiGe p-channel MOSFETs. Models predict that further 

improvement is possible. Symmetric CMOS circuits incorporating SiGe p- 

MOSFETs will become a possibility as silicon moves through the 0.1 pm barrier.

If the advantage of velocity overshoot in strained silicon is to be exploited, 

parasitic resistances and capacitances must be nullified. High performance RF 

MODFETs incorporating strained silicon channels appear to be the next achievable 

goal.
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Chapter 4

Layer Structure Modeling and Design

4.1 Introduction and List of Symbols

The Si / SiGe layer structures used in this work are designed or analysed 

using a ID Poisson solver. The theory of the self-consistent solution of charge 

density and potential in a semiconductor required for a full solution to the band 

diagram is discussed. Data on the band structure of unstrained SiGe, unstrained Si, 

strained Si and strained SiGe are shown. The ID Poisson solver is then used to 

design an optimum layer structure for a SiGe p-channel MOSFET. The material 

made available to fabricate n-channel strained Si MODFET is analysed and 

improved. Some background to ion implantation is discussed before the implant 

conditions are designed. The gate metals chosen to fabricate the p and n-channel 

devices are discussed.
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List of Symbols

Laplacian Operator 

AEc Conduction band offset relative to silicon 

AEv Valence band offset relative to silicon 

s Dielectric constant

e Ec Conduction Band energy

Ef Fermi Level energy

Eg Band Gap Energy

Ev Valence band energy

h Planck’s constant

k Boltzmann’s constant

Mih-Dos Light hole effective mass 

Me-dos Electron effective mass 

m mass

Mhh-Dos Heavy Hole effective mass

No Density of states conduction band

n electron density

Nd donor atom density

Na acceptor atom density

Nv Density of states in valence band

P Charge density

P hole density

q magnitude of electron charge

T Temperature

V Applied voltage
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4.2 ID Poisson Solver

A graphical technique was used in chapter 3 to work out the band diagram 

of a given layer structure, ignoring the effects of charge. For a complete solution 

the Poisson equation [4.1] which describes the relationship between charge density 

and potential must be solved. The Poisson equation is

V \V ) = -qp  (4.1)

In a semiconductor the charge density is given by

p = ( p - n  + Nd- Na) (4.2)

Using Boltzmann statistics [4.2]

n = Nc exp (4.3)
kT

and

p = Nv exp (4.4)

In typical semiconductor structures, the solution to the above equations require 

numerical modeling. In this work, a ID Poisson solver available on shareware 

from Greg Snider of the University of Notre Dam is used. This solver uses the 

method of finite difference [4.4] to find the ID band diagram by self consistently 

solving the Poisson equation with Boltzmann statistics or with the Schrodinger 

equation. For the simulations used in this work there was no notable difference 

between using the Boltzmann or Schrodinger equation.
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4.3 Data used for Si and SiGe

An important point especially in the case of SiGe simulation is that any 

model is only as good as the data that is put into it. Table 4.1 shows the formula 

and values input to the model in this work. The table was supplied by the device 

modelling group at the University of Glasgow.

Si [4.5 SiGe [ 4.6 ] Si on SiGe [4.7 ] SiGe on Si [4.8 ]

Eg 1.12 a 1.15-0.43x+0.02x^ 1.11-0.74X 1.17-0.90x+0.40x^

Aec 0 -0.67x

Aev 0 0.74x

s 11.9 11.9+3.03x+1.05x^ 11.9 11.9+3.03x+1.05x

Mhh- 0.951 0.94-1.44x+l .15x^ 0.94-2.67x+2.84x^ 0.93-2.23x+1.83x^

Mlh-Dos 0.256 0.25-0.5 lx+0.40x^ 0.26+0.54x-0.28x^ 0.25-0.33x+0.21x^

Me-dos 0.321 0.321 0.328 0.342

Table 4. 1 Data used in ID poisson solver.
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4.4 ID Band Diagram Simulation

4.4 (a) p-channel layer structure

Many early SiGe enhancement-mode MOSFETs used a simple layer 

structure that will be analysed next, and is shown in figure 4.1. The simulated 

band diagrams for 3 gate voltages are shown in figure 4.2. A graph of the peak 

hole density in the channel and in the cap layer versus gate voltage is shown in 

figure 4.3.

5 nm Si Cap Layer Undoped

20 nm Sio.sGeo.2 Undoped Channel

Si Substrate n-type 10 fl-cm

Figure 4.1 Simple structure for SiGe p-channel MOSFET.

As figure 4.2 shows, at low or zero gate voltage the bands are relatively flat 

and there are no holes in the channel. At increased gate voltage the bands are bent 

upwards and the channel is populated. Further increase in the gate voltage leads to 

significant hole population in the cap layer. The current due to the holes in the cap 

layer is called parallel conduction. Parallel conduction should be minimised 

because the cap layer has much lower mobility. A figure of merit for parallel 

conduction is the cross over voltage, which is defined as the gate voltage above 

threshold at which the carrier density in the cap layer exceeds that of the intended 

channel layer. For the above structure, figure 4.3 shows that the cross over voltage 

is -0.5 V. The low cross over voltage of -0.5V means that this structure is 

unsuitable for a realistic MOSFET because the advantage of the SiGe channel is 

lost at gate voltages exceeding the cross over voltage. To obtain a more suitable 

structure, a larger crossover voltage is required to minimise parallel conduction.
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Figure 4.2 (a) Vg -  Vt = 0 V
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Figure 4.2 (b) Vg -  Vt = -0.5 V
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Si SiGe
Cap SiGe

Figure 4.2 (c) Vg -  Vt = -0.75 V

Figure 4.2 Band diagrams and carrier concentration for simple p-SiGe MOSFET 

structure.
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SiGe channel

Cap layer

0.75 -0.5 -0.251

Peak hole 
density 
(10^^ cm ’^)

Figure 4.3 Layer hole density versus gate voltage for the simple p-channel 

structure.

Design of an improved layer structure

An improved layer structure should have a large cross over voltage so that 

the holes are confined to the SiGe layer and there is no parallel conduction in the 

silicon cap layer. A high Ge content in the channel is desirable to obtain highest 

mobility and largest valence band discontinuity. However the maximum Ge 

content is limited by epitaxial growth considerations such as the critical thickness. 

Grading the Ge content of the channel and using triangular Ge profiles has been 

shown to increase carrier confinement and hole mobility [4.9] [4.10] [4,11]. After 

simulations to optimise the cross over voltage, an improved vertical structure was 

designed and is shown in figure 4.4. The simulations were carried out with a 

maximum Ge content of 0.4.
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10 nm Si Cap Layer Undoped

5 nm Graded from Sio.ôGeo.4 to Si

10 nm Graded from Sio.gGeo.i to Sio.6Geo,4 Undoped

2 nm Graded from Si to Sio.pGeo.i Undoped 

200 nm Sin-type 1.5 x 10̂ ^

Si Substrate

Figure 4. 4 Improved enhancement mode strained SiGe p-channel structure.

Figure 4.5 shows the band diagram and the carrier concentration as a 

function of depth for a gate voltage of -1 V. At -1 V all of the carriers are still 

confined to the SiGe channel. The cross over voltage achieved with this structure 

is -1.5 V as shown in figure 4.6.

E(eV) Hole Density (cm'^) 
4x101

CB
_  3 X IQi

2 x 1 0

1x10
VBSiGe

SiGe

Figure 4.5 Band diagram and carrier concentration versus depth at -1 V for the 

improved p-SiGe structure.
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Peak Hole 
Density (cm'^'
H n 1 8

SiGe Channel

Cap Layer

Figure 4 .6 Layer hole concentration for improved p-channel structure.

4.4 (b) n -  channel

For the fabrication of the n-channel devices in this work, it was not possible 

to design a layer structure and have it grown. However the material structure of 

figure 4.7 was made available by the defense evaluation research agency (DERA) 

for device fabrication. The simulation was carried out assuming a 6 nm oxide 

layer thermally grown on the structure.

10 nm Si Cap Layer Undoped 

5 nm Sio.75Geo.25 n-type 5 x 10̂ *̂

5 nm Sio.75Geo.25 Spacer Undoped
10 nm Si Channel Undoped

rr200 nm Sio.7 5 Geo.25 p-type 5 x 10
rr1 pm graded Sio.7 5Geo.25 Virtual Substrate p-type 5 x 1 0

Si substrate 1 - 2  Q-cm  p-type

Figure 4. 7 Supplied Layer structure for n-channel devices.
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Figure 4.8 shows the band diagram for this structure at 0 V and 1 V. Devices 

fabricated on this structure will be enhancement mode with all of the carriers in the 

cap layer. The layer carrier density versus gate voltage is shown in figure 4.9.

E(eV) E(eV)
CBCB

0

0

VB VB

-4M --------
Si cap SiGe Si -4M---------

Si cap SiGe

Figure 4. 8 Band Diagram of supplied n-channel structure DERA#1 for (a) Vg = 0 

V and (b) Vg = 1 V.

2.5 X 10’®
Peak electron 
density (cm'^)

Cap Layer

1.5 X 10

Channel0.5x10

Figure 4.9 Layer electron density versus gate voltage for DERA#1 n-channel 

structure.
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The enhancement mode operation of this device is confirmed by 

measurement (chapter 5). A depletion mode structure of similar profile would 

have been preferred. Simulations using the ID Poisson solver confirmed 

suspicions that the p-doped buffer layer was responsible for the enhancement mode 

of operation. A new but similar layer structure incorporating an undoped buffer 

layer is shown in figure 4.10.

vr5 nm S i o . 7 5 G e o . 2 5  n-type 1 x 1 0

5 nm Sio.75Geo.25 undoped spacer

10 nm Si undoped channel

100 nm Sio.75Geo.25 undoped setback
ÎT1 |am virtual substrate graded to Sio.75Geo.25 p-type 5 x 1 0

Si substrate 1 - 2  Q-cm  p-type

Figure 4. 10 Optimised depletion mode n-channel structure.

This structure was simulated without a silicon cap layer. Figure 4.11 shows 

the band diagram at 0 V and -0.75 V for the above structure indicating that the 

device will work in depletion mode. Figure 4.12 shows the carrier concentration in 

the Si channel and SiGe supply layer as a function of applied gate voltage.

E(eV)

CB

VBVB

M  ► <
SiGeSiGe

(a) Vg=OV (b) Vg = -0.8 V

Figure 4.11 Band diagram showing depletion mode operation in optimised n- 

channel structure with no silicon cap layer for (a) Vg = 0 V and (b) Vg = -0.8 V.
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Peak electron Density (cm‘̂ )
1 . 8 x 1 0

1.4 X 10
Channel

1 X 10

6 x  10
*" SiGe cap 

layer 2 x  10

Figure 4.12 Layer carrier densities versus gate voltage for optimised n-channel 

structure with no silicon cap layer.

From a practical point of view a silicon cap layer is required to allow the 

growth of the gate oxide on, unless a schottky contact is used. If a 3 nm cap layer 

is added the structure is still suitable for a depletion mode device but most of the 

carriers are in the cap layer as shown by figure 4.13. The use of a schottky gate 

instead of a MOS gate will allow the fabrication of devices with no Si cap layer. 

This simulation illustrates why the n-strained Si channel devices reported to date 

have all used a schottky gate.

Peak bleci 
Density (c

Si cap Layer

" V
Channel /

...............

bron

” '5 x  10"

X 10^9

0.5 X 10̂ ® 

0.25 X lOiG

v . ( v )  . 3  ,3

Figure 4.13 Layer carrier density for optimised n-channel structure with a 3 nm cap 

layer.
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4.5 Ion Implantation.

The following simple method was used to obtain the doping profile and ion 

implant conditions for the source and drain implants.

As the ions penetrate into the substrate they lose energy in collisions with electrons 

and atomic nuclei and eventually come to rest. The distribution of implanted ions 

in depth into the substrate can be approximated by [4.12].

, . S — (x “  Rp)^n(x) =  j =r QXp---------- r—
ARpV2^ 2 ARp"

(4.5)

Where

S is the ion dose per unit area (cm'^)

ARp is the projected straggle of implanted ions (pm)

Rp is the projected range of implanted ions (pm)

A dose of 5 x 10̂  ̂cm'^ was used for all implants in this work.

The projected straggle and projected range for the three implant conditions used in 

this work are shown in table 4.2.

Ion Rp (pm) ARp (pm) Energy (keV)

B 0.03 0.015 10

P 0.028 0.015 20

P 0.05 0.022 40

Table 4.2 Ion implant conditions [4.13].
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4.5 (a) p channel ion implant simulation

Since minimum gate length transistors were to be fabricated, short channel 

effects must be avoided by using very shallow source drain junctions. The 

minimum energy available to the project is 10 keV. Figure 4.14 shows the 

simulated boron concentration as a function of depth into the sample.

Boron
Concentration
(cm'3)

0.150.05

Depth (pm)

Figure 4.14 Concentration of Boron atoms versus depth into silicon for 10 keV, 5 x 

10̂  ̂cm'^ implant.

4.5 (b) (i) n-channel ion implant simulation

For the n-channel source and drain phosphorous is the chosen ion species. 

A low temperature (600 °C) anneal can be sufficient to activate the implant if P is 

used [4.14]. Figure 4.15 shows the P concentration as a function of depth into the 

sample for 2 implant energies used in this work.
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Phosphorous 
Concentration 10'

in: 40 keV

20keV

0.10.05 

Depth (um)
0.15

Figure 4.15 P doping concentration for 20 keV and 40 keV implants.

4.6 Gate Metals

For the p-channel device by using a BF2 implant, an anneal at 900 °C for 10 

s is required to obtain a reasonable contact resistance [4.14]. The only metal 

available to the author for this purpose is tungsten. Using tungsten as a gate metal 

is not new and there has been recent interest in employing tungsten as a gate metal 

for short channel CMOS processes [4.15] [4.16] [4.17]. The main problem with 

using tungsten is the need to find a way to etch the tungsten without etching into 

the thin gate oxide. This is overcome by in-situ monitoring of the etching process 

(chapter 5).

For an n-channel device where P doping is used, it is possible to anneal at only 

600 °C for 20 s to obtain reasonable contact resistance. This allows more 

flexibility in the choice of gate metal. In order to take advantage of the technology 

available at Glasgow, Ti / Pd / Au is the chosen gate metal for the n-channel 

devices. At Glasgow there exists a mature fabrication process for T i / P d / Au gate 

devices down to sub 100 nm gate length and using T shaped gates. Using this 

technology would save time in developing new metalisations and allow for a direct
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comparison with state of the art GaAs MODFETs. Gold is of course an unpopular 

metal in silicon fabrication for two reasons [4.18].

1. It diffuses rapidly in silicon.

2. It acts as a deep trap reducing mobility and reliability.

However gold interconnects have been considered recently [4.19]. All of the n- 

channel SiGe devices reported in chapter 3 had gold gates. Gold drain and source 

alloyed contacts are becoming common place in demonstration devices [4.20]

It was perhaps a bold choice but the benefits outweigh the disadvantages

considerably. It will be possible to transfer the technology to a tungsten or even

aluminium gate process.

4.7 Conclusion

An optimum Si / SiGe p-channel layer structure was designed using a ID 

Poisson solver. The n-channel structures available for this work were analysed 

using a ID Poisson solver. Using feedback from the results of fabricated devices 

on the initial layer structure, an optimised strained Si n-channel structure is 

designed. Ion implantation conditions are modelled for the p and n-channel 

devices using a simple Gausian approximation.

Tungsten is chosen as the gate metal for p-channel devices because of its 

ability to withstand high temperatures.

T i / P d  / Au is to be used as the gate metalisation for n-channel devices in 

order to make full use of the mature microwave device fabrication facilities 

available.
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CHAPTER 5

Fabrication and DC Analysis of Metal Gate Si / SiGe MOSFETs

5.1 Introduction

The fabrication processes and results of DC characterisation of metal gate 

MOSFETs are presented in this chapter. The first fabrication process developed 

was for the tungsten gate p-channel SiGe MOSFETs. The simple fabrication 

process is first shown by diagram then individual processing steps are described in 

detail. Basic DC characterisation of the resulting devices follows. A modified 

process designed for the fabrication of Ti / Pd / Au gate n-channel SiGe MOSFETs 

is then described and is also followed by DC characterisation of the resulting 

devices.

Image of a 2 finger gate with ohmic contacts
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5.2 Tungsten Gate SiGe p-channel MOSFETs

5.2 (a) Fabrication process

The first devices to be fabricated in this work were tungsten gate SiGe p- 

channel enhancement mode MOSFETs as designed in chapter 4. A simple 

fabrication process was designed that would provide quick results. Figure 5.1 is a 

diagram of the fabrication process. There are four lithographic levels to define the 

alignment marks, gate, ohmic contacts and to give isolation as shown in figure 5.2.

T u n g s t e n  G a t e

O x i d e

E p i ta x i a l  S i G e  s t r uct ure

i n i i i

Fol lowing t h e r m a l  g at e  ox idat ion ,  
tu ngs te n  Is d e p o s i t e d  and  
pa t te rne d by  dry  e t ch in g .

Using the gate  as a m a s k ,  se l f  
al igned so ur ce  an d dra in  a re  ion 
im p la n te d .

O h m i c  c o n t a c t  to s o u r c e  and  dra in  
are  f o r m e d  wi th A l u m i n i u m / S i l i c o n  
m eta l is a t ion .  L a rg e  bon d  p a d s  o f  A1 
are  p a t t e r n e d  a n d  e v a p o r a t e d .  
D e v i c e s  are  isola ted by  t r ench e tch ing

Figure 5.1 Simple Fabrication process for tungsten gate devices.
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□ □ □
□ □ □
□ □ □

5.2 (a) Markers

5.2 (c) source and drain

source

Drain

source

5.2 (b) 2 finger gate

5.2 (d) isolation

Figure 5.2 Mask layout Used in the Fabrication of Tungsten gate MOSFETs.
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5.2 (b) Processing Steps

5.2 (b) (i) Gate Oxidation

Thermal gate oxidation was carried out by placing the samples in a 

cylindrical furnace maintained at 800 °C with flowing dry oxygen at a flow rate of 

2 seem for 120 mins. The resulting oxide thickness was measured using 

ellipsometry [5.1] and was found to be 6 nm. Following oxidation the wafers were 

annealed for a further 30 min at 800 °C in an argon atmosphere. This is known to 

reduce the high density of fixed oxide charges that are present as a result of 

growing the oxide at low temperature [5.2]. Large area (1 mm^) MOS capacitors 

with A1 and W gate metals were fabricated to characterise the oxide. CV curves of 

the capacitors were measured using an HP4275-A multi frequency LCR meter with 

a small signal frequency of 1 MHz. Figure 5.3 shows a typical CV curve obtained 

from such a measurement. Estimates of fixed oxide charge density is easy to 

obtain and provides a figure of merit for oxide quality. Gate leakage will be 

considered during device characterisation. The fixed oxide charge density is given 

by [5.3]

Q f ~  Co (Vm s-V fb) (5.1)

Where Vfb is the flatband voltage shift of the CV curve, figure 5.3 and table 5.1. 

Vms is the metal-semiconductor work function difference, table 5.1.

Gate Voltage (V)

Figure 5.3 Typical CV curve measured at 1 MHz of an Oxide on n- Si
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Table 5.1 shows the fixed oxide charge densities of thermal oxides grown at 800 

°C and 1100 °C on a n-doped silicon substrate. Industry standard thermal 

oxidation processes produce oxides with fixed charge densities of <10^*^ cm'^

[5.4]. The fixed oxide charge density as fabricated here is not ideal but is suitable 

for initial demonstration device fabrication.

Oxidation 

Temp (°C)

Thickness

(nm)

Metal Vms(V) Vfb(V) Anneal Qf xlO-‘° 

(cm* )̂

1100 20 Al -0.25 -0.5 None 4.3

800 6 Al -0.25 -0.6 None 22

800 6 Al -0.25 -0.35 800 °C for 30 min 6

800 6 W +0.65 +0.55 800 °C for 30 min 6

Table 5.1 Fixed oxide charge densities of Al, Au and W gate MOS capacitors with 

oxide grown at low and high temperature.

5.2 (b) (ii) Tungsten Gate Deposition

The tungsten gate metal was deposited by sputtering using a single target 

conventional Nordiko RF sputtering system. Figure 5.4 is a schematic diagram of 

the sputtering method. A low-pressure argon gas RF discharge is set up between 

the tungsten target and the substrate. The argon atoms in the plasma are 

accelerated towards the target and sputter the tungsten. The sputtered tungsten 

atoms accelerate towards the substrate through the argon plasma and are deposited 

onto it. Some argon is trapped in the tungsten during the sputtering process and its 

presence increases the resistivity of the deposited layer [5.5]. In order to avoid 

this, a very low argon gas pressure of 2 mTorr was used. The chamber 

background pressure was 2 x 10'^ mbar and the DC target bias was -1100 V 

resulting in a deposition rate of 3 nm/min and applied RF power of lOOW.
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RF P o w e r  S u p p l y

T a r g e t

L o w  P r e s s u r e  G a s  D i s c h a r g e

S u b s tra te

Figure 5.4 Schematic diagram of sputtering system.

The resistivity of the deposited tungsten layer was measured using a 

Leighton Buzzard 4-probe resistance measurement system. Four probes of 25 pm 

tip radius that are spaced 1 mm apart make contact with the wafer, the sheet 

resistance is given by [5.6].

Rsh = 4.532 X V / 1 Q / sq (5.2)

The measured sheet resistance of the deposited tungsten was 1.2 O /  sq.

5.2 (b) (iii) Tungsten Gate Lithography

The sample was baked on a hotplate at 200 °C for 30 min, then 

hexamethyldisilazane (HMDS) was spin coated onto the sample at 3000 rpm for 30 

s, and then the sample was oven baked at 80 °C for 20 mins. Hoeschst AZ PNl 14 

resist was diluted 1:1 with Hoechst EBX thinner then spin coated onto the sample 

at 3000 rpm for 30 s [5.7]. Immediately afterwards the sample is softbaked at 120 

°C for 120 s on a vacuum hot plate. A range of gates with minimum gate length of
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100 nm, were written using a Leica EBPG5 electron-beamwriter onto the Hoechst 

AZ PNl 14 negative tone resist. The pattern was exposed with an electron beam of 

energy 100 keV with a spot size of 40 nm and a dose of 24 pC/cm^. Following 

exposure the sample was baked at 105 ®C for 5 min then developed at 20 °C for 60 

s in Hoechst AZ400K developer diluted 1:4 with RO water.

5.2 (b) (iv) Tungsten Gate etch

One of the major roadblocks in using tungsten as a gate metal for short 

channel MOSFETs is that an etching process that is selective between the tungsten 

and the underlying gate oxide is not available [5.8]. However, using in-situ 

reflectometry [5.9] the etch depth can be monitored during the etching process 

allowing the process to be stopped at a predetermined point. In reflectometry, laser 

light is shone onto and reflected from the surface being etched. The intensity of 

the reflected light is measured. As the top layer gets thinner and interfaces are 

etched through, the intensity of the reflected light changes. The reflection 

coefficient and hence the amplitude of reflected light can be modelled using 

transmission line theory. The following is an example for a two-layer structure, 

the theory is easily extended to multilayer structures.

ZiN

Material 1 Zo

Material 2 Zl

Zl

Figure 5.5 Model of a 2 layer structure for calculation of the reflection coefficient.

_  2  (Ẑ  + Zotanh(^)) 
(Zo + Zl  tanh(/Z,))

(5.3)
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^  { Z l  -  Zo) 

{Zl + Zô
(5.4)

Where L is the thickness of the epitaxial layer.

y =n-jk is the complex refractive index of the material.

Z is the characteristic impedance of the layer given by: Zyac / y 

p is the reflection coefficient

Using the following data Si n-jk = 3.79- j  0.013

W n-jk = 3.76- j  2.95

Si02 n-jk =1.48

Zvac = 377 n

The modelled reflection coefficient as a function of depth into a sample is 

shown in figure 5.6. The sample layer structure consisted of 100 run of Tungsten 

on 6 nm of oxide on a silicon substrate. The model used to simulate the reflection 

coefficient is the same model used in [5.9].

Oxide
Tungsten

100
D epth nm

Figure 5.6 Modelled reflection Coefficient of 100 nm W / 6 nm Si02 / 500 pm Si 

as function of depth onto sample.
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A BP80 reactive ion etch machine with applied power of 100 W and 

chamber pressure of 9 mtorr was used with in-situ reflectometry to etch the gates. 

The gas used was SFg at gas flow rate 15 seem. The average etch time before the 

stop point was reached was approximately 60 s. The remaining resist was removed 

by immersing the sample in acetone for 5 mins. Figure 5.7 is an SEM of a 100 nm 

tungsten gate fabricated using this process. The wafer level uniformity is not very 

good, over a 300 mm diameter wafer the centre will be overetched by 10 s if at the 

edge exactly 100 nm of tungsten is etched. However only 20 mm^ samples were 

used in this work so wafer variation is not a major concern.

1 1

Figure 5.7 SEM of a 100 nm Tungsten Gate.

5.2 (b) (v) Source and Drain Formation

Ion implantation of the source and drain of the p-channel devices was 

carried out at the University of Edinburgh. A single implant was performed using 

the tungsten gate as a mask to obtain self aligned source and drain. The dose and 

energy used was 5 x 10̂  ̂ BF2 atoms cm'^ at 10 keV as designed in chapter 4. 

Following implantation the wafer was annealed at 900 °C for 20 s in a JIPELEC 

rapid thermal anneal (RTA) system to activate the implant.
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5.2 (b) (vi) Ohmic Contacts

The source and drain patterns were defined using electron beam 

lithography with positive electron-beam resist. A bilayer of resist called 

poly (methyl methacrylate) (PMMA) was used. The first layer called ALD has 

lower molecular weight than the second layer called ELV. The difference in 

molecular weight enables the use of the two-layer process as shown in chapter 2. 

The resist was spin coated, exposed and developed as follows:

1. 8% ALD spin coated at 5000 rpm for 60 s then baked for 1 hour at 180 °C.

2. 4% ELV spin coated at 5000 rpm for 60 s then baked for 2 hours at 180 °C.

3. Expose pattern with a 50 keV energy electron beam with 160 nm spot size

and dose 260 pC/cm^.

4. Develop using 2:1 IP A: MIBK (isopropyl alcohol : methyl iso-butyl 

ketone) at 20 °C for 60 s then rinsed in IP A then blown dry with nitrogen.

5. The sample was then dipped in hydrophlouric acid (HF) for exactly 10 s to 

remove the gate oxide from the source and drain areas, then rinsed in reverse 

osmosis (RO) water. A 100 nm thick layer of aluminium / silicon was then 

thermally evaporated onto the sample. By immersing the sample in acetone for 1 

hour the resist is removed, leaving only the aluminium / silicon in areas patterned 

by the electron beam. The sample is then rinsed in reverse osmosis RO water then 

annealed at 400 °C for 4 min to form the ohmic contacts.

In order to measure the contact resistance and resistance of the implant, 

TLM [5.10] (transmission line modeling) structures were patterned on the wafer. 

The sheet resistance of the implant was measured using the four-probe technique.

Figure 5.8 Transmission Line Modeling structure for measuring sheet and contact 

resistance.
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From figure 5,8 the standard 4 probe measurement technique gives

Rimpta = (5.4)
If

Rc can be determined by measuring the resistance R of the same element using 4 

probes on the two pads then

2 R c ~ R “RimplaTit ( 5 .5 )

2 R c  ~ R “RimplaTit
In addition by measuring and plotting the 4 probe resistances as a function of d and 

by plotting R versus d and using

R = - ^ + 2 R c  (5.6)

2Rc is the intersection with the y-axis and Rgh / Z is the gradient.

Using the above methods, Rsh = 10000 Q/sq and Rc = 0.3 Q-mm.

So for a device of width 100 pm with source to gate spacing of 1 pm the total 

access resistance is estimated to be 103 Q.

5.2 (b) (vii) Isolation etch

Photoresist was used as the mask for the isolation etch process because of 

its resistance to the dry etch process. The following process was used:

1. Spin coat the sample with S1818 positive photoresist at 4000 rpm for 30 s.

2. Bake at 90 °C for 15 mins.

3. Expose the sample to UV light through the mask on a manual mask aligner.

4. The isolation etch was performed in a BP 80 reactive ion etch machine at 23 

with 100 W of power using SFe gas for 5 mins.

The resulting etch depth as measured on a Dektak surface profiler was 

approx 1 pm. The remaining resist was removed by immersing in acetone and the 

sample was then rinsed in RO water.
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5.2 (c) DC characterisation of p-channel tungsten gate SiGe MOSFETs

The devices were characterised using a HP4145 parametric analyser and 

cascade probing station. For the IV characteristics, the source contacts were held 

at zero volts and the drain voltage was ramped from 0 to -Y d for various fixed 

gate voltage. The measured TV characteristics, of 3,1, 0.5 and 0.25 pm gate length 

devices are shown in figures 5.9 (a-d).

1201
=lpm

0 -10
-10Vd(V)

Figure 5.9 (a) Figure 5.9 (b)

0 -5Vd(V)

Figure 5.9 (c) Figure 5.9 (d)

Figure 5.9 (a-d) IV characteristics of p channel tungsten gate MOSFETs.
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The transfer characteristics of a 3 p,m and a 1 |j.m gate length MOSFET are shown 

in figure 5.10.

Lg=l|4m

175 4

(mA/mm)
(mS/mrtf

Figure 5.10 Measured transfer characteristics of p-channel SiGe tungsten gate 

MOSFETs.

The peak transconductance is 36 mS/mm for a 1 pm x 200 pm transistor -  1.8 mS 

The intrinsic transconductance is estimated using equation

gm' = 0.0018 / (1 -  206 X 0.0018) = 2.9 mS 

Dividing the width gives gm’ = 58 mS/mm

The gate leakage is measured to be 150 pA/mm, this is very large and is attributed 

to

1. Home grown oxide quality.

2. Probing pads placed directly onto gate oxide with no other isolation or ILD.
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5.3 Strained silicon n-channel gold gate MODFETs

5.3 (a) Fabrication process

The fabrication process developed for strained silicon gold gate MOSFETs 

is shown in figure 5.11. There were four major differences from the tungsten gate 

process.

1] An active area mesa is formed by dry etching the substrate. The sample is then 

planarised by lifting off sputtered SiOz. This step has been introduced to reduce 

gate leakage and capacitance of the probing pads.

2] The thermally grown gate oxide was carried out at the University of 

Southampton using their 6 nm oxidation process.

3] T i / P d / Au gates were employed, a mature electron beam evaporated gold lift 

off process capable of sub 50 nm gate lithography was used.

4] Ti / Au ohmic contacts were used in preference to aluminium which is known to 

spike making contact to the substrate. Also as Au probing pads were to be used, 

Al-Au contact must be avoided.
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Gate Oxide

150nnY
SI02

k
a #

r Active Area 
^ ^

Following thermal gate oxidation, an 
active area is created by dry etching 
150 nm deep using resist as a mask, 
the same resist is then used to lift off 
150nm of sputtered oxide to create a 
planar surface.

Ion implantation of source and 
drain is performed using the gold 
gate as a mask.

Ti/Au Ohmic contacts are patterned 
and annealed.

Figure 5.11 Fabrication process for T i / P d  / Au gate n-channel MOSFETs.
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CD-

a

b) gate
a) isolation mesa

c) o hmic GO ntacts d) probing pads

Figure 5.12 Mask layouts for n-chaimel MOSFETs.
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5.3 (b) Process steps

5.3 (b) (i) Gate Oxidation

Gate oxidation of the complete 300 mm diameter wafer was carried out at 

the University of Southampton. Prior to oxidation, the wafer was subjected to an 

RCA clean [5.11]. The clean removes some 2-3 nm of the silicon cap layer. The 

oxide thickness is 6 nm. The sample was then returned to Glasgow and the wafer 

was scribed into 20 nun^ bits for further processing.

5.3 (b) (ii) Mesa Pattern and Etch

The mesa was patterned using electron beam lithography and dry etched as

follows

1. 15% ALD spin coated at 5000 rpm for 60 s then baked at 180 for 1 hour.

2. 4% ELV spin coated at 5000 rpm for 60 s the baked at 180 °C for 2 hours.

3. Electron beam exposure at energy 50 keV, spot size 400 nm, dose 300 

pC/cm^.

4. Develop in 1:1 MIBK:IPA at 23 °C for 30 s

5. Etched in a BP80 reactive ion etcher using a timed etch to a depth of 

approximately 150 nm. The etch parameters were, reflected power 100 W, 

pressure 9 mTorr for 2 mins. A test sample was etched at the same time and the 

etch depth was measured on a dektak surface profile system.

5.3 (b) (iii) Planarisation

Silicon dioxide was sputtered using the Nordico sputter system at an etch 

rate of 1.5 nm/min. Lift off was carried out with the sample immersed in acetone 

and agitated using an ultrasonic bath for 30 mins. The measured step height 

between the mesa edge and sputtered oxide was always within limits of system and 

swamped by the surface roughness already present in the SiGe.

5.3 (b) (iv) Gate stack

The gate stack was patterned, evaporated and lifted off as follows:

1. 8% ALD spin coated at 5000 rpm for 60 s then baked at 180 “C for 1 hour.

2. 4% ELV spin coated at 5000 rpm for 60 s the baked at 180 ”C for 2 hours.

3. Electron beam exposure at energy 50 keV, spot size 40 nm, dose 600 pC/cm^.
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4. Develop in 2 : 1 MIBK : IP A for 30 s

5. Evaporation of Ti (15 nm) Pd (15 nm) Au (160 nm) in a plassys electron beam 

evaporator

6. Lift off in boiling acetone for 1 hour.

5.3 (b) (v) Source Drain Implant

Implantation was carried out at Imperial College London. Initial samples 

were implanted using Phosphorous at 20 keV with a dose of 5 x 10^  ̂atoms cm‘̂  . 

The implants were annealed at Glasgow on a JIPELEC RTA at 650 '̂ C for 20 s.

5.3 (b) (vi) Ohmic Contact Metalisation

The ohmic contacts were patterned, evaporated and lifted off as follows:

1. 12% ALD spin coated at 5000 rpm for 60 s then baked at 180 ®C for 1 hour.

2. 4% ELV spin coated at 5000 rpm for 60 s the baked at 180 for 2 hours.

3. Electron beam exposure at energy 50 keV, spot size 160 nm, dose 260 pC/cm^.

4. Develop in 1 : 1 MIBK : IP A for 30 s.

5. Dipped for 10 s in HF then rinsed in RO water.

6. Immediately placed in the evaporator 100 nm Ti 100 nm Au.

7. Annealed at 300 ®C for 3 min.

5.3 (b) (vii) Probing Pads

Probing pads were patterned as follows.

1. 12% ALD spin coated at 5000 rpm for 60 s then baked at 180 °C for 1 hour.

2. 4% ELV spin coated at 5000 rpm for 60 s the baked at 180 "C for 2 hours.

3. Electron beam exposure at energy of 50 keV, spot size 160 nm, dose 300 

pC/cm^.

4. The sample was dry etched in an oxygen plasma for Imin.

5. Develop in 1 : 1 MIBK : IP A for 30 s.

6. Thermal evaporation of 200 nm Au.

7. Lift off in acteone 1 hour.
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5.3 (c) n-channel device characteristics

The IV characteristics, of initial 3,1,0.5 and 0.25 |rm gate length devices 

are shown in figure 5.13.

175. ■5.5

Id(mA) (mA/mm) 4.5
4.5

3.5

3.5 2.5

Figure 5.13 (a) L = 3 p.m Figure 5.13 (b) L = 1 \xm

5.5300 , 150 ■2.6

4.5(mA/mm).

3.5

2.5

1.5

Figure 5.13 (c) L = 0.5 )im Figure 5.13 (d) L = 0.25 frm

Figure 5.13 IV Characteristics of Strained Si n-channel MOSFETs.
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The source and drain contact resistance for the n-channel devices was 

measured to be 2.2 Q-mm and the sheet resistance is 430 Q/sq.

The device Rs is then approx 26.3 Q (1 pm source-gate gap, 100 pm wide).

The gate leakage measured for the n-channel devices with oxidation carried out at 

the University of Southampton is always < 2 pA/mm.

Figure 5.14 show the transconductance of a 1 pm gate length MOSFET.

120 1

(mS/mm) 

80 .

Vg(V)

Figure 5.14 Transconductance of a 1 pm x 100 pm n-channel SiGe MOSFET.

An estimate of the intrinsic transconductance is obtained from 

gm' = 0.0055 / (1-0.0055 x52) = 0.77 mS 

Dividing the width gives gm' -  154 mS/mm

page 98



5-Fabrication and DC Analysis of Metal Gate Si/SiGe MOSFETs

A Second Batch

Following the success of these devices and noting that the high source drain 

resistance limits the performance of sub 1 pm devices, another batch with a deeper 

source drain implant was fabricated. The dose and species was unchanged while 

the energy was increased to 40 keV. The resulting IV curve and transconductance 

of a 0.3 pm x 50 pm device are shown in figure 5.15.

1.5
(mA/mm)

180

160

140
0.5

120

2.50.5

Figure 5.12 measured characteristics of a 0.3 pm x 50 pm device with 40 keV

implant.

The increased junction depth lead to a measured Rsh and Rc of 200 Q / 

square and 1 Q mm respectively. The measured transconductance was 240 

mS/mm. An estimate of the intrinsic transconductance is 

gm' = 0 .0 1 2 /(1 -0 .0 1 2 * 1 2  ) = 0.014 S 

Dividing the width gives gm’ = 280 mS/mm.

The extrinsic gm also scales properly with gate length. Table 5.2 lists measured gm 

versus gate length for these devices.

L(pm ) 1 0.75 0.5 0.3

gm’ (mS/mm) 110 150 180 240

Table 5.2 Transconductance versus gate length.
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5.4 Summary and Conclusion

Two independent metal gate fabrication processes have been developed for 

Si / SiGe MOSFETs. A tungsten gate deposition and dry etch process was 

developed capable of producing 100 nm lines. Using this process, p-channel SiGe 

MOSFETs were fabricated. 1 pm gate length devices had extrinsic and intrinsic gm 

of 36 ms/mm and 55 mS/mm respectively.

A Ti / Pd / Au gate process was developed and employed in the fabrication 

of strained silicon n-channel MOSFETs. The performance of initial devices 

fabricated with a 20 keV source drain implant was limited by the source resistance. 

A second set of devices fabricated with a 40 keV implant produced improved 

results. Transconductance scaled properly with gate length. A 0.3 pm x 50 pm 2 

finger MOSFET had extrinsic and intrinsic gm of 230 mS/mm and 280 mS/mm 

respectively. The results obtained to date in this work demonstrate that both the 

metal gate processes can be used to successfully fabricate MOSFETs. Taking into 

account the demonstrative nature of the process, the DC results are very 

impressive. In particular the 0.3 pm gate length strained silicon n-MOSFET has 

good DC properties. The use of a metal gate means that the RF properties of these 

devices will be of interest.
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Chapter 6

High Frequency Measurement and Analysis of Metal Gate Si/SiGe 

MOSFETs

6.1 Introduction

In this chapter the measurement system and techniques used to measure the 

Si/SiGe MOSFETs in the frequency range 0 - 6 0  GHz are described. A strained 

silicon MOSFET of 1 pm gate length with probe pads close to the silicon substrate 

has been characterised. A method of lowering parasitic capacitance using a single 

layer of polymer to separate the pads from the substrate is described. A 0.3 pm 

gate length device has been measured. Using the active and passive element 

library developed in this work, a single stage amplifier is designed.

fr'r ■' >
"L

Image of MOSFETs with RF probe pads.
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6-High Frequency Measurements and Analysis of Metal Gate Si/SiGe MOSFETs

6.2 Measurement Set up and Techniques

The measurement set up is shown in figure 6.1. The HP4145 parametric 

analyser is used to supply the DC bias voltages while simultaneously monitoring 

the gate leakage current and the drain current. The frequency generator source 

provides the RF signal. The test set directs the flow of the RF signal to the test 

ports and imposes the DC bias from the HP4145 on the RF signal. The system is 

calibrated to the probe tips using the SOLT (Short Open Load Thru) technique on 

an ISS (Impedance Standard Substrate) [6.1]. The system described is only 

capable of RF measurements at a single DC bias point.

Wiltron 360B 
VNA

Frequency
GeneratorComputer

HP4145
Parametric
Analyser Test Set

Port 2Port 1

DUT

SourceGround

Signal

Ground

Gate Drain

Source <

Figure 6.1 Measurement Set-up.
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6.3 Initial Device Measurements and Modelling

The device bias point was chosen from the DC measurements for 

maximum transconductance. The first device tested was a 1 pm x 200 pm n-SiGe 

MOSFET with a gm of 110 mS/mm at Vg = 2 V and Vd = 2 V. Figure 6.1 shows 

the measured S-parameters in a Smith chart representation [6.2]. Figure 6.1 shows 

the measured fj and fmax of the device.

X /

Figure 6,2 S parameters of T i / P d / Au gate strained Si MOSFET with 1 pm gate 

length.

MAG
0.5

fr=  1.02 GHz

1.17 GHz‘•max

-0.5 -

Frequency (GHz)

Figure 6.3 |h2 i| and MAG for a strained Si n-type 1 pm x 100 pm MOSFET.

page 104



6-High. Frequency Measurements and Analysis of Metal Gate Si/SiGe MOSFETs

Device Model

A simplified equivalent circuit from figure 2.12 was used to model the 

devices and is shown in figure 6.4 [6.3].

Figure 6.4 The equivalent circuit as used to model the measured results.

The equivalent circuit elements were chosen such that the measured S- 

parameters matched that of the equivalent circuit. The circuit elements are shown 

in figure 6.4 and are listed in the table below.

Rg(Q) R d (0) Cgd(fF) Cgs (fF) gm‘ (S) Rs(Q) Rsd (Q) Cdp,gp (fF) Cds (fF)
20 1 90 100 0.019 1 250 4000 1

Table 6.1 Equivalent circuit elements for strained Si n-channel MOSFET with 

probing pads directly on 150 nm of oxide on silicon.

These devices suffered from large gate and drain pad capacitance because 

the 100 pm^ probing pads were placed directly on 150 nm of sputtered oxide on 

the silicon substrate. The pad capacitance is given by

Cgs-
SrSoP̂

(6 .1)
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Where

Sr is the dielectric constant of SiOz taken to be 4 

A is the area of the pad (pm^) 

d is the thickness of the oxide in this case 150 nm.

The table below compares the capacitance expected of a probing pad of various 

area fabricated on 150 nm of oxide on a low resistance silicon substrate.

A (pm ) C(fF)

100 4000

50 1000

10 200

Table 6.2 Probing pad capacitance for different pad area with d = 150 nm of oxide.

This table illustrates the enormous effect that probing pads have on the parasitic 

capacitance of a device grown on a low resistance substrate.

De-Embedding by Modeling

It is common practice to extract the intrinsic device performance by de­

embedding the probing pad capacitance [6.4]. The intrinsic performance of the 

device can be estimated by simply changing Cgs in the model. This effect on fp and 

fmax by reducing just Cgs is shown in table 6.3.

C g s  ( f F ) fr (GHz) fm ax  (GHz)
4000 (As Measured) 1.02 1.17
1000 3.2 4.8
500 5.1 8.7
100 (Intrinsic) 16 19

Table 6.3 The modelled effect on ff and fmax on reducing Cgs.
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6.4 Optimisation of the Probe Pad Capacitance

It has been shown above that by reducing the probing pad capacitance, the 

measured RF figures of merit will be improved. In addition, to implement the 

MOSFETs in an integrated circuit, contact pads will be required to connect to the 

rest of the circuit and should also be of low capacitance. A spin on dielectric was 

chosen as the quickest and best way to get results. A 1 pm thick layer of PMMA 

was chosen as the dielectric. This meant that alignment could be made 

automatically with the electron beam-writer straight onto the existing 10 pm^ gate 

pad. Figure 6.4 shows the fabrication steps proposed.

Device fabricated on Si 

with lOpm^ gatefeed on 

150 nm of oxide.

Spin on a 1 pm thick 

PMMA layer.

/

Expose and develop the contact window 

down to gatefeed. Electroplate gold 

Columns and probing pads 

Gate pad only shown for clarity

Figure 6.5 Fabrication process to produce low capacitance probing pads.
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6.5 Measurement of 0.3 gate length MOSFET

Using the method described above to reduce the parasitic pad capacitance, 

a 2 finger 0.3 pm x 50 pm MOSFET with gm of 230 mS/mm was measured from 0 

-  60 GHz. Figure 6.5 shows the measured and modelled S-parameters. Figure 6.6 

shows fr and fmax-

Measured

Model

Figure 6.6 Measured and modeled S parameters for a 0.3 pm x 100 pm MOSFET. 

dB -----------------------------------------------------------------------

MAG

1 10 30Frequency (GHz)

Figure 6.7 fj and fmax of a 0.3 pm gate length strained silicon MOSFET. 

The resulting fr = 12.4 GHz and fmax =11-8 GHz
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The equivalent circuit parameters extracted 6om  the model of the 0.3 pm x 

50 |xm device with probing pads on a 1 pm thick layer of polymer are shown 

below.

(^ ) Rd(Q) Cgd(fF) Cgs (fF) gm’ (S) R s(0 ) Rsd (G) Cgp,dp (fF) Cds (fF)

15 1 50 70 0.013 1 200 100 54

Table 6.4 Equivalent circuit elements for strained Si n-channel 0.3 pm gate length 

MOSFET with probing pads on polymer.

De-embedding to obtain the intrinsic performance

Despite the new method there is still a 100 pF parasitic gate capacitance, 

that arises from the 10 pm^ extension of the gate on 150 nm of sputtered oxide. A 

more sophisticated method of de-embedding the probe pad capacitance was carried 

out this time. The pad parasitic removal program available with Wincal software

[6.5], will automatically de-embed the effect of the probing pads. To do this, an 

open-circuited probing pad is measured and the software calculates and returns the 

de-embedded device S-parameters. The results for the de-embedded device are 

shown below.

dB
40

30

20

MAG
10

0

-10
100

Frequency (GHz)

Figure 6.8 De-embedded fr and fmax of a 0.3 pm x 50 pm MOSFET. 

fr=  19.9 GHz fmax =21.1 GHz
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The above results are very good for a 0.3 um gate length MOSFET. It is one of the 

very few results in the literature (see Chapter 2) with fmax > fr- Despite the 

developmental nature of the process and the lack of a self-aligned silicide to reduce 

the source and drain resistance, the results compare well with current state of the 

art MOSFETs. The extracted equivalent circuit parameters are shown below.

Rg (O) Rd(Q) Cgd(fF) Cgs (fF) gm (S) Rs(O) Rsd (f2) Cds (fF)
15 1 50 70 0.013 1 200 20

Table 6.5 Equivalent circuit elements for de-embedded strained Si n-channel 

MOSFET with 0.3 pm gate length.
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6.7 Conclusions

Strained silicon n-channel Ti / Pd / Au gate MOSFETs fabricated on a 

standard silicon substrate have been characterised at microwave frequencies. The 

performance of devices with probing pads on a 150 nm oxide layer on the silicon 

substrate was poor. The poor results are attributed to the probing pad capacitance. 

A process for fabricating the device with probing pads on a 1 pm thick dielectric 

layer was developed. Devices characterised with the new probing pad 

arrangement showed excellent performance at microwave frequencies. For a 0.3 

pm gate length device a directly measured fp 12.4 GHz and fmax of 11.8 GHz was 

measured. By de-embedding the pad parasitics this is increased to an fp of 19.9 

GHz and fmax 21.1 GHz. Despite the developmental nature of the device process 

which has high access resistance these are state of the art microwave 

characteristics for MOSFETs.

The devices are modelled and equivalent circuit values are extracted. From 

these it is clear that there is still some improvement possible in reducing the 

limiting pad capacitance.

Despite the developmental nature of the process, MOSFETs have been 

fabricated with the capability of operating in the frequency range up to 10 GHz. 

This frequency range is the focus of much attention at present because of mobile 

communications applications around 2 GHz.
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Chapter 7

Coplanar Waveguide Transmission Lines and Spiral Inductors on 

CMOS Grade Silicon.

7.1 Introduction and list of symbols

This chapter is concerned with the problem of producing high frequency 

transmission lines on a low resistivity silicon substrate. The first section 

considers the background of transmission lines on semiconductor substrates such 

as GaAs and silicon. Then transmission line theory on semiconducting substrates 

is reviewed. The fabrication of a CPW on silicon substrates using spin on glass as 

an interlayer dielectric is described. CPW transmission lines fabricated using spin 

on dielectrics are characterised from 0 - 6 0  GHz. Spiral inductors are also 

fabricated and characterised using the same technology.
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List of symbols

a  attenuation coefficient 

(%c attenuation coefficient for a conductor 

«d attenuation coefficient of a dielectric 

p phase change coefficient 

Ô skin depth

£r relative dielectric constant 

So permittivity of firee space 

s effective permittivity 

f  fi-equency 

fe relaxation frequency 

h dielectric thickness 

Xg guide wavelength 

X wavelength 

p resistivity 

a  conductivity

S signal conductor width of CPW 

t thickness of conductor metal 

p permeability 

Vp phase velocity 

CO angular frequency 

W signal ground spacing of CPW 

y propagation constant 

Zq characteristic impedance
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7.2 Background

The difficulty of combining low loss transmission lines and inductors 

operating at microwave frequencies made using the same process on silicon 

substrates is a major roadblock to Si RF circuits [7.1]. Monolithic microwave 

integrated circuits (MMICs), require low loss transmission lines to interconnect 

between elements in the circuit. At microwave frequencies, the signal on a 

standard wire would radiate and cause cross-talk. High Q factor spiral inductors 

and capacitors are required for matching the input and output impedance of 

transistors for maximum power transfer [7.2]. Coplanar waveguides (CPW) [7.3] 

are often used as transmission lines in MMICs. This chapter very briefly reviews 

the coplanar waveguide and its characterisation. Typical transmission losses for a 

gold coplanar waveguide on a semi-insulating gallium arsenide (GaAs) substrate is 

0.3 dB/mm at 60 GHz [7.4]. Recent attempts to produce low loss transmission 

lines on a standard silicon process using Si0 2  as a dielectric have been encouraging

[7.5][7.6][7.7]. Low loss transmission lines have been produced on standard 

silicon with thick dielectric layers such as polyimide on top [7.8]. High Q multi 

level inductors have been produced on standard silicon with multilevel interlayer 

oxides [7.9][7.10]. However most silicon based RF circuit demonstrators to date 

have been produced on high resistivity silicon [7.11][7.12]. One major advantage 

expected of MMICs on silicon could be as a result of using as much as possible of 

standard CMOS devices and processes, CMOS is not compatible with high 

resistivity silicon substrates. A complete process on a CMOS grade silicon 

substrate is required which provides

a) low loss waveguides.

b) spiral inductors.

c) simple interconnect to device contacts.

A spin on dielectric process developed for silicon substrates using 

photoresist and polyimide is presented. Coplanar waveguide transmission lines 

were designed and characterised on CMOS grade silicon using this process. A 

method for interconnecting through the 15 pm thick dielectric layer has been 

developed. The resulting spiral inductors on the dielectric had a high Q factor.
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7.3 Coplanar Waveguides

A coplanar waveguide has a central signal conductor and outside ground 

conductors as shown in figure 7,1. S is the width of the signal line, W the signal 

to ground spacing and t the conductor thickness.

11!

gr (dielectric constant of substrate)

Figure 7.1 Coplanar waveguide.

Important things for a designer to know are the guide wavelength, characteristic 

impedance and attenuation.

Guide Wavelength (Xg)

The wave is slowed down by the dielectric medium such that

Vp = f  Xg (7.1)

and

(7.2)

where e is the effective permittivity including the effect of the air surrounding and 

multiple dielectric layers if  present.
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Characteristic Impedance Zo

The characteristic impedance of a CPW on an insulating substrate is given 

by [7.3]

Where

k ’= V (l-k ) (7.5)

K is the complete elliptic integral of the first kind and its complement. It has been 

verified that K(k’)/K(k) can be estimated from [7. 13]

K(k') 1 , 2 6  + V FÏ
(7,6)

Propagation Losses

The propagation of a wave along a transmission line is characterised by the 

complex propagation coefficient

y = a + j  (3 (7.7)

Where a  is the attenuation coefficient and (3 is the phase change coefficient. 

Attenuation in a waveguide is due to (1) loss in the metal and (2) loss in the 

dielectric [7.14]. In general the losses in the metal can be evaluated as

(Xc = V^fbja (7.8)
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The depth of penetration of the field into a conductor is called the skin depth given 

by

5 = — (7.9)
Oc

In General Loss in the dielectric is proportional to f

CDS ,
(7.10)

where s ”  is the imaginary part of the complex effective permittivity.

Transmission lines on a semiconducting substrate

Low resistivity silicon substrates are used in many silicon applications. A 

dielectric layer has to be put between the silicon substrate and the transmission 

line. The existence of a low resistivity substrate a finite distance below the 

transmission line will effect the mode of propagation, phase velocity and losses on 

the line. There are three distinct propagation modes possible on a semiconducting 

substrate [7.15].

1) Skin Effect Mode

At very high frequency and substrate conductivity, the skin depth of the 

conducting substrate is small and it acts as an imperfect ground plane. The skin 

effect mode requires a very high frequency and low resistivity substrate. The high 

frequency and high substrate conductivity required for this mode means that it is 

not normally the case.

2) Slow Wave Mode

The slow wave mode propagates at low frequency and moderate resistivity. 

The electric field propagates in the dielectric and the magnetic field propagates in 

the substrate and in the dielectric which could provide a slow wave mode. The
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phase velocity is low and the effective relative permitivity is high. The losses are 

high and are dominated by the substrate resistivity.

3) Quasi-TEM dielectric mode

At high operating frequency when f  > fe silicon is effectively a dielectric and a 

low loss quasi-TEM mode propagates. The phase velocity reaches theoretical 

maximum for CPW on a dielectric. The silicon relaxation frequency is given by

<y
2ns (7.11)

The mode of propagation depends on frequency, line dimensions and 

substrate conductivity. The equivalent circuit for a transmission line on a 

semiconducting substrate is shown in figure 7.2 [7.16].

1
I

Figure 7. 2 Equivalent circuit tor a transmission line on semiconducting substrate

Ri is the resistance per unit length of the metal.

Li is the inductance per unit length of the metal.

Cg is the capacitance per unit length between the signal and ground plane when the 

field is confined to the air and dielectric.

Co is the capacitance per unit length of the dielectric.
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Rsi is the resistance of the substrate caused by induced currents in the substrate by 

the electric field and depends strongly on signal line width and dielectric thickness. 

An approximation for Rsi is Rsi = p S / 1 where t is the thickness of the dielectric.

Csi is the capacitance of the silicon substrate that accounts for the transition from 

the lossy slow wave mode to the quasi TEM dielectric mode above fg.

7.4 Fabrication of Low Loss Transmission Lines on High Resistivity Silicon

CPW transmission lines were fabricated using a spin-on glassy dielectric in 

order to separate the transmission line from the lossy silicon substrate. The 

transmission lines themselves are made of electroplated gold 2.2 pm thick. Figure

7.3 shows the fabrication steps involved that use photolithography and 

electroplating techniques to create a contact fi*om the surface of the dielectric to the 

silicon surface.

s p i n  o n  D i e l e c t r i c

S i S u b s t r a  te

p h o t o r e s i s t  

e e d l a y e r

E le c t r o p  la t e d  
G o Id

Figure 7.3 Fabrication steps for spin on dielectric process on silicon.
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First the polyimide or photoresist to be used as the low loss dielectric is 

spun onto the silicon substrate. Table 7,1 details the spinning speeds, post baking 

and the resulting dielectric thickness for the dielectrics used in this work.

Dielectric Spin Speed 

(rpm)

Spin Time

(s)

Posts akeTemp 

CC)

Post Bake Time 

(mins)

Thickness

(pm)

S1818 4000 30 90 20 1.8

SI 828 4000 30 90 20 2.8

AZ4562 4000 30 90 20 7

P7020 2000 15 90 10 30

Table 7.1 Spinning details for photoresist and polyimide.

The photoresist and photosensitive polyimide used in this work are all 

positive. The contact windows down to the device can simply be patterned using 

photolithography. Following pattern transfer, the dielectric is then heated beyond 

its glass transition temperature. This renders the resist / polyimide solid and is no 

longer soluble in hydrofluoric acid or acetone. Table 7.2 shows the exposure, 

development and anneal conditions.

Dielectric Exposure Time 

(5)

D eveloper/T ime 

(s)

Anneal Temp/Time 

CC) / (min)

Thickness

(pm)

S1818 12 /75 180/120 1.8

S1828 12 /75 180/120 2.8

AZ4562 15 /120 180/120 7

P7020 10 /240 300/30 15

Table 7.2 Developing and ba dug details for photoresist and polyimide.
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The sample is then blanket coated with the seed layer, which is 20 nm of 

evaporated Ti, 5 nm of evaporated Au, 40 nm of Sputtered Au. A layer of S1818 

photoresist is then spun on and the contact windows are redefined, the resist is 

exposed for 40 s to clear out the deep contact window of photoresist. On the same 

resist, the transmission line is then defined, the resist is exposed for 12 s. Gold is 

then electroplated onto the exposed areas, the top layer of S I818 is removed in 

acetone and the seed layer is etched with gold etch (1:1 Blah B;ld) for 6 s and HF 

for 4 s leaving only the electroplated transmission lines on the dielectric connected 

down to the device.

7.5 S-Parameters and Measurement Techniques

At high jfrequencies it is difficult to measure voltage and current at device 

ports. In addition an active device may be damaged with the connection of short or 

open circuits. So S-parameters were developed for the measurement of devices at 

high frequencies. Figure 7.4 represents a two port network

a2

b1 < >b2

Figure 7.4 Schematic of a 2 port network.

S parameters are defined by: 

Su=
ai

a2=0

hi n hz 0  t>2
S2 I------ 0S12----- S22------

ai ai 32 32

a2=0 ai—0

(7.12)

ai=0

Where a and b are the incident and reflection parameters at the port and b / 

a is the reflection coefficient at the termination. The parameters measured are the
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magnitude and phase of voltage signals when the output is terminated in a matched 

load. S-parameters are complex numbers often displayed as phase and magnitude

form. The transmission losses are |S2 i| or |Si2| normally expressed in dB. The

reflection losses are |Sii| and |S22| normally expressed in dB. A smith chart 

representation [7.17] is used to display the complex S-parameters.

Measurement

A network analyzer [7.18] is used to measure microwave frequency 2 port 

scattering parameters (S parameters) [7.16].

Wiltron 360B
Computer VNA

Frequency
Generator

Probes

Test Set
Port 1

Figure 7,5 Measurement set-up

The frequency generator source provides the RF signal. The test set directs 

the flow of the RF signal to the test ports. The 380B vector network analyser 

controls the frequency generator and test set and returns the measured S 

parameters. Commercially available Wincal software is used to control the network 

analyser. The results of the measurement are complex S-parameters versus 

frequency in a standard S2P format. This format allows the S-parameters to be
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used in commercial simulation packages such as “Touchstone” or “Microwave 

Office”.

Calibration of the system is very important for accurate measurement. The 

system is calibrated to the probe tips using known standards. An ISS (Impedance 

Standard Substrate) is used with the SOLT (Short Open Load Thru) calibration 

technique [7.19].

7.6 Characterisation and Optimisation of Transmission Lines

Figure 7.6 shows the transmission losses jSnj in dB measured on 2.5 mm

long lines from 0.04 -  60 GHz for various thickness of dielectric on a standard 

silicon substrate. The dimension of the coplanar waveguides were S = 15 pm W = 

20 pm.

7um

Sum

lum

-15
0.04 40.0420.04

Frequency (GHz)

Figure 7.6 Transmission losses for various thickness of dielectric on silicon.

Figure 7.5 shows that a 15 pm thick layer of dielectric on the silicon 

substrate has acceptable losses of less than 0.6 dB/mm. Figure 7.7 shows the 

smith chart of Sh showing that for these CPW dimensions on the dielectric used, 

the line is not well matched to the 50 Q load.
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Graph 1
Swp Max 

60GHz

Swp Min 
OGHz

Figure 7.7 Smith Impedance Chart.

Proper characterisation of CPW mode and attenuation is best carried out 

when the characteristic impedance of the line matches the 50 Q measurement 

system. In order to design CPW dimensions to obtain a 50 Q characteristic 

impedance, the effective dielectric constant of the substrate must be known. An 

estimate of the effective dielectric constant, guide wavelength and phase velocity 

was made using (7.1) and (7.2) as follows

For a 2 mm transmission line the measured electrical length [ang(S2 i)] is 84 

degrees at 20 GHz. The wavelength on the line is then

360 L 
ang(Si2)

360x2
84

= 5.8 mm

Then

Vp = fXg = 20 X 0.0058 = 0.171 X 10 m / s

Then using 

c
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to get

Æ  = — -  ~ 1.75
1.71

S =3.06

The low value of effective permitivity indicates that most of the wave 

propagation is concentrated in the air and the dielectric.

Design of optimum CPW dimensions for a 50 Q line using was calculated 

using equation (7.2) with s = 3 as approximately S = 70 pm, W = 20 pm. 

Transmission lines were fabricated with range of similar slot and conductor widths. 

Figure 7.8 shows the measured characteristic impedance as a function of 

conductor width for 25, 20, 15 and 10 pm gap at 10 GHz.

Zo (Q)

65
60
55
50
45
40
35
30
25
20

Gap (pm)

,20

25

30 50
Signal Width (pm)

70 90

Figure 7.8 Measured Zo of various CPW dimension.
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Figure 7.9 compares jSiij of a 50 Q line on silicon with polyimide and

photoresist as a surface dielectric with a 50 Q line on a GaAs semi insulating 

substrate. The dimension of the 50 Q line on silicon is 70 pm signal conductor and 

20 pm gap. The dimension of the 50 Q line on GaAs is 25 pm signal conductor 

and 15 pm gap.

[S \2\

(dB/mm)

-0.25- SI GaAs

Z4562

-0.5 — P7020

Frequency (GHz)0

Figure 7.9 Attenuation versus frequency of 50 Q CPW on silicon and GaAs.

The equivalent circuit (figure 7.3) parameters for the 50 Q polyimide CPW are 

shown in table 7. 3.

F-series Rsi Lseries Cgap Csi Cpoly

1.5 160 0.05 0.02 0.04 0.9

Table 7.3 Equivalent circuit parameters for a 50 Q polyimide CPW.

The low losses are attributed to the fact that the waveguide is separated 

from substrate by the 15 pm thick dielectric. A quasi-TEM mode propagates 

increasing Rgi and reducing the dielectric loss. Figure 7.10 shows the phase 

velocity and relative effective permitivity as a frmction of frequency. A slow wave
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mode propagates to about 15 GHz then a quasi TEM mode propagates for 

increased frequency.

0,5-

Frequency (GHz)

Figure 7.10 measured phase velocity and relative effective permitivity of a 50 Q 

line on silicon with 15 pm of polyimide on top.

For the quasi TEM region the dielectric and conductor losses are extracted 

by a polynomial fit in figure 7.11.

cc
(Np/mm)

0.02 y = 0.0009% + 4E-05X +0.008

0.015-

0 . 0 1 -

0.005-

Vprequency (GHz)

Figure 7.11 Polynomial fitted to data points between 10 GHz and 36 GHz.
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Above 10 GHz a quasi TEM low loss mode propagates and from equation

7.8 and 7.10 by fitting a polynomial to the loss curve the conductor and dielectric

losses are extracted to be approx.

ttc = 0.0009 Np / mm / V(GHz)

ttd = 0.00004 Np / mm / GHz

Clearly and as expected the conductor losses are dominant and in the quasi 

TEM mode the dielectric loss is minimal. This is further evidence that the 15 pm 

thick polyimide or resist layer provides a base for a transmission line on high 

resistivity silicon with losses that are limited by conductor loss.

7.3 Spiral Inductors

The inductor is an important passive circuit component for microwave circuit 

applications such as impedance matching networks and filters. In the frequency 

range up to about 10 GHz, a spiral inductor is used. For higher frequencies, an 

inductance is created by a short circuit length of transmission line known as a stub. 

A planar spiral inductor is often built on a GaAs semi insulating substrate. A 

single spiral of metal, normally Au is patterned on the substrate. The use of an 

airbridge or second layer of metal is required to make contact to the centre of the 

spiral. Figure 7.12 is an SEM of a spiral inductor with airbridge fabricated in this 

work.

Figure 7.12 SEM of a 3.5 turn electroplated spiral inductor.
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Values of inductance range from 0,5 nH -100 nH depending on the application. 

Q is a figure o f merit indicating inductor quality, generally increasing L will 

decreases Q. The small signal equivalent circuit of a spiral inductor on a silicon 

substrate is shown in figure 7.13.

C f

[>

Rdc L

Cd

<]

Cd

RSUB

Figure 7.13 Small signal lumped element model for a spiral inductor on conducting 

silicon [7.20].

Where

C f is the forward capacitance between the turns of the spiral.

L is the inductance.

R is the resistance of the spiral.

Cd is the capacitance between the spiral and the substrate.

Rsub is the resistance of the silicon substrate.

At low frequency, the circuit acts as an inductor, but as the frequency 

increases the effect of the capacitance Cd begins to dominate. The self-resonance 

frequency is defined as the frequency at which 2TcfL - I  I 27tfCd at which point Q =

0. Below the self-resonance frequency, it can be shown for a matched 2 port 

measurement that
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(7,13)

CO
(7.14)

Initial attempts to fabricate spiral inductors on a standard silicon process 

used a single layer spiral using 1,8 pm thick AI metalisation on a 1.7 um thick 

layer of oxide on CMOS grade Si. This pioneering work produced good inductors

[7.21], table 7.6 summarises the performance of state of the art inductors. Using 

today’s standard technology, multiple metal layers have been used to improve on 

inductor performance. By using up to 5 levels of metal each separated by a thick 

layer of oxide, the inductor is separated further from the substrate, decreasing 

substrate loss. In addition, the shunt-connected levels of metal reduce resistive 

loss in the spiral [7.22],[7.23]. Further reduction in metal losses is found by using 

AlCu or Cu metalisation [7.24]. It has also been shown that by etching the silicon 

in spaces between turns increases inductor performance [7.25], but this deviates 

somewhat from standard silicon processing. Other novel techniques using 

standard silicon processing have been used to further improve inductor quality. By 

using 2 layers of metal, with the first layer spiralling as normal to the centre and 

connecting the second layer such that it spirals out above the spaces of the lower 

spiral has been shown to increase L [7.26]. This has been called the MLS (Multi 

Level Spiral) structure. Patterned ground shields (PSG) placed directly on the 

substrate under the spiral have been shown to shield the electric field from the 

substrate reducing energy loss and increasing Q of a given spiral inductor by 10- 

33% [7.27]. Figure 7.14 shows a cross section of an inductor with patterned 

polysilicon ground plane using a standard 3-layer silicon process. New dielectrics
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such as spin on polyimide with Au metalisation have been introduced recently

[7.28].

Centre First Spiral Second Spiral

Si Substrate

Metal 3

Dielectric 3 / Interconnect 
Metal 2
Dielectric 2 / Interconnect

Metal 1 (underpass) 
Dielectric 1

Polysilicon patterned 
ground shield

Figure 7.14, 2 level shunt connected spiral inductor with patterned polysilicon 

ground plane using a standard 3-layer silicon process.

Using the process described in this work, spiral inductors were fabricated 

on 2 Q-cm silicon substrate with a 7 pm thick dielectric layer of photoresist. 

Figure 7.12 is an SEM of a spiral inductor fabricated using the described process.

Figure 7.14 shows the quality factor and inductance versus frequency 

obtained for a 2.5 turn inductor with conductor width and spacing of 15 pm on 7 

pm of AZ4562 photoresist on 2 Q-cm n-type silicon. The self-resonant frequency 

of this element is 25 GHz.
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L ( n H )
2 0

- 4
1 5

- 3

10
- 2

6
- 1

0
256 . 25

Frequency GHz

Figure 7.14 Quality factor and Inductance versus frequency for spiral inductor.

Using commercial simulation packages such as touchstone and microwave 

office, the above model can be simulated and output figures of merit such as S- 

parameters Q(f) and L(f) can be matched between the measurement and the model, 

producing lumped element values such that the model fits the measurement. In 

addition four probe measurements were made of the DC resistance of the spirals to 

verify the modeled value.

No of turns Modeled res (Q) Meas DC res (Q)

1.5 0 .9 -1 .2 1.1

2.5 1 .3 -1 .7 1.5

Table 7.4 Measured versus modeled resistance of spiral inductors.
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Table 7.5 shows the results of the complete analysis on spiral inductors 

with various numbers of turns and varying signal and gap widths on only 7 pm of 

AZ4562 photoresist.

w , s
(pm)

Turns R

Q
L

(nH)

C l

(pF)

Cd
(pF)

C f

(pF)
fsr

(GHz)

Q m a x ( f ) /

(GHz)

15/15 1.5 1.2 0.63 0.02 0.1 0.001 50 16 / 10

15/15 2.5 1.7 1.2 0.03 0.1 0.001 25 15/ 5

15/15 3.5 3.2 2.7 0.03 0.1 0.001 15 10/3

15/15 4.5 3.6 2.9 0.04 0.1 0.001 13 8.5 /2.5

Table 7.5 Q factor and Lumped element values for spiral inductors.

Table 7.6 compares the results from the literature using various techniques

L
(nH)

Q
(GHz)

fsR
(GHz)

Technique

16 4.3 0.8 2.9 Standard Si process 4 levels AI as MLS structure [7. 26]
10 3 0.9 2.47 Pioneer work using single layer Si02 standard process 

[7.21]
10 17 2 11 lOOum Layer Polyimide 1 level of Au metalisation [7.28]
9 9.5 1.8 9 Standard silicon process single AI metal on layer 3 [7.26]

7.5 5 2 6.8 AI on 5.2 um Oxide with no ground shield [7.27]
7.4 6.8 2 3.6 AI on 5.2 um Oxide with polysilicon ground shield [7.27]

1.9 8 4.1 9.7 Pioneer work using single layer Si02 standard process 
[7.21]

1.95 9.3 4 20 Standard Si process with 3 layers AlCu [7.23]
1.45 24 2.3 24 Standard Si process with 5 levels of AI [7.23]
1.35 18 3.7 Standard Si process with 1 level of Cu [7.24]
1.2 15 6 25 This Work [7.29]

Table 7.6 Performance of spiral inductors on silicon substrates.
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7.8 Conclusions

A process for the realisation of low loss coplanar waveguide transmission 

lines on a CMOS grade silicon substrate where photoresist and polyimide are used 

as a spin on dielectric has been presented. 50 Q characteristic impedance CPW 

lines with a ground to ground spacing of 110 pm and a signal track width 70 pm 

realised on a 15 pm thick dielectric layer have losses less than 0.5 dB/mm at 60 

GHz. As spin-on photosensitive dielectrics are used, pattern transfer is simple and 

is easily extended to a multi-layer process. Using an electroplated gold process, 

interconnect can be made between the waveguide and the device on the substrate. 

Initial spiral inductors fabricated on a 7 pm of dielectric with losses of 2.5 dB/mm 

have Q factors of 15. Using the 15 pm process described, higher quality factors 

are expected, in addition the electroplated interconnect process described will 

allow the fabrication of multi-level inductors and circuits. The work presented in 

this chapter provides a novel platform with which to fabricate monolithic 

microwave integrated circuits on a CMOS substrate. The use of thick gold on a 

spin on dielectric is simple and cheap in comparison to the multilayer methods 

described in the text and represents a major breakthrough. The next chapter goes 

on to the design of a single stage amplifier using this technology.
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Chapter 8

Single Stage Amplifier Design

Introduction

This is a short chapter that was made possible because of the success of the 

MOSFET fabrication process and the passive RF elements now possible. It has 

already been shown that as a result of this work that high quality passive and active 

elements using MOSFET technology can be fabricated at Glasgow.

In this chapter, using the results so far obtained, a single stage amplifier is 

proposed. The amplifier is designed in a very simple way based on the measured 

results obtained to date. The amplifier is currently in fabrication.
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8.1 Single Stage Amplifier Design

Designing an amplifier is no simple task and a number of design methods 

exist. In this work a general method using S-parameters is described and used to 

design a simple single stage amplifier. The amplifier is designed with a simple 

topology based on the active and passive elements described in this work.

The four 2 port S-parameters applicable to a two port device and some 

typical values for a single stage amplifier are given in table 8.1 and figure 8.1.

S-Parameter Definition Typical (dB)

Sii Input reflection coefficient -3

S22 Output reflection coefficient -6

S21 Forward transmission coefficient 6

S12 Reverse transmission coefficient -20

Table 8.1 S-Paxameter definitions and typical values.

Zo
Output
Matching
Network

Input
Matching
Network

Active Device

Figure 8.1 Single stage amplifier with input and output matching networks.
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By making the assumption that the device is unilateral i.e. |Si2| = 0 a simple

design method can be used. The transducer power gain of the complete amplifier 

is defined as the power delivered to the load divided by the power available at the 

source and for a unilateral device is given by [8.1] [8.2]

There are three terms in the formula and each can be thought of a independent gain 

teims

1. The gain or loss produced by the input matching network.

2. The gain of the active device, .

3. The gain or loss produced by the output matching network.

The input and output matching networks are designed such that, the impedance 

of the input matching network is the complex conjugate of the Sn of the device 

and the impedance of the output matching network is the complex conjugate of S22 

of the device. In such a case the maximum gain is given by

G m ax =  - ■]  /  ,2 8 . 2
l - | 5 ul  ' I - I S 2 2 I

There are certain values of the source and load impedance that may cause 

the FET to oscillate. A unilateral device is said to be unconditionally stable if |Su| 

and |S22| <1, that is any source or load impedance can be applied and the circuit

will not oscillate. If |Su| or |S22| > 1 very careful design is required to make a 

stable device, fortunately the devices fabricated in this work can be considered 

unilateral and unconditionally stable.
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There are many methods incorporating lumped and distributed elements to 

implement the impedance of the matching network. In this work the source 

regeneration method [8.3] [8.4] is used. The schematic diagram of a single stage 

amplifier using source regeneration is shown in figure 8.2. Using the actual device 

measurements and the spiral inductor model presented in chapters 6 and 7, the 

commercially available software ‘Microwave Office’ is used to simulate the 

circuit. The values of inductors can be adjusted so that the circuit is matched and 

hence provides a narrow band gain around a particular frequency. Figure 8.3

shows the simulated |52i|, |& i|, \S2i\ of amplifiers tuned to 4 GHz and 6.5 GHz.

Table 8.2 lists the matched firequency, inductance and gain obtainable using 

different values of inductor.

Ld

Port 2
LsPort 1

Figure 8.2 Schematic of single stage amplifier using source regeneration.
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Figure 8.3 Modelled performance of a single stage amplifier matched 4 GHz and at
6.5 GHz.
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f  (GHz) Ls (nH) Ld (nH) Lg (nH) Gain (dB)

2 2 8.6 20 10.7

3 1.1 4.4 9 8.2

4 * 2.5 9.5 10 13

4 1 2.2 5.5 6.2

5 0.5 3 3 4.5

6.5 * 1 2.3 5.8 8

Table 8.2 Matched frequency and gain for various values of the inductance.

8.3 Conclusions

Using measured data from spiral inductors and devices, single stage 

conjugate matched amplifiers are designed. Single stage matched amplifiers are 

readily fabricated using processes described.
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Chapter 9

Conclusions and future work

Summary

A complete fabrication process has been developed for the realisation of 

Si/SiGe microwave integrated circuits (SIMICs). Using the process, a number of 

active and passive elements for microwave circuits have been demonstrated 

including

1. Metal gate p-SiGe MOSFETs [1].

2. Low loss transmission lines on CMOS grade sihcon [2]

3. High quality spiral inductors on CMOS grade silicon [2].

4. High performance metal gate strained silicon n-MOSFETs [3].

Single stage amplifiers have been designed based on the technology developed 

in this work [3].

The MOSFETs have good DC performance. Strained SiGe p-channel 

MOSFETs with 1 pm gate length have an extrinsic transconductance of 36 

mS/mm. Strained silicon n-channel MOSFETs with 0.3 pm gate length have 

extrinsic transconductance of 230 mS/mm. The RF performance of a metal gate 

0.3 pm gate length strained silicon MOSFET is measured, with cut off firequency 

and maximum fi-equency of oscillation of 20 GHz and 21 GHz respectively. 

Coplanar waveguide transmission lines of 50 Ohm characteristic impedance, 

fabricated using spin on dielectrics on a CMOS grade silicon substrate, have losses 

less than 0.5 dB/mm up to 60 GHz. Spiral inductors fabricated on the low loss 

dielectric have Q >  15. Using the passive and active element library developed, 

single stage amplifiers were designed with gain of 12 dB at 3 GHz or 7.5 dB at 

6 GHz, and are now under construction.

The device layer structures were designed using a simple ID Poisson solver. 

The p-channel device used a concentration graded SiGe channel to obtain high 

mobility and carrier concentration. The n-channel RF device with a strained
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silicon channel incorporates a metal gate technology that is directly responsible for 

the high values of fmax achieved.

The spiral inductors and coplanar waveguides are fabricated using a spin on 

dielectric process to separate them from the lossy silicon substrate. The same 

technology is used to reduce the parasitic capacitance of device contact pads.

The engineering conclusion of this work is that SIMICs, for applications in the 

frequency range 1 to 10 GHz, can be made with the current passive and active 

element library at the University of Glasgow. Further improvement in both 

passive and active element performance to increase the frequency is set out in 

future work.

From a practical viewpoint a process is now in place that will underpin the 

University of Glasgow’s Si / SiGe SIMIC projects in the future.
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9.2 Conclusions 

MOSFETs

SiGe layer structures were used in this work for the fabrication of p and n- 

channel MOSFETs. The device performance was measured at both DC and RF.

The SiGe p-channel MOSFETs with tungsten gates are the first such device 

to be fabricated. Metal gate technology for CMOS applications is become the 

focus of some attention. The use of a SiGe channel to improve on the p-channel 

devices in CMOS circuits is also becoming popular. To the author’s knowledge, 

this is the first work to combine the two emerging technologies. In only one 

iteration of the process, MOSFETs of 1 um gate length were fabricated with DC 

transconductance comparable with the state of the art. These devices resulted in 

the first publication from this work in Electronics Letters.

The main aim of this project was to develop a fabrication process at the 

University of Glasgow that could be used to investigate the possibility of 

monolithic silicon microwave integrated circuits. This was done by the creation of 

a Ti/Pd/Au gate process suitable for fabricating n-channel MOSFETs with gate 

length as short as 120nm with T shaped gates. The initial devices fabricated with 

the developed process were strained silicon n-channel devices. Despite the 

problems in obtaining a suitable Si/SiGe layer structure, the initial, devices were 

successfully fabricated with cut off frequency and maximum frequency of 

oscillation of 20 GHz and 21 GHz respectively. This is a major achievement for 

the first iteration of the process.
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Coplanar Waveguide Transmission Lines and Spiral Inductors

Low loss coplanar transmission lines have been fabricated on low 

resistivity silicon substrates. High Q inductors have been fabricated using exactly 

the same technology as the CPW lines. The ability to fabricated low loss CPW and 

high Q inductors on CMOS grade silicon is a major breakthrough. The simple 

fabrication method will allow the fabrication and design of circuits using devices 

fabricated in house. In addition, the process can be used to provide ‘back end’ 

processing of standard silicon devices from state of the art facilities.

Circuits

A demonstration circuit is designed incorporating the active and passive 

elements developed in this work and is currently in fabrication.

9.3 Current Work

The amplifier designed in chapter 9 is now under construction. In addition, 

MOSFETs are currently being fabricated using the optimised n-Si/SiGe depletion 

mode structure designed in chapter 4. Further, the devices now in fabrication have 

T shaped gates to reduce the gate resistance. In addition to that, a self aligned 

ohmic contact process using the T gates has been developed and will be used to 

reduce the source and drain resistance.

Using a T gate to enable a self aligned ohmic contact is not new to III-V 

technology, but has not been used in silicon because self aligned silicides are 

available as standard. Figure 9.1 is an SEM of a Ti/Pd/Au T gate of 120 nm 

footprint followed by the evaporation of 50 nm Ti and annealed at 600 C for 30 

secs. The SEM shows that the T gate, in addition to reducing further the gate 

resistance, allows the evaporation of the non-silicide ohmic contact to within 

lOOnm of the channel.
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120 nm

50 nm Ti

Si substrate

Figure 9.1 SEM of a self-aligned T gate of 120 nm gate length on silicon.

9.4 Future Work

This work has produced a platform from which the fabrication of silicon based 

microwave integrated circuits can be designed and fabricated. The demonstration 

processes developed here require optimisation in four fronts.

1) The processes as they are should be carried out regularly with yield issues 

identified and eliminated.

2) Optimisation of devices will require a reduction in the parasitic series 

resistance. It is entirely possible to use low temperature silicide technology on 

the metal gate devices to provide higher fi. A novel self aligned ohmic contact 

method using T gates has been presented and is currently being applied. The 

parasitic probing pad capacitance still has room for improvement and this can 

be done with smaller gatefeed pads.
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3) Further reduction in losses for transmission lines may be possible by using 

thicker dielectric, reducing the signal line width or by using evaporated gold. 

A complete passive element library is required.

4) Other steps include, reducing the gate length including proper scaling of a 

depletion mode layer structure.

5) Finally, the design and fabrication of Si/SiGe microwave integrated circuits can 

now be carried out at Glasgow in the frequency range 1-10 GHz. If the current 

research is successftil, it may enable the fabrication of microwave circuits in 

the frequency range 1 0 -1 0 0  GHz.
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APPENDIX 1

To date three publications have been accepted for publication as a result of this 

work, the title, authors and journals are listed below. Each paper follows

SiGe p-channel MOSFET’s with a Tungsten Gate

G.Tement A.Asenov I.G.Thayne D.S.MacIntyre S.Thoms C.D.W.Wilkinson 

E.H.C.Parker and A.M.Gundlach

Electronics Letters 4**̂  March 1999 Vol. 35, No. 5, pp 430 -  431.

Coplanar waveguide transmission lines and high Q inductors on CMOS grade 

silicon using photoresist and polyimide

G.Tement S.Ferguson, Z.Borsosfoldi, K.Elgaid, T.Lohdi, D.Edgar, C.D.W.Wilkinson 

I.G.Thayne.

Electronics Letters 28**‘ October 1999 Vol. 35, No. 22, pp 1957 -1958.

Single stage amplifiers on a CMOS grade silicon substrate using a polymer 

interlayer dielectric with strained silicon MOSFETs

G.Tement, D.L.Edgar. H.McLelland, F .Williamson, S.Ferguson, S.Kaya, 
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SiGe p-channel MOSFET’s with a Tungsten Gate

G.Tement A.Asenov I.G.Thayne D.S.MacIntyre S.Thoms C.D.W.Wilkinson 

E.H.C.Parker and A.M.Gundlach

A self-aligned SiGe p-channel MOSFET tungsten gate process with 0.1 pm 

resolution is demonstrated. Interface charge densities of MGS capacitors realised 

with the low pressure sputtered tungsten process are comparable with thermally 

evaporated aluminium gate technologies (5x10^^ cm'^ and 2x10^^ cm'^ for W and 

A1 respectively). Initial results from 1 pm gate length SiGe p-channel MOSFETs 

using the tungsten-based process show devices with transconductance of 33 

mS/mm and effective channel mobility of 190 cm^/Vs.

Introduction: Recently there has been significant improvement in the performance 

of SiGe p-channel MOSFETs, strained Si n-channel MODFETs and scaled bulk Si 

devices [1,2,3]. The motivation for these enhancements is driven by CMOS 

shrinkage requirements, but also by the goal of realising microwave and millimetre 

wave Si-based transceiver circuitry compatible with a standard CMOS process 

flow.

One of the outstanding technological issues limiting the performance of 0.1 pm 

gate length Si-based MOSFETs for both CMOS and RF applications is the high 

resistance of conventional poysilicon gate processes[4]. This has led to the 

development of complex silicide and salicide gate stack processes[5] as well as the 

demonstration of metal gate CMOS devices [6].

In this paper a self-aligned SiGe p-channel MOSFET tungsten gate technology 

with 0.1 pm resolution is described, together with the first results on 1 pm gate 

length SiGe p-channel MOSFETs realised with the process.
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lOnm Si Cap Layer 40%

5nm SiGe 40-0% Ge

lOnm SiGe 10-40% Ge

2nm SiGe 0-10 % Ge

200 nm n-Si Buffer

n-Si Substrate Percentage of Ge

Figure 1. Layer structure showing percentage of Ge concentration, and SEM of 

lOOnm W gate.

(a) Layer structure.

(b) SEM of a 100 nm W Gate.

Fabrication : The layer structure on which devices are fabricated was grown by 

MBE and is shown in figure 1(a). Using both step and linear grading, a maximum 

Ge concentration of 40% in the channel was achieved. The 200 nm buffer layer, 

doped at 5x10 ‘̂  cm'^ n-type with Sb, is grown on an n-type Si substrate doped at 

SxlO'^ cm'^. The channel comprises 3 layers : a 2 nm SiGe layer graded fi*om 0 - 

10% Ge followed by a 10 nm SiGe layer graded fi-om 10-40% Ge then a 5 nm SiGe 

layer graded from 40-0% Ge. Approx 5 nm of the 10 nm Si cap layer is consumed 

during the cleaning and oxidation processes. All layers above the buffer are 

nominally undoped at a background level of 10̂  ̂cm’’ n-type.

The device process flow begins with the growth of a 6 nm gate oxide using a 

200 minute dry thermal oxidation performed at 750 °C to prevent any out-diffusion 

of Ge during the oxide growth. A further 30 minute 750 °C anneal in an argon
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The device process flow begins with the growth of a 6 nm gate oxide using a 

200 minute dry thermal oxidation performed at 750 °C to prevent any out-diffusion 

of Ge during the oxide growth. A further 30 minute 750 anneal in an argon 

atmosphere results in a device quality oxide layer. Next, the 100 nm thick tungsten 

gate is deposited by RF sputtering at a pressure of 2 mXorr and power of 100 W. 

To enable an assessment of the damage induced by the sputtered tungsten process, 

100 nm thick thermally evaporated aluminium gate MOS capacitors were also 

defined for comparison.

Tungsten gates with minimum feature sizes of 100 nm as shown in Figure 1(b), 

were fabricated using a Leica Microsystems Lithography LTD EBPG5 beamwriter 

and AZPN114 negative tone resist to define the geometry, followed by tungsten 

patterning with a 2 minute, 100 W SFe reactive ion etch performed at 9 mTorr. In- 

situ reflectometry was used during the SFô etch to stop the gate metal etch on the 

thin 6 nm SiOz layer[7].

The self-aligned source and drain contacts were produced using a shallow ( <100 

nm) BFz implant at an energy of 10 keV and a dose of 10̂  ̂ atoms/cm^ activated by 

a 10 second 900 °C anneal. Source and drain metallisation of 100 nm AlSi was 

followed by a 5 minute 400 °C anneal. Finally, the devices were shallow trench 

isolated with a 5 minute, 100 W SFe reactive ion etch performed at 9 mTorr

Ca p a c i t a n c e  / C max
1 .

0 .

0 .

G ate Vo l t age  (V)

Figure 2. CV Characteristics of W and A1 MOS capacitors (20 nm thick oxide).

Al, Qint= 2 X 10^ ĉm"̂

W, Qi„,= 5 X l O ' W ^
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Vg-Vt (V)

1
•S

I
27S

Figure 3. IV and gm Characteristics of a 1 jam x 100 jam p-SiGe W gate 

MOSFET.

Results : Figure 2 shows the CV curve of SiGe-SiO] capacitors realised using both 

the sputtered tungsten and evaporated aluminium gate metallisations. The interface 

charge densities calculated from the flatband voltage shifts are 5x10^^ cm'^ and 

2x10^^ cm’̂  for W and Al respectively showing the sputtered tungsten gate process 

is low damage. In addition the larger work function of tungsten results in a lower 

flatband voltage and thus a reduced threshold voltage when compared with the 

aluminium gate capacitors.

Using both the van der Pauw and four probe TLM methods, the resistivity of the 

100 nm thick sputtered tungsten gate metal film was determined to be 

1.2 Ohms/square, a factor of 3 lower than similar geometry polysilicon and silicide 

gate structures[8]. The measured resistivity was independent of gate length down 

to 100 nm.
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Figure 3 shows the I<is(Vds, Vgs) and. gm(Vgs) characteristics of a 1 x 100 pm gate 

length SiGe MOSFET realised using the process described above. The maximum 

extrinsic transconductance is 33 mS/mm. Estimating the channel hole 

concentration from the C(V) characteristic of the device and accounting for the 

channel access resistance of 500 Ohms measured with TLM structures, an 

effective channel mobility of 190 cm^/Vs was extracted from the channel 

conductance at low drain bias (Vds = -0.1 V).

Conclusion : We have demonstrated a self-aligned SiGe p-channel MOSFET

tungsten gate process with 0.1 pm resolution. Interface charge densities of MOS 

capacitors realised with the low pressure sputtered tungsten process are 

comparable with thermally evaporated aluminium gate technologies (5x10^^ cm*̂  

and 2x10^^ cm“̂  for W and Al respectively) indicating the process is low damage. 

The use of a tungsten gate produces devices with gate resistances of 1.2 

Ohms/square independent of gate length down to 100 nm, making this process an 

attractive candidate for the realisation of low gate resistance devices for RF 

applications.

Initial results from 1 pm gate length SiGe p-channel MOSFETs using the tungsten- 

based self-aligned gate process yielded transconductance of 33 mS/mm and 

effective channel mobility of 190 cm^/Vs.
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Coplanar Waveguide Transmission Lines and High Q Inductors on CMOS

Grade Silicon using Photoresist and Polyimide.

G.Tement, S.Ferguson, Z.Borsosfoldi, K.Elgaid, T.Lohdi, D.Edgar, C.D.W.Wilkinson, 

LG. Thayne

Abstract: Gold coplanar waveguide (CPW) transmission lines with losses of less 

than 0.5 dB/mm at 60 GHz have been produced on CMOS grade silicon substrates 

using a 15pm thick layer of either photoresist or polyimide. This process, together 

with an electroplated interconnect technique has been used to produce spiral 

inductors on a 2-Ohm cm n-Si substrate with Q of 15 and L of 1.2nH at 6GHz.

Introduction: Recent interest in the realisation of CMOS RF circuits has resulted in 

great activity in silicon microwave research [1]. Leading the way, SiGe RF mixers 

and low noise amplifiers are now commercially available [2]. Techniques for 

producing high Q inductors on CMOS grade Si substrates have heen presented [3], 

and circuits operating up to 2GHz with standard submicron CMOS devices have 

been produced [4]. Furthermore Si and SiGe FETs with impressive millimetre-wave 

performance have been demonstrated [5,6]. However the requirement of low loss 

transmission lines means that the majority of RF circuit demonstrators reported to 

date, have been fabricated on high resistivity silicon substrates. Polyimide has been 

used as a spin on dielectric for low loss transmission lines [7] however this is 

relatively difficult to pattem/etch and spiral inductors with high Q on CMOS grade 

silicon substrates have so far required polyimide thickness of 100pm [8]. This letter 

presents a simple, readily available fabrication technology for low loss transmission 

lines on a standard silicon substrate together with a complete solution for 

interconnect between device and transmission line.

Coplanar waveguide transmission lines were fabricated and characterised using 

both polyimide and photoresist as a spin on dielectric layer on silicon substrates. 

The effective dielectric constant of the substrate has been extracted and 

transmission line dimensions for 50 Ohm matching were calculated and measured 

up to 60GHz. The 2um thick electroplated gold transmission lines have measured

page 159



Appendix 1-Publications

losses of less than 0.5dB/mm at 60 GHz, comparable with III-V technology. An 

essential addition to the technology is the demonstration of an electroplated vertical 

interconnect plug down to devices on the CMOS grade substrate. Using this 

process, spiral inductors with Q factor of 15 have been realised on a CMOS grade 

Si substrate.

Electroplated Gold

Dielectric

Silicon
Electronlated Gold

Dielectric

Silicon

Figure 1. Fabrication steps of electroplated transmission lines and interconnects.

Fabrication: All of the structures were fabricated on a 2-Ohm cm n-Si substrate. 

Figure 1 shows the fabrication steps including the interconnect process. First the 

devices (or in the case of this development sample, metal lines for contact chains) 

are fabricated on the silicon substrate. Then the dielectric is deposited. Two spin 

on technologies are compared, a single layer of P7020 polyimide and 2 layers of 

AZ4562 photoresist. The polyimide is spun at 2000rpm for 15 seconds then post 

baked at 900 for 10 minutes, the resulting layer thickness is 30pm. The 

photoresist is spun at 4000rpm for 30 seconds and post baked at 900 for 20 

minutes before a second layer is spun and baked with the same procedure, resulting 

in a 15 pm thick layer. The contact windows in the dielectric are patterned using 

standard photolithography. Following pattern transfer, the photoresist is baked at 

1800 for 2 hours and the polyimide at 3500 for 30 minutes to ensure that the 

dielectrics are no longer soluble in either acetone or hydroflouric acid. Post baking 

the polyimide reduces its thickness to 15pm. The wafer is then blanket coated in 

TiAu by evaporation. A single layer of S I818 photoresist is then spun and the 

contact windows defined. Then the top layer waveguides are patterned in this
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photoresist layer. Finally 2pm of gold is electroplated, resist is removed and gold 

etched leaving transmission lines and interconnect. Figure 2 is an SEM of an 

airbridged spiral inductor produced using this process on top of the dielectric film.

O . 1 _ u  f.

Figure 2. SEM of a 3.5 turn spiral inductor.

Results'. From initial measurements on various waveguide dimensions, the 

effective dielectric constant of a 15pm thick layer of AZ4562 photoresist or single 

layer of P7020 polyimide on a CMOS grade Si substrate was found to be 6.0. 

Using this information, 50 Q characteristic impedance CPW transmission lines 

with a ground to ground spacing of 110pm and signal track width of 70pm were 

designed and fabricated. Figure 3 shows the measured transmission loss measured 

of 2.5 mm long lines fabricated on both dielectrics. For comparison, the measured 

loss of a 1.2pm thick evaporated gold transmission line fabricated on semi 

insulating GaAs is also shown in Figure 3.
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04-

S12
(dB/mm)

-0.25-
SI GaAs

5̂62

P7020

Frequency (GHz)0 60

Figure 3. Measured insertion loss of electroplated waveguides on AZ4562 and 

P I208 compared with GaAs.

DC contact chains to verify the feasibility of the electroplated plug process showed 

that reliable, low resistance contacts can be made through photoresist using 25 pm 

X 25pm plugs, whilst plugs through polyimide need to be at least 75 pm x  75pm. 

To test the RF properties of the plugs, CPW transmission lines on the dielectric 

were connected down onto transmission lines on the substrate then back up to the 

dielectric in the form of a contact chain. Measurements up to 60GHz show that 

other than a slight increase in losses due to a short section of the transmission line 

being on silicon, characteristic impedance and insertion loss is not seriously 

effected.
Q L (nH)

t - 5

- 4

- 3

2512.50 6.25

Frequency GHz
Figure 4. Quality factor and inductance versus frequency for a 2.5tum 1.2nH 

Spiral Inductor.
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Spiral inductors of various dimensions were fabricated on the dielectric using 2 pm 

electroplated gold, and completed by airbridging. Figure 4 shows the inductance 

and quality factor versus frequency for a 2.5 turn 1.2nH spiral inductor realised 

with a developmental 7pm photoresist layer process. The Q factor and inductance 

were calculated firom Q= Im (l/Y ll)/Re(lA ?'ll) and L=Im(lAfll)/2Tcf, where Y ll  

was calculated from S-parameters measured in the frequency range 0.24 to 60 

GHz. Although 7pm of dielectric produces transmission line losses of 2.5dB/mm 

at 60 GHz a quality factor of 15 is achieved

Conclusion: A process for the realisation of low loss coplanar waveguide

transmission lines on a CMOS grade silicon substrate where photoresist and 

polyimide are used as a spin on dielectric has been presented. 50 Q characteristic 

impedance CPW lines with a ground to ground spacing of 110pm and a signal 

track width 70 pm realised on a 15 pm thick dielectric layer have losses less than 

0.5dB/mm at 60 GHz. As spin-on photosensitive dielectrics are used, pattern 

transfer is simple and is easily extended to a multi-layer process. Using an 

electroplated gold process, interconnect can be made between the waveguide and 

substrate. Initial spiral inductors fabricated on a 7pm of dielectric with losses of 

2.5dB/mm have Q factors of 15, Using the 15pm process described, higher quality 

factors are expected, in addition the electroplated interconnect process described 

will allow the fabrication of multi-level inductors and circuits.
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The design of single stage amplifiers based on a metal gate Si/SiGe MOSFET 

process on a 1 Ohm cm silicon substrate is presented. The amplifier design is 

based on 0.3 pm gate length MOSFETs with fp of 19.9 GHz and f^ax 21 GHz 

integrated with low loss coplanar waveguide transmission lines and high quality 

factor spiral inductors realised on a 15 pm thick polymer dielectric. The 

performance of the amplifier, currently in fabrication, will be presented.

Introduction

Recent interest in the realisation of CMOS-based circuits has resulted in great 

activity in silicon microwave research [1]. Leading the way, SiGe HBT BiCMOS 

RF mixers and low noise amplifiers are now commercially available [2]. To 

complement this technology, the implementation of devices having good 

microwave performance fabricated solely on a high yield silicon process is a very 

attractive prospect as it leads automatically to a lower mask count process with the
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possibility of integrating RP functionality with complex baseband DSP capability. 

In the case of a standard silicon MOSFET process flow, useful RF performance 

can be achieved by (a) incorporating metal gates for optimal RF gain and noise 

performance, (b) producing low loss, high Q passive elements for transmission 

lines and lumped element matching. In this work, metal gate Si/SiGe MOSFET 

technologies, low loss transmission lines and high Q passive elements have been 

developed on 1-2 Ohm cm CMOS grade silicon substrates to enable the design of a 

single stage monolithic amplifiers.

2 Fabrication

2.1 Active Elements

The active element is a strained silicon channel n-Si/SiGe MOSFET with a metal 

T shaped gate. The Si/SiGe layer structure is grown on a 1 Ohm cm silicon 

substrate as shown in figure 1. The gate oxide is thermally grown at 750 °C to an 

oxide thickness of 4.5nm. Isolation is achieved by dry etching a mesa using SF6. 

Sputtered SiOz then lift off is used to planarise the sample. Ti/Pd/Au gates are 

patterned by e-beam lithography and lifted off. The source and drain self aligned 

implantation is carried out at 25keV with a P dose of 1 xlO^^cm'^ and is activated 

at 600°C for 20 seconds. The evaporated ohmic contacts are lOOnm Ti / 50 nm Au 

annealed at 300°C for 3 mins. The devices are completed with evaporated 

bondpads of 400nm thick Au. A 2 pm thick layer of resist is put down under the 

bond pads to reduce capacitance.
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6nm Si cap (unintentionally ) doped
18'___-3lOnm SiojGeoj supply, doped: n==5xlO cm

5nm Si spacer (unintentionally doped)

8nm Si channel (unintentionally doped)

lOOnm SiojGe 0.3 set back (unintentionally doped)

lOOnm SiojGe 0.3 set back, doped : p=lxl0^^cm'^

lum SiojGe 0.3 constant composition layer, doped 

:p=lxl0^^cm'^

Virtual substrate Ge grading : 0 -30%, doped :p= 5x l0^m73"

p-type Si substrate 1 Ohm cm

Figure 1 - Layer structure of material used to fabricate strained silicon n- 

MOSFETs.

2.2 Passive Elements and Amplifier

In order to separate the passive elements from the lossy silicon substrate a 15 pm 

thick spin on dielectric is used. The dielectric is spun onto the silicon substrate 

and is then cured so that it is resistant to further processing such as immersion in 

HE or acetone. The fabrication process is summarised below. Details of the 

fabrication of electroplated gold spiral inductors and transmission lines can be 

found in [3]. Interconnect down to a device on the substrate is easily achieved 

using standard photolithography and development. Devices are fabricated as 

above, then a 15 pm thick layer of photoresist is spun on and patterned with 

contact windows to the source, drain and gate pads. The photoresist (AZ4562) is 

spun at 4000 rpm for 30 seconds and post baked at 90°C for 20 minutes before a 

second layer is spun and baked with the same procedure, resulting in a 15 pm thick 

layer. The contact windows in the dielectric are patterned using standard 

photolithography. Following pattern transfer, the photoresist is cured at 180°C for 

2 hours. The wafer is then blanket coated in 20 nm Ti / 5 nm Au by evaporation.
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then a further 40 nm of sputtered Au. A single layer of S I818 photoresist is then 

spun and the contact windows defined. The top layer waveguides are patterned in 

this photoresist layer. Finally 2 pm of gold is electroplated, the resist is removed 

and the exposed evaporated Ti/Au gold is etched leaving electroplated gold 

transmission lines and passive elements with CPW interconnects to the devices on 

the substrate.

3 Results 

3.1 Active Elements

Enhancement mode of operation . The contact resistance was measured to be 0.67 

Ohm-mm with sheet resistance 190 Ohms/square using the TLM method. Devices 

were fabricated with gate lengths in the range 0.3 - 1 pm. The 0.3 pm gate length 

devices 100 um width biased at Vg = Vds = 1-5 V have extrinsic transconductance 

of 230 mS/mm, and after de-embedding of the bondpad capacitance, an fr of 

19.9GHz and an fmax of 21.1 GHz, as shown in figure 2(b). These devices are 

suitable for the realisation of test amplifier circuits up to around 6 GHz.

dB

MAG 30 -

20 -

MAG
10 -

h21

-10

30Frequency (GHz) 100

Frequency (GHz)

(a) (b)

Figure 2 - Cut off fi*equency fp and fmax of a 0.3 pm gate length strained silicon 

MOSFET (a) As measured, (b) After de-embedding the probing pad capacitance.
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3.2 Passive Elements

Coplanar waveguide transmission lines fabricated using the spin on dielectric on a 

2 Ohm cm silicon substrate have transmission losses less than 0.6 dB/mm up to 60 

GHz, as shown in figure 3. The waveguides are matched to 50 Ohms when 110

0 +

S12
(dB/mm) 

-0.25 — GaAs

Z4562

-0.5-- P7020

Frequency (GHz)0 60

pm ground to ground spacing and 70 pm signal conductor width are used for both 

the polyimide and photoresist dielectrics. Table 1 shows the results for spiral 

inductors fabricated using the above process.

Figure 3 Insertion loss of 50 Ohm matched coplanar waveguide transmission 

lines on semi insulating GaAs and for a spin on dielectric (AZ4562 photoresist and 

P7020 Polyimide) on a 2 Ohm cm silicon substrate.

No of turns L

(nH)

Qmax Freq(Qmax)

(GHz)

1.5 0.63 16 10

2.5 1.2 12 5

3.5 2.3 10 3

4.5 3.6 8.5 2.5

Table 1. Measured performance of initial spiral inductors.
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3.3 Single Stage Amplifier

Using the commercially available software package microwave office, single stage 

amplifiers were designed using the measured device results. Figure 4 (a) shows 

the schematic of the single stage amplifier - a simple topology was chosen based 

on the available passive library. For the 6.5 GHz design, Lg = 5.8 nH, Ls~l nH, 

Ld=2.3 nH. For the 4 GHz design, Lg=10 nH, Ls=2.5 nH, Ld=9.5 nH. Figure 4(b) 

shows the magnitude of 821 ,S 11 and S22 of the simulated amplifiers.

Ld

Ls

Figure 4 (a) Schematic of amplifier

dB

5-
« *

-5-. -5_

-15„-15
Frequency (G Hz) 11

Frequency (GHz)

Figure 4(b) Modelled performance of a single stage amplifier matched 4GHz and 

at 6.5GHz
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Conclusion

Strained silicon n-MOSFETs with metal gates have been fabricated. The devices 

show good RF performance having an f? of 19.9 GHz and an fmax of 21.1 GHz for 

a 0.3 pm X 100pm transistor. A spin on dielectric process was used to build a 

library of low loss transmission lines and passive elements with high Q on a 

standard silicon substrate. Single stage amplifiers were designed and are now in 

fabrication.
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